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ABSTRACT OF THE DISSERTATION 
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by 

 

James Yan Xu 

Doctor of Philosophy in Electrical Engineering 
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Professor Gregory J. Pottie, Chair 

 

Profiling the daily activity of a patient in-community is one of the solutions to the world’s 

ballooning healthcare costs and an aging treatment system that is limited by access to 

care, the inability to monitor home-based practice to provide feedback and the lack of 

measurement tools that reveal progress. Research thus far has been focused on small scale 

activity classification that does not address the real challenges: 1) deployment to large 

and diverse user communities leads to degraded classifier performance due to large 

activity models; 2) lack of personalization and the inability to train persons involved to 

use complex systems; 3) activity classification alone cannot deliver the information 

required by caregivers to scrutinize the skillfulness of movements, determine the 

progression of recovery and evaluate the patient’s overall quality of life. 
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Using wearable inertial sensors, the research in this dissertation provides methods and 

architectures required for an easy to deploy, low cost end-to-end system that is capable 

of providing clinically relevant, personalized daily activity profile at multiple levels of 

granularity: 1) at the highest level, information on the location a person was able to visit; 

2) within each location, information about the activities a patient was able to perform; 3) 

at the lowest level, motion trajectory of each activity with visualization and metrics. 

These allow physicians to assess and provide feedback on a patient’s ability to socialize, 

their level of exercise tolerance and their compliance to prescription.  

First, we focused on improving the state of the art in activity classification by introducing 

a multimodal, hierarchical activity classification toolkit that is less susceptible to 

performance degradation with large models.  

Second, we proposed a context-driven, personalized, targeted activity monitoring 

methodology. Through the definition of context and scenarios, this approach provides 

personalization, context information and activity to caregivers and further enhances the 

performance of a traditional activity classifier in terms of speed, accuracy and sensor 

energy usage. Through multiple iterations, the final system features novel automatic 

context identification using energy efficient, WIFI augmented GPS. We also developed 

a prescription model that enables caregivers to prescribe sensors, smartphone and 

monitoring plan to an out-patient along with the rehabilitation treatment. 

Third, we developed novel methodologies and implementations required to perform 

motion tracking and metrics computation for both generic upper and lower body motions 
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and exercise specific motions. The methods developed make use of in-depth 

biomechanical knowledge and are robust to pathological movement patterns and can 

provide visualization using a global reference frame without user interaction. 

Finally, we presented an end-to-end system architecture that synergizes the various 

components to provide the multi-tiered daily report required. Verification and evaluation 

of individual component demonstrate the effectiveness of all of our methods individually 

and the full system is evaluated to show that it is capable of operating with minimal user 

interaction and training.  
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Chapter 1 

Introduction 

1.1 Background 

Physical exercise has over many years been shown to be one of the most effective 

interventions in preventing and treating illness and a critical component in promoting 

general health and wellness [1]. Given the importance of physical exercise, little has 

advanced in the way of instructing subjects, ensuring compliance and providing feedback. 

The traditional method requires face-to-face participation of experienced trainers or 

physicians, expensive equipment and dedicated instrumented exercise facilities. At the 

turn of this century, the staggering cost of health care and the growing number of people 

with physical disabilities have become one of the biggest challenges in the world. For 

example, in the United States, stroke alone disables 650,000 survivors each year, most of 

whom require physical rehabilitation after discharge from a hospital [2]. Acute and 

chronic rehabilitation services for stroke, however, are limited by access to care, the 

inability to monitor home-based practice to provide feedback and safe progression of 

skills training and measurement tools that can reveal progress and additional needs for 

care [3]. It is estimated that 40% of the senior population experiences one or more forms 

of disabilities requiring rehabilitation and this number is growing at a significant rate [4]. 
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This on-going requirement for care is a significant challenge. Economically, it is one of 

the major contributors to the 17% of the nation’s GDP being spent on health care [5]. 

Logistically, it is extremely difficult and often impossible to provide all out-patients with 

services due to overloaded clinics, a patient’s remote location and the lack of ability to 

perform in-field evaluation and feedback. 

The recent proliferation of powerful mobile devices, along with the rapid advance in 

microelectronics, has brought micro-electromechanical system (MEMS) inertial sensors 

that are low cost and wearable, low power processors capable of processing motion 

signals, ubiquitous computing and reliable global networks that enable the transmission 

of data remotely. These allow advances toward solving urgent problems in health and 

wellness promotion, diagnostics and treatment of conditions. In particular, the wireless 

health community has focused on the integration of the state of the art in sensor 

technology, signal processing and mobile computing to enable monitoring and 

classification of a range of motion activities using wearable inertial sensors, providing 

evidence based tools to remotely monitor patient physical exercises for quality, 

compliance and to provide feedback [3,6]. This technology is vital in promoting fitness 

and managing chronic diseases. For example in stroke, physicians have the need to 

monitor a patient's walking speed in the hospital and ensure that they are intermittently 

standing to alleviate deterioration in exercise tolerance [7]. Once they are discharged, at-

home physical rehabilitation is central in reducing recurrent stroke and myocardial 

infarction, dependence on others and the cost of care [3]. Here physicians prescribe a set 
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of recommended daily exercises to the patients and need to monitor them for quality and 

compliance. 

A large body of work has focused on the accurate detection of physical activities [8-13]. 

However, enabling monitoring in large, diverse user communities has not been addressed. 

Our recent experience from a large international clinical trial for disabled persons [14] 

points to unique challenges associated with scaling. First, domain experts such as 

clinicians and fitness trainers prescribe exercises on a daily basis, but the quality and 

quantity performed by subjects are not monitored, vastly decreasing the effectiveness. 

Second, in large scale deployments, domain experts come from diverse backgrounds with 

unique sets of activities of interest. As the number of potential motions increase, 

traditional classifiers suffer from degraded performance and reliability. Third, non-

engineering domain experts do not accept complex classification systems requiring their 

input on training and classifier selection. Furthermore, end-users are often impaired, and 

only the simplest instructions can be used under ample guidance and feedback. 

It is also becoming clear that activity monitoring alone is not enough as it provides neither 

any information for caregivers to understand when, how well and how often an activity 

of interest occurs, nor the functional details and metrics required to scrutinize the 

skillfulness of an activity. For example, in treating chronic diseases such as stroke, 

multiple sclerosis, heart failure or diabetes, while activity classification may be able to 

indicate episodes of walking, a physician’s objective is to: 1) improve the quality and 

safety of a walking pattern that is slow or asymmetric; 2) reduce the risk of falls; 3) 

improve fitness through progressive walking or stationary cycling; 4) lessen the burden 
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of care on the family by reducing disability; 5) increase daily participation in home and 

community activities; 6). reduce the likelihood of hospitalization. The information 

required to initiate or alter a treatment regime extends far beyond what activity 

monitoring is capable of providing and requires multiple levels of granularity: 1) at the 

highest level, information on the location a person was able to visit, providing assessment, 

for example, of his/her ability to  shop or socialize; 2) within each location, information 

about the activities a patient was able to perform, providing clinicians and patients with, 

for example, the level of exercise tolerance, as well as compliance with the exercise 

prescription; 3) at the lowest level, motion trajectory of each activity, allowing 

visualization and metrics computation for analysis and feedback.  

1.2 Aim and Objectives 

This dissertation aims to develop the methods and architecture required for an easy to 

deploy, low cost end-to-end system capable of providing multi-layered, clinically 

relevant personalized profile of a person, to enable large scale in-community care.  

This, for the first time, will provide caregivers with the capability to evaluate the person’s 

wellbeing and safety in community using a range of information from general monitoring 

of compliance of treatment and participation in the community, to detailed information 

on the person’s skillfulness in performing exercises and movements.  

To achieve this aim, the end-to-end system must encompass all aspects of the traditional 

prescription, treatment and feedback process. The person’s profile must include the 
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physical activities performed, their biomechanical functional details, metrics and the 

context under which the activities took place. 

A number of novel capabilities are required in order to enable this system and are the 

objectives of this dissertation: 

1. Efficient activity classification that resolves the issue of scalability and the lack 

of personalization, inherent when deploying to large populations spanning 

multiple medical communities. 

2. Environmental context monitoring, to provide vital additional data in 

understanding where an activity took place and the patient’s health-related quality 

of life information. 

3. Motion reconstruction and metrics extraction of classified activities that are robust 

to pathological body movements, to provide qualitative and clinically meaningful 

information on the activities of interest. 

4. Extension to the current physician-patient interaction, to allow the deployment of 

sensors and tools for monitoring and feedback 

5. A way to present information to caregivers in a easy to access, layered approach, 

from holistic quality of life information to context and activity information, 

expanding further into visualization of individual limb movements during 

activities. 

6. System architecture that synergizes the various components and provides a way 

for researchers, physicians and caregivers to monitor and evaluate a patient’s daily 

behavior. 
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1.3 Methodology and System Overview 

Careful analysis of the research objectives shows that the six capabilities required are 

highly interdependent: 

• Environmental context monitoring can be used as a way to augment activity 

classification to help resolve the issue of scalability by reducing the model size. 

• Extension to the physician-patient interaction can be made to prescribe to the 

patient the sensors required and to personalize the contexts and activities of 

interest for the particular patient. This helps to resolve the scalability and 

personalization issue when deploying to large populations across different 

medical communities. 

• Traditional full body motion reconstruction is tremendously difficult but can 

become manageable if activity classification allow us to limit reconstruction to 

identified activities of interest. 

Utilizing the analysis above, this dissertation formalizes the methodology required to 

deliver the capabilities. First, contexts and scenarios are introduced as a way to describe 

the contexts and activities of interest and provide personalization. Then, the prescription 

approach to activity monitoring is introduced to take advantage of contexts and scenarios 

to provide personalized monitoring. Third, these two instruments allow the development 

of context-driven, targeted activity monitoring that tackles the issues of scalability, 

personalization and ease of use. Fourth, activity specific motion reconstruction can be 

performed following activity classification. Finally, a system is outlined that can act as 
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the overarching umbrella that connects the various components and their outputs to 

achieve our aim of developing an easy to deploy, low cost end-to-end system capable of 

providing multi-layered, personalized profile of a person. 

1.3.1 Context and Scenarios 

When formalizing context, the definition by Dey [15] is often used. While powerful, it is 

not well suited for monitoring physical activities, where in many cases a context 

definition contains activities. There are a number of alternative definitions available 

[16,17], which however still contain physical activities along with other environmental 

attributes. This dissertation provides a focused definition of context as a subset of all 

attributes that characterizes an environment or situation, external to the user. For 

example, a "meeting" environment is a context, and its characteristics may involve certain 

sound profiles and a set of possible locations. "Sitting in a meeting" in contrast is not a 

context, as it contains the physical activity "sitting". 

Personalization is achieved on two levels. First, individuals may have different sets of 

contexts under which motion classification is required. Then, within each context there 

can be a set of individualized activities of interest. This leads to the definition of a 

scenario: a scenario is the combination of a context, and a set of activities of interest 

under the context, with models for distinguishing the activities, motion 

reconstruction and metrics computation. For example, consider a system that needs to 

monitor walking, running and standing when a user is outdoors. The context is outdoors, 

and under this context an activity model can use an accelerometer on the ankle with 

standard deviation in the horizontal direction as a parameter for separating the motions. 
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A number of classification methods such as a Naïve Bayes classifier can then perform 

activity identification using this model. Similarly, other models could be used with more 

data (such as gyroscope) to perform motion tracking and metrics computation. 

1.3.2 Prescription Based Activity Monitoring 

We propose that a prescription model be used for context-driven personalized activity 

monitoring, as shown in Fig 1.1. This approach enables healthcare providers to prescribe 

individualized exercise plans dependent on a subject’s needs and monitor them for quality 

and compliance. During the prescription phase, a healthcare professional would prescribe 

a set of exercises to the patient and submit a monitoring request to a service provider that 

states the details needed for each activity (location, duration, repetitions, trajectory of 

activity of an arm or leg etc.). This information is formalized into a scenario document 

that contains a list of activities to be monitored, the level of details required, and the 

models necessary for classification, tracking and metrics computation. This approach also 

allows multiple healthcare providers to prescribe monitoring for the same patient, in 

which case the scenarios could be merged. 

After prescription, a physical package containing sensors and a mobile communication 

device combined with an application are then sent to the end-user. The mobile device 

with bundled applications acts not only as a sensor instrumentation hub, but also a signal 

processing unit and an avenue for feedback and guidance. A 3rd party service provider 

such as a rehabilitation therapist would then monitor users for exercise quality and 

compliance. Table 1.1 lists an example set of scenarios that may be prescribed for a stroke 

patient. 
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Fig 1.1 Physical exercise prescription and monitoring 

This system extends well beyond medical usage to any application needing activity 

monitoring and guidance. For example, fitness trainers can prescribe personalized 

exercises, their duration and place (gym, home, office) for different clients. The activity 

monitoring system can then inform the users of their individual training progress. 

Table 1.1 Example scenarios 

Context Activity Model Purpose 

Patient room Sitting, Standing, Lying 

down 

Monitor how long a patient has stayed immobile, 

assess the risk of bed sores and other problems 

Rehabilitation Aerobic exercise, Walking 

Slow, Walking fast, Fall 

Monitor patient's performance in exercises 

Hall way Standing, Walking fast, 

Walking slow, Fall 

Monitor a patient's general physical condition, and 

detect falls 

 

1.3.3 Context-driven, Targeted Activity Monitoring and 

Personalization 

Context-driven, targeted activity monitoring is based on the concept of scenarios. High 

level functionalities of the system are depicted in Fig 1.2. Using various sensors, the 

system obtains both inertial data that describe motion, and environmental data that 

describe context. The data flow through a signal processing pipeline and a user’s context 
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is first determined. A scenario is selected based on the current context, which in turn 

determines the activity classifier model used. The final output of this component is a 

user's current context and activity. 

 

Fig 1.2 System high level description for context-driven activity classification 

Using this approach, specifically optimized models can be used with each being focused 

on the activities of interest within a context. Unlike conventional activity monitoring, 

there is no single list of comprehensive activities that needs to be built into a monolithic 

classifier. Instead, multiple personalized scenarios are prescribed to a user. There are a 

number of benefits from this system: the ability to personalize the prescription; improved 

classification accuracy and speed due to model simplification; and the ability to optimize 

sensor energy usage as not all sensors are required in all scenarios. 

1.3.4 Targeted, Episodic Body Motion Tracking and Analysis 

In the context of wireless health, motion tracking is the process of determining and 

recording the movement of individual limbs of a user. This is a vital capability as the 

analysis of the biomechanics surrounding human limbs has been used by many disciplines 

to measure quality of movements, diagnose diseases and guide rehabilitation efforts. 
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Motion tracking using inertial sensors is a current and large area of research. Instead of 

performing difficult and slow full body motion tracking, we can take advantage of the 

fact that a targeted activity of interest is first identified by the activity classification stage 

and so each activity can be treated episodically. Fig 1.3. demonstrates this process, where 

by using the same process as above, the system is able to select the context-specific 

scenario which also contain the models required for motion tracking and metrics 

computation. The output of this component is the reconstructed motion and its metrics. 

 

Fig 1.3 System high level description for motion reconstruction and metrics computation 

Most generic activities of interest such as walking, reaching or stair climbing can be 

effectively reconstructed by tracking the trajectory of arms and feet separately using two 

models. More specific activities such as various movements in sports would require 

dedicated models that take advantage of in-depth biomechanical knowledge specific to 

the motions. Metrics computed should be clinically meaningful to the particular medical 

community that is interested in the activity. Design of the metrics should be performed in 
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consultation with physicians. Once determined, the metrics and computation model can 

be easily integrated into a scenario. 

1.3.5 System Overview 

Connecting the various components together, we present an end-to-end architecture in 

Fig 1.4. The design translates into an implementable system architecture following a 

client/server design with two clients and one server.  

 

Fig 1.4 High level end-to-end system architecture 



13 
 

The clients are the domain expert client for prescribing the scenarios and the end-user 

client for guiding the end-user through training, performing activity classification and 

context detection. The server implements scenario management (receiving, merging and 

sending) and components that require high computational power: classifier training, 

context-specific classifier generation, motion reconstruction and metrics computation. 

Three modes of operation are supported by the system: 1) Construction and prescription 

of models by domain experts; 2) Initial training from end-users of the classification 

system to recognize both context and motion; and 3) Live monitoring of the end-user's 

context and motion and reporting. The prescription phase is described by Section 1.3.2 

and in Chapter 4. The context-driven activity classification, motion reconstruction and 

reporting are discussed in Chapters 4, 5 and 6 respectively. System training requirements 

are implementation specific and are described are detail in Chapter 4 and 5. 

1.4 Contributions 

This dissertation contributes to the field novel methodology, design, implementation and 

validation for all of the above capabilities. While high level contributions are highlighted 

below, each chapter will describe its novel contributions on a more specific level for 

methodology, architecture and implementation. 

In the area of activity monitoring, we have developed a unique hierarchical activity 

classification system using multiple wearable inertial sensors. Using a tree like model 

that logically separates the activities of interest, the system can overcome the inherent 
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difficulties of classifiers with large models and allows a large number of activities to be 

monitored simultaneously.  

Further driven by the experiences learned from our large scale, international deployments 

in stroke patient activity monitoring [8,14,18], we have proposed an entirely new context-

driven, prescription based personalized activity classification methodology. Each of the 

challenges relating to large scale deployment (Section 1.1) is addressed in novel ways: 1) 

To allow seamless monitoring of prescribed physical exercises for quality and compliance, 

we have presented a prescription service based methodology that augments the physician-

patient interaction; 2) Since the diverse user communities require personalized activity 

monitoring, we have proposed a context-driven approach where the definition of context 

is more focused compared to other studies and scenarios are defined as a natural extension; 

3) A flexible architecture has been crafted to provide the roadmap to an end-to-end system, 

with multiple clients tailored to domain experts and end-users. Together these 

components bring three major innovations: 1) The ability to accurately detect context 

using multiple sensing modes; 2) The use of context to improve activity classification 

accuracy, speed and energy usage; and 3) The ability for experts from different domains 

to individually prescribe sets of physical activities of interest under different 

environments. 

Recognizing that activity classification is just one of many streams of information 

required by physicians to scrutinize skillful movements [19], we have developed a 

number of novel motion reconstruction methods for generic lower body movements and 

for exercise specific movements such as cycling, using the same set of sensors as for 
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activity classification. The generic lower body movement tracking features a new zero 

velocity update algorithm that is robust to pathological gait patterns where current state 

of the art approaches fail. It also provides an autonomous method for obtaining 

synchronized visualization frames across multiple sensors so that their movements can 

be rendered using the same frame of reference. The cycling motion tracking research 

presents a unique study into the cycling biomechanics and a simple way to both identify 

proper and improper cycling motion patterns and obtain the foot and crank angle for 

motion reconstruction. 

Finally, a system has been designed to provide cohesion between the various components 

and enables personalized, quantifiable, multi-layered profiling that: 1) allows the 

monitoring of prescribed physical activities by caregivers through inertial sensors and 

mobile device given to a patient, with minimal training data; 2) utilizes context-guided 

activity monitoring to achieve personalization, enhanced classification accuracy and 

throughput; 3) seamlessly integrates motion reconstruction and metrics computation with 

context information and context-guided activity classification to provide comprehensive, 

layered reporting of a patient’s daily life. 

Apart from the above-mentioned contributions, a number of practical contributions were 

also made in the form of sensor design, firmware, cross platform data collection tools, 

verification tools and various instructional toolkits for classification, context detection 

and motion reconstruction. 
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Together, the work in this dissertation is the first to demonstrate the capability of large 

scale collection, classification and analysis of context and motion data, enabled through 

the simplicity of interfaces, automated tools and effective hierarchical classification 

techniques that alleviate the curse of dimensionality common in machine learning. This 

provides the potential for development of large, standard datasets, models and simulation 

software that would accelerate future innovations. 
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Chapter 2 

Literature Review 

The work in this dissertation presents an intersection between physical activity 

monitoring using wearable sensors, context awareness and motion reconstruction. This 

chapter provides a literature review and the state of the art of areas directly relevant to 

the dissertation. 

2.1 Activity Classification 

The benefits of activity monitoring using sensors have been evident [12,18,20-24]. Many 

studies in wireless health use accelerometers as the primary sensor. An activity 

classification system was developed for promoting exercises in an effort to reduce injuries 

[12]. Multiple on-body accelerometers were used with a large number of binary classifiers 

each trained to recognize specific activities. A series of optimizations linked the 

individual classifiers and produced a final output. In [24], a small set of activities were 

recognized using a single tri-axial accelerometer and machine learning techniques. 

Hierarchical classification is performed by preliminary clustering of motion into static, 

transitional and dynamic states, followed by refined classification of actual activities. A 

mixture-of-expert model was proposed for activity classification using co-training with 
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both labeled and unlabeled data [22]. The method uses a number of simple classifiers 

each trained with a labeled data set first and then selects unlabeled data points for further 

training and improved system performance. 

Machine learning algorithms are often used with accelerometer data. For example they 

were applied for monitoring intervention effectiveness of acute stroke patients from 150 

sites in 12 countries [18]. There, the Naïve Bayes classifier was first used to detect 

activities such as walking, and a dynamic time warping algorithm was then used to 

compare segments of activity against previous templates. This enables physicians and 

therapists to directly measure a patient's activity level after discharge with laboratory 

quality measurements. In [25], a system using an iPhone and Nike+iPod sport kit was 

proposed for classifying human activities. The activities considered include running, 

walking, bicycling, and sitting. One system for measuring home-based physical 

rehabilitation has been described in [11]. Using a signature detection algorithm and 

accelerometer’s signal vector magnitude as a feature, the system detects if a user has 

performed a set of rehabilitation exercises accurately, and provides appropriate feedback 

An example of application in athletics was presented in [26], where multiple 

accelerometers were used for ambulatory monitoring of elite athletes in both competitive 

and training environments. For swimmers, the characteristics of strokes can be captured 

and analyzed. For rowers, the addition of an impeller combined with accelerometer data 

was used to recover intra and inter stroke phases for performance analysis. This system 

was used by Australian Olympic athletes in training for competition in the 2004 Olympic 

Games. 
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Apart from inertial sensors, some studies researched other sensing modalities. A camera 

based hierarchical activity classification approach was presented in [23] using switching 

Hidden Markov Model (HMM). The classifier performance degradation problem 

associated with complex models was improved using a two tier system. The first tier 

describes activities of daily living (ADL) using sequences of atomic activities and the 

second recognizes ADL through a HMM populated using atomic activity sequences. In 

[9], a complex environment with many microphones, video sources and other sensors was 

designed. The study attempted to accurately track movements of arms and hands. 

Activities considered there are bathing, dressing, toileting, eating, and others. Results 

indicated that using one third of the 300 available sensors in the specially designed lab, 

tasks can be detected with an accuracy of 90%. A specially designed glove was introduced 

for activity classification [10]. The glove detects and records objects a user touches using 

an RFID reader. In this system, all the objects being monitored (such as utensils, 

toothbrushes, and appliances) need to have RFID tags instrumented. 

Most methods reviewed confront the challenge of classifying a specific motion among 

many possibilities at any observation time. As the number of potential motions increase, 

the classifier model complexity increases and classification performance and reliability 

are degraded. In addition, these systems do not address the issue of rapid adaptation to 

the demands of large heterogeneous user communities, where different activities are of 

interest, requiring separate models, classification methods and features. Also, much of 

the literature consists either of small scale clinical studies or focuses only on healthy 

subjects. This creates not only deficiencies for characterizing motions, but also a lack of 
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consideration of how disabled patients and caregivers would interact with the systems. 

For example, studies generally assume that sensors are always placed correctly and 

complex calibration or setup instructions will be followed. However, non-compliance 

with directions will occur frequently when systems are deployed into communities. Thus, 

design consideration has to be given such that systems will require as little user (both 

end-users and caregivers) training and input as possible. 

2.2 Context Detection 

The recognition of user and environmental context is a primary capability for improving 

human machine interaction and enabling low energy operation while retaining system 

performance [27]. Studies have emerged recently in wireless health that attempt to 

combine context and activity classification that integrates different sensors. In [28], a 

multi-sensor wearable system was proposed that enables a context that largely consists of 

physical activities. There, 30 sensors were embedded into a garment, with multiple 

processing nodes responsible for distributed processing of sensor data. This study treated 

physical activities as contexts, and focused on the sensor fusion development. Using 

context data to aid activity classification was probed in [29], where a large number of 

sensors were placed on subjects to collect context data including ambient light level, 

electrocardiography (ECG) and skin temperature. The study extended traditional 

accelerometer based classification using the extra data as features directly in the classifier.  

Many researchers uses the mobile device as the platform for detecting context and 

interacting with the user. A system for a context-aware mobile phone named Sensay was 
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developed [30]. This includes context defined as a set of user states (normal, idle, 

uninterruptable). By introducing light, motion and microphone sensors, Sensay is able to 

detect these contexts and manipulate ringer volume, vibration, and phone alerts. In [31], 

a context-aware system was developed to promote exercise and fitness. The system 

integrates GPS to guide the user on a running session and indicates when the user should 

stop to perform strength exercises before resuming the run. The user’s average speed is 

computed using GPS and provided to the user as feedback.  

A middleware for managing context data was presented in [32]. Context was defined in 

the study as all measurable aspects of a person, including physical activities. The 

middleware first handles the transmission, reception, storage of context data from sensors, 

and then provides a query platform enabling in-community care by healthcare providers.  

Thus far, the definition of context has varied between investigations. For augmenting 

activity classification using context awareness, it is essential to define context with the 

requirement that context states do not themselves contain the very activities that are to be 

detected. Consequently, a system is needed that provides a more focused definition of an 

environmental context that can be detected to augment activity classification with 

enhanced classification accuracy, scalability, speed and energy usage. The system should 

also be integrated with body worn inertial sensors, a mobile device, and end-user activity 

monitoring.  
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2.3 Activity Classification and Dimensionality 

In machine learning, a dimension refers to a feature derived from an observation and the 

term is also interchangeably used with variable, attribute etc. A common problem 

plaguing machine learning and in fact any large data analysis is known as the curse of 

dimensionality, where the large number of features used by a classifier degrades its 

performance due to the high dimensional search space created. First, it can be shown that 

each dimension increases the volume of the search space nonlinearly and requires 

exponentially larger datasets to populate and produce meaningful decision boundaries 

[33,34]. In other words, given a fixed number of training samples for a classifier, its 

predictive power reduces as the dimensions increase. In physical activity classification, 

large scale deployment leads to large user population and high number of activities of 

interest. The exponentially increasing requirement on training data is not possible when 

dealing with patients suffering from various conditions (for example, some may even 

have difficulty sustaining a light walk). Second, decision boundaries created in high 

dimensional space are prone to overfitting the given training data. This leads to classifiers 

trained in a clinical setting losing effectiveness once the patient is discharged. Third, the 

computational requirements for design, training and classification increase nonlinearly 

with increasing dimensions. For example, the search space of 1000 observations with 3 

features lies in a 3-dimensional space, whereas 100 observations with 50 features lies in 

a much more complex 50-dimensional space. The increase in computational complexity 

and time due to the large search space impedes real time physical activity classification 

using multiple sensors. 
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There are a number of popular methods that perform dimension reduction when given a 

large feature vector. They can be categorized as supervised or unsupervised, linear or 

nonlinear. For example, the popular principal component analysis (PCA) method [35] is 

unsupervised in that it does not consider underlying structure in the feature vector but 

instead focuses on using eigenvalue analysis to reduce the input vector to a small number 

of principal components (PC) that maximally capture the input variance. In [36], 

dimensionality reduction of ECG signals was studied, where the high dimensional raw 

data from up to twelve electrodes are reduced down to a manifold on two-dimensional 

time-delay embedding space, using locally linear embedding (LLE) algorithm, a 

nonlinear unsupervised reduction method. From this manifold, features were computed 

that allow for the classification of different abnormal heart beats. 

In [37], dimensionality reduction techniques were developed for text classification, where 

documents are assigned to pre-defined classes. The feature space in this problem consists 

of non-stopping word stems as the features and their occurrence as the values. This leads 

to dimension of tens of thousands. The study proposed a combination of techniques to 

reduce the search space. A semantic indexing method is used to characterize the 

underlying semantic structure by finding keywords and their positional relationships, 

followed by further space reduction by clustering similar keywords. This approach 

showed high classification accuracy while reducing the dimension by a factor of 100. 

For problems that contain inherent structure, hierarchical models are effective at reducing 

the dimensionality. Research in image recognition [38] showed that even though 

problems frequently involved upward of 100 thousand features, if the problem can be 
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described with a hierarchical taxonomy then the feature space can be aggressively 

reduced and as a consequence, the classification accuracy and speed improved. This 

concept was further utilized in facial recognition [39], where the use of a hierarchical 

classifier model allows for a pre-filtering of background images that are much more 

common than images containing faces (a ratio of 5000 to 1). This enables the subsequent 

classifiers to use fewer features, which significantly improved classification accuracy and 

throughput. 

In wireless health, similar approaches are used for reducing the activity classifier 

dimensionality. In [40], PCA was used to extract only 30 features from an 1170-

dimensional feature vector derived from 5 sensors. The study compared a number of 

popular classifiers such as support vector machine (SVM), artificial neural networks 

(ANN) and decision trees on their ability to accurately classify 19 activities. In [41], a 

two level activity classification strategy was proposed. Fifteen physical activities are first 

assigned to one of three states using a simple ANN, trained using four features. Within 

each state, an augmented feature vector is computed and reduced using linear 

discriminant analysis (LDA), a linear supervised dimensionality reduction algorithm. The 

resulting feature lies in a 3-dimensional space with little adverse effects on classification 

accuracy. 

One of the disadvantages of using dimensionality reduction algorithms is that the features 

extracted lose all physical meaning and thus do not allow designs based on properties of 

physical activity. Alternatively, hierarchical approaches are good candidates for both 

reducing dimensionality and improving the model design process. Physical activities can 
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be categorized based on factors such as intensity and this structure is naturally 

hierarchical. In [41], a two level hierarchy was used to group activities of similar states. 

Within each state, features were computed based on the physical properties of the 

activities within the state group (preselection of potential features) and LDA was used to 

further reduce the feature vector by finding maximally discriminative ones. 

Apart from the methods described above, fundamentally, the dimensionality of activity 

classification can also be reduced by reducing the number of activities presented to the 

classifier at any given time, such as the context-guided activity classification approach 

proposed in this dissertation. By introducing context that can be detected accurately, a 

large set of activities of interest can be assigned piecemeal to different contexts based on 

user specific behavior (the scenarios). This approach allows for selective reduction of the 

search space down to a manageable size with little penalty. 

2.4 Motion Tracking 

Due to the important benefits demonstrated by the monitoring and analysis of gait 

characteristics, a number of methods have been proposed to track the foot during a gait 

cycle and to characterize the cycle using various metrics. In [42], wireless inertial sensors 

containing accelerometers, gyroscopes and magnetometers were used to determine the 

foot motion in 3D space. The study used a straightforward zero velocity update (ZUPT) 

method to determine reset points for integration when a foot becomes stationary. Another 

system for visualizing gait was introduced in [43], where a similar approach to [42] was 

developed in terms of 3D position tracking. Two additional shoe mounted force sensors 
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were used to both augment trajectory data with the force of the foot and to detect the 

various phases of gait for resetting integration.  

In [44], a gait analysis system was developed for detecting strides for Alzheimer’s 

patients. The system computes accelerometer signal vector magnitude as the main feature 

and a number of dynamic thresholds and windows are used to determine the various 

phases in a gait cycle. Various features that characterize a gait cycle were studied in [45], 

which presents a way to reconstruct a foot’s movement in the sagittal plane using 2D 

accelerometer combined with a 1D gyroscope. Based on this data, features such as stride 

length, walking speed, gait phase timing and incline were estimated. In [46], a foot 

orientation and position tracking system was developed. The study augmented GPS data 

with gait data such as walking speed and stride length, where the gait parameters are 

obtained using a standard inertial dead-reckoning method. 

While many previous works have demonstrated methods to reconstruct gait cycles, they 

have major short comings for use in the clinical setting to study abnormal gait exhibited 

by patients suffering from neurological diseases: 1) Many were focused on reconstructing 

motions on the sagittal plane, which is not sufficient as hemiparetic gait can exhibit large 

swings in both transverse and coronal planes; 2) Most previous work did not consider the 

problem of accurately detecting a correct reset point for zero velocity update (ZUPT). For 

example, the weak side of a hemiparetic patient produces irregular gait patterns, causing 

most ZUPT algorithms (and thus the reconstruction algorithms) to fail; 3) There have 

been a limited number of clinically meaningful features extracted to characterize 

hemiparetic gait. 
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Apart from daily activity motion tracking such as gait, motion reconstruction is also 

important for sports activities such as cycling, where the need to understand its efficiency, 

physiology and biomechanics is vital for providing accurate feedback and guidance to 

users. The biomechanical efficiency of different body positions while cycling was studied 

in [47]. The work explored the effects of modifying bike geometry such as saddle height, 

stem length and foot angle on the overall biomechanical efficiency. Measurements 

included oxygen uptake, heart rate and effective pedal force. Correlations between 

parameters such as saddle height, foot angle and efficiency were found.  

The physiological and biomechanical factors associated with elite endurance cyclists 

were studied to discover the dominant factors affecting cycling performance [48]. 

Performance was measured using biomechanical indices derived from the amount of total 

power produced by the athlete through analysis of foot and knee angles as well as cadence. 

The study established the optimal torque production motion patterns through studying a 

number of elite cyclists. Similarly, a two part study also provided the ground work in 

theoretically analyzing the forward force produced for a particular pedaling pattern and 

solving multivariable optimization problems linking the joint movements with bicycle 

parameters to achieve optimal efficiency [49,50]. 

Various research efforts have also focused on injury prevention and rehabilitation. In [51-

53], inappropriate foot and knee joint movement during cycling were found to cause 

Achilles tendinitis, sesamoiditis, shin splints and nerve compression injuries over time. 

In [54], the cycling biomechanics of adolescents suffering from cerebral palsy (CP) was 

studied in comparison to normal adolescents in an attempt to use cycling to improve both 
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strength and cardiovascular health in the afflicted group. This study found that patients 

suffering from CP present noticeable early onset and later offset of muscle activation and 

concluded that further studies could develop cycling based interventions. 

Most of the published research in this area established good crank/foot angle and torque 

patterns observed from athletes and highlighted the need to achieve proper motion 

patterns in cycling.  Given the importance of this however, there has been no compact 

and portable solution for measuring the foot angle and providing the cyclist with real-

time feedback. Sports performance studies make use of either expensive camera 

equipment [55], or elaborate instrumentation on parts of the bike [49,50,54], which are 

both expensive and labor intensive to set up. 
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Chapter 3 

Activity Classification using Wearable 

Inertial Sensors 

3.1 Introduction 

The proliferation of powerful mobile devices, along with the rapid advances in 

microelectronics, has brought micro-electromechanical system (MEMS) inertial sensors 

that are low cost and wearable, low power processors capable of processing motion 

signals, ubiquitous computing and reliable global networks that enable the transmission 

of data remotely. The integration of these can now enable large scale monitoring and 

classification of a range of motion activities, providing evidence based tools to remotely 

monitor patient physical exercises for quality, compliance and to provide feedback [3,56]. 

This technology is vital in promoting fitness and managing chronic diseases. 

This chapter introduces briefly classifiers and supervised learning, followed by an outline 

of how activity classification can be performed using these methods coupled with 

wearable inertial sensors. Several specific classification algorithms are discussed in detail 

and a toolkit for both real-world and instructional deployments is presented. 
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3.2 Activity Classification using Wearable Inertial 

Sensors 

3.2.1 Classifiers and Supervised Learning  

Supervised learning and the construction and use of classifiers is fundamental to this 

research. In general, a classification system includes an algorithm for making decisions 

(classifier), input data (observation), output labels from the classifier (classes), data 

derived from input that can aid the classifier in making decisions (features) and a model 

that describes the relationship between features and classes (model).  

In supervised learning, the classifier is first presented with a model and a set of input data 

with annotated classes (ground-truth). This is called a training dataset and is used by the 

classifier to learn the relationship between features and classes (training the classifier). 

Once a classifier has been trained, it is then able to utilize the model in conjunction with 

new input data to produce classification [57]. 

3.2.2 Wearable Inertial Sensors 

The mission of the wireless health community is to develop activity monitoring that is 

low cost, easy to deploy and can enable remote, in-community monitoring for prolonged 

periods of time. Due to these reasons, wearable inertial sensors are universally used for 

their light weight, small size, long operating life, ease of deployment and data processing 

and transfer (when coupled with ubiquitous mobile devices). There is of course research 

that explores the use of other sensing modalities such as instrumented home using RFID 
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[58-60] and camera based techniques [61-63]. In this study only wearable inertial sensors 

were used. 

When worn, inertial sensors use MEMs devices to measure acceleration and rotation of 

the body segments they are attached to in 3D space. The most commonly used sensors 

are accelerometers that only measure acceleration. They are considered to be 3 degrees 

of freedom sensors (3DoF) for the 3 axes of acceleration they measure. Recently 6DoF 

sensors containing a gyroscope for measuring rotation rate and 9DoF sensors containing 

gyroscope and magnetometer for measuring absolute direction are becoming popular. 

Using features derived from these measurements, we can accurately classify the physical 

activity a user is performing. Fig 3.1 demonstrates some of the inertial sensors used by 

the UCLA’s Wireless Health Institute (WHI). 

  

Fig 3.1 Sensors used/developed by Wireless Health Institute (WHI) 
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3.2.3 Activity Classification using Wearable Inertial Sensors 

Activity monitoring identifies the physical activities a person is performing using data 

from wearable inertial sensors. Here observations are from sensors worn on the body. 

Features can be derived from the sensor data such as mean and variance of acceleration 

measured on the ankle. The classes are the physical activities of interest. Various 

classifiers can be selected and templates of the activities with ground-truth can be 

collected for training. 

Consider an example using a classifier to determine if a person is running, walking fast 

or walking slow, using one ankle worn tri-axial accelerometer as shown in Fig 3.1a. 

 

Fig 3.2 Sensor placement example 

A training data set is collected with ground-truth and is shown below (Fig 3.3). 

With the sensor in place to produce observations (acceleration signal), classes determined 

(walking fast, walking slow, running) and labeled training data gathered, the next steps 

are to select a classifier algorithm and select the features from the observations. Recall 

that features are derived from observations and should be distinguishing factors between 
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the classes. Notice that the signal’s mean and variance is significantly different for the 

classes (Fig 3.3). This is intuitive: walking slow should produce little acceleration on the 

ankle, walking fast some and running the most. Further notice that if mean and variance 

is selected as the features then a simple thresholding algorithm is enough for a classifier. 

To train the classifier, we simply compute the mean and variance of the training data for 

each class and have the classifier determine the best cutoff threshold. 

 

Fig 3.3 Example training data set showing activities Running, Walking fast and slow 

While simple, this example highlights the design considerations for classification: 

• What are the true identifying features for each category? In most cases the 

selection of features for activity classification is a combination of intuition 

(e.g. acceleration should be small for walking, large for running), fundamental 

knowledge of the underlying mechanics (e.g. ankle is the best place for sensor 
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placement to observe the motions) and trial and error (e.g. testing different 

sensor position and features). 

• How much training data is required? This requires a judgment of the difficulty 

in separating the classes: if the person walks and runs differently each day 

then more data is needed to refine the threshold and to perhaps provide better 

features. 

3.3 Naïve Bayes Classifier for Activity Classification 

3.3.1 Theory 

The Naïve Bayes classifier is a probabilistic classifier based on the Bayes’ theorem [64]. 

The name naïve stems from the fact that the classifier assumes that pairs of features are 

independent, thus significantly simplifying the model parameters and training 

requirements. Fundamentally, the classifier is solving the maximum a posteriori (MAP) 

estimation problem of given features ��, what is the most likely class � among all possible 

classes ��: 
 ���� = arg	max�	∈	�� 	���	|	��, … , ��)  

  ���	|	��, … , ��) = 	���)����, … , ��|�)����, … , ��)  
Eq (3.1) 

In the particular case of activity classification, the class variable � is the physical activity 

we are interested in such as walking or running. The features are derived from sensor raw 

signal such as mean and variance of acceleration. In actual classifier implementation, the 
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denominator of Eq 3.1 above (known as the evidence) is not computed as it does not 

depend on the class variable. Notice that the numerator is effectively the joint probability: 

 ���, ��, … , ��) = 	���)����, … , ��|�)  

  = ���)	����|�)	����, … , ��|�, ��) 
= ���)	����|�)	����|�, ��)	����, … , ��|�, ��, ��) 
… 

Eq (3.2) 

Because the features are considered to be independent from each other (Naïve) this can 

be greatly simplified: 

 ������, �� , � ! = ����|�),												"	 ≠ $, % 
Eq (3.3) 

And the joint probability in Eq 3.3 can be expanded as: 

 ���, ��, … , ��) = ���)	����|�)	����|�)…����|�)  

  = ���)&����|�)�
�'�  

Eq (3.4) 

This means that the posterior probability (Eq 3.4) can be expressed as the following, 

ignoring the normalization factor (the evidence Eq 3.1): 

 ���	|	��, … , ��) ∝ 	���)&����|�)�
�'�  

Eq (3.5) 

Naïve Bayes is a supervised learning method and training is required for classifiers to 

establish model parameters. From Eq 3.5 we see that in order for the classifier to function, 
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distributions ���)  and ����|�), " = 1…*  must be obtained using training data with 

ground-truth (class known). For activity classification this usually involves having the 

user perform the activities in set ��  as templates. Since activity classification mainly 

deals with data and features that are continuous, a continuous distribution should be used 

for ����|�). For example, if the Gaussian distribution is used, then the training data would 

be used to estimate the mean and variance for ����|�)	∀	�	 ∈ 	��. 
3.3.2 Advantages and Disadvantages of Naïve Bayes in Activity 

Classification 

Overall, activity classification (and classification in general) is more dependent on the 

choice of features rather than the classifier. However there are some distinct advantages 

and disadvantages of the Naïve Bayes approach. 

The advantages are: 

• The concept and theory is very simple, making this classifier one of the easiest to 

implement, verify and use. It is also computationally fast making it possible for 

real-time classification on cheap hardware, typical in wireless health applications 

where the computing platform can be a mobile phone. 

• Due to the independence assumption only the mean and variance for each 

conditional distribution is needed rather than the full covariance matrix. In 

practice this translates to a small amount of training data required for the classifier 

to be useful. This is a significant advantage as collecting large amount of training 
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data from end-users is costly and sometimes impossible (for example with 

disabled patients). 

• Given a small amount of training data, the Naïve Bayes classifier generally 

performs as well as or better than other approaches such as Support Vector 

Machine (SVM) or k-nearest-neighbor (kNN), both of which benefit from 

substantial training [65]. kNN especially has a memory requirement that grows 

with the training data, becomes slower and is effective only if samples have low 

variance. 

• The classifier handles continuous data well through the choice of the distributions. 

• Classifier output probabilistic interpretation that is useful for take confidence 

intervals or adjusting thresholds. 

There are also some disadvantages: 

• The independence assumption is very strong and is never true in practice. For 

example we generally know that the features cannot be independent since they are 

produced by the same motion and measured using limited degrees of freedom 

sensors. However our research and those from the wider machine learning 

community has shown that the Naïve Bayes classifier still performs well even if 

the condition does not hold [18,66,67]. 

• If the underlying phenomena can be understood and the relationships between 

features and the classes determined, the Naïve Bayes classifier is not capable of 

incorporating the dependence. 
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3.4 Bayesian Networks for Activity Classification 

3.4.1 Theory 

Bayesian Networks 

The Bayesian network classifier is based on graphical models (Fig 3.4). For a graph to be 

a Bayesian network (BN), the edges (,) must be directed (meaning each edge has a 

direction which indicates the starting and ending node) and the graph must also satisfy 

the Markov condition [68]. This means that a BN with graph -�., ,)  and a joint 

probability distribution � of the set /01 has the following property: 

 ��2|34 , 54) = ��2|34), ∀	2 ∈ . 
Eq (3.6) 

Where 34 is the parent set of 2, and 54 is the non-descendent set. That is, the probability 

of node 2 given its parents is conditionally independent t variables not linked to 2. 

 

a. Generic graph                 b. Bayesian network 

Fig 3.4 Graph models 

Message Passing Algorithm 

When operating on a tree structured Bayesian network, Pearl's message passing algorithm 

(MPA)  [69] can be used to determines all probabilities ��2|,) exactly, given a set of 
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instantiated evidence nodes , (random variables whose value are known). The proof and 

realization of the algorithm can be found in [70]. 

Dirichlet Density 

In a BN, the conditional probabilities need to be learned from training data. When 

learning from data, we can either learn from only user training data or from only expert 

opinion. Using the former, we obtain estimates of conditional probabilities specific for a 

user, ignoring any general trends that may be exhibited by the general population. Using 

the latter, we use trends exhibited by the general population and ignore specific input 

from the user.  

The Dirichlet density can be used to incorporate both our prior belief of a conditional 

probability (maybe from what we have observed in the general population) and a user's 

specific behavior (from the user's training data). The Dirichlet density is a multivariate 

generalization of the Beta density (derived in detail in [70]). For a variable 6 that takes 

on 7 values, a Dirichlet distribution will have parameters 8�, … 89 each representing the 

number of times 6� 	is seen: 

 :"7�6�, … , 69;�; 8�, … , 89) = Γ�∑ 8�� )∏ Γ�a@)9�'� 		&6�AB;�9
�'� , 0 ≤ 6�

≤ 1,E6�� = 1 
Eq (3.7) 

where 6� are the feature variables and Γ is the gamma function. 
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Fig 3.5 shows an example of a uniform Dirichlet (a) :"7�6�, 6�; 2,2,2) and one that tends 

towards 6� (b) with :"7�6�, 6�; 2,4,2). 

 

a. Uniform                                      b.Dirichlet towards f2 

Fig 3.5 Dirichlet functions 

Augmented Bayesian Networks 

To integrate the prior beliefs into a BN, an augmented Bayesian network can be used [68]. 

An augmented Bayesian network is a Bayesian network with the addition of: 

1. For every node H�  in the graph, there is an auxiliary parent ��  and a density 

function IJB. Each auxiliary parent is a root, and must only contain an edge to the 

variable H�. 
2. For every node H�, all values 8� of the parents 3� from the original graph, and 6� 

of ��, there is a defined probability distribution of H� conditioned on 8� and 6� 
For example, Fig 3.6 shows a two node Bayesian network (white) with its augmented 

construction (auxiliary nodes shaded). �� is prior belief (Dirichlet density) for variable 
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node H� (for this example has values 1 and 2), while ��,� is the prior belief of node H�, 

given H� = 1. Similarly ��,� is the prior belief of H� given H� = 2. 

 

Fig 3.6 Augmented Bayesian network 

Bayesian Network Classifier Design 

In the BN classifier, each feature is a node on the graph, and the class label is also 

represented by a node. The conditional relationships between the class node and feature 

nodes are represented by directional arrows. If there are additional relationships between 

the features then they can also be linked by directional arrows. Fig 3.7 shows some 

examples of BNs. 

 

Fig 3.7 Example Bayesian networks 

From this, we can go back to the raw data and estimate these necessary conditional 

probabilities. The Dirichlet density provides a way to incorporate both prior beliefs and 

user training data. Our belief about an individual's behavior can be obtained from a 

general population, and a generic Dirichlet density can be formed. This prior belief can 
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then be updated through an augmented Bayesian network using the auxiliary nodes once 

the main BN is populated with user specific parameters using the training datasets from 

the user. Fig 3.8 shows an example augmented BN for modeling the weather to determine 

if there will be rain (class = Yes | No) given some weather features. The Dirichlet densities 

are initially set to uniform to show that we have no prior knowledge. 

Finally, given a model and required conditional probabilities, Pearl's message passing 

algorithm allows us to infer the probability of the class node given all the observed 

features (evidence) by populating the evidence nodes and querying for the class node. 

 

Fig 3.8 Augmented Bayesian network of Fig 3.7 

3.4.2 Classifier Implementation 

We implemented an activity classification system that uses BN for modeling, an 

augmented BN with Dirichlet densities for parameter learning, and Pearl's MPA for 

inference. By using a BN, we enabled users to visualize abstract features as nodes, and 

let them build complex structures modeling an inference problem, based on their domain 

expertise. By using Dirichlet densities and forming an augmented BN for parameter 

learning, we further enabled a user to input their domain expertise in the form of prior 
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knowledge. Finally by using Pearl's MPA, we enabled both speed and space efficient 

inference. 

The system's general workflow is described by Fig 3.9. 

 

Fig 3.9 BN classifier architecture 

First, a model is drawn by a domain expert using a client (Fig 3.10). When in training 

mode, the untrained XML model generated by a domain expert client is used to determine 

the parameters that need learning and these parameters are estimated from the training 

data. The fully trained BN model is then saved as an XML document. In live mode, a 

previously trained BN model is loaded and observations are inserted into the network as 

evidence. Carrying out Pearl's MPA will update the network to the correct probabilities, 

and classification can be made. 
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Top: drawing the graphical network and 
Dirichlet densities 

 

Fig 3.10 Bayesian network classifier toolkit 

3.4.3 Extension into Activity Classification, Discretization 

The extension of a generic BN structural-wise into activity classification is 

straightforward. There are two types of nodes: one is a class node containing activities of 

interest; the other is a feature node, containing features derived from sensor data. From 

there, the construction of a BN is no different than as discussed above. 

In activity classification, almost all features are continuous. This requires the BN be 

constructed with continuous variables. The inclusion of continuous variables as feature 

nodes is non-trivial and is an area of current research. While there are a number of theories 

extending Bayesian networks into the continuous domain [71,72], they are limited in the 

distributions that can be used (Gaussian, exponential) and the structure of the graph (e.g. 
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must not have continuous parent with discrete child). In our studies an equal distance 

discretizer was employed to convert the continuous features into discrete ones. 

The equal distance discretizer is the simplest discretizer but also brings the most 

flexibility as it assumes no prior knowledge of the data or structure. The discretizer starts 

by dividing a continuous data set into n  bins with boundaries 1 1...[ ]nbb
−

. Data points 

belonging to each bin is replaced by the bin number instead of their original continuous 

values. The two edge bins have range 1� ],b−∞  and 1[ , )nb −
∞  respectively. The result is a 

discrete variable whose value [1... ]v n∈ . 

A significant drawback with using a discretizer is that the output could contain empty 

bins. This could occur if we have training data that have no data in a bin's range or if there 

are too many bins used. Fig 3.11 demonstrates this effect: the training data contained 

activities standing, walking and running and the figure shows the acceleration standard 

deviation after the equal distance discretizer. It can be seen that bin 53 is in the middle of 

the running class but is empty after discretization because the training data did not contain 

an instance that fell within that bin. When the BN is trained using this data, it assigns zero 

probability to empty bins and any subsequent query on the network using that bin number 

produces an unknown result. 
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 Fig 3.11 Discretizer output  

While there are other discretizers that minimize this effect, the accuracy of the BN 

classifier in activity monitoring is poor compared to the much simpler Naïve Bayes 

classifier. Fig 3.12 shows the accuracy achievable using BN with different discretizers 

compared to Naïve Bayes. 8 datasets were used with classes walking slow, walking fast, 

walking up, walking down, running and standing (See Section 3.5.2 for details on the data 

collection process). 

3.4.4 Advantages and Disadvantages of Bayesian Networks in Activity 

Classification 

Apart from the need for discretization when used in activity monitoring, the BN has some 

highly desirable features that merits further investigation: 
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• The graph nature makes drawing the classifier model intuitive. Domain experts 

such as physicians can draw class nodes for the activities of interest and features 

that best describe them. This visualized model can serve directly as the Bayesian 

network model. 

• Better modeling of relationships between features. This is not a very large 

advantage in practice for activity monitoring because it is often difficult to 

establish relationships between arbitrary features. 

Due to the discrete nature of common Bayesian network approaches, the continuous 

features derived from sensor data had to be discretized. This process significantly reduced 

classification accuracy and so the BN approach was not used in future research in this 

dissertation. 

 

Fig 3.12 Average accuracy vs number of bins used 
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3.5 Development of UCLA Wireless Health Sensor 

Fusion Toolkit (WHSFT) 

The UCLA Wireless Health Institute (WHI) uses activity classification heavily for both 

real world and instructional deployments. For real-world deployments we have been 

collaborating with the UCLA Neurology department and the UCLA Ronald Regan 

hospital. Sensors were given to outpatients to provide follow up physical activity 

monitoring in-community. There were a number of studies ranging from remote 

monitoring congestive heart failure patients [73] to intensive care unit cycling restorator 

[74]. One of the high impact studies included monitoring of exercise intervention 

effectiveness of acute stroke patients from 150 sites in 12 countries [75]. Instructional 

deployments include EE180D and EE202C classes held each year (multiple offerings). 

Students are given projects that allow them to use the sensors and the activity 

classification techniques to perform studies such as sports activity efficiency, daily 

energy expenditure etc.  

To facilitate these use-cases, we developed a sensor fusion and classification toolkit: the 

Wireless Health Institute Sensor Fusion Toolkit (WHSFT). It is a toolkit that utilizes the 

Naïve Bayes classifier to provide a multimodal hierarchical classification system. The 

core of the toolkit including the user interfaces (UIs), visualization tools and the classifier 

was developed by Jay Chien (an earlier lab member) [75], this study extended the toolkit 

by providing new UIs, better sensor support, new classifier features and a more efficient 

classifier. 
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3.5.1 WHISFT Design 

Starting with raw data from multiple sensors, WHISFT combines streams of data into a 

single structure. Features such as short time energy, mean, and variance are computed 

from the combined data structure. There are a number of diverse features, providing 

freedom in selecting the ones that best suit each application. From the selected features, 

tree-like hierarchical structures can be built. Fig 3.13 shows an example for classifying 

eight different activities. 

 

Fig 3.13 Example of hierarchical UHDT model 

By grouping activities that share common features together (such as stationary vs non-

stationary), the hierarchical structure can model the classification problem. At each level 

of the tree, appropriate features are selected for the Naïve Bayes classifier to separate 

unknown data into one of the branches. The final output is produced when a leaf node is 

reached. This structure provides a layered approach towards large classification problems 

and is less susceptible to performance degradation with large models. Another advantage 
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of the WHISFT is that given a set of activities, the structure can be automatically 

generated through brute force or other means [76]. This is later exploited to automatically 

build context-specific activity classifiers (Chapter 4). 

The toolkit, developed entirely in MATLAB, contains not only the tools and UIs required 

to design, train, and visualize the classifier itself (Fig 3.14), but also auxiliary tools for 

downloading, preprocessing, merging, aligning and labeling data from multiple sensors 

(Fig 3.15). When used as an instructional resource the toolkit also comes with a step-by-

step tutorial slides, videos, demos and assignments. 

 

Fig 3.14 WHISFT UIs for designing, training and testing a classifier 
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Fig 3.15 WHISFT UIs for merging, aligning and labeling data from multiple sensors 

3.5.2 WHISFT Validation 

Many studies conducted at WHI involves the WHISFT as a part of the analysis process. 

Chapter 4 contains comprehensive results obtained using the toolkit and a number of our 

papers can serve as further validation [18,75,76]. Here we describe one of the major 

efforts to collect comprehensive motion data using a large number of sensors worn around 

the body. The data collection was performed by 8 summer student interns at the Center 

for Embedded Networked Sensing (CENS), demonstrating the effectiveness of the toolkit 

both in terms of accuracy and ease of use [77]. 

The data collection used 14 GCDC X16-mini tri-axial accelerometers (Fig 3.1a) set at 

160Hz sampling rate and had a sensitivity of 16G. Data for 14 different activities were 

collected for 5 minutes each. 8 different datasets were collected by different healthy 

individuals (later expanded to 16). The datasets are split into 40% for training and 60% 
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for testing for each activity. The list of activities is given in Table 3.1 and the sensor 

placements can be seen in Fig 3.16.  

 

Fig 3.16 Sensor placements, sensor data stream names in bracket: forehead (HEA), chest (CHE), elbows 
(LEL/REL), wrists (LWR/RWR), waist pockets (WAI), knees (LKN, RKN), ankles (LAN, RAN), toes 

(LTO, RTO) 

The decision tree used is shown below (Fig 3.17), notice that the hierarchy is formed in 

a way such that activities of similar intensity is grouped together at first using simple 

features such as short time energy. At each branch, the two features that give the highest 

training accuracy were selected. Each time we traverse down the tree, additional features 

are used to separate individual activities until a leaf node finally produce a classification. 

The results are summarized in the confusion matrix below (Table 3.2), where the diagonal 

elements indicate the correct classifications when compared against ground-truth and the 

off diagonal elements show what misclassifications were made for each activity. The 
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classifier operated on 3s windows in time and the count in each matrix element represent 

the number of instances (the number of 3s windows) that are labeled as the activity, across 

all subjects. 

Table 3.1 List of activities 

Motion Based Stationary 

Walk slow Stand 

Walk fast Sit upright 

Run Sit while slouching 

Walk up slope Sit while hunching 

Walk down slope Lying on back 

Walk upstairs Lying on stomach 

Walk downstairs Lying on side 

 

From the results we see that the hierarchical classifier is able to successfully identify most 

activities with high accuracy. Most of the misclassifications are due to the activities being 

very close in nature such as the different walking styles (highlighted in red in Table 3.2). 

For these cases, the classifier structure can be modified such that more stages and 

different features are used before separating them. The classifier is also showing signs of 

accuracy decrease due to the large number of classes. This is a typical problem for many 

classifiers where, as the number of classes increase, the amount of training data and 

features required to separate the classes increase and the complexity of the model 

increases as well. Chapter 4 demonstrates a novel extension that solves these problems 

by restricting the number of classes for the classifier and reducing model complexity 

based on user context, dramatically improving the accuracy and performance. 
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Fig 3.17 Classifier tree formed for the study
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Table 3.2 Classification results (confusion matrix) 

 
 
 
 
 
 
 

 a b c d e f g h i j k l m n 

a 
1518 

(72.08%) 
0 0 

5  
(0.24%) 

4  
(0.19%) 

572 
(27%) 

0 
7  

(0.33%) 
0 0 0 0 0 0 

b 0 
1808 

(85.65%) 
0 0 0 

292 
(13.83%) 

11 
(0.52%) 

0 0 0 0 0 0 0 

c 0 0 
1794  

(85.35%) 

2 
(0.10%) 

302 
(14.37%) 

0 0 0 4 0 0 0 0 0 

d 0 0 0 
1980 

(99.95%) 
0 0 0 0 

1 
(0.05%) 

0 0 0 0 0 

e 0 0 0 
3  

(0.14%) 
1774 

(84.56%) 
0 

303 
(14.44%) 

0 
18 

(0.86%) 
0 0 0 0 0 

f 0 0 0 
3  

(0.14%) 
0 

1480 

(71.09%) 

594 
(28.53%) 

5  
(0.24%) 

0 0 0 0 0 0 

g 0 0 0 0 
300 

(14.27%) 
273 

(12.99%) 
1510 

(71.84%) 

7  
(0.33%) 

7  
(0.33%) 

0 0 0 
4  

(0.19%) 
1  

(0.05%) 

h 0 0 0 
37 

(2.05%) 
0 0 0 

1202 

(66.74%) 

22 
(1.22%) 

0 
198 

(10.99%) 
16 

(0.89%) 
300 

(16.66%) 
26 

(1.44%) 

i 0 0 0 
1  

(0.06%) 
0 0 0 0 

942 

(57.13%) 
0 0 0 

13 
(0.79%) 

693 
(42.03%) 

j 0 0 0 0 0 0 0 0 0 
2070 

(99.14%) 
0 0 

18 
(0.86%) 

0 

k 0 0 0 
68 

(4.04%) 
0 0 0 

268 
(15.93%) 

103 
(6.12%) 

0 
735 

(42.70%) 

130 
(7.73%) 

227 
(13.50%) 

151 
(8.98%) 

l 0 0 0 
144 

(6.84%) 
0 0 0 

19 
(0.90%) 

203 
(9.65%) 

0 
345 

(16.40%) 
851 

(40.45%) 

204 
(9.70%) 

338 
(16.06%) 

m 0 0 0 
45 

(2.14%) 
0 0 0 0 

5  
(0.24%) 

0 
7  

(0.33%) 
283 

(13.44%) 
1654 

(78.54%) 

112 
(5.32%) 

n 0 0 0 
5  

(0.25%) 
0 0 0 

2  
(0.10%) 

298 
(14.95%) 

0 0 
19 

(0.95%) 
316 

(15.86%) 
1353 

(67.89%) 

a = lie back 
b = lie side 
c = lie stomach 
d = run 
e = sit hunched 
f = sig slouching 
g= sit upright 

h = stairs down 
i = stairs up 
j = stand 
k = walk down ramp 
l = walk fast 
m = walk slow 
n = walk up 

5
5
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3.6 Conclusions 

This chapter presented the theories and implementation of classification techniques that 

are effective to activity classification. First a general introduction of supervised learning 

was provided, followed by a more relevant discussion on how activity classification is 

performed and why wearable inertial sensors are the de-facto sensing medium. The 

chapter then provided details on two classification algorithms (Naïve Bayes and Bayesian 

network) and summarized their advantages and disadvantages. Utilizing these techniques 

we then developed the WHISFT that provides multimodal, hierarchical classification 

system based on the Naive Bayes classifier for activity monitoring. Finally, the toolkit 

was validated using a real deployment example. 
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Chapter 4 

Context-driven Targeted Activity 

Monitoring and Personalization 

4.1 Introduction 

The classification techniques seen in Chapter 3 confront the challenge of classifying a 

specific motion among many possibilities at any observation time. As the number of 

potential motions increases, the classifier model complexity increases and the 

classification performance and reliability are degraded. This effect is observed in 

literature [78-80] and is echoed by our results in Chapter 3.5. In addition, these techniques 

do not address the issue of rapid adaptation to the demands of large heterogeneous user 

communities, where different activities are of interest, requiring separate models, 

classification methods and features. 

Chapter 4 proposes a novel end-to-end methodology that provides context-driven, 

targeted and personalized activity classification to address these deficiencies and to 

provide context information required for a multi-layered daily life profiling system. The 

focus of this chapter is on the architecture and implementation of the methodology. 
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Specifically the chapter focuses on three major requirements: 1) The ability to accurately 

detect context with multiple sensing modes; 2) The use of context to improve 

classification accuracy, speed, and energy usage; 3) The ability to individualize the set of 

activities of interest and context to fit the monitoring need of different users. Two 

architectures are presented and implemented in this chapter. The first is a direct extension 

from activity monitoring where context information is also obtained using supervised 

learning approaches. The second provides a more focused definition of context and a 

method of automated context discovery that significantly improves the system’s usability 

without sacrificing the advantages of the context-driven approach. 

4.2 Supervised Context Learning and Context-driven 

Activity Classification 

In this section we present intern a new definition of context, a novel method to link 

contexts and activities of interest and a new model for prescription, personalization, 

monitoring, and feedback. 

4.2.1 Context and Scenarios 

Chapter 3 provided our definition of context and scenario that is useful for integrating 

activity classification. As this chapter’s scope is context-guided activity classification, 

motion tracking and metrics computation models are not considered in the scenario, thus 

in this chapter A scenario is the combination of a context, and a set of activities of 

interest under the context, with a model for distinguishing the activities. 
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4.2.2 Architecture 

In support of the proposed methodology and system design (Chapter 1), a real-time 

architecture capable of providing subscription service, context driven activity 

classification and feedback is designed (Fig 4.1). At the end-user side, a set of sensors are 

needed with a smart device to provide data to a backend server, where context and activity 

classification decisions are made. The returned results can be consumed by third party 

applications. Individual subsystems are modeled as objects, and the entire architecture is 

defined by a set of interfaces and relationships (Fig 4.2). Each software interface is 

characterized by its public methods, and defined by its functionality, expected inputs and 

outputs. By implementing an interface, a class agrees to provide all methods outlined in 

that interface [81]. Each subsystem can be developed independently without revealing 

specific implementations, so long as it implements the required interface. This enables 

any part of the proposed system to be overridden by custom realizations, allowing for 

rapid prototyping and evaluation of various algorithms. For example, consider the 

IContextClassifierEx interface representing a context classifier. Teams can develop 

optimized, application specific classifiers independently by implementing the interface, 

and the classifiers can be swapped to adjust the system behavior without affecting other 

components. 

This architecture conforms to the client-server paradigm. Server components include 

prescription and scenario management, context classification, context driven activity 

classification and sensor control. There are two clients: the end-user client allows users 

to authenticate, collect required training data for the context and activity classification 
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systems (for the first time use of a scenario) and then go into live monitoring mode; the 

domain expert client is for experts to design and prescribe scenarios for end-users.  

 

Fig 4.1 System architecture integrating supervised context learning with activity classification 

 

Fig 4.2 System interface model 
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Server Components 

Context Classification: Our definition of context can capture a large number of 

situations, so that users with different objectives can define their own useful sets. They 

can identify required characteristics, and select necessary sensors. This generalization 

increases classification difficulty, as the system must account for a diverse range of data 

sources such as wireless information, audio, and illumination level. In order to detect 

context using a variety of data sources, multiple classifiers should be employed for 

different features. We propose a classification committee consisting of *  individual 

classifiers (Fig 4.3). The individual classifiers are trained separately, and then tested for 

individual classification accuracy. A voting weight (α) is determined for each classifier, 

proportional to the perceived accuracy. When an unknown class is encountered, the 

committee performs a linear combination of the individual classifiers, and the context 

with the highest vote is chosen. 

 

Fig 4.3 Classifier committee 

Consider a simplified example with a committee consisting of two classifiers for 

determining if a user is in a quiet office or on the bus. Available data are collected from 

a smartphone: wireless SSID and signal strength information and audio. The two 

classifiers in the committee are k-nearest neighbor (kNN) for wireless features and 
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adaboost for audio features (Section 4.2.3 provide details on the classification process 

and implementation of these classifiers for the data types in this example). If the unknown 

data stream contain SSID of the usual workplace with high signal strength and quiet 

background noise, then both classifiers would output separate decisions that the current 

context is workplace, and the weighted combination of the committee would be 

workplace. If the unknown data contained unstable wireless information and high level 

of background noise containing features common to transports, then the kNN would 

output “Unknown” with zero weight and the audio classifier would provide the correct 

context decision. 

This committee approach provides flexibility in designing contexts by allowing data 

fusion of sensors with various data types and adapts to individuals with varying habits. 

The classifiers selected for the committee and their implementations can be application 

specific, each designed to suit the data input available for that application. 

Context-Driven and Personalized Activity Classification: After classifying context, a 

model used for activity classification is chosen from the corresponding scenario. This is 

the concept of a context driven classifier, through which specifically optimized models 

can be used with each being focused on the activities of interest within a context. Unlike 

conventional activity monitoring, there is no single list of comprehensive activities that 

needs to be built into a monolithic classifier. Instead, multiple personalized scenarios are 

prescribed to a user. There are a number of benefits from this system, such as improved 

classification accuracy and speed due to model simplification. 
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Sensor Control Policy: By having scenarios describing the contexts and activities of 

interest, sensor activation schedule and sampling rate can also be optimized to reduce 

energy demand. For example, there are no upper body motions from the patient room 

scenario in Table 1.1 (Chapter 1), and the activities have a low rate of change. It is then 

safe to disable upper body sensors and reduce sampling rate on lower body sensors with 

no loss in system performance. The benefits of this are an overall reduction of energy, 

storage and communication needs. Noticeably, this does not include potential 

optimization of different radios and transmission modes. The architecture is designed to 

integrate with consumer products such as mobile phones and off-the-shelf sensors, where 

Bluetooth is the de-facto standard form of communication. Future work can integrate 

radio link energy management with the introduction of Bluetooth Low Energy (BT LE). 

End-User Client 

The end-user client application guides a user in training mode and displays classification 

results in online mode. Mobile applications supported by a smartphone are ideal for two 

primary reasons. First, mobile devices are pervasive, making the client accessible with 

extensive network infrastructure support. Second, mobile devices are high performance 

and can act not only as user interface platforms, but also as sensor platforms that log, 

process and store data from built-in and external wearable sensors. 

Sensor Instrumentation: One requirement of the architecture on the end-user client is 

to reliably obtain data from external sensors. This requirement includes: 1) Automatically 

detect, connect and control external sensors in real time; 2) Continuously track the status 
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of sensors; 3) Recover from corrupted data, missing data, and delay. To facilitate this, we 

implemented a modular data collection tool, details of which can be found in Chapter 7.1. 

System Training: For the system to work across a large population, individualized 

training of classifiers is required. When an end-user first receives the sensors, they login 

through an application and obtain the scenarios prescribed to them. The scenarios 

determine what activity and context data need to be collected from the user for classifier 

training. The application guides the user through training both context and activity 

classifiers by providing visual cues instructing the user to perform the prescribed 

activities under corresponding contexts. While these activities are being performed, data 

are collected from the inertial sensors (activity data) and from the mobile device (context 

data). Once each scenario has been performed, the context classifier committee is trained 

to be able to detect all of the prescribed contexts, and the activity classifier is trained for 

each scenario by training their respective activity model. The length of time required for 

training each scenario is 5 minutes in the particular context and 2-3 minutes for each 

activity. After training, the end-user client can go into live mode, where data are collected 

and sent autonomously to a server, and a continuous live stream of context and motion 

classifications is returned. 

Domain Expert Client 

A domain expert must prescribe to the end-user a set of scenarios that specifies the context 

specific activities to be monitored. This is done through the domain expert client. As 

experts are likely to be non-engineering professionals, the main focus of this client is to 

abstract much of the classification system such as models, features, and classifiers. Ideally, 
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the application should offer intuitive drag-and-drop like functions with labels that have 

explicit meaning such as walking, running. 

4.2.3 Implementation 

Server Implementation 

The server implements the core classification components (context and activity) and also 

handles user and scenario management. 

User and Scenario Management: User and scenario management on the server leverage 

standard web technologies that enable secure authentication and transfer of scenario files 

from domain expert clients to the server and then to the end-users. Using a 

representational state transfer (RESTful) web service architecture, we take advantage of 

existing hypertext transfer protocol (HTTP) and industrial standard secure HTTPS 

infrastructure [82]. This approach requires a number of key components: a web server for 

providing the HTTP infrastructure; a platform for developing the web service that enables 

file transfer; and a naming authority for redirecting requests to the web service. For the 

server, an Apache web server stack is deployed, which enables web services developed 

in PHP, and the naming authority in htaccess. The implementation uses a flat-file database 

system, where data are stored in regular files on a hard drive. The domain experts have 

privileges to view a list of users belonging to them, and prescribe scenarios. When a new 

scenario is posted, the server receives the untrained scenario file and saves it in the target 

user's directory. End-users only have privileges to view and use a list of scenarios linked 

to them. 
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Context Detection: Context detection is performed using separate classifiers on different 

features using the committee approach as outlined in the architecture (Section 4.2.2). In 

this implementation, the committee is made up of three classifiers: k-nearest neighbors 

(kNN) with time as a feature; kNN with wireless media access control (MAC) address 

and signal strength as features; and AdaBoost with audio peak frequency, peak energy, 

average power and total energy as features. These features are extracted from raw sensor 

data through a java module implementing the IContextFeatureExtractor interface (Fig 

4.2). 

The kNN classifier is an instance based lazy learner that simply stores the training data 

given [57]. When an unknown class is encountered, the classifier looks for the k nearest 

training samples to the unknown class, and a decision is made based on a majority vote. 

Other than implementation simplicity, another major advantage of kNN is the ability to 

handle nominal data through custom designed distance functions. This is particularly 

important for data types such as wireless MAC address values. For our implementation, 

the kNN with time feature uses a simple absolute distance function that computes the 

number of seconds between two times, and the kNN with wireless features uses a custom 

distance function that looks for the closest k labels with overlapping MAC address sets, 

ranked by signal strength [70]. 

AdaBoost is a metalearner to be used in conjunction with multiple base learners (weak 

classifiers). It can combine an ensemble of weak classifiers into a strong one [83]. For 

our implementation the AdaBoost.MH algorithm with a decision stump base learner was 

used [83]. 
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User Activity Classification: Two methods for user activity classification were 

implemented, one being a Bayesian networks (BN) approach and the other the Wireless 

Health Institute Sensor Fusion Toolkit (WHISFT). Both of which were detailed in 

Chapter 3. 

End-User Client Implementation 

Sensor Instrumentation: Both inertial data and context data need to be collected by the 

end-user client. Context data includes sound, time and wireless information and are 

provided by an Android device. In this study, inertial data are provided by 9 degrees of 

freedom Sparkfun Razor IMU (Fig 3.1b) that are instrumented by AirInterface 

components (see Chapter 7). Each Razor IMU contain a triaxial accelerometer, gyroscope 

and magnetometer. Our custom firmware reports relative timestamp since the sensor start 

time, and synchronization between multiple sensors is carried out by the AirInterface, 

where a snapshot of relative timestamps of every sensor is taken at a specific time (t ), 

and subsequent data are tracked with t  being the zero reference. Sensor timing drift is 

avoided in the controller implementation by re-synchronizing every * seconds. 

Data Acquisition, Training and User Interfaces: After an end-user authenticates with 

the server (Fig 4.4a), the client application displays a list of available scenarios for 

selection (Fig 4.4b). If the selected scenario is not trained, then the application determines 

activities present in the underlying model (for example running, walking) and guides the 

user through training (Fig 4.4c). For each activity, a three minute session is recorded and 

the data is returned to the server. Once the scenarios have been trained, the client would 
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automatically enter live mode (Fig 4.4d), where sensors are instrumented and data sent 

back to the server every 5 seconds for classification. 

 

       a. Login                          b. Scenarios                        c.  Training                    d. Live screen 

Fig 4.4 End-user client 

Domain Expert Client Implementation 

The domain expert client application allows domain experts to design and prescribe 

scenarios. Recall that a scenario is made up of a number of contexts and activities, each 

with its own model. To create a scenario, an expert first generates context models by 

selecting from a list of prebuilt contexts. Within a context, the expert then defines a list 

of activities of interest following a similar approach for creating context and the client 

generates a WHISFT hierarchical classifier model based on prebuilt templates. Finally, 

the created scenario and prescriptions are submitted to the server via its RESTful web 

services. Fig 4.5 briefly demonstrates the application using a series of screenshots. The 
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application was built with ease of use in mind and was used successfully by collaborating 

clinicians. 

 

Fig 4.5 Domain expert client 

4.4.4 System Evaluation 

System Deployment 

Three major components of the system need to be deployed for data collection and system 

evaluation. The server responsible for user and scenario management, context and activity 

classification was deployed to the UCLA’s medical network servers. The domain expert 

client was given to the collaborators at the UCLA’s Department of Neurology. The end-

user component is a physical package containing four IMUs with Velcro attachments, a 

Nexus 7 tablet and the mobile application (Chapter 7). 

Data Acquisition 

Table 4.1 lists scenarios used for the experimental trial. The activity “Walking Around” 

refers to non-sustained walking segments that are typical of walking in confined spaces, 

while “Walking Normal” refers to sustained long distance walk typical of open spaces. 

Fig 4.6 shows an example of the context specific activity model used in WHISFT for the 
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“Cafeteria” context. The activities are on leaf nodes, laid out in a hierarchy. At each 

branch a Naïve Bayes classifier makes the branching decision using features in the model. 

Table 4.1 Scenarios 

 
Walk 

Around 

Walk 

Normal 

Walk 

Upstairs 

Walk 

Downstairs 

Sitting 

Straight 

Home X    X 

Lab X    X 

Cafeteria X    X 

Outdoors  X X X X 

Class X    X 

Bus     X 

Gym  X   X 

Library X    X 

 
Sitting 

Slouch 
Stand Write Type Eat 

Home X    X 

Lab   X X  

Cafeteria  X   X 

Outdoors  X    

Class   X   

Bus  X    

Gym      

Library  X X   

 

For data acquisition, fourteen subjects each carried a Nexus 7 tablet running the Android 

client and four 9DOF devices were placed on dominant wrists, knee, ankle and mid waist. 

Each subject spent 30 minutes in each context, and performed every required activity 
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under that context for 2-5 minutes. The data were then split into training (30%) and testing 

(70%) sets and 10-fold cross-validation was performed to obtain the classification results. 

 

Fig 4.6 WHISFT model for cafeteria 

Results 

Context Classification: Table 4.2 summarizes the accuracies of the classifier committee 

in percentage of correctly classified instances. The table also breaks down the committee 

results into the constituent individual classifiers. 

Table 4.2 Context classifier accuracies 

 AdaBoost  Time kNN  Wireless kNN  Committee 

Home 100 91 100 100 

Lab 78 68 98 95 

Cafeteria 100 0 80 100 

Outdoors 81 57 56 72 

Class 81 43 95 91 

Bus 100 23 30 95 

Gym 64 9 93 84 

Library 59 0 100 94 

 

While none of the individual classifiers performed well for all of the contexts, the 

combined committee of the three classifiers was able to achieve higher accuracy for all 
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contexts. Wireless kNN performs with insufficient accuracy for bus and outdoors. In the 

bus context, the sensor system detected a large number of wireless access points that had 

not been incorporated into prior training due to the route of the bus. In the outdoor context 

case, the system tended to detect access points that belonged to one of the contexts at 

nearby indoor locations. For example, walking near a building caused the context to be 

classified as that of a context inside the building. Time kNN is also not sufficiently 

accurate for a number of contexts, and this is due to the varied nature of when subjects 

visit these contexts. AdaBoost using sound features seemed to perform well for most 

contexts, but there were cases where misclassification occurred due to a bus driving 

nearby or due to long periods of silence which are present in all contexts. There is also 

negligible overhead observed for the committee approach versus using individual 

classifiers, as the committee simply performs a linear combination of the individual 

results. 

Context-Driven Personalized Activity Classification: Table 4.3 gives the results of 

context-driven activity classification, where the "Generic" column has results from a 

standard classification tree (hierarchical Naïve Bayes) using WHISFT, and the "Specific" 

column has context driven classifier results. In half of the activities monitored, there is a 

substantial increase in classification accuracy resulting from the context driven 

classification, as targeted models with fewer activities and features are presented to the 

classifier. In the case of typing, writing and eating, a large increase in accuracy can be 

seen. There are two instances where the context specific model accuracy decreased. 

However the decrease is small and can be reduced or eliminated with more training data 
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or model adjustment (both of which are significantly easier to achieve in a smaller, 

context specific model). 

Table 4.3 Context-driven activity classification accuracies (in percentage of instances identified, Gen = 
generic, Spec = context specific, Improv = percentage improvements) 

Context Gen. Spec. Improv.  Context Gen. Spec. Improv. 

Home 

Sleeping 

Slouching 

Eating 

Walking 

Around 

Sitting 

 

0 

82.8 

92.11 

94.34 

80.32 

 

94.45 

99.03 

92.78 

100 

89.78 

 

94.45 

16.23 

0.67 

5.66 

9.46 

 Class 

Walking 

Around 

Writing 

Sitting 

 

100 

34.22 

100 

 

100 

90.27 

98.76 

 

0 

56.05 

-1.24 

Lab 

Sitting 

Walking 

Around 

Typing 

Writing 

 

66.9 

93.82 

0 

32.89 

 

88.56 

100 

93.43 

37.22 

 

21.66 

6.18 

93.43 

4.33 

 Bus 

Sitting 

Standing 

 

50.78 

75.97 

 

94.89 

95.76 

 

44.11 

19.79 

Cafeteria 

Standing 

Walking 

Around 

Sitting 

Eating 

 

100 

93.89 

60.89 

88.97 

 

100 

99.02 

92.23 

94.89 

 

0 

5.13 

30.34 

5.92 

 Gym 

Cycling 

Running 

Walking 

Sitting 

 

90.7 

100 

100 

83.78 

 

98.43 

100 

100 

92.78 

 

7.73 

0 

0 

9 

Outdoors 

Walking 

Running 

Upstairs 

Downstairs 

Standing 

Sitting 

 

93.87 

85.82 

60.34 

60.94 

100 

74.43 

 

91.83 

100 

95 

70.89 

100 

97.12 

 

-2.04 

14.18 

34.65 

9.95 

0 

22.69 

 Library 

Sitting 

Walking 

Around 

Standing 

Writing 

 

 

76.21 

94.2 

100 

40.9 

 

97.67 

95.02 

100 

77.82 

 

21.46 

0.82 

0 

36.92 

 

Activity Classification Speed Increase: The context driven classification also offer 

advances in computational throughput that can enable concurrent real-time classification 

for a large population. Fig 4.7 shows the advance in computational speed that was 

achieved, where the rate in number of classifications per second is plotted. In all cases 

there is a significant decrease in classification time, which indicates that context driven 
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classification can enable a large online system capable of computing multiple subject’s 

motion. 

 

Fig 4.7 Classification throughput 

System Energy Usage Improvements: Context driven classification also offers the 

capability for selecting optimal sensors and schedules for energy and operating lifetime 

improvements. This permits a minimum number of sensors to be active while maintaining 

classification accuracy. Based on scenarios tested (Table 4.1), a sensor requirement chart 

was produced (Table 4.4), where blank cells indicate that a sensor can be safely turned 

off without affecting the accuracy for a scenario. 

For example, one scenario prescribed to the user contains the context bus, and under that 

context an activity model includes only standing and sitting. This can be easily 

determined by a waist worn sensor, thus other sensor can be safely switched off. Using 

this table, the sensor policy selector (ISensorPolicyMaker) can determine which sensors 

need to be shut down. To estimate energy reduction, analyses are directed at determining 
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the improvement in operating time by adopting sensor activation schedules, as 

determined by context. 

 

a. User profiles 

 

b. Battery life comparison  

Fig 4.8 User profiles and their battery life comparison 

To indicate the improvement over a range of subject behaviors, two cases were taken as 

examples: residential and work. The typical profiles of their daily life are shown in Fig 

4.8a with the x-axis starting at 8am. The total operating time using continuous sensor 
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activation, in comparison to context driven sensor activation, is shown in Fig 4.8b. 

Results indicate the potential benefits of context driven sensor energy management. This 

benefit depends largely on the activities being monitored under the longer contexts. 

Table 4.4 Sensor requirements 

Context Right Ankle Knee Waist Wrist 

Home  X X X 

Lab X   X 

Cafeteria X  X X 

Outdoors X X X X 

Class X   X 

Bus   X  

Gym X X   

Library X  X X 

 

4.3 Automated Context Detection and Location based 

Context 

The research above clearly demonstrates the advantages of a prescription based, context-

driven activity classification scheme in terms of personalization, classification accuracy, 

throughput and sensor power consumption. All of which impact the ease of deployment 

of the system in-community. Through field trials, many areas of improvements were 

identified. First, the use of dynamic models that can learn the activities associated with 

contexts in conjunction with scenarios would produce a much more flexible and powerful 

system. This would also remove the burden of knowing which activities will occur under 
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which context by the caregivers when constructing the prescription. Second, we have 

found in practice that the most reliable context feature for associating activities is not the 

person’s physical location but rather the category of the location. Third, the classification 

approach to learning context has prohibitive training cost and does not provide adequate 

return of investment. A user must perform the sets of activities of interest for normal 

activity classification and on top of that must also provide location training data by 

visiting each physical location. The classifier could then only identify these locations and 

nowhere else. 

Based on these findings, we continued our effort and developed a new context-driven 

activity classification strategy utilizing high level location context with automatic 

identification of location categories through energy efficient, WIFI augmented GPS and 

cutting-edge open map APIs. This second architecture achieves the same requirements as 

set out in the first and retains all of the advantages of the supervised learning based 

approach. It leverages some aspects from the first architecture such as the overall 

prescription flow and activity classifier. It is also able to provide context information that 

is more valuable than the first approach. This is the final context-driven classification 

architecture used to implement the end-to-end, multi-layered daily life profiling system. 

4.3.1 Architecture 

The second architecture is shown in Fig 4.9. 
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Fig 4.9 System architecture for integrating automatic context detection and scenario learning with activity 
classification 

Prescription and Scenarios 

Similar to the first approach, during the prescription phase, a healthcare professional 

prescribes a set of exercises to the patient and submits a monitoring request to a service 

provider. The new architecture no longer require the healthcare professional to build the 

scenarios (which activities are associated with which context). Instead one simply states 

the list of activities that need to be monitored. This information is formalized into a 

scenario document (XML file) that contains a list of activities to be monitored. Once 

documented by the expert, the scenario is transferred to a server for preprocessing, where 

prescriptions from multiple sources for the same patient are merged to form a single 

document. A physical kit containing the sensors and a mobile device is sent to the patient. 
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Automatic Location Context Detection 

A key feature of the proposed system is the ability to link activities with the context where 

the activities occurred. In practice we found that the knowledge of the physical location 

is not important, thus rendering little value to using supervised context learning that could 

only recognize the locations that it had received training for. Interestingly, since there is 

only a small set of location categories an average person may visit each day, the 

identification of such categories can be performed automatically based on location 

sensors such as GPS and point of interest (POI) databases. This removes the need for a 

classifier to recognize individual places a person visits, making the system significantly 

more scalable by eliminating prohibitive cost of classifier training. 

System Training 

Once the kit containing sensors and the mobile device arrives, the mobile device can 

automatically connect to the body worn sensors and guide the user in performing system 

training. There are two training phases, with only the first requiring user interaction. In 

the first part, the users are asked to perform each activity of interest for 5-10 repetitions 

or, for example, walk 10 meters at several speeds. Disabled persons will have their 

individual “signature” movements in terms of, for example, accelerations and 

decelerations. During this phase, a standard activity classifier can be trained. This 

classifier may contain a large model for recognizing all the activities prescribed and serve 

as the basis to bootstrap the rest of the system. 

Once the activity classifier is trained, the next training phase requires the system to 

automatically associate activities with location categories. During this phase, the 
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automatic location category context system starts to provide context while the activity 

classifier provides activity classification. Over a few days, the system would learn which 

activities are likely to happen under each context and build multiple context-specific 

activity classification models from the association to capture events where they are most 

likely to occur. These models can then be trained using the training data collected from 

phase one much like the context specific activity classifiers described in Section 4.2. 

Day-to-Day Operation 

After training, the newly built generic activity classifier, context-activity association and 

the context-specific classifiers are sent to the server to be included into the scenario, 

which is now complete with the original information plus personalized parameters and 

context-specific classifiers. There is no more learning required for the system and it can 

now perform daily monitoring of the user (Fig 4.9). During operation, data flow from the 

inertial sensors worn on the user’s body to the mobile device carried by the user. The 

inertial sensors always provide acceleration data and by default disable the more power 

hungry sensors such as gyroscope and magnetometer. The automated context-detection 

module utilizes location sensor augmented by auxiliary sensors to efficiently and 

accurately determine the user's location category. From there, the context-specific activity 

classification model associated with the current context is used to detect activities of 

interest.  

4.3.2 Implementation 

Similar to the supervised learning architecture, the system architecture (Fig 4.9) translates 

into an implementable system following a client/server design with two clients and one 
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server. The clients are the domain expert client for prescribing the scenarios and the end-

user client for guiding the end-user through training, performing activity classification 

and automatic context detection. The server implements scenario management (receiving, 

merging and sending) and components that require high computational power: classifier 

training, context-specific classifier generation, motion reconstruction and metrics 

computation. The clients and activity classifier are shared with our first architecture and 

so are only summarized below. 

Clients: Prescription, Sensor Instrumentation and Data Collection 

The system has two clients. The first is used by healthcare experts to construct and assign 

scenarios to their subjects. The second is the end-user client responsible for 

communication/control of the body worn sensors and for guiding a user through training. 

It is provided by the same AirInterface sensor instrumentation architecture (Chapter 7.1). 

Our usage scenario prescribes to the users four low cost 9-DOF (degrees of freedom) 

sensors (InvenSense MPU-9150 shown in Fig 3.1c) to be worn on the front part of both 

shoes and on the elbow and wrist of the dominant arm. This setup provides the best 

opportunity to capture both upper and lower body activities at very low costs. The user is 

also given a mobile device with the end-user client installed.  

Activity Classification 

Activity classification is a critical component used in two areas of the system: the generic 

classifier for learning context-activity association and the context-specific classifiers for 



82 
 

daily operation after the learning is complete. In both cases, the WHISFT is used (Chapter 

3). Fig 4.10 shows an example for classifying eight different activities. 

 

Fig 4.10 Example of hierarchical UHDT model 

Worth noting is that given a set of activities, the structure can be automatically generated 

through brute force or other means [76]. This is later exploited to automatically build 

context-specific activity classifiers. 

High Level Location Context Detection 

A location category solver is required to automatically detect the location context the user 

is currently in. In this system, we present an automated context detection algorithm using 

GPS by exploiting the already extensive geo-coding and mapping databases. GPS for 

location detection has a number of significant disadvantages: heavy battery drain and 

poor signal indoors. The algorithm presented in this paper solves these two challenges by 

augmenting GPS with wifi and user movement information to reduce activation and 
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eliminate the need for localization once a user moves indoors or becomes stationary (Fig 

4.11). 

 

Fig 4.11 Overview of context detection scheme 

Wifi Augmented GPS: The algorithm proposed first detects if the user is moving based 

on wireless information and activates the GPS accordingly. Nearby wifi access points 

(AP) are scanned periodically and each AP’s signal strength is recorded. Each scan 

produces a scan set and the operation is power efficient since many devices already 

maintain this information for internal use. Every 5 scan sets are grouped into a decision 

windows (sliding window with 50% overlap) and preprocessing removes ad-hoc APs (by 

checking the U/L bit of the MAC address), APs appearing in less than 80% of scan sets 

in the window and any AP with low receiving power (RSST < 65:X). The first step 

removes local peer to peer networks that are inherently unstable and the next two produce 

a stable set of scan results that is resistant to changes due to environmental conditions 

such as a person walking by. Within each window, a movement score is computed:  

 Y�3, X) = 	 |3 ∩ X||3 ∪ X|  

  Y\�3, X) = 1 − Y�3, X)  

  S = Y\�3, X) ∙ |X| 
Eq (4.1) 
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where 3  and X  are two neighboring decision windows, Y\  is the Jaccard similarity 

function and S is the score. 

Movement Augmented GPS: User’s movement behavior is modelled by a simple finite 

state machine (FSM), as shown in Fig 4.12. The FSM starts in the Stationary state, where 

wifi scan sets are taken to compute S. If S is below a threshold (_ℎ = 200) and is non-

empty then the FSM remains in the Stationary state, otherwise the FSM transits into the 

Moving state. 

 

Fig 4.12 FSM for detecting context and activating GPS/WIFI 

During each entry into Moving state, GPS is activated with a rate of: 

 R = 60�30 ∗ Y\�3, X))	 Eq (4.2) 

Once GPS is active, it stays active for a minimum of 1 minute at the determined polling 

rate R to detect if the user is actually moving. During this time, wifi scan is disabled. At 

the end of the active GPS period, the possible outcomes are: if all coordinates within the 

1 minute GPS polling fall within the distance root meant square (DRMS) radius of the 
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first coordinate [84] or if there is no good GPS fix, then the person is declared not moving 

and the FSM transits to the Stationary state and GPS is disabled. Otherwise, the person 

is declared moving and the movement speed is computed from GPS data and the FSM 

remains in the Moving state.  

Movement Direction Estimation and Context Decision: During each transition into the 

Stationary state, the location context of the current position is determined. This is done 

by estimating a trajectory from the last (* = 5) known good GPS coordinates (�� to ��), 

where a good coordinate is one with DRMS error radius 7 ≤ 16c, a common accuracy 

measure meaning that using the coordinate as the center, a circle with radius 7 has 68% 

probability to contain the exact location [84]. The estimation algorithm first draws * − 1 

vectors d� = ����eeeeeeeeef , d�;� = ��, ��;�eeeeeeeeeeeeeeef to d� = ����eeeeeeeef. Each vector is assigned a weight 

g = [1, ��… ��;�] and each is then extended in the direction of movement by 7 (Fig 4.13a). 

The region bounded by d�…d� is chosen as the search overlay and each point on the 

overlay is assigned a score h = ij + il, where ij and ilare the weights of the two 

closest vectors (Fig 4.13b). 

To use the overlay, Google Places API is queried for POI information omni-directionally 

using �m as the origin with radius |dn|. The overlay is then placed on the search results, 

and each POI on the returned result receives a score h and the result with the highest score 

is selected (4.13c). Compared to the omni-directional search results, searching in the 

direction of the movement reduces false identifications but is highly affected by the 

accuracy of the GPS. Instead of choosing an arbitrary search pattern, we make use of all 
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available information by including the uncertainties of coordinates �� to ��: the more 

aligned all of the vectors are, the more confident we are of the true direction of movement 

and thus the smaller the search overlay. Furthermore, the use of open APIs such as Google 

Places allows us to exploit vast crowd sourced and accurate knowledge at no cost. 

 

a. Search vectors                                                              b. Overlay generation 

 

c. Overlay placed on Google maps 

Fig 4.13 Generation of search overlay 
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Context Specific Activity Classifier 

By continuously monitoring a person under different contexts, an association table can 

be built over time to track which activities are performed during each context. Then, 

context-specific classifier models are constructed to recognize the frequent activities 

within each context. The WHISFT classifier model construction is automatic through 

brute force testing of different structure and feature combinations with the original 

training data. Once the training is complete, these context-specific classifiers are invoked 

during daily use, where the mobile device is constantly monitoring context changes and 

also receiving accelerometer data from the body worn sensors. Whenever a new context 

is detected, the corresponding context-specific activity classifier model is selected from 

the scenario document. The WHISFT component loads the tree structure, and real-time 

classification is performed [76,85]. 

4.3.3 System Evaluation 

Because this is a direct improvement over the first system and the one used for by the 

final end-to-end system, detailed system evaluation and discussion can be found in 

Chapter 6. This section presents the results from a small scale verification trial for the 

automatic location context detection and scenario learning. The trial was performed by 

one subject carrying a Nexus 7 tablet and walking around a Los Angeles neighborhood 

under real conditions. Three InvenSense MotionFit SDK sensors (Fig 3.1c) were worn on 

the right arm, right ankle and the waist. They are connected to the Nexus 7. A generic 

WHISFT classifier model was built to recognize walking, running, sitting, standing and 

general hand movements (Fig 4.14). 
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Fig 4.14 Classifier model for the verification trial 

 

Table 4.5 Detected contexts vs ground-truth 

Ground Truth Detection 

Time Place Time Place 

2:55 – 3:01 On Road 2:54.57 – 2:55.28 

2:55.28 – 2:55.46 

2:55.46 – 2:55.59 

2:55.59 – 3:02.18 

Residence (No Movement) 

On Road 

Residence (No Movement) 

On Road 

3:01 – 3:10 Gym (YMCA) 3:02.18 – 3:10.15 Gym 

3:10 – 3:13 On Road 3:10.15 – 3:13.40 On Road 

3:13 – 3:39 Café (Volcano) 3:13.40 – 3:40.50 Café 

3:39 – 3:42 On Road 3:40.50 – 3:43.00 On Road 

3:42 – 3:47 Store (Blackmarket) 3:43.00 – 3:47.29 Store 

3:47 – 3:49 On Road 3:47.29 – 3:47.42 

3:47.42 – 3:48.00 

3:48.00 – 3:49.27 

On Road 

Store (No Movement) 

On Road 

3:49 – 3:52 Store (Hashimoto) 3:49.27 – 3:52.54 Church 

3:52 – 4:00 On Road 3:52.54 – 4:00.52 On Road 

 

Table 4.5 shows the detected context with ground-truth. We see that the system only 

failed to identify one location correctly (mistaking a store for a church) due to incorrect 
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map data from Google Maps. The system also presented transient errors when the user 

made brief stops (less than a minute) while on the road due to intersections etc. These 

errors can be eliminated by introducing time based filtering to smooth out short transitions. 

Fig 4.15 depicts the location traces, the various points of interest (such as the starting and 

stopping points) and a search overlay showing how a location category is determined. 

 

Fig 4.15 Trace of the Wifi GPS and search overlay upon entering a location. Entering and leaving events 
are marked by green and yellow arrows 

Fig 4.16 shows the amount of minutes active and the amount of energy (percentage of 

battery) used per hour by the augmented GPS location context solver compared to 

standard GPS usage. A large improvement in battery life can be observed, allowing 

around 6 hours of continued use for the device when coupled with Bluetooth sensors. 
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Fig 4.16 Active time and battery cost of WIFI augmented GPS 

Recall that the use of a generic classifier is to detect physical activities that are most likely 

to occur under the different contexts and thus learn the scenarios (context and the list of 

activities that occur under them). The system would then use these scenarios to generate 

context specific classifiers for use once the training period ends. Table 4.6 demonstrates 

that the learning portion of the system is capable of generating the scenarios successfully 

(top two most frequent activities were included in each scenario). Future work includes 

the design of a re-learning system that continuously updates the scenarios over a period 

of days, until the final associations converge to a steady state.  
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Table 4.6 Scenarios learned from the trial 

Location Category Top Activities Percentages 

Residence Hand Movements 

Sitting 

39.2 

52.4 

Route Walking 

Standing 

90.8 

8.6 

Gym Running 

Walking 

92.3 

9.1 

Café Hand Movements 

Sitting 

20.7 

75.1 

Store Standing 

Walking 

52.6 

30.1 

Church (wrong location) Walking 

Standing 

21.5 

85.4 

 

4.4 Conclusions 

This chapter presented two architectures for achieving context-guided activity 

classification, a key component in the end-to-end system for a multi-layered daily life 

profiling system as described in Chapter 1. The chapter also demonstrated the value of 

context-driven activity classification in terms of providing useful context information, 

improving classification accuracy, throughput and sensor energy usage. 

Two architectures were detailed for detecting context and for integrating context 

information with activity classification. In the first, we defined contexts and scenarios 

and a prescription model that made use of them to provide personalized activity 

classification. We interfaced with wireless sensors, employed a classification committee 
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approach for detecting context of diverse forms and demonstrated how any current 

classification system can take advantage of the new context driven approach through the 

concept of a context-driven classifier. The architecture also utilized an interface model 

for software deployment, consequently providing great system flexibility. We realized 

the architecture in software, where an Android client application was used to solve issues 

relating to robust data acquisition and large campaign support. AdaBoost, kNN. WHISFT 

and Bayesian network classifiers were used for both context detection and activity 

classification, demonstrating the inherent system flexibility. Finally, we evaluated the 

system using a series of field trials and confirmed its advantages in terms of classification 

accuracy, computational throughput and functionality in controlling the activation and 

selection of sensors. 

Recognizing some of the weaknesses of the first approach and realizing that high level 

location category is the single most valuable context. We presented an improved 

architecture that uses high level location context to achieve the same enhanced 

classification accuracy and throughput as previous work while providing more valuable 

context information and removing the extra costly training for detecting physical 

locations. The system implementation featured automatic identification of context 

through energy efficient, WIFI augmented GPS. This is the architecture utilized to 

achieve end-to-end, multi-layered daily life profiling in Chapter 6. 
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Chapter 5 

Targeted, Episodic Body Motion 

Tracking and Analysis using Wearable 

Inertial Sensors 

5.1 Introduction 

Chapter 3 and 4 have described activity recognition and context detection that can provide 

information on what activity a user is performing and the context under which it is 

performed. However, they do not provide the functional details and metrics required to 

scrutinize the skillfulness of an activity. Motion tracking and analysis of the activities are 

thus required to deliver the most detailed tier of information in the multi-layered daily 

activity profiling system, using the same wearable inertial sensors that are low cost, easy 

to set up and with low energy and data requirements. 

This chapter focuses on the methodologies and implementations required to perform 

motion tracking on different parts of the body and also for different exercises. Motion 

tracking using inertial sensors is a current and large area of research. Instead of 
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performing difficult and slow full body motion tracking, our research takes advantage of 

the fact that we can first identify an activity from activity classification (targeted 

monitoring) and only some of the activities are of interest and can be treated separately 

(episodic monitoring). In particular, this chapter describes the tracking of: 1) lower body 

activities such as gait, running and stair climbing; 2) exercise specific motions; and 3) 

upper body arm motions. The novel contributions of each are summarized at the 

beginning of each section.  

5.2 Lower Body Motion Reconstruction 

While many previous works demonstrated methods to reconstruct lower body motions 

such as the gait cycle [42-46], they contain major shortcomings for use in the clinical 

setting to study gait exhibited by patients suffering from neurological diseases (a large 

user base for the wireless health community): 1) Many are focused on reconstructing 

motions in the sagittal plane, which is not sufficient as hemiparetic gait can exhibit large 

swings in both transverse and coronal planes; 2) Most previous works do not consider the 

problem of accurately detecting a correct reset point for zero velocity update (ZUPT), 

which is needed during motion tracking to correct for sensor noise and drift. The weak 

side of a hemiparetic patient produce irregular gait patterns, causing most ZUPT 

algorithms (and thus the reconstruction algorithms) to fail; and 3) There are a limited 

number of clinically meaningful features extracted to characterize abnormal gait such as 

hemiparetic gait. 
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In solving these challenges, we bring up a novel gait trajectory reconstruction and 

visualization method with a ZUPT algorithm targeting hemiparetic gait patterns and a set 

of novel gait quality metrics that can be extracted from the motion trajectory. Our method 

is able to reconstruct and visualize gait in a true 3D space, addressing the first major issue 

highlighted previously. The second issue regarding the detection of correct reset point is 

solved through the introduction of a novel method to identify various phases in a gait 

cycle. Finally, we define a number of metrics that are useful in evaluating patients 

suffering from neurological diseases. 

5.2.1 Methodology and Implementation 

Motion Reconstruction 

To reconstruct lower body activities, accelerometer and gyroscope measurements of the 

9DOF sensor (Fig 3.1c) mounted on the tips of both shoes are used. The sensor 

measurements are represented by a quaternion o in the sensor’s frame of reference when 

it is powered on. Based on the orientation, gravity subtraction is carried out to extract the 

pure motion acceleration (Fig 5.1).  

Ideally, by integrating the motion acceleration using strap-down inertial navigation 

techniques [42,43,86], the foot velocity can be obtained. However, since the sensor 

measurement is usually very noisy, a zero velocity update (ZUPT) method is required to 

improve the velocity estimation by resetting the velocity to a known value (usually zero) 

at known reference points of motion (such as during foot stance) [86]. Most research has 

used simple methods such as an acceleration magnitude detector [42], where the mean 

acceleration energy within a sliding window is used to determine when a foot lands on 
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the ground. While workable on normal subjects, this method fails for subjects who are 

hemiparetic or exhibit other gait deviations. This section introduces a novel method for 

robustly detecting ZUPT windows even on abnormal gait and for automatically 

reconciling the different reference frames of the two sensors (vital for visualization).  

 

Fig 5.1 Overview of lower body motion tracking model. 1). unaligned visualization due to different 
sensor frames of reference. 2) visualization in the visualization frame 

To perform ZUPT, first the standard thresholding method is applied to the unimpaired 

side to determine the zero velocity windows (window of no motion) and the motion 

windows (signals between two neighboring zero velocity windows). Second, the motion 

windows of the unimpaired side are mapped to the impaired side as zero velocity windows. 

This mapping is possible due to gait biomechanics indicating that when one foot is in 

swing, the other is in stance [43]. Third, adjustments of the windows are performed 

through window merging to reduce false positives and splitting to reduce false negatives: 

the average length of the motion windows is calculated and if the length of a particular 
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window is smaller than half of the average, it will be removed by merging with two 

neighboring windows; the average length of the zero velocity windows is also calculated 

and any window that is twice the average is recomputed with tighter threshold until it can 

be broken up. 

Successful implementation of the above procedure requires prior knowledge of the 

impaired side. To automate this discovery, we compute: 

 c = max	���h:�8p!�) 
Eq (5.1) 

where 8p is the y-axis acceleration after gravity subtraction. Energy based measurements 

better capture the additional force the unimpaired side has to carry to compensate for the 

impaired side and frequency domain features characterize energy in each periodic stride 

well. Eq 5.1 is computed for both left and right legs (cqrst, c9�uvt) and the ratio 7 =
wxyz{w|B}~{  can be used to infer whether the data is from hemiparetic gait (normal gait would 

result in a ratio close to 1) and if so which side is the weak leg (with lower c). Worth 

noting is that time domain features could also be used, albeit careful windowing is needed 

to capture all phases of a stride. 

Once the velocity has been updated by ZUPT, it is integrated to estimate the foot 

displacement. To visualize this displacement as position and movement, it is essential to 

project the motion of both feet onto the same frame of reference (Fig 5.1). In theory, this 

can be achieved by fixing both sensor’s coordinate frames through perfectly aligning 

them when worn. However, it is infeasible to instruct the users to do so. An automatic 
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reference frame is needed and so an automated way of obtaining a global coordinate frame 

of reference (visualization frame) using only sensor data is needed.  

During periods when the feet are stationary, the algorithm generates a per sensor 

initialization frame. First, the mean of the acceleration signal �m and the mean of the 

quaternion om  are computed for each sensor. �m  is a measurement of gravity in the 

initialization frame and the quaternion division 
oo�   produces om  which is the sensor 

orientation represented in the initialization frame for any o. As new data arrive, standard 

strap-down inertial navigation techniques produce foot position ��m in the initialization 

frame for data index " given � and o [51].  

Periods of walking are prefixed and suffixed by a zero velocity window. The walking 

direction d�m  can be computed by subtracting the starting foot position ��tj9tm 	from ending 

position �r��m . Using these parameters, a global visualization frame can be constructed 

by each sensor using its own data: 

 �m = �m/‖�m‖ Eq (5.2) 

 �m = �− d�m�d�m�� × � Eq (5.3) 

 �m = �� × �)/‖� × �‖ Eq (5.4) 

 

The visualization frame essentially uses the direction of gravity as z-axis, the cross 

product of � and the walking direction d�m  as the x-axis and y-axis completes the frame. 

Fig 5.1 depicts the entire process. 
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Motion Derived Metrics 

From reconstructing the motion, several gait related clinical parameters can be computed: 

walking speed �S , stride length S��%) , swing time Si"*�_�%)  and stance time 

S�8*��_�%).  
 �S =	 ����m − ���m ��"� − "m) 	 ∙ R Eq (5.5) 

 S��%) = 	����m − �����m 	�, % = 1, 2, … ,5 Eq (5.6) 

 Si"*�_�%) = �"���%) − "���%)! 	 ∙ R,		  

  % = 1, 2, … ,5 Eq (5.7) 

 S�8*��_�%) = �"���%) − "���% − 1)! 	 ∙ R,		  

  % = 1, 2, … ,5 Eq (5.8) 

 

where "  is the data index of the %th stance, defined as the center of a zero velocity 

window for each foot; "�� and "�� are the data index of heel strike and toe off, defined as 

the beginning and end of a zero velocity window; R is the sampling rate (200Hz in our 

sensor configuration). From a clinical point of view, walking speed reflects an overall 

measure of walking skill, while leg symmetry such as time spent in stance vs swing for 

each leg reflects the level of motor control. These metrics are sought after in most clinical 

trials and clinical care, where activity is an important outcome, especially for disabled 

persons with lower extremity weakness. The metrics designed were the outcome of 

comprehensive discussions and iterations between engineers (WHI), physicians (UCLA 

Neurology Department) and volunteer patients (UCLA Ronald Regan Hospital) with 

various neurological diseases and severity of gait impairments. 
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5.2.2 Verification 

For all of the verifications, the MotionFit SDK sensor platform by InvenSense was used 

(Fig 3.1c). The sensors were configured to sample at 200Hz, the accelerometer has 16G 

sensitivity and the gyroscope has 1000 deg/s sensitivity. Data transfer was done over 

Bluetooth to a mobile phone the user is carrying, which runs the AirInterface data 

collector (Chapter 7.1). 

To validate the motion tracking algorithm, three healthy subjects were recruited and each 

performed two sets of 40-meter level walking, 10-step stair ascending, and 10-step stair 

descending, respectively (Fig 5.2). The absolute error of the distance estimation of the 

total distance travelled by both the left and right sides is (3.08 ± 1.77)%. Foot position 

and orientation waveforms of individual steps were verified by comparing the sensor 

reconstruction with Vicon captured data of level walking from individuals. The Vicon 

system is very accurate with standard error of 0.02cm for step length and 0.06m/s for gait 

velocity. The results show that our method is able to accurately reconstruct a variety of 

lower body motions. 

 

Fig 5.2 Motion reconstruction results for stair climbing (up and down) and level walking 

To test with hemiparetic gait, five common hemiparetic gaits were collected from patients 

with stroke at the UCLA Neurological Rehabilitation & Research Unit during 10-meter 
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walks (a standard clinical test). The absolute error of distance estimation from the healthy 

side is (1.01 ± 0.72)% while that from the hemiparetic side is (3.55 ± 3.60)%. This 

demonstrates that our system is able to correctly compute lower body gait related metrics 

from the reconstructed motion trajectory. 

To verify the effectiveness of the evaluation metrics, a set of normal 10-meter walks were 

also collected as the control group. Fig 5.3 illustrates the 3D visualization of the different 

gaits. The red line indicates the mean where strides belonging to the same group are 

stretched in time to the same length and the green lines indicates mean ± 1 standard 

deviation. The stretching allows for more uniform presentation and aids in the analysis of 

different walking patterns since the walking phases can now be compared. Table 5.1 

summarizes the average walking speed calculated from the left and right foot sensors. 

Table 5.2 lists the rest of the gait quality related parameters. From these parameters, the 

difference between normal gait and hemiparetic gait is easily observable and the degree 

of hemiparesis can be inferred. 

Table 5.1 Walking speed of different gaits (C = control, Hi = hemiparetic) 

 C H1 H2 H3 H4 H5 

S (m/s) 1.06 0.30 0.28 0.28 0.21 0.25 
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     a). Control                  b). Hemiparetic 1             c). Hemiparetic 2              

 

 d). Hemiparetic 3                e). Hemiparetic 4              f). Hemiparetic 5 

Fig 5.3 3D visualization of strides from different gait. Center red line indicates the mean, green line 
indicates mean ± 1 standard deviation 

 

Table 5.2 Computed gait parameters (H = healthy side, I = afflicted side) 

 Side SL (m) SwingT (s) StanceT (s) 

C 
H 1.36 ± 0.06 0.37 ± 0.02 0.76 ± 0.09 

H 1.38 ± 0.06 0.35 ± 0.01 0.74 ± 0.03 

H1 
I 0.82 ± 0.11 1.34 ± 0.14 1.22 ± 0.33 

H 0.85 ± 0.06 0.24 ± 0.03 2.24 ± 0.20 

H2 
I 0.79 ± 0.09 1.52 ± 0.15 1.15 ± 0.18 

H 0.79 ± 0.05 0.27 ± 0.03 2.39 ± 0.20 

H3 
I 0.71 ± 0.37 0.98 ± 0.19 1.30 ± 0.29 

H 0.72 ± 0.10 0.26 ± 0.06 2.02 ± 0.22 

H4 
I 0.68 ± 0.12 2.13 ± 0.56 1.23 ± 0.44 

H 0.75 ± 0.09 0.26  ± 0.04 3.03 ± 0.28 

H5 
I 0.64 ± 0.08 1.28 ± 0.17 1.21 ± 0.35 

H 0.69 ± 0.06 0.24 ± 0.03 2.23 ± 0.13 
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5.3 Exercise Specific Motion Reconstruction: Cycling 

Even though cycling involves mostly lower body motion, its reconstruction requires the 

tracking of not only the foot and leg movements but also the crank and pedal of the bicycle. 

Moreover, the cycling motion is continuous with no obvious reset points that are required 

by the previous gait oriented tracking method. This in fact highlights the difficulties faced 

with attempts to produce full body motion tracking, where different categories of motion 

require different depth of biomechanical analysis in order to find different ways to reduce 

the effects of sensor noise and ways to visualize the motion. It also highlights the practical 

advantages of our design where activities can be independently identified and then 

reconstructed with the appropriate models and reconstruction techniques. More models 

can then be added at a later time to enable more reconstructions.  

For example, our research focuses on the reconstruction of the foot motion during cycling 

as well as the pedal and crank position/orientation. Published research in this area 

established good crank/foot angle and torque patterns observed from athletes and 

highlight the need to achieve proper motion patterns in cycling.  In this section, a novel 

sensing and mobile computing system is presented for reconstructing the foot and pedal 

motion, using the same 9DOF sensors seen in gait reconstruction. The system can also 

classify the foot motion profiles during cycling and provide real-time guidance to the user 

to achieve the correct pattern.  



104 
 

5.3.1 Methodology 

Cycling Biomechanics 

As a cyclist completes each pedaling cycle (PC), the bike’s crank angle α progresses 

through 360 degrees (Fig 5.4a). Each cycle can be broken down into two phases: the 

power phase starting from the center top position (CTP) and continuing through the first 

180 degrees, where a user pushes the pedal down with force; and the recovery phase for 

the rest of the revolution where a user relaxes [47,87,88]. The two phases of the crank 

motion in a pedaling cycle are depicted in Fig 5.4b. 

 

a.  Crank and pedal angles                                b. Phases and points 

Fig 5.4 Pedaling cycle 

When pedal clips and cleats are used, the leg can pull up the pedal and apply a force to 

the crank during the recovery phase, thus applying power continuously during the entire 

pedaling cycle [47]. However, incorrect foot angle (θ) yields improper application of 

force and thus poor cycling efficiency and increased possibilities of injury [51-53]. 

Therefore, the monitoring and correction of the foot angle is vital for all cycling 

applications from athletic training to patient rehabilitation. 
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Pedaling Profiles 

When the foot is attached to the pedal through cleats, the foot/pedal angle θ can be seen 

as a function of crank angle α with a range between 0 and 360 degrees and its acceleration 

can be measured by an tri-axial accelerometer, with data expressed using vector 

magnitude M(α). Fig 5.5 shows five sample waveforms of the M(α) normalized to be 

between ±1 and their corresponding cycling patterns (shown with pedal and foot angle at 

the four key positions). 

 

 

Fig 5.5 Examples of normalized profiles of foot acceleration 

M(α) can be used as the pedaling profile for subsequent analysis. As the crank completes 

each pedaling cycle, the waveform of M(α) serves as the profile for that cycle. Previous 

studies on biomechanics and cycling efficiency have determined the optimal range of foot 

angle that maximizes cycling efficiency in terms of converting energy expended into 

forward momentum and in reducing muscle fatigue [88,89]. The M(α) corresponding to 
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the optimal profile was determined through studying high speed video of UCLA’s cycling 

team, in conjunction with foot mounted orientation sensors. A typical optimal profile is 

shown in Fig 5.5a with the angle ranges at four points given in Table 5.3. 

Table 5.3 Foot angle range at key points (degrees) 

 
A (CENTER 

TOP) 

B (Right 

Horizontal) 

C (CENTER 

BOTTOM) 

D (LEFT 

HORIZONTAL) 

Optimal 27 ± 10 2 ± 10 27 ± 5 50 ± 5 

Suboptimal A 29 ± 10 −8 ± 5 48 ± 5 65 ± 5 

Suboptimal B 50 ± 10 46 ± 5 21 ± 5 32 ± 5 

Suboptimal C 56 ± 10 −10 ± 15 11 ± 5 45 ± 5 

Suboptimal D 52 ± 10 −3 ± 10 15 ± 5 66 ± 10 

 

Profiles deviating from the optimal are regarded to be suboptimal in this study. Four 

common suboptimal profiles were determined also by studying the UCLA cycling team’s 

videos. The profiles are shown in Fig 5.5b-e, whose angle ranges are given in Table 5.3. 

By identifying the key points (Figure 5.4b) on the videos and matching them against 

accelerometer data, we observed that profile waveform M(α) for each pedaling cycle can 

be segmented from the continuous accelerometer data stream. There are also four quarter 

cycles within one pedaling cycle, marked by 1 to 4 in Fig 5.6. 
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Fig 5.6 Profile extraction from time series and individual quarter cycle of a pedaling cycle 

Based on the above findings, the problem of determining the optimality of the user’s 

cycling profile can be solved by extracting features on a per pedaling cycle and within 

that, per quarter cycle basis and leveraging machine learning techniques for identification. 

Section 5.3.2 presents a classifier implementation that performs this task. 

Motion Reconstruction 

Foot and pedal angle changes are the most important motions of interest and indirectly 

infer the upper and lower leg angles. In this section we utilize the specific biomechanical 

knowledge of cycling as summarized above to perform cycling motion reconstruction. 

Fig 5.7 demonstrates the overall process. 

Visualizing the cycling motion is achieved by visualizing two angles: the angle of the 

bike’s crank (position of the foot as it is attached to the crank through the pedal) and the 

angle of the foot. As described previously, the crank angle α progresses through 360 

degrees during each pedaling cycle (PC) and has a power phase starting from the center 

top position (CTP) continuing through the first 180 degrees and the recovery phase for 

the rest of the revolution where a user relaxes [47,51,52]. This is broken further down to 

four way points (A-D in Fig 5.5 and 5.6) and these can be identified by analyzing the 
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accelerometer signal and by smoothly interpolating between the points and matching each 

cycle to 360 degrees, the crank motion (and thus the foot position) can be reconstructed.  

 

Fig 5.7 Cycling motion reconstruction overview 

Reconstruction of the foot angle is performed by noticing that while the foot is clipped 

into the pedal, the only form of rotation is in a plane coplanar to the crank. This means 

that by normalizing the orientation quaternion o from the sensor to obtain o� = i� +
2�" +  �$ + ¡�% = i� + d� and converting that into the axis-angle form (Eq 5.9), the 

only rotation (foot rotation) is captured. This method has the benefit that no calibration 

of the sensor’s orientation on the user’s foot is required as the axis angle provides a single 

angle of rotation (�) along an arbitrary axis (¢£). 

 � = 2 acos�i�  

 ¢£ 	 	 § o�sin	�� 2⁄ � ,			"6	�	 # 0
ª,			«�`�7i"h�  Eq (5.9) 



109 
 

5.3.2 Implementation 

A real-time cycling performance guidance system was developed following the above 

described methods (Fig 5.8). The main considerations for using mobile based platforms 

were that mobile devices are pervasive with extensive network infrastructure support, and 

that the high performing devices can interface easily with external sensors, perform signal 

processing and provide onboard sensing. 

 

Fig 5.8 System architecture overview describing the major components 

The system functions as follows. First, the sensor and smart phone deployment is the 

same as for generic lower body motion reconstruction: a 9DOF sensor to wear on the tip 

of the shoe and a smartphone running the AirInterface data collector. The raw data are 

sent to a data processing unit in the phone, where pre-conditioning and segmentation take 

place. After the data stream is segmented into individual profiles (one per pedaling cycle), 

they are sent to feature extraction where a set of features that define the profile are 

extracted and used by the classifier to determine the optimality of the current cycle. At 

the same time the motion reconstruction is performed. Finally, the smartphone provides 

the user with feedback and guides the user to the correct motion profile. 
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Preprocessing and Segmentation 

Data processing begins with raw data received from the sensor worn by a user, followed 

by signal conditioning and segmentation (Fig 5.9). The first two steps involve combining 

the tri-axial accelerometer data to generate normalized vector magnitude data. This is 

essential since the vector magnitude data are orientation invariant and the normalized 

results are convenient for thresholding in subsequent computations. The signals then pass 

through a band-pass filter with frequency range of 0.15 - 9Hz to remove both the DC 

offset components and high frequency sensor noise. 

 

Fig 5.9 Data processing pipeline for detecting individual pedaling phases from raw data 

After preprocessing, a series of significant local minima and maxima need to be identified 

in the data stream in order to extract profiles as described by Fig 5.6. Consider the data 

series in Fig 5.10 consisting of multiple suboptimal pedaling cycles. By finding key local 

min/max points, the waveform can be split into individual cycles. 

 

                         a. thresholding                                                 b. local minimum within a time window 

Fig 5.10 Segmentation algorithm to segment pedaling cycles from continues data stream 
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The algorithm first detects all the minimum points below a threshold (Fig 5.10a), 

determined empirically to be ¬ 	 −0.5. After all minima are identified, the regions with 

multiple minima within 0.1s of each other are detected and only the local minimum is 

kept in each such region (Fig 5.10b). 

Apart from the algorithm presented here, other methods such as matched filtering and 

dynamic time warping can be equally effective at identifying the individual pedaling 

cycles given a template. They can in fact yield results with less false positives due to their 

individualization characteristics. However obtaining individualized template samples 

from each user is difficult in-field where the ability to interact with and instruct users is 

low. 

Pedaling Cycle Phase Detection 

The output of the segmentation is data sequences that represent the profiles of individual 

pedaling cycles (Fig 5.5). As discussed earlier, there are four points of interest within 

each PC that divide the cycle into four phases (the four quarter cycles in Fig 5.4b). The 

features computed from the four phases of the pedaling cycle define the pedaling profile 

of the current cycle, which can be determined by a classifier. As illustrated in Fig 5.6, 

two successive troughs indicate the start and end of a pedaling cycle (CTP to CTP), and 

the crest signifies the CBP as the downward force applied to the pedal as it reaches 

maximum at the bottom of the power phase. The LHP and RHP are the middle points 

between CBP and CTP. 
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It is noted that while Fig 5.6 shows the optimal profile, the same pedaling cycle phase 

detection approach can be applied to suboptimal profiles where random spikes can be 

eliminated by a curve fitting technique. 

Classification of Pedaling Profiles 

Studying the waveform within each profile, the following observations can be made: 1) 

the position of the maximum point is different across profiles; 2) Quarter cycle #2 and #3 

of a pedaling cycle can be approximated more closely by a linear function in the optimal 

case compared to the suboptimal; and 3) the number of peaks is different for different 

profiles. Based on the observations above, a set of seven features were selected to define 

each profile (Table 5.4). 

Using the features computed, a classifier can be used to determine the pedaling profile in 

real time. In this study the support vector machine (SVM) was used, which is briefly 

introduced below. While SVM was found to be effective in determining decision 

boundaries and performing classification, future work could evaluate the suitability of 

other classification techniques such as neural networks.  

The support vector machine (SVM) is a supervised learning algorithm for classification 

that observes data and labels (classes), and builds a model that can later be used to identify 

classes using new data. Given a set of feature vectors mapped into the feature space, the 

SVM tries to find the largest gap that can separate the classes. SVM forms a hyperplane 

of dimension of p-1 that divides classes given feature vectors of p elements lying in a p-

dimensional space. The benefit of using the SVM to determine classes is that it provides 
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a better match to the type of statistical distribution for the features used here compared to 

methods such as Naïve Bayes [75]. In this study, the classes in the model are the different 

pedaling profiles, with the features given in Table 5.4. 

Table 5.4 Classifier features 

Feature DEFINITION 

Max Point (I­3H) 
":2®rj − ":2�tj9t":2r�� − ":2�tj9t , i`�7�	":2	"h	�`�	�"c�	"*:�2 

Number of Zero Crossings of 2nd 

Derivative (5¯R�) 

5¯R�I°�,�!5¯R�I°�,±! , i`�7�	I4,p	"h	�`�	h��c�*�	«6	h"�*8²	 
67«c	�`8h�	2	�«	 	8*:	5¯R	"h	*³c. «6	¡�7«	�7«hh 

Min Linear Correlation (­�´) min/R�I��, R�I��1 
Number of Zero Crossings of 1st 

Derivative (5¯ �́) 
5¯R�Iµ�,±� 

Mean Absolute Value (­30) 
15E|2�|

¶

�'�
 

Standard Deviation of 2nd Derivative 

(S_·�) 
h�:�I°�,±� 

Normal Path Length (I�) E|2�¸� − 2�|
¶;�

�'�
 

 

Most of the classifier implementation was abstracted by LibSVM [91], which is a popular 

SVM library suitable for this study due to the availability of Java bindings that can be 

used on Android platforms. In addition to LibSVM, a number of application specific 

designs were also made.  

First is the normalization of the features since they have dramatically different numeric 

ranges. Second is the choice of a suitable kernel. Among four standard kernels available 

(linear, polynomial, radial basis function (RBF) and sigmoid), the RBF kernel was the 
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preferred choice since it is widely accepted as the default [92]. This kernel nonlinearly 

maps sample vectors into a higher dimensional space so that it can handle cases where 

the relation between classes and features are nonlinear. Also, RBF has the least number 

of parameters, which reduces the complexity of the model computation. 

Once the RBF kernel is selected, a number of parameters need to be optimized to 

maximize prediction accuracy for unknown data. The RBF kernel requires two 

parameters ´ and ϒ. The parameter ´ trades off simplicity of the decision surface against 

misclassification of training example, and is a parameter common to all SVM kernels. 

The parameter ϒ defines the amount of influence that a training example has. The choice 

of the two parameters is non-trivial.  A common strategy, known as grid search [93], is 

to perform k-fold cross-validation on a dataset with exponentially growing sequences of 

parameter values in order to find the combination with the highest accuracy. Fig 5.11 

shows the grid search results, obtained by selecting a range of ´ and ϒ values for the 

kernel and performing classification on the dataset to obtain classification accuracy. The 

colored regions indicate the classification accuracy achieved with various parameter 

values. In this study, ´ = 512 and ϒ = 0.03125 were chosen. 

As a supervised learning method, the classifier requires training data in order to determine 

the kernel parameters and to learn the model (Chapter 3.1). All ground truth datasets in 

this study were obtained using both high speed video recordings and orientation sensors. 
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Fig 5.11 Parameter Selection 

 

Android Based Real-time Guidance 

All the components needed for real-time classification were developed on the Android 

platform using a multithreaded approach. These include sensor instrumentation, data 

processing algorithms (Fig 5.8), feature extraction and classification (through LibSVM). 

Streaming of data from the sensor to the Android device was achieved through Bluetooth. 

The Bluetooth thread continuously receives sensor data and inserts them into a globally 

synchronized buffer. A data processing thread monitors the buffer and performs vector 

magnitude computation, filtering and segmentation to separate out the individual pedaling 

cycles. Once a pedaling cycle is found, the data processing thread extracts the data for the 

classification thread to compute features and perform classification. Finally the guidance 

module executes on the user interface (UI) process and provides the necessary guidance.  

Guidance implementation followed a progressive training approach that was proven 

effective in athlete training and general physical education [94,95]. The method presents 

the user with one movement to focus on at a time and the entire motion is eventually 
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corrected as a whole. Each profile apart from the optimal corresponds to one where the 

foot is at an incorrect angle at specific key point(s) outlined in Table 5.3. The guidance 

module displays an image where the incorrect key point is highlighted along with an 

arrow indicating the adjustment needed (Fig 5.12). The instruction stays on screen until 

the foot is corrected, and visual instruction is also accompanied by voice guidance. 

 

Fig 5.12 Guidance UI captured from Android application 

Foot position and Orientation Reconstruction 

The software system computes the axis-angle based on Eq 5.9 in real time and from that 

derive the foot and pedal angle and metrics such as the cadence of cycling. The crank 

angle is determined by interpolating over the four key points within each cycle (extracted 

above) that separates the cycle into four 90 degrees regions. 
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5.3.3 Verification 

The effectiveness of the developed system relies on the accurate detection of the various 

profiles and on reconstructing the foot position and angle. The evaluation procedures used 

in this study is described below. 

Camera Based Automated Verification System 

An automatic foot angle and position extraction system is required to analyze the tens of 

thousands of frames of ground-truth data we obtained. For this purpose a camera based 

system was developed. An indoor exercise bike was used as a fixed platform and a high 

resolution camera was setup on a tripod to take videos at 60 frames per second. At the 

beginning of the video, a black and white checker board was placed in the same plane as 

the bike’s crank and was used to perform perspective transformation so that the camera 

images were in the same plane as the bike’s crank and thus the biker’s foot (Fig 5.13). 

The transformation first identifies the edges and intersections on the checker board and 

thus the bounding region. Given that the desired bounding region should appear as a 

rectangle to the camera, a perspective transformation matrix can be found so that 

subsequent images from the camera can be calibrated (Fig 5.14 demonstrates the 

sequence of steps). The result image shows that after transformation, each small checker 

square is at right angle (yellow lines show right angle) and each square is the same size 

and has the same spacing (thick black measuring lines: each line is the same length). 
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Fig 5.13 Checker board on the same plane as pedal for calibration 

 

Fig 5.14 Procedure for calibrating the camera angle to the pedaling plane 
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A special marker was placed on the user’s foot to aid the detection of the foot angle. The 

marker is a rectangle with yellow and black stripes. These two colors were chosen as they 

are clearly visible under different lighting conditions and are always at a high contrast to 

each other. The angle could be extracted using the color gradient change at the edge where 

the two colors meet. Image processing techniques were implemented using OpenCV to 

first detect the region of surrounding the marker, then stabilize the area and finally extract 

the angles of foot and crank. Fig 5.15. depicts this process. 

 

a. Camera extracted ground-truth 

 

b. Sensor motion tracking result 

Fig 5.15 Process of extracting cycling foot angle ground-truth 
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The video data and analysis were also semi-automatically synchronized to the sensor data 

through a series of tap signals that mark the beginning and end of a data recording session. 

Once these points are identified both on the video and sensor data streams, the rest of the 

analysis is fully automated. 

This automated system was manually verified by comparing the generated output data vs 

visual measurement of the still frames from video under various blurring and lighting 

conditions. 

Testing Procedures and Datasets 

Six individuals were recruited involving both males (4) and females (2) with varying body 

height (160 – 178cm) and cycling experience (2 with minimum experience, 1 with daily 

commute experience, 1 hobby racing cyclist, 1 racing cyclist). Each subject was shown 

videos of cycling sessions ranging from elite athletes whose cycling profiles are optimal 

to average cyclists whose pedaling profiles are not optimal. Each subject then performed 

a number of cycling sessions over multiple days using the indoor cycle mimicking the 

profiles seen in the videos but in their own comfortable form (to reflect inter-person 

variability). During each session, the sensor worn by the subject was synchronized with 

the high speed video system shown above. The video was then analyzed to identify the 

profiles to provide both ground truth and training data (20% of each labeled profile, other 

80% used as testing data). The foot angle and orientation data were also automatically 

computed and stored. In total, the six subjects contributed over three hours (197min) of 

valid data with 6395 individual pedaling cycles. 
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Results 

The results of the classifier using individualized training are given in Table 5.5 in terms 

of a confusion matrix. Each entry represents the average accuracies obtained over all six 

subjects, and the values in parenthesis are the best/worst results obtained. The diagonal 

entries on the confusion matrix are the correctly classified results (for example instances 

of Sub B classified as Sub B by the classifier) and the off diagonal entries shows the 

“confusion” of the classifier where incorrect classification occurred. 

Table 5.5 Classification results (aggregated confusion matric) in percent 

 
Optimal Profile 

(best/worst) 

Sub Optimal A 

(best/worst) 

Sub Optimal B 

(best/worst) 

Sub Optimal C 

(best/worst) 

Sub Optimal D 

(best/worst) 

Optimal 

Profile 
99 (99/100) 2.4 (1.4/4.5) 1.1 (0/2.9) 1.0 (0/4.0) 0 (0/0) 

Sub 

Optimal 

A 

1.0 (0/1.0) 89 (92/83) 2.0 (0/6.7) 3.6 (0/5.6) 2 (0/6.1) 

Sub 

Optimal 

B 

0 (0/0) 1.5 (0/3.9) 89 (96/78) 3.1 (0/8.1) 11 (0/17) 

Sub 

Optimal 

C 

0 (0/0) 4.8 (0/9.2) 4.8 (0/10.4) 91 (96/83) 2 (0/5.2) 

Sub 

Optimal 

D 

0 (0/0) 3.1 (0/8.2) 3.1 (0/7.4) 1.5 (0/2.9) 84 (82/99) 

 

The results have proved that the system developed in this study is able to detect all of the 

defined cycling profiles with high accuracy. The profiles defined are not simply subtle 

variations in a cyclist’s foot angle caused by inter-person or temporal variations, but are 

observable suboptimal behaviors obtained from video data of subjects cycling over 
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extended periods of time. Using these profiles, the guidance system is able to provide the 

user with real time feedback on their current profile and on how to achieve the optimal 

profile. 

For verification of foot angle and position reconstruction, 44,954 frames from roughly 20 

minutes of cycling data were analyzed. Results showed error with mean of 4.7 degrees, 

standard deviation of 4 degrees, max and min deviation of 0.3 and 11.2 degrees 

respectively. Fig 5.16 shows a small portion of the motion reconstruction data compared 

with ground-truth. 

 

Fig 5.16 Cycling motion reconstruction result compared with ground-truth 

From the figure we can see that the system is able to reconstruct the crank angle by 

interpolating between the four key points in each pedaling cycle. It is also able to obtain 

accurate foot angle data. 
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5.4 Upper Body Motion Reconstruction 

Upper body motion reconstruction was developed together with a fellow graduate as a 

part of our collaboration on the Qualcomm Innovation Fellowship 2012. It is not an area 

of significant contribution by this research. Therefore this section presents only this result 

for the sake of completeness. 

Upper body motion tracking can be performed using data from the elbow and wrist 

sensors with a different tracking model. The complimentary filter is again used to produce 

sensor orientation represented by quaternion o. Using biomechanical properties of the 

arm, we model it as two rigid links each rotating around its preceding joint and can then 

apply the well-known double pendulum model to produce the arm’s motion trajectory. 

Whereas in the lower body case elaborate ZUPT algorithms are required to correct double 

integration errors from the noisy accelerometer, reliable motion trajectory of the arm can 

be obtained directly through o due to significantly less noisy gyroscopes. 

The algorithm is shown in Fig 5.17, where the quaternion representing the limb 

orientation is expressed in both sensors’ own frames of reference when they are powered 

on. If visualized, the swing of the limb would be scrambled (Fig 5.17.1) instead of 

following two concentric arcs (Fig 5.17.2) and the length of the arm would be incorrect. 

To correctly visualize, it is necessary to have a global frame of reference to project the 

individual sensor’s data and also find the arm length. 



124 
 

 

Fig 5.17 Overview of upper body motion tracking model. 1). unaligned visualization due to different 
sensor frames of reference. 2) visualization in the visualization frame after calibration 

Compared to the lower body case, finding a global reference here is more difficult due to 

the two degrees of freedom of the arm. As a result, our method requires a single 

calibration motion by the end-user. The motion requires the end-user to keep his/her arm 

straight down for a few seconds, then swing up to the side along the coronal plane and 

return to the starting posture. During this calibration, the trajectories of the elbow and 

wrist can be approximated by two concentric arcs in the coronal plane whose radii are 

equal to the length of the upper arm and the whole arm respectively since the sensors are 

worn at near the joints. The calibration is firstly used to estimate the upper and lower arm 

length. During the swing, the two sensors are going through a circular motion whose 

instantaneous linear velocity d and rotational velocity ¹ can be characterized as 

 d = º 0 −»¼ »p»¼ 0 −»4−»p »4 0 ½ × ¾ 
Eq (5.10) 
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where ¾	is the vector representing either the upper or whole arm in the sensor’s local 

reference frame. Due to low drift, the gyroscope measurements can directly substitute the 

matrix elements in Eq 5.10. The linear velocity d  can be estimated using the 

accelerometer measurements and the orientation quaternion o. ZUPT algorithm can be 

used to eliminate velocity drift by using the stationary phases before and after the 

swinging. Using Eq 5.10, ¾ for both upper arm and the whole arm can be obtained 

through MMSE: 

 min¾ ‖¹ × ¾ − d‖ 
Eq (5.11) 

The calibration motion is also used to find a global reference frame where: the arm 

straight down position is defined as the z-axis; the x-axis is defined to be perpendicular 

to the coronal plane, easily estimated by finding the vector orthogonal to the swinging 

arc; and the remaining y-axis completes the frame using Allocentric reference. 

Once the visualization frame is found, a rotation matrix can be calculated to project the 

arm represented by vector ¾ to the reference frame. Note that the upper body vector needs 

to be subtracted from the whole arm vector to get the ¾ representing the lower arm. After 

the calibration, the arm rotations described by new quaternion o� ("�ℎ data point in sensor 

frame) can be projected onto the global reference frame and used to animate the arm: 

 ¾� = o × ¾ª × o∗ 
Eq (5.12) 

where ¾�  is the arm orientation of the "�ℎ  data point and ¾m  is the initial arm vector 

(pointing straight down) in the global reference frame. 
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To verify upper body motion reconstruction, 3 female and 3 male subjects with different 

heights were asked to perform a range of arm motions starting with the calibration motion. 

A Kinect system was set up to capture the skeletal movements and record the shoulder, 

elbow and wrist positions in the individual frames. Based on the rigid link assumption, 

the upper arm and whole arm length were estimated as the distance from the shoulder to 

elbow and from the shoulder to wrist. Table 5.6 presents the estimation accuracy of the 

calibration algorithm compared to the Kinect captured ground-truth (the Kinect system 

can report positions to within 2-5cm of true value). Overall, the average error is 4.53%. 

In addition, the arm motion reconstructed from the inertial sensors were compared with 

Kinect captured trajectory (Fig 5.18). 

                 

     a). Sensor based motion trajectory                              b). Kinect captured motion trajectory  

Fig 5.18 Motion trajectories of the arm performing calibration motions. 
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Table 5.6 Arm length estimation (for subjects S1 to S6) 

 S1 S2 S3 S4 S5 S6 

Upper arm (m) 0.244 0.272 0.232 0.308 0.289 0.265 

Whole arm (m) 0.450 0.266 0.481 0.592 0.525 0.532 

Upper err. (%) 5.48 7.36 9.94 3.87 1.07 0.86 

Whole err. (%) 7.67 2.11 0.65 6.84 0.49 8.07 

 

5.5 Conclusions 

Following the context-driven activity monitoring developed in Chapters 4, this chapter 

provided the most detailed tier of information in the multi-layered daily activity profiling 

system, i.e. motion reconstruction and metrics extraction. Using the same set of wearable 

inertial sensors, this chapter focused on the methodologies and implementations required 

to perform motion tracking on different parts of the body and also for different exercises. 

In particular, this chapter described the tracking of: 1) lower body activities such as gait, 

running and stair climbing; 2) exercise specific motions; and 3) upper body arm motions. 

In the general case of lower body motion tracking, a novel gait trajectory reconstruction 

and visualization method was developed with a ZUPT algorithm targeting hemiparetic 

gait patterns. The method was able to reconstruct and visualize gait in a true 3D space 

and a set of clinically relevant gait quality metrics. For more complex motions where in-

depth knowledge of the motion and the underlying biomechanics is needed, we saw the 

advantages of our design where activities can de independently identified and then 

reconstructed with the appropriate models and reconstruction techniques. For an example, 
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our research showed the reconstruction of the foot motion during cycling as well as the 

pedal and crank position/orientation. Finally, this chapter also presented briefly the 

ongoing collaborative work on upper body motion reconstruction that is leveraged in the 

complete system as will be shown in Chapter 6. 

At the conclusion of this chapter, we have all of the components needed to build the full 

system that provides multi-layered daily activity profiling of a user. 
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Chapter 6 

End-to-End System Evaluations 

6.1 Realization of End-to-End System 

Chapter 1.3 presented an overview of the system and chapters 3-5 described in detail how 

the various components were designed, implemented and verified individually. The 

system architecture diagram below (Fig 6.1) is the culmination of these components and 

is the final implementation for the system outlined in Fig 1.3. 

Utilizing the prescription approach to activity monitoring, the implementation makes use 

of location based context-driven activity classification system from Chapter 4.3. This 

allows much of the training phase to be automated and reduces burden on both the user 

and healthcare professional in terms of training the user, obtaining classifier training data 

and prescribing and designing scenarios. 
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Fig 6.1 System implementation diagram 

The output of the various components includes activity performed, context under which 

the activity was performed, user movement events, optional motion tracking of the 

activity and clinically meaningful metrics for the activity. All of the data are aggregated 

to the server daily, where the client transmits a compressed file containing today’s GPS 

traces, context events, activity classification results and raw sensor data for activities 

requiring motion reconstruction and metrics extraction. The server then performs the 

motion reconstruction and metrics extraction. An interactive report of all the data is 

finally sent to the physician for analysis. Fig 6.2 demonstrates the reporting user interface 

(UI). 
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Fig 6.2 Example report showing a person’s movement, visited contexts, activities detected within each 
context and motion playback of a running event 

To present the data, first the GPS traces are drawn onto a map using Google Places API 

and any location contexts detected during the day are marked. An information window 

can be shown by clicking on the markers, and the window provides a list of all the 

activities that were detected in that context and the level of details available for each 

activity (matching that selected by the healthcare professional). Each of the details can be 

clicked to show the content such as motion reconstructions video rendered by the server 

or graphed metrics data. The report is self-contained into a single HTML archive with 

user interactions and interfaces developed using standard web development techniques 

(HTML, CSS and JavaScript). 
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6.2 Evaluations 

Detailed verification and evaluation of the individual components (WHISFT activity 

classifier, context-driven activity classification, upper, lower body and cycling motion 

tracking and metrics extraction) were presented in their respective chapters. This chapter 

provides the evaluation of the system as a whole to accurately detect prescribed scenarios 

and produce useful reports. 

Four subjects were each given a kit containing the four 9DOF sensors (Fig 3.1c) and a 

Nexus 7 tablet. The sensors were worn on the upper and lower arm of the dominant arm 

near the elbow and wrist joints and on the top front side of both shoes. Each subject was 

asked to record around 7 hours of data and to visit any place matching the categories 

listed in Table 6.1 (actual physical location is not restricted). The operating life for the 

tablet using WIFI augmented GPS is around 6 hours and is the limiting factor for usage 

time. The table is plugged in while transiting between destinations.  

Most categories, except home due to the lack of residential POI from the APIs used, were 

detected with a high success rate. The weakness in detecting residence accurately could 

potentially be removed by allowing users to input their home coordinates. Fig 6.3 shows 

two particular instances of the detection overlay and results. We can see the search vectors 

and the resulting overlay drawn on the map. The correct location are within the search 

overlays. 
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Table 6.1 Context detection results 

Category Physical Locations Picked by Users Counts Correctly 

Detected 

Missed 

Detection % 

General Store Black Market, Smart & Final, 

Country Market 

5 80% 0% 

Restaurant The Counter Burger, KFC, 

McDonald, Volcano Tea 

8 75% 13% 

Gym LA Fitness, 24 Hour Fitness, 

Equinox, YMCA 

7 100% 0% 

Department 

Store 

Blooming Dale, Nordstrom, Target 5 100% 0% 

Residence 3 different homes 3 33% 67% 

 

 

Fig 6.3 Location search overlays 

During context data collection phase, motion data was also captured from the subjects 

and ground-truth were reported in the form of written reports. The users were instructed 

to at least perform the actions listed in Table 6.2 within each location context. 
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Table 6.2 Scenarios 

Context Actions 

General Store Walking, Reaching, Standing 

Restaurant Sitting, Eating, Walking 

Gym Walking, Running, Cycling, Standing 

Department Store Stair climbing, Reaching, Walking, Standing 

Residence Sitting, Eating, Walking, Stair climbing 

WHISFT classifiers were used as both the generic and context-specific activity classifiers. 

The results from the full system are in agreement with the previous results in Chapters 3 

and 4, which confirms further the benefits of context specific activity classifiers in terms 

of classification accuracy and speed improvements reported in our early studies. 

 

a. Cycling metrics (left: motion reconstruction, right: metrics for the session) 

 

b. Walking metrics (left: single step reconstruction, right: metrics for walking episode) 

Fig 6.4 Motion reconstruction and metrics of walking and cycling 
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To verify the system as a whole, the generated report from the data aggregation unit was 

viewed and compared against user reports. The generated report for each user was found 

to be complete with no omissions.  

 

Fig 6.5 Interactive report showing details about each context (A), about each activity detected within 
context (B) and motion reconstructions (C & D) 

Fig 6.5 depicts some of the results. In this example report, the user’s entry and exit events 

are marked with red and yellow markers respectively. An information screen (Dialog A) 
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is displayed for a particular context when a marker is clicked and displays all the detected 

activities within the context. Each of these activities is clickable for additional 

information (Dialog B). For activities that have motion reconstruction, a reconstruction 

video can also be viewed from the link in Dialog B. The example figure shows two motion 

playbacks (Dialog C and D). 

Using similar UIs, the report also displays motion metrics computed for certain activities. 

Fig 6.4 shows the motion reconstruction and their metrics of walking (a) and cycling (b). 

6.3 Conclusions 

The report above can be delivered on a daily basis. Using this report, healthcare 

professionals can gain insights into a subject’s daily behavior that no previous system has 

been able to deliver. Recall for example (Chapter 1), in treating chronic diseases such as 

stroke, multiple sclerosis, heart failure or diabetes, a healthcare provider’s goal is to: 1) 

improve the quality and safety of a walking pattern that is slow or asymmetric; 2) reduce 

the risk of falls; 3) improve fitness through progressive walking or stationary cycling; 4) 

lessen the burden of care on the family by reducing disability; 5) increase daily 

participation in home and community activities; 6) reduce the likelihood of 

hospitalization. The report with its multi-tiered information is able to provide the in-field 

data required to enable all of the above goals.  

By studying the highest level information such as the location a person was able to visit, 

physicians can provide assessment on the subject’s ability to shop and socialize, thus 
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allowing for treatment prescriptions that maximize daily participation in home and 

community activities (5). By observing the activities and their amount each day from 

activity monitoring results, a physician is able to ascertain the subject’s compliance with 

the exercise prescription that is designed to reduce risk of hospitalization and disability 

(3, 4 and 6). Finally, by scrutinizing the movement of individual limbs during certain 

episode of activities such as walking, the physician is able to fully visualize the effects of 

prescribed treatment on the subject, assess the quality and safety of the movement pattern 

and the subject’s progressive improvement. These pieces of information then allow 

physicians to provide feedback and adjustments in prescription that minimizes risk of 

injury and accelerate recovery (1, 2, 3, 4 and 6). 
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Chapter 7 

Support Tools Development: Accurate 

Data Collection and Usability 

The implementation, evaluation and deployment of the various components and the full 

system presented in earlier chapters require a set of accompanying sensors and data 

collection software that can ensure accurate data collection, curation and ease of use both 

inside and outside laboratory settings. This chapter highlights a number of practical tools 

developed during our research and clinical trials. The innovations in the tools developed 

are focused on accurate data collection and end-user software usability. 

7.1 Sensor Firmware and Data Collection Tools 

The most fundamental software modules required are the sensor firmware and data 

collection tools. As discussed in Chapter 3 (in particular Fig 3.1), our research spanned 

multiple generations of sensors and different computing platforms. As a result, a cross 

platform architecture was developed with co-designed firmware and software. 
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7.1.1 AirInterface Architecture 

The architecture for instrumentation of external sensors is named the AirInterface 

architecture (Fig 7.1). The subsystem closest to hardware is the AirInterface. Its 

implementation should be minimal, supporting only basic read and write operations 

required for sensor control and data recording. This ensures that the subsystem executes 

at maximum speed. Attached to the AirInterface are monitors. As the sensors being 

instrumented can be different, one monitor per interface is necessary. The monitor tracks 

a sensor's state, notifies the upper layer of changes, and takes appropriate actions 

autonomously. For example, if a sensor disconnection event is detected, the monitor could 

notify the upper layer about the disconnection, while at the same time attempt to re-

establish connection through the AirInterface it is attached to. 

Each AirInterface obtains data from a stream established to the target device and contains 

the decoder for decoding the raw input of the sensor. The decoder and sensor firmware 

were co-designed so that the message format is consistent. Table 7.1 lists the generations 

of sensors, their platform and data format. Apart from the GCDC X16 sensor, all other 

sensors’ firmware was developed (or customized) by us. The details of embedded systems 

programming is outside of the scope of this thesis. 

The output data from each AirInterface is stored in a shared buffer. A data processor unit 

runs in parallel to all AirInterfaces and processes the buffer, synchronizing data from 

multiple sensors. This is a standard producer-consumer pattern, where the processing unit 

is decoupled from the recording units through a buffer. This buffer also grants protection 
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against spurious delays of sensors, with the tradeoff of some initial delay when sensors 

are first turned on.  

                                             

Fig 7.1 AirInterface architecture 

Abstracting the underlying sensor instrumentation is the AirInterface Controller (Fig 7.1). 

It offers upper layers the ability to initiate connections to sensors and to obtain 

synchronized data. Fig 7.2 shows the interface model of the overall sensor 

instrumentation component. Only the controller needs an interface for abstracting with 

upper layers, with messages marked by DataArrived and Notification interfaces, 

indicating the availability of synchronized data and special sensor events respectively. 

The core library provides support for all generations of sensors and allows sensors from 

different generations to be connected simultaneously operating at different sample rates 

with different raw input formats. 
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Table 7.1 Sensor platforms and data format 

Sensor Processor and Sensors Data Rate Data Format 

Gulf Stream GCDC 

X16 

Unknown Processor, tri-

axial accelerometer 

50 – 320Hz ASCII: timestamp; 

accelerometer x, y, z 

Sparkfun RazorIMU Atmega 328, tri-axial 

accelerometer, gyroscope, 

magnetometer 

120Hz ASCII: timpstamp; 

accelerometer x, y, z;    

gyroscope x, y, z;  

magnetometer x, y, z; 

quaternion w, x, y, z 

InvenSense MotionFit 

SDK 

MSP430, tri-axial 

accelerometer, gyroscope, 

magnetometer 

50-200Hz Binary, bit packed: 

START_BYTE 

6 bytes acceleroemter x, 

y, z 

6 bytes gyroscope x, y, z 

12 bytes quaternion w, x, 

y, z 

2 byte timestamp 

END_BYTE 

 

WHI 9DoF Sensor MSP430, tri-axial 

accelerometer, gyroscope, 

magnetometer 

50-200Hz Same as above 

 

The AirInterface architecture is platform agnostic and our implementation of the libraries 

used the Java language, selected also for its ability to run on a myriad of platforms. As a 

result, the implemented library can be used on all major operating systems (OSes) and 

only the layer that interfaces directly to the Bluetooth hardware is OS dependent 

(WinSock and Widcomm on Windows, IOBluetooth on OS X and bluez on Linux).  
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Fig 7.2 AirInterface controller interface model 

A number of data collection tools were developed using the core libraries. They range 

from basic collector for internal usage to software used in various trials and production 

environments. The subsections below describe some of them. 

7.1.2 Android Application for Episodic Monitoring with User 

Annotation: Voice Controlled 

The first application was an Android application that can be completely voice controlled 

through voice recognition technology in conjunction with a Bluetooth headset, thus 

extending its usability. This application is useful for episodic data collection deployments 

such as for classifier training and validation, where users need to annotate the activities 

they are performing. For instance, users who are running can annotate the data through 

voice, and many physically impaired patients can also annotate their activities in a similar 

way. The technologies were integrated in a way that enables real time phrase recognition 

with the capability for personalized activity keywords using custom dictionaries. Fig 7.3 

depicts the system and shows an application screen capture. 



143 
 

The system was developed against Android SDK version 2.2 and the voice recognition 

library used was a custom version of CMU Sphinx-4 [96] compiled for Android through 

the Java Native Interface (JNI). This library provides real time phrase recognition. 

Custom phrase libraries can be built using the lmtool [97]. No user specific training of 

the recognizer is required and users interact with the voice recognition system through a 

set of customized system-wide keywords (“Start Activity”, “Correct”, “Incorrect”, “Stop 

Activity”) and one phrase for each activity to be annotated (“Running”, “Walking” etc.). 

 

 

Fig 7.3 Annotation system flowchart, Android user interface and recording state machine 

If a Bluetooth headset is not detected, a 3 button interface is displayed to the user. To start 

an activity, the user holds down the “Hold to Speak” button and speaks a recognized 
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activity label. Once a valid label is recognized, the "Start" button is enabled for starting 

the activity. Alternatively, if a Bluetooth headset is detected, then starting an activity is 

done by the user through uttering “Start Activity” into the headset, where the system 

would respond with a voice message “Ready”. Then, the user can speak a recognized 

activity label, and the system will repeat this label through voice for confirmation. A user 

can say “Correct” to start the logging process, or say “Incorrect” to restart the current 

recognition process. If several attempts to recognize speech fail (unrecognized phrase is 

spoken), the system retains an audio recording (with associated timestamp) and allows 

the user to start/end the activity. A "Status" label displays the current activity, and a 

cumulative timer ("Total Elapsed Time") displays the amount of time for which a specific 

activity has been performed in total. The latter is useful in tracking activities that take 

short amounts of time to complete, but must be repeated multiple times in order to gather 

enough data. For example, stairs are usually short, so to record walking up stairs for 5 

minutes would require multiple attempts, and the total elapsed time can be used to see 

when 5 minutes of total recording is done. To end an activity, the user can press (button) 

or say “Stop Activity”. The state machine that governs the recording behavior is shown 

in Fig 7.3. 

The annotation system has been validated by its application to a series of trials over 12 

months. The CMU Sphinx-4 speech recognition library has a reported user independent 

word accuracy of 98.8% on a vocabulary of 79 words [96]. We observed similar 

accuracies during trials where 18 activity keywords were used in a single dictionary for 

13 data recordings each over 3 hours. An average of 45 phrases was spoken per recording 
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and no recognition or labeling errors were found through manual inspection. Users were 

accompanied on a test trial first where they were taught how to use the system, all users 

were able to correctly annotate after the test trial. 

7.1.3 Android Application for Prolonged Monitoring without User 

Input: One Click Start 

Chapter 3, 4 and 5 described systems that would continuously monitor a user and perform 

activity monitoring once the initial training is complete. For these use cases, annotation 

is not required and the burden of operating a data collection application can be reduced 

by having an application that requires a single button to operate. The requirements for 

this application is simply that it must be able to record the data locally and upload to a 

server periodically, where signal processing could take place. To ensure data integrity, a 

local copy of the data would be stored in flat files and can be downloaded offline. The 

design is presented in Fig 7.4. It is an event driven design. Table 7.2 lists the events each 

component is able to produce and receive and their functions. 

The graphical user interface (GUI) provides visual indication to the user that the 

application is running normally and that the data are being uploaded. It also has interfaces 

for users to login and start the data collection. A settings menu is also present for pairing 

wearable sensors to the phone before the kit is given to a subject. Fig 7.5 demonstrates 

some of the GUIs, note that special design consideration was given to the GUIs to make 

them display identically across a large set of different screen resolutions found on 
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Android devices. Each user interact-able component also has a comprehensive list of error 

conditions with useful help messages that enables troubleshooting by the end-users. 

Table 7.2 Software components and messages 

Component Messages Accepted Messages Generated Function 

Sensor Service CONNECT_EVENT SENSOR_EVENT 

DATA_EVENT 

Controlling the sensors, 

reporting sensor status 

and returning data 

Offline Storage 

Service 

DATA_EVENT NONE Stores all sensor data in 

local flat files 

Database Service DATA_EVENT 

RUN_EVENT 

STORAGE_EVENT Temporarily stores 

sensor data in a database 

for transmission. 

Generates storage event 

to notify others that 

there is data available 

Sync Service SYNC_REQ SYNC_EVENT A timer service that 

generates periodic sync 

event to notify other 

components that it is 

time to upload data (or 

perform other actions).  

Service can be requested 

by a sync request event 

UI Service SENSOR_EVENT 

DATA_EVENT 

STORAGE_EVENT 

SYNC_EVENT 

CONNECT_EVENT 

SYNC_REQ 

Displays the current 

status of the sensors and 

other components. Also 

have buttons that start 

the sensors (connect) 

and manually request 

data upload 
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Fig 7.4 Message based application design 
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Fig 7.5 User interface for the Android application 

7.1.4 Production Deployment: PC Based Data Collector for the 

PHASER Program 

Physiological Health Assessment Sensor for Emergency Responders (PHASER) is a 

program for monitoring the vital measurements of emergency responders in real time 

through the use of intelligent algorithms, in order to provide an alarm to both responder 

and commander if a responder is going to experience any health threatening events. The 

program deployed the Zephyr Bioharness [98] and Netbook computers to various fire 

stations across the country. We designed production grade software running on the 
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Netbooks that uses AirInterface to instrument the Bioharness sensors and upload data 

back to UCLA’s WHI servers. Fig 7.6 depicts the end-user system. 

 

 

Fig 7.6 PHASER Access point application 
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7.1.5 Data Collection for Internal and Educational Use 

Apart from applications deployed to end-users, we developed a common data collector 

for both laboratory and educational use (undergraduate and graduate student classes). 

Here the platform of choice is a laptop due to its portability, Bluetooth connectivity and 

capability to run software such as MATLAB for analysis. Because of the various 

operating systems students can use, the tool was designed to support all popular OSes 

with a common UI. 

Developed using Java, the popular UI library QT and the AirInterface core libraries, the 

software works on all versions of Windows, Mac OS X and Linux. The tool is a 

minimalistic wrapper around the AirInterface architecture with GUIs for scanning and 

connecting to the sensors. Fig 7.7 demonstrates a typical use case of scanning and 

connecting to sensors.  

   

Fig 7.7 Data collector user interfaces showing the UI for sensor scanning (left) and data collection (right) 

7.1.6 WHISFT Integration 

The Android application in Section 7.1.2 and the data collector in 7.1.5 were integrated 

with WHISFT. The first provides automatic data labeling that associates the user’s 
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annotations with collected sensor data. The second provides socket based data stream to 

the WHISFT toolkit (or MATLAB in general) to allow real time data processing. 

Automatic Annotation 

Manually annotating collected sensor data with corresponding ground-truth labels is a 

slow and error prone process. As an example, consider Fig 7.8 showing accelerations 

measured on ankles. There are 2.2 hours of data where 14 activities were performed. 

Traditional annotation process requires a human to annotate and another to check. The 

annotation process involves using the timestamps recorded by the user to first roughly 

zoom into the region on the plot, and then look for transitions in the waveform that could 

indicate the start and end of an activity.  

 

Fig 7.8 Collected activity data using accelerometers 

However, if the ground-truth is collected by a smartphone with timestamps added, 

automatically annotating the collected data becomes trivial. Most interestingly, given an 

already annotated dataset, the process of human verification is extremely fast as we can 

zoom into marked boundaries and visually inspect whether the annotation boundary 

points match that of the data waveform. An automatic MATLAB annotator was 

implemented, where recorded data is annotated with ground-truth from the phone (Fig 
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7.3). Annotation is near instant, and human verification takes only minutes (Fig 7.9). 

Using this system, we have a robust means for supporting large campaigns, where users 

can be given a kit containing a smartphone application and sensors.  

 

Fig 7.9 Automatic labeling (black/red lines are start/end of activities) 

Data Streaming to WHISFT (and MATLAB) 

The data collector for laboratory and instructional use has the ability to stream data to 

WHISFT and to MATLAB in general in real-time through a socket. This allows 

colleagues and students to design processing algorithms and immediately verify their 

effects. It significantly simplified the design and verification of motion reconstruction 

techniques during the developments described in Chapter 5. 

7.2 Motion Database, Search and Dataset 

Customization 

While developing the components for activity classification, we required a method to 

compare the performance and robustness of systems using activity datasets across 

multiple sensor modalities, activities, and subject groups. For example, some gait 
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characterization methods may work on normal subjects but fail in unpredictable ways 

when being used on stroke patients exhibiting hemiparetic walk [14]. Our literature 

review showed that many activity monitoring studies were performed with limited 

number of subjects (1 to 20) and a limited number of sensors (1 to 12) [14,77,99-101]. 

Having a large database has been the corner stone towards maturity and rapid progress in 

fields such as computer vision (CV) [102]. Similar to CV, the acquisition of large datasets 

in wireless health is a prohibitively expensive process, so a system is needed to make the 

most use of data collected from various campaigns. This section describes the design and 

implementation of a large, searchable database that allows customized datasets to be 

spliced from different data collection campaigns. 

7.2.1 System Design 

Fig 7.10 describes the database system. New datasets follow a standard comma separated 

format (csv). The first n lines contain the present sensor’s name, type, placement, serial 

number, and sampling rate. The rest are data lines, where the number of columns per line 

equals the number of sensors in the dataset (n). These data are inputted into the data 

insertion chain. Meta-data is first extracted, and an archiver both indexes the meta-data 

into a database, and stores the raw data. The separate storage of meta-data in a fast 

database is necessary as raw datasets can be large and slow to search through. 

End-users can query the database using a web frontend for activities and/or sensors they 

are interested in. The queries are handled by an indexer that searches through the meta-

data in the database, and a web server backend serves as the gateway between the indexer 
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and the end-user. Once desired data segments are found, a data retrieval system extracts 

them from raw data following the standard format again. 

 

Fig 7.10 Activity database system design 

7.2.2 Database Implementation 

Apache, PHP and MySQL form the web backend, indexer, and meta-data database 

respectively. These three technologies are often used together due to their close 

integration, stability and the ability for fast web data search and retrieval. The web 

frontend was developed in JavaScript and HTML. HTML is the standard for developing 

web pages and JavaScript brings highly interactive applications capable of running inside 

a user’s web browser. Together, this combination of web centric technologies means that 

it is both directly compatible with current web scalability techniques such as cloud 

computing and can be secured using industrial standard Secure Socket Layer (SSL) on 

the web server. The core systems responsible for parsing and splicing raw data were 

developed in Java, as this allows us to take advantage of the matrix manipulation power 

of MATLAB through MATLAB Builder JA components. Fig 7.11 is a series of screen 

captures depicting the search and display of datasets (Fig 7.11a) and the customization of 

datasets by selecting activities and sensors (Fig 7.11b). The customized dataset in csv 
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format containing only sensors and activities of interest is returned via email to the user 

as zip attachments. 

 

a. Searching for activities in the database, searches can be filtered by sensor locations etc. 

 

b. Generating new datasets by selecting different activities and sensor data streams 

Fig 7.11 Web user interface for the motion database 
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To contribute to the database, a separate web interface is available where users can upload 

files using valid data format. 

Table 7.3 summarizes the datasets currently in the database based on a number of 

acquisition campaigns deployed over the past few years. In the table, Accels stands for 

accelerometers and ADL for activities of daily living. The database currently contains 

331 datasets totaling over 700 hours. 

Table 7.3 Summary of datasets in database 

Name Subj. Data Sensors Activities Hrs. 

Students [77] 13 13 14 accels 14 ADL 3 

SIRRACT [18] 80 282 2 accels Hemiparetic walk 1-8 

Context [99] 4 6 6 accels, wifi microphone 8 ADL 8 

Full inertial sensing 6 30 4x 9dof sensors Walking, arm flexes 0.17 

Total 103 331   700+ 

7.3 SIRRACT Support System: Optical System for 

Ensuring SIRRACT Training Data Accuracy 

Stroke Inpatient Rehabilitation Reinforcement of Activity (SIRRACT) is an international 

study involving 15 hospital sites across 12 countries with over 140 patients. The study 

enrolled patients with recent stroke and hemiplegia and aimed to compare the effect of 

two forms of feedback on the increase in the amount of daily exercise during inpatient 

and outpatient rehabilitation. The trial used tri-axial accelerometers worn around the body 

(Fig 7.12) and machine learning (WHISFT, Chapter 3.5) to continuously monitor the 
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range and average walking speeds, distances walked, number of steps, time spent 

exercising and number of repetitions of leg movements.  

 

Fig 7.12 Sensor placement for SIRRACT trials 

As SIRRACT is a classification system, the user is required to provide personalized 

training data: accelerometer data collected during a 15m straight line walk and the time 

taken to complete the walk (this is a standard clinical test for patients suffering from 

hemiplegia). The templates are taken in the clinic before the patient is discharged and 

again during follow up visits.  

After running the SIRRACT trials for over 12 months, it was noted that the number of 

improperly collected templates was high due to a number of factors: 

• User registration information missing or incomplete. This led to unusable 

templates. 

• Distance not measured accurately. This can be due to errors in measuring 15 

meters or patients not walking in a straight line. 

• Timing is not accurate. This can be due to errors in starting and stopping the stop 

watch by the test giver or simply due to human reaction time. 
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Additionally, it was noted that the stop watch method of timing the 15m walk does not 

give any insight into the various speeds the patient may walk at during the trial which can 

be used to better train the classifiers. 

The SIRRACT support system aimed to address these issues by providing an automated 

training data collection system that guarantees data integrity, provides additional 

capabilities compared to the standard approach, is easy to use and requires minimum user 

interaction. 

7.3.1 Hardware Architecture 

Fig 7.13 illustrates the system setup. The system uses a laser rangefinder (Opti-logic 

RS100, Class 1 Eye Safe) to provide range information via RS232 serial connection to 

the PC. A patient walks from the laser towards an optical target during a test trial and the 

walking assessment system will process acquired data to determine walking speed, 

distance and time.  

The optical target consists of a flat white surface down range from the laser and serves 

three purposes. First, it was used to calibrate the system during setup by providing a target 

for the laser rangefinder to aim at and calibrate the total trial distance. Second, it was used 

as a guidance object for the patient to walk towards during the trial. Third, the target was 

used as the end of trial marker where the system ends the test once the patient has walked 

close enough to the target. 
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Fig 7.13 Hardware setup and package for SIRRACT support system 

7.3.2 Software Architecture 

The software architecture is shown in Fig 7.14.  

Each process is represented by a corresponding GUI (Fig 7.15) and together they provide:  

1. Instructions for system setup and user information entry 

2. Algorithm to process the distance and image data in real-time 

3. Operational feedback to let the operator know the status of the trial 

The system also detects a number of conditions and can provide feedback (Fig 7.15): 

1. Patient has stopped walking 

2. Patient is not walking in a straight line 

3. Laser has been blocked by an unknown object 

4. Trial is complete 



160 
 

 

Fig 7.14 Software process flow for SIRRACT support system 

 

   

 

Fig 7.15 UIs for the various screens: start and instructional videos (top), patient information entry (mid 
left), data collection (mid right) and error detection and reporting (bottom) 
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First, the computation algorithm breaks the test data (distance reading from the laser 

rangefinder vs elapsed time) into windows of an arbitrary size (i), with the default i 

being 25 data points. The next step applies linear regression of distance over time and 

uses this to analyze the slope which determines the walking speed in meters per second 

(m/s) for each window. Fig 7.16 illustrates an example set of data with the piecewise 

linear regression on each window. 

 

Fig 7.16 Piecewise linear regression, the pieces are indicated in red 

Using this data, let h²«���,�  indicate the slope of the linear regression of pieces " to $. If 
" = $, then it is just the slope of piece ". Let ε be an arbitrary threshold value. In our system, 

it is set at 0.3. The first step is to compare the slopes of two adjacent segments to see if 

they are within ¿ of each other. For example, starting from the beginning, the algorithm 

will evaluate 

 �h²«���,� − h²«���,�� < ¿ 
Eq (7.1) 
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If the evaluation is true, then the two windows are merged and linear regression is applied 

again which yields h²«���,� and it is compared against the next window and the process 

iterates until the condition is false or until all windows are merged. If the evaluation is 

false, then the algorithm moves on to the next two adjacent slopes. Fig 7.17 illustrates 

this algorithm and Fig 7.18 demonstrates the effect of the algorithm on a dataset that 

contains a period of stop separating two bouts of walking with different speeds. 

 

Fig 7.17 Piecewise linear regression (red lines) and the result after combining similar pieces (green line) 

The system is also able to identify a number of error conditions: 1) Patient not walking 

straight can be detected when the patient moves in and out of the laser’s line of sight 

(LoS), detected by the sudden increase and decrease of the measured distance; 2) Patient 

stopped event can be detected if the distance is no longer increasing and is not close to 

the end of the trial; 3) Laser blocked event can be detected by detecting sudden decrease 

in measured distance.  

Merge pieces 
of slopes 
within “ε” 
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Once a trial successfully completes, the speed and distance of each detected bout of 

walking (walking period > 5 seconds) is reported along with the subject’s information. 

Table 7.4 shows the speed results for Fig 7.18. Detected bouts of walking are highlighted 

in red in the table. 

 

Fig 7.18 Window merging of piecewise linear regression pieces (merged bouts are indicated by the green 
line) 

 

Table 7.4 Speed results for data shown in Fig 7.18 

Speed (m/s) Duration (seconds) Comments 

0.1736 1.2000 Initial ramp up to normal walking speed 

0.8873 7.5000 First bout of walking 

0.0000 5.0000 Period where the patient stopped 

0.5552 1.2500 Ramping up to normal walking speed 

1.0286 6.2500 Second bout of walking 

 

stop 

speeding up 
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7.4 Conclusions 

Throughout our research, many practical tools and innovations were developed to support 

data collection campaigns and system trial deployments, in particular in the areas of 

sensor firmware, accurate data collection, curation and search. This chapter presented a 

number of these. First, the AirInterface architecture was described that included co-

designed firmware and software to allow cross-platform data collection from multiple 

generations of sensors simultaneously. Second, a number of Android data collection 

applications were shown that included features such as voice controlled annotation to 

improve usability and single button press application to reduce user training. Third, we 

developed data collection software that are used in both production and research settings. 

The applications are visually and functionally identical across all modern operating 

systems with high code re-use and integrated with external tools such as MATLAB. Then, 

a database for curation, search and re-use of data from various campaigns was designed 

and implemented, which allows rapid evaluation of new classifier designs using data from 

different sensing modalities, placements and subjects. Finally, the design and 

implementation of a data collection assurance system using laser rangefinder and signal 

processing algorithms was discussed. The system was designed for an international stroke 

trial that utilized the WHISFT classifier to ensure accurate and complete template data 

collection in-field. 
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Chapter 8 

Conclusions and Future Work 

8.1 Background, Aim and Objectives: Revisited 

Profiling the daily activity of a patient in-community is becoming essential to assess and 

enhance aspects of healthcare for persons with chronic diseases and physical disabilities. 

It is seen as one of the best solutions to the world’s ballooning healthcare costs and an 

aging treatment system that is limited by access to care, the inability to monitor home-

based practice to provide feedback and safe progression of skills training and the lack of 

measurement tools that can reveal progress and additional needs for care. 

While much of the research community focused on the detection of a small number of 

physical activities performed using classification techniques, the real challenge lies in 

enabling monitoring in large, diverse user communities, where unique challenges surface 

such as the degraded performance of traditional classifiers on large activity models, the 

lack of personalization and the inability to train caregivers or patients to use complex 

systems. 

Caregivers also require information that activity classification alone is not able to provide. 

Functional details and metrics of activities are required by physicians to scrutinize the 
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skillfulness of movements and the progression of recovery. High level context 

information on where an activity took place and a patient’s ability to socialize in-

community give the caregivers information on the patient’s overall quality of life that is 

affected by drug type, dosage and rehabilitation regime. 

Recognizing the weakness in the current state of the art for providing accurate and 

clinically relevant information to caregivers, the research in this dissertation aimed to 

provide methods and architectures required for an easy to deploy, low cost end-to-end 

system capable of providing multi-layered, clinically relevant personalized profile of a 

person. This meant that for the first time, caregivers would have the capability to evaluate 

the person’s wellbeing and safety in community using a range of information from 

general monitoring of compliance of treatment and participation in the community, to 

detailed information on the person’s skillfulness in performing exercises and movements.  

8.2 Conclusions 

The first phase of our research focused on improving the current state of the art in activity 

classification. Traditional activity classifiers were borrowed from other fields such as 

computer vision and text recognition. The models were monolithic, difficult to build and 

became large and complex once the number of activities to monitor increased. These 

factors led to classifiers that were difficult to design and train, that also suffered decreased 

accuracy and throughput with increased model size.  
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Chapter 3 provided an overview of classifiers and supervised learning and then presented 

the WHISFT classification toolkit designed and developed specifically for activity 

classification. The toolkit provides a multimodal, hierarchical classification system based 

on the Naive Bayes classifier and is less susceptible to performance degradation with 

large models. The hierarchical activity classifier approach allows physical activities to be 

categorized based on its natural hierarchy (e.g. high, low energy activities, upper, lower 

body activities). Improving on past methods [41], our hierarchical structure can grow 

infinitely in depth, enabling activities to be separated at each branch using only a couple 

features and even using different classifiers. This also results in new activities being 

added to the model logically and without adding a large number of features or retraining 

the entire classifier. 

The second phase tackled the issue of large scale deployment of sensors and classifiers, 

personalization, providing context to the activities detected and further enhancing the 

performance of an activity classifier in terms of speed, accuracy and sensor energy usage. 

We determined that these issues are interconnected and proposed a radically different 

way of performing activity classification: context-driven, targeted activity monitoring 

and personalization. A focused definition of context was given to separate physical 

activities from environmental context. From this the definition of scenario followed, 

which allows personalization of activity monitoring on two levels: 1) individuals may 

have different sets of contexts under which motion classification is required; 2) within 

each context there can be a set of individualized activities of interest per person.  
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The scenario design allowed context to augment activity classification by first 

determining the user’s context and then selecting the appropriate activity classifier model 

that is much smaller in size and with specific features. This methodology was shown to 

be much faster and more accurate and energy efficient than traditional approaches, while 

providing additional context information about the activities.  

To allow for the deployment of a system that includes sensors, a smartphone and 

classifiers, a prescription model was presented that allows caregivers to prescribe to an 

out-patient a kit containing the sensors and smartphone, along with the rehabilitation 

treatment. At the same time the caregiver can submit a set of scenarios to a service 

provider to perform the monitoring.  

Chapter 4 showed two successive implementations of the methodology. The second (and 

final) implementation provides valuable high level location context information and 

requires no additional training from either the end-user nor the caregivers compared to 

activity classification alone. The system implementation features novel automatic 

identification of context through energy efficient, WIFI augmented GPS. 

The introduction of the context-driven activity classifier demonstrated a way to leverage 

accurately detectable context information to divide the large set of activities into smaller, 

manageable sets. The more contexts are detected from the user, the fewer activities need 

to be associated with each and the growth rate within each context is significantly lower 

than the growth rate of the entire set of activities of interest. This fundamentally reduces 

the dimensionality of the search space for the subsequent activity classification stage by 
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simply reducing the number of classes available at any given time, while also providing 

useful, augmenting context information. 

The automated context discovery and scenario creation means that the end-user does not 

have extra burden for training the context detector or learning to use the associated 

software. The value of this cannot be overstated. During our large international trials [18], 

it was found that the collection of training data was the most challenging when dealing 

with patients with different disabilities from different cultural, language, education and 

economic backgrounds. In some extreme cases clinics were operating under war-like 

conditions with little to no patient support. 

The third phase of our research provided episodic motion reconstruction and metrics 

computation of individual activities. This is the final tier of details in the multi-tiered 

daily profile that would allow caregivers to scrutinize the skillfulness of an activity. Using 

the same set of wearable inertial sensors, Chapter 5 focused on the methodologies and 

implementations required to perform motion tracking on: 1) lower body activities such as 

gait, running and stair climbing; 2) exercise specific motions; and 3) upper body arm 

motions.  

In the general case of lower body motion tracking, a novel gait trajectory reconstruction 

and visualization method was developed with a ZUPT algorithm targeting hemiparetic 

gait patterns. The method was able to reconstruct and visualize gait in a true 3D space 

and a set of clinically relevant gait quality metrics. For more complex motions where in-

depth knowledge of the motion and the underlying biomechanics is needed, we saw the 
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advantages of our design where activities can be independently identified and then 

reconstructed with the appropriate models and reconstruction techniques. An example for 

reconstructing the foot motion during cycling as well as the pedal and crank 

position/orientation was presented, along with a novel way of verifying such motions 

using a camera and computer vision based system.  

Utilizing all of the components developed, Chapter 6 presented the final phase of our 

research: an end-to-end system architecture that served as an umbrella and synergizes the 

various components to provide a multi-tiered daily report for caregivers to monitor and 

evaluate a patient’s daily behavior. By studying the highest level information such as the 

location a person was able to visit, physicians can provide assessment on the subject’s 

ability to shop and socialize, thus allowing for treatment prescriptions that maximize daily 

participation in home and community activities. By observing the activities and their 

amount each day from activity monitoring results, a physician can ascertain the subject’s 

compliance with the exercise prescription that is designed to reduce risk of hospitalization 

and disability. Finally, by scrutinizing the movement of individual limbs during certain 

episode of activities such as walking, the physician is able to fully visualize the effects of 

prescribed treatment on the subject, assess the quality and safety of the movement pattern 

and the subject’s progressive improvement. 

During each phase, the methods and systems developed were validated and evaluated 

through data collection trials. Many practical tools and innovations were developed to 

support these deployments, in particular in the areas of sensor firmware, accurate data 

collection, curation and search. Chapter 7 presented some of these: 1) The AirInterface 
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architecture that included co-designed firmware and software to allow cross-platform 

data collection from multiple generations of sensors simultaneously; 2) Android data 

collection applications that allow voice controlled annotation to improve usability or 

require a single button press to function to reduce user training; 3) Data collection 

software used in both production and research settings that are visually and functionally 

identical across all modern operating systems with high code re-sue and integrated with 

external tools such as MATLAB; 4) A database for curation, search and re-use of data 

from various campaigns, which allows rapid evaluation of new classifier designs using 

data from different sensing modalities, placements and subjects; 5) The design and 

implementation of a data collection assurance system for an international stroke trial that 

utilized the WHISFT classifier. 

8.3 Future Work 

Many additional theoretical and practical challenges remain to be solved. In activity 

monitoring, most current research take activities of interest from the list of activities of 

daily living (ADL). The definition of many activities such as walking, running, grasping 

are arbitrary and different groups have different definitions. We believe that by finding a 

formal framework that could model motions, we can provide a unified way to define 

activities. This could also be the basis of a different type of classification method.  

The hierarchical approach works well in reducing the dimensionality issue, however, not 

all classifiers are susceptible to high dimensional feature space. Some classifiers such as 

SVM have strong theoretical guarantees on its performance in high dimensional space 
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[65] while others such as HMM may be able to work on the time series directly [103]. It 

would be worthwhile to investigate the use of these classifiers in the future. 

Work can also be done on reducing the amount of user annotation by making the system 

opportunistically query the user for ground truth. Using unsupervised learning methods 

such as clustering, we may be able to identify different activities being performed and 

then ask the user to provide the ground truth when convenient. This can not only make 

the classifier smarter but also allow training to be broken into multiple sessions in the 

period of days and allow the system to be updated with new training data. The former is 

important for patients who are extremely weak and cannot perform all training in one 

setting, while the latter is important for improving classifier usability in the field, where 

the patient may be improving over time and require classifier retraining. 

In context detection, a blend of a fully automated high level location solver and some 

opportunistic user training may be useful in improving the accuracy of the system. For 

example, in cases such as a residence, the existing point of interest databases are not 

useful despite being comprehensive with business locations. However, simple 

observations such as learning the location of where users spend the night and then 

confirming with the user could easily fill this gap. Another issue is the privacy of the data 

collected. The system demonstrated in this dissertation is able to fully reconstruct the 

movement patterns of a user to a very high accuracy. Research into how to provide 

privacy preserving location information can alleviate concerns with user privacy and 

security. 
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While the context-driven activity classifier developed in this dissertation is 

comprehensive in the system development and its validation, more rigorous theoretical 

treatment is needed to model the effects of sub-dividing activities among contexts and the 

effects of hierarchical activity classification. In its current state, the hierarchical structure 

is constructed using simple brute force methods. There are more advanced techniques 

such as an incremental algorithm that optimizes a hierarchical loss function (cost of an 

incorrect decision on the sub tree) [104], or an algorithm that maximizes the amount of 

mutual information gain at each branch of the tree [105]. These methods come with 

theoretical analysis that would enable us to obtain bounds on classifier performance and 

to more objectively compare it to other classifiers. It is also of interest to study how the 

layers of the classifiers should most effectively interact, through exchange of data and 

inferences. Furthermore, it would also be interesting also to model the cost of detecting, 

learning additional contexts and scenarios and to optimize against the potential increase 

in activity classification accuracy and decrease in energy usage. Similar work was done 

in [106], where the system energy usage is optimized through optimizing classifier 

structure to capture most likely events and by opportunistically disabling the 

classification system when activities are changing at low rates. 

In motion reconstruction and metrics extraction, more motion reconstruction models need 

to be developed for other activities such as high speed running and weight lifting. More 

collaboration with clinical partners is also needed to develop meaningful upper body 

metrics. Clinical trials will be needed to assess the efficacy of providing the report data 

to patients and clinicians. 
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Finally, by proving the feasibility of large scale collection, classification and analysis of 

context and motion data through the simplicity of interfaces, automated algorithms, 

improved hierarchical classification techniques and effective in-field motion 

reconstruction, the work in this dissertation sets the stage for future research to collect 

large standard datasets and develop large models and simulation software, all of which 

are the cornerstones for enabling cross domain collaboration and rapid advancements, as 

seen in fields such as computer vision and speech processing. 
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