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While disruptions in brain maturation in the first years of life in ASD are well documented, little is known about how the brain structure
and function are related in young children with ASD compared to typically developing peers. We applied a multivariate pattern analysis
to examine the covariation patterns between brain morphometry and local brain spontaneous activity in 38 toddlers and preschoolers
with ASD and 31 typically developing children using T1-weighted structural MRI and resting-state fMRI data acquired during natural
sleep. The results revealed significantly reduced brain structure–function correlations in ASD. The resultant brain structure and function
composite indices were associated with age among typically developing children, but not among those with ASD, suggesting mistiming
of typical brain maturational trajectories early in life in autism. Additionally, the brain function composite indices were associated with
the overall developmental and adaptive behavior skills in the ASD group, highlighting the neurodevelopmental significance of early
local brain activity in autism.
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Introduction
While the current consensus is that ASD originates prenatally,
affecting early fetal neurodevelopment (Courchesne et al. 2020),
the clinical diagnosis of ASD cannot be made before behavioral
symptoms fully manifest (with the median age at diagnosis in
the United States currently being 49 months; Maenner et al.
2023), substantially limiting our ability for early identification.
The implications of delayed detection and identification are sig-
nificant, given the profound impact of early interventions on the
developing brain, especially in the first years of life, during the
critical window of rapid brain maturation and peak experience-
dependent neuroplasticity (Tau and Peterson 2010).

Although cumulative neuroimaging evidence has shown
alterations in both structural (i.e. neuroanatomy) and functional
developments of the brain in ASD, these studies are largely based
on older children and adolescents, with only a few consistent
findings emerging from neuroimaging studies in infants and
toddlers at risk for, or with early diagnosis of autism. Multiple
studies have reported early brain overgrowth, including enlarged
brain volumes and head circumferences, accelerated surface
area (SA) expansion, and increased structural connectivity
across white matter (WM) tracts in the first years of life in
young children with ASD, at a group level, when compared to
typically developing (TD) age peers (Courchesne et al. 2001;
Hazlett et al. 2005, 2011; Wolff et al. 2012; Xiao et al. 2014;
Solso et al. 2016). In addition to enlarged brain volumes, young
children with ASD and enlarged head circumference are also
reported to have elevated extra-axial cerebrospinal fluid volumes

(Shen et al. 2013, 2017, 2018). Besides these early structural
brain findings in ASD detected with anatomical and diffusion
MRI, a small but growing number of studies have examined the
functional brain organization and connectivity in infants and
toddlers with (or at risk for) ASD using fMRI acquired during
natural sleep. Earlier studies have primarily focused on brain
function in putative language regions and reported reduced
fMRI activation in response to speech sounds, absent or reversed
hemispheric lateralization for speech processing, and diminished
interhemispheric connectivity between language regions in young
children with ASD (Dinstein et al. 2011; Eyler et al. 2012; Lombardo
et al. 2015). More recent studies have investigated the whole-brain
intrinsic functional connectivity (iFC) and functional networks in
infants with high familial risk for ASD (due to having an older
sibling with autism) who were followed prospectively (Eggebrecht
et al. 2017; Emerson et al. 2017; Marrus et al. 2018; McKinnon
et al. 2019). While these prospective studies provided unique
opportunities to study neurodevelopment before the behavioral
symptoms of ASD emerge, this sampling design is inherently
biased, given the exclusive focus on children from families with
a significant familial risk (while most individuals with ASD
do not have older siblings with the disorder; Szatmari et al.
2016). More recent studies examining the resting-state functional
connectivity in toddlers diagnosed with ASD (age = 1.5–3.5 years)
found disruptions in multisensory circuitry, including atypically
increased iFC between visual and sensorimotor networks (Chen
B et al. 2021) and between thalamus and sensory cortices (Linke
et al. 2023), which was associated with greater autism symptoms
and poorer clinical outcomes, such as sleep disturbances.
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Critically, a vast majority of neuroimaging studies in ASD,
including those in toddler and preschool years reviewed above,
have examined the brain structural and functional indices
separately using MRI data from a single modality (e.g. fMRI
or anatomical MRI), with patterns of covariation between the
brain structural and functional development being largely
overlooked. With regard to neuroanatomy or morphometric brain
development, both cortical thickness (CT) and SA contribute
to the cortical volume growth, albeit each following distinct,
nonoverlapping maturational trajectories (Brown et al. 2012;
Wierenga et al. 2014) rooted in distinct neurobiological processes,
including distinctive genetic underpinnings (Panizzon et al. 2009;
Strike et al. 2019). The normative developmental trajectories of
CT and SA have been extensively studied, with cortical thinning
and SA expansion shown across most of the brain during toddler
and preschool years (Remer et al. 2017; Bethlehem et al. 2022;
Frangou et al. 2022). As noted above, the limited evidence available
on the brain volumetric and morphometric developments in
early childhood in ASD suggests that these trajectories may be
accelerated (i.e. have an earlier peak) in young children with
ASD (Courchesne et al. 2001; Hazlett et al. 2005, 2011; Schumann
et al. 2010; Xiao et al. 2014). The first years of life are also a
period of rapid development of brain functional organization
and activity, which can be estimated with the BOLD signal using
fMRI. Although resting-state fMRI data have been primarily
used—whether in general population, in ASD, or in other clinical
populations—to examine the large-scale functional connectivity
patterns based on the strength of the correlations between the
BOLD signal fluctuations in spatially distant brain regions (Biswal
et al. 1995; Fox and Raichle 2007), resting-state fMRI data can
also be used to quantify local spontaneous brain activity within
a given brain region. For example, regional spontaneous brain
activity can be characterized with a fractional amplitude of low-
frequency fluctuation (fALFF) metric, which measures the relative
contribution of low-frequency BOLD signal fluctuations to the
entire frequency range, which is detectable by BOLD-optimized
MRI sequences (Zou et al. 2008; Zuo et al. 2010). Only a handful of
studies have investigated the local spontaneous activity in ASD,
with evidence of disrupted local activity observed in school-aged
children, adolescents, and adults, albeit with mixed and region-
and age-specific pattern of results (Di Martino et al. 2014; Itahashi
et al. 2015; Guo et al. 2017; Karavallil Achuthan et al. 2023).
However, no published study to date has investigated the local
spontaneous activity in the first years of life in ASD, limiting our
knowledge of the maturational aspects and early developmental
trajectories of the local spontaneous brain activity in ASD.

Motivated by the dearth of research leveraging multimodal
MRI data in early childhood in ASD and aiming to improve our
understanding of the multivariate relationships between brain
structure and function in early neurodevelopment in ASD, this
study set out to examine the covariation patterns between brain
morphometry and local spontaneous activity in young children
with ASD as compared to TD age-matched peers by using both
structural MRI and resting-state fMRI data acquired during nat-
ural sleep. We utilized canonical correlation analysis (CCA), a
statistical method allowing the investigation of joint multivariate
relationships, to identify a set of brain morphometric and local
spontaneous activity measures that are maximally correlated
(indicating comaturation) in typical development and to compare
this brain structure–function covariation pattern to that observed
in the ASD cohort. We hypothesized that young children with
ASD would exhibit reduced brain structure–function correlations
when compared to TD children.

Materials and methods
Participants
This study includes data from participants enrolled in the San
Diego State University (SDSU) Toddler MRI Project, a longitudinal
study of early brain markers of ASD (see Supplemental Materials
for the project’s inclusion and exclusion criteria). The research
protocol was approved by the institutional review boards of SDSU,
University of California San Diego (UCSD), and the County of San
Diego Health and Human Services Agency. Written informed con-
sent was obtained from the caregivers. The current study includes
cross-sectional data (from one of the longitudinal study visits
completed between 2016 and early 2020) from 38 young children
with ASD and 31 TD children, age = 1.5–5.5 years, for whom both
high-quality T1 (anatomical) and 2 runs of resting-state fMRI data
acquired during natural sleep were available. Participants with
ASD and TD children were matched at the group level on age (see
Table 1 for demographic and developmental characteristics of the
sample).

Diagnostic and developmental assessment
Diagnoses of ASD or clinical best estimate (Ozonoff et al.
2015) in children younger than 3 years of age were established
upon enrollment using standardized measures in combination
with expert clinical judgment in accordance with the current
recommendations by the American Academy of Pediatrics and
Society for Developmental and Behavioral Pediatrics (Weitzman
and Wegner 2015; Lipkin and Macias 2020). Because diagnostic
evaluation has been repeated at follow-up visits in the context
of the larger longitudinal Project, only data from children with
confirmed diagnosis, based on the DSM-5 (American Psychiatric
Association 2013) diagnostic criteria, were included in the
current study. ASD diagnoses were supported by the Autism
Diagnostic Observation Schedule-Second Edition (Lord et al.
2012) administered by research-reliable clinicians, the Social
Communication Questionnaire (Rutter et al. 2003), or the Autism
Diagnostic Interview-Revised (Lord et al. 1994) administered to
caregivers of children older than 36 months, and expert clinical
judgment. Developmental skills were assessed in all (TD and
ASD) participants with the Mullen Scales of Early Learning
(MSEL; Mullen 1995), a clinician-administered standardized
assessment of cognitive, language, and motor developments. Total
developmental quotient (DQ) was calculated as an average of 4
DQs (for each MSEL subscale: Receptive Language, Expressive
Language, Fine Motor, and Visual Reception) derived by dividing
the subscale age-equivalence score by the child’s chronological
age and multiplying by 100 (Messinger et al. 2013). The DQ
metric was utilized to avoid the relatively common floor effect
of the MSEL Early Learning Composite Standard Score, which was
observed in 7 out of 38 children in the ASD cohort (consistent
with other reports in cohorts of young children with ASD (Lord
et al. 2006; Munson et al. 2008). The Vineland Adaptive Behavior
Scales, Second Edition, Survey Interview (Vineland-II; Sparrow
et al. 2005), a semi-structured interview, was administered to
caregivers to assess the child’s adaptive development skills
demonstrated at home and other settings, with the Adaptive
Behavior Composite (ABC) score used in the analysis. For inclusion
and retention in the TD group, children had below-clinical
cutoff scores on the ASD screener, the SCQ (all TD scores ≤10;
see Table 1), and demonstrated developmental skills falling no
more than 1.5 SD below the normative mean for their age
on measures of early learning and development (the MSEL
subscales).
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Table 1. Participant characteristics.

ASD (n = 38) TD (n = 31) ASD versus TD

Mean ± SD (Min–Max) Mean ± SD (Min–Max) t/X 2 P-value

Age at scan (months) 44.6 ± 14.8 (18–69) 44.2 ± 13.7 (18–65) t(67) = 0.14 0.89
Gender (M/F) 30/8 16/15 χ2(1) = 5.74 0.02
Ethnicity (Hispanic/non-Hispanic)a 16/18 9/22 χ2(1) = 2.23 0.14
Race (White/more than one/Black/Asian)a 21/8/0/2 22/5/3/0 — —
Gestational age (weeks)b 38.6 ± 2.3 (31–43) 39.6 ± 1.1 (37–42) t(59) = −2.00 0.05
Birth weight (grams)c 3230.0 ± 571.8 (2041–4394) 3511.2 ± 366.7 (2863–4082) t(59) = −2.26 0.03
Delivery method (vaginal/C-section)c 24/11 21/9 χ2(1) = 0.02 0.90
Maternal education level (%)d

High school or some college credit, but < 1 year 34% 6% — —
Associate degree/vocational school 11% 6% — —
Bachelor’s degree 11% 35% — —
Master’s degree 24% 42% — —
Professional degree (MD, PhD, JD) 11% 10% — —

MSEL total DQe 74.8 ± 23.0 (14–107) 103.5 ± 13.2 (71–134) t(66) = −6.15 <0.001
Vineland-II adaptive behavior composite 75.9 ± 10.5 (55–100) 106.1 ± 12.7 (80–127) t(66) = −10.75 <0.001
SCQ total scoref 16.3 ± 7.9 (3–35) 4.0 ± 2.9 (0–10) t(58) = 7.79 <0.001
ADOS-2 calibrated severity score 6.3 ± 2.1 (2–10) — — —
RMSD (mm) 0.13 ± 0.04 (0.05–0.21) 0.10 ± 0.03 (0.05–0.18) t(67) = 3.28 0.002
Total brain volume (cm3) 1,095.4 ± 98.5

(787.9–1,298.9)
1,067.2 ± 105.2
(813.9–1,293.5)

t(67) = 1.15 0.26

Gray/white CNR 2.1 ± 0.2 (1.7–2.5) 2.0 ± 0.2 (1.3–2.3) t(67) = 1.86 0.07

Note: M = male; F = female; MSEL = Mullen Scales of Early Learning; Vineland-II = Vineland Adaptive Behavior Scales, 2nd Edition; SCQ = Social
Communication Questionnaire; ADOS-2 = Autism Diagnostic Observation Schedule, Second Edition; RMSD = root mean square displacement; CNR = contrast
to noise ratio; TD = typically developing; DQ = developmental quotient. aEthnicity data are missing for 4 ASD participants, and race data are missing for 5 ASD
and 1 TD participants; bGestational age data are missing for 4 ASD and 1 TD participants. cBirth weight data are missing for 2 ASD children, and delivery mode
is missing for 3 ASD and 1 TD children. dMaternal education data are missing for 3 ASD participants. eMSEL total DQ data is missing for 1 ASD participant.
fSCQ data are missing for 6 ASD and 3 TD participants.

MRI data acquisition
MRI data were collected during natural nocturnal sleep on a
GE Discovery MR750 3T MRI scanner at the UCSD Center for
Functional Magnetic Resonance Imaging by using a Nova Medical
32-channel head coil. First, a multiband echo planar imaging
(EPI) sequence allowing the simultaneous acquisition of multiple
slices was used to acquire 2 fMRI runs (400 volumes per each
6-min run) with high spatial resolution and fast acquisition
(TR = 800 ms, TE = 35 ms, flip angle = 52◦, 72 slices, multiband
acceleration factor = 8, 2 mm isotropic voxel size, matrix = 104 ×
104, FOV = 20.8 cm). Two separate 20-s spin-echo EPI sequences
with opposing phase encoding directions were also acquired
using the same matrix size, FOV, and prescription to correct for
susceptibility-induced distortions. High-resolution anatomical
images were acquired next with a fast 3D spoiled gradient
recalled T1-weighted sequence (0.8 mm isotropic voxel size,
NEX = 1, TE/TI = min full/1,060 ms, flip angle = 8◦, FOV = 25.6 cm,
matrix = 320 × 320, receiver bandwidth = 31.25 Hz). Motion during
anatomical scans was corrected in real time using 3 navigator
scans and real-time prospective motion correction (White et al.
2010), and images were bias-corrected using the GE PURE option.
On the night of the scan, noise protection was achieved with
MRI compatible headphones (MR Confon) and earplugs. Scanning
commenced after approximately 30–50 min of sleep. For details on
the habituation protocol in preparation for MRI data acquisition
during sleep, see Supplemental Materials.

MRI data preprocessing, brain structural and
functional variables, and analytic strategy
For details on MRI data preprocessing, see Supplemental Materi-
als. Two brain morphometric measures, SA and CT, were extracted

for each participant from 34 regions of interest (ROIs) per hemi-
sphere from the Desikan-Killiany atlas implemented in FreeSurfer
(Desikan et al. 2006). Local spontaneous activity was indexed with
the fALFF measure extracted from the fMRI data in each voxel and
was averaged within the same ROIs. FALFF was calculated as the
power of BOLD signal within the low-frequency range (0.01–0.1 Hz)
divided by the total power of the entire frequency spectrum by
using the implementation included with the CONN toolbox. The
SA, CT, and fALFF variables of interest were submitted to linear
regressions to exclude potential confounds; namely, CNR and total
brain volume were regressed out of the 2 morphometric measures
(SA and CT), and head motion indexed by mean RMSD across
2 fMRI runs was regressed out of the local spontaneous activity
measure (fALFF).

In order to investigate the covariation patterns between brain
structure (SA and CT) and function (local spontaneous activity:
fALFF), sparse canonical correlation analysis (SCCA) was imple-
mented using the “PMA” package in R (Witten et al. 2009). CCA
is a multivariate statistical technique that identifies the linear
combinations of 2 sets of variables—such as brain morphometry
and local spontaneous activity measures—with maximal corre-
lation between them (Hardoon et al. 2004). CCA is particularly
suited to identifying the source of common statistical variation
among data from multiple modalities (such as brain anatomical
and functional variables) without assuming any directionality
(Zhuang et al. 2020). To avoid model overfitting and enhance
interpretability of the structure–function covariation, SCCA, a
variant of CCA, was used because it identifies the parsimonious
sources of variation by setting a maximum number of variables
with minimal contribution to interpretable linear combinations
to exactly 0 (thereby inducing sparsity on canonical coefficients).
A pair of canonical variates (CVs)—a structural and a functional

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae005#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae005#supplementary-data
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CV—capturing the highest brain structure–function correlation
among TD children was extracted from SCCA. In order to examine
whether young children with ASD show a comparable structure–
function covariation pattern to that observed in neurotypical
development, the corresponding canonical vectors derived from
the TD data were applied to the ASD data. Significance of the
difference in canonical correlations (or correlations between CVs
generated with the SCCA) between the TD and ASD groups was
determined with permutation testing. Specifically, bootstrapping
was carried out by randomly splitting the whole (combined ASD
and TD) sample in half, with 1,000 iterations, and calculating
the difference in canonical correlations by applying the canonical
vectors derived from half of the sample to the other half. The
group difference in canonical correlation was determined to be
statistically significant at P < 0.05 on the bootstrapping distribu-
tion.

Associations between age and the CVs capturing maximally
correlated brain morphometry and local activity variables were
examined with linear regressions conducted separately in the TD
and ASD groups. Finally, associations between CVs and overall
developmental and adaptive behavior skills were examined with
linear regression models, with structural CV or functional CV as
predictors and MSEL Total DQ or Vineland-II ABC as outcome
variables, controlling for age and sex (with separate regression
models in the ASD and TD groups).

Results
The results of the SCCA performed on the TD data revealed
a significant, positive canonical correlation between the brain
morphometry and local spontaneous activity (r = 0.81, P < 0.001;
see Fig. 1A). Structural and functional CVs contributing to this
canonical correlation are presented in Fig. 2, which depicts canon-
ical coefficients illustrative of the relationship between the initial
variables (i.e. SA, CT, and fALFF) and the CVs for each ROI in the
left (top panel) and right (bottom panel) hemispheres. As can be
seen in Fig. 2, this pair of CVs was characterized by a generally
reduced SA and greater CT being associated with lower fALFF,
with only 1 exception of higher fALFF in the right cuneus cortex.
Specifically, the structural CV implicated lower SA in bilateral
orbitofrontal, anterior cingulate, and inferior frontal cortices and
greater CT in bilateral caudal middle frontal, lateral orbitofrontal,
and inferior frontal cortices and cuneus, precuneus, pericalcarine,
and supramarginal cortices (see Fig. 2 legend for a detailed list of
ROIs). Together, lower SA and higher CT in these regions covaried
with lower fALFF in left inferior frontal, caudal and rostral middle
frontal, superior frontal, and supramarginal cortices and right
orbitofrontal cortex, and higher fALFF in cuneus.

After applying the canonical vectors derived from the TD data
to the ASD group, the structure–function canonical correlation
found in the ASD group was reduced (r = 0.25, P = 0.136; see
Fig. 1B). To determine whether this difference between the
canonical correlations observed in the TD and ASD groups
was significant, permutation testing with 1,000 iterations was
conducted to estimate the bootstrapping distribution by ran-
domly splitting the dataset in half and calculating the difference
in structure–function canonical correlations by applying the
canonical vectors derived from half of the sample to the other
half. Permutation testing (see Fig. 1C) determined that the
structure–function correlation in the ASD group was significantly
reduced (P < 0.05).

By testing for links between the CVs of brain morphometry
and local activity and child’s age, linear regressions revealed that

both structural and functional CVs were significantly, negatively
correlated with age in the TD (r = −0.72 and − 0.75, respectively),
but not in the ASD group (r = −0.26 and − 0.25, respectively; see
Fig. 3), with significant diagnostic group by age interactions for
both structural CV (P = 0.01) and functional CV (P = 0.005).

Finally, linear regression models testing for relationships
between CVs and overall developmental and adaptive behavior
skills among children with ASD revealed significant associations
between functional CV and overall developmental skills (Mullen
Total DQ; partial r =−0.43, P = 0.009) and adaptive functioning
(Vineland-II ABC; partial r =−0.37, P = 0.026) after controlling
for age (see Fig. 3B). No significant associations with behavioral
indices were found for the structural CV, and there were no
relationships between the structural or functional CVs and
developmental or adaptive skills in TD children (the latter likely
due to the smaller range of behavioral scores in the TD group, as
expected in typical development).

Discussion
We used both structural MRI and fMRI data acquired during
the same scanning session to examine the covariation patterns
between brain morphometry and local spontaneous activity in
young children with ASD compared to age-matched TD children.
A multivariate statistical approach—CCA—was implemented to
identify a pair of CVs or linear combinations of brain morpho-
metric (SA and CT) and local spontaneous activity measures
(fALFF) that maximally covary in typical development, indicating
comaturation. The CCA revealed a general covariation pattern of
lower SA and higher CT associated with overall lower fALFF in TD
children. This pattern of structure–function covariation (between
brain structural metrics and local brain activity) was found to
be significantly reduced in children with ASD, as determined
with permutation testing. We also set out to examine whether
the CVs capturing maximally correlated brain morphometry and
local activity variables are associated with age as well as the
overall developmental and adaptive behavior skills in children
with ASD and in TD peers. Age-related analyses revealed that,
while the CVs of brain structure and function were significantly
associated with age, cross-sectionally, in TD children, these age
relationships were not observed in the ASD group. Furthermore,
among young children with ASD, the functional CV capturing local
spontaneous activity across the brain (which covaries with brain
structural metrics) was significantly associated with indices of
general development and adaptive behavior skills.

Weaker brain structure–function coupling early
in life in autism
Most notably, these results provide initial evidence of reduced
brain structure–function correlation in young children with ASD
relative to TD children, suggesting that the covariation or close
dependence between brain morphometry and local spontaneous
activity in ASD deviates from typical neurodevelopment during
early childhood. Although the covariation between brain struc-
ture and function has not been previously studied in young chil-
dren, with or without autism, a recent study (Qi et al. 2020)
reported results of a fusion analysis between fALFF and gray
matter (GM) volume in school-age children and adults with ASD.
Utilizing the ABIDE datasets (Di Martino et al. 2014, 2017), the
authors reported findings linking autism symptoms with pat-
terns of covariance between greater fALFF in broadly distributed
cortical regions (e.g. dorsolateral prefrontal, inferior frontal, and
superior/middle temporal gyrus) but reduced fALFF in subcortical
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Fig. 1. Scatterplots representing canonical correlations between structural and functional CVs in the A) TD and B) ASD groups. C) Bootstrapping
distribution of the difference in canonical correlations after randomly splitting the whole sample in half and applying the canonical vectors derived
from one half of the sample to the other half (1,000 iterations); arrow indicates the difference in canonical correlations depicted in panels A and B (rTD

− rASD = 0.57).

Fig. 2. Canonical vectors of SA, CT, and fALFF from bilateral ROIs with maximized structure–function correlation in TD children, derived from SCCA. Top
and bottom panels depict ROIs from left and right hemisphere, respectively. ROIs contributing to each structural and functional canonical vectors are:
for SA, L pars orbitalis, L lateral orbitofrontal, R pars orbitalis, R lateral orbitofrontal, and R rostral anterior cingulate; for CT, L cuneus, L precuneus, L
pars opercularis, L caudal middle frontal, L rostral middle frontal, L pericalcarine, L supramarginal, R lateral orbitofrontal, R pars triangularis, R caudal
middle frontal, and R pars orbitalis; for fALFF, L caudal middle frontal, L pars triangularis, L rostral middle frontal, L superior frontal, L pars orbitalis, L
lateral orbitofrontal, L supramarginal, R cuneus, and R medial orbitofrontal. L = left; R = right.

regions (e.g. thalamus and caudate) and greater GM volumes in
partially overlapping cortical areas such as dorsolateral prefrontal
and superior/middle temporal gyrus. Also using the ABIDE dataset
from school-age children, Chen and colleagues identified atypi-
cal concordance patterns between the function (measured with
ALFF) in GM and WM regions, with higher GM/WM functional
covariance observed in children with ASD and linked with autism
symptoms (Chen H et al. 2021). While these results are not directly

comparable to the present findings due to considerable method-
ological differences and disparate age range, they highlight the
need for multimodal neuroimaging studies utilizing multivariate
statistical methods, which allow modeling complex neurodevel-
opmental processes jointly and examining how they codevelop
across time and individuals in ASD. Our study also contributes to
the broader literature on the development of structure–function
coupling in human brain networks and how it relates to cognitive
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Fig. 3. A) Correlations between structural and functional CVs and age, plotted separately in the TD (top) and ASD (bottom) groups. B) Partial correlations∗
between functional CV and MSEL Total DQ (top) and Vineland-II ABC (bottom) in children with ASD (∗ = controlling for age; values on the X- and Y-axes
represent residuals).

development and psychopathology (Baum et al. 2020). Overall,
our finding of the weaker brain structure–function coupling in
children with ASD suggests that the fundamental aspects of brain
development may be uncoupled early in life in autism, likely
contributing to the disrupted circuit formation, with distributed
effects on brain function and connectivity across the entire lifes-
pan.

Atypical age-related effects: evidence of
mistimed brain development trajectories in
autism
The importance of studying developmental trajectories jointly
across different brain maturation indices, especially during early
childhood, is further supported by the differential age-related
effects (albeit observed cross-sectionally) in both brain morphom-
etry and local spontaneous activity detected in our study. Namely,
we found that the structural and functional CVs (underlying the
brain structure–function coupling) were significantly associated
with age in typical development, but such a relationship was
absent among children with ASD. This suggests that matura-
tional trajectories of covariation between the brain structure
and function may be mistimed in early childhood in ASD. This
observation is in line with other findings of atypical age-related
effects observed in unimodal studies examining the maturation of
functional network connectivity and cortical myelination across
early childhood in ASD (Chen B et al. 2021; Chen et al. 2022).
These findings extend the notion of atypical neurodevelopment
and mistimed brain maturational trajectories in autism to early
childhood. Given the profound brain maturational changes, peak
neuroplasticity, and remarkable advances in cognitive, behavioral,
and socio-emotional developments characterizing the first years
of life (Tau and Peterson 2010; Bornstein 2014), it is critical to
examine brain maturation and its timing in autism during this

developmental period rather than making inferences from neu-
roimaging studies in older children and adolescents (cf. Uddin
et al. 2013; He et al. 2020). It is possible that the variable (dis-
tinct from neurotypical) brain maturational trajectories, including
atypical brain structure–function coupling, in young children with
autism contribute to variable treatment response among children
with autism (Vivanti et al. 2014) despite the robust evidence of
the efficacy of early interventions (Landa 2018). Critically, the
links between CV capturing the brain’s local spontaneous activity
and overall developmental and adaptive behavior skills detected
in the ASD group suggest that brain function, specifically local
spontaneous activity, may be a meaningful neurobiological fea-
ture that is related to developmental and behavioral outcomes
in ASD.

Potential limitations
While this study is the first known investigation of the mul-
tivariate relationship between brain morphometry and local
spontaneous activity in the first years of life in ASD, interpretation
of its results is somewhat limited by the moderate sample size
due to known challenges of acquiring high-quality multimodal
MRI data in young children and in particular in children with
neurodevelopmental disorders (Nordahl et al. 2016; Turesky et al.
2021; Hendrix and Thomason 2022). As such, we applied a parsi-
monious multivariate model (SCCA) to extract composite indices
that capture maximally correlated brain morphometry and local
activity variables. This data-driven approach allowed for the
examination of the overall structure–function covarying patterns
with simultaneous data reduction, which is most appropriate for
high-dimensional data with a moderate sample size. However,
CCA also comes with some limitations; for instance, the rela-
tionship between the 2 modalities (sets of variables) is assumed
to be linear and the directionality of the linear relationship (or
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canonical correlations) identified with CCA is indeterminate
(Zhuang et al. 2020). Additionally, this approach is not suitable for
identifying region-specific abnormalities in ASD. Future larger-
scale and longitudinal studies are needed to examine the age-
related trajectories of the brain structure–function covariation
patterns longitudinally. Although we cannot rule out the impact
of the imbalanced gender distribution in the ASD and TD groups
on the observed effects, the evidence of sex effects on early brain
overgrowth in ASD is mixed and inconclusive (Campbell et al.
2014; Molani-Gol et al. 2023). Finally, as with any correlational
approach, the identified function–structure covarying patterns
do not infer causation. Hence, we cannot discern if the reduced
brain structure–function correlation in ASD originates from
atypical brain morphometry, local spontaneous activity, or
other neurodevelopmental processes not directly examined in
this study. However, the observed links with developmental
and adaptive behavior skills suggest that brain function (local
spontaneous activity) may be particularly clinically relevant at
this age.

Conclusion
To our knowledge, this study is the first to characterize the brain
structure–function covariation, using multimodal MRI measures
acquired during the same scanning session and a multivariate
pattern analysis, in the first years of life in ASD. The overall brain
structure–function correlation was significantly reduced in young
children with ASD compared to TD children, and the neurotypical
age-related relationship in the structural and functional indices
capturing maximally correlated brain morphometry and local
activity measures was absent in the ASD group, suggesting mist-
imed developmental trajectory of the brain structure–function
coupling. Furthermore, the identified association between the
index of the local spontaneous activity and the overall develop-
mental and adaptive behavior skills in the ASD cohort highlights
the importance of local brain activity in early developmental
outcomes.
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