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Abstract

We consider the problem of triangulating a given point set, using straight-line edges, so that
the resulting graph is “highly connected.” Since the resulting graph is planar, it can be at most
5-connected. Under the nondegeneracy assumption that no three points are collinear, we charac-
terize the point sets with three vertices on the convex hull that admit 4-connected triangulations.
More generally, we characterize the planar point sets that admit triangulations having neither
chords nor noncomplex (i.e., nonfacial) triangles. We also show that any planar point set can be
augmented with at most 2 extra points to admit a 4-connected triangulation. All our proofs are

constructive, and the resulting triangulations can be constructed in O(n logn) time. We conclude
by stating several open problems.
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1 Introduction

We consider the problem of obtaining a planar network of maximum connectivity when the vertex
locations are specified and only straight-line edges are allowed. Given a finite planar point set §
and an integer k, we say that § is k-connectible if there exists a k-connected planar graph with
straight-line edges having vertex-set 5.

Planar point sets that are 1-, 2-, and 3- connectible are easily characterized, and no planar
point set is k-connectible for £ > 5. Our main result is a characterization of the conditions under
which a planar point set in general position! and having exactly 3 extreme vertices is 4-connectible
(Theorem 3.2). So, in particular, this theorem characterizes those point sets with three extreme
vertices that admit Schegel diagrams [5] of 4-connected 3-polyhedra.

Theorem 3.2 is actually a consequence of a more general theorem, Theorem 3.1, which charac-
terizes the conditions under which a planar point set in general position can form the vertices of a
triangulation having neither chords nor complex (i.e., nonfacial) triangles. One consequence of these
results is that any planar point set in general position becomes 4-connectible if we are allowed to
add 2 additional (Steiner) points (Theorem 3.7). All our proofs are constructive, and the graphs can
be constructed in O(nlogn) time. In Section 5, we present examples showing why the restrictions
in our Theorems are necessary, and we state several open problems.

We know of no previous work on the problem of determining whether a given set is k-connectible.
There have been many other examples of problems where the input is a set of geometrical data
and the desired output is an object that can be described in combinatorial or graph-theoretical
(non-metric) terms. Specific examples of such problems include the joint triangulation problem
(determining whether two labeled point sets admit triangulations such that a labeled edge in one is
a labeled edge in the other) [8], finding a minimum set of lines that cover a given finite planar point
set [7], and finding a tree with low stabbing number that spans a given planar point set [1].

In a sense, the problem addressed in this paper can be viewed as the inverse of the problem
of drawing a planar graph, which has been the subject of considerable attention [3]. In particular,
our results complement recent work, motivated by floorplanning problems in VLSI circuit design,
concerning layout of triangulations having no complex triangles. A floorplan in VLSI circuit design
is essentially a dissection of a rectangle into a finite number of non-overlapping sub-rectangles. It is
known that a triangulated planar graph has a rectangular dual which is a floorplan only if it does
not have a complex triangle [10].

Triangulations without complex triangles have been previously studied from a purely graph-
theoretical perspective by one of the authors [4]. A classical theorem of graph theory asserts any
triangulation having neither complex triangles nor chords is Hamiltonian [9].

2 Preliminaries

A polygon is a closed, bounded subset of the plane whose boundary is a simple cycle consisting of
the union of a finite collection of line segments. The endpoints of the line segments are the vertices
of the polygon; | P| denotes the number of vertices of polygon P. We say that a point z is inside, on,

!By general position, we mean that no three points are collinear. Most of the terms used in this section are defined
in Section 2.
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or outside polygon P according to whether z is (respectively) in the interior of, on the boundary of,
or in the complement of P.

Let S be a finite set of planar points. A triangulation of S is a planar graph T with vertex-set §
such that all edges are line segments, the boundary of the outer face is the boundary of the convex
hull, and all faces of 7' with the possible exception of the exterior face are bounded by triangles.
A chord of a triangulation T is an edge connecting two nonconsecutive vertices on the boundary,
and a complez triangle is a triangle that does not form the boundary of a face; see Figure 2.1. A
triangulation is said to be noncomplez if it has neither chords nor complex triangles.

A graph is k-connected if it remains connected whenever k — 1 vertices and their attached edges
are removed. A planar point set § is k-connectible if there exists a k-connected planar graph with
vertex set S such that all edges are line segments. Since adding edges to a graph cannot decrease the
connectivity, S is k-connectible if and only if there is a k-connected triangulation with vertex set 5.

The following characterizations of k-connected triangulations are immediate consequences of re-
sults established in [6].

Lemma 2.1 A triangulation is 3-connected if and only if it does not have a chord.

Lemma 2.2 A triangulation 7T is 4-connected if and only if

(A1) T does not have a chord.
(A2) T does not have a complex triangle.

(A3) No interior vertex is connected to two or more non-consecutive vertices on the boundary of T'.

Lemma 2.3 If the boundary of the outer face of a triangulation T is a triangle, then T is 4-connected
if and only if it has no complex triangle.

The following lemma contains the elementary facts about connectibility mentioned in the intro-
duction.

Lemma 2.4 Let S be a planar point set.

(E1) S is always 1-connectible.

Figure 2.1: Chords and complex triangles: ab is a chord, and the three dark vertices form the
boundary of a complex triangle.
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Figure 3.1: A planar point set that does not admit a noncomplex triangulation.

(E2) S is 2-connectible if and only if the points of 5 do not all lie on a single line.

(E3) S is 3-connectible provided S is 2-connectible and S does not consist of the vertices of a convex
polygon.

(E4) S cannot be k-connectible for £ > 5.

Proor. Statements (E1) and (E2) are obvious; note that our general-position assumption implies
that S is always 2-connectible. (E3) follows from Lemma 2.1, since we can choose an interior point
v € S (i.e., a point not on the boundary of the convex hull of §), connect all points on the convex
hull boundary to v, and then add each remaining interior point of S to the triangulation in such a
way that no chords are introduced. (E4) follows from Euler’s formula.

3 Characterizing point sets admitting noncomplex triangulations

We assume throughout this section that our point sets satisfy the general-position assumption intro-
duced in Section 1: no three points are collinear. In Section 5, we give an example showing why this
assumption is important. We also assume that all point sets have at least four points.

The planar point set S shown in Figure 3.1 does not admit a noncomplex triangulation. Indeed,
in any triangulation of S, vertex ¢ must be connected to every other vertex, as are consecutive
vertices around the convex set S — {z}. Any triangulation of S must also contain a chord of the
convex hull of S — {z}. This chord and the two edges joining its endpoints to z form a complex
triangle.

Theorem 3.1, which we establish below, states that the example of Figure 3.1 is essentially the only
3-connectible planar point set that does not admit a noncomplex triangulation. One consequence of
this theorem is Theorem 3.2, which characterizes those planar point sets with triangular convex hull
boundaries that are 4-connectible. This result, in turn, allows us to conclude that any planar point
set becomes 4-connectible with the addition of at most two Steiner points. The proof of Theorem 3.1
is constructive, and leads to an O(nlogn) algorithm for constructing a noncomplex triangulation if
one exists.

The following definition captures the salient properties of the example of Figure 3.1. A planar
point set is anomalous if it contains a point = such that the following properties hold:

(B1) S has exactly three extreme vertices, one of which is z.

(B2) The set S — {z} consists of the vertices of a convex polygon, P.
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Theorem 3.1 If S is a planar point set in general position, then S admits a noncomplex trian-
gulation if and only if (1) it is not anomalous, and (2) it is not the set of vertices of a convex
polygon.

Theorem 3.2 If S is a planar point set in general position, with exactly three points on the convex
hull boundary, then S is 4-connectible if and only if it is not anomalous.

Theorem 3.2 is an immediate consequence of Theorem 3.1 and Lemma 2.3. The necessity of
conditions (1) and (2) in Theorem 3.1 follows from Lemma 2.1 and the preceding discussion of
Figure 3.1. To establish sufficiency of these conditions, we let S be a finite planar point set that
satisfies conditions (1) and (2), and we show how to construct a noncomplex triangulation of 5.
Throughout this section, if A is a polygon whose vertices are a subset of 5, we will use the phrase
“a triangulation of the region bounded by A” to mean a triangulation whose vertices are the points
of § lying on or inside A and having boundary A.

Our construction relies heavily on the convezr layer structure [2]. The outermost convex layer of
S is the boundary of the convex hull, and each subsequent convex layer is defined, recursively, to
be the boundary of the convex hull of the set obtained by removing the vertices of all previously
defined convex layers from S. We let k be the number of convex layers, with layer 1 the outermost
layer and layer k the innermost layer. All layers except the innermost layer consist of boundaries of
convex polygons. The innermost layer may consist of either a single point, a line segment, or the
boundary of a convex polygon. If k = 1, S forms the vertices of a convex polygon, so we may assume
that £ > 2. We refer to the region between two consecutive layers in the convex layer structure
as interlayer regions. If k > 2, we refer to layers other than the innermost or outermost layers as
intermediate layers.

Our construction also requires adding edges between two consecutive layers in the convex layer
structure to create a triangulation of the interlayer region. The edges that have one endpoint on
each of the two layers are called cross edges.

Consider the following strategy: compute the convex layers of S, triangulate the innermost layer
(if it is a convex polygon), and add cross edges to each interlayer region to produce a triangulation
If we attempt to use this strategy to produce a noncomplex triangulation, it can fail in one of three
ways. First, if the innermost layer is a convex polygon with four or more vertices, then chords are
introduced when it is triangulated. If the two endpoints of the chord are connected to a common
vertex at layer k — 1 during the triangulation of the region between layer k and k — 1, a complex
triangle results. Second, a triangulation of an interlayer region may produce a complex triangle
consisting of two cross edges and one edge from the inner or outer layer. (Both of the preceding
conditions arise if we attempt to apply this strategy to Figure 3.1.) Third, if any intermediate convex
layer is a triangle, the strategy clearly fails to produce a noncomplex triangulation. With appropriate
modification, however, these difficulties can be overcome for non-anomalous point sets. In essence,
the first two difficulties are addressed by carefully choosing the cross edges, and the third difficulty
is addressed by “borrowing” a point from the next outer layer.

The following two lemmas are used to extend noncomplex triangulations from one layer to the
next layer. Given a triangulation let pgr and pgs be two interior triangular faces incident on edge
pg. The edge pq is called flippable if the quadrilateral prgs can be triangulated with the triangles
prs and grs (i.e., if we can replace edge pq with rs). Thus an edge is flippable if and only if it is
not a convex hull edge and the union of the two faces incident on it is a convex quadrilateral. If pq
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is flippable, the operation of replacing it with the opposite diagonal in the quadrilateral (i.e., rs) is
referred to as flipping edge pq.

Lemma 3.3 Let pgz be a complex triangle in a triangulation, and suppose that edge pq is flippable.
Then flipping pg cannot introduce any new complex triangle.

PrOOF. Let T be a triangulation containing a complex triangle pgz, and let pgr and pgs be the two
triangular faces of T incident on pq. Let T” be the triangulation obtained from T by flipping edge pq,
and suppose that 7" contains a complex triangle that was not a triangle in T. This complex triangle
must be incident on the new edge rs. Any complex triangle of 7/ incident on rs must have an edge
piercing either segment pz or gz. But this is impossible, since pz and gz are edges of T" (since they
were edges of T and flipping edge pq did not affect them).

Lemma 3.4 Let A and B be two consecutive convex layers, with B lying completely inside A, such
that and |B| > 3. Suppose that the region bounded by A is triangulated so that:

(Z1) The region between A and B is triangulated with cross edges.

(Z2) The region bounded by B is triangulated without any complex triangle, and there is no complex
triangle incident on a chord of B.

Then it is possible to construct a noncomplex triangulation of the region bounded A.

Proor. Let T be a triangulation of the region bounded by A satisfying properties (Z1) and (Z2).
Assume T has a complex triangle pqr; otherwise there is nothing to prove. It follows from (Z1) and
(Z2) that the polygon B must lie entirely on or inside this complex triangle; moreover, after suitable
relabeling, the boundary of the triangle must be defined by either (i) a vertex p of B and an edge ¢r
of A, or (ii) a vertex p of A and an edge gr of B.

In case (i) let = and y be the two vertices adjacent to p on B. The edges pq and pr are incident
on triangles pgz and pry respectively. Let H be the open halfplane supported by pz that contains ¢
and H' be the open halfplane supported by py that contains r. We claim that at least one of pg and
pr is flippable. If this claim were false, then there would be no vertex of A other than ¢,rin HUH 2
Since B is contained entirely inside A, this is impossible, and the claim holds. Hence we can always
flip one of pq and pr to destroy pqr.

In case (ii) let z and y be the two vertices on B adjacent to ¢ and r on B respectively. Note that
z = y when B is a triangle. We claim that some edge of pgr is flippable, which implies that, as in
case (i), we can destroy pqr without introducing any new complex triangle. Let H and H' be the
two open halfplanes supported by gz and ry respectively that contain p. If any vertex of A other
than p lies in H U H', at least one of the edges of pq and pr is flippable. Otherwise, all vertices of A
except p lie in the region H.N H!, where H. and H! are the open halfplanes supported by gz and
ry respectively that do not contain p; this implies that edge gr is flippable.

To complete the proof we observe that by Lemma 3.3, none of the edge flips can produce any
new complex triangles. Moreover, (Z1) implies that the original triangulation had no chords, and

since each case results in a new edge with at least one endpoint on or inside B, no new chords are
introduced.
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Now we proceed to prove the main result (Theorem 3.1). The plan of the proof is as follows. We
first show that any planar point set S in general position with & > 3 has a noncomplex triangulation.
We then show that if a planar point set S in general position with & = 2 fails to have a noncomplex
triangulation, it must be anomalous.

Assume k > 3. For j = 1,...,k — 2, define a good level-j triangulation to be a triangulation for
which the following properties hold:

1. The boundary of the outer face consists of layer j
2. All points of S inside the boundary are vertices of the triangulation

3. The triangulation is noncomplex.

The proof of the theorem for & > 3 follows by induction from the following two lemmas, since a
noncomplex triangulation is simply a good level-1 triangulation:

Lemma 3.5 § has a good level-(k — 2) triangulation.

Lemma 3.8 Given a good level-j triangulation, for 2 < j < k — 2, we can construct a good level-
(7 — 1) triangulation.

Proof of Lemma 3.5: Let A be layer k — 2, B layer k — 1, and C layer k. We distinguish six cases,
which we group as follows. B may be either a polygon having more than three vertices (Part I) or
a triangle (Part IT). Within each part, C' may consist of a single vertex (|C| = 1), a line segment
(|C| = 2), or a convex polygon (|C| > 2).

Part I: B is not a triangle: We first obtain a noncomplex triangulation of the region bounded by
B, using the appropriate case (1, 2, or 3) below. It then follows immediately from Lemma 3.4
that the region bounded by A has a noncomplex triangulation (i.e., that S has a good level-(k — 2)
triangulation).

Case 1: B is not a triangle, |C'| = 1: Stellate B from the single vertex inside it.

Case 2: B is not a triangle, |C| = 2: Let C' = {c;,c2}. Because B is not a triangle, it has two
nonadjacent vertices p and ¢ on opposite sides of the line ¢;¢p. Triangulate the region between B
and the segment ¢ye; by first adding the four edges connecting each of ¢; and ¢; with each of p and
q, and then adding a single edge connecting each of the remaining vertices of B to either ¢; or ¢; to
obtain a triangulation. Because B is a convex polygon, there is only one way to perform the second
step so that no edges cross.

Case 3: B is not a triangle, |C| > 3: C is the boundary of a convex polygon, inside B. First, compute
some arbitrary triangulation of the region between C and B using cross edges. Let R be the set of
vertices of C that are connected to two or more vertices of B. R contains at least two vertices of C.
There are two subcases, depending on whether R contains two nonconsecutive vertices of C.

Subcase 3a: R contains two nonconsecutive vertices of C. Let ¢; and ¢y be a pair of nonconsecutive
vertices of C in R (see Figure 3.2(a)). Removing these two vertices from the boundary of C' creates
two nonempty arcs, C' and C”, so no vertex of B can be joined to a vertex of C’ and a vertex of
C". Hence if C is triangulated using only edges with one endpoint on C' and the other on C” (in
other words, triangulated so that ¢; and ¢ are ears), then no such edge can participate in a complex
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b |

C1

c2

() (b)

Figure 3.2: Obtaining a good triangulation when the first two layers are convex polygons. (a)
Subcase 3a: ¢; and ¢; are two nonconsecutive vertices of the inner polygon that have two neighbors
on the outer polygon. (b) Subcase 3b: ¢; and ¢, are consecutive, and are the only two vertices of
the inner polygon that have two neighbors on the outer polygon.

triangle. This produces a triangulation T of the region bounded by B, involving layers B and C
that, satisfies all conditions of Lemma 3.4. Hence, there is a noncomplex triangulation of the region
bounded by B.

Subcase 3b: R contains only a single pair of consecutive vertices of C', ¢; and ¢;. This subcase
is illustrated in Figure 3.2(b). All vertices of C' are joined to a single vertex z of B. Assume
that ¢y is the counterclockwise neighbor of ¢, on Cj let ¢} be the clockwise neighbor of ¢y, ¢}, the
counterclockwise neighbor of ¢;. If C is a triangle, then ¢} = ¢), but that does not affect the following
argument. Now let z, and z, be, respectively, the counterclockwise and clockwise neighbors of z
about the boundary of B. If the segment z,¢] does not intersect the interior of polygon C, then
we can obtain a noncomplex triangulation of the region bounded by B by first flipping edge z¢;
and then triangulating the interior of C' by joining ¢; to every vertex of C. If the segment z,c)
does not intersect the interior of polygon C, a similar construction works. Suppose neither of these
last two conditions holds; then segments zy¢} and z;¢) both intersect segment cjc;. Let z’ be the
counterclockwise neighbor of z; about B. Since B is not a triangle, 2’ # 3. Since B is convex,
a noncomplex triangulation of the region bounded by B can be obtained by deleting edge cjc; and
connecting z’ to every vertex of C.

Part Il: B is a triangle: If B is a triangle, we “borrow” an appropriate vertex from A, and use this
vertex to “augment” B to a quadrilateral, B’, whose vertices are the borrowed vertex and the three
vertices of B. We show that one can always choose the quadrilateral B’ so that there is a noncomplex
triangulation with boundary B’. This requires considering three cases (case 4, 5, and 6, below).

Let B = bybybs. We first introduce some terminology. Consider the arrangement of the three
lines that support the three edges of B, shown in Figure 3.3. This arrangement has seven planar
regions: the triangular region B, and six other regions exterior to the triangle. We call the three
exterior regions bounded by three lines type-I regions, and the three exterior regions bounded by
two lines type-2 regions, or cones.

Before describing the process of augmenting B, we discuss how to obtain a noncomplex triangula-
tion of the region bounded by A from a noncomplex triangulation of the region bounded by a suitably
chosen augmented quadrilateral B’. Let p be the vertex borrowed from A. In the case analysis that
follows, we show that if A contains any vertex in a type-1 region, then we can choose p to be a vertex
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b b
2 2
/ 1 \

Figure 3.3: The arrangement of the lines supporting triangle B in Part II of the proof of Lemma 3.5.

(a) (b)

Figure 3.4: Obtaining a noncomplex triangulation of the region bounded by A from a noncomplex
triangulation of the region bounded by B’. (a) When possible, p is chosen from a type-1 region.
(b) The case where p cannot be chosen from a type-1 region.

in a type-1 region. This will mean that the augmented quadrilateral B’ is convex, as illustrated in
Figure 3.4(a). This implies in turn that the region between A and B’ can be triangulated using cross
edges that do not involve p, and so the resulting triangulation of the region bounded by A will not
have complex triangles or chords.

If there is no vertex in any of the type-1 regions, we will choose p from one of the type-2 regions.
In this case the augmented quadrilateral B’ will be non-convex only at a single vertex. We may
assume, after suitable relabeling of the b;’s, that the boundary of B’ is the cycle pbybyb3, and that
the non-convex vertex of B’ is b; (see Figure 3.4(b)). Observe that if there are no vertices of A in
type-1 regions, then each type-2 region (in particular, the cone supported at b;) must contain at
least one vertex of A. To produce a noncomplex triangulation of A, first temporarily add the edge
pby, and let B” be the triangle pbybs. Next, triangulate the region between A and B”, using only
cross edges that are not incident on p. The resulting triangulation of the region bounded by A has
a single complex triangle, namely pbybs. We claim that edge pb, is flippable. Indeed, if pb, were not
flippable then the halfplane supported by the segment b;b; and containing p would contain no vertex
of A other than p. But, as noted above, the cone supported at by, which lies within this halfplane,
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contains a vertex of A. Hence edge pb, is flippable. By Lemma 3.3, the triangulation obtained by
flipping this edge is noncomplex.

To complete the proof, we must show that an appropriate point p, an appropriate quadrilateral
B’, and a noncomplex triangulation of B’ can always be chosen.

Case 4: B is a triangle, |C'| = 1: Let ¢ be the unique point inside B. If any vertices of A are in type-1
regions; let p be one such vertex; otherwise, let p be any vertex of A. Without loss of generality, let
bib, be the edge of B crossed by the segment pe. Let B’ be the polygon with boundary pbybab2, and
stellate B’ from c.

Case 5: B is a triangle, |C| = 2: Let C = {e1,¢c2}. Let {b1,b2,b3} be the vertices of B. If there is a
point of A in a type-1 region, let p be such a point, and use p to augment B to a convex quadrilateral,
B’. Let z and y be two non-consecutive vertices of B’ that lie on opposite sides of the line ¢;¢c;. Join
each of z,y to each of ¢; and ¢, and connect ¢; and ¢ to the two remaining vertices of B to obtain
a noncomplex triangulation of the region bounded by B’'.

Now suppose there is no point of A in a type-1 region. Relabel the vertices of B if necessary so
that by is separated from b, and b3 by the line ¢;¢;. The points by, €1, €2, and b3 form the vertices
of a convex quadrilateral; let bzcicb3 be the consecutive vertices of that convex quadrilateral (this
may require switching the labels of ¢; and ¢;). If pey crosses the edge byby, augment B to the
quadrilateral B’ = b;pbyba; otherwise, augment B to the quadrilateral B’ = bapb;by. In either case,
the quadrilateral B’ is non-convex only at b;. Add edges by, c2by, ¢1b2, and cobs. If B’ = bypbaobs,
triangulate the convex quadrilateral bycicab; by adding edge bac; and replacing edge by by pe;.
Otherwise (i.e., if B’ = bapbibs), triangulate the convex quadrilateral byciczbs by adding bse; and
replace bib3 by pca. This completes the noncomplex triangulation of the region bounded by the
quadrilateral B’.

Case 6: B is a triangle, |C| > 3:

Subcase 6a: C is a triangle: Triangulate the region between B and C' without any noncomplex triangle
using Lemma 3.4.

Suppose that A has a vertex p in one of the type-1 regions. Without loss of generality, assume
that p is separated from triangle B by the edge byb;. Flip byb, to eliminate B.

Now suppose that A has vertices only in type-2 regions. Let p be a vertex in the type-2 region
consisting of the cone supported at vertex by. Let bybycy and bybscy be, respectively, the triangles in
the triangulation between B and C incident on byb; and byb3. If pe; crosses the edge bb;, augment
B to the quadrilateral bypbobs. Flip b1by to remove the triangle B. If pe; does not cross the edge
byb,, it must cross the edge b,b3 (due to the general-position assumption), so pe; also crosses bybs.
Augment B to bapb b, and flip b1b3. In either case the augmented quadrilateral B’ is non-convex
only at by, and the resulting triangulation is a noncomplex triangulation of the region inside B’.

Subcase 6b: C' is not a triangle: If there is a vertex p of A in a type-1 region, use p to augment B
to a convex quadrilateral B’ and apply the argument of Case 3.

Suppose there is no vertex p of A in any type-1 region. Compute a triangulation of the region
between B and C, using cross edges. If there are three vertices of C' that are incident on two cross
edges are all distinct, any type-2 vertex can be used as an augmenting vertex, in conjunction with a
retriangulation of C similar to the construction of Subcase 3a of Part I. Otherwise, a single vertex
of B, which we assume to be by, is connected to all vertices of C. Choose p in the type-2 region
supported by the vertex by of B. The set U of edges formed by connecting the vertices of C to p lie
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outside C'. Let ¢y, €3, €|, and ¢} be defined as in Case 3. The situation is as depicted in Figure 3.5.
Since C' has at least four vertices, one of the two edges byby and b,b3 is intersected by at least two
edges in /. Without loss of generality, assume edge b, b, is intersected by edges pc and pej. Augment
B to the quadrilateral B’ = bypbabs. Delete edge biby, and add edges pe; and pe). Ensure that b,
and ¢, are connected; this edge may already be there, but if not, replace edge b3c; with baca. Since
C is not a triangle, ¢; and ¢ cannot be adjacent on C. Triangulate the interior of polygon C' by
connecting all vertices to ¢y, analogous to Subcase 3b. This construction produces a non-convex
triangulation of the region inside the augmented quadrilateral B’. By the remarks at the beginning
of Part II, this completes the proof.

Proof of Lemma 3.6: Let A be layer j — 1, B layer j. If B is not a triangle, then triangulate the
region between A and B with cross edges and apply Lemma 3.4. If B is a triangle, augment B to
B’ by borrowing an appropriate vertex from A and produce a noncomplex triangulation of B’. The
procedure for doing this is a straightforward modification of Subcase 6a of the proof of Lemma 3.5.
To finish the noncomplex triangulation of the region bounded by A, triangulate the region between
A and B’ as described at the beginning of Part II in the proof of Lemma 3.5.

Proof of Theorem 3.1: If k > 2, the theorem follows by induction, using Lemma 3.5 as the base and
Lemma 3.6 for the inductive step.

To complete the proof of Theorem 3.1, it suffices to address the case k = 2. If the outer layer
has 4 or more points, the existence of a noncomplex triangulation follows immediately from the
constructions in Part I of Lemma 3.5. So suppose the outer layer has 3 points. If there is exactly one
point inside the outer layer, the unique possible triangulation is noncomplex. If there are exactly
two points inside the outer layer, the configuration is anomalous.

Now suppose the inner layer consists of a convex polygon and the configuration is not anomalous.
Triangulate the region between the outer layer and the inner layer using cross edges. If no point on
the outer layer is connected to all points on the inner layer, then there are three different points on
the inner layer with two neighbors on the outer layer. So either the inner layer is a triangle (and we

po
by

5] c2

bz b:!

Figure 3.5: Subcase 6b: Construction for the case when all vertices of C' are connected to a single
vertex of triangle B.
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get the graph of the octahedron), or there are two nonconsecutive points on the inner layer with two
neighbors on the outer layer (and we can proceed as in Subcase 3a of Lemma 3.5.)

Finally, suppose the outer layer is a triangle, and the triangulation with cross edges connects a
single vertex of the outer layer, say z, to all points of the inner layer. The condition (B1) holds.
Since the configuration is not anomalous, (B2) cannot hold. It follows that some vertices of the inner
layer currently connected only to z could also be joined to another vertex of the outer layer, say y.
By making this change (which also requires deleting some other edges from z and adding some edges
from y), we obtain a configuration in which there are three different points on the inner layer with
two neighbors on the outer layer. This situation was dealt with in the preceding paragraph. This
completes the proof of Theorem 3.1.

We conclude this section by noting that we can always make a point set S in general position
admit a 4-connected triangulation if we allow extra (Steiner) points. Indeed, let p be any point on
the boundary of the convex hull of 5. Add two points ¢ and r such that all points of S — {p} are
inside the triangle pqr, choosing the points carefully so that (B2) does not hold. The resulting set
5" = §U{q,r} is not anomalous and hence, by Theorem 3.2, is 4-connected. We have shown:

Theorem 3.7 A planar point set S in general position can be augmented using at most two extra
points so that it admits a 4-connected triangulation.

4 Algorithms

It is straightforward to show that constructing a good level-(j — 1) triangulation from a good level-j
triangulation takes O(n; +n;_1) time where n;, n;_; are the number of vertices in layers j and j—1,
respectively. Hence, if S admits a noncomplex triangulation, such a triangulation can be constructed
in O(n) time once we have the convex layers of S. Convex layers of S can be constructed in O(nlogn)
time using the algorithm of [2]. Also, we can check whether a point set is anomalous in O(nlogn)
time by directly checking condition (B1) and, if necessary, (B2). So we have the following theorem.

Theorem 4.1 Given a planar point set S in general position, in O(nlogn) time we can either
construct a non-complex triangulation of S if it admits one, or report that no such triangulation
exists.

5 Remarks and open problems

In this paper we have characterized the point sets that admit a noncomplex triangulation. This
solves the question of 4-connectibility for a point set with three extreme vertices. However, it does
not solve the 4-connectibility problem in general, and this problem remains open.

The two point sets in Figure 5.1 illustrate two ways that a planar point set can fail to be 4-
connectible. The set shown in Figure 5.1(a) fails to be 4-connectible because there are fewer interior
points than convex hull edges. Any triangulation of this point set must either have a chord, violating
condition(A1l) of Lemma 2.2, or two triangles having distinct convex hull edges as their bases but
sharing an interior point as their common apex. In the latter case, condition (A3) of Lemma 2.2 is
violated. Figure 5.1(b) also fails to be 4-connectible, even though it has more interior points than



Triangulating with High Connectivity 12
or
o
OO
= o wo % [e] ° y
o
o o o o
0z
9 o]
(a) (b)

Figure 5.1: Two point sets that are not 4-connectible.

Figure 5.2: A configuration not in general position that does not admit a non-complex triangulation.
The complex triangle shown must be present in any triangulation of this point set.

convex hull edges. To see this, note that if a 4-connected triangulation of this set exists, then one
of the circled points (call it p) would have to be connected to y; otherwise z and z would have a

common interior neighbor, violating (A3). But then p is connected to both w and y, so (A3) fails
anyway.

We have not addressed the condition of 5-connectibility. It follows from the results in [6] that
a triangulation is 5-connected if it satisfies conditions (A1)-(A3), has no complex (i.e., nonfacial)
quadrilateral, and has no interior edge connected to two or more nonconsecutive boundary vertices.

A simpler problem than general 5-connectibility might be characterizing those planar point sets that
admit triangulations without complex quadrilaterals.

Finally, we briefly discuss the general position assumption made in this paper, namely that no
three points are collinear. Figure 5.2 illustrates a point set that does not admit a non-complex
triangulation. The points lie on three lines. The complex triangle shown in the figure must be
present in any triangulation of this point set. The authors conjecture that this is essentially the only
non-anomalous point set not admitting a noncomplex triangulation. More precisely, we conjecture
that any such point set must consist of points along three rays with a common origin point, and
must include the origin point.

Acknowledgment

The authors gratefully acknowledge stimulating discussions with David Eppstein.



Triangulating with High Connectivity 13

References

[1] P. K. Agarwal. Partitioning arrangements of lines: II. Applications. Discrete & Computational
Geometry, 5(6):533-573, 1990.

(2] B. Chazelle. On the convex layers of a planar set. [EEE Transactions on Information Theory,
31(4):509-517, July 1985.

[3] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: An
annotated bibliography. Manuscript, June 1993.

[4] M. B. Dillencourt. Hamiltonian cycles in planar triangulations with no separating triangles.
Journal of Graph Theory, 14(1):31-49, 1990.

[5] B. Griinbaum. Convez Polytopes. Wiley Interscience, New York, NY, 1967.

[6] J-P. Laumond. Connectivity of planar triangulations. Information Processing Letters, 34(2):87-
96, March 1990.

[7] N. Megiddo and A. Tamir. On the complexity of locating linear facilities in the plane. Operations
Research Letters, 1(5):194-197, November 1982.

[8] A. Saalfeld. Joint triangulations and triangulation maps. In Proceedings of the Third ACM
Symposium on Computational Geomelry, pages 195-204, Waterloo, Ontario, June 1987.

[9] H. Whitney. A theorem on graphs. Annals of Mathematics, 32:378-390, 1931.

[10] K. Yeap and M. Sarrafzadeh. Floor-planning by graph dualization: 2-concave rectilinear mod-
ules. SIAM Journal on Computing, 22(3):500-526, June 1993.





