UC San Diego UC San Diego Previously Published Works

Title

Activation, Inhibition, and Regiospecificity of the Lysophospholipase Activity of the 85-kDa Group IV Cytosolic Phospholipase A2 \ast

Permalink https://escholarship.org/uc/item/4z71z1gg

Journal Journal of Biological Chemistry, 272(31)

ISSN 0021-9258

Authors

Loo, Richard W Conde-Frieboes, Kilian Reynolds, Laure J <u>et al.</u>

Publication Date

1997-08-01

DOI

10.1074/jbc.272.31.19214

Peer reviewed

Activation, Inhibition, and Regiospecificity of the Lysophospholipase Activity of the 85-kDa Group IV Cytosolic Phospholipase A₂*

(Received for publication, May 1, 1997, and in revised form, May 28, 1997)

Richard W. Loo, Kilian Conde-Frieboes, Laure J. Reynolds, and Edward A. Dennis‡

From the Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0601

The 85-kDa Group IV calcium-dependent cytosolic phospholipase A2 (cPLA2) catalyzes the hydrolysis of palmitoylglycero-3-phosphocholine to palmitic acid and glycero-3-phosphocholine. Palmitoylglycero-3-phosphocholine exists as a 9:1 equilibrium mixture of the sn-1 and sn-2 isomers, with the fatty acid predominately at the sn-1 position. We have monitored this reaction by ³¹P NMR to determine which palmitoylglycero-3-phosphocholine isomer is processed by cPLA₂. When both lysophospholipid isomers are present in a 1:1 mixture under conditions in which acyl migration is minimized, cPLA₂ rapidly consumes both isomers. However, 1-palmitoylglycero-3-phosphocholine is consumed seven times faster than the 2-palmitoylglycero-3-phosphocholine isomer. We have previously reported that this lysophospholipase reaction is accelerated in the presence of glycerol. We now find that this apparent increase in activity is accounted for, in part, by glycerol acting as an alternative acceptor for the cleaved fatty acid, as is the case for this enzyme's phospholipase A2 (PLA2) activity. In contrast, dioleoylglycerol, which accelerates the PLA_2 activity, does not act as an acceptor in either the lysophospholipase or the PLA₂ reaction, but can affect enzyme activities by altering substrate presentation. We also show that a known inhibitor of the PLA₂ activity of cPLA₂ is able to inhibit its lysophospholipase activity with a similar IC_{50} to its PLA_2 activity. However, the effect of inhibitors is dependent on the manner in which they are presented to the enzyme.

Phospholipase A_2 (PLA₂)¹ comprises a family of enzymes that catalyze the hydrolysis of fatty acids from the *sn*-2 position of phospholipids (1). The Group IV calcium-dependent cytosolic phospholipase A_2 (cPLA₂) is an 85-kDa member of this family that displays a preference for phospholipids that contain arachidonic acid (2–7). Since arachidonic acid is a second messenger for a number of cellular functions and is also a precursor for a variety of proinflammatory eicosanoids (8), cPLA₂ has been the subject of a large number of studies directed toward understanding both its mechanism and regulation (see Ref. 9 for review).

Mechanistically, cPLA₂ exhibits a number of other activities in addition to its namesake phospholipase A2 activity, including transacylase (10, 11), esterase (11, 12), phospholipase A_1 (2, 7, 11), and lysophospholipase (7, 10, 13, 14) activities. However, both the transacylase and esterase activities are a small fraction of the PLA₂ activity, while the PLA₁ activity is only observed when there is no hydrolyzable acyl chain present at the sn-2 position. In fact, only the lysophospholipase activity is quantitatively significant and comparable with the PLA₂ activity. We (10) and others (7, 13, 14) have previously shown that the lysophospholipase activity is actually greater than the PLA₂ activity under certain conditions. Interestingly, the substrate often used for assaying the lysophospholipase activity is 1-palmitoylglycero-3-phosphocholine (1-PGPC). Thus, in contrast to the PLA₂ activity, the lysophospholipase activity of $cPLA_2$ presumably acts at the *sn*-1 position, suggesting that cPLA₂ is a positionally sloppy enzyme.

There are many conflicting views as to the relationship between the two main activities exhibited by cPLA₂. It was initially suggested that the two activities may be catalyzed by distinct sites on the enzyme when antibodies were shown to inhibit the PLA₂ activity, but not the lysophospholipase activity (14). A model of separate enzymatic sites would be consistent with the apparently different positions of reactivity on the glycerol backbone of the two phospholipid substrates. However, more recent data by Sharp et al. (15) suggest that the two activities share at least a common catalytic residue. They have shown that a single serine residue is essential for both the PLA₂ and lysophospholipase activities. How then can a single catalytic site accommodate a PLA_2 activity acting at the sn-2position of a phospholipid substrate and a lysophospholipase activity acting at the sn-1 position of a lysophospholipid substrate? Actually, lysophospholipids (16) can exist as two positional isomers in which the fatty acid is acylated to either the sn-1 or sn-2 position of a glycerophosphate backbone (Fig. 1). Therefore, the lysophospholipase activity that has been reported to date may merely be a result of the normal PLA₂ activity acting exclusively on the 2-palmitoylglycero-3-phosphocholine isomer. If that were the case, then cPLA₂ would not be the positionally sloppy enzyme it had been believed to be.

In this report, we try to shed light on the link between the lysophospholipase and PLA₂ activities of cPLA₂. Most important, we first examine the regiospecificity of the lysophospholipase activity of cPLA₂. We have monitored this reaction by ³¹P NMR to determine which palmitoylglycero-3-phosphocholine isomer is processed by cPLA₂ (17). We then compare the various modes of activation and inhibition of the two activities.

^{*} This work was supported by Grants GM20501 and GM51606 from the National Institutes of Health and by a grant from Lilly Research Laboratories. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[‡] To whom correspondence should be addressed. Tel.: 619-534-3055; Fax: 619-534-7390; E-mail: edennis@ucsd.edu.

¹ The abbreviations used are: PLA₂, phospholipase A₂; cPLA₂, cytosolic phospholipase A₂; 1-PGPC, 1-palmitoylglycero-3-phosphocholine; 2-PGPC, 2-palmitoylglycero-3-phosphocholine; AA-TFMK, arachidonyl trifluoromethyl ketone; PA-TC, palmityltricarbonyl; PAPC, 1-palmitoyl-2-arachidonoylglycero-3-phosphocholine; PC, phosphatidylcholine; DAG, 1,2-dioleoylglycerol; GPC, glycero-3-phosphocholine; fid, free induction decay.

FIG. 1. **Regioisomers of palmitoylglycero-3-phosphocholine.** Shown are two natural regioisomers of palmitoylglycero-3-phosphocholine (depicted as Fischer projections; $R = -(CH_2)_{14}CH_3$) that are possible substrates for the lysophospholipase activity of cPLA₂.

EXPERIMENTAL PROCEDURES

$$\label{eq:matrix} \begin{split} & Materials _ L-\alpha-1-[^{14}C] Palmitoylglycero-3-phosphocholine and L-\alpha-1-palmitoyl-2-[^{14}C] arachidonoylglycero-3-phosphocholine were purchased from NEN Life Science Products. L-\alpha-1-Palmitoyl-2-[^{14}C] palmitoylglycero-3-phosphocholine was purchased from Amersham Corp. Nonradioactive lipids were purchased from Avanti Polar Lipids. All-cis-5,8,11,14-nonadecatetraenyl trifluoromethyl ketone (arachidonyl trifluoromethyl ketone (AA-TFMK)) (18) and 2,3-dioxooctadecanoic acid tertbutyl ester monohydrate (palmityltricarbonyl (PA-TC)) (19) were prepared as described elsewhere. Rhizopus arrhizus lipase was purchased from Boehringer Mannheim. Deuterated solvents were from Cambridge Isotopes. Recombinant cPLA_2 was generously provided by Dr. Ruth Kramer (Lilly Research Laboratories).$$

2-Palmitoylglycero-3-phosphocholine (2-PGPC) was prepared by treating 1,2-dipalmitoyl-sn-glycero-3-phosphocholine with *Rhizopus* lipase following published procedures (20). Conversion of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine to 2-PGPC did not proceed to completion. However, palmitoylglycero-3-phosphocholine could be separated from a mixture with the starting material by chromatography on Sephadex LH-20. 2-PGPC prepared in this manner gave a single spot by analytical TLC, but showed two peaks by ³¹P NMR corresponding to a 4:1 mixture of palmitoylglycero-3-phosphocholine isomers (the minor isomer being 1-PGPC). Similarly, commercial 1-PGPC contains ~10% of the corresponding 2-PGPC isomer. These cross-contaminations have been documented and are attributed to migration of the fatty acyl chain during the preparation and purification of lysophospholipids (20).

 ^{31}P NMR Assay—Samples were made up in a 35:35:30 (v/v/v) mixture of 200 mM Hepes (pH 7, with 10 mM CaCl₂ and 150 mM NaCl), D₂O, and glycerol. Appropriate amounts of 1-PGPC and 2-PGPC were combined to give a 1:1 mixture of isomers. Lysophospholipids were stored as chloroform solutions and were thus prepared by first removing the chloroform *in vacuo* at 25 °C. The resulting film was taken up in 500 μ l of the reaction buffer and completely dissolved by vortexing and bath sonication to give a clear and colorless solution (10 mM). Similarly, cPLA₂ solutions (4 mg/ml) were diluted in the reaction buffer (typically, 5 μ l in 100 μ l of buffer). The final concentrations of reagents were 8.3 mM substrate and 33 μ g/ml enzyme in 600 μ l of buffer.

Substrate was preincubated at 40 °C in a 5-mm NMR tube, and at zero time, spectra were obtained. Enzyme was then added to this NMR tube to initiate the reaction. In addition, an insert containing 10 mm pyrophosphate in D_2O was used as an external standard.

³¹P NMR spectra were obtained on a General Electric spectrometer operating at 121.5 MHz. A 66° pulse with a 2-s delay and a spectral width of 4000 Hz and 16,000 data points was used. Broad-band proton decoupling was utilized. Spectra were obtained at varying time intervals at 40 °C. Typically, 128 transients were obtained over 8 min. The resulting fid was apodized with a gaussian multiplication with line broadening of 5 Hz. The chemical shifts of the phosphorus-containing compounds are listed in Table I. Chemical shifts are reported relative to 85% phosphoric acid. Peak integrals were taken to represent the rela-

 TABLE I

 ³¹P chemical shifts of phosphorus-containing compounds

Compound	Chemical shift (δ)	
1-PGPC 2-PGPC GPC Pyrophosphate	$ppm \\ 0.10 \\ 0.26 \\ 0.55 \\ -5.66$	

^a R-relative to 85% phosphoric acid.

tive concentrations of the phosphorus-containing species in solution.

 PLA_2 Mixed Micelle Assay—Assays were performed in a standard buffer composed of 80 mM Hepes (pH 7.4), 150 mM NaCl, 10 mM CaCl₂, 1 mg/ml bovine serum albumin, and 1 mM dithiothreitol. The mixed micelle assay also contained 1 mM 1-palmitoyl-2-arachidonoylglycero-3-phosphocholine (PAPC) (with 100,000 cpm [¹⁴C]PAPC), 2 mM Triton X-100, 30% glycerol, and 3.75 μ g/ml cPLA₂ in a volume of 200 μ l. The substrate solution was prepared as described previously (19). Assays were run for 40 min at 40 °C. The reaction was quenched and worked up also as described previously (19).

Lysophospholipase Mixed Micelle Assay—The lysophospholipase activity was measured in a mixed micelle assay that contained 1 mm commercial 1-palmitoylglycero-3-phosphocholine (lyso-PC)² (with 100,000 cpm lyso-[¹⁴C]PC), 2 mm Triton X-100, 30% glycerol, and 0.5 μ g/ml cPLA₂ in 200 μ l of the standard buffer described above. The substrate was vortexed to clarity instead of probe sonicating. Assays were also run for 40 min at 40 °C and quenched using the modified Dole procedure (21).

Dual-substrate Assay—Assays containing both PAPC and lyso-PC in mixed micelles were composed of 1 mM PAPC, 1 mM lyso-PC (with 100,000 cpm either [¹⁴C]PAPC or lyso-[¹⁴C]PC), 4 mM Triton X-100, 30% glycerol, and 3.75 μ g/ml cPLA₂ in 200 μ l of the standard buffer. Assays were prepared and run analogous to the PC mixed micelle assay described above. Those assays containing [¹⁴C]PAPC were worked up as described for the PLA₂ mixed micelle assay, whereas those with lyso-[¹⁴C]PC were worked up as described for the lysophospholipase mixed micelle assay.

PC/DAGAssay—The PC/DAG assay was similar to that described by Kramer *et al.* (4), but utilized a higher concentration of substrate. This assay contained 20 μ M PAPC (with 100,000 cpm [¹⁴C]PAPC), 10 μ M 1,2-dioleoylglycerol, and 15–25 ng/ml cPLA₂ in 200 μ l of the standard buffer. The substrate was prepared by adding 3 × assay buffer to the dried PAPC/DAG and probe sonicating. Assays were run for 15 min at 40 °C and extracted using the Dole procedure as described above for the PLA₂ mixed micelle assay.

TLC Assay-Assays that required separation of fatty acid and monoglyceride or triglyceride products utilized the same substrate, buffer components, and assay conditions as described above. The reactions were quenched with 500 μ l of chloroform/methanol/acetic acid (2:4:1, v/v/v) instead of Dole reagent and then vortexed. To this, 1.0 ml of water and 500 μ l of chloroform were added, and the mixture was vortexed again. This solution was then centrifuged $(1000 \times g \text{ for } 2 \text{ min})$ to separate the organic and aqueous layers. 500 μ l of the organic layer was transferred to another test tube, and the solvent was evaporated in a vacuum oven overnight at 40 °C. The resulting lipid film was resuspended in 50 μ l of chloroform/methanol (2:1, v/v) and loaded onto TLC prep plates. Unlabeled fatty acid, monoglyceride, and/or triglyceride standards were added to the prep plate. The TLC plate was then developed in hexane/diethyl ether/acetic acid (70:30:1, v/v/v). The resulting TLC plate was visualized with iodine, and zones corresponding to fatty acid, starting phospholipid, monoglyceride, and/or triglyceride were scraped and counted. Blanks were conducted for every data point and substracted from the corresponding data point.

RESULTS

Regiospecificity of the Lysophospholipase Activity of $cPLA_2$ — Under the experimental conditions described, 1-PGPC, 2-PGPC, and GPC displayed distinct ³¹P NMR signals (Table I). This permitted simultaneous *in situ* monitoring of the three species by ³¹P NMR. Fig. 2 shows the effect of cPLA₂ on an equimolar mixture of the two lysophospholipid isomers. In the presence of

 $^{^2}$ Palmitoylglycero-3-phosphocholine used in the radiochemical assays was a mixture of *sn*-1 and *sn*-2 regioisomers and is generally referred to as lyso-PC in the text.

FIG. 2. Time course for the cPLA₂-catalyzed hydrolysis of the two regioisomers of palmitoylglycero-3-phosphocholine. Shown is a semilog plot of the time course for the hydrolysis of a 1:1 mixture of 1-PGPC and 2-PGPC. The data points from three separate experiments are shown representing the disappearance of 1-PGPC (\blacksquare) and 2-PGPC (\bigcirc) as monitored by ³¹P NMR. The *lines* represent first-order fits to 1-PGPC and 2-PGPC hydrolysis, respectively.

cPLA₂, both palmitoylglycero-3-phosphocholine isomers were rapidly consumed (<20% of the total starting palmitoylglycero-3-phosphocholine remained after 2 h). In addition, the consumption of palmitoylglycero-3-phosphocholine coincided with the expected appearance of GPC (Fig. 3A). In the absence of cPLA₂, no GPC formation was observed even after 24 h.

The time courses for the disappearance of both palmitoylglycero-3-phosphocholine isomers can be fit to first-order rates of decay. The hydrolysis of 1-PGPC displays an apparent firstorder rate constant of $0.087 \pm 0.008 \text{ min}^{-1}$, whereas the hydrolysis of 2-PGPC has an apparent first-order rate constant of $0.013 \pm 0.001 \text{ min}^{-1}$. Thus, in the presence of cPLA₂, 1-PGPC is consumed seven times faster than its 2-PGPC isomer.

By comparison, the formation of GPC is not a simple firstorder exponential process. Instead, it appears to be composed of a combination of two first-order processes (Fig. 3B). There is an initial fast formation of GPC, followed by a slower rate of GPC production. This result is consistent with a picture of GPC being produced via two non-equivalent simultaneous first-order reactions (22). In other words, cPLA₂ is catalyzing the hydrolysis of both 1-PGPC and 2-PGPC directly to GPC. Thus, the rate of GPC production can be described by $v = k_1$ [1-PGPC] + k_2 [2-PGPC]. A best fit of the data for GPC formation to this equation yields a k_1 of 0.079 \pm 0.009 min $^{-1}$ and a k_2 of 0.015 \pm 0.001 min^{-1} (Fig. 3B), both of which compare favorably with the experimentally determined apparent rate constants for 1-PGPC and 2-PGPC disappearance. The initial phase of GPC production is the result of both 1-PGPC and 2-PGPC being converted to product. A slower rate of GPC formation results when all the 1-PGPC is consumed, and the formation of GPC can occur only from hydrolysis of 2-PGPC.

Effect of Glycerol on the Lysophospholipase Activity of $cPLA_2$ —cPLA₂ catalyzes the transfer of the acyl group from palmitoylglycero-3-phosphocholine to glycerol in addition to water. Fig. 4A shows that when 30% glycerol by volume is present in an assay, both palmitoylglycerol and palmitic acid are generated from cPLA₂ activity. Thus, in the presence of glycerol, the total observed lysophospholipase activity in an assay can be accounted for by the combined rates of formation

FIG. 3. Time course for the concomitant formation of glycero-3-phosphocholine during cPLA₂-catalyzed hydrolysis of the two regioisomers of palmitoylglycero-3-phosphocholine. *A*, semilog plot of the time course for GPC formation from a 1:1 mixture of 1-PGPC and 2-PGPC; *B*, replot of *A* plotting [GPC]^{*I*} – [GPC] as a function of time (where [GPC]^{*I*} = [GPC] at completion of the reaction). The *line* represents a best fit to the data using the equation described under "Results": $v = k_1$ [1-PGPC] + k_2 [2-PGPC].

of both palmitoylglycerol and palmitic acid when monoglyceride and fatty acid products are not separated by TLC.

The partitioning of the palmitoyl group from palmitoylglycero-3-phosphocholine to glycerol increases with increasing concentration of glycerol in the presence of cPLA₂. Fig. 4*B* shows that monoglyceride formation increases linearly when the amount of glycerol in the assay is increased from 0 to 30% (v/v). The amount of monoglyceride produced corresponds to an increase of ~1 μ mol/mg for every 1% of glycerol (v/v).

Effect of DAG on cPLA₂ Activities—DAG does not accept the acyl group from a diacyl or lysophospholipid in the presence of cPLA₂. In the presence of cPLA₂ under a variety of conditions, no transfer of a palmityl group from palmitoylglycero-3-phosphocholine to DAG, by separating possible labeled triglyceride from palmitic acid on TLC, was detected. Similarly, no transfer of an arachidonyl group from PAPC to DAG was detected in the presence of cPLA₂. Hence, unlike lysophospholipid (10) or glycerol (11), DAG is not able accept the fatty acid from a diacyl or lysophospholipid substrate in the presence of cPLA₂.

This result is not surprising considering that in a mixed micelle assay, DAG does not even activate the activities of $cPLA_2$ as glycerol does. In fact, Fig. 5 shows that DAG actually inhibits the PLA_2 activity of $cPLA_2$ at high concentration. Interestingly, DAG has no effect on its lysophospholipase activity even at 10 mol % of total lipid. These experiments with DAG were carried out with mixed micelles of Triton X-100 contain-

FIG. 4. Effect of glycerol on the lysophospholipase activity of cPLA₂. A, shown is a time course of the lysophospholipase activity of cPLA₂ as determined by the TLC assay in the absence (\bigcirc) and presence $(\blacktriangledown, \blacklozenge, \blacksquare)$ of 30% (v/v) glycerol. The corresponding palmitic acid $(\bigcirc, \blacklozenge)$ and palmitoylglycerol (\blacktriangledown) produced are plotted. The total Dole product (\blacksquare) represents the combination of palmitic acid and palmitoylglycerol products from the reaction in glycerol. Each point represents the average of duplicates. *B*, the palmitic acid (\diamondsuit) , palmitoylglycerol (\blacktriangledown) , and total Dole product (\blacksquare) produced by cPLA₂ action on lyso-PC with increasing glycerol are plotted. Each point represents the average of duplicates.

FIG. 5. Effect of DAG on the PLA₂ and lysophospholipase activities of cPLA₂. The total Dole product formed by cPLA₂ action on PAPC (\blacksquare) and lyso-PC (\bullet) substrates in a 1:1 PAPC/lyso-PC mixed micelle assay is plotted as a function of DAG. Each point represents the average of duplicates.

ing both lyso-PC and PAPC substrates. In contrast, DAG does activate both the PLA_2 and lysophospholipase activities when Triton X-100 is not present (data not shown).

Inhibition of the Lysophospholipase Activity of $cPLA_2$ —The ability of activated ketones to inhibit the lysophospholipase activity of cPLA₂ was evaluated. Fig. 6A shows the effect of AA-TFMK, PA-TC, and an andamide on the lysophospholipase activity. The activity of the cPLA₂ control in this assay was 1.5 μ mol/min/mg, higher than the activity observed in a corresponding PLA₂ assay (0.2–0.7 μ mol/min/mg) (19). This higher activity using a lyso-PC substrate has been noted previously (10).

In this assay, AA-TFMK inhibited the lysophospholipase activity of cPLA₂ with an IC₅₀ of 70 μ M (0.023 mol fraction). PA-TC and anandamide did not inhibit the enzyme. This is in contrast to an assay of the enzyme's PLA₂ activity with a PAPC substrate, where AA-TFMK (19), PA-TC (19), and anandamide³ all appeared to inhibit the enzyme. Instead, in this assay,

both PA-TC and anandamide caused an increase in the lyso-phospholipase activity.

To clarify the observed differences in inhibition by these compounds of the PLA₂ and lysophospholipase activities of cPLA₂, activity was also examined under a different PLA₂ assay condition. In the PC/DAG assay, AA-TFMK inhibited enzyme activity with an IC₅₀ of 0.65 μ M (0.021 mol fraction) (Fig. 6*B*), whereas the presence of PA-TC and anandamide had no effect in this assay.

In a final experiment, we assayed both activities under identical assay conditions. We ensured that the PAPC and lyso-PC substrates were presented in a similar form by preparing Triton X-100 mixed micelles containing a 1:1 mixture of both PAPC and lyso-PC substrates. In parallel experiments, we then observed both enzyme activities (Fig. 7). In this dual-substrate assay, AA-TFMK again inhibited cPLA2, whereas PA-TC showed slightly weaker inhibition. More significantly, under these conditions, inhibition of the PLA2 activity closely paralleled inhibition of the lysophospholipase activity. It is also interesting that, unlike the single-substrate experiments, under these conditions, the PLA₂ and lysophospholipase activities have similar specific activities. Most important, the surface IC₅₀ (in mole fractions) of AA-TFMK is similar under all of the different experimental conditions (Table II), as would be expected for a true active site-directed inhibitor (19).

DISCUSSION

There are a number of characteristic features of the PLA_2 activity of $cPLA_2$. Among them is an ability to use glycerol as an acceptor of the cleaved fatty acid to generate monoglyceride (11). The presence of glycerol also appears to yield an increase in the measured PLA_2 activity. DAG has been reported to also cause an increase in the PLA_2 activity (4), and activated ketones have been shown to inhibit that activity (19).

In contrast, there is much less known about the lysophospholipase activity of $cPLA_2$, and what little is known does not appear to be consistent with the mutagenesis data suggesting a common active site for the two activities. For instance, although the PLA₂ activity is known to prefer arachidonic acidover palmitic acid-containing substrates (23), the rate of lysophospholipase activity has been shown to proceed at similar or greater rates on a palmitic acid-containing substrate than the rate of PLA₂ activity on arachidonic acid-containing substrates (10). The regiospecificity of the lysophospholipase reaction and

FIG. 6. Differential inhibition of cPLA₂ by a variety of inhibitors. cPLA₂ was assayed in the presence of increasing concentrations of PA-TC (\Box), anandamide (\blacksquare), or AA-TFMK (\bullet). *A*, in the standard lysophospholipase mixed micelle assay; *B*, in the PC/DAG assay measuring the PLA₂ activity. The enzyme activity is plotted as the percentage of the control activity, which was assayed in the absence of inhibitor; 100% activity represents 1.5 and 4.9 μ mol/min/mg, respectively. Each point represents the average of duplicates or triplicates.

FIG. 7. Inhibition of cPLA₂ in the dual-substrate assay. The PLA₂ and lysophospholipase activities of cPLA₂ were assayed in a 1:1 PAPC/lyso-PC mixed micelle assay in the presence of increasing concentrations of AA-TFMK (\bullet , \bigcirc) or PA-TC (\blacksquare , \Box). The enzyme activity is plotted as the percentage of the control activity, which was assayed in the absence of inhibitor; 100% activity represents 0.97 µmol/min/mg in the PLA₂ assay (*closed symbols*) and 0.84 µmol/min/mg in the lysophospholipase assay (*open symbols*). Each point represents the average of triplicates.

the effect of PLA_2 activators and inhibitors on the lysophospholipase activity are addressed below.

Regiospecificity—cPLA₂ catalyzes the hydrolysis of fatty acid from the *sn*-2 position of diacylphospholipids to yield a 1-acylglycero-3-phospholipid. In facilitating this reaction, cPLA₂ is highly specific for the *sn*-2 position of diacylphospholipid substrates. It has been reported that no fatty acid is released from the *sn*-1 position of diacylphospholipids (11). Only when the *sn*-2 ester was replaced with an unhydrolyzable ether linkage was cPLA₂-catalyzed hydrolysis of the remaining *sn*-1 ester bond detected. However, it was not known from which position cPLA₂ catalyzes the hydrolysis of fatty acids from lysophospholipids.

Lysophospholipids can exist as two positional isomers in which the fatty acid is acylated to either the sn-1 or sn-2

 $\begin{array}{c} {\rm TABLe \ II}\\ {\rm Comparison \ of \ the \ inhibition \ of \ cPLA_2 \ by \ AA-TFMK \ under \ different}\\ {\rm assay \ conditions} \end{array}$

 \rm{IC}_{50} is expressed in bulk concentration units $(\mu\rm{M})$ and surface mole fractions $(\chi_{\rm s})$

Assov	IC_{50}	
порау	$\mu_{ m M}$	$\chi_{ m s}$
PC mixed micelles	64	0.021
Lysophospholipid micelles	70	0.023
PC/DAG	0.65	0.021
PC/lysophospholipid mixed micelles		
PLA_2 activity	150	0.024
Lysophospholipase activity	160	0.026

position (Fig. 1). In addition, the fatty acyl chain is readily able to migrate between the two hydroxyl groups of the glycerol backbone. At equilibrium, palmitoylglycero-3-phosphocholine exists as a 9:1 mixture of the two isomers, with the palmitic acid predominately at the sn-1 position (20). In vitro studies of the lysophospholipase activity of cPLA₂ typically utilize commercially available 9:1 equilibrium mixtures of palmitoylglycero-3-phosphocholine, and the reaction is generally only followed to a few percent conversion by measuring the formation of palmitic acid (7, 10, 13). Hence, these experiments have not addressed the regiospecificity of the lysophospholipase activity of cPLA₂. Indeed, the lysophospholipase activity of cPLA₂ could have been due exclusively to the processing of the minor 2-palmitoylglycero-3-phosphocholine isomer by cPLA2, as might be expected for an analogue of its normal diacyl substrate.

We have found that $cPLA_2$ catalyzes the hydrolysis of 1-palmitoylglycero-3-phosphocholine seven times faster than its sn-2 isomer. Thus, the specificity of $cPLA_2$ for the sn-2 position of a diacylphospholipid substrate switches to a preference for the sn-1 position when the substrate is a lysophospholipid. The lysophospholipase sn-2 activity that is observed may in fact be a consequence of 2-PGPC acting as a poor analogue of a diacylphospholipid substrate for the phospholipase A_2 activity of $cPLA_2$.

Acyl migration can occur between the two positions of a lysophospholipid and could complicate or obscure our results. However, at pH 7 in the absence of the enzyme, the half-life for migration of palmitic acid between the two hydroxyl groups of GPC is 20 h (20). This is too slow to account for the observed rate of disappearance of 1-PGPC in our experiments; nor is cPLA₂ likely to be catalyzing the isomerization of 1-PGPC to 2-PGPC because the observed consumption of 1-PGPC would then have to proceed through a 2-PGPC intermediate, and then the observed rate of 1-PGPC disappearance could never exceed the rate of 2-PGPC disappearance. (At best, the observed rates of disappearance of 1-PGPC and 2-PGPC would be equivalent in the situation that the hydrolysis reaction is rate-determining.) We find the $cPLA_2\mbox{-}catalyzed$ rate of 1-PGPC disappearance to be 7-fold greater than the rate of 2-PGPC disappearance. The above scenario would assume that the isomerization and hydrolysis reactions occur sequentially on the enzyme. In the case that the isomerization and hydrolysis are independent events on the enzyme and intermediate 2-PGPC is released, then the faster rate of 1-PGPC disappearance we observed should result in an initial build-up in the amount of 2-PGPC and an apparent slower initial rate of 2-PGPC disappearance. (If the isomerization step is slower, then the rate of 1-PGPC disappearance would remain constant, but the rate of 2-PGPC disappearance would initially appear fast as the existing 2-PGPC is depleted and would eventually slow to that of 1-PGPC disappearance because it is ratedetermining.) In fact, the experimentally measured rates of disappearance of both isomers proceed at constant, but different rates. Thus, acyl migration does not appear to be occurring under our experimental conditions and cannot account for the results we observed.

The simplest explanation for the difference in positional specificity between the PLA₂ and lysophospholipase activities of cPLA₂ is that there are separate catalytic sites responsible for the two activities. However, there is considerable evidence that both activities share a common catalytic serine residue. The mechanism of cPLA₂ action has been studied by a number of groups, and there are now several pieces of evidence that implicate the involvement of an acyl-enzyme intermediate. Transfer of the fatty acid from both diacyl- and lysophospholipid substrates to acceptors other than water initially suggested the existence of such an acyl-enzyme intermediate (10, 11). Further corroboration came when NMR studies indicated the formation of a hemiketal between arachidonyl trifluoromethyl ketone (a potent inhibitor of both activities) and an enzyme hydroxyl group (24). Finally, a serine residue (Ser-228) was identified to be essential for the PLA₂ activity and was also shown to be the site of enzyme acylation (15, 25). This serine residue is required not only for the PLA₂ activity, but also for the lysophospholipase activity. The involvement of serine 228 in both activities of cPLA₂ argues against the likelihood of separate catalytic sites for its two activities.

An alternative explanation that accounts for the observed differences in positional specificity of the two activities of cPLA₂ and the common serine required for both activities is that there are different binding pockets on the enzyme for the two substrates that orient positionally different acyl chains toward the shared catalytic serine. This scenario might explain the anomalous report of an antibody to cPLA₂ that inhibits the PLA₂ activity and not the lysophospholipase activity (14). The antibody would have to be only blocking a region of the enzyme responsible for binding of diacylphospholipids and leaving free a lysophospholipid-binding site and the catalytic serine.

Effect of Glycerol, DAG, and Inhibitors—Based on our earlier studies (26) with a membrane-bound PLA_2 , in which glycerol was shown to increase its activity, glycerol was also added to $cPLA_2$ assays at up to 70% by volume to improve the activity that was measured (2). More recently, it has been shown that glycerol is also able to act as a nucleophile and to accept the fatty acid from a diacylphospholipid substrate (11). In typical radiochemical assays during the isolation of the radiolabeled fatty acid product, the monoglyceride product from the acylation of glycerol also elutes with the free fatty acid formed through the normal hydrolysis pathway, and the two species are counted together. This results in an apparent hydrolysis activity that is greater than what would be measured if the monoglyceride and fatty acid products are separated. Thus, the apparent activity is actually a combination of the formation of the two products as well as an activation of the hydrolysis reaction with water itself. In contrast, with DAG, we have found no evidence for a second product and no activation in a mixed micelle assay.

We have previously shown that activated ketones can inhibit the PLA_2 activity of $cPLA_2$ (19). When we examined these same inhibitors in an assay of the lysophospholipase activity of cPLA₂, we found that they were behaving quite differently. AA-TFMK inhibits the lysophospholipase activity, but PA-TC and anandamide do not. This suggests that these inhibitors are differentiating between the two cPLA₂ activities. Furthermore, testing these same inhibitors against the PLA₂ activity in the DAG assay yielded the same unexpected results. The inhibitors only showed similar effects against both the PLA₂ and lysophospholipase activities when examined under identical conditions in which both PAPC and lyso-PC substrates were diluted into Triton X-100 mixed micelles. More important, under these conditions, the PLA2 and lysophospholipase activities decreased in parallel in response to the inhibitors. Thus, some facet of the substrate presentation in the different assay conditions appears to affect the ability of the different compounds to inhibit cPLA₂ rather than inherent differences between the two activities. More important, AA-TFMK inhibits both the PLA₂ and lysophospholipase activities with the same surface IC₅₀ (in mole fractions) in all of the assays examined.

REFERENCES

- 1. Dennis, E. A. (1994) J. Biol. Chem. 269, 13057-13060
- Clark, J. D., Milona, N., and Knopf, J. L. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 7708–7712
- Gronich, J. H., Boventre, J. V., and Nemenoff, R. A. (1990) Biochem. J. 271, 37–43
- Kramer, R. M., Roberts, E. F., Manetta, J., and Putnam, J. E. (1991) J. Biol. Chem. 266, 5268–5272
- Takayama, K., Kudo, I., Kim, D. K., Nagata, K., Nozawa, T., and Inoue, K. (1991) FEBS Lett. 282, 326–330
- 6. Wijkander, J., and Sundler, R. (1991) Eur. J. Biochem. 202, 873-880
- 7. Leslie, C. C. (1991) J. Biol. Chem. 266, 11366-11371
- 8. Smith, W. L. (1992) Am. J. Physiol. 263, F181–F191
- Clark, J. D., Schievella, A. R., Nalefski, E. A., and Lin, L.-L. (1995) J. Lipid Mediat. Cell Signal. 12, 83–117
- Reynolds, L. J., Hughes, L. L., Louis, A. I., Kramer, R. M., and Dennis, E. A. (1993) Biochim. Biophys. Acta 1167, 272–280
- 11. Hanel, A. M., and Gelb, M. H. (1995) Biochemistry 34, 7807-7818
- Huang, Z., Laliberte, F., Tremblay, N. M., Weech, P. K., and Street, I. P. (1994) Anal. Biochem. 222, 110–115
- de Carvalho, M. G. S., Garritano, J., and Leslie, C. C. (1995) J. Biol. Chem. 270, 20439–20446
- Fujimori, Y., Kudo, I., Fujita, K., and Inoue, K. (1993) Eur. J. Biochem. 218, 629-635
- Sharp, J. D., Pickard, R. T., Chiou, X. G., Manetta, J. V., Kovacevic, S., Miller, J. R., Varshavsky, A. D., Roberts, E. F., Strifler, B. A., Brems, D. N., and Kramer, R. M. (1994) J. Biol. Chem. 269, 23250–23254
- 16. Stafford, R. E. D., and Dennis, E. A. (1988) Colloids Surf. 30, 47-64
- 17. Plückthun, A., and Dennis, E. A. (1981) J. Phys. Chem. 85, 678-683
- Street, I. P., Lin, H. K., Laliberte, F., Ghomashchi, F., Wang, Z., Perrier, H., Tremblay, N. M., Huang, Z., Weech, P. K., and Gelb, M. H. (1993) *Biochemistry* 32, 5935–5940
- Conde-Frieboes, K., Reynolds, L. J., Lio, Y., Hale, M., Wasserman, H. H., and Dennis, E. A. (1996) J. Am. Chem. Soc. 118, 5519–5525
- 20. Plückthun, A., and Dennis, E. A. (1982) Biochemistry 21, 1743-1750
- 21. Zhang, Y., and Dennis, E. A. (1988) J. Biol. Chem. 263, 9965–9972
- 22. Brown, H. C., and Fletcher, R. S. (1949) J. Am. Chem. Soc. 71, 1845–1854
- Diez, E., Louis-Flamberg, P., Hall, R. H., and Mayer, R. J. (1992) *J. Biol. Chem.* 267, 18342–18348
 Trimble, L. A., Street, I. P., Perrier, H., Tremblay, N. M., Weech, P. K., and
- Bernstein, M. A. (1993) Biochemistry **32**, 12560–12565
- Huang, Z., Payette, P., Abdullah, K., Cromlish, W. A., and Kennedy, B. (1996) Biochemistry 35, 3712–3721
- Ulevitch, R. J., Watanabe, Y., Sano, M., Lister, M. D., Deems, R. A., and Dennis, E. A. (1988) J. Biol. Chem. 263, 3079–3085

Activation, Inhibition, and Regiospecificity of the Lysophospholipase Activity of the 85-kDa Group IV Cytosolic Phospholipase A 2 Richard W. Loo, Kilian Conde-Frieboes, Laure J. Reynolds and Edward A. Dennis

J. Biol. Chem. 1997, 272:19214-19219. doi: 10.1074/jbc.272.31.19214

Access the most updated version of this article at http://www.jbc.org/content/272/31/19214

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 26 references, 10 of which can be accessed free at http://www.jbc.org/content/272/31/19214.full.html#ref-list-1