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ABSTRACT OF THE DISSERTATION

Essays on Robust Mechanism Design

by

Wanchang Zhang

Doctor of Philosophy in Economics

University of California San Diego, 2023

Professor Songzi Du, Co-Chair
Professor Joel Sobel, Co-Chair

This dissertation studies the robust design of institutions when the mechanism designer

does not fully know the environment.

In Chapter 1, I construct a novel random double auction as a robust bilateral trading

mechanism for a profit-maximizing intermediary who facilitates trade between a buyer and a

seller. It works as follows. The intermediary publicly commits to charging a fixed commission

fee and randomly drawing a spread from a uniform distribution. Then the buyer submits a bid

price and the seller submits an ask price simultaneously. If the difference between the bid price

and the ask price is greater than the realized spread, then the asset is transacted at the midpoint

price, and each pays the intermediary half of the fixed commission fee. Otherwise, no trade

ix



takes place, and no one pays or receives anything. I show that the random double auction is

a dominant-strategy mechanism, always guarantees a positive profit, and maximizes the profit

guarantee across all dominant-strategy mechanisms.

In Chapter 2, I study the single-unit auction design when the seller is assumed to have

information only about the marginal distribution of a generic bidder’s valuation, but does not

know the correlation structure of the joint distribution of bidders’ valuations. For the two-bidder

case, a second-price auction with uniformly distributed random reserve maximizes the worst-case

expected revenue across all dominant-strategy mechanisms. For the N-bidder (N ≥ 3) case,

a second-price auction with Beta-distributed random reserve is a maxmin mechanism among

standard (only a bidder with the highest bid could win the good) dominant-strategy mechanisms.

In Chapter 3, I study the auction design of selling multiple goods when the seller only

knows the upper bounds of bidders’ values for each good and has no additional distributional

information. The designer takes a minimax regret approach. The expected regret from a

mechanism given a joint distribution over value profiles and an equilibrium is the difference

between the full surplus and the expected revenue. I find that a separate second-price auction

with random reserves minimizes her worst-case expected regret across all participation-securing

Bayesian mechanisms.
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INTRODUCTION

The classic mechanism design theory assumes that the designer knows the agents’

information structure. The design goal is to maximize some objective, such as profit, under the

known information structure. While the classic theory is beautiful and influential, the optimal

mechanism is sensitive to the detailed assumptions about the information structure. Robert

Wilson criticized the classic theory for its heavy reliance on the strong common knowledge

assumption of the environment. Instead, I assume that the designer only has partial knowledge

of the information structure, and evaluates a mechanism by its worst-case performance under

this partial knowledge. I construct a mechanism that maximizes the worst-case performance for

the designer. This approach leads to the discovery of novel and attractive mechanisms along with

new economic insights. This dissertation consists of three essays that study robust mechanism

design problem in distinct contexts. The first essay studies the robust design in the context of

bilateral trade. The remaining two essays studies the robust design in the context of auction.

In Chapter 1, I study the design of a trading platform for a profit-maximizing intermediary

who facilitates trade between a buyer and a seller. The intermediary makes profit from the

difference between what the buyer pays and what the seller receives. The intermediary can be a

brokerage firm that typically gets compensation by means of commissions in the stock market,

an automobile dealer who charges dealer fees in the car market, or a market maker who earns

profit through the bid-ask spread in the over the counter (OTC) market. I consider the correlated

private value environment. The intermediary only knows the ex-ante gain from trade, but does

not know the joint distribution of the traders’ private values1. The intermediary considers the

class of all dominant-strategy mechanisms. The intermediary evaluates a trading mechanism

by its worst-case expected profit (referred to as “profit guarantee”) across all feasible value

distributions consistent with the known ex-ante gain from trade. The intermediary seeks a trading

mechanism that maximizes the profit guarantee across all dominant-strategy mechanisms.

1That is, the intermediary knows neither the marginal distributions nor the correlation structure except for the
ex-ante gain from trade.
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The main contribution is the construction of a random double auction as a robust two-

sided trading mechanism, which runs as follows.

Step 0: fixed commission fee. The intermediary publicly commits to charging a fixed commission

fee r ∈ (0,1), where 1 is the normalized maximum value for each trader.

Step 1: uniformly random spread. The intermediary publicly commits to randomly drawing a

spread s uniformly on [r,1]. Then a random spread is drawn whose realization is not observed by

either the buyer or the seller. The buyer and the seller both know the fixed commission fee r and

the uniform distribution on [r,1] from which the random spread is drawn.

Step 2: midpoint transaction price. The buyer submits a bid price b, and the seller submits an

ask price a, simultaneously. If the difference between the bid price and the ask price is greater

than the realized spread, or b−a > s, then the seller sells the asset to the buyer at the midpoint

price b+a
2 , and each pays the intermediary half of the fixed commission fee r

2 . Otherwise, no

trade takes place, and no one pays or receives anything.

Conditional on trading, the random double auction reduces to a familiar double auction,

as the transaction price is the midpoint of the bid price and the ask price. The main novelty is the

uniformly random spread, which makes the trade take place randomly.

The random spread plays a dual role. First, the random spread decreases the traders’

incentive to cheat. Without a random spread, the buyer has an incentive to submit a bid price

lower than his true value, as he would lower the transaction price by doing so. However, with a

random spread, if the buyer submits a lower bid price, then the trade will also take place with

a lower probability, limiting the profit from deviating to a lower bid price. A similar argument

can be made for the seller. A judiciously chosen random spread — uniformly random spread —

eliminates the traders’ incentive to cheat, and makes the mechanism strategy-proof.

Second, the random spread hedges against uncertainty about the information structure.

The intermediary is indifferent to any feasible value distribution whose support is contained in

the set of value profiles where the difference between values is higher than the fixed commission

fee. This property holds because the ex-post profit from any value profile in the support of

2



an aforementioned value distribution is linear, as uniformly random spread translates into a

linear trading probability, and the profit conditional on trading is the fixed commission fee.

The profit guarantee of the random double auction is always positive. In contrast, the profit

guarantee of any deterministic dominant-strategy mechanism is zero if the known ex-ante gain

from trade is weakly below one half. Furthermore, the random double auction (with a specific

fixed commission fee) has the highest profit guarantee across all dominant-strategy mechanisms.

The remaining two chapters study other robust mechanism design problems, and offer

variations of random double auction. These chapters study a one-sided auction market, whereas

Chapter 1 studies a two-sided bilateral trade market . In addition, these studies differ in

A) what designer knows (known ex-ante gain from trade vs. known marginal distributions vs.

known upper bounds),

B) objective function (maxmin profit vs. minimax regret),

C) solution concept (dominant strategy vs. Bayesian Nash Equilibrium),

D) dimensionality (single-unit good vs. multiple goods).

In Chapter 2, I study the single-unit auction design for a profit-maximizing seller. I

consider the correlated private value environment. The seller only knows the marginal distribution

of a generic bidder’s value, but does not know the correlation structure among bidders’ values.

The seller considers the class of all dominant-strategy mechanisms. She evaluates a mechanism’s

performance by its worst-case expected profit across all possible joint distributions consistent

with the know marginal distribution, and seeks a maxmin mechanism that maximizes the profit

guarantee.

The main result is that a second-price auction with uniformly random reserve price is

a maxmin mechanism for the two-bidder case, provided that the marginal distribution satisfies

certain regularity conditions. The uniformly random reserve price makes the mechanism exhibit

a full-insurance property : The expected profit is the same across all joint distributions consistent

with the known marginal distribution, making it a good candidate for a maxmin mechanism.

The regularity conditions capture a wide range of heavy-tailed distributions, which are observed

3



in many real-world auctions. I partially extend the result to arbitrary number of bidders: A

second-price auction with a Beta-distributed random reserve price is a maxmin mechanism

among standard dominant-strategy mechanisms, whose defining property is that only a bidder

with the highest bid could win the good.

In Chapter 3, I study the auction design of selling multiple goods when the seller only

knows the upper bounds of bidders’ values for each good and has no additional distributional

information. Here the maxmin expected profit objective is uninteresting, as the worst case is

simply that the bidders’ values for all goods are zeros for sure. Instead, the seller takes a minimax

regret approach. The seller considers all participation-securing mechanisms. The expected regret

from a mechanism given a joint distribution over value profiles and an equilibrium is defined as

the difference between the full surplus and the expected profit. The seller seeks a minimax regret

mechanism that minimizes her worst-case expected regret across all possible joint distributions

over value profiles and all equilibria.

The main result is that a separate second-price auction with random reserve prices

is a minimax regret mechanism for general upper bounds. Under this mechanism, the

seller holds a separate auction for each good; the formats of these auctions are second-price

auctions with random reserve prices. To see the intuition behind separation, it is instructive

to consider another mechanism of auctioning the grand bundle (only the bundle of all goods

is auctioned). I argue that this mechanism may result in a high regret. Consider a three-good

three-bidder example and an extremely asymmetric value profile in which each bidder values

a different good (assuming that the upper bound on each bidder’s values for each good is 1)

: (v1
1,v

2
1,v

3
1) = (1,0,0),(v1

2,v
2
2,v

3
2) = (0,1,0),(v1

3,v
2
3,v

3
3) = (0,0,1).2 The designer will lose all

but one good if auctioning the grand bundle: She can at most obtain a profit of 1 from one

of the goods but will suffer a regret of 2 from losing the other goods. In contrast, separation

can guarantee a good regret performance for each good. Intuitively, auctioning the grand

bundle performs just like selling one good at this value profile, while selling separately allows

2The superscript represents the good, and the subscript represents the bidder.
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the designer to earn more. Furthermore, the same argument implies that partial bundling (a

mechanism in which a bundle of some goods are auctioned) may perform worse than separate

selling.
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Chapter 1

Random Double Auction: A Robust

Bilateral Trading Mechanism

1.1 Introduction

1.1.1 Background and Motivation

At every moment, a huge amount of trades are facilitated by intermediaries charging

fees for their intermediary services in matching buyers with sellers. For example, stocks are

sold through a trading platform that typically gets compensation by means of commissions; cars

are sold through an automobile dealer who charges dealer fees; many bonds, commodities and

derivatives are sold in the over-the-counter market (OTC) where a market maker earns profits

through the bid-ask spread.

There are many situations in which the uncertainty about the value of the asset being

traded is large, e.g., a newly public stock, and Tesla’s new model. Intermediaries may then know

little of the concerned parties’ willingness to trade and only have an overall estimate about it.

Given the large uncertainty towards the two-sided market, it is natural for the intermediary to

seek for a trading mechanism that guarantees a good profit. How should a profit-maximizing

6



intermediary design trading rules in such situations? Would the intermediary still be able to

guarantee a positive profit and thus have strict incentives to offer intermediary services?

To answer these questions, I study the design of profit-maximizing trading mechanisms

for the two-sided market when the intermediary has limited knowledge about the value

distribution of the buyer and the seller. Specifically, I assume that the intermediary knows

only the ex-ante gain from trade1, denoted by GFT , but does not know the joint distribution

of the traders’ private values2. A joint distribution consistent with the known ex-ante gain

from trade is referred to as a feasible value distribution. The intermediary considers the class

of all dominant-strategy mechanisms3. Dominant-strategy mechanisms are attractive because

the intermediary can predict trading behavior without making assumptions about the traders’

beliefs. The intermediary evaluates a mechanism’s performance by the expected profit under the

dominant-strategy equilibrium in the worst case across all feasible value distributions, referred

to as the profit guarantee, and seeks a mechanism that maximizes the profit guarantee across all

dominant-strategy mechanisms, referred to as a maxmin trading mechanism.

Let me comment briefly on the maxmin modeling approach. At a high level, the maxmin

modeling approach addresses an important issue of the classic mechanism design theory, in which

the designer is assumed to know the agents’ information structure and maximize some objective

under her known information structure, e.g., Myerson (1981), Myerson and Satterthwaite (1983)

and Crémer and McLean (1985, 1988). Although the classic theory is beautiful and influential,

the optimal mechanism is sensitive to the detailed assumptions about the information structure.

In contrast, the maxmin modeling approach leads to an answer that depends less on the details

about the information structure.

Several motivations can be offered for the assumption about the intermediary’s limited

1The ex-ante gain from trade is defined to be E[max{Buyer’s value−Seller’s value,0}], where the expectation
is taken with respect to the joint distribution of the traders’ private values.

2That is, the intermediary knows neither the marginal distributions nor the correlation structure except for the
ex-ante gain from trade, which is a summary statistics of the joint distribution.

3A trading mechanism is a dominant-strategy mechanism if each trader has a strategy that is optimal and yields
a non-negative ex-post payoff, regardless of the other trader’s strategy.

7



knowledge. First, the ex-ante gain from trade is a simple summary statistics, whereas the

joint distribution is a high-dimensional object. Therefore, it is relatively easy to estimate the

ex-ante gain from trade, while obtaining an accurate estimate of the whole joint distribution

often requires unrealistically many data about the traders’ joint value profiles. In addition, the

knowledge of the ex-ante gain from trade is arguably the minimal amount of information under

which, as I will show, one obtains a non-trivial answer. Therefore, this model can be viewed as a

natural benchmark. More importantly, this assumption leads to the discovery of a novel trading

mechanism with appealing properties along with new economic insights.

1.1.2 Results

The main contribution is the construction of a random double auction as a robust bilateral

trading mechanism. It works as follows.

Step 0: Fixed commission fee. The intermediary publicly commits to charging a fixed

commission fee r ∈ (0,1)4, where 1 is the normalized maximum value for each trader.

Step 1: Uniformly random spread. The intermediary publicly commits to randomly drawing a

spread s uniformly on [r,1]. Then a random spread is drawn whose realization is not observed by

either the buyer or the seller. The buyer and the seller both know the fixed commission fee r and

that the random spread is drawn from the uniform distribution on [r,1].

Step 2: Midpoint transaction price. The buyer submits a bid price b, and the seller submits an

ask price a, simultaneously. If the difference between the bid price and the ask price is greater

than the realized spread, or b−a > s, then the seller sells the asset to the buyer at the midpoint

price b+a
2 , and each pays the intermediary half of the fixed commission fee r

2 . Otherwise, no

trade takes place, and no one pays or receives anything.

Under this mechanism, the trade takes place randomly. Conditional on trading, the

mechanism reduces to a double auction, as the transaction price is the midpoint of the bid price

4The optimal fixed commission fee r is determined by the known ex-ante gain from trade, details of which are
given when deriving the profit guarantee of the random double auction.
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and the ask price; in addition, the intermediary earns r as a fixed total commission from both

parties. Although both traders have to pay half of the fixed commission fee to the intermediary

conditional on trading, this mechanism is ex-post individually rational: Each trader’s ex-post

payoff is always non-negative by being honest, regardless of the other trader’s submission. This

is because the lower bound of the random spread is the fixed commission fee.

The random double auction is a trading mechanism that combines three features: A

double auction, a fixed commission fee, and a random spread. Indeed, the first two features are

familiar in the real world. First, a double auction is widely used in stock exchanges as well

as in dark pools5, e.g., the New York Stock Exchange (NYSE) and the Tokyo Stock Exchange

(TSE) use a double auction to determine the opening prices; block-trading dark pools such

as Liquidnet or POSIT typically match orders at the midpoint of the prevailing bid-ask prices

(Duffie and Zhu, 2017). Second, brokerage firms often adopt the fixed-commission practice,

e.g., Interactive Brokers offers fixed-commission plans for many financial assets6; E*TRADE

charges a fixed commission per contract for futures contracts7. The main novelty of the random

double auction comes from the third feature— a random spread8. Importantly, the random spread

both disciplines the traders for cheating and hedges against uncertainty towards the traders’

information structure. I next illustrate the key properties of the random double auction along

with elaborating the dual role played by the random spread.

Strategy-proofness. The random double auction is strategy-proof (Proposition 1), i.e.,

5A dark pool is a privately organized financial forum or exchange for trading securities that are not accessible
by the investing public. Dark pools came about primarily to facilitate block trading involving a huge number of
securities.

6Interactive Brokers is a brokerage firm. From its official website (interactivebrokers.com), it offers a fixed-
commission plan that charges $0.005 per share for stocks in US; it also offers a fixed-commission plan that charges
$ 0.065 per contract for NANOS Options on CBOE.

7E*TRADE is also a brokerage firm. From its official website (us.etrade.com), it charges $1.5 per contract for
futures contracts.

8The spread s in the random double auction is closely related to but different from the “bid-ask spread”, also
called “market-maker spread”, which refers to the difference between the price at which a market-maker is willing
to buy an asset and the price at which she is willing to sell the asset. Similar to the spread s, the bid-ask spread
determines whether a trade takes place given a bid-ask pair. The bid-ask spread is an important source of profit for a
market maker when she facilitates a trade successfully. In contrast, the spread s only determines whether a trade
takes place, but does not affect the profit conditional on trading.

9



it is a dominant strategy for the buyer (resp, the seller) to submit a bid price (resp, an ask price)

equal to his private value. This is a priori surprising, as conditional on trading, the mechanism

reduces to a double auction, and a double auction per se is not strategy-proof (Chatterjee and

Samuelson, 1983). This is because, the buyer (resp, the seller) has an incentive to submit a

bid price (resp, an ask price) lower (resp, higher) than his true value to lower (resp, raise) the

transaction price. A random spread makes it costly for the traders to cheat. This is because,

with a random spread, if the buyer (resp, the seller) submits a lower bid price (resp, a higher ask

price), then the trade will take place with a lower probability, which limits the buyer’s (resp, the

seller’s) payoff from deviating to a lower bid price (resp, a higher ask price). Remarkably, a

uniformly random spread eliminates the traders’ incentive to cheat and makes the mechanism

strategy-proof. To see this, note that the buyer’s ex-post payoff from submitting a bid price b

when his true value is vB and the seller submits an ask price a (assuming trade takes place with a

positive probability) is
b−a− r

1− r
·
(

vB −
b+a+ r

2

)
, (1)

where the first term is the trading probability and the second term is the ex-post payoff of the buyer

conditional on trading. Note that (1) is a quadratic function in the bid price b. It is straightforward

to show that b = vB maximizes his ex-post payoff regardless of the seller’s submitted ask price

a. Similarly, truth-telling maximizes the ex-post payoff for the seller regardless of the buyer’s

submitted bid price b.

Positive profit guarantee. The profit guarantee of the random double auction is

always positive (Proposition 2). In contrast, as I will show in Theorem 5, the profit guarantee of

any deterministic dominant-strategy mechanism is zero if the known ex-ante gain from trade is

weakly below one half. The key step to derive the profit guarantee of the random double auction

is to show the convexity of the ex-post profit function in the ex-post gain from trade. Therefore,

a point mass on the value profile (GFT,0) minimizes the expected profit across all feasible value

distributions.
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Furthermore, the random double auction exhibits a hedging property: The intermediary is

indifferent to any feasible value distribution whose support is contained in the set of value profiles

where the difference between values is higher than the fixed commission fee, which renders the

random double auction a good candidate for a maxmin trading mechanism. This property holds

because the ex-post profit from any value profile in the support of an aforementioned feasible

value distribution is linear. Indeed, any aforementioned feasible value distribution minimizes the

expected profit under the random double auction.

Optimal profit guarantee. The random double auction gives the optimal profit

guarantee across all dominant-strategy mechanisms (Theorem 1). To show this, I construct a

feasible value distribution, and show that the profit guarantee of the random double auction is

the tight upper bound on the expected profit across all dominant-strategy mechanisms against the

constructed value distribution. In addition, this upper bound is hit by the random double auction.

The constructed value distribution is a symmetric triangular value distribution that can

be described as follows. The support is a symmetric triangular subset in the set of joint values,

which is the same as the trading region9 of the random double auction. The marginal distribution

for the buyer is a combination of a uniform distribution on (r,1) and an atom on 1, while for the

seller is a combination of a uniform distribution on (0,1− r) and an atom on 0. The conditional

distribution is some truncated generalized Pareto distribution with an atom on 1 (resp, 0) for the

buyer (resp, the seller).

There are many different ways to model the intermediary’s limited knowledge about

the value distribution, and the results can be extended to several other models of the limited

knowledge. For the model where the intermediary knows only the difference between the

expectations of the traders’ values, I show that the random double auction remains a maxmin

trading mechanism. For the model where the intermediary knows only the expectations of the

traders’ values, I show that the random double auction remains a maxmin trading mechanism for

9I refer to the set of value profiles in which trade takes place with a positive probability as the trading region.
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the symmetric10 informational environment. For the asymmetric informational environment, I

show that a generalized random double auction is a maxmin trading mechanism. It generalizes

the random double auction in that it approximates the random double auction as the asymmetric

informational environment approximates the symmetric one.

Randomized trading is a salient property of the random double auction. This requires the

intermediary to have full commitment power, which is a standard assumption in the mechanism

design literature (e.g., Myerson (1981)). However, in practice, it is hard for the traders to check

whether the randomization is done according to the specified trading rule. The traders then may

not trust the specified randomization. This motivates the search for a trading mechanism that

maximizes the profit guarantee across all deterministic dominant-strategy mechanisms. Such a

trading mechanism is referred to as a maxmin deterministic trading mechanism. I characterize

the class of maxmin deterministic trading mechanisms for any informational environment with a

non-trivial profit guarantee (Theorem 5). Examples of maxmin deterministic trading mechanisms

include a linear trading mechanism, in which trade takes place with probability one if and only

if the difference between the bid price and the ask price exceeds a threshold, and a double

posted-price trading mechanism, in which trade takes place with probability one if and only if

the bid price exceeds a threshold and the ask price falls short of a threshold.

In addition, I extend my result to a more general model in which the intermediary can

hold the asset. That is, the sum of the traders’ allocations is only required to be weakly less than

1. I show that the random double auction remains a maxmin trading mechanism (Theorem 6).

Finally, I apply my result to an information design problem in which a financial regulator can

choose a probability distribution of the value profile of the buyer and the seller to maximize their

welfare. The intermediary, after observing the choice of the distribution but not the realized joint

values, designs a profit-maximizing trading mechanism across all dominant-strategy mechanisms.

I show that the symmetric triangular value distribution is a solution to this financial regulator’s

10Roughly speaking, the (a)symmetric information environment is one where the two-sided markets have
(non-)identical willingness to trade on average.
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information design problem (Theorem 7).

The remainder of the introduction discusses the related literature. Section 1.2 presents

the model. Section 1.3 characterizes the main results. Section 1.4 characterizes the results for

other models of limited knowledge. Section 1.5 characterizes the class of maxmin deterministic

trading mechanisms. Section 1.6 extends and discusses the main results. Preliminary analysis

and omitted proofs are in the Appendix.

1.1.3 Related Literature

This paper is related to the classic mechanism design literature. Myerson and

Satterthwaite (1983) (henceforth MS) study the design of optimal bilateral trading mechanisms

assuming the intermediary knows the distribution of the traders’ private values and that these

values are independently distributed. In contrast, the intermediary in my paper knows only

the ex-ante gain from trade, but does not know the joint distribution of the traders’ values.

Importantly, I permit correlation between values. The intermediary in MS maximizes expected

profit, whereas the intermediary in my paper maximizes the worst-case expected profit. The

optimal trading mechanism in MS is deterministic, provided that some regularity conditions

hold, whereas the maxmin trading mechanism in my paper involves randomized trade. Moreover,

the optimal trading mechanism in MS is in general complicated. Under their mechanism, the

trade takes place if and only if the buyer’s virtual value is greater than the seller’s one. These

virtual values, however, depend on the fine details of the value distributions, and are non-linear

functions of the traders’ values in general11. In contrast, the maxmin trading mechanism in

my paper is simple. Under the random double auction, the trade takes place if and only if the

difference between the traders’ values is greater than a uniformly random spread.

This paper contributes to the literature on robust mechanism design. One of the main

differences is that I focus on a two-sided market, whereas most of the literature focuses on a
11Except for a special circumstance in which both traders’ value are uniformly distributed.
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one-sided market.

Carrasco et al. (2018) study the design of profit-maximizing selling mechanisms when a

seller faced with a single buyer only knows the first n moments of the buyer’s value distribution (n

can be any positive integer), and solve the problem in which the seller only knows the expectation

of the buyer’s value as a special case. Indeed, their problem in the special case is equivalent to

the intermediary’s problem when she knows the ex-ante gain from trade and the seller’s value

is commonly known to be zero. This is because the ex-ante gain from trade is the same as the

expectation of the buyer’s value if the seller’s value is zero. In contrast, my paper studies the

intermediary’s problem when she knows only the ex-ante gain from trade. Importantly, there is

two-sided private information in my paper. This adds complications to the analysis in two ways.

First, the mechanism in my paper has to respect the seller’s incentive constraint, in addition to

the buyer’s one. Second, the intermediary is faced with a stronger “adversary” in my paper: The

adversary can carefully choose the correlation structure between the traders’ values to minimize

the expected profit, in addition to choosing the distribution of the buyer’s value. Indeed, the worst

value distribution in my paper has a rather intricate correlation structure exhibiting a particular

positive correlation.

Zhang (2022a) considers a model of one-sided auction design in which the designer

(the auctioneer) knows the marginal distribution of each bidder’s value but does not know the

correlation structure. He finds that the second-price auction with the uniformly random reserve

price is a maxmin auction across all dominant-strategy mechanisms under certain regularity

conditions for the two-bidder case. In contrast, the designer (the intermediary) in this paper

knows less: She does not know the marginal distribution of each trader’s value, in addition to not

knowing the correlation structure between the traders’ values. Methodologically, both papers

construct worst value distributions to proceed the analysis. However, the construction of the

worst value distribution is more involved in this paper: It requires me to solve a partial integral

equation in addition to ordinary differential equations.

There are other papers seeking robustness to value distributions in a one-side market, e.g.,
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Auster (2018), Bergemann and Schlag (2011), Carroll (2017), Che and Zhong (2021). A separate

strand of papers focuses on the case in which the designer does not have reliable information

about the agents’ hierarchies of beliefs about each other while assuming the knowledge of the

payoff environment, e.g., Bergemann and Morris (2005), Chung and Ely (2007), Chen and Li

(2018), Bergemann et al. (2016, 2017, 2019), Du (2018), Brooks and Du (2021), Libgober and

Mu (2021), Yamashita and Zhu (2018).

This paper contributes to the double auction literature. Chatterjee and Samuelson (1983)

analyze the simplest and most well-known double auction mechanism: If the bid price is higher

than the ask price, then trade takes place, and the transaction price is the midpoint price; otherwise

no trade takes place, and no one pays or receives anything. This mechanism has an undesirable

property: Both traders have incentives to cheat under this mechanism. McAfee (1992) shows

how to make the double auction mechanism strategy-proof when there are many buyers and

sellers. However, McAfee’s mechanism reduces to “no trade” when there are only one buyer and

one seller. McAfee achieves strategy-proofness by making the price paid by any trader invariant

to that trader’s report conditional on trading.12 In contrast, under the random double auction, a

trader’s report can still affect the price paid (midpoint price) conditional on trading. I achieve the

strategy-proofness by introducing a random spread, which lowers the trading probability if the

buyer (resp, the seller) underbids (resp, overbids) his value.

1.2 Model

1.2.1 Trading Environment

I consider an environment where an asset is traded between two risk-neutral traders

through an intermediary. One of the traders is the seller (S), who holds the asset initially, while

the other one is the buyer (B), who does not hold the asset initially. I denote by I = {S,B} the set

12Under McAfee’s mechanism, the only way a trader can affect the price is by eliminating himself from trading.
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of the traders and i ∈ I is a trader. Each trader i has private information about his value for the

asset, which is modeled as a random variable vi. I denote by Vi the set of possible values of trader

i. Throughout, I assume VS = VB. I assume that Vi is bounded. As a normalization, I assume

that Vi = [0,1]. The set of possible value profiles is denoted by V = [0,1]2 with a typical value

profile v. vB and vS may be correlated in an arbitrary way. I denote by π the joint distribution of

the value profile. In addition, there is no technical assumption on π. That is, π can be continuous,

discrete, or any mixtures. The set of all joint distributions on V is denoted by ∆V .

1.2.2 Knowledge

The intermediary only knows the ex-ante gain from trade GFT , but does not know the

joint distribution π. Formally, I denote by

Π(GFT ) =
{

π ∈ ∆V :
∫

max{vB − vS,0}dπ(v) = GFT
}

the collection of joint distributions that are consistent with the known ex-ante gain from trade.

I refer to any π ∈ Π(GFT ) as a feasible value distribution. I assume GFT ∈ (0,1) to rule out

uninteresting cases.

1.2.3 Dominant-strategy Mechanisms

The intermediary seeks a dominant-strategy mechanism. The revelation principle holds,

and it is without loss of generality to restrict attention to direct trading mechanisms. A direct

trading mechanism (q, tB, tS) consists of a trading rule q : V → [0,1], a payment rule tB : V → R

and a transfer rule tS : V → R.13 The buyer submits a bid price b and the seller submits an

ask price a simultaneously to the intermediary. Upon receiving the bid-ask pair (b,a), the

buyer obtains the asset with probability q(b,a) and pays tB(b,a) to the intermediary, while the

13q is the probability that the buyer obtains the asset when the asset is indivisible. I allow randomization, which
will play a crucial role in my analysis. q can be interpreted as the trading quantity when the asset is divisible.
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seller holds the good with the remaining probability 1−q(b,a) and receives tS(b,a) from the

intermediary. With slight abuse of notation, I sometimes use the true value profile v = (vB,vS)

to represent the submitted bid-ask pair because each trader truthfully reports his value in the

dominant-strategy equilibrium.

A direct trading mechanism (q, tB, tS) is a dominant-strategy mechanism if

vBq(v)− tB(v)≥ vBq(v′B,vS)− tB(v′B,vS), ∀v ∈V,v′B ∈VB; (DSICB)

vBq(v)− tB(v)≥ 0, ∀v ∈V ; (EPIRB)

vS(1−q(v))+ tS(v)≥ vS(1−q(vB,v′S))+ tS(vB,v′S), ∀v ∈V,v′S ∈VS; (DSICS)

vS(1−q(v))+ tS(v)≥ vS, ∀v ∈V. (EPIRS)

The set of all dominant-strategy mechanisms is denoted by D .

1.2.4 Objective

I am interested in the intermediary’s expected profit in the dominant-strategy equilibrium

in which each trader truthfully reports his value of the asset. The expected profit of a dominant-

strategy mechanism (q, tB, tS) under the joint distribution π is U((q, tB, tS),π) =
∫

v∈V t(v)dπ(v)

where t(v) = tB(v)− tS(v), referred to as the ex-post profit. The intermediary evaluates a trading

mechanism by its worst-case expected profit over all feasible value distributions. Formally,

the intermediary evaluates a trading mechanism (q, tB, tS) by its profit guarantee PG((q, tB, tS)),

defined as

inf
π∈Π(GFT )

U((q, tB, tS),π). (PG)
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The intermediary aims to find a trading mechanism (q∗, t∗B, t
∗
S), referred to as a maxmin trading

mechanism, that maximizes the profit guarantee. Formally, the intermediary solves

sup
(q,tB,tS)∈D

PG((q, tB, tS)). (MTM)

1.3 Main Results

Recall the random double auction: Given a submitted bid-ask pair (b,a), if b− a > s

in which s is a random spread drawn from the uniform distribution on [r,1] where r =

1−
√

1−GFT ∈ (0,1) is the fixed commission fee, then trade takes place at the midpoint

price p = b+a
2 , and each pays the intermediary r

2 ; otherwise, trade does not take place, and no

one pays or receives anything.

It is straightforward to show that the random double auction can also be expressed as

follows. If b−a > r,

q∗(b,a) =
1

1− r
· (b−a− r) ,

t∗B(b,a) =
1

2(1− r)
·
[
b2 − (a+ r)2] ,

t∗S(b,a) =
1

2(1− r)
·
[
(b− r)2 −a2] .

If b−a ≤ r,

q∗(b,a) = t∗B(b,a) = t∗S(b,a) = 0.

The trading rule is a linear function; the payment rule and the transfer rule are both

quadratic functions. In addition, this mechanism satisfies the standard weak budget balance

property (as in Myerson and Satterthwaite (1983)), i.e., the intermediary never subsidizes the

market.
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1.3.1 Strategy-proofness

Proposition 1 (Strategy-proofness). The random double auction is strategy-proof.

The proof has been given in the introduction. The key idea is to use a random spread to

decrease the traders’ incentive to deviate in the double auction.

Remark 1 (Dropping the risk-neutral assumption). This idea extends to an environment where

the traders’ von Neumann-Morgenstern utility function is u(x) = xα where α > 0 and α ̸= 1.

Note that the traders are risk-averse (resp, risk-loving) if α < 1 (resp, α > 1). Now I modify the

random spread distribution so that the cumulative distribution function of the random spread s is( s−r
1−r

)α on the same support [r,1], then the random double auction is again strategy-proof. To see

this, note that the non-risk-neutral buyer’s ex-post utility from submitting a bid price b when his

true value is vB and the seller submits an ask price a (assuming trade takes place with a positive

probability) becomes (
b−a− r

1− r

)α

·
(

vB −
b+a+ r

2

)α

,

where the first term is the trading probability given the modified random spread distribution and

the second term is the ex-post utility of the buyer conditional on trading. It is straightforward

that b = vB maximizes his ex-post utility regardless of the seller’s submitted ask price a, as a

monotonic transformation preserves the optimal solution. Similarly, truthful-telling maximizes

the ex-post utility for the seller regardless of the buyer’s submitted bid price b.

1.3.2 Positive Profit Guarantee

Proposition 2 (Positive profit guarantee). The random double auction has a positive profit

guarantee for any non-trivial informational environment. The amount of the profit guarantee is(
1−

√
1−GFT

)2.

To derive the profit guarantee of a random double auction with a general fixed commission

fee, I first show that the ex-post profit earned from an arbitrary value profile (vB,vS) is
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max
{vB−vS−r

1−r · r,0
}

. To see this, note that the profit collected from a bid-ask pair (b,a) if

b−a > r is
b−a− r

1− r
· r, (2)

where the first term is the trading probability and the second term is the profit conditional on

trading. Importantly, (2) is linear in the difference between the bid and the ask, as uniformly

random spread translates into a linear trading probability, and the profit conditional on trading is

the fixed commission fee. If b−a ≤ r, then the trade will not take place and the profit is trivially

zero. Recall that the bid price (resp, the ask price) is equal to the true value of the buyer (resp,

the seller) because the mechanism is strategy-proof. Next, I show that a lower bound on the

expected profit is max
{GFT−r

1−r · r,0
}

. To see this, note that the expected profit 14

E
[
max

{
max{vB−vS,0}−r

1−r · r,0
}]

≥ max
{

E
[

max{vB−vS,0}−r
1−r · r

]
,0
}
= max

{GFT−r
1−r · r,0

}
,

where the inequality follows from Jensen’s inequality, and the equality follows from the linearity

of the ex-post profit when it is positive. Finally, I show that the lower bound is tight, i.e., the

profit guarantee is max
{GFT−r

1−r · r,0
}

. To see this, note that a degenerate distribution— a point

mass on the value profile (GFT,0)— hits the lower bound. Indeed, a random double auction

with any positive fixed commission fee below the ex-ante gain from trade has a positive profit

guarantee. A high fixed commission fee translates into a high profit conditional on trading,

but also leads to a low trading probability. Optimal fixed commission fee r = 1−
√

1−GFT

balances these two effects, resulting in the profit guarantee of
(
1−

√
1−GFT

)2.

Remark 2 (Positive welfare guarantee). In terms of the traders’ welfare, how does the random

double auction perform? Define the ex-post welfare for a value profile (vB,vS) as the sum of the

traders’ ex-post payoffs, or q(v)(vB−vS)− (tB(v)− tS(v)). The expected welfare and the welfare

guarantee can then be similarly defined. I will show below that the random double auction has a

14Observe that max{vB − vS,0}= vB − vS when vB − vS > r.
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positive welfare guarantee.

To derive the welfare guarantee of the random double auction, I first show that the ex-post

welfare given an arbitrary value profile (vB,vS) is (vB−vS−r)2

1−r 1vB−vS>r. To see this, note that the

welfare from a bid-ask pair (b,a) if b−a > r is

b−a− r
1− r

· (vB − vS − r) ,

where the first term is the trading probability and the second term is the realized welfare

conditional on trading. If b−a ≤ r, then the trade will not take place and the realized welfare is

trivially zero. Recall that the bid price (resp, the ask price) is equal to the true value of the buyer

(resp, the seller) because the mechanism is strategy-proof. Next, I show that a lower bound on

the expected welfare is (GFT−r)2

1−r . To see this, note that the expected welfare

E
[
(vB − vS − r)2

1− r
1vB−vS>r

]
= E

[
((vB − vS − r)1vB−vS>r)

2

1− r

]
≥ (E [(vB − vS − r)1vB−vS>r])

2

1− r

=
(E [max{vB − vS − r,0}])2

1− r

≥ (E [max{vB − vS,0}− r])2

1− r

=
(GFT − r)2

1− r
,

where the first line follows from 1vB−vS>r = 1
2
vB−vS>r, the second line follows from Jensen’s

inequality, the third line follows from (vB − vS − r)1vB−vS>r = max{vB − vS − r,0}, the fourth

line follows from max{vB − vS − r,0} ≥ max{vB − vS,0}− r, and the last line follows from

the definition of GFT . Finally, I show that the lower bound is tight, i.e., the gain from trade

guarantee is (GFT−r)2

1−r . To see this, note that a degenerate distribution— a point mass on the

value profile (GFT,0)— hits the lower bound. Clearly, any fixed commission fee below the

difference between the ex-ante gain from trade leads to a positive welfare guarantee. Raising
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fixed commission fee leads to both a low welfare conditional on trading and a low trading

probability. Therefore, optimal fixed commission fee (for welfare) is zero, resulting in the

welfare guarantee of GFT 2.

1.3.3 Optimal Profit Guarantee

In this section, I will show that the random double auction is a maxmin trading mechanism

(Theorem 1) by constructing a feasible value distribution, referred to as a worst value distribution,

and showing that
(
1−

√
1−GFT

)2 is the tight upper bound on expected profit across all

dominant-strategy mechanisms against the worst value distribution. In addition, the random

double auction is an optimal mechanism against the worst value distribution. Essentially, the

random double auction and the worst value distribution form a “saddle point”: The random

double auction maximizes the expected profit given the worst value distribution, and the worst

value distribution minimizes the expected profit under the random double auction. The properties

of a saddle point imply that the random double auction is maxmin optimal. More details about

the saddle point approach are given in Appendix 1.7.1. Subsection 1.3.3 gives details about the

construction of the worst value distribution.

Let me first specify the symmetric triangular value distribution, which is the worst

value distribution that I construct. The support is a symmetric triangular subset of joint

values ST := {v ∈ V |vB − vS > r}. The marginal distribution for the buyer is a combination

of a uniform distribution on (r,1) and an atom of size r on 1: π∗
B(vB) = 1 for vB ∈ (r,1)

and Pr∗B(1) = r. The marginal distribution for the seller is a combination of a uniform

distribution on (0,1 − r) and an atom of size r on 0: π∗
S(vS) = 1 for vS ∈ (0,1 − r) and

Pr∗S(0) = r. The conditional distribution for the buyer is a combination of some generalized

Pareto distribution on (vS + r,1) and an atom on 1: When vS ∈ (0,1− r), π∗
B(vB|vS) =

2r2

(vB−vS)3

for vB ∈ (vS + r,1) and Pr∗B(vB = 1|vS) =
r2

(1−vS)2 ; when vS = 0, π∗
B(vB|vS = 0) = r

(vB)2 for

vB ∈ (r,1) and Pr∗B(vB = 1|vS = 0) = r. The conditional distribution for the seller is a
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Figure 1.1: Symmetric Triangular Value Distribution

combination of some generalized Pareto distribution on (0,vB − r) and an atom on 0: When

vB ∈ (r,1), π∗
S(vS|vB) =

2r2

(vB−vS)3 for vS ∈ (0,vB − r) and Pr∗S(vS = 0|vB) =
r2

(vB)2 ; when vB = 1,

π∗
S(vS|vB = 1) = r

(1−vS)2 for vS ∈ (0,1− r) and Pr∗S(vS = 0|vB = 1) = r.

Equivalently, the symmetric triangular value distribution can be described as a

combination of a joint density function on ST\{(1,0)} and an atom of size r2 on the value

profile (1,0) as follows (See Figure 1.1).

π
∗(vB,vS) =


2r2

(vB−vS)3 if vB − vS > r, vB ̸= 1 and vS ̸= 0,

r2

(1−vS)2 if vB = 1 and 0 < vS < 1− r,

r2

(vB)2 if r < vB < 1 and vS = 0.

Pr∗(1,0) = r2.

To construct the symmetric triangular value distribution, it is useful to define a “virtual

value”.

Definition 1 (Virtual value). Fix any value distribution π15, the expected profit of an optimal

15 For exposition, I assume that π is differentiable everywhere when deriving the virtual values. It can be easily
extended to joint distributions which admits an atom on the value profile (1,0).

23



trading mechanism (q, tB, tS) admits a “virtual” representation16:

E[t(v)] =
∫

q(v)φ(v)dπ(v),

where φ(v) := (vB − vS)−
(

1−ΠB(vB|vS)
πB(vB|vS)

+ ΠS(vS|vB)
πS(vS|vB)

)
is defined to be the “virtual value”17 of the

value profile (vB,vS), where the first term is the maximum possible profit the intermediary could

have earned if she knew the value profile (vB,vS), and the second term is the sum of the traders’

information rents, which are pinned down by dominant-strategy incentive compatibility and the

binding ex-post participation constraints of zero-value buyer and one-value seller. Here πB(·|·)

and ΠB(·|·) (resp, πS(·|·) and ΠS(·|·)) are conditional PDF and conditional CDF for the buyer

(resp, the seller).

Using the virtual value, the problem of maximizing the expected profit across all

dominant-strategy mechanisms is equivalent to the problem of maximizing the expected virtual

value of the value profile in which trade takes places, subject to that the trading rule is monotone18

(a monotonicity constraint associated with dominant-strategy incentive compatibility). This

simplifies the problem, as one can now point-wise maximize the objective, ignoring the

monotonicity constriant19. The symmetric triangular value distribution is constructed by solving a

zero virtual value condition requiring the virtual value be zero for any value profile in the support

except for the highest joint type. The intuition behind this condition is that the intermediary is

indifferent between trading and no trading for any those value profiles under the random double

auction.

Lemma 1. The symmetric triangular value distribution satisfies a zero virtual value condition

16The details are given in Appendix 1.7.1.
17This is a straightforward adaptation of the virtual value in Myerson and Satterthwaite (1983) to dominant-

strategy mechanisms and the correlated private value environment.
18A trading rule q is monotone if q is non-decreasing in vB and non-increasing in vS. This is analogous to a

monotone allocation rule in the auction design. Details are given in Appendix 1.7.1.
19Of course, one need to check that the monotonicity constraint holds in the end.
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for any value profile in the support except for the highest joint type. Formally,

φ(v) = 0, ∀v ∈ ST\{(1,0)}. (ZVV)

Indeed, this condition guarantees that the intermediary is indifferent to any dominant-

strategy mechanism in which 1) trade does not take place if the value profile lies outside the

support and trade takes place with probability one when the value profile is (1,0), and 2) ex-post

participation constraints are binding for zero-value buyer and one-value seller. In addition, such

a trading mechanism is an optimal trading mechanism given the symmetric triangular value

distribution. Using the virtual representation, the optimal expected profit given the symmetric

triangular value distribution is

Pr∗(1,0)×1 =
(

1−
√

1−GFT
)2

.

This is because (1,0) is the only value profile with a positive virtual value, and its virtual value

is 1 as it is the highest joint type.

To understand why the symmetric triangular value distribution is a worst value

distribution, it is useful to observe that it exhibits a positive correlation: If the buyer’s value is

higher, then the seller’s value is more likely to be higher as well. Intuitively, positive correlation

levels the maximal gain from trade across value profiles and therefore limits the intermediary’s

incentive to discriminate across value profiles. Indeed, the symmetric triangular value distribution

exhibits “extreme” positive correlation in the following sense: It renders the intermediary

indifferent across all value profiles in the support but the highest joint type (1,0).

Definition 2 (Positive correlation for bivariate distributions). Let Z = (X ,Y ) be a bivariate

random vector whose distribution is F . I say that Z exhibits positive correlation for DX and DY

if F(X |Y = y) first order stochastically dominates F(X |Y = y′) for any y > y′,y,y′ ∈ DY and

F(Y |X = x) first order stochastically dominates F(Y |X = x′) for any x > x′,x,x′ ∈ DX .
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Lemma 2. The symmetric triangular value distribution exhibits a positive correlation for

r < vB < 1 and 0 < vS < 1− r.20

Theorem 1. The random double auction is a maxmin trading mechanism with a profit

guarantee of
(
1−

√
1−GFT

)2, and the symmetric triangular value distribution is a worst

value distribution.

Remark 3. It is useful to compare the profit guarantee of the random double auction and

the optimal profit across dominant-strategy mechanisms if the value distribution were known

to the intermediary. One case could be the following value distribution: The buyer’s value

follows a uniform distribution on [GFT,1] and the seller’s value follows a uniform distribution

on [0,1−GFT ]; their values are independent. By a straightforward adaptation of the revenue

equivalence theorem, the profit achievable by the optimal dominant-strategy mechanism can be

computed. For example, When GFT = 3
4 , the optimal profit is 1

2 , whereas the profit guarantee of

the random double auction is 1
4 , so the ratio between the profit guarantee and the optimal profit is

1
2 . In addition, this ratio is large when GFT is large and converges to 1 as GFT → 1. Another

case could be that the value distribution is a point mass on (GFT,0). Then the optimal profit

is GFT . When GFT = 3
4 , the ratio between the profit guarantee and the optimal profit is 1

3 . In

addition, this ratio is increasing in GFT and converges to 1 as GFT → 1.

Construction of Symmetric Triangular Value Distribution

In this subsection, I illustrate how I construct a feasible value distribution such that (ZVV)

holds. I start from value profiles in which either vB = 1 or vS = 0. Assume that Pr∗(1,0) = α.

Consider value profiles (vB,0) in which vB ∈ (r,1). Let S∗(vB,0) :=
∫
(vB,1)π∗(x,0)dx+Pr∗(1,0)

for vB ∈ (r,1) and S∗(1,0) := Pr∗(1,0). Note that π∗(vB,0) = −∂S∗(vB,0)
∂vB

for vB ∈ (r,1). By

20To see this, note that Π∗
S(vS|vB) =

r2

(vB−vS)2 is decreasing w.r.t. vB for vB ∈ (r,1). When vB = 1, Π∗
S(vS|vB = 1) =

r
1−vS

≥ r2

(1−vS)2 , so the positive correlation breaks when vB = 1. Similarly, Π∗
B(vB|vS) = 1− r2

(vB−vS)2 is decreasing

w.r.t. vS for vS ∈ (0,1− r). When vS = 0, Π∗
B(vB|vS = 0) = 1− r

vB
≤ 1− r2

(vB)2 , so the positive correlation breaks
when vS = 0.
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(ZVV), I have that for any (vB,0) in which vB ∈ (r,1),

π
∗(vB,0)(vB −0)−S∗(vB,0) = 0.

Note that this is a simple ordinary differential equation, to which the solution is

S∗(vB,0) =
α

vB
, π

∗(vB,0) =
α

v2
B
, ∀vB ∈ (r,1).

Then consider value profiles (1,vS) in which vS ∈ (0,1 − r). Similarly, let S∗(1,vS) :=∫
(0,vS)

π∗(1,x)dx+Pr∗(1,0) for vS ∈ (0,1− r). Note that π∗(1,vS) =
∂S∗(1,vS)

∂vS
for vS ∈ (0,1− r).

By (ZVV), I have that for any (1,vS) in which vS ∈ (0,1− r),

π
∗(1,vS)(1− vS)−S∗(1,vS) = 0.

Note that this is also a simple ordinary differential equation, to which the solution is

S∗(1,vS) =
α

1− vS
, π

∗(1,vS) =
α

(1− vS)2 , ∀vS ∈ (0,1− r).

Finally consider any value profile (vB,vS) in which vB − vS > r, vB ̸= 1 and vS ̸= 0. Let

S∗(vB,vS) :=
∫
(vB,1)π∗(b,vS)db + π∗(1,vS) if vB − vS > r, vB ̸= 1 and vS ̸= 0. Note that

π∗(vB,vS) =−∂S∗(vB,vS)
∂vB

if vB − vS > r, vB ̸= 1 and vS ̸= 0. By (ZVV), I have that if vB − vS > r,

vB ̸= 1 and vS ̸= 0,

π
∗(vB,vS)(vB − vS)−S∗(vB,vS)−

∫
(0,vS)

π
∗(vB,s)ds−π

∗(vB,0) = 0. (PIE)

Note that (PIE) is a (second order) partial integral equation. It is straightforward to see that

S∗(vB,vS) is not separable by taking the cross partial derivative. I take the guess-and-verify
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approach to solve (PIE). I guess that if vB − vS > r, vB ̸= 1 and vS ̸= 0,

S∗(vB,vS) =
α

(vB − vS)2 .

Under this guess, the L.H.S. of (PIE) equals 2α

(vB−vS)3 (vB − vS)− α

(vB−vS)2 −
∫
(0,vS)

2α

(vB−s)3 ds− α

v2
B
,

which can be shown to be 0 with simple algebra. Thus, I verified the guess.

To solve for α, I use the requirement that π∗(v) is a distribution. Note that the

marginal distribution for S is π∗
S(vS) = S∗(vS + r,vS) =

α

(vS+r−vS)2 = α

r2 for 0 < vS < 1− r and

Pr∗S(vS = 0) = S∗(r,0) = α

r . Since the integration is 1, I obtain that

α

r
+

α

r2 · (1− r) = 1.

Thus, α = r2.

The final step is to show that the constructed joint distribution is a feasible value

distribution. To see this, note that

∫
max{vB − vS,0}dπ

∗ =
∫

(vB − vS)dπ
∗

=

(
r ·1+

∫ 1

r
vBdvB

)
−
(

r ·0+
∫ 1−r

0
vSdvS

)
= GFT,

where the first line follows from vB > vS for any value profile in the support of π∗, the second

line uses the marginal distributions of π∗, and the third line uses r = 1−
√

1−GFT .
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1.4 Other Models of Limited Knowledge

1.4.1 Known Difference In Expectations

In this section, I consider a model in which the intermediary only knows the difference

between the expectations of the traders’ values, denoted by DE, but does not know the joint

distribution π. Formally, I denote by

Π(DE) =
{

π ∈ ∆V :
∫
(vB − vS)dπ(v) = DE

}
(KDE)

the collection of joint distributions that are consistent with the known difference in expectations.

If DE ≤ 0, then the maxmin profit is zero, as no trading mechanism can generate a positive

profit against the point mass on the value profile (0,−DE). Therefore, I focus on non-trivial

informational environments in which DE > 0.

Theorem 2. Under the model (KDE), The random double auction is a maxmin trading

mechanism with a profit guarantee of
(
1−

√
1−DE

)2, and the symmetric triangular value

distribution is a worst value distribution.

Knowing DE is different from knowing GFT . That is, the sets of feasible value

distributions are different under these two assumptions. Indeed, for any value distribution

in which the seller’s value is greater than the buyer’s one with a positive probability, GFT is

strictly higher than DE. GFT = DE if and only if the seller’s value is always weakly lower than

the buyer’s one. Nonetheless, the results are the same under these two different assumptions.

This is because the ex-post profit under the random double auction is convex in either the ex-post

gain from trade or the difference between the values21. Therefore, any value distribution in

which the seller’s value is greater than the buyer’s one with a positive probability is not a “worst

case” for the random double auction under either assumption. In other words, the differences in

21The ex-post profit max
{ vB−vS−r

1−r · r,0
}
= max

{
max{vB−vS,0}−r

1−r · r,0
}

.
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the sets of feasible value distributions do not matter.

1.4.2 Known Expectations

In this section, I consider a model in which the intermediary only knows the expectations

of the buyer’s value and the seller’s value respectively, denoted by MB and MS, but does not

know the joint distribution π. Formally, I denote by

Π(MB,MS) =

{
π ∈ ∆V :

∫
vBdπ(v) = MB,

∫
vSdπ(v) = MS

}
(KE)

the collection of joint distributions that are consistent with the known expectations. If MB ≤ MS,

then the maxmin profit is zero, as no trading mechanism can generate a positive profit against

the point mass on the value profile (MB,MS). Therefore, we focus on non-trivial informational

environments in which MB > MS.

Symmetric Informational Environment: MB +MS = 1

The higher the seller’s value, the lower his willingness to trade. Thus, it is plausible to

regard the highest-value seller as the lowest-type seller. When the known expectations sum up to

1, the expectation of the buyer’s value and the expectation of the seller’s value have the same

distance from the lowest-type buyer and the lowest-type seller respectively, i.e., MB−0 = 1−MS.

Therefore I refer to this case as the symmetric informational environment. The symmetric

informational environment captures situations in which both parties have similar willingness

to trade. Likewise, I refer to the case in which MB +MS ̸= 1 as the asymmetric informational

environment.

Theorem 3. Under the model (KE), for the symmetric informational environment, the

random double auction is a maxmin trading mechanism with a profit guarantee of(
1−

√
1− (MB −MS)

)2
, and the symmetric triangular value distribution is a worst value
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distribution.

The derivation of the profit guarantee under the model (KE) is the same as that under

the model (KDE). The construction of a worst value distribution is the same. Observe that the

symmetric triangular value distribution satisfies MB +MS = 1, because

∫
(vB + vS)dπ

∗ =

(
r ·1+

∫ 1

r
vBdvB

)
+

(
r ·0+

∫ 1−r

0
vSdvS

)
= 1,

where the first line uses the marginal distributions of π∗, and the second line holds for any

r ∈ (0,1).

Knowing the expectations and knowing the difference in expectations are comparable.

Indeed, Π(DE) is a larger set: It contains both the symmetric informational environment and the

asymmetric ones. For example, if DE= 0.2, then it is possible that MB = 0.6 and MS = 0.4 (the

symmetric one), and it is possible that MB = 0.8 and MS = 0.6 (an asymmetric one). Therefore,

although the random double auction is maxmin optimal under the model (KDE), it is maxmin

optimal only for the symmetric informational environment under the model (KE). For the

asymmetric one, as I show in the next section, a variation of random double auction does strictly

better.

Asymmetric Informational Environment: MB +MS ̸= 1

I extend the analysis to construct a maxmin trading mechanism for the asymmetric

informational environment. I will propose a generalized random double auction and an

asymmetric triangular value distribution, and then show that they form a saddle point. The

illustration of the result is relegated to Appendix 1.7.2. This section generalizes the results

for the symmetric informational environment, as the generalized random double auction (resp,

the asymmetric triangular value distribution) converges to the random double auction (resp,

the symmetric triangular value distribution) when the asymmetric informational environment
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converges to the symmetric informational environment (See Remark 7).

Let (r1,r2) in which r1 ∈ (0,1), r2 ∈ (0,1) and r1 + r2 ̸= 1 be a solution to the following

system of equations

MB =
∫ 1

r1

r1(1− r2)

(1−r1−r2
1−r1

vB +
r1r2
1−r1

)2
vBdvB + r1 := H1(r1,r2), (KE-B)

MS =
∫ r2

0

r1(1− r2)

(1−r1−r2
r2

vS + r1)2
vSdvS := H2(r1,r2). (KE-S)

Lemma 3. For the asymmetric informational environment, there exists a solution (r1,r2)∈ (0,1)2

to the system of equations (KE-B) and (KE-S). In addition, r1 + r2 ̸= 1.

Let γ := 1−r2
r1

, δ := 2(1−r1−r2)
1−r1+r2

, τ := 2r1r2
1−r1+r2

. The generalized random double auction is

described as follows.

Step 0: Transformed bid and ask. The intermediary publicly commits to transforming a bid price

b and an ask price a as follows: b′ = 1
lnγ

·
[
ln
(

1−r1−r2
1−r1

b+ r1r2
1−r1

)]
,a′ = 1

lnγ
·
[
ln
(

1−r1−r2
r2

a+ r1

)]
.

The buyer and the seller both know r1 and r2 as well as the transformations.

Step 1: Uniformly random spread. The intermediary publicly commits to randomly drawing a

spread s′ uniformly on [0,1]. Then a random spread is drawn whose realization is not observed

by either the buyer or the seller. The buyer and the seller both know the uniform distribution on

[0,1] from which the random spread is drawn.

Step 2: Exponential transaction price and floating commission fee. The buyer submits a

bid price b, and the seller submits an ask price a, simultaneously. If the difference between

the transformed bid price and the transformed ask price is greater than the realized spread, or

b′−a′ > s′, then the seller sells the asset to the buyer at the price p′ = γb′−γa′

δ(lnγ)(b′−a′) −
τ

δ
, and each

pays the intermediary half of the commission fee r′
2 = δp′+τ

2 . Otherwise, no trade takes place,

and no one pays or receives anything.

Remark 4. The transaction price p′ is no-longer midpoint of the bid price and the ask price.

The floating commission fee r′, however, has a fixed commission fee component τ, plus an
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price-adjusted component δp′, which is linear in the transaction price.

It is straightforward to show that the generalized random double auction can also be

expressed as follows. If r2b− (1− r1)a > r1r2,

q∗∗(b,a) =
1

ln 1−r2
r1

·
[

ln
(

1− r1 − r2

1− r1
b+

r1r2

1− r1

)
− ln

(
1− r1 − r2

r2
a+ r1

)]
,

t∗∗B (b,a) =− r1r2

(1− r1 − r2) ln 1−r2
r1

·
[

ln
(

1− r1 − r2

1− r1
b+

r1r2

1− r1

)
− ln

(
1− r1 − r2

r2
a+ r1

)]

+
1

ln 1−r2
r1

·
(

b− 1− r1

r2
a− r1

)
,

t∗∗S (b,a) =− r1r2

(1− r1 − r2) ln 1−r2
r1

·
[

ln
(

1− r1 − r2

1− r1
b+

r1r2

1− r1

)
− ln

(
1− r1 − r2

r2
a+ r1

)]

+
1

ln 1−r2
r1

·
(

r2

1− r1
b−a− r1r2

1− r1

)
.

If r2b− (1− r1)a ≤ r1r2,

q∗∗(b,a) = t∗∗B (b,a) = t∗∗S (b,a) = 0.

Remark 5. The generalized random double auction also satisfies the standard weak budget

balance property.

Now let me specify the asymmetric triangular value distribution. The support is an

asymmetric triangular subset of joint values AT := {v|r2vB − (1− r1)vS > r1r2}. The marginal

distribution for the buyer is a combination of some generalized Pareto distribution on (r1,1)

and an atom of size r1 on 1: π∗∗
B (vB) =

r1(1−r2)(
1−r1−r2

1−r1
vB+

r1r2
1−r1

)2 for vB ∈ (r1,1) and Pr∗∗B (1) = r1. The

marginal distribution for the buyer is a combination of some generalized Pareto distribution

on (0,r2) and an atom of size 1 − r2 on 0: π∗∗
S (vS) =

r1(1−r2)(
1−r1−r2

r2
vS+r1

)2 for vS ∈ (0,r2) and

Pr∗∗S (0) = 1−r2. The conditional distribution for the buyer is a combination of some generalized

33



0 r1 1 vB
0

r2

1

vS

Figure 1.2: Asymmetric Triangular Value Distribution

Pareto distribution on
(

r1 +
1−r1

r2
vS,1

)
and an atom on 1: When vS ∈ (0,r2), π∗∗

B (vB|vS) =

2
(

1−r1−r2
r2

vS+r1

)2

(vB−vS)3 for vB ∈
(

r1 +
1−r1

r2
vS,1

)
and Pr∗∗B (vB = 1|vS) =

(
1−r1−r2

r2
vS+r1

)2

(1−vS)2 ; when vS = 0,

π∗∗
B (vB|vS = 0) = r1

(vB)2 for vB ∈ (r1,1) and Pr∗∗B (vB = 1|vS = 0) = r1. The conditional distribution

for the seller is a combination of some generalized Pareto distribution on (0, r2(vB−r1)
1−r1

) and

an atom on 0: When vB ∈ (r1,1), π∗∗
S (vS|vB) =

2
(

1−r1−r2
1−r1

vB+
r1r2
1−r1

)2

(vB−vS)3 for vS ∈
(

0, r2(vB−r1)
1−r1

)
and

Pr∗∗B (vS = 0|vB) =

(
1−r1−r2

1−r1
vB+

r1r2
1−r1

)2

(vB)2 ; when vB = 1, π∗∗
S (vS|vB = 1) = 1−r2

(1−vS)2 for vS ∈ (0,r2) and

Pr∗∗S (vS = 0|vB = 1) = 1− r2.

Equivalently, the asymmetric triangular value distribution can be described as a

combination of a joint density function on AT\{(1,0)} and an atom of size r1(1 − r2) on

the value profile (1,0) as follows (See Figure 1.2).

π
∗∗(vB,vS) =


2r1(1−r2)
(vB−vS)3 if r2vB − (1− r1)vS ≥ r1r2, vB ̸= 1 and vS ̸= 0,

r1(1−r2)
(1−vS)2 if vB = 1 and 0 < vS < r2,

r1(1−r2)
(vB)2 if r1 < vB < 1 and vS = 0.

Pr∗∗(1,0) = r1(1− r2).

Lemma 4. The asymmetric triangular value distribution exhibits a positive correlation for
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r1 < vB < 1 and 0 < vS < r2.22

Remark 6. If MS = 0, then it is common knowledge that the seller’s value vS = 0. Note that

q∗∗(b,0) = 1
ln 1−r2

r1

· ln
(

1−r1−r2
r1(1−r1)

b+ r2
1−r1

)
. If r2 = 0, it is straightforward that q∗∗(b,0) (resp, π∗∗)

reduces to the mechanism (resp, the worst-case distribution) found by Carrasco et al. (2018)

when the monopolistic seller only knows the expectation of the buyer’s value.

Theorem 4. Under the model (KE), for the asymmetric informational environment, the

generalized random double auction is a maxmin trading mechanism with a profit guarantee of

r1(1− r2), and the asymmetric triangular value distribution is a worst value distribution.

Remark 7 (Convergence). If MB +MS → 1, it is straightforward to show that there is a solution

in which r1 + r2 → 1. Then by L’Hôpital’s rule, q∗∗ → q∗, p′ → p, r′ → r, t∗∗B → t∗B, t∗∗S → t∗S . In

addition, π∗∗ → π∗.

1.5 Deterministic Mechanisms

In this section, I restrict attention to the class of deterministic dominant-strategy

mechanisms, i.e., the trading rule has an additional property: q(v) 23 is either 0 or 1 for any

v ∈V . I characterize maxmin deterministic trading mechanisms across mechanisms in this class.

Definition 3. The trade boundary of a given deterministic dominant-strategy mechanism (q, tB, tS)

is a set of value profiles B := {v̄ = (v̄B, v̄S) ∈ V |q(v̄) = 024 and for any small ε >

0, q(v̄B + ε, v̄S) = 1 or q(v̄B, v̄S − ε) = 1}.

22To see this, note that Π∗∗
S (vS|vB) =

(
1−r1−r2

1−r1
vB+

r1r2
1−r1

)2

(vB−vS)2 is decreasing w.r.t. vB for vB ∈ (r1,1). When

vB = 1, Π∗∗
S (vS|vB) =

1−r2
1−vS

≥ (1−r2)
2

(1−vS)2 , so the positive correlation breaks when vB = 1. Similarly, Π∗∗
B (vB|vS) =

1−
(

1−r1−r2
r2

vS+r1

)2

(vB−vS)2 is decreasing w.r.t. vS for vS ∈ (0,r2). When vS = 0, Π∗∗
B (vB|vS = 0) = 1− r1

vB
≤ 1− (r1)

2

(vB)2 , so
the positive correlation breaks when vS = 0.

23I define q(v) to be 0 if v /∈V .
24For exposition, I assume that trade does not take place on the trade boundary. As will be clear, this is to

guarantee that a best response for adversarial Nature exists. This assumption does not affect the solution and the
value of the problem. Similar assumption is also made in Kos and Messner (2015).
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Figure 1.3: Trade Boundary

I observe that the trade boundary of a deterministic dominant-strategy mechanism is

non-decreasing (See Figure 1.325).

Remark 8 (Non-decreasing trade boundary). If v̄ = (v̄B, v̄S) ∈ B, v̄′ = (v̄′B, v̄
′
S) ∈ B and v̄B > v̄′B,

then v̄S ≥ v̄′S. 26

The main idea of searching for a maxmin deterministic trading mechanism is as follows.

I divide all possible deterministic dominant-strategy mechanisms into four classes according to

the trade boundary. By strong duality27, I can work on the dual program. I propose a relaxation

of the dual program by ignoring a lot of constraints. The merit of doing so is to have a finite-

dimensional linear programming problem. Then I derive an upper bound of the value of the

relaxation and show that it can be attained by constructing deterministic dominant-strategy

mechanisms as well as a feasible value distribution.

Theorem 5. When GFT > 1
2 , any deterministic dominant-strategy mechanism satisfying the

following properties is a maxmin deterministic trading mechanism (See Figure 1.428):

(i).
(

1−
√

1−GFT
2 ,0

)
∈ B,

(
1,
√

1−GFT
2

)
∈ B .

25The thick black curve is a trade boundary B that is non-decreasing.
26To see this, note that by the definition of the trade boundary, I have that q(v̄B, v̄′S) = 1 because v̄′ ∈ B and

v̄B > v̄′B. Then, again by the definition of the trade boundary, I have that v̄S ≥ v̄′S because v̄ ∈ B .
27That is, given a dominant-strategy mechanism, the value of the primal minimization problem equals that of its

dual maximization problem, details of which are in Appendix 1.7.4.
28B1 =

(
1−

√
1−GFT

2 ,0
)
,B2 =

(
1,
√

1−GFT
2

)
. If GFT > 1

2 , then B1 ∈ B,B2 ∈ B , and B lies in the black

region for a maxmin deterministic trading mechanism.
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Figure 1.4: Maxmin Deterministic Trading Mechanisms

(ii). B is above (including) the line vB − vS =
√

1−GFT
2 .

(iii). The payment rule and the transfer rule are characterized by Lemma 5.

The profit guarantee is
(

1−
√

2(1−GFT )
)2

. The worst value distribution puts

probability masses of
√

1−GFT
2 ,

√
1−GFT

2 and 1 − 2
√

1−GFT
2 on the value profiles(

1−
√

1−GFT
2 ,0

)
,

(
1,
√

1−GFT
2

)
and (1,0) respectively.

When GFT ≤ 1
2 , the Never Trading Mechanism29 is a maxmin deterministic trading

mechanism with a profit guarantee of 0.

That is, I characterize the class of maxmin deterministic trading mechanisms for any

informational environment with a non-trivial profit guarantee (i.e., GFT > 1
2 ). The worst value

distribution is discrete, and is the same for the mechanisms in this class. Now I provide examples

of some maxmin deterministic trading mechanisms.

Linear Trading Mechanism: Trade takes place with probability one if vB − vS >√
1−GFT

2 , and conditional on trading, the buyer pays 1−
√

1−GFT
2 + vS and the seller receives

vB −
(

1−
√

1−GFT
2

)
; otherwise, no trade takes place, and no one pays or receives anything.

Double Posted-Price Trading Mechanism: Trade takes place with probability one if

vB > 1−
√

1−GFT
2 and vS <

√
1−GFT

2 , and conditional on trading, the buyer pays 1−
√

1−GFT
2

and the seller receives
√

1−GFT
2 ; otherwise, no trade takes place, and no one pays or receives

anything.

29Trade never takes place, and no one pays or receives anything.
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1.6 Extension and Discussion

1.6.1 Can-hold Case

Consider a more general model in which the intermediary can hold the asset. To wit, this

only requires that the sum of the buyer’s allocation (denoted by qB) and the seller’s allocation

(denoted by qS) do not exceed 1. Recall that this sum is required to be 1 for the main results.

Formally, the intermediary seeks a trading mechanism (qB,qS, tB, tS) such that the following

constraints hold:

vBqB(v)− tB(v)≥ vBqB(v′B,vS)− tB(v′B,vS), ∀v ∈V,v′B ∈VB; (DSICB)

vBqB(v)− tB(v)≥ 0, ∀v ∈V ; (EPIRB)

vSqS(v)+ tS(v)≥ vSqS(vB,v′S)+ tS(vB,v′S), ∀v ∈V,v′S ∈VS; (DSIC′
S)

vSqS(v)+ tS(v)≥ vS, ∀v ∈V ; (EPIR′
S)

qB(v)+qS(v)≤ 1, ∀v ∈V. (CH)

I denote the set of such trading mechanisms as D ′30. The intermediary’s problem is to seek for a

trading mechanism that solves

sup
(qB,qS,tB,tS)∈D ′

inf
π∈Π(GFT )

∫
t(v)dπ(v). (MTM’)

Theorem 6. The random double auction is a solution to (MTM’).

That is, the solution to the more general problem (MTM’) coincides with the solution to

the problem (MTM). To see this, first note that the value of (MTM’) is weakly higher than the

value of (MTM) because D ⊂ D ′. I will show that the value of (MTM) is weakly higher than the

30Note that here the monotonicity constraints are that qB(vB,vS) is non-decreasing w.r.t. vB for any vS and
qS(vB,vS) is non-decreasing w.r.t. vS for any vB.
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value of (MTM’). Indeed, given the symmetric triangular value distribution, the random double

auction is an optimal mechanism even among this wider class of trading mechanism D ′. To show

this, first note that a simple adaptation of Lemma 5 yields an analogous virtual representation of

the expected profit for this more general model:

E[t(v)] =
∫

v
[qB(v)φB(v)+qS(v)φS(v)]dπ(v)−1,

where φB(v) = vB− 1−ΠB(vB|vS)
πB(vB|vS)

and φS(v) = vS+
ΠS(vS|vB)
πS(vS|vB)

. Here φB(v) (resp, φS(v)) is the buyer’s

(resp, the seller’s) virtual value when the value profile is v = (vB,vS). Given the symmetric

triangular value distribution, φB = φS > 0 for any value profile in the support except for the

highest joint type (1,0), in which φB(1,0)> φS(1,0) = 0; in addition, φB ≤ 0 and φS ≥ 0 for any

value profile outside the support. Then any trading mechanism in D ′ will be optimal if 1) the

ex-post participation constraints are binding for zero-value buyer and one-value seller, and 2)

qB = 0 and qS = 1 for any value profile outside the support, qB +qS = 1 for any value profile

inside the support and qB(1,0) = 1,qS(1,0) = 0. It is straightforward to see that the random

double auction31 is such a mechanism and therefore remains optimal to the symmetric triangular

value distribution in this general model. Indeed, given the property that the buyer’s virtual value

is equal to the seller’s virtual value for any value profile in the support except for (1,0), the

intermediary does not have an incentive to hold the asset in an optimal trading mechanism.

1.6.2 Information Design Problem

A well-known result in models of private information is that the distribution of agents’

private information is a key determinant of their welfare. For example, in the environment of

bilateral trade, Myerson and Satterthwaite (1983) consider the independent private value model

and show that the two trading parties’ welfare is not the full surplus for general distributions

and the amount of their welfare depends on their distributions of private values. Indeed, most

31In this more general model, qB = q∗ and qS = 1−q∗.
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of the existing models of private information in the environment of bilateral trade assume that

the distribution of the two trading parties’ private information is exogenous. However, it is

conceivable that a financial regulator, e.g., the Security and the Exchange Commission (SEC),

may optimally design the nature of the private information held by the two trading parties to

maximize their welfare, given the fact that their welfare is affected by the distribution of their

private information.

In this section, I consider an information design problem of a financial regulator whose

objective is to maximize the expected welfare. Recall that the expected welfare is defined as the

sum of the traders’ expected profits. I assume that the financial regulator can carefully design the

private information of the traders by choosing a value distribution subject to the constraint that

the ex-ante gain from trade is GFT , i.e., π ∈ Π(GFT ). The intermediary, after observing the

choice of the distribution but not the realized joint values, designs a profit-maximizing trading

mechanism across dominant-strategy mechanisms. Formally, the financial regulator solves 32

sup
π∈Π(GFT )

∫
[q∗(v)(vB − vS)− t∗(v)]dπ(v) (MW)

subject to

(q∗, t∗B, t
∗
S) ∈ arg sup

(q,tB,tS)∈D

∫
v
t(v)dπ(v).

Theorem 7. The symmetric triangular value distribution is a solution to (MW).

That is, the symmetric triangular value distribution is an optimal information structure

for the financial regulator’s information design problem (MW).

Recall that a symmetric triangular value distribution has the property that the virtual value

is zero for any value profile in the support except for the value profile (1,0). This property has

32If the intermediary has multiple optimal trading mechanisms, I break ties in favor of the financial regulator
by selecting one that maximizes the gain from trade for the traders. This is a standard tie-breaking rule in the
information design literature (e.g., Kamenica and Gentzkow (2011), Roesler and Szentes (2017) and Condorelli and
Szentes (2020)).
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two implications. First, it implies that an efficient 33 trading mechanism is a best response for the

intermediary. Second, it implies that in a best response, the intermediary does not discriminate

across all value profiles in the support but the value profile (1,0). These two implications render

a symmetric triangular value distribution a good candidate as a solution.

Under the symmetric triangular value distribution, the expected welfare is the difference

between the ex-ante gain from trade GFT and the expected profit of the intermediary(
1−

√
1−GFT

)2. Indeed, the symmetric triangular value distribution minimizes the expected

profit of the intermediary. This is because the expected profit under the random double auction

is weakly higher than
(
1−

√
1−GFT

)2 for any feasible value distribution (Recall Proposition

2). Therefore, the symmetric triangular value distribution solves (MW). In addition, the

expected welfare is equally shared by the traders: Each trader obtains an expected profit of
√

1−GFT (1−
√

1−GFT ).

The information design problem (MW) is closely related to Condorelli and Szentes (2020)

who consider a buyer-optimal information design problem: The buyer can choose the probability

distribution of her valuation for the good to maximize her profit. The seller, after observing the

buyer’s choice of the distribution but not the realized valuation, designs a revenue-maximizing

selling mechanism. The problem (MW) may be interpreted as a traders-optimal information

design problem. Critically, trade is efficient under the solution in either problem.

33Precisely, trade takes place with probability one for any value profile in the support of the symmetric triangular
value distribution, and 0 otherwise.
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1.7 Appendix

1.7.1 Preliminaries

Zero-Sum Game

The intermediary’s maxmin optimization problem (MTM) can be interpreted as a

two-player sequential zero-sum game. The two players are the intermediary and adversarial

Nature. The intermediary first chooses a trading mechanism (q, tB, tS) ∈ D. After observing

the intermediary’s choice of the trading mechanism, adversarial Nature chooses a feasible

value distribution π ∈ Π(MB,MS). The intermediary’s payoff is U((q, tB, tS),π), and adversarial

Nature’s payoff is −U((q, tB, tS),π). Instead of solving directly for such a subgame perfect

equilibrium, I can solve for a Nash equilibrium ((q∗, t∗B, t
∗
S),π

∗) of the simultaneous-move

version of this zero-sum game, which corresponds to a saddle point of the payoff functional U .

Formally, for any (q, tB, tS) ∈ D and any π ∈ Π(MB,MS),

U((q∗, t∗B, t
∗
S),π)≥U((q∗, t∗B, t

∗
S),π

∗)≥U((q, tB, tS),π∗). (SP)

Indeed, the first inequality implies that the mechanism (q∗, t∗B, t
∗
S)’s profit guarantee is the

expected profit when adversarial Nature chooses the value distribution π∗, and the second

inequality implies that no other dominant-strategy mechanism can yield a strictly higher expected

profit under the value distribution π∗. Hence, the two inequalities together imply the mechanism

(q∗, t∗B, t
∗
S) is a maxmin trading mechanism.

Revenue Equivalence

When searching an optimal dominant-strategy mechanism given a value distribution, it

will be useful to simplify the problem. I will use the following proposition: Its proof is standard

but included in Appendix 1.7.1 for completeness.
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Lemma 5 (Revenue Equivalence). When searching an optimal dominant-strategy mechanism, it

is without loss to restrict attention to trading mechanisms satisfying the following properties:

(i). q(v) is non-decreasing in vB and non-increasing in vS.

(ii). tB(v) = vBq(v)−
∫ vB

0 q(x,vS)dx.

(iii). tS(v) = vSq(v)+
∫ 1

vS
q(vB,x)dx.

(iv). t(v) = (vB − vS)q(v)−
∫ vB

0 q(x,vS)dx−
∫ 1

vS
q(vB,x)dx.

That is, the trading rule q(v) is monotone; the payment rule tB and the transfer rule tS admit

an envelope representation. In addition, the ex-post participation constraints for zero-value buyer

and one-value seller are binding. Lemma 5 is standard in the mechanism design literature. The

envelope representation of the ex-post profit (property (iv)) implies E[t(v)] =
∫

q(v)φ(v)dπ(v),

using integration by parts.

Proof of Lemma 5

(i). Dominant-strategy incentive compatibility (DSIC) for a type vB of B requires that for

any vS and v′B ̸= vB:

vBq(vB,vS)− tB(vB,vS)≥ vBq(v′B,vS)− tB(v′B,vS).

DSIC for a type v′B of B requires that for any vS and vB ̸= v′B:

v′Bq(v′B,vS)− tB(v′B,vS)≥ v′Bq(vB,vS)− tB(vB,vS).

Adding the two inequalities, I have that:

(vB − v′B)(q(vB,vS)−q(v′B,vS))≥ 0.
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It follows that q(vB,vS)≥ q(v′B,vS) whenever vB > v′B .

Similarly, DSIC for a type vS of S requires that for any vB and v′S ̸= vS:

vS(1−q(vB,vS))+ tB(vB,vS)≥ vS(1−q(vB,v′S))+ tS(vB,v′S).

DSIC for a type v′S of S requires that for any vB and vS ̸= v′S:

v′S(1−q(vB,v′S))+ tS(vB,v′S)≥ v′S(1−q(vB,vS))+ tS(vB,vS).

Adding the two inequalities, I have that:

(vS − v′S)(q(vB,v′S)−q(vB,vS))≥ 0.

It follows that q(vB,vS)≤ q(vB,v′S) whenever vS > v′S .

(ii). Fix vS, and define

UB(vB) := vBq(vB,vS)− tB(vB,vS).

By the first two inequalities in (i), I obtain that

(v′B − vB)q(vB,vS)≤UB(v′B)−UB(vB)≤ (v′B − vB)q(v′B,vS).

Therefore UB(vB) is Lipschitz, hence absolutely continuous w.r.t. vB and therefore differentiable

w.r.t. vB almost everywhere. Then applying the envelope theorem to the above inequality at each

point of differentiability, I obtain that

dUB(vB)

dvB
= q(vB,vS).
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Then I have that

tB(vB,vS) = vBq(vB,vS)−
∫ vB

0
q(x,vS)dx−UB(0).

Note that UB(0) ≥ 0 by the ex-post individually rational constraint. If UB(0) > 0, then I can

reduce it to 0 so that I can increase the payment from B for any value profile in which the

seller’s value is vS. And the profit will be weakly greater. Thus, when searching for an optimal

dominant-strategy mechanism, it is without loss of generality to let UB(0) = 0. Then I obtain

that tB(vB,vS) = vBq(vB,vS)−
∫ vB

0 q(x,vS)dx.

(iii). Similarly, fix vB, and define

US(vS) := vS(1−q(vB,vS))+ tS(vB,vS).

By the fourth and fifth inequalities in (i), I obtain that

(v′S − vS)(1−q(vB,vS))≤US(v′S)−US(vS)≤ (v′S − vS)(1−q(vB,v′S)).

Therefore US(vS) is Lipschitz, hence absolutely continuous w.r.t. vS and therefore differentiable

w.r.t. vS almost everywhere. Then applying the envelope theorem to the above inequality at each

point of differentiability, I obtain that

dUS(vS)

dvS
= 1−q(vB,vS).

Then I have that

tB(vB,vS) =US(1)− vS(1−q(vB,vS))−
∫ 1

vS

q(vB,x)dx.

Note that US(1) ≥ 1 by the ex-post individually rational constraint. If US(1) > 1, then I can

reduce it to 1 so that I can decrease the payment to S for any value profile in which the buyer’s
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value is vB. And the profit will be weakly greater. Thus, when searching for an optimal

dominant-strategy mechanism, it is without loss of generality to let US(1) = 1. Then I obtain

that tS(v) = 1− (1−q(v))vS −
∫ 1

vS
(1−q(vB,x)dx = q(v)vS +

∫ 1
vS

q(vB,x)dx.

(iv). This is implied by (ii) and (iii).

1.7.2 Illustration of Theorem 4

Construction of Generalized Random Double Auction

Lemma 6. Given a trading mechanism (q, tB, tS) ∈ D, if π minimizes the expected profit over

Π(MB,MS), then there exist real numbers λB, λS and µ such that

λBvB +λSvS +µ = t(v), ∀v ∈ supp(π). (CS)

(CS) is a complementary slackness condition, stating that the ex-post profit is a linear

function of the true values for any value profile in the support of a worst value distribution. The

complementary slackness condition is a result of strong duality. The proof is similar to the one

for the main model (See Appendix 1.7.4 for details). The complementary slackness condition

is useful in the construction of a maxmin trading mechanism for the asymmetric informational

environment.

For the asymmetric informational environment, it is natural to attach different weights to

the submitted bid price and the submitted ask price. I thus form an educated guess of the trading

region in a maxmin trading mechanism: Trade takes place with positive probability if and only if

the difference between a weighted bid (true value of the buyer) r2 · vB and a (different) weighted

ask (true value of the seller) (1−r1) ·vS exceeds a threshold r1r2 > 0, or r2vB−(1−r1)vS > r1r2.

In addition, again, the support of a worst value distribution coincides with the trading region

(including the boundary). Together with (iv) of Lemma 5, the complementary slackness condition
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(CS) can be expressed as follows: For any (vB,vS) ∈ AT ,

λ
∗∗
B vB+λ

∗∗
S vS+µ∗∗=(vB−vS)·q∗∗(vB,vS)−

∫ vB

1−r1
r2

vS+r1

q∗∗(x,vS)dx−
∫ r2

1−r1
(vB−r1)

vS

q∗∗(vB,x)dx.

(CS-A)

Now I solve for the trading rule q∗∗. Similarly, I first take the first order derivatives with respect

to vB and vS respectively, and I obtain that for any (vB,vS) ∈ AT ,

(vB − vS) ·
∂q∗∗(vB,vS)

∂vB
− ∂

∫ r2
1−r1

(vB−r1)
vS q∗∗(vB,x)dx

∂vB
= λ

∗∗
B , (FOC-B)

(vB − vS) ·
∂q∗∗(vB,vS)

∂vS
−

∂
∫ vB

1−r1
r2

vS+r1
q∗∗(x,vS)dx

∂vS
= λ

∗∗
S . (FOC-S)

Then, I take the cross partial derivative, with some algebra, I obtain that

(vB − vS) ·
∂q∗∗(vB,vS)

∂vB∂vS
= 0.

Thus, q∗∗(vB,vS) is separable, which can be expressed as the sum of two functions f ∗∗ and g∗∗:

For any (vB,vS) ∈ AT ,

q∗∗(vB,vS) = f ∗∗(vB)+g∗∗(vS). (B.1.1)

Again, the separable nature is crucial for solving (CS-A). Plugging (B.1.1) into (FOC-B) and

(FOC-S), I obtain that for any (vB,vS) ∈ AT ,

[(
1− r2

1− r1

)
vB +

r1r2

1− r1

]
· ( f ∗∗)′(vB)−

r2

1− r1
·
[

f ∗∗(vB)+g∗∗
(

r2

1− r1
(vB − r1)

)]
= λ

∗∗
B ,

(B.1.2)[(
1− r1

r2
−1

)
vS + r1

]
· (g∗∗)′(vS)+

1− r1

r2
·
[

f ∗∗
(

1− r1

r2
vS + r1

)
+g∗∗(vS)

]
= λ

∗∗
S . (B.1.3)

Note that f ∗∗(vB)+g∗∗
(

r2
1−r1

(vB − r1)
)
= 0 and that f ∗∗

(
1−r1

r2
vS + r1

)
+g∗∗(vS) = 0 because

trade does not take place in the boundary of the trading region, i.e., q∗∗(vB,vS) = 0 for
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r2vB − (1− r1)vS = r1r2. Then it is straightforward to solve for f ∗∗(vB) and g∗∗(vS), and I

obtain that

f ∗∗(vB) =
(1− r1)λ

∗∗
B

1− r1 − r2
· ln

[(
1− r2

1− r1

)
vB +

r1r2

1− r1

]
+ c∗∗B , (B.1.4)

g∗∗(vS) =
r2λ∗∗

S
1− r1 − r2

· ln
[(

1− r1

r2
−1

)
vS + r1

]
+ c∗∗S , (B.1.5)

where c∗∗B and c∗∗S are some constants. Observe that

g∗∗
(

r2(vB − r1)

1− r1

)
=

r2λ∗∗
S

1− r1 − r2
· ln

[(
1− r2

1− r1

)
vB +

r1r2

1− r1

]
+ c∗∗S .

Then, again, using that q∗∗(vB,vS) = 0 for r2vB − (1− r1)vS = r1r2, I have that

(1− r1)λ
∗∗
B + r2λ

∗∗
S = c∗∗B + c∗∗S = 0. (B.1.6)

Now plugging (B.1.4),(B.1.5) and (B.1.6) into (B.1.1), I obtain that for any (vB,vS) ∈ AT ,

q∗∗(vB,vS) =
(1− r1)λ

∗∗
B

1− r1 − r2
·
[

ln
(

1− r1 − r2

1− r1
vB +

r1r2

1− r1

)
− ln

(
1− r1 − r2

r2
vS + r1

)]
.

Likewise, to solve for λ∗∗
B , I let q∗∗(1,0) be 1 and obtain that λ∗∗

B = 1−r1−r2

(1−r1) ln 1−r2
r1

. So far I

have obtained the trading rule q∗∗34. The payment rule t∗∗B (resp, the transfer rule t∗∗S ) is then

characterized by (ii) (resp, (iii)) of Lemma 5.

Construction of Asymmetric Triangular Value Distribution

Similar to the symmetric informational environment, I impose a zero virtual value

condition on the joint distribution, stating that virtual value is 0 for any value profile in the

34Plugging the trading rule q∗∗ into (CS-A), it is straightforward that µ∗∗ =− r1(1−r1−r2)

(1−r1) ln 1−r2
r1

.
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support except for the highest joint type. Formally,

φ(v) = 0, ∀v ∈ AT\{(1,0)}. (ZVV-A)

The construction procedure for the joint distribution is exactly the same. Therefore I omit it.

Note that the marginal distribution no longer has a uniform distribution part since vB − vS is no

longer a constant on the boundary of the trading region due to different weights for the buyer

and the seller. The final step is to make sure that the constructed joint distribution has the known

expectations. Given the marginal distributions for the buyer and the seller, I have a system of

two equations (KE-B) and (KE-S). Lemma 3 states that a solution exists for the asymmetric

informational environment, details of which are given in Appendix 1.7.3.

1.7.3 Proofs for Section 1.3

Proof of Lemma 3

I start from establishing the following four claims regarding some properties of the

functions H1(r1,r2) and H2(r1,r2), which play a crucial role in establishing Lemma 3. First, by

simple calculation, I have that for (r1,r2) ∈ (0,1)2,

H1(r1,r2) =
r1(1− r2)(1− r1)

2

(1− r1 − r2)2 · ln 1− r2

r1
− r1r2(1− r1)

1− r1 − r2
+ r1, (C.1.1)

H2(r1,r2) =
r1(1− r2)r2

2
(1− r1 − r2)2 · ln

1− r2

r1
−

r1r2
2

1− r1 − r2
. (C.1.2)

First note that H1 and H2 are not well-defined when 0 < r1 = 1− r2 < 1. Using L’Hôpital’s rule,

it is straightforward to show that lim1−r2→r1 H1(r1,r2) =
1−r2

1+2r1
2 and lim1−r2→r1 H2(r1,r2) =

(1−r1)
2

2 . I thus define H1(r1,r2) := lim1−r2→r1 H1(r1,r2) and H2(r1,r2) := lim1−r2→r1 H2(r1,r2)

when 0 < r1 = 1 − r2 < 1. This makes H1 and H2 continuous on (0,1)2. In

addition, using L’Hôpital’s rule, it is straightforward to show that limr1→0 H1(r1,r2) = 0
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for r2 ∈ (0,1), limr1→1 H1(r1,r2) = 1 for r2 ∈ (0,1), limr2→0 H1(r1,r2) = r1 − r1 lnr1 for

r1 ∈ (0,1), limr2→1 H1(r1,r2) = 1 for r1 ∈ (0,1), limr1→0 H2(r1,r2) = 0 for r2 ∈ (0,1),

limr1→1 H2(r1,r2) = (1− r2) ln(1− r2)+ r2 for r2 ∈ (0,1), limr2→0 H2(r1,r2) = 0 for r1 ∈ (0,1)

and limr2→1 H1(r1,r2) = 1 for r1 ∈ (0,1). Therefore I define H1(r1,r2) and H2(r1,r2) as follows.

H1(r1,r2) =



(1−r2)r1(1−r1)
2

(1−r1−r2)2 · ln 1−r2
r1

− r1r2(1−r1)
1−r1−r2

+ r1 if (r1,r2) ∈ (0,1)2 and r1 + r2 ̸= 1,
1−r2

1+2r1
2 if 0 < r1 = 1− r2 < 1,

0 if r1 = 0 and r2 ∈ (0,1),

1 if r1 = 1 and r2 ∈ (0,1),

r1 − r1 lnr1 if r2 = 0 and r1 ∈ (0,1),

1 if r2 = 1 and r1 ∈ (0,1).

H2(r1,r2) =



r1(1−r2)r2
2

(1−r1−r2)2 · ln 1−r2
r1

− r1r2
2

1−r1−r2
if (r1,r2) ∈ (0,1)2 and r1 + r2 ̸= 1,

(1−r1)
2

2 if 0 < r1 = 1− r2 < 1,

0 if r1 = 0 and r2 ∈ (0,1),

(1− r2) ln(1− r2)+ r2 if r1 = 1 and r2 ∈ (0,1),

0 if r2 = 0 and r1 ∈ (0,1),

1 if r2 = 1 and r1 ∈ (0,1).

Claim 1. Fix any r2 ∈ [0,1), H1(r1,r2) is strictly increasing in r1. Moreover, for any

r2 ∈ (0,1), limr1→1−r2
∂H1(r1,r2)

∂r1
exists and is positive. In addition, for any r2 ∈ [0,1), as r1 → 1,

H1(r1,r2)→ 1.

Proof of Claim 1. When r2 = 0, H1(r1,r2) = r1 − r1 lnr1. This is an strictly increasing function

because ∂H1(r1,r2)
∂r1

=− lnr1 > 0. In addition, by L’Hôpital’s rule, limr1→1 H1(r1,r2) = 1. Thus,

Claim 1 holds when r2 = 0. When 0 < r2 < 1, I already have that limr1→1 H1(r1,r2) = 1. Now
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taking the first order derivative w.r.t. r1 to (C.1.1), I obtain that

∂H1(r1,r2)

∂r1
=

(1− r1)(1− r2)

(1− r1 − r2)2 ·
[(

1−3r1 +
2r1(1− r1)

1− r1 − r2

)
· ln 1− r2

r1
−2r2

]
. (C.1.3)

Then to show the first part of Claim 1, it suffices to show that if (r1,r2) ∈ (0,1)2 and r1 + r2 ̸= 1,

(
1−3r1 +

2r1(1− r1)

1− r1 − r2

)
· ln 1− r2

r1
−2r2 > 0. (C.1.4)

Let β := 1−r2
r1

, then β ∈ (0,1)∪ (1,∞). Plugging r2 = 1−βr1 into (C.1.4), it suffices to show

that for any β ∈ (0,1)∪ (1,∞),

(
1−3r1 +

2(1− r1)

β−1

)
· lnβ−2 · (1−βr1)> 0. (C.1.5)

Slightly rewriting (C.1.5), it suffices to show that for any β ∈ (0,1)∪ (1,∞),

β+1
β−1

· lnβ−2+
(
−3β−1

β−1
· lnβ+2β

)
· r1 > 0. (C.1.6)

Then, it suffices to show that for any β ∈ (0,1)∪ (1,∞), the following two inequalities hold:

β+1
β−1

· lnβ−2 > 0, (C.1.7)

−3β−1
β−1

· lnβ+2β > 0. (C.1.8)

Now to prove (C.1.7), it suffices to show that f (β) := lnβ− 2(β−1)
β+1 > 0 for β ∈ (1,∞) and

f (β)< 0 for β ∈ (0,1). Taking the first order derivative to f (β), I obtain that

f ′(β) =
(β−1)2

β(β+1)2 . (C.1.9)

Therefore, f (β) is strictly increasing. Note that f (1) = 0. Thus, I proved (C.1.7). To prove
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(C.1.8), it suffices to show that h(β) := (1−3β) lnβ+2β(β−1)> 0 for β ∈ (1,∞) and h(β)< 0

for β ∈ (0,1). Taking the first order derivative to h(β), I obtain that

h′(β) = 4β−3lnβ+
1
β
−5. (C.1.10)

Now taking the second order derivative to h(β), I obtain that

h′′(β) =
(4β+1)(β−1)

β2 . (C.1.11)

Note that h′′(β)> 0 when β > 1, h′′(β)< 0 when β < 1 and h′′(1) = 0. This implies that h′(β)

is minimized at β = 1. Note that h′(1) = 0. This implies that h(β) is strictly increasing. Finally,

note that h(1) = 0. This implies that (C.1.8) holds.

Using L’Hôpital’s rule, I have that limr1→1−r2
∂H1(r1,r2)

∂r1
= r2(6−5r2)

1−r2
> 0 for r2 ∈ (0,1).

Claim 2. Fix any r1 ∈ (0,1), H1(r1,r2) is strictly increasing in r2. Moreover, for any

r1 ∈ (0,1), limr2→1−r1
∂H1(r1,r2)

∂r2
exists and is positive. In addition, for any r1 ∈ (0,1), as r2 → 1,

H1(r1,r2)→ 1.

Proof of Claim 2. When 0 < r1 < 1, I already have that limr2→1 H1(r1,r2) = 1. Now taking the

first order derivative w.r.t. r2 to (C.1.1), with some algebra, I obtain that

∂H1(r1,r2)

∂r2
=

(1− r1)
2r1

(1− r1 − r2)2 ·
[(

−1+
2(1− r2)

1− r1 − r2

)
· ln 1− r2

r1
−2

]
. (C.1.12)

Then it suffices to show that if (r1,r2) ∈ (0,1)2 and r1 + r2 ̸= 1,

(
−1+

2(1− r2)

1− r1 − r2

)
· ln 1− r2

r1
−2 > 0. (C.1.13)
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Plugging r2 = 1−βr1 into (C.1.13), it suffices to show that for any β ∈ (0,1)∪ (1,∞),

β+1
β−1

· lnβ−2 > 0. (C.1.14)

This is exactly (C.1.7) and has been shown in the Proof of Claim 1.

Using L’Hôpital’s rule, I have that limr2→1−r1
∂H1(r1,r2)

∂r2
= (1−r1)

2

6r1
> 0 for r1 ∈ (0,1).

Claim 3. Fix any r2 ∈ (0,1), H2(r1,r2) is strictly increasing in r1. Moreover, for r2 ∈ (0,1),

limr1→1−r2
∂H2(r1,r2)

∂r1
exists and is positive.

Proof of Claim 3. Taking the first order derivative w.r.t. r1 to (C.1.2), I obtain that

∂H2(r1,r2)

∂r1
=

(1− r2)r2
2

(1− r1 − r2)2 ·
[(

1+
2r1

1− r1 − r2

)
· ln 1− r2

r1
−2

]
. (C.1.15)

Then it suffices to show that if (r1,r2) ∈ (0,1)2 and r1 + r2 ̸= 1,

(
1+

2r1

1− r1 − r2

)
· ln 1− r2

r1
−2 > 0. (C.1.16)

Plugging r2 = 1 − βr1 into (C.1.16), it suffices to show that for any β ∈ (0,1) ∪ (1,∞),

β+1
β−1 lnβ−2 > 0, which is exactly (C.1.7) and has been shown in the Proof of Claim 1.

Using L’Hôpital’s rule, I have that limr1→1−r2
∂H2(r1,r2)

∂r1
= (r2)

2

6(1−r2)
> 0 for r2 ∈ (0,1).

Claim 4. Fix any r1 ∈ (0,1], H2(r1,r2) is strictly increasing in r2. Moreover, for any

r1 ∈ (0,1), limr2→1−r1
∂H2(r1,r2)

∂r2
exists and is positive. In addition, for any r1 ∈ (0,1], as r2 → 1,

H2(r1,r2)→ 1.

Proof of Claim 4. When r1 = 1, H2(r1,r2) = (1 − r2) · ln(1− r2) + r2. This is an strictly

increasing function because ∂H2(r1,r2)
∂r2

= − ln(1− r2) > 0. In addition, by L’Hôpital’s rule,

limr2→1 H2(r1,r2) = 1. Thus, Claim 4 holds when r1 = 1. When 0 < r1 < 1, I already have that
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limr2→1 H1(r1,r2) = 1. Now taking the first order derivative w.r.t. r2 to (C.1.2), I obtain that

∂H2(r1,r2)

∂r2
=

r1r2

(1− r1 − r2)2 ·
[(

2−3r2 +
2r2(1− r2)

1− r1 − r2

)
· ln 1− r2

r1
−2 · (1− r1)

]
. (C.1.17)

Then to show the first part of Claim 4, it suffices to show that if (r1,r2) ∈ (0,1)2 and r1 + r2 ̸= 1,

(
2−3r2 +

2r2(1− r2)

1− r1 − r2

)
· ln 1− r2

r1
−2 · (1− r1)> 0. (C.1.18)

Plugging r2 = 1−βr1 into (C.1.18), it suffices to show that for any β ∈ (0,1)∪ (1,∞),

(
3βr1 −1+

2β(1−βr1)

β−1

)
· lnβ−2 · (1− r1)> 0. (C.1.19)

Slightly rewriting (C.1.19), it suffices to show that for any β ∈ (0,1)∪ (1,∞),

β+1
β−1

· lnβ−2+
(

β2 −3β

β−1
lnβ+2

)
· r1 > 0. (C.1.20)

Then, it suffices to show that for any β ∈ (0,1)∪ (1,∞), the following two inequalities hold:

β+1
β−1

· lnβ−2 > 0, (C.1.21)

β2 −3β

β−1
· lnβ+2 > 0. (C.1.22)

Note that (C.1.21) is exactly (C.1.7), which has been shown in the Proof of Claim 1. To prove

(C.1.22), it suffices to show that g(β) := (β2−3β) lnβ+2(β−1)> 0 for β∈ (1,∞) and g(β)< 0

for β ∈ (0,1). Taking the first order derivative to g(β), I obtain that

g′(β) = (2β−3) · lnβ+β−1. (C.1.23)
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Now taking the second order derivative to g(β), I obtain that

g′′(β) = 2lnβ− 3
β
+3. (C.1.24)

Note that g′′(β) is strictly increasing and g′′(1) = 0. This implies that g′(β) is minimized at β = 1.

Note that g′(1) = 0. This implies that g(β) is strictly increasing. Finally, note that g(1) = 0. This

implies that (C.1.22) holds.

Using L’Hôpital’s rule, I have that limr2→1−r1
∂H2(r1,r2)

∂r2
= (1−r1)(5r1+1)

6r1
> 0 for r1 ∈

(0,1).

I am now ready to prove Lemma 3. Fix any (MB,MS) in which 0 < MS < MB < 1 and

MB +MS ̸= 1. By Claim 1, 2 and the Intermediate Value Theorem, I have that for any r2 ∈ [0,1),

there exists a unique I(r2) ∈ (0,1) such that r1 = I(r2) is a solution to H1(r1,r2) = MB. In

addition, I(r2) is a strictly decreasing function. Moreover, by the Implicit Function Theorem35,

I(r2) is continuous at each r2 ∈ [0,1). By Claim 3, 4 and the Intermediate Value Theorem, I have

that for any r1 ∈ (0,1], there exists a unique J(r1) ∈ (0,1) such that r2 = J(r1) is a solution to

H2(r1,r2) = MS. In addition, J(r1) is a strictly decreasing function. Moreover, by the Implicit

Function Theorem36, J(r1) is continuous at each r1 ∈ (0,1]. Thus it suffices to prove that there

exists r2 ∈ (0,1) such that

J(I(r2)) = r2. (C.1.25)

Note that J(I(r2)) is a continuous and strictly increasing function for r2 ∈ [0,1). Also note

that J(I(0)) ∈ (0,1) because I(0) ∈ (0,1) and J(r1) ∈ (0,1) when r1 ∈ (0,1). Now, by the

35The Implicit Function Theorem applies for any r2 ∈ [0,1) because by Claim 1 and 2, ∂H1(I(r2),r2)
∂r1

> 0 and
∂H1(I(r2),r2)

∂r2
> 0 for any r2 ∈ [0,1).

36The Implicit Function Theorem applies for any r1 ∈ (0,1] because by Claim 3 and 4, ∂H2(r1,J(r1))
∂r1

> 0 and
∂H2(r1,J(r1))

∂r2
> 0 for any r1 ∈ (0,1].
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Intermediate Value Theorem, it suffices to show that there exists some r2 ∈ (0,1) such that

J(I(r2))≤ r2. (C.1.26)

Because J is strictly decreasing, it is equivalent to showing that there exists some r2 ∈ (0,1) such

that

I(r2)≥ J−1(r2). (C.1.27)

By Claim 1, this is equivalent to showing that there exists some r2 ∈ (0,1) such that

H1(J−1(r2),r2)≤ MB. (C.1.28)

Let ε := MB −MS > 0. I observe a relationship between the two functions H1 and H2 when

(r1,r2) ∈ (0,1)2:

H1(r1,r2)−H2(r1,r2) =

(
(1− r1)

2

r2
2

−1
)
·H2(r1,r2)+ r1 · (2− r1). (C.1.29)

Note that when r2 → 1, J−1(r2) → 0. To see this, suppose not, then by Claim 4,

H2(J−1(r2),r2) → 1 when r2 → 1, a contradiction to H2(J−1(r2),r2) = MS < 1. Then by

(C.1.29), as r2 → 1,

H1(J−1(r2),r2)−MS = H1(J−1(r2),r2)−H2(J−1(r2),r2)

=

(
(1− J−1(r2))

2

(r2)2 −1
)
·H2(J−1(r2),r2)+ J−1(r2) · (2− J−1(r2))

=

(
(1− J−1(r2))

2

(r2)2 −1
)
·MS + J−1(r2) ·

(
2− J−1(r2)

)
→

(
(1−0)2

12 −1
)
·MS +0 · (2−0)

= 0.
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This implies that there exists some r2 ∈ (0,1) such that

∣∣H1(J−1(r2),r2)−MS
∣∣≤ ε

2
. (C.1.30)

Note that (C.1.30) implies (C.1.28) because H1(J−1(r2),r2) ≤ MS +
ε

2 < MS + ε = MB.

Finally, suppose that r1 + r2 = 1 for the solution (r1,r2), then MB +MS = H1(r1,r2)+

H2(r1,r2) = 1 by the definition of H1(r1,r2) and H2(r1,r2), a contradiction to the assumption

that MB +MS ̸= 1. Therefore, I have that r1 + r2 ̸= 1 for the solution (r1,r2).

Proof of Theorem 4

Step 1: The generalized random double auction maximizes the expected profit under

the asymmetric triangular value distribution. To show this, first note that (ZVV-A) holds by

construction. In addition, the virtual value is non-positive for any value profile outside the

support and positive for the value profile (1,0). Then any dominant-strategy mechanism in which

1) ex-post participation constraints are binding for zero-value buyer and one-value seller, and 2)

trade does not take place when r2vB − (1− r1)vS < r1r2 and trade takes place with probability

one when (vB,vS) = (1,0) is an optimal trading mechanism. It is straightforward to see that the

generalized random double auction is such a mechanism.

Step 2: The asymmetric triangular value distribution minimizes the expected profit under the

generalized random double auction. I use the duality theory to show this. Note that the

asymmetric triangular value distribution is a feasible value distribution by construction. By the

virtual representation, the expected profit (the value of the primal problem) given the random

double auction and the symmetric triangular value distribution is Pr(1,0)× (1−0) = r1(1− r2).

Second, the constraints in the dual problem hold for all value profiles. To see this, note that for any

value profile v = (vB,vS) inside the support (or v ∈ AT ), λ∗∗
B vB+λ∗∗

S vS +µ∗∗ = t∗∗(v) by (CS-A).

Also, for any value profile v = (vB,vS) in which r2vB − (1− r1)vS = r1r2, λ∗∗
B vB +λ∗∗

S vS +µ∗∗ =
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0 = t∗∗(v) because λ∗∗
B = 1−r1−r2

(1−r1) ln 1−r2
r1

, λ∗∗
S =− 1−r1−r2

r2 ln 1−r2
r1

and µ∗∗ =− r1(1−r1−r2)

(1−r1) ln 1−r2
r1

. Then, for any

value profile v = (vB,vS) in which r2vB − (1− r1)vS < r1r2, λ∗∗
B vB +λ∗∗

S vS + µ∗∗ < 0 = t∗∗(v)

because λ∗∗
B > 0 and λ∗∗

S < 0. Finally, the value of the dual problem given the constructed dual

variables is equal to r1(1−r2) by simple calculation. The details of the constructed dual variables

as well as the characterization are given in Appendix 1.7.2.

1.7.4 Proof of Theorem 5

To facilitate the analysis, I first establish a strong duality result. Given a dominant-strategy

mechanism (q, tB, tS), the primal minimization problem of adversarial Nature is as follows (with

dual variables in the bracket):

inf
π

∫
t(v)dπ(v) (P)

subject to ∫
max{vB − vS,0}dπ(v) = GFT, (λ)∫

dπ(v) = 1. (µ)

It has the following dual maximization problem:

sup
λ∈R ,µ∈R

λGFT +µ (D)

subject to

λmax{vB − vS,0}+µ ≤ t(v), ∀v ∈V.

Note that the value of (P) is bounded by 1 as t(v) ≤ 1. In addition, the joint distribution that

puts all probability masses on the value profile (1+GFT
2 , 1−GFT

2 ) is in the interior of the primal

cone. Then, by Theorem 3.12 in Anderson and Nash (1987), strong duality holds. Theorem 5 is

established by the following three steps.

Step 1: Narrow down the search to a class of mechanisms.
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I divide all deterministic dominant-strategy mechanisms that satisfy the properties stated

in Lemma 5 into the following four classes:

Class 1: The trade boundary touches on the value profiles (c1,1) and (0,c2) for some

0 ≤ c1 ≤ 1,0 ≤ c2 ≤ 1.

Class 2: The trade boundary touches on the value profiles (0,c1) and (1,c2) for some

0 ≤ c1 ≤ 1,0 ≤ c2 ≤ 1.

Class 3: The trade boundary touches on the value profiles (c1,0) and (c2,1) for some

0 ≤ c1 ≤ 1,0 ≤ c2 ≤ 1.

Class 4: The trade boundary touches on the value profiles (c1,0) and (1,c2) for some

0 < c1 ≤ 1,0 ≤ c2 < 137.

By (iv) of Lemma 5, I can show that the ex-post profit from the value profile (0,0) or (0,1)

will never be positive for any mechanism in Class 1, Class 2 or Class 3. To see this, note that for

any mechanism in Class 1: t(0,0) = 0−c2 =−c2 ≤ 0, t(1,0) = (1−0) ·1−1−1 =−1 < 0; for

any mechanism in Class 2: t(0,0) = 0− c1 =−c1 ≤ 0, t(1,0) = (1−0) ·1−1− c2 =−c2 ≤ 0;

for any mechanism in Class 3: t(0,0) = 0, t(1,0) = (1−0) ·1− (1− c1)−1 =−(1− c1)≤ 0.

Consider the joint distribution that puts probability masses GFT and 1−GFT on the value

profiles (1,0) and (0,0) respectively. It is straightforward to verify that this is a feasible value

distribution; moreover, the profit under this joint distribution cannot be positive. Therefore, I can

restrict attention to Class 4 only.

Step 2: Identify an upper bound of the profit guarantee.

I propose a relaxation of (D) by ignoring many constraints. Specifically, the only

remaining ones are the constraints for the following four value profiles: (0,0), (1,0), (c1,0) and

(1,c2). Formally, I have the following relaxed problem:

max
λ∈R ,µ∈R

λGFT +µ (D’)

37The cases where c1 = 0 are included in Class 2, and the cases where c2 = 1 are included in Class 3.
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subject to

µ ≤ 0, (D.1.1)

λ+µ ≤ c1 − c2. (D.1.2)

λc1 +µ ≤ 0, (D.1.3)

λ(1− c2)+µ ≤ 0. (D.1.4)

Note that the value of (D’), denoted by val(D’), is weakly greater than the value of (D).

Now I will find an upper bound of the value of (D’) across 0 < c1 ≤ 1 and 0 ≤ c2 < 1, and show

that it is attainable by constructing deterministic dominant-strategy mechanisms and a feasible

value distribution.

If λ ≤ 0, then by (D.1.1), val(D’)≤ 0 for any 0 < c1 ≤ 1 and 0 ≤ c2 < 1. Henceforth, I

restrict attention to λ > 0. If c1 ≥ GFT , then λGFT +µ ≤ λc1+µ ≤ 0, where the first inequality

follows from λ > 0 and the second inequality follows from (D.1.3). If c2 ≤ 1−GFT , then

λGFT +µ ≤ λ(1− c2)+µ ≤ 0, where the first inequality follows from λ > 0 and the second

inequality follows from (D.1.4). If c1 ≤ c2, then λGFT +µ≤ λ+µ≤ 0, where the first inequality

follows from λ > 0 and the second inequality follows from (D.1.2). Therefore, I can restrict

attention to 1−GFT < c2 < c1 <GFT , because otherwise the profit guarantee cannot be positive.

This also implies that I can restrict attention to informational environments in which GFT > 1
2 ,

because otherwise the profit guarantee cannot be positive. Now I am left with (D.1.2), (D.1.3)

and (D.1.4) as they imply (D.1.1).

If c1 ≥ 1− c2, then I am left with (D.1.2) and (D.1.3), as (D.1.4) is not binding. It is

straightforward that the solution occurs when both (D.1.2) and (D.1.3) are binding, because

c1 <GFT < 1. The solution is λ= c1−c2
1−c1

, µ=−c1(c1−c2)
1−c1

. val(D’)= (c1−c2)(GFT−c1)
1−c1

:=K(c1,c2).

Now I maximize K(c1,c2) subject to the constraints that 1 − GFT < c2 < c1 < GFT and

c1 ≥ 1− c2. Observe that c2 = 1− c1 in the optimal solution as K(c1,c2) is decreasing in c2.
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Now, with some algebra,

K(c1,1− c1) = 1+2(1−GFT )−2(1− c1)−
1−GFT

1− c1
.

Then it is straightforward that the optimal solution is c1 = 1−
√

1−GFT
2 , c2 = 1−c1 =

√
1−GFT

2 ,

and the maximized value of K(c1,c2) is
(

1−
√

2(1−GFT )
)2

.

If c1 ≤ 1− c2, then I am left with (D.1.2) and (D.1.4), as (D.1.3) is not binding. It is

straightforward that the solution occurs when both (D.1.2) and (D.1.4) are binding, because

1−c2 <GFT < 1. The solution is λ= c1−c2
c2

, µ=− (1−c2)(c1−c2)
c2

. val(D’)= (c1−c2)(GFT−1+c2)
c2

:=

L(c1,c2). Now I maximize L(c1,c2) subject to the constraints that 1−GFT < c2 < c1 < GFT

and c1 ≤ 1− c2. Observe that c1 = 1− c2 in the optimal solution as L(c1,c2) is increasing in c1.

Now, with some algebra,

L(1− c2,c2) = 1+2(1−GFT )−2c2 −
1−GFT

c2
.

Then it is straightforward that the optimal solution is c2 =
√

1−GFT
2 , c1 = 1−c2 = 1−

√
1−GFT

2 ,

and the maximized value of L(c1,c2) is
(

1−
√

2(1−GFT )
)2

.

Step 3: Show that the upper bound is attainable.

The last step is to construct deterministic trading mechanisms whose profit

guarantee is
(

1−
√

2(1−GFT )
)2

when GFT > 1
2 . Consider any deterministic trading

mechanism satisfying (i), (ii) and (iii) of Theorem 5. Let λ =
1−
√

2(1−GFT )√
1−GFT

2

and µ =

−
(1−

√
2(1−GFT ))(1−

√
1−GFT

2 )√
1−GFT

2

. I will show that they are feasible for the original dual problem (D).

Note that the constraint for the value profile (1,0) holds with equality by construction.

Then the constraint holds for any interior value profile38. Indeed, the constraint is the most

stringent for the value profile (1,0) because the trade boundary is non-decreasing. To see this,

38A value profile in which trade takes place with probability one is referred to as an interior value profile.
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note that the constraint for any interior value profile (vB,vS) is equivalent to that

λmax{vB − vS,0}+b1(vB)−b2(vS)+µ ≤ 0, (D.1.5)

where (vB,b1(vB)) and (b2(vS),vS) are in the trade boundary. Then the L.H.S. of (D.1.5) is

maximized at (1,0) because that λ > 0 and that b1 as well as b2 are non-decreasing. For any

exterior value profile39, the constraint also holds if (ii) of Theorem 5 holds. To see this, note that

given the constructed λ and µ, λmax{vB−vS,0}+µ= 0 for the value profiles
(

1−
√

1−GFT
2 ,0

)
and

(
1,
√

1−GFT
2

)
. Then, by linearity, λ(vB−vS)+µ= 0 for any value profile on the line linking(

1−
√

1−GFT
2 ,0

)
and

(
1,
√

1−GFT
2

)
. Therefore, if (ii) of Theorem 5 holds, the constraint

also holds for any exterior value profile because that λ > 0 and µ < 0. Finally, the value of (D)

under the constructed dual variables is
(

1−
√

2(1−GFT )
)2

by simple calculation.

Now consider the joint distribution described in Theorem 5. First, it is straightforward to

verify that it is a feasible value distribution. Second, given any trading mechanism satisfying (i),

(ii) and (iii) of Theorem 5, the value of (P) is
(

1−
√

2(1−GFT )
)2

under the joint distribution

by simple algebra. This finishes the proof.

39A value profile in which trade does not take place is referred to as an exterior value profile. Note that by the
definition of the trade boundary, a value profile on the trade boundary is also an exterior value profile.
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Chapter 2

Correlation-Robust Optimal Auctions

2.1 Introduction

The mechanism design literature assumes that bidders’ valuation profile follows a

commonly known joint distribution. For example, Myerson (1981) assumes that the auctioneer

knows the marginal distribution of each bidder’s valuation, and also knows that bidders’

valuations are independently distributed. While the independent private value model is widely

acknowledged as a useful benchmark, little is known about how the optimal mechanism would

perform once the model is misspecified. In addition, it is not clear how the auctioneer should

determine which model is the correct one to use.

In this paper, I study the single-object auction problem in the correlated private value

environment in which bidders’ valuation profile is drawn from a general joint distribution. I

assume that the auctioneer knows the marginal distribution of a generic bidder’s valuation, but

does not have any knowledge about the correlation structure of different bidders’ valuations1.

A joint distribution of bidders’ valuation profile is said to be feasible if it is consistent with the

known marginal distribution of a generic bidder’s valuation. The auctioneer seeks a dominant-

1The framework is originally proposed by Carroll (2017) for the multi-dimensional screening problem. His
solution is simple and conveys a clear and intuitive message: if you do not know how to bundle, then do not. It is
natural to adapt his framework to an environment with multiple bidders whose private valuations may be correlated.
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strategy mechanism. A mechanism is evaluated according to the auctioneer’s expected revenue in

the dominant-strategy equilibrium derived in the worst case, referred to as the revenue guarantee,

over all feasible joint distributions. The objective of the auctioneer is to design a mechanism that

maximizes the revenue guarantee across some general class of dominant-strategy mechanisms. I

call such a mechanism a maxmin mechanism.

This framework is in the same spirit as the robust mechanism literature in that it assumes

away detailed knowledge of the auctioneer (Wilson (1987)). It is motivated by the observation

that the joint distribution is a much higher-dimensional object than the marginal distribution of

a generic bidder. Therefore it is more difficult to estimate the joint distribution. Practically, it

fits into the situations where the bidder pool changes constantly and then there is no data for

estimating the correlation structure. Another situation where the auctioneer may only know the

marginal distribution for each bidder is the one where the identities of the participating bidders

cannot be observed.

The first main result (Theorem 8) is that, under certain regularity conditions on the

marginal distribution, the second-price auction with the uniformly distributed random reserve is

a maxmin mechanism across all dominant-strategy mechanisms for the two-bidder case. Under

this mechanism, a random reserve is drawn from a uniform distribution on [0, v̄] where v̄ is the

maximum valuation.

The randomness in this mechanism hedges against uncertainty over correlation structures.

Indeed, the specific random device in this mechanism exhibits a full-insurance property: the

expected revenue is the same across all joint distributions consistent with the marginal distribution.

To see this, consider a valuation profile (v1,v2) in which v1 > v2. Under this mechanism, if the

random reserve r is lower than v2, occurring with a probability of v2
v̄ , then bidder 1 pays v2; if

the random reserve r is between v2 and v1, then bidder 1 pays r. Therefore the revenue from

the valuation profile (v1,v2) is v2 · v2
v̄ +

∫ v2
v1

r · 1
v̄ dr = v2

1+v2
2

2v̄ , which is separable in v1 and v2. This

implies the full-insurance property. In addition, the expected revenue is the second moment of

the marginal distribution over the maximum valuation.
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I show that this mechanism is a maxmin mechanism across all dominant-strategy

mechanisms under certain regularity conditions by constructing a feasible joint distribution

such that (i) the joint distribution minimizes the expected revenue under the mechanism across

all feasible joint distributions and (ii) the mechanism maximizes the expected revenue under

the joint distribution across all dominant-strategy mechanisms. I call such a joint distribution a

worst-case correlation structure. It is straightforward that (i) and (ii) imply that the mechanism

is a maxmin mechanism.

To construct such a joint distribution, I first reformulate the problem of maximizing the

expected revenue across all dominant-strategy mechanisms as the problem of maximizing

the expected “virtual value” of the bidder who is allocated the object subject to that the

allocation rule is monotone (a monotonicity constraint associated with dominant-strategy

incentive compatibility), where the “virtual value” is that the bidder’s valuation less information

rents that are pinned down by dominant-strategy incentive compatibility and the binding ex-post

participation constraints of zero-valuation bidders. This is a straightforward adaption of the

well-known revenue equivalence result of Myerson (1981). Importantly, this simplifies the

problem in that one can now point-wise maximizes the objective, ignoring the monotonicity

constriant2. Then such a joint distribution is obtained by letting the virtual value of the high

bidder (the bidder with a higher valuation than that of her opponent) be zero except when the

high bidder’s valuation is v̄. The intuition behind this property is that the auctioneer is indifferent

between allocating and not allocating the object to the high bidder as long as her valuation is

below v̄ under the second-price auction with the uniformly distributed random reserve.

To illustrate, consider a special case in which the marginal distribution is an equal-revenue

distribution3, defined by the property of a unit-elastic demand: in the monopoly pricing problem,

the monopoly’s revenue from charging any price in the support of this distribution is the same.

Notably, there is a probability mass on the maximum valuation in an equal-revenue distribution.

2Of course, one need to check that the monotonicity constraint holds in the end.
3This distribution is identified as a buyer-optimal signal distribution in a monopoly selling problem by Roesler

and Szentes (2017).
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Under the joint distribution where the high bidder’s virtual value is 0 except when her valuation is

v̄, the two bidders’ valuations turn out to be independent. Notably, the low bidder’s virtual value

also equals 0. The proposed regularity conditions generalize the special case: they guarantee that

under the constructed joint distribution, the high bidder’s virtual value is 0 and the low bidder’s

virtual value is weakly negative. Then if the proposed regularity conditions hold, the second-

price auction with the uniformly distributed random reserve maximizes the expected revenue

across all dominant-strategy mechanisms under the constructed joint distribution. Indeed, if the

proposed regularity conditions hold, any dominant-strategy mechanism, in which 1) the ex-post

participation constraints are binding for zero-valuation bidders and 2) the object is allocated with

probability one to the high bidder with the valuation of v̄ and the object is never allocated to the

low bidder, maximizes the expected revenue across all dominant-strategy mechanisms under the

constructed joint distribution.

Notably, the proposed regularity conditions contain a probability mass condition on the

maximum valuation. That is, the result requires that the marginal distribution have an atom on

the maximum valuation and that the size of the atom be bounded from below. Indeed, these

conditions capture many heavy-tailed distributions4, which are observed in many real-world

auctions. For example, according to Arnosti et al. (2016), it has been observed that a huge fraction

of the total value comes from a small number of very valuable impressions in online advertising.

In addition, according to Ibragimov and Walden (2010), very diverse private valuations have been

observed in markets for cultural and sport events as well as in those for antiques and collectibles

and online auctions and marketplaces such as eBay and StubHub. Many papers have studied

mechanism design problems when the distribution of values exhibits a heavy tail (e.g., Arnosti

et al. (2016) and Ibragimov and Walden (2010)).

I extend the analysis to the case of general number of bidders (N ≥ 3). For tractability,

I restrict attention to a subclass of dominant-strategy mechanisms in which a bidder whose

bid is not the highest is never allocated. A mechanism in this subclass is referred to as a

4I present a detailed discussion of these conditions in Section 2.4.1.
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standard5 dominant-strategy mechanism. The second main result (Theorem 9) is that, under

certain regularity conditions on the marginal distribution, the second-price auction with the

v̄−scaled Beta( 1
N−1 ,1) distributed random reserve is a maxmin mechanism across standard

dominant-strategy mechanisms. Under this mechanism, the cumulative distribution function of

the random reserve r is G(r) = ( r
v̄)

1
N−1 for r ∈ [0, v̄]. Following a methodology similar to the

two-bidder case, I show this result by constructing a worst-case correlation structure.

This mechanism embodies, albeit not the full-insurance property, a good hedging property:

it yields the same expected revenue across a range of correlation structures. Precisely, as I will

show, the expected revenue is the same for any feasible joint distribution whose support lies in

the set of valuation profiles in which either all bidders have the same valuations or there is a

unique highest bidder and the other bidders have the same valuations. Indeed, the constructed

worst-case correlation structure has such a support. Intuitively, given the restriction to standard

mechanisms, only the highest bidders are possible to generate positive revenue to the auctioneer.

Thus, the other bidders’ valuations except for the highest one are “wasted”. To reduce the

expected revenue as much as possible while maintaining the consistency with the marginal

distribution, a worst-case correlation structure maximizes the waste by increasing the other

bidders’ valuations as much as possible until all the other bidders’ valuations are the same. Then

similar to the two-bidder case, the worst-case correlation structure is obtained by requiring the

highest bidder’s virtual value be zero except when the highest bidder’s valuation is v̄. Here, the

proposed regularity conditions on the marginal distribution guarantee that the construction is

feasible. As I focus on standard dominant-strategy mechanisms, the bidders whose valuations are

not the highest do not contribute to the expected revenue and therefore their virtual values do not

matter. Then it is straightforward that the second-price auction with the v̄−scaled Beta( 1
N−1 ,1)

distributed random reserve maximizes the expected revenue across standard dominant-strategy

mechanisms under the constructed joint distribution.

5The terminology of ”standard” comes from Bergemann et al. (2019) who define standard mechanisms in a
similar manner. He and Li (2022) also adopts this terminology.
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Moreover, I show that the second-price auction with the v̄−scaled Beta( 1
N−1 ,1)

distributed random reserve is asymptotically optimal across all dominant-strategy mechanisms as

the number of the bidders goes to infinity, regardless of the marginal distribution (Remark 13). To

establish this, I show that the revenue guarantee of this mechanism converges to the expectation

of a generic bidder’s valuation. Indeed, the expectation of a generic bidder’s valuation is an

upper bound of the revenue guarantee for any dominant-strategy mechanism, as it is possible that

the correlation structure is the maximally positively correlated distribution (that is, all bidders

have the same valuations for any valuation profile in the support), under which the expectation

of a generic bidder’s valuation is the most surplus that the auctioneer can extract.

The first two main results both require the probability mass on the maximum valuation

to be bounded from below. The third main result (Theorem 10) characterizes the second-price

auction with the s∗6−scaled Beta( 1
N−1 ,1) distributed random reserve as a maxmin mechanism

across standard dominant-strategy mechanisms if the probability mass condition does not

hold. Under this mechanism, the cumulative distribution function of the random reserve r

is Gs∗(r) = ( r
s∗ )

1
N−1 with support [0,s∗] where s∗ ∈ (0, v̄). Notably, the highest bidder will be

fully allocated the object provided that her valuation is higher than s∗.

A second-price auction (albeit with some random reserve), which is simple and widely

adopted in practice, arises as a robustly optimal mechanism across some general class of

mechanisms. Importantly, this is true for a wide range of marginal distributions. Therefore,

the main results provide a positive explanation why the second-price auction is prevalent in

the real world: it maximizes the worst-case expected revenue for a wide range of marginal

distributions. Furthermore, the explanation is particularly convincing for the two-bidder case:

the robust optimality is established across all dominant-strategy mechanisms.

In addition to the main results, I propose a family of second-price auctions with t−scaled

Beta( 1
N−1 ,1) distributed random reserves where t ∈ (0, v̄). I identify a non-trivial lower bound

of the revenue guarantee for each auction in this family. For any given marginal distribution, I

6s∗ is characterized by the known marginal distribution, details of which are given in Section 2.4.3.
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am able to find an auction from this family that has a strictly higher revenue guarantee than that

of any posted-price mechanism and any second-price auction with a non-negative deterministic

reserve (Theorem 11 and Theorem 12).

The remainder of the introduction discusses related literature. Section 2.2 presents the

model. Section 2.3 illustrates the methodology and conducts preliminary analysis. Section

2.4 characterizes the main results. Section 2.5 proposes a family of auctions and studies their

performance in terms of the revenue guarantee. Section 2.6 is a conclusion. Omitted proofs are

in Appendix 2.7.1, 2.7.2 and 2.7.3. Appendix 2.7.4 contains the result for the essential necessity

of the regularity conditions.

2.1.1 Related Literature

The closest related paper is He and Li (2022), who study the design of auctions within

the correlation-robust framework. They show, among others, that a second-price auction with a

random reserve is a maxmin mechanism across standard dominant-strategy mechanisms under

certain conditions on the marginal distribution. Methodologically, both papers use duality theory

to proceed the analysis. The main differences can be summarized as follows. My setting is more

general than theirs in that I allow the marginal distribution to have a probability mass on the

maximum valuation7. More importantly, I obtain a new and strong result for the two-bidder

case: I establish that, under certain regularity conditions (different from theirs), my proposed

mechanism is a maxmin mechanism across all dominant-strategy mechanisms. In addition, I

establish the main results under weaker conditions on the marginal distribution8.

This paper is closely related to Che (2020), Koçyiğit et al. (2020a) and Zhang (2021).

The first two papers both consider a model of auction design in which the auctioneer only knows

the expectation of each bidder’s valuation. Specifically, Che (2020) shows that a second-price

7They assume continuous distributions and do not allow for a mass point on the maximum valuation.
8For valuations below the maximum valuation, both papers assume that the marginal distribution admits

a density f . For the main results, I only require that x2 f (x) be non-decreasing in x instead of that x f (x) be
non-decreasing in x, required in their paper.

69



auction with an optimal random reserve is a maxmin mechanism within a class of competitive

mechanisms9; Koçyiğit et al. (2020a) characterize a maxmin mechanism across highest-bidder

lotteries10 for the case where the known expectations are the same across bidders. Similarly,

my paper also considers some general class of mechanisms. The main difference is that I

assume that the auctioneer knows exactly the marginal distribution. That is, I assume that the

auctioneer knows more and therefore the revenue guarantee in my setting is an upper bound

of theirs. Zhang (2021) considers a model of bilateral trade in which the profit-maximizing

intermediary only knows the expectations of each trader’s valuation. He characterizes maxmin

trading mechanisms across all dominant-strategy mechanisms. The maxmin trading mechanism

features fixed-commission fee, uniformly random spread and midpoint transaction price in

the symmetric case. In contrast, this paper considers a model of auction design and assumes

that the auctioneer knows exactly the marginal distribution. Like that paper, I consider all

dominant-strategy mechanisms for the two-bidder case. In addition, this paper employs a similar

methodology to proceed the analysis. More specifically, both papers use properties of “virtual

value” to construct worst-case distributions.

This paper is also closely related to Bei et al. (2019), who study the design of auctions

within the correlation-robust framework with a focus on simple mechanisms. They show, among

others, that the revenue guarantee of the sequential posted-price mechanism is at least 1
2ln4+2

times the revenue guarantee of the optimal dominant-strategy mechanism.

This paper is related to Bose et al. (2006) who study the design of auctions assuming

that the bidders’ valuations are independently distributed but there may be ambiguity about the

marginal distribution of a generic bidder’s valuation. In contrast, my paper assumes that the

marginal distribution of a generic bidder’s valuation is known but the correlation structure of

bidders’ valuations is unknown. Because of the different framework, the methodology of this

paper differs significantly from that one. They show, among others, that an auction that “fully

9The class of dominant-strategy mechanisms is not a subset of the class of competitive mechanisms, and vice
versa.

10This is the same as standard dominant-strategy mechanisms.
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insures” the auctioneer is a maxmin mechanism when the auctioneer does not know the marginal

distribution but the bidders know it. Similarly, in my framework, the first main result (Theorem

8) characterizes a maxmin mechanism exhibiting a full-insurance property. However, the notion

of full-insurance is different from theirs. While full-insurance requires that the same expected

revenue be obtained across all feasible distributions in this paper, it requires that the same ex-post

revenue be obtained across all valuation profiles in that one.

Broadly, this paper joins the robust mechanism design literature (Bergemann and Morris

(2005)). There are other papers searching optimal solutions in the worst case over the space

of parameters (e.g., Carroll and Meng (2016), Garrett (2014), Bergemann and Schlag (2011),

Carroll (2017),Giannakopoulos et al. (2020),Chen et al. (2019)). Bergemann et al. (2016), Du

(2018) and Brooks and Du (2020) consider a model of auction design with common values. They

assume that bidders’ valuations for the object are drawn from a commonly known prior, but

they may have arbitrary information (high-order beliefs) about the prior distribution unknown

to the seller. An auction’s performance is measured by the worst expected revenue across a

class of incomplete information correlated equilibria termed Bayes correlated equilibria (BCE)

in Bergemann and Morris (2013). In this paper, I completely ignore the beliefs of bidders

by focusing on the dominant-strategy mechanisms. This assumption is more appropriate for

situations in which one not say much about bidders’ beliefs, as dominant-strategy mechanisms

are robust to misspecification of bidders’ beliefs.

2.2 Preliminaries

2.2.1 Notation

I introduce the following technical notations. First, all spaces considered are polish

spaces; I endow them with their Borel σ−algebra. Second, product spaces are endowed with

product σ−algebra. Third, I use ∆(X) to denote the set of all probability measures over X .
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2.2.2 Environment

I consider an environment where a single indivisible object is sold to N ≥ 2 risk-neutral

bidders. I denote by I = {1,2, ...,N} the set of bidders. Each bidder i has private information

about her valuation for the object, which is modeled as a random variable vi with cumulative

distribution function Fi
11. Throughout the paper, I focus on symmetric environment, i.e.,

Fi = Fj = F12 for any i, j ∈ I. I denote the support of Fi by Vi. I assume that Vi = [0, v̄]

for some v̄ > 0. The joint support of all Fi is V =×N
i=1Vi = [0, v̄]N with a typical valuation profile

v. I denote bidder i’s opponents’ valuation profiles by v−i, i.e., v−i ∈V−i =× j ̸=iVj.

The valuation profile v is drawn from a joint distribution P , which may have an arbitrary

correlation structure. The auctioneer only knows the marginal distribution F of each bidder’s

valuation but does not know how these bidders’ valuations are correlated. To the auctioneer,

any joint distribution is feasible as long as the joint distribution is consistent with the marginal

distribution. I denote by

Π(F) = {π13 ∈ ∆V : ∀i ∈ I,∀measurable Ai ⊂Vi,π(Ai ×V−i) = F(Ai)}

the collection of feasible joint distributions.

2.2.3 Marginal Distribution

I assume that the marginal distribution F admits a probability density function f (x) for

any x ∈ [0, v̄). I allow F to have a probability mass on v̄, the size of which is denoted by Pr(v̄). 14

Importantly, as will be seen, the first two main results (Theorem 8 and 9) require that the marginal

11As will be discussed later, I allow distributions to have a probability mass on the maximum valuation.
Furthermore, all results (with slight modifications) hold in discrete environments.

12With slight abuse of notation, I also use F to denote the probability measure consistent with the distribution F .
13With slight abuse of notation, I also use π to denote the probability density of the probability measure π if the

probability density exists.
14He and Li (2022) restrict attention to marginal distributions that admits a positive density function everywhere,

whereas this paper allows a probability mass on the maximum valuation. That is, the assumption in this paper is
more general.
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distribution have an atom on v̄ and that the size of the atom be bounded from below. Indeed,

distributions with a probability mass on the maximum valuation are familiar in many information

design and robust mechanism design environments. Roesler and Szentes (2017) analyze a model

where the buyer has a given value distribution and designs a signal structure to learn about her

valuation. After observing the signal structure, the seller makes a take-it-or-leave-it offer. They

show that an equal-revenue distribution is the buyer-optimal signal distribution. In a closely

related work, Condorelli and Szentes (2020) analyze a model where the buyer can choose the

probability distribution of her valuation for the good. After observing the buyer’s choice of

the distribution, the seller makes a take-it-or-leave-it offer. They show that an equal-revenue

distribution is the buyer-optimal value distribution. Besides, Bergemann and Schlag (2008)

consider a minimax regret design problem of selling a single object to a single buyer and find

that an equal-revenue distribution is a worst-case distribution; Zhang (2022b) considers a robust

public good mechanism design problem and finds that the worst-case marginal distribution has a

probability mass on the maximum valuation.

Moreover, distributions with a probability mass on the maximum valuation admits an

”approximating” interpretation as follows. Consider a marginal distribution F̂ with a non-negative

density function f̂ everywhere on [0,∞). In the real world, it is reasonable to assume that bidders’

valuations are bounded as the total wealth, which is physically impossible to be infinite, is an

upper bound of bidders’ valuations. Then the marginal distribution F with bounded support [0, v̄]

is generated by truncating F̂ on v̄ as follows: f (x) = f̂ (x) for x < v̄ and Pr(v̄) = 1− F̂(v̄). When

v̄ is large, F is a natural approximation of F̂ .

2.2.4 (Standard) Dominant-strategy Mechanisms

I focus on dominant-strategy mechanisms. The revelation principle holds and it is without

loss of generality to restrict attention to direct mechanisms. A direct mechanism (q, t) is defined

as an allocation rule q : V → [0,1]N and a payment function t : V → RN . With slight abuse of
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notation, each bidder submits a sealed bid vi ∈ Vi to the auctioneer. Upon receiving the bids

profile v = (v1,v2, · · · ,vN), the allocation probabilities are q(v) = (q1(v),q2(v), · · · ,qN(v)) and

the payments are t(v) = (t1(v), t2(v), · · · , tN(v)) where q(v)≥ 0 and ∑i qi(v)≤ 1 for all v ∈V . A

direct mechanism is a dominant-strategy mechanism if for all i ∈ I, all v ∈V , and all v′i ∈Vi,

viqi(v)− ti(v)≥ viqi(v′i,v−i)− ti(v′i,v−i),

viqi(v)− ti(v)≥ 0.

The set of all such mechanisms is denoted by D. I say a direct mechanism (q, t) is standard if

for any v ∈V and i ∈ I such that vi < max j∈I v j , the allocation to the bidder i is qi(v) = 0. That

is, only the highest bidders are possible to be allocated in a standard mechanism. The set of all

standard dominant-strategy mechanisms is denoted by E .

2.2.5 Objective Function

I am interested in the auctioneer’s expected revenue in the dominant-strategy equilibrium

in which each bidder truthfully reports her valuation of the object. Then the expected revenue

of a dominant-strategy mechanism (q, t) when the joint distribution is π is U((q, t),π) =∫
v∈V ∑

N
i=1 ti(v)dπ(v). The auctioneer evaluates a mechanism (q, t) by its worst-case expected

revenue, referred to as the revenue guarantee of the mechanism (q, t), over all feasible

joint distributions. Formally, the mechanism (q, t)’s revenue guarantee is REG((q, t)) =

infπ∈Π(F)U((q, t),π). The auctioneer’s goal is to find a maxmin mechanism from either D

or E with the maximal revenue guarantee15. Formally, the auctioneer solves

sup
(q,t)∈D(orE)

REG((q, t)). (MRG)

15As will be seen later, the first main result (Theorem 8) characterizes a maxmin mechanism from D , and either
of the other main results (Theorem 9 and Theorem 10) characterizes a maxmin mechanism from E .
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2.3 Methodology and Preliminary Analysis

The maxmin optimization problem (MRG) can be interpreted as a two-player sequential

zero-sum game. The two players are the auctioneer and adversarial nature. The auctioneer first

chooses a mechanism (q, t) ∈ D (or (q, t) ∈ E). After observing the auctioneer’s choice of the

mechanism, adversarial nature chooses a feasible joint distribution π ∈ Π(F). The auctioneer’s

payoff is U((q, t),π), and adversarial nature’s payoff is −U((q, t),π). One can also consider the

simultaneous-move version of this zero-sum game, whose Nash equilibrium is indeed a saddle

point of the payoff functional U , i.e., for any (q, t) ∈ D (or (q, t) ∈ E) and any π ∈ Π(F),

U((q∗, t∗),π)≥U((q∗, t∗),π∗)≥U((q, t),π∗).

The first inequality says the joint distribution π∗ minimizes the expected revenue under the

mechanism (q∗, t∗), and the second inequality implies that, under the joint distribution π∗, the

other dominant-strategy mechanisms cannot attain a strictly higher expected revenue. Hence,

the auctioneer’s equilibrium strategy in the simultaneous-move version of this zero-sum game,

(q∗, t∗), is a maxmin mechanism. π∗ is referred to as a worst-case correlation structure. I will

construct a saddle point for each of the main results.

Proposition 3 (Revenue Equivalence). When searching for a maxmin mechanism, it is without

loss to restrict attention to mechanisms satisfying the following properties: 1) qi(·,v−i) is

non-decreasing in vi for all v−i and 2) ti(vi,v−i) = viqi(vi,v−i)−
∫ vi

0 qi(x,v−i)dx.

Proof. The proof is in Appendix 2.7.1.

Proposition 3 simplifies the analysis by establishing two properties of a maxmin

mechanism. The first property says the allocation rule is monotone, and the second property says

that the payment rule can be characterized by the allocation rule and that the ex-post participation

constraints are binding for zero-valuation bidders. This is standard in the mechanism design

literature (e.g., Myerson (1981)).
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Moreover, Proposition 3 allows me to obtain a virtual representation of the expected

revenue, which is essential for my analysis. Precisely, consider the problem that fixing an

arbitrary joint distribution π, the auctioneer designs an optimal mechanism (q, t). For exposition,

I assume that π admits a positive density function16. The density function of vi conditional on

v−i is denoted by πi(vi|v−i), and the cumulative distribution function of vi conditional on v−i is

denoted by Πi(vi|v−i). Then an direct implication of Proposition 3 is that the expected revenue

of (q, t) under the joint distribution π is

E[
N

∑
i=1

ti(v)] = E[
N

∑
i=1

qi(v)φi(v)],

where φi(v) = vi − 1−Πi(vi|v−i)
πi(vi|v−i)

is the virtual value of bidder i when the valuation profile is v.

Thus the problem of designing an optimal mechanism given a joint distribution is equivalent to

maximizing the expected total virtual surplus, which refers to the expected sum of the allocation

times the virtual value, subject to that the allocation rule is monotone.

2.4 Main Results

In Section 2.4.1, I characterize a maxmin mechanism across all dominant-strategy

mechanisms under certain regularity conditions for the two-bidder case. In Section 2.4.2, I

characterize a maxmin mechanism across standard dominant-strategy mechanisms under certain

regularity conditions for the N−bidder (N ≥ 3) case. In Section 2.4.3, I characterize a maxmin

mechanism across standard dominant-strategy mechanisms condition for the N−bidder (N ≥ 2)

case when the probability mass condition (part of the regularity conditions) fails.

16The virtual representation can be similarly derived for joint distributions in which there is a probability mass
on (1, · · · ,1)︸ ︷︷ ︸

N

.
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2.4.1 Two Bidders

I first define a mechanism and a joint distribution. Then I define regularity conditions

under which the mechanism and the joint distribution form a saddle point (Theorem 8). Then I

illustrate Theorem 8. Finally, I give a discussion of the regularity conditions.

The second-price auction with the uniformly distributed random reserve is defined as

follows. The auctioneer first draws a random reserve r from the uniform distribution with support

[0, v̄]. Then the two bidders bid simultaneously. The high bidder (the bidder with a higher bid

than that of her opponent) wins the object if her bid is also higher than r, and she pays the

maximum of r and her opponent’s bid; the low bidder loses the auction and pays nothing. In

case of ties, each bidder wins the object with a half probability if the bid is higher than r, and the

winner pays the bid.

Equivalently, it can be defined by (q∗, t∗) as follows. If v1 > v2, then q∗1(v1,v2) =

v1
v̄ ,q

∗
2(v1,v2)= 0 and t∗1(v1,v2)=

v2
1+v2

2
2v̄ , t∗2(v1,v2)= 0; if v1 < v2, then q∗1(v1,v2)= 0,q∗2(v1,v2)=

v2
v̄ and t∗1(v1,v2) = 0, t∗2(v1,v2) =

v2
1+v2

2
2v̄ ; if v1 = v2 = x, then q∗1(v1,v2) = q∗2(v1,v2) =

x
2v̄ and

t∗1(v1,v2) = t∗2(v1,v2) =
x2

2v̄ .
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The joint distribution π∗ is defined as follows17.

π
∗(v1,v2) = π

∗(v2,v1) =



f (0)

if v1 = v2 = 0;

0

if v1 > v2 = 0;

1
v2

1
(v2 f (v2)−

∫ v2
0 x2 f (x)dx

v2
2

)

if v̄ > v1 ≥ v2 > 0;

1
v̄ (v2 f (v2)−

∫ v2
0 x2 f (x)dx

v2
2

)

if v̄ = v1 > v2 > 0.

Pr∗(v̄, v̄) = Pr(v̄)−
∫

x∈(0,v̄) x2 f (x)dx

v̄2 .

The two-bidder robust regularity conditions are defined as follows: x2 f (x) is non-

decreasing for x ∈ (0, v̄) and Pr(v̄)≥
∫

x∈(0,v̄) x2 f (x)dx
v̄2 . I refer to the second part of the conditions

as the probability mass condition.

Remark 9. Note that the probability mass condition becomes non-restrictive as v̄ → ∞ if∫
x∈(0,v̄) x2 f (x)dx is of order v̄γ with γ < 2.

Theorem 8. For the two-bidder case, the second-price auction with the uniformly distributed

random reserve is a maxmin mechanism across all dominant-strategy mechanisms if the two-

bidder robust regularity conditions hold. The revenue guarantee is E[X2]
v̄ .18 The joint distribution

π∗ is a worst-case correlation structure.

Now I illustrate Theorem 8. I start with the illustration of the mechanism.
17Here π∗(v1,v2) denotes the density of the valuation profile (v1,v2) whenever the density exists and Pr∗(v1,v2)

denotes the probability mass of the valuation profile (v1,v2) whenever there is some probability mass on (v1,v2).
The marginal distributions that the result covers have a probability mass on the maximum valuation v̄. In the joint
distribution π∗, there is (non-negative) probability mass on the point (v̄, v̄).

18The distribution of X is F .
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Definition 4. I say a dominant-strategy mechanism (q, t) exhibits the full-insurance property if

the expected revenue of (q, t) is the same across all feasible joint distributions.

Proposition 4. For the two-bidder case, the second-price auction with the uniformly distributed

random reserve exhibits the full-insurance property.

Proof. Note that under the second-price auction with the uniformly distributed random reserve,

the total revenue from a valuation profile (v1,v2) is t∗(v1,v2) = t∗1(v1,v2)+ t∗2(v1,v2) =
v2

1+v2
2

2v̄ .

Then fix any feasible joint distribution π, the expected revenue is

∫
[0,v̄]2

t∗(v1,v2)dπ(v1,v2) =
∫
[0,v̄]2

v2
1 + v2

2
2v̄

dπ(v1,v2)

=
∫
[0,v̄]2

v2
1

2v̄
dπ(v1,v2)+

∫
[0,v̄]2

v2
2

2v̄
dπ(v1,v2)

=
∫
[0,v̄]

v2
1

2v̄
dF(v1)+

∫
[0,v̄]

v2
2

2v̄
dF(v2)

=
E[X2]

v̄
.

The joint distribution π∗ is obtained by a condition requiring that the high bidder’s virtual

value be 0 except when her valuation is v̄. Formally,

φ
∗
i (vi,v j) = 0 if v j ≤ vi < v̄. (1)

The property (1) is motivated by a property of the second-price auction with the uniformly

distributed random reserve: the auctioneer is indifferent between allocating and not allocating

the object to the high bidder as long as her valuation is not v̄.

Furthermore, I impose a condition on the constructed joint distribution π∗ that the virtual

value of the low bidder is weakly smaller than that of the high bidder. Formally,

φ
∗
j(vi,v j)≤ φ

∗
i (vi,v j) if v j ≤ vi. (2)
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The property (2) is motivated by another property of the second-price auction with the uniformly

distributed random reserve: the low bidder is never allocated the object.

Indeed, if the property (1) and the property (2) hold for a joint distribution, it is

straightforward that the second-price auction with the uniformly distributed random reserve

maximizes the expected revenue across all dominant-strategy mechanisms given this joint

distribution. The two-bidder robust regularity conditions, as I will show, guarantee that the

property (1) and the property (2) hold for the constructed joint distribution π∗. In summary, I

obtain a virtual value matrix for π∗ as follows if the two-bidder robust regularity conditions hold.



(0,0)0,0 (0,0)0,>0 · · · · · · (0,0)0,<v̄ (0,0)0,v̄

(0,0)>0,0 (0,0)v1=v2>0 (−,0)v1<v2 · · · (−,0)v1<v2<1 (≤,+)<v̄,v̄

... (0,−)v1>v2
. . . ...

...
...

...
... · · · . . . ...

...

(0,0)<v̄,0 (0,−)<v̄,>0 · · · · · · (0,0)v1=v2<v̄ (≤,+)<v̄,v̄

(0,0)v̄,0 (+,≤)v̄,>0 · · · · · · (+,≤)v̄,<v̄ (+,+)v̄,v̄


Here “0” in the bracket means zero virtual value, “−” means a non-positive virtual value, “+”

means a non-negative virtual value, “≤” means the virtual value of the bidder is weakly smaller

than that of her opponent. The subscript denotes the corresponding valuation profile.

Remark 10. The probability mass condition arises because the property (1) requires that the

conditional distribution of the high bidder’s valuation be an equal-revenue distribution, which

has an atom on the maximum valuation v̄.

Proposition 5. If the two-bidder robust regularity conditions hold, the second-price auction with

the uniformly distributed random reserve maximizes the expected revenue across all dominant-

strategy mechanism under the joint distribution π∗.

Proof. The proof is in Appendix 2.7.2 which presents details about the construction of π∗.
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Theorem 8 follows immediately from Proposition 4 and Proposition 5.

There is an important special case where Theorem 8 applies: the equal-revenue

distribution. Recall that the equal-revenue distribution is familiar in the information design

literature and robust mechanism design literature (e.g., Roesler and Szentes (2017), Bergemann

and Schlag (2008), Du (2018), etc).

Corollary 1. For the two-bidder case, if the marginal distribution is an equal-revenue distribution

with α ∈ (0, v̄):

F(x) =

 1− α

x if α ≤ x < v̄;

1 if x = v̄,

then the second-price auction with the uniformly distributed random reserve is a maxmin

mechanism across all dominant-strategy mechanism. The revenue guarantee is 2α− α2

v̄ . The

independent equal-revenue distribution19 is a worst-case correlation structure.

Proof. It is straightforward to show that an equal-revenue distribution satisfies the two-bidder

robust regularity conditions. Then Theorem 8 implies Corollary 1.

There are many other distributions satisfying the two-bidder robust regularity conditions.

I now provide some examples.

Example 1. Any (truncated) Pareto distribution with α ∈ (0, v̄),β ∈ (0,1):

F(x) =

 1− αβ

xβ
if α ≤ x < v̄;

1 if x = v̄.

To see this, note that x2 f (x) = αββx1−β is non-decreasing when β ∈ (0,1). For the

probability mass condition, note that Pr(v̄) = (α

v̄ )
β ≥ (α

v̄ )
β β

2−β
[1− (α

v̄ )
2−β] =

∫
(0,v̄) x2 f (x)dx

v̄2 when

β ∈ (0,1).

19That is, the marginal distribution of each bidder’s valuation is the known equal-revenue distribution; bidders’
valuations are independently distributed.
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Example 2. A combination of an uniform distribution on [0, v̄) and a probability mass on v̄ with

Pr(v̄)≥ 1
4 .

To see this, note that the first part of the conditions holds trivially because it is uniformly

distributed on [0, v̄). For the probability mass condition, note that Pr(v̄) ≥
∫
(0,v̄) x2· 1−Pr(v̄)

v̄ dx
v̄2 =∫

(0,v̄) x2 f (x)dx
v̄2 when Pr(v̄)≥ 1

4 .

As a final topic of this section, I discuss the two-bidder robust regularity conditions.

Using the approximation interpretation in Section 2.2.3, F is obtained via a truncation of F̂

on v̄. Now consider the following regularity conditions for F̂ : x2 f̂ (x) is non-decreasing on

[0,∞) and
∫ s

0 x2 f̂ (x)dx
s2 → 0 as s → ∞. These conditions imply that the two-bidder robust regularity

conditions hold for any v̄ > 0.20 It is straightforward to verify that these conditions hold for many

heavy-tailed distributions including a family of power law distributions21, Cauchy distributions22,

log-Cauchy distributions23, Lévy distributions24, etc. Thus, when v̄ is large, the two-bidder

robust regularity conditions hold for a distribution that is an approximation of some heavy-tailed

distribution.

20Indeed, that x2 f̂ (x) is non-decreasing implies that the function K(s) := F̂(s)+
∫ s

0 x2 f̂ (x)dx
s2 is non-decreasing.

To see this, note that K′(s) = 2[ f̂ (s)−
∫ s

0 x2 f̂ (x)dx
s3 ]≥ 0, shown in (B.9). Then F̂(v̄)+

∫ v̄
0 x2 f̂ (x)dx

v̄2 ≤ 1 for any v̄ > 0 if∫ s
0 x2 f̂ (x)dx

s2 → 0 as s → ∞.
21The power law distribution is given by F(x) = 1− αβ

xβ
with α > 0 for x ∈ [α,∞). The parameter β determines

the weight of the tail. These conditions hold for any power law distribution with β ∈ (0,1].
22The density function of the Cauchy distribution is given by f (x) = 2b

π(b2+x2)
with b > 0 for x ∈ [0,∞). It is

straightforward to show that these conditions hold for Cauchy distributions with any b > 0.
23The density function of the log-Cauchy distribution is given by f (x) = 1

πx [
σ

(lnx−µ)2+σ2 ] with σ> 0 for x∈ (0,∞).
It is straightforward to show that these conditions hold for log-Cauchy distributions with any σ ≥ 1 and any real
number µ.

24The density function of the Lévy distribution is given by f (x) =
√ c

2π

e−
c

2x

x
3
2

with c > 0 for x ∈ (0,∞). It is

straightforward to show that these conditions hold for Lévy distributions with any c > 0.
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2.4.2 N Bidders

The structure of this section is similar to Section 2.4.2: I first define a mechanism and a

joint distribution. Then I define regularity conditions under which the mechanism and the joint

distribution form a saddle point (Theorem 9). Then I illustrate Theorem 9.

The second-price auction with v̄-scaled Beta( 1
N−1 ,1) distributed random reserve is

defined as follows. The auctioneer first draws a random reserve r from the v̄−scaled Beta( 1
N−1 ,1)

distribution. That is, the cumulative distribution function of the random reserve r is G(r)= ( r
v̄)

1
N−1

with support [0, v̄]. Then the N bidders bid simultaneously. The highest bidder wins the object if

her bid is also higher than r, and she pays the maximum of r and the second highest bid; a bidder

whose bid is not the highest loses the auction and pays nothing. In case of ties, each bidder wins

the object with an equal probability if the bid is higher than r, and the winner pays the bid.

Equivalently, it can be defined by (q∗, t∗) as follows. I denote the highest valuation in

a valuation profile v by v(1), and the second highest valuation (if any) by v(2). If #{k : vk =

v(1)} = 1, then q∗∗i (v) = (v(1)
v̄ )

1
N−1 ,q∗∗j (v) = 0 and t∗∗i (v) = v(1)

N
N−1 +(N−1)v(2)

N
N−1

Nv̄
1

N−1
, t∗∗j (v) = 0

for i ∈ {k : vk = v(1)} and j /∈ {k : vk = v(1)}; if #{k : vk = v(1)} = K ≥ 2, then q∗∗i (v) =

1
K (

v(1)
v̄ )

1
N−1 ,q∗∗j (v) = 0 and t∗∗i (v) = v(1)

N
N−1

Kv̄
1

N−1
, t∗∗j (v) = 0 for i ∈ {k : vk = v(1)} and j /∈ {k : vk =

v(1)}.

The joint distribution π∗∗ is symmetric and is defined as follows25. The support of π∗∗ is

V+ := {v ∈V |vi = v(1) for any i or ∃i s.t. vi = v(1)> v j = v(2) for any j ̸= i}. That is, v ∈V+

if either all bidders have the same valuations or there is a unique highest bidder and all of the

25Here π∗∗(v) denote the density of the valuation profile v whenever the density exists and Pr∗∗(v) denote the
probability mass of the valuation profile v whenever there is some probability mass on v. The marginal distributions
that this result covers have a probability mass on the maximum valuation v̄. In the joint distribution π∗∗, there is a
(non-negative) probability mass on the point (v̄, · · · , v̄︸ ︷︷ ︸

N

).
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remaining bidders have the same valuations. If v /∈V+, then π∗∗(v) = 0. If v ∈V+, then

π
∗∗(vi,v−i) =



f (0)

if v = (0, · · · ,0);

0

if 0 = v j < vi,∀ j ̸= i;

1
(N−1)v(1)2 (v(2) f (v(2))− v(2)−

N
N−1

N−1
∫ v(2)

0 x
N

N−1 f (x)dx)

if 0 < v(2) = v j ≤ vi = v(1)< v̄,∀ j ̸= i;

1
(N−1)v̄(v(2) f (v(2))− v(2)−

N
N−1

N−1
∫ v(2)

0 x
N

N−1 f (x)dx)

if 0 < v(2) = v j < vi = v̄,∀ j ̸= i.

Pr∗∗(v̄, · · · , v̄︸ ︷︷ ︸
N

) = Pr(v̄)−
∫
(0,v̄) x

N
N−1 f (x)dx

(N −1)v̄
N

N−1
.

The N-bidder robust regularity conditions (I) are defined as follows: f (x) ≥
x−

2N−1
N−1

N−1
∫ x

0 s
N

N−1 f (s)ds for x ∈ (0, v̄) and Pr(v̄)≥
∫
(0,v̄) x

N
N−1 f (x)dx

(N−1)v̄
N

N−1

26. The N-bidder robust regularity

conditions (II) are defined as follows: x2 f (x) is non-decreasing for x ∈ (0, v̄) and Pr(v̄) ≥∫
(0,v̄) x

N
N−1 f (x)dx

(N−1)v̄
N

N−1
.

Remark 11. Here the probability mass condition will vanish as the number of the bidders goes to

infinity. To see this, note that
∫
(0,v̄) x

N
N−1 f (x)dx

(N−1)v̄
N

N−1
≤

∫
(0,v̄) v̄

N
N−1 f (x)dx

(N−1)v̄
N

N−1
≤ 1

N−1 → 0 as N → ∞. Therefore,

the probability mass condition is non-restrictive when the number of bidders is large.

Theorem 9. For the N-bidder case (N ≥ 3), the second-price auction with the v̄−scaled

Beta( 1
N−1 ,1) distributed random reserve is a maxmin mechanism across standard dominant-

strategy mechanisms if the N−bidder robust regularity conditions (I) hold. The revenue guarantee

is E[X
N

N−1 ]

v̄
1

N−1
. The joint distribution π∗∗ is a worst-case correlation structure. In addition, the

N−bidder robust regularity conditions (II) imply the N−bidder robust regularity conditions (I).
26With slight abuse of notation, here the condition for Pr(v̄) is also referred to as the probability mass condition.
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Remark 12. It is straightforward that the second-price auction with the v̄−scaled Beta( 1
N−1 ,1)

distributed random reserve converges to the second-price auction without a reserve as the number

of bidders goes to infinity. The asymptotic behaviour of the random reserve is consistent with

the empirical finding that reserve prices are substantially lower than the optimal ones under the

estimated distribution of values (e.g., Paarsch (1997), McAfee et al. (2002), Haile and Tamer

(2003) and Bajari and Hortaçsu (2003)).

Definition 5. Given a marginal distribution F , suppose the revenue guarantee of a maxmin

mechanism across all dominant-strategy mechanisms is OptN(F) for each N−bidder case.

Consider a dominant-strategy mechanism MN for each N−bidder case. Suppose the revenue

guarantee of MN is RegN(F). I say MN is asymptotically optimal across all dominant-strategy

mechanisms given the marginal distribution F if OptN(F)−RegN(F)→ 0 as N → ∞.

Remark 13. The second-price auction with the v̄−scaled Beta( 1
N−1 ,1) distributed random

reserve is asymptotically optimal across all dominant-strategy mechanisms, regardless of the

marginal distribution. Furthermore, the rate of convergence is O( 1
N )

27. To see these, recall that

E[X ] is an upper bound of the revenue guarantee for any dominant-strategy mechanism. This is

because it is always possible that adversarial nature chooses the maximally positively correlated

distribution. But by the Dominated Convergence Theorem, I have that

E[X
N

N−1 ]

v̄
1

N−1
→ E[X ]

as N → ∞. Furthermore, let j(x) := x− x
N

N−1

v̄
1

N−1
. Because j′(x) = 1− Nx

1
N−1

(N−1)v̄
1

N−1
and j′′(x) =

− Nx
2−N
N−1

(N−1)2v̄
1

N−1
≤ 0, j(x) is maximized at x = (N−1

N )N−1v̄ and the maximized value is (N−1
N )N−1 · v̄

N

by simple calculation. Then I have that E[X ]− E[X
N

N−1 ]

v̄
1

N−1
≤ (N−1

N )N−1 · v̄
N ≤ v̄

N . Therefore the rate

of convergence is O( 1
N ).

27In addition, this rate of convergence is the fastest across all standard dominant-strategy mechanisms, as is
shown in He and Li (2020).
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Now I illustrate Theorem 9. I start with the illustration of the mechanism.

This mechanism exhibits a robust property in the following sense: for any feasible joint

distribution whose support is V+, the expected revenue under this mechanism is the same. To see

this, note that the total revenue from a valuation v ∈ V+ is t∗∗(v) = ∑
N
i=1 t∗∗i (v) = ∑

N
i=1

v
N

N−1
i

Nv̄
1

N−1
.

Therefore, the expected revenue is E[X
N

N−1 ]

v̄
1

N−1
for any feasible joint distribution whose support is

V+. I will use the linear programming duality theorem to show that such an joint distribution

indeed minimizes the expected revenue across all feasible joint distributions.

Proposition 6. For the N-bidder case (N ≥ 3), under the second-price auction with the v̄−scaled

Beta( 1
N−1 ,1) distributed random reserve, any feasible joint distribution whose support is V+

minimizes the expected revenue across all feasible joint distributions. The minimized expected

revenue is E[X
N

N−1 ]

v̄
1

N−1
.

Proof. The proof is in Appendix 2.7.2 which presents the details about the construction of the

mechanism.

Proposition 6 implies that the constructed joint distribution π∗∗ minimizes the expected

revenue across all feasible joint distributions under the mechanism, as the support of the

constructed joint distribution π∗∗ is V+.

The joint distribution π∗∗ is then obtained by a condition requiring that the highest

bidder’s virtual value be 0 except when her valuation is v̄. Formally,

φ
∗∗
i (vi,v−i) = 0 if v ∈V+,max

j ̸=i
v j ≤ vi < v̄. (1’)

If the property (1’) holds for a joint distribution, then it is straightforward that the second-

price auction with the v̄−scaled Beta( 1
N−1 ,1) distributed random reserve maximizes the expected

revenue across all standard dominant-strategy mechanisms given this joint distribution. Note

that I do not impose any condition on lower bidders’ virtual values. This is because I restrict

attention to standard dominant-strategy mechanisms, and then a bidder whose bid is not the
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highest is not allocated the object and pays nothing. The N−bidder robust regularity

conditions (I) guarantee that the property (1’) holds for the constructed joint distribution π∗∗.

The N−bidder robust regularity conditions (II) are simpler conditions, and, as I will show, they

imply the N−bidder robust regularity conditions (I).

Proposition 7. For the N-bidder case (N ≥ 3), if the N−bidder robust regularity conditions (I)

hold, then the second-price auction with the v̄-scaled Beta( 1
N−1 ,1) distributed random reserve

maximizes the expected revenue across all standard dominant-strategy mechanisms under the

joint distribution π∗∗. In addition, the N−bidder robust regularity conditions (II) imply the

N−bidder robust regularity conditions (I).

Proof. The proof is in Appendix 2.7.2 which presents details about the construction of the joint

distribution π∗∗.

Theorem 9 follows immediately from Proposition 6 and Proposition 7.

Now I present the result for the special case: the equal-revenue distribution. In contrast

to the two-bidder case, bidders’ valuations are not independently distributed in the worst-case

correlation structure for the N−bidders case (N ≥ 3).

Corollary 2. For the N−bidders case (N ≥ 3), if the marginal distribution is an equal-revenue

distribution (α ∈ (0, v̄)):

F(v) =

 1− α

v if α ≤ v < v̄;

1 if v = v̄,

then the second-price auction with the v̄−scaled Beta( 1
N−1 ,1) distributed random reserve is a

maxmin mechanism across standard dominant-strategy mechanisms. The revenue guarantee is
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Nα− (N−1)α
N

N−1

v̄
1

N−1
. The worst-case correlation structure is symmetric and is defined as follows.

π(vi,v−i) =



(
v(2)

α
)
− N

N−1

(N−1)v(1)2

if α ≤ v(2) = v j ≤ vi = v(1)< v̄,∀ j ̸= i;

(
v(2)

α
)
− N

N−1

(N−1)v̄

if α ≤ v j = v(2)< vi = v̄,∀ j ̸= i;

0

if otherwise.

Pr(v̄, · · · , v̄︸ ︷︷ ︸
N

) = (
α

v̄
)

N
N−1 .

Proof. It is straightforward to show that an equal-revenue distribution satisfies the N-bidder

robust regularity conditions (I) (and (II)). Then Theorem 9 implies Corollary 2.

2.4.3 When Probability Mass Condition Fails

When the probability mass condition fails, I characterize a maxmin mechanism across

standard dominant-strategy mechanisms.

Theorem 10. For the N-bidder case (N ≥ 2), if x2 f (x) is non-decreasing for x ∈ (0,∞)

and Pr(v̄) <
∫
(0,v̄) x

N
N−1 f (x)dx

(N−1)v̄
N

N−1
, then the second-price auction with the s∗−scaled Beta( 1

N−1 ,1)

distributed random reserve is a maxmin mechanism across standard dominant-strategy

mechanisms where s∗ ∈ (0, v̄) is a solution to

∫
(0,s) x

N
N−1 dF(x)

s
N

N−1
= (N −1)(1−F(s)). (SD)

In addition, the revenue guarantee is Ns∗(1−F(s∗)).

Proof. The proof is in Appendix 2.7.2.

88



Remark 14. This result generalizes and strengthens Theorem 3 in He and Li (2022). First, the

conditions in this result allow for a probability mass on the maximum valuation. Second, the

condition for x < v̄ is weaker than that x f (x) is non-decreasing28, required in their result.

Under this mechanism, the cumulative distribution function of the random reserve r is

Gs∗(r) = ( r
s∗ )

1
N−1 with support [0,s∗]. Therefore, the highest bidder will be allocated the object

with a probability less than one if her valuation is less than s∗, and will be allocated the object

with probability one if her valuation is weakly higher than s∗. I follow the saddle point approach

to show Theorem 10. Notably, the constructed worst-case correlation structure exhibits the

property that the highest bidder’s virtual value is 0 when her valuation is less than s∗, and is

weakly positive when her valuation is weakly higher than s∗. I relegate the details to Appendix

2.7.2.

2.5 Robust Dominance

I have shown that the second-price auction with the v̄−scaled Beta( 1
N−1 ,1) distributed

random reserve is a maxmin mechanism under certain regularity conditions. Then what if the

regularity conditions do not hold? How does this mechanism perform? As a first topic of this

section, I compare the performance of this mechanism with that of the posted-price mechanism,

which is a dominant-strategy mechanism commonly used in practice. For exposition, I assume

that the marginal distribution admits a positive density function everywhere on [0, v̄] in this

section. I denote the set of all such distributions by ∆c[0, v̄].

Definition 6. I say a mechanism M dominates a family of mechanisms M for a set of marginal

distributions if for any marginal distribution in this set, the revenue guarantee of M is strictly

greater than that of any mechanism in the family M .

Definition 7. I say a family of mechanisms M1 universally dominates another family of

28It is straightforward that x f (x) is non-decreasing implies that x2 f (x) is non-decreasing, but not vice versa.
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mechanisms M2 if for any F ∈ ∆c[0, v̄], there exists a mechanism in M1 with a revenue guarantee

strictly greater than that of any mechanism in M2.

Proposition 8. For any N ≥ 2, the second-price auction with the v̄−scaled Beta( 1
N−1 ,1)

distributed random reserve dominates the family of posted-price mechanisms for the set

H = {F ∈ ∆c[0, v̄]|the revenue function x · (1−F(x)) is strictly concave}.

Proof. The proof is in Appendix 2.7.3.

Motivated by the main idea embedded in the construction, I propose a family of second-

price auctions with t−scaled Beta( 1
N−1 ,1) distributed random reserves where t ∈ (0, v̄), denoted

by MSP−β. As a second topic of this section, I study the performance of the proposed family of

auctions. Formally, the cumulative distribution function of the random reserve r in this family

is Gt(r) = ( r
t )

1
N−1 with support [0, t] for some t ∈ (0, v̄). Under such a random reserve, if the

valuation of the highest bidder is above the threshold t, the object will be fully allocated to

her. For each t, I am able to identify a non-trivial lower bound of the revenue guarantee by

constructing a set of feasible dual variables.

Lemma 7. A lower bound of the revenue guarantee of the second-price auction with t−scaled

Beta( 1
N−1 ,1) distributed random reserve where t ∈ (0, v̄) is

∫
(0,t)

x
N

N−1

t
1

N−1
dF(x)+ t(1−F(t)).

Proof. The proof is in Appendix 2.7.3.

Lemma 7 suggests a potential criterion under which the auctioneer selects an auction

from this family. Although the revenue guarantee of an auction in this family may depend

on the details of the marginal distribution and thus may be hard to be identified, it has a non-

trivial lower bound. Then I can compare this lower bound with the revenue guarantees of some

dominant-strategy mechanisms commonly used in practice.
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Theorem 11. For any N ≥ 2, MSP−β universally dominates the family of posted-price

mechanisms.

Proof. The proof is in Appendix 2.7.3.

Theorem 12. For any N ≥ 2, MSP−β universally dominates the family of second-price auctions

with non-negative deterministic reserves.

Proof. The proof is in Appendix 2.7.3.

I do not require any distributional assumption for these two theorems to hold. Moreover,

Theorem 11 and 12 imply that for a given marginal distribution, the auctioneer can find a second-

price auction with a t−scaled Beta( 1
N−1 ,1) distributed random reserve whose revenue guarantee

is strictly higher than that of any posted-price mechanism and any second-price auction with

a non-negative deterministic reserve. In addition, Theorem 11 can be interpreted as that the

competition effect dominates the adversarial correlation effect. To see this, note that Theorem 11

implies that there exists an auction for the two-bidder case that generates strictly higher revenue

guarantee than the monopoly revenue from one bidder, regardless of the marginal distribution.

Thus, even if nature picks the worst-case correlation structure, it is always strictly more desirable

for the auctioneer to have just one more bidder.

2.6 Concluding Remarks

In this paper, I consider the correlation-robust framework and show, among others, that

the second-price auction with the uniformly distributed random reserve maximizes the revenue

guarantee across all dominant-strategy mechanisms for the two-bidder case, and that the second-

price auction with the Beta( 1
N−1 ,1) distributed random reserve maximizes the revenue guarantee

across standard dominant-strategy mechanisms for the N-bidder (N ≥ 3) case. These auctions

have familiar formats and admit simple descriptions which do not require the information
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of the marginal distribution except for the maximum valuation of of a generic bidder. Thus,

these auctions are more practical compared with, for example, Myerson’s auction, which often

requires the full information of the marginal distribution to calculate the optimal reserve. To

my knowledge, this paper is the first to characterize a maxmin mechanism across all dominant-

strategy mechanism in the correlation-robust framework. It remains an open question what the

maxmin mechanisms across all dominant-strategy mechanisms are for general number of bidders.

The constructive method may shed light on other robust design problems and general robust

optimization problems.

2.7 Appendix

2.7.1 Proof for Section 2.3: Proposition 3

1) Dominant-strategy incentive compatibility (DSIC) for a type vi requires that for any

v′i ̸= vi:

viqi(vi,v−i)− ti(vi,v−i)≥ viqi(v′i,v−i)− ti(v′i,v−i).

DSIC also requires that:

v′iqi(v′i,v−i)− ti(v′i,v−i)≥ v′iqi(vi,v−i)− ti(vi,v−i).

Adding the two inequalities, I obtain that

(vi − v′i)(qi(vi,v−i)−qi(v′i,v−i))≥ 0.

It follows that qi(vi,v−i)≥ qi(v′i,v−i) whenever vi > v′i .

2) Fix any v−i, and define

Ui(vi) = viqi(vi,v−i)− ti(vi,v−i).
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By the two inequalities in 1), I obtain that

(v′i − vi)qi(vi,v−i)≤Ui(v′i)−Ui(vi)≤ (v′i − vi)qi(v′i,v−i).

Dividing throughout by v′i − vi, I obtain that

qi(vi,v−i)≤
Ui(v′i)−Ui(vi)

(v′i − vi)
≤ qi(v′i,v−i).

As v ↑ v′, I have that
dUi(vi)

dvi
= qi(vi,v−i).

Then I obtain that

ti(vi,v−i) = viqi(vi,v−i)−
∫ vi

0
qi(s,v−i)ds−Ui(0).

Note that Ui(0) ≥ 0 by the ex-post individually rational constraint. If Ui(0) > 0, then I can

reduce it to 0 so that I can increase the revenue from any valuation profile in which the

others’ valuation profile is v−i. And the revenue guarantee will be weakly greater. Thus,

when searching for a maxmin mechanism, it is without loss to let Ui(0) = 0. Then I obtain that

ti(vi,v−i) = viqi(vi,v−i)−
∫ vi

0 qi(s,v−i).

2.7.2 Proofs for Section 2.4

Proof of Proposition 5

First, I illustrate the details about the construction of π∗. Note that by allocating all

marginal density f (0) to valuation profile (0,0), I have that φ∗i (vi,0) = φ∗j(0,v j) = 0 for any vi

and v j. Thus, the property (1) trivially holds for any one of these valuation profiles. Now let

Ak j := {v|k ≤ v1 ≤ j,v2 = k}, and define c(0) := f (0) and c(k) :=
∫

Akv̄
dπ∗ for k > 0. Consider

93



the valuation profile (v1,v2) where 0 < v2 ≤ v1 < v̄. In order for the virtual value to satisfy the

property (1), I have that

φ
∗
1(v1,v2) = v1 −

c(v2)−
∫ v1

v2
π∗(x,v2)dx

π∗(v1,v2)
= 0, ∀0 < v2 ≤ v1 < v̄.

These equations are essentially a system of ordinary differential equations, whose solution is

well known29:

π
∗(v1,v2) =

v2c(v2)

v2
1

, ∀0 < v2 ≤ v1 < v̄, (B.1)

π
∗(v̄,v2) =

v2c(v2)

v̄
, ∀0 < v2 < v̄. (B.2)

By symmetry, I also obtain π∗(v2,v1) = π∗(v1,v2) for 0 < v2 ≤ v1 < v̄ and π∗(v2, v̄) = π∗(v̄,v2)

for 0 < v2 < v̄ . Finally,

Pr∗(v̄, v̄) = Pr(v̄)−
∫

j∈(0,v̄) jc( j)d j

v̄
. (B.3)

Now I solve for c(k). Note since the marginal distribution is the same across the two bidders,

given the above derivation, c(k) must satisfy the following condition:

c(k) = f (k)−
∫ k

0 jc( j)d j
k2 , ∀0 < k < v̄. (B.4)

To see this, note f (k) =
∫
{0≤v1≤v̄,v2=k} dπ∗ =∫

Akv̄∪{0≤v1<k,v2=k} dπ∗ =
∫

Akv̄
dπ∗+

∫
{0≤v1<k,v2=k} dπ∗ =

∫
Akv̄

dπ∗+
∫
{v1=k,0≤v2<k} dπ∗ where the

last equality follows from symmetry. Multiplying both sides of (B.4) by k, I obtain that

kc(k) = k f (k)−
∫ k

0 jc( j)d j
k

, ∀0 < k < v̄.

29The solution is reminiscent of the equal-revenue distribution.
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Define g(k) :=
∫ k

0 jc( j)d j for 0 < k < v̄. Then I have that

g′(k) = k f (k)− g(k)
k

, ∀0 < k < v̄.

Note this is an ordinary differential equation, and I solve for g(k):

g(k) =
1
k

∫ k

0
j2 f ( j)d j, ∀0 < k < v̄. (B.5)

From this I compute c(k):

c(k) = f (k)−
∫ k

0 j2 f ( j)d j
k3 , ∀0 < k < v̄. (B.6)

Plugging (B.6) to (B.1), (B.2) and (B.3), I obtain the joint distribution π∗.

To guarantee that it is possible to construct π∗, it has to be a feasible joint distribution

in that the density (or probability mass) has to be non-negative for all valuation profiles, i.e.,

π∗(v1,v2)≥ 0 for 0 ≤ v1,v2 < v̄ and Pr∗(v̄, v̄)≥ 0. Therefore, I have that

f (k)−
∫ k

0 j2 f ( j)d j
k3 ≥ 0, ∀0 < k < v̄, (B.7)

Pr(v̄)≥
∫

x∈(0,1) x2 f (x)dx

v̄2 . (B.8)

Now I show that the first part of the two-bidder robust regularity conditions implies (B.7). To

see this, note that if x2 f (x) is non-decreasing for x ∈ (0, v̄), then for any 0 < k < v̄, I have that

f (k)−
∫ k

0 j2 f ( j)d j
k3 ≥ f (k)−

∫ k
0 k2 f (k)d j

k3 = 0, (B.9)

where the inequality follows from that j2 f ( j)≤ k2 f (k) if j ≤ k.

Now given that the construction is feasible, I argue that the two-bidder robust regularity
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conditions guarantee that the property (2) holds. Given that the property (1) holds for π∗, it

suffices to show

φ2(v1,v2)≤ 0

if 0 < v2 ≤ v1 < v̄. I now calculate φ2(v1,v2) for 0 < v2 ≤ v1 < v̄:

φ2(v1,v2) = v2 −
f (v1)−

∫ v2
0 π∗(v1, t)dt

π∗(v1,v2)

= v2 −
f (v1)−

∫ v2
0 c(t) t

v2
1
dt

c(v2)
v2
v2

1

= v2 −
f (v1)− 1

v2
1v2

∫ v2
0 t2 f (t)dt

( f (v2)−
∫ v2

0 s2 f (s)ds
v3

2
)v2

v2
1

,

where the second equality follows from (B.1) and the third equality follows from (B.5) and (B.6).

Now it is straightforward that for any 0 < v2 ≤ v1 < v̄:

φ2(v1,v2)≤ 0 ⇐⇒ v2
2 f (v2)≤ v2

1 f (v1).

Proof of Proposition 6

First, I illustrate the details about the construction of the mechanism. I first write down

the primal minimization problem for adversarial nature given a mechanism (q, t) and derive its

dual maximization problem. Formally, let {λi(vi)}i∈{1,2,··· ,N},vi∈[0,v̄] be dual variables.

(P) inf
π∈Π(F)

∫
v∈[0,v̄]N

N

∑
i=1

ti(v)dπ(v)

subject to ∫
[0,v̄]N−1

dπ(vi,v−i) = f (vi), ∀vi ∈ [0, v̄),

∫
[0,v̄]N−1

dπ(vi = v̄,v−i) = Pr(vi = v̄).
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(D) sup
{λi(vi)}

N

∑
i=1

∫ v̄

0
λi(vi)dF(vi)

subject to
N

∑
i=1

λi(vi)≤
N

∑
i=1

ti(v), ∀v ∈ [0, v̄]N . (B.10)

It is straightforward to show that weak duality holds 30. The mechanism is constructed by a

complementary slackness condition as follows.

N

∑
i=1

λi(vi) =
N

∑
i=1

ti(v), ∀v ∈V+. (B.11)

I assume that λi = λ for all i ∈ I, and that the mechanism is a second-price auction with a random

reserve whose cumulative distribution function is G, then (B.11) implies

Nλ(vi) = viG(vi), ∀vi ∈ [0, v̄], (B.12)

λ(v(1))+(N −1)λ(v(2)) = v(1)G(v(1))−
∫ v(1)

v(2)
G(s)ds, ∀0 ≤ v(2)< v(1)≤ 1. (B.13)

Note by (B.12), I have that for vi ∈ [0, v̄],

λ(vi) =
viG(vi)

N
. (B.14)

Plugging (B.14) to (B.13), I obtain that for 0 ≤ v(2)< v(1)≤ v̄,

v(1)G(v(1))+(N −1)v(2)G(v(2))
N

= v(1)G(v(1))−
∫ v(1)

v(2)
G(s)ds. (B.15)

Taking first order derivatives with respect to v(1) and v(2), I obtain the same ordinary differential

equation that for x ∈ [0, v̄],

(N −1)xG′(x) = G(x). (B.16)

30See, for example, He and Li (2022).
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Given that G is a distribution, the solution to (B.16) is

G(x) = (
x
v̄
)

1
N−1 , ∀x ∈ [0, v̄].

This is the v̄−scaled Beta( 1
N−1 ,1) distribution.

Now I show that under the second-price auction with the v̄−scaled Beta( 1
N−1 ,1)

distributed random reserve, any feasible joint distribution with the support V+ minimizes the

expected revenue across all feasible joint distributions. As I have argued in Section 2.4.2, the

expected revenue given such a joint distribution is E[X
N

N−1 ]

v̄
1

N−1
, then it suffices to show the value of

(D) is also E[X
N

N−1 ]

v̄
1

N−1
. To this end, I construct the dual variables as follows. For all i ∈ {1,2, · · · ,N}

and x ∈ [0,1],

λi(x) =
x

N
N−1

Nv̄
1

N−1
.

Note that ∑
N
i=1

∫ v̄
0 λi(vi)dF(vi) =

E[X
N

N−1 ]

v̄
1

N−1
under the constructed dual variables. Then, it suffices

to show that (B.10) holds under the constructed dual variables. To see this, I divide valuation

profiles into two cases.

Case 1: #{k : vk = v(1)}= 1.

In this case, t(v) = v(1)
N

N−1 +(N−1)v(2)
N

N−1

Nv̄
1

N−1
. The L.H.S. of (B.10) is maximized when all bidders

except the highest bidder have the same valuations, and (B.10) holds with equality when the

L.H.S. of (B.10) is maximized. Therefore (B.10) holds.

Case 2: #{k : vk = v(1)} ≥ 2.

In this case, t(v) = v(1)
N

N−1

v̄
1

N−1
. The L.H.S. of (B.10) is maximized when all bidders have the same

valuations, and (B.10) holds with equality when the L.H.S. of (B.10) is maximized. Therefore

(B.10) holds.
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Proof of Proposition 7

First, I illustrate the details about the construction of π∗∗. Note that by allocating all

marginal density f (0) to the valuation profile (0, · · · ,0)︸ ︷︷ ︸
N

, I have that φ∗∗i (v) = 0 for any i and

vi ≥ 0,v j = 0,∀ j ̸= i. Thus, the property (1’) trivially holds for any one of these valuation profiles.

Now let Bk j := {v|k ≤ v1 ≤ j,vi = k, ∀i ̸= 1}, and define d(0) := f (0) and d(k) :=
∫

Bkv̄
dπ∗

for k > 0. Consider the valuation profile (v1,v2, · · · ,v2︸ ︷︷ ︸
N−1

) where 0 < v2 ≤ v1 < v̄. In order for the

virtual value of bidder 1 to satisfy the property (1’), I have that

φ
∗∗
1 (v1,v2, · · · ,v2︸ ︷︷ ︸

N−1

) = v1 −

d(v2)−
∫ v1

v2
π∗∗(s,v2, · · · ,v2︸ ︷︷ ︸

N−1

)ds

π∗∗(v1,v2, · · · ,v2︸ ︷︷ ︸
N−1

)
= 0, ∀0 < v2 ≤ v1 < v̄.

These equations are essentially a system of ordinary differential equations, whose solution is

well known:

π
∗∗(v1,v2, · · · ,v2︸ ︷︷ ︸

N−1

) =
v2d(v2)

v2
1

, ∀0 < v2 ≤ v1 < v̄, (B.17)

π
∗∗(1,v2, · · · ,v2︸ ︷︷ ︸

N−1

) =
v2d(v2)

v̄
,∀ 0 < v2 < v̄. (B.18)

By symmetry, I also obtain that π∗∗(v) = π∗∗(v1,v2, · · · ,v2︸ ︷︷ ︸
N−1

) for 0 < v j = v2 ≤ vi = v1 < v̄,∀ j ̸=

i,∀i and π∗∗(v) = π∗(1,v2, · · · ,v2︸ ︷︷ ︸
N−1

) for 0 < v j = v2 < vi = v̄,∀ j ̸= i,∀i. Finally,

Pr∗∗(v̄, · · · , v̄︸ ︷︷ ︸
N

) = Pr(v̄)−
∫

j∈(0,v̄) jd( j)d j

v̄
. (B.19)

Now I solve for d(k). Note that d(k) must satisfy the following condition:

f (k) = (N −1)d(k)+
∫ k

0 jd( j)d j
k2 , ∀0 < k < v̄.
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To see this, suppose that the bidder 1’s valuation is k. Then either k is the highest valuation and

other bidders all have a valuation of j ∈ [0,k] (with a probability of
∫ k

0 jd( j)d j
k2 ) or k is the second

highest valuation and one of the other bidders has the highest valuation (with a probability of

(N −1)d(k)). Multiplying both sides of (2.7.2) by k, I obtain that

k f (k) = (N −1)kd(k)+
∫ k

0 jd( j)d j
k

, ∀0 < k < v̄.

Define h(k) :=
∫ k

0 jd( j)d j for 0 < k < v̄. Then I have that

k f (k) = (N −1)h′(k)+
h(k)

k
, ∀0 < k < v̄.

Note that this is an ordinary differential equation, and I solve for h(k):

h(k) =
∫ k

0 j
N

N−1 f ( j)d j

(N −1)k
1

N−1
, ∀0 < k < v̄. (B.20)

From this I compute d(k):

d(k) =
1

N −1
( f (k)−

∫ k
0 j

N
N−1 f ( j)d j

(N −1)k1+ N
N−1

), ∀0 < k < v̄. (B.21)

Plugging (B.21) to (B.17),(B.18) and (B.19), I obtain the joint distribution π∗∗.

To guarantee that π∗ is a feasible joint distribution in that the density (or probability

mass) has to be non-negative for all valuation profiles, it is straightforward that the N−bidder

robust regularity conditions (I) have to hold. Now I show that the N−bidder robust regularity

conditions (II) imply the N−bidder robust regularity conditions (I). To see this, note that if

x2 f (x) is non-decreasing for x ∈ (0, v̄), then for any 0 < k < v̄, I have that

f (k)−
∫ k

0 j
N

N−1 f ( j)d j

(N −1)k1+ N
N−1

≥ f (k)−
∫ k

0 j
N

N−1−2k2 f (k)d j

(N −1)k1+ N
N−1

= 0, (B.22)
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where the inequality follows from that j2 f ( j)≤ k2 f (k) if j ≤ k.

Proof of Theorem 10

Lemma 8. If x2 f (x) is non-decreasing for x ∈ (0, v̄) and Pr(v̄) <
∫
(0,v̄) x

N
N−1 f (x)dx

(N−1)v̄
N

N−1
, then there

exists s∗ ∈ (0, v̄) that is a solution to (SD).

Proof. First, note that if s ↑ v̄, the R.H.S of (SD) converges to (N −1)Pr(v̄), thus the L.H.S. of

(SD)¿ the R.H.S of (SD).

Next, take a monotone sequence {sn}n∈N where sn ↓ 0 as n → ∞, s1 ∈ (0, v̄) and

sn+1
sn

≤ 1
2 for any n. 31 I will prove that limsupn→∞ sn f (sn) = 0 by contradiction. Suppose

that limsupn→∞ sn f (sn) = c > 0, then for any ε > 0, there exists a subsequence {snk} such that

snk f (snk)−c ≥ ε for any k. So f (snk)≥ c−ε

snk
for any k. Let ε be c

2 . That x2 f (x) is non-decreasing

implies that for any x ∈ (snk+1,snk), f (x)≥
s2
nk+1

f (snk+1)

x2 ≥ snk+1(c−ε)

x2 =
csnk+1

2x2 for any k. Therefore∫ snk
snk+1

f (x)≥ c·snk+1
2 ( 1

snk+1
− 1

snk
)≥ c

4 . Thus,
∫ v̄

0 dF(x)≥ ∑
K
k=1

∫ snk
snk+1

f (x)≥ cK
4 → ∞ as K → ∞, a

contradiction to the fact that F is a probability measure. Therefore limsupn→∞ sn f (sn) = 0. This

implies that limn→∞ sn f (sn) = 0. Now, by L’Hôpital’s rule,

lim
n→∞

∫
(0,sn)

x
N

N−1 dF(x)

s
N

N−1
n

= lim
n→∞

s
N

N−1
n f (sn)

N
N−1s

1
N−1
n

= lim
n→∞

(N −1)sn f (sn)

N

= 0.

Then, if sn ↓ 0, the L.H.S. of (SD) ¡ the R.H.S of (SD). By the Intermediate Value Theorem,

there exists s∗ ∈ (0, v̄) that is a solution to (SD).

Proposition 9. If x2 f (x) is non-decreasing for x ∈ (0, v̄) and Pr(v̄)<
∫
(0,v̄) x

N
N−1 f (x)dx

(N−1)v̄
N

N−1
, then the

revenue guarantee of the second-price auction with the s∗−scaled Beta( 1
N−1 ,1) distributed

random reserve is at least (N −1)s∗(1−F(s∗)).
31For example, sn =

v̄
2n for n ∈ N.
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Proof. This follows immediately from Lemma 7 and Lemma 8.

Proposition 10. If x2 f (x) is non-decreasing for x ∈ (0, v̄) and Pr(v̄) <
∫
(0,v̄) x

N
N−1 f (x)dx

(N−1)v̄
N

N−1
, then

there exists a joint distribution π∗∗∗ ∈ π(F) under which the second-price auction with the

s∗−scaled Beta( 1
N−1 ,1) distributed random reserve maximizes the expected revenue across

standard dominant-strategy mechanisms. In addition, the maximized expected revenue is

(N −1)s∗(1−F(s∗)).

Proof. The joint distribution π∗∗∗ is symmetric and is defined as follows. The support of π∗∗∗ is

V+. If v /∈V+, then π∗∗∗(v) = 0. If v ∈V+, then

π
∗∗∗(vi,v−i)

32 =



f (0)

if v = (0, · · · ,0);

0

if 0 = v j < vi,∀ j ̸= i;

1
(N−1)v(1)2 (v(2) f (v(2))− v(2)−

N
N−1

N−1
∫ v(2)

0 x
N

N−1 f (x)dx)

if 0 < v(2) = v j ≤ vi = v(1)≤ s∗,∀ j ̸= i;

f (v(1))
(N−1)s∗(1−F(s∗))(v(2) f (v(2))− v(2)−

N
N−1

N−1
∫ v(2)

0 x
N

N−1 f (x)dx)

if 0 < v(2) = v j ≤ s∗ < vi < v̄,∀ j ̸= i;

Pr(v̄)
(N−1)s∗(1−F(s∗))(v(2) f (v(2))− v(2)−

N
N−1

N−1
∫ v(2)

0 x
N

N−1 f (x)dx)

if 0 < v(2) = v j ≤ s∗ < vi = v̄,∀ j ̸= i.

It is straightforward to verify that π∗∗∗ ∈ Π(F). When vi = v(1) ≤ s∗, the density function

coincides with π∗∗. Therefore by the proof of Proposition 7,

φ
∗∗∗
i (v) = 0 for v ∈V+,vi = v(1)≤ s∗.

Note that under π∗∗∗, when vi = v(1) > s∗, vi and v−i are independent. Therefore φ∗∗∗i (v) =

32The density function π∗∗∗ in the region (0, v̄)N is similar to the density function η∗
F in the region (0,1)N in He

and Li (2022).

102



vi − 1−F(vi)
f (vi)

for s∗ < vi = v(1)< v̄ and φ∗∗∗i (v) = v̄ for vi = v(1) = v̄.

Now I show that φ∗∗∗i (v)≥ 0 for s∗ < vi = v(1)< v̄. First I show that 1−F(x)− x f (x)

is non-increasing if x2 f (x) is non-decreasing. To see this, note that for any 0 < x1 ≤ x2 < v̄,

1−F(x2)− x2 f (x2)− [1−F(x1)− x1 f (x1)] = x1 f (x1)− x2 f (x2)−
∫ x2

x1

f (x)dx

≤ x1 f (x1)− x2 f (x2)−
∫ x2

x1

x2
1 f (x1)

x2 dx

=
x2

1 f (x1)

x2
− x2 f (x2)

≤ 0,

where the first inequality follows from that x2 f (x) ≥ x2
1 f (x1) for x1 ≤ x ≤ x2 and the second

inequality follows from that x2
2 f (x2)≥ x2

1 f (x1).

Recall that ∫
(0,s∗) x

N
N−1 dF(x)

(s∗)
N

N−1
= (N −1)(1−F(s∗)).

Subtracting (N −1)s∗ f (s∗) from both sides, I obtain that

∫
(0,s∗) x

N
N−1 dF(x)

(s∗)
N

N−1
− (N −1)s∗ f (s∗) = (N −1)[1−F(s∗)− s∗ f (s∗)].

The L.H.S. of the above equation is weakly negative, shown in (B.22). Together with that

1−F(x)− x f (x) is non-increasing, I have that 1−F(x)− x f (x)≤ 0 for any x ≥ s∗. Hence,

φ
∗∗∗
i (v) = vi −

1−F(vi)

f (vi)
≥ 0 for v ∈V+,s∗ < vi = v(1)< v̄.

.

Then, any standard dominant-strategy mechanism, in which 1) the ex-post participation

constraints are binding for zero-valuation bidders and 2) the highest bidder with a valuation

higher than s∗ is allocated with probability one, maximizes the expected revenue across standard
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dominant-strategy mechanisms under π∗∗∗. And the second-price auction with the s∗−scaled

Beta( 1
N−1 ,1) distributed random reserve is such a mechanism. Finally, it is straightforward to

show that the maximized expected revenue is Ns∗(1−F(s∗)) by calculating the expected total

virtual surplus. Indeed, under this mechanism and the joint distribution π∗∗∗ , the expected total

virtual surplus is

N{
∫
(0,v̄)

∫
(0,s∗)

f (v1)

(N −1)s∗(1−F(s∗))
[v2 f (v2)−

v
− N

N−1
2

N −1

∫ v2

0
x

N
N−1 f (x)dx)] · (v1 −

1−F(v1)

f (v1)
)dv2dv1+

∫
(0,s∗)

Pr(v̄)
(N −1)s∗(1−F(s∗))

[v2 f (v2)−
v
− N

N−1
2

N −1

∫ v2

0
x

N
N−1 f (x)dx)] · v̄dv2}

=
N

(N −1)s∗(1−F(s∗))
· [
∫
(0,v̄)

(v1 f (v1)−1+F(v1))dv1 +Pr(v̄)v̄] ·
∫
(0,s∗) s

N
N−1 f (s)ds

(s∗)
1

N−1

=
N

(N −1)s∗(1−F(s∗))
· [
∫
(0,v̄)

(v1 f (v1)−1+F(v1))dv1 +Pr(v̄)v̄] · (N −1)s∗(1−F(s∗))

= N · [
∫
(0,v̄)

(v1 f (v1)−1+F(v1))dv1 +Pr(v̄)v̄]

= Ns∗(1−F(s∗)),

where the first equality follows from (B.20), the second equality follows from (SD) and the last

equality uses integration by parts.

Theorem 10 follows immediately from Proposition 9 and Proposition 10.

2.7.3 Proofs for Section 2.5

Proof of Proposition 8

Note that under a posted-price mechanism, the maximally positively correlated

distribution (the valuations of the bidders are always the same) is a worst-case correlation

structure, and the revenue guarantee of any posted-price mechanism is thus at most

maxx∈[0,v̄] x(1 − F(x)), which is the monopoly profit when there is only one bidder. It is
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0 x∗ v̄ x
0

R(x∗)

R(x)

Figure 2.1: Revenue Function

straightforward to show that x
N

N−1

v̄
1

N−1
≥ x2

v̄ for any x ∈ [0, v̄] and N ≥ 2. Thus, it suffices to compare

E[X2]
v̄ with maxx∈[0,v̄] x ·(1−F(x)) if the revenue function R(x) = x ·(1−F(x)) is strictly concave.

Using integration by parts, I obtain that

E[X2] = 2
∫ v̄

0
x(1−F(x))dx.

Let x∗ denote the unique solution to maxx∈[0,v̄]R(x). Then using graph (see Figure 2.133) it is

straightforward that ∫ v̄

0
R(x)dx >

1
2
· v̄ ·R(x∗). (D.1)

(D.1) is equivalent to that

E[X2]

v̄
=

2
∫ v̄

0 x(1−F(x))dx
v̄

> max
x∈[0,v̄]

x(1−F(x)).

33The curve is a strictly concave revenue function. The L.H.S. of (D.1) is the area under the curve. The R.H.S.
of (D.1) is the area of the triangle.
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Proof of Lemma 7

For each t, I construct the dual variables for the second-price auction with the random

reserve whose cumulative distribution function is Gt(r) = ( r
t )

1
N−1 as follows:

λi(x) =
x

N
N−1

Nt
1

N−1
if 0 ≤ x ≤ t,∀i ∈ I,

λi(x) =
t
N

if t < x ≤ v̄,∀i ∈ I.

Given the constructed dual variables above, the value of (D) is

∫ t

0

x
N

N−1

t
1

N−1
dF(x)+ t(1−F(t)).

Then it suffices to show that the constructed dual variables are feasible, or (B.10) holds. I divide

the valuation profiles into three cases.

Case 1: v(1)≤ t.

(B.10) holds by a similar argument with that in the proof of Proposition 5.

Case 2: v(1)> t,#{k : vk = v(1)}= 1.

When v(2) > t, then t(v) = v(2). The L.H.S. of (B.10) is maximized when vi ≥ t for all i,

and the maximized value is N · t
N = t < t(v). When v(2) ≤ t, then t(v) = v(1) · 1−

∫ v(1)
t dx−∫ t

v(2)(
x
t )

1
N−1 dx = t

N + (N−1)v(2)
N

N−1

Nt
1

N−1
. The L.H.S. of (B.10) is maximized when vi = v(2) for all

i /∈ {k : vk = v(1)}, and the maximized value is t
N + (N−1)v(2)

N
N−1

Nt
1

N−1
= t(v). Therefore (B.10) holds.

Case 3: v(1)> t,#{k : vk = v(1)} ≥ 2.

Now t(v) = v(1). The L.H.S. of (B.10) is maximized when vi ≥ t for all i, and the maximized

value is N · t
N = t < t(v). Therefore (B.10) holds.
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Proof of Theorem 11

Recall that the revenue guarantee of a posted-price mechanism is at most maxx∈[0,v̄] x ·

(1−F(x)) for a given F ∈ ∆c[0, v̄]. Denote a solution to maxx∈[0,v̄] x · (1−F(x)) as x∗. For a

given F ∈ ∆c[0, v̄], consider the second-price auction with the x∗−scaled Beta( 1
N−1 ,1) distributed

random reserve, and I have that

∫ x∗

0

x
N

N−1

(x∗)
1

N−1
dF(x)+ x∗(1−F(x∗))> x∗(1−F(x∗)),

where the inequality follows from that x∗ > 0.

Proof of Theorem 12

By He and Li (2022), given a F ∈ ∆c[0, v̄], the revenue guarantee of the second-price

auction with the optimal deterministic reserve for the N-bidder case is as follows:

N
N −1

∫ c(r∗)

r∗
xdF(x),

where r∗ satisfies F(Nr∗) = F(N−1+F(r∗)
N ), and c(r∗) = F−1(N−1+F(r∗)

N ).

Define J(x) := N
N−1x − x

N
N−1

c(r∗)
1

N−1
. Because J′(x) = N

N−1(1 − ( x
c(r∗))

1
N−1 ) and J′′(x) =

− Nx
1

N−1−1

(N−1)2c(r∗)
1

N−1
≤ 0, J(x) is maximized at x = c(r∗) and the maximized value is 1

N−1c(r∗)

by simple calculation. For a given F ∈ ∆c[0, v̄], consider the second-price auction with the

c(r∗)−scaled Beta( 1
N−1 ,1) distributed random reserve, and I have that

∫ c(r∗)

0

x
N

N−1

[c(r∗)]
1

N−1
dF(x)+ c(r∗)[1−F(c(r∗))]>

∫ c(r∗)

r∗

x
N

N−1

[c(r∗)]
1

N−1
dF(x)+ c(r∗)[1−F(c(r∗))]

≥
∫ c(r∗)

r∗
[

N
N −1

x− 1
N −1

c(r∗)]dF(x)+ c(r∗)[1−F(c(r∗))]

=
N

N −1

∫ c(r∗)

r∗
xdF(x),
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where the first inequality follows from that r∗ > 0, the second inequality follows from that

J(x)≤ 1
N−1c(r∗) and the equality follows from that

∫ c(r∗)

r∗

1
N −1

c(r∗)dF(x) =
1

N −1
c(r∗)[F(c(r∗))−F(r∗)]

=
1

N −1
[
N −1+F(r∗)

N
−F(r∗)]F−1(

N −1+F(r∗)
N

)

= [
1−F(r∗)

N
]F−1(

N −1+F(r∗)
N

)

= c(r∗)[1−F(c(r∗))].

2.7.4 “Necessity” of Robust Regularity Conditions

Definition 8. I say the allocation rule q is strictly monotone if for any i, any v−i and any pair of

valuation vi and v′i in which qi(vi,v−i)> 0 and qi(v′i,v−i)> 0, I have that qi(vi,v−i)< qi(v′i,v−i)

whenever vi < v′i.

Proposition 11. For the two-bidder case, if the second-price auction with the uniformly

distributed random reserve is a maxmin mechanism across dominant-strategy mechanisms,

then the two-bidder robust regularity conditions hold almost surely.

Proof. The intuition behind this is the observation that under the second-price auction with the

uniformly distributed random reserve, the allocation rule is strictly monotone. In addition, the

high bidder’s allocation is positive but less than 1 when her valuation is positive but less than

v̄. Thus in a Nash equilibrium, the high bidder’s virtual value has to be 0 for these valuations

under the joint distribution, otherwise Myerson’s ironing argument implies that allocation rule in

equilibrium should exhibit “flatness” across some range. Formally, I will establish Lemma 9 and

Lemma 10 below.

Lemma 9. For the two-bidder case, for the second-price auction with the uniformly distributed

random reserve to be part of a Nash equilibrium across dominant-strategy mechanisms, the

equilibrium joint distribution has to be π∗ almost surely.
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Proof. let π be a best response of adversarial nature to the second-price auction with the

uniformly distributed random reserve. Suppose (1) does not hold for a set of (v1,v2) where

v̄ > v1 ≥ v2 with some positive measure. If virtual values of bidder 1 for these valuation profiles

are all positive, then consider a modified allocation exhibiting the property that the allocation to

bidder 1 is one from the valuation profile in which the virtual value of bidder 1 becomes positive

for the first time. Formally, let v1(v2) = inf{v1 : φ1(v1,v2)> 0,v1 ≥ v2}. Let q̃1(v1,v2) = 1 for

v1 > v1(v2) and q̃(v) := q∗(v) otherwise. Such modification is feasible since bidder 2 gets zero

allocation for any one of these valuation profiles in the second-price auction with the uniformly

distributed random reserve. Thus I have a profitable and feasible deviation. If virtual values

of bidder 1 for these valuation profiles are all negative, by a similar argument, I rule out the

possibility that the second-price auction with the uniformly distributed random reserve is a best

response of the auctioneer to π. Now If virtual values of bidder 1 for these valuation profiles

are not all positive and not all negative, I have to discuss two cases. The first case is that the

virtual value is still (weakly) monotone. Then by a similar argument, the second-price auction

with the uniformly distributed random reserve can not a best response to π. The second case

is that the virtual value is not monotone, then a best response has to exhibit flatness across a

range of valuation profiles, which can be done by Myerson’s ironing procedure. Recall that

the allocation rule of the second-price auction with the uniformly distributed random reserve

is strictly monotone. Thus, it cannot be a best response. To illustrate this, suppose φ1(·,v2) is

decreasing in v1 for v1 ∈ (a(v2),b(v2)) and φ1(a(v2),v2) > φ1(v̂1(v2),v2) = 0 > φ1(b(v2),v2)

for some v̂1(v2) ∈ (a(v2),b(v2)). Then let q̃1(v1,v2) = q∗(v̂1(v2),v2) for v1 ∈ [a(v2),b(v2)] and

q̃(v) = q∗(v) otherwise. Since this is a feasible and profitable deviation, I conclude that the

second-price auction with the uniformly distributed random reserve can not be a best response.

Together with the proof of Proposition 5, the equilibrium joint distribution is π∗ almost

surely.

Lemma 10. For the two-bidder case, for the second-price auction with the uniformly distributed
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random reserve to be part of a Nash equilibrium across dominant-strategy mechanisms, π∗

exhibits (2) almost surely.

Proof. Suppose not. Then, there exists a set of (v1,v2) where 0 < v2 < v1 < v̄ but φ2(v1,v2)> 0

with some positive measure. Then by increasing the allocation to bidder 2 by a small amount ε

when the valuation profile lies in this set, I have a feasible and profitable deviation. Thus, the

second-price auction with the uniformly distributed random reserve is not a best response.

Proposition 11 follows immediately from Lemma 9, Lemma 10 and the proof of

Proposition 5.

Proposition 12. For the N−bidder (N ≥ 3) case, If the second-price auction with the v̄−scaled

Beta( 1
N−1 ,1) distributed random reserve is a maxmin mechanism across standard dominant-

strategy mechanisms, then the N−bidder robust regularity conditions (I) hold almost surely.

Proof. First, I establish Lemma 11 below.

Lemma 11. For the N−bidder (N ≥ 3) case, for the second-price auction with the Beta( 1
N−1 ,1)

distributed random reserve to be part of a Nash equilibrium across standard dominant-strategy

mechanisms, the equilibrium joint distribution has to be π∗∗ almost surely.

Proof. As shown in the proof of Proposition 6, (B.10) holds with equality if and only if v ∈V+.

This implies the equilibrium joint distribution has the support V+. Then this lemma follows from

a similar argument to the proof of Lemma 9.

Proposition 12 follows immediately from Lemma 11 and the proof of Proposition 7.
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Chapter 3

Auctioning Multiple Goods without Priors

3.1 Introduction

The standard auction literature focuses on the single-good environment and assumes

that bidders’ value profile follows a commonly known joint distribution. It is assumed that the

designer seeks a mechanism that maximizes the expected revenue. Myerson (1981) characterizes

optimal mechanisms for selling a single good when bidders’ values are independent; Crémer

and McLean (1988) characterize optimal mechanisms for selling a single good given generic

correlation structures of bidders’ values. However, optimal mechanisms vary widely with the

model of correlation structure and relatively little is known about how optimal mechanisms

would perform once the correlation structure is misspecified. In addition, it is not clear how the

designer should form a prior in the first place.

In this paper, I am going to extend the analysis in two ways. First, I consider the multiple-

good environment, in which little is known about the optimal mechanisms. Even for the special

case where there is only one bidder, the optimal mechanism is hard to characterize or to describe

(Daskalakis et al. (2014) and Manelli and Vincent (2007)). Second, I consider a robust version

of the analysis. Specifically, I consider a (correlated) private value model where the designer

auctioning multiple different goods knows no distributional information except for the upper
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bounds of bidders’ values for each good. In contrast, bidders agree on a joint distribution over

their value profiles1. The designer considers any joint distribution consistent with the known

upper bounds to be possible. I consider general mechanisms with the only requirement that the

mechanism “secures” bidders’ participation: there exists a message for each payoff type of each

bidder that guarantees a non-negative ex-post payoff regardless of the other bidders’ messages. I

assume that the designer takes the minimax regret approach. Precisely, the expected regret from

a mechanism given a joint distribution over value profiles and a Bayesian equilibrium is defined

as the difference between the full surplus2 and the expected revenue. The designer evaluates a

mechanism by its highest expected regret across all possible joint distributions and all Bayesian

equilibria, which is referred to as its regret cap. The designer aims to find a mechanism, referred

to as a minimax regret mechanism, that minimizes the regret cap.

The assumption that the designer only knows the upper bounds is appropriate for

situations where little information is known about the bidders and it is costly and time-consuming

to collect information. For example, in an auction of initial public offerings, there is no

distributional information about the bidders’ values. Note that in this example, bidders’ budgets,

which can be viewed as (reasonable approximations of) the upper bounds of bidders’ values,

are typically known by the designer, as bidders for initial public offerings are often institutional

investors, whose financial resources are publicly known, or can be estimated fairly precisely from

their financial reports. On the contrary, the assumption may be too conservative for situations

in which data about bidders are abundant, e.g., online advertising in which auctions are held

repeatedly and frequently. In addition, the assumption is formally necessary to obtain non-trivial

results because if there is no known upper bound, then minimax regret will be infinite 3. Thus,

this model can be viewed as a theoretical benchmark that provides a first step toward a broad

study of robust auction design problems in the multiple-good environment.

1In the Appendix, I show that the main result still holds when bidders can acquire additional information.
2The full surplus under a joint distribution over value profiles is the expected revenue attainable were the

designer able to sell the goods with full information about bidders’ value profile.
3See Remark 19 for the formal proof.
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The minimax regret approach can be traced back to Wald (1950) and Savage (1951). It

captures the idea that a decision maker is concerned about missing out opportunities. A decision

theoretical axiomatization of regret can be found in Milnor (1951) and Stoye (2011). It is adapted

to multiple priors by Hayashi (2008) and Stoye (2011). Another leading approach is the maxmin

utility approach, which is adopted by most of the robust mechanism design literature. However,

in the setting of this paper, under the maxmin utility approach, it is optimal for the designer to

keep all goods to herself because it is possible that all bidders have zero values towards all goods.

Note that in this extreme case, there is no surplus to extract even under complete information.

Thus, the maxmin utility approach is too conservative to be useful, whereas the minimax regret

approach protects the surplus when there is some surplus to extract and will be shown to lead to

a non-trivial answer.

The main result is that a separate second-price auction with random reserves is a minimax

regret mechanism. This mechanism can be described as follows. For each good, the designer

holds a separate auction; the formats of these auctions are second-price auctions with bidder-

specific random reserves that depend on the upper bounds of values4. It is remarkable that

a simple mechanism arises as a robustly optimal mechanism for auctioning multiple goods,

across all participation-securing mechanisms that include highly complicated mechanisms, e.g.,

combinatorial auctions5.

Importantly, I allow for general upper bounds of values for the main result. In particular,

the upper bounds of the values for a given good can be different across bidders. This captures

the widely observed asymmetries in many real-life auction environments. For example, in art

auctions, there are obvious asymmetries associated with differing budget constraints across

bidders. Asymmetric auctions have been studied in Maskin and Riley (2000), Hafalir and

Krishna (2008),Güth et al. (2005) and Athey et al. (2013) among others.

The main result provides a possible explanation why separate second-price auctions -

4The distributions of these random reserves are given in the Section 3.4.1.
5In a combinatorial auction, bidders can place bids on combinations of discrete heterogeneous goods.

113



or their more practical equivalents in the private value environment, separate English auctions -

are widely used in practice for auctioning multiple goods. For example, at the popular online

auction site eBay, each good is typically auctioned separately via an English auction (Krishna

(2009), Anwar et al. (2006) and Feldman et al. (2020)); Sotheby’s and Christie’s (two major

auction houses of art) typically sell works of art separately via an English auction (Ashenfelter

and Graddy (2003)).6 The main result justifies this empirical rule of thumb by an optimal

performance guarantee: a separate second-price auction (albeit with random reserves) minimizes

the worst-case expected regret. This may be one reason why complicated mechanisms that require

the full information of the joint distribution over bidders’ value profiles, to my knowledge, are

not used in practice for auctioning multiple goods.

The role of randomized reserves can be seen considering the one-good one-bidder case,

in which they are reduced to randomized pricing. The designer suffers from a large regret if she

charges a high price when the value of the bidder is low or if she charges a low price when the

value of the bidder is high. She can lower her regret by randomizing. Bergemann and Schlag

(2008) characterize the solution for the one-good one-bidder case. Indeed, the well-crafted

distribution of the randomized pricing renders the designer indifferent across values over a range.

The second-price auction with random reserves extends the robust property to the one-good

multiple-bidder case. In this case, the regret from a value profile is the difference between the

highest value and the collected revenue. When the second highest value is low enough (e.g.,

0), it boils down to the one-good one-bidder case and the regret remains the same; when the

second highest value is high enough (e.g., above the lower bound of the random reserve for the

highest bidder), then the revenue is even higher and the regret is thus lower. To see the intuition

6In practice, there are other mechanisms used for auctioning multiple goods. While most of spectrum auctions
in US do not allow for “package bidding” due to its complexities (Cramton (2002) and Filiz-Ozbay et al. (2015)),
the Federal Communications Commission (FCC) has used a “package bidding auction” to sell spectrum licenses
in rare cases. In such an auction, a bidder is allowed to select a group of licenses to bid on as a package. In an
early 2008 FCC auction (Auction 73), AT&T and Verizon both bought geographically diverse packages of 700MHz
spectrum. The principal rationale to consider a package bidding auction is that there may be complementarity
between different licenses (Goeree and Holt (2005)). Complementarity is ruled out in my model. It is an interesting
open question what the minimax regret mechanism would be like when there is complementarity between goods.
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behind separation, it is instructive to consider another mechanism of auctioning the grand bundle

(only the bundle of all goods is auctioned). I argue that this mechanism may result in a high

regret. Consider a three-good three-bidder example and an extremely asymmetric value profile

in which each bidder values a different good (assuming that the upper bound on each bidder’s

values for each good is 1) : (v1
1,v

2
1,v

3
1) = (1,0,0),(v1

2,v
2
2,v

3
2) = (0,1,0),(v1

3,v
2
3,v

3
3) = (0,0,1).7

The designer will lose all but one good if auctioning the grand bundle: she can at most obtain a

revenue of 1 from one of the goods but will suffer a regret of 2 from losing the other goods. In

contrast, separation can guarantee a good regret performance for each good. It can be shown

that for this example, the separate second-price auction with random reserves yields a regret

cap8 lower than 2. Intuitively, auctioning the grand bundle performs just like selling one good at

this value profile, while selling separately allows the designer to earn more. Furthermore, the

same argument implies that partial bundling (a mechanism in which a bundle of some goods are

auctioned) may perform worse than separate selling.

I show that the separate second-price auction with random reserves is a minimax regret

mechanism by constructing a joint distribution over value profiles, referred to as a worst-case

distribution, such that the lower bound of the expected regret for any mechanism and any

equilibrium under this joint distribution is equal to the upper bound of the expected regret for

any joint distribution and any equilibrium under the separate second-price auction with random

reserves. One can imagine that adversarial nature is constructing a worst-case distribution to let

the designer suffer from a high expected regret.

The worst-case distribution admits a description as follows9. For each good, adversarial

nature selects one bidder whose upper bound of the values of the good is the highest among

the bidders (breaking ties arbitrarily). For each bidder, the marginal distributions of the values

of the goods for which the bidder is selected are equal-revenue distributions, defined by the

property of a unit-elastic demand: in the monopoly pricing problem, the monopoly’s revenue

7The superscript represents the good, and the subscript represents the bidder.
8Indeed, it can be shown that the regret cap is 3

e by simple calculation.
9Its formal definition is given in Section 3.4.2.
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from charging any price in the support is the same; the values for these goods are comonotonic

(maximal positive correlation); the values for the other goods are all zeros10. For the goods

across the bidders, the values are independent.

Under this distribution, each selected bidder values a totally different set of goods; for

each good, exactly one bidder values it; each selected bidder’s values for the goods he values are

comonotonic; the values of the goods across the selected bidders are independent.

Now I illustrate the idea behind this distribution. First, to understand the part of equal-

revenue distributions, consider the one-good one-bidder case in which the mechanism collapses

to randomized pricing over a range. As the designer is indifferent between these prices, the

marginal revenue must be zero over these prices, from which an equal-revenue distribution

arises11. Second, the intuition for the part of selection can be summarized by a scale effect:

because the minimax regret in the one-good one-bidder case is proportional to the upper bound

of the values, by selecting a bidder whose upper bound of the values is the highest for each

good, the potential regret is made the highest for each good. Third, the intuition for the part of

comonotonicity can be summarized by a screening effect: consider the multiple-good one-bidder

case, the comonotonicity between goods limits the ability of the designer to screen different

goods by reducing the multi-dimensional screening to the single-dimensional screening. Fourth,

the intuition for the part of zeros can be summarized by a competition effect: it eliminates the

competition among bidders for each good by letting only one bidder have a positive value for

each good. Fifth, the intuition for the part of independence can be summarized by an information

effect: one bidder’s values for goods do not provide any information about any other bidder’s

values for other goods, which prevents the designer from extracting surplus from one bidder

based on information about other bidders.

The main result incorporates multi-dimensional screening and single-good auction as

two special cases. For the multi-dimensional screening, a separate randomized posted-price

10Note that if a bidder is not selected for any good, then his values for all goods are zeros.
11See Bergemann and Schlag (2008) for details about the derivation.
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mechanism is a minimax regret mechanism, and a distribution in which the values across the

goods are comonotonic is a worst-case distribution.12 For the single-good auction, a second-price

auction with random reserves is a minimax regret mechanism, and a distribution in which only

one bidder has a positive value for the good is a worst-case distribution.

The remainder of the introduction discusses related work. Section 3.2 presents the model.

Section 3.3 illustrates the methodology. Section 3.4 characterizes the main result. Section 3.5

presents the solutions to two special cases. Section 3.6 is a discussion. Section 3.7 is a conclusion.

The Appendix extends the result to an environment where bidders can acquire any additional

information.

3.1.1 Related Work

The closest related work is Koçyiğit et al. (2020b), who consider the same environment

and find a (different) separate second-price auction with random reserves has good robust

properties. There are, however, several critical differences. First, they restrict attention to

dominant-strategy mechanisms13, whereas I allow for general mechanisms with essentially the

only requirement that there is a message that secures bidders’ participation. That is, I search

for a minimax regret mechanism from a much wider class of mechanisms. Second, they show

that their proposed mechanism is a minimax regret mechanism for the symmetric case where

the upper bounds of the values for a given good are the same across bidders, whereas I establish

that my proposed mechanism is a minimax regret mechanism for general upper bounds. That

is, I place no restrictions on the upper bounds of the values for a given good across bidders.

It is important and interesting to understand the minimax regret mechanism in asymmetric

environments considered in this paper, as the symmetric case is a knife-edge case. In this

sense, this paper complements their work. The key factor that drives these differences is that

12The solution for the multi-dimensional screening has been found by Koçyiğit et al. (2021). I offer an alternative
proof using a quantile-version of virtual values. Carroll (2017) also uses quantiles to parameterize the single buyer’s
values for the multi-dimensional screening.

13See Definition 9 for the formal definition of dominant-strategy mechanisms.

117



I construct a different joint distribution over value profiles that yields a higher lower bound

of the expected regret in general. In addition, there is a Pareto ranking between my proposed

mechanism and theirs: in the truth-telling equilibrium, the ex-post regret is always weakly lower

and sometimes strictly lower under my proposed mechanism than that under theirs (Remark 16).

Besides, technically, they take the duality approach for their result, whereas I adopt an adaptation

of the classic Myerson’s approach to identify a lower bound of the expected regret under my

constructed joint distribution.

Bergemann and Schlag (2008, 2011) consider the problem of monopoly pricing where the

monopolist is faced with uncertainty about the demand curve and characterize randomized posted

price mechanisms as minimax regret mechanisms. My result reduces to that of Bergemann and

Schlag (2008) in the one-good one-bidder case. Koçyiğit et al. (2021) consider the problem of

multi-dimensional screening without priors and characterize randomized separate posted price

mechanisms as minimax regret mechanisms. My result reduces to theirs in the multiple-good

one-bidder case. Moreover, I offer another minimax regret mechanism: a randomized grand

bundling (Remark 21).

More broadly, this paper is related to the robust mechanism design literature and the

information design literature. Carrasco et al. (2018) characterize maxmin selling mechanisms

when the seller faced with a single buyer only knows the first N moments of distribution (N

is an arbitrary positive integer). Che (2019), He and Li (2022) and Zhang (2022a) study the

robust auction design problem when the designer has limited distributional information. Zhang

(2021) studies the profit-maximizing bilateral trade problem and characterize maxmin trade

mechanisms when the designer knows only the expectations of the values. Similar to mine, these

papers all assume that the values are private and all characterize some randomized mechanism as

a maxmin mechanism. Carroll (2017) studies the multi-dimensional screening problem when

the designer only knows the marginal distributions. Similar to the multiple-good one-bidder

case in my paper, a separate selling mechanism turns out to be a maxmin solution. Different

from the multiple-good one-bidder case in my paper, his maxmin solution does not require
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randomization. Chung and Ely (2007) and Chen and Li (2018) study maxmin foundations for

dominant-strategy mechanisms. Similar to my model, they study the private value environment.

In contrast to my model, beliefs are not required to be consistent with a common prior; in

addition, they select for the designer’s most preferred equilibrium. Roesler and Szentes (2017)

and Condorelli and Szentes (2020) derive optimal information structures for maximizing buyer’s

surplus. My worst-case distribution reduces to theirs in the one-good one-bidder case. Du (2018)

derives the optimal informationally robust mechanism for the one-good one-bidder case and

constructs a mechanism that asymptotically extracts full surplus for the single-good auction.

Brooks and Du (2021) derive the optimal informationally robust mechanism for the single-good

auction. In contrast to my model, they study the common value environment. However, our

solution concepts are similar. My solution is indeed a strong minimax solution: holding the joint

distribution fixed, the mechanism and equilibrium minimize regret, and holding the mechanism

fixed, the joint distribution and equilibrium maximize regret; in addition, there is an equilibrium

(the truth-telling equilibrium) under which the regret cap is hit.

3.2 Model

I consider a (correlated) private value environment where a designer sells J different

indivisible goods to I risk-neutral bidders. I denote by I = {1,2, · · · , I} the set of bidders and by

J = {1,2, · · · ,J} the set of goods. Bidder i’s value of the good j is denoted by v j
i , and bidder i’s

value vector for all goods is denoted by vi = (v1
i ,v

2
i , · · · ,vJ

i ). The value profile across bidders is

denoted by v = (v1,v2, · · · ,vI). Each bidder’s value vector is his private information, which the

designer perceives as uncertain. I assume that the designer only knows an upper bound v̄i
j on

the value v j
i for all i ∈ I and all j ∈ J . Then I denote by Vi =× j∈J [0, v̄i

j] the set of all possible

value vectors of bidder i, by V =×i∈IVi the set of all possible value profiles across bidders and

by ∆V the set of all possible joint distributions on V . In contrast, bidders share a common prior
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π ∈ ∆(V ). For exposition, I assume that the supply cost for each good is zero14.

A mechanism M consists of measurable sets of messages Mi for each i and measurable

allocation rules qi = (q j
i ) j∈J : M → [0,1]J and measurable payment rules: ti : M → R for each i,

where M =×I
i=1Mi is the set of message profiles, such that ∑

I
i=1 q j

i (m)≤ 1 for each j. Given a

mechanism M and a simultaneously submitted message profile m, bidder i with a value vector

of vi has an ex-post payoff

Ui(vi,m) = vi ·qi(m)− ti(m). (1)

Bidders’ preferences are quasilinear and additively separable across the goods. I require the

mechanism to satisfy a participation security constraint: For each i, there exists 0 ∈ Mi such that

for each vi ∈Vi and each m−i ∈ M−i,

Ui(vi,(0,m−i))≥ 0. (PS)

Bidder i with a value vector vi can guarantee a nonnegative ex-post payoff by sending this

message, regardless of messages sent by the other bidders.

Given a mechanism M and a joint distribution (common prior among bidders) π, I

have a game of incomplete information. A Bayes Nash Equilibrium (BNE) of the game

is a strategy profile σ = (σi), σi : Vi → ∆(Mi), such that σi is best response to σ−i: Let

Ui(vi,M ,π,σ) =
∫

v−i
Ui(vi,(σi(vi),σ−i(v−i)))dπ(v−i|vi) where Ui(vi,(σi(vi),σ−i(v−i))) is the

multilinear extension of Ui in Equation (1), then for any i,vi,σ
′
i,

Ui(vi,M ,π,σ)≥Ui(vi,M ,π,(σ′
i,σ−i)). (BR)

The set of all Bayes Nash Equilibria for a given mechanism M and a given joint distribution π is

denoted by Σ(M ,π).

14All results can be easily extended to the case where the supply cost can be positive and different for each good.
Formal statement and proofs are omitted but available upon request.
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The designer’s expected regret is defined as the difference between the full surplus given

a joint distribution and the expected revenue under a mechanism and an equilibrium. Given

a joint distribution π, the full surplus is
∫

v{∑
J
j=1 maxi∈I v j

i }dπ(v), and the expected revenue

given a mechanism M and an equilibrium σ is
∫

v{∑
I
i=1 ti(σ(v))}dπ(v). The expected regret

thus is ER(M ,π,σ) =
∫

v{∑
J
j=1 maxi∈I v j

i −∑
I
i=1 ti(σ(v))}dπ(v). The integrand is defined as

the ex-post regret from v under the equilibrium σ. The designer evaluates a mechanism by its

worst-case expected regret across all possible joint distributions and equilibria. Formally, the

designer evaluates a mechanism M by GER(M ) = supπ∈∆(V ) supσ∈Σ(M ,π)ER(M ,π,σ), referred

to as the regret cap. I say R̄ is an upper bound of the expected regret under a mechanism M

if GER(M )≤ R̄. I say R is a lower bound of the expected regret given a joint distribution π if

infM infσ∈Σ(M ,π)ER(M ,π,σ)≥ R. The designer’s goal is to find a mechanism with the minimal

regret cap. I refer to the minimal regret cap as the minimax regret. Formally, the designer aims

to find a mechanism M ∗, referred to as a minimax regret mechanism, that solves the following

problem:

inf
M

GER(M ). (MRM)

3.3 Methodology

The problem (MRM) can be interpreted as a two-player sequential game. The two

players are the designer and adversarial nature. The designer first chooses a mechanism M .

After observing the designer’s choice of the mechanism, adversarial nature chooses a joint

distribution over value profiles π ∈ ∆(V ) as well as an equilibrium σ ∈ Σ(M ,π) to maximize

the expected regret. The designer’s payoff is −ER(M ,π,σ), and nature’s payoff is ER(M ,π,σ)

if Σ(M ,π) ̸= /0; otherwise, both players’ payoffs are minus infinity. One can also consider a

game in which nature moves first by choosing a joint distribution and the designer moves next by

choosing a mechanism and an equilibrium. Although it is not obvious that these two problems

are payoff equivalent because the equilibrium correspondence is not lower-hemicontinuous, I
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will construct a mechanism M ∗ and a joint distribution π∗ that form (a version of) a saddle point

and therefore (a version of) the minimax theorem holds. Precisely, I will (i) find an upper bound

R∗ of the expected regret under the mechanism M ∗ and (ii) show that R∗ is also a lower bound

of the expected regret given the joint distribution π∗. Note that (ii) implies that no mechanism

can achieve a regret cap strictly lower than R∗, and (i) says that the regret cap of M ∗ is weakly

lower than R∗. Therefore, (i) and (ii) together imply that M ∗ is a minimax regret mechanism. I

refer to π∗ as a worst-case distribution.

3.4 Main Result

In this section, I first formally define the separate second-price auction with random

reserves (M∗,q∗, t∗) (Section 3.4.1) and the joint distribution over value profiles π∗ (Section

3.4.2), then I present the formal statement of the result (Section 3.4.3) that the proposed

mechanism (resp, the proposed distribution) is a minimax regret mechanism (resp, a worst-

case distribution). Finally, I prove the formal statement (Section 3.4.4).

3.4.1 Separate Second-price Auction with Random Reserves

The separate second-price auction with random reserves, (M∗,q∗, t∗), is defined as

follows. First, it is a direct mechanism, i.e., M∗ = V . With slight abuse of notations, I use

v = (v j
i )i∈I , j∈J to also denote the reported message. Let v j

(2) be the second highest reported value

for the good j (the second highest value is the same as the highest one if there are ties).

If there are no ties, q∗(v) = (q j∗
i (v))i∈I , j∈J where

q j∗
i (v) =

 1+ ln v j
i

v̄i j if ∀k ̸= i,v j
i > v j

k and v̄i
j

e ≤ v j
i ≤ v̄i

j;

0 if ∃k ̸= i s.t. v j
i < v j

k or 0 ≤ v j
i <

v̄i
j

e .
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t∗(v) = (t∗i (v))i∈I in which t∗i (v) = ∑ j∈J t j∗
i (v)15 where

t j∗
i (v) =


v j

i −
v̄i

j

e if ∀k ̸= i, v j
i > v j

k and v j
(2) <

v̄i
j

e ≤ v j
i ≤ v̄i

j;

v j
i + v j

(2) ln
v j
(2)

v̄i j if ∀k ̸= i, v j
i > v j

k and v̄i
j

e ≤ v j
(2) < v j

i ≤ v̄i
j;

0 if ∃k ̸= i s.t. v j
i < v j

k or 0 ≤ v j
i <

v̄i
j

e .

Now I specify the tie breaking rule when there are ties. Given a value profile v in

which there are ties in the auction of good j, let I (vj) := {s ∈ I |v j
s ≥ v j

i ∀i ∈ I and vs ≥
v̄s

j

e }. If I (vj) is empty, then q j∗
i (v) = t j∗

i (v) = 0 for any i ∈ I ; otherwise, pick a bidder

i ∈ argmins∈I (vj) v̄s
j, let q j∗

i (v) = 1+ ln v j
i

v̄i j , t
j∗
i (v) = v j

i + v j
i ln v j

i
v̄i j , and q j∗

s (v) = t j∗
s (v) = 0 for

any s ̸= i. In words, among the bidders whose values are weakly higher than their lower bounds

of the random reserves respectively, pick a bidder whose upper bound of the values is the lowest

and allocate good j to this bidder when his bid is higher than the random reserve.

Note that the allocation probabilities for each good j are independent of the bidders’

values for the other goods. The payment rule is characterized by the envelope theorem. Then

clearly the above mechanism is equivalent to holding a separate second-price auction with

bidder-specific random reserves for each good.

3.4.2 Joint Distribution

The joint distribution over value profiles π∗ is defined via the following five steps.

Step 1: Selection. For each good j, pick (breaking ties arbitrarily) a bidder i ∈ argmaxs∈I v̄s
j.

Let J (i) denote the set of goods for which i is picked. Note that J (i) (could be empty) is disjoint

and ∪i∈I J (i) = J . If a bidder is not picked for any good, then his values for all goods are zeros.

Step 2: Equal-revenue Distributions. For each bidder i and j ∈ J (i) (this part is irrelevant if

J (i) is empty), the marginal distribution of v j
i is an equal-revenue distribution whose cumulative

15t j∗
i can be interpreted as the payment from bidder i for good j under the mechanism (M∗,q∗, t∗).
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distribution function is

π
j∗
i (v j

i ) =


1− v̄i

j

ev j
i

if v̄i
j

e ≤ v j
i < v̄i

j;

1 if v j
i = v̄i

j.

Step 3: Comonotonicity. For each bidder i and cross j ∈ J (i) (this part is irrelevant if J (i) is

empty), the dependence structure is comonotonic. Formally, for good j ∈ J (i), define the inverse

quantile function

v j
i (zi) = min{ṽi

j|π j∗
i (ṽi

j)≥ zi}=


v̄i

j

e(1−zi)
if 0 ≤ zi < 1− 1

e ;

v̄i
j if zi ≥ 1− 1

e .

Then I define the joint distribution across j ∈ J (i) by randomly drawing zi ∼U [0,1] and taking

v j
i = v j

i (zi) for each j ∈ J (i).

Step 4: Zeros. For each bidder i and j /∈ J (i) (this part is irrelevant if J (i) = J ), v j
i = 0.

Step 5: Independence. For goods across bidders (this part is irrelevant if J (i) = J for some

i ∈ I ), the values are independently distributed. Formally, zi’s are independently distributed

uniform distributions.

3.4.3 Formal Statement: Theorem 13

Theorem 13. The mechanism (M∗,q∗, t∗) is a minimax regret mechanism with the regret cap of

∑ j∈J maxi∈I
v̄i

j

e . The joint distribution π∗ is a worst-case distribution.

3.4.4 Proof of Theorem 13

Upper Bound on Regret for (M∗,q∗, t∗)

Proposition 13. An upper bound of the expected regret under the mechanism (M∗,q∗, t∗) is

∑ j∈J maxi∈I
v̄i

j

e .
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Proof. Consider the auction of good j under the mechanism (M∗,q∗, t∗). Fix an arbitrary

joint distribution π ∈ ∆V . First consider the truth-telling equilibrium. Given any value profile

v ∈ supp(π), suppose i is the unique highest bidder for good j . If v j
(2) <

v̄i
j

e ≤ v j
i ≤ v̄i

j, then the

ex-post regret is v1
i − t j∗

i (v) = v j
i −(v j

i −
v̄i

j

e ) = v̄i
j

e ; if v̄i
j

e ≤ v j
(2) < v j

i ≤ v̄i
j, then the ex-post regret

is v j
i − t j∗

i (v) = v j
i − (v j

i + v j
(2) ln

v j
(2)

v̄i j ) =−v j
(2) ln

v j
(2)

v̄i j , which is maximized at v j
(2) =

v̄i
j

e , yielding

an ex-post regret of v̄i
j

e ; finally, if 0 ≤ v j
i <

v̄i
j

e , then the ex-post regret is less than v̄i
j

e because the

maximal revenue is less than v̄i
j

e . Suppose now there are ties. Then under the specified tie breaking

rule, if I (vj) is empty, then v j
i < maxi∈I

v̄i
j

e for any i ∈ I , and so the ex-post regret is less than

maxi∈I
v̄i

j

e ; if I (vj) is not empty, then the ex-post regret is v j
i ln v j

i
v̄i j where i ∈ argmins∈I (vj) v̄s

j,

which is maximized at v j
i =

v̄i
j

e , yielding an ex-post regret of v̄i
j

e ≤ maxi∈I
v̄i

j

e . Thus, in the

truth-telling equilibrium, the ex-post regret from good j is at most maxi∈I
v̄i

j

e for any value

profile.

Next consider any equilibrium σ. Given any value profile v ∈ supp(π), pick a bidder

i whose value for good j is the highest among the bidders, or i ∈ argmaxi∈I v j
i . If v j

i >
v̄i

j

e

and there is a positive measure of the others’ reports under the conditional equilibrium report

distribution σ−i(v−i) such that bidder i wins the good by truthfully reporting v j
i provided that

v j
i is higher than the random reserve, then bidder i has a strict incentive to truthfully report his

value for good j, and thus the argument in the previous paragraph implies that the ex-post regret

must not exceed maxi∈I
v̄i

j

e . Otherwise, there are two cases to consider. 1) If v j
i ≤

v̄i
j

e , then the

most to lose does not exceed v̄i
j

e and thus the ex-post regret must not exceed maxi∈I
v̄i

j

e . 2) If

v j
i >

v̄i
j

e and there is a zero measure of the others’ reports under the conditional equilibrium

report distribution σ−i(v−i) such that bidder i wins the good by truthfully reporting v j
i provided

that v j
i is higher than the random reserve, then (almost surely) the highest report among the other

bidders is (weakly) higher than bidder i’s value for good j. In this case, the ex-post regret must

not exceed maxi∈I
v̄i

j

e as the difference between the highest report and the ex-post revenue is

weakly less than maxi∈I
v̄i

j

e by the argument in the previous paragraph. Thus, in any equilibrium,
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the ex-post regret from good j is at most maxi∈I
v̄i

j

e for any value profile. This implies that in

any equilibrium, the expected regret from good j is at most maxi∈I
v̄i

j

e given the arbitrary joint

distribution π.

Finally, because of the separable nature of the mechanism (M∗,q∗, t∗), an upper bound

of the expected regret is ∑ j∈J maxi∈I
v̄i

j

e .

Remark 15. This upper bound is hit given the joint distribution π∗ and the truth-telling

equilibrium. To see this, fix any v ∈ π∗ and consider good j. By the definition of π∗, there is

only one bidder, denoted by i, whose value for good j is positive. In addition, v j
i ≥

v̄i
j

e . Then by

the proof of Proposition 13, the ex-post regret from good j is v̄i
j

e in the truth-telling equilibrium.

Note that by the definition of π∗, i ∈ argmaxi∈I v̄i
j. Thus the ex-post regret from good j is equal

to maxi∈I
v̄i

j

e in the truth-telling equilibrium. Because this is true for any v ∈ π∗, the expected

regret from good j is equal to maxi∈I
v̄i

j

e given the joint distribution π∗ and the truth-telling

equilibrium. Summing up across goods, the expected regret is ∑ j∈J maxi∈I
v̄i

j

e given the joint

distribution π∗ and the truth-telling equilibrium.

Remark 16. Koçyiğit et al. (2020b) present a separate second-price auction with anonymous

random reserves in which

q j
i (v) =

 1+ ln v j
i

maxi∈I v̄i j if ∀k ̸= i, v j
i > v j

k and maxi∈I v̄i
j

e ≤ v j
i ≤ v̄i

j;

0 if ∃k ̸= i s.t. v j
i < v j

k or 0 ≤ v j
i <

maxi∈I v̄i
j

e .

And the payment rule is characterized by the envelope theorem. They show that given this

mechanism, ∑ j∈J maxi∈I
v̄i

j

e is an upper bound of the ex-post regret. Although their mechanism

has the same regret cap, the designer may favor (M∗,q∗, t∗) over their mechanism for reasons

outside the model. Specifically, there exists a Pareto ranking between the two mechanisms in the

following sense: as long as maxi∈I v̄i
j > v̄k

j for some k ∈ I and some j ∈ J , it is straightforward

to show that in the truth-telling equilibrium, i) the ex-post regret under (M∗,q∗, t∗) is weakly

lower than that under their mechanism for any v ∈V , and ii) the ex-post regret under (M∗,q∗, t∗)
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is strictly lower than that under their mechanism for some v ∈ V . Intuitively, under their

mechanism, the allocation probability is lower for a highest bidder whose upper bound of the

values of the good is not the highest, resulting in a higher ex-post regret for such a value profile.

Indeed, under the criterion used in Remark 16, no mechanism from the family of separate

second-price auctions16, denoted by F −SSP, is better than the mechanism (M∗,q∗, t∗).

Definition 9. I say a direct mechanism M = (V,q, t) is a dominant-strategy mechanism if for all

i ∈ I , all v ∈V , and all v′i ∈Vi,

vi ·qi(v)− ti(v)≥ vi ·qi(v′i,v−i)− ti(v′i,v−i),

vi ·qi(v)− ti(v)≥ 0.

Definition 10. I say a dominant-strategy mechanism M1 is undominated by another dominant-

strategy mechanism M2 if in the truth-telling equilibrium, the ex-post regret under the mechanism

M1 is strictly lower than that under the mechanism M2 for some v ∈V .

Corollary 3. The mechanism (M∗,q∗, t∗) is undominated by any mechanism from F −SSP.

Proof. Fix any i ∈ I and any j ∈ J , consider the value profiles in which v j
i ∈ [0, v̄i

j] and all other

values are zeros. Then Proposition 1 in Bergemann and Schlag (2008) implies that the random

reserve for the bidder i and the good j in the mechanism (M∗,q∗, t∗) is the unique random

reserve that minimizes the worst-case ex-post regret in the truth-telling equilibrium for these

value profiles. Therefore, if a different (random) reserve were used for the bidder i and the good

j, then there would be a value profile with an ex-post regret strictly higher than that under the

mechanism (M∗,q∗, t∗).

In addition, the specific tie-breaking rule in (M∗,q∗, t∗) minimizes the worst-case ex-post

regret when there are ties across different tie-breaking rules. To see this, recall that the worst-case

16In a separate second-price auction, there may be random reserves, deterministic reserves, or no reserves.
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ex-post regret is proportional to the upper bound of values in the one-good one-bidder case and

that under the tie-breaking rule in (M∗,q∗, t∗), a bidder with the lowest upper bound of values

for a good is picked. This finishes the proof.

Lower Bound on Regret for π∗

Proposition 14. A lower bound of the expected regret under π∗ is ∑ j∈J maxi∈I
v̄i

j

e .

Proof. Note that given a joint distribution, minimizing the expected regret across mechanisms

and equilibria is equivalent to maximizing the expected revenue across mechanisms and equilibria.

Then the revelation principle applies and thus it is without loss to restrict attention to direct

mechanisms.

I parameterize the value profile across bidders by z = (z1,z2, · · · ,zI) ∈ [0,1]I . Then for

any direct mechanism (q(z), t(z)) = ((qi(z))i∈I ,(ti(z))i∈I ) where qi(z) = (q j
i (z)) j∈J ∈ [0,1]J

represent the allocation probabilities of the goods to bidder i under the parametrerized value

profile z and ti(z) ∈ R represents bidder i’s payment under z, (BR) together with (PS) imply

Ui(zi) := ∑
j∈J (i)

v j
i (zi)Q

j
i (zi)−Ti(zi)≥ ∑

j∈J (i)
v j

i (zi)Q
j
i (z

′
i)−Ti(z′i) for i ∈ I ,zi,z′i ∈ [0,1],

(BIC)

∑
j∈J (i)

v j
i (zi)Q

j
i (zi)−Ti(zi)≥ 0 for i ∈ I ,zi ∈ [0,1], (BIR)

where Q j
i (zi) =

∫
[0,1]I−1 q j

i (zi,z−i)dz−i and Ti(zi) =
∫
[0,1]I−1 ti(zi,z−i)dz−i are the expected

allocation of good j to type zi of bidder i and the expected payment made by type zi of bidder i

respectively, due to the fact that zi’s are independently distributed uniform distributions by the

definition of π∗. Note that the allocation of good j for j /∈ J (i) does not appear in either (BIC) or

(BIR) because the value for such a good (if any) is zero to bidder i under the joint distribution π∗.
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For z′i ≥ zi, (BIC) implies that

∑
j∈J (i)

(v j
i (z

′
i)− v j

i (zi))Q
j
i (z

′
i)≥Ui(z′i)−Ui(zi)≥ ∑

j∈J (i)
(v j

i (z
′
i)− v j

i (zi))Q
j
i (zi). (2)

Then Ui(zi) is Lipschitz, thus absolutely continuous w.r.t. zi, and so equal to the integral of its

derivative. In addition, note that v j
i (zi) is differentiable for all zi but zi = 1− 1

e . Then applying

the envelope theorem to (2) at each point of differentiability, I obtain that

∂Ui(zi)

∂zi
= ∑

j∈J (i)

∂v j
i (zi)

∂zi
Q j

i (zi) =

 ∑ j∈J (i)
v̄i

j

e(1−zi)2 Q j
i (zi) if 0 ≤ zi < 1− 1

e ;

0 if zi > 1− 1
e .

Thus,

Ui(zi) =

 Ui(0)+
∫ zi

0 [∑ j∈J (i)
v̄i

j

e(1−z̃i)2 Q j
i (z̃i)]dz̃i if 0 ≤ zi < 1− 1

e ;

Ui(0)+
∫ 1− 1

e
0 [∑ j∈J (i)

v̄i
j

e(1−z̃i)2 Q j
i (z̃i)]dz̃i if zi ≥ 1− 1

e .
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Therefore, the expected revenue from bidder i

∫ 1

0
Ti(zi)dzi =

∫ 1

0
[ ∑

j∈J (i)
v j

i (zi)Q
j
i (zi)−Ui(zi)]dzi

=
∫ 1− 1

e

0
{ ∑

j∈J (i)
v j

i (zi)Q
j
i (zi)−Ui(0)−

∫ zi

0
[ ∑

j∈J (i)

v̄i
j

e(1− z̃i)2 Q j
i (z̃i)]dz̃i}dzi+

∫ 1

1− 1
e

{ ∑
j∈J (i)

v j
i (zi)Q

j
i (zi)−Ui(0)−

∫ 1− 1
e

0
[ ∑

j∈J (i)

v̄i
j

e(1− z̃i)2 Q j
i (z̃i)]dz̃i}dzi

≤
∫ 1− 1

e

0
{ ∑

j∈J (i)
v j

i (zi)Q
j
i (zi)−

∫ zi

0
[ ∑

j∈J (i)

v̄1
j

e(1− z̃i)2 Q j
i (z̃i)]dz̃i}dzi+

∫ 1

1− 1
e

{ ∑
j∈J (i)

v j
i (zi)Q

j
i (zi)−

∫ 1− 1
e

0
[ ∑

j∈J (i)

v̄i
j

e(1− z̃i)2 Q j
i (z̃i)]dz̃i}dzi

= ∑
j∈J (i)

{
∫ 1− 1

e

0
[(v j

i (zi)− (1− 1
e
− zi)

v̄i
j

e(1− zi)2 )Q
j
i (zi)]dzi+

∫ 1

1− 1
e

[v j
i (zi)Q

j
i (zi)−

∫ 1− 1
e

0
[

v̄i
j

e(1− z̃i)2 Q j
i (z̃i)]dz̃i]dzi}

= ∑
j∈J (i)

{
∫ 1− 1

e

0
[(v j

i (zi)− (1− zi)
v̄i

j

e(1− zi)2 )Q
j
i (zi)]dzi +

∫ 1

1− 1
e

[(v j
i (zi)Q

j
i (zi)]dzi}

= ∑
j∈J (i)

∫ 1

1− 1
e

[v̄i
jQ j

i (zi)]dzi ≤ ∑
j∈J (i)

v̄i
j

e
,

where the first inequality holds because (BIR) implies that Ui(0) ≥ 0, the third equality is

obtained via integration by parts, the last equality holds because v j
i (zi)− (1− zi)

v̄i
j

e(1−zi)2 = 0 for

0 ≤ zi < 1− 1
e and v j

i (zi) = v̄i
j for zi > 1− 1

e , and the last inequality holds because Q j
i (zi)≤ 1.

Then, the expected revenue from all the bidders

I

∑
i=1

∫ 1

0
Ti(zi)dzi ≤ ∑

i∈I
∑

j∈J (i)

v̄i
j

e

= ∑
j∈J

max
i∈I

v̄i
j

e
,

where the equality holds by the definition of J (i).
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Now, the expected regret

∑
i∈I

∫ 1

0
∑

j∈J (i)
v j

i (zi)dzi −
I

∑
i=1

∫ 1

0
Ti(zi)dzi = ∑

j∈J
max
i∈I

2v̄i
j

e
−

I

∑
i=1

∫ 1

0
Ti(zi)dzi

≥ ∑
j∈J

max
i∈I

v̄i
j

e
,

where the term ∑i∈I
∫ 1

0 ∑ j∈J (i) v j
i (zi)dzi is the full surplus given the joint distribution π∗ and the

equality holds by direct calculation and by the definition of J (i). Thus, ∑ j∈J maxi∈I
v̄i

j

e is a

lower bound of the expected regret under π∗.

Remark 17. In the Step 1 of the definition of π∗, it is important that for each good, only one

bidder is selected when there are ties. Otherwise, there would be competition for some good,

resulting in a lower expected regret.

Remark 18. One may be tempted to consider the following joint distribution over value profiles

as a candidate for a worst-case distribution. There is only one bidder, bidder i, whose values for

the goods are non-zero; in addition, the bidder i’s values for the goods follow the comonotonic

equal-revenue distribution. The bidder i is selected such that i ∈ argmaxi∈I ∑ j∈J
v̄i

j

e . Then by an

argument similar to the proof of Proposition 14 , a lower bound of the expected regret under this

joint distribution is maxi∈I ∑ j∈J
v̄i

j

e . However, this lower bound is lower than ∑ j∈J maxi∈I
v̄i

j

e in

general. Thus, this joint distribution is not “bad” enough for the designer and is not a worst-case

distribution in general. Intuitively, this joint distribution may ignore a bidder whose upper bound

of the values of a given good is the highest among the bidders, resulting in an expected regret

not high enough. This motivates the Step 1 of the definition of π∗.

Remark 19. What if the designer knows nothing about the joint distribution over bidders’

value profiles? That is, bidders’ values can be unbounded. I argue that the regret cap for any

mechanism that secures bidders’ participation will be infinity. To see this, consider a joint

distribution that puts all probability masses on a single value profile in which bidder i has a
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large positive value of θ for good j, bidder i’s values for the other goods are zeros and the

other bidders’ values for all the goods are zeros. Recall that given a joint distribution over

value profiles, the revelation principle applies and it is without loss to restrict attention to direct

mechanisms. In addition, the expected revenue is generated from selling good j to bidder i

only, as the other values are zeros and the mechanism secures bidders’ participation. Consider a

revenue-maximizing (and therefore regret-minimizing) direct mechanism, let Q j
i (x) denote the

expected allocation probability of good j to bidder i given a bidder i’s report of x about his value

for good j. Note that Q j
i (x) is non-decreasing in x by the incentive compatible constraint. Then

the expected revenue is T j
i (θ) = θQ j

i (θ)−
∫

θ

0 Q(x)dx. Define limv j
i →∞

Q j
i (v

j
i ) := κ. By definition,

for any ε > 0, there exists a t ≥ 0 such that Q j
i (v

j
i )≥ κ− ε for any v j

i ≥ t. Then
∫

θ

0 Q j
i (x)dx =∫ t

0 Q j
i (x)dx+

∫
θ

t Q j
i (x)dx ≥ (θ− t)(κ− ε), so T j

i (θ)≤ θκ− (θ− t)(κ− ε) = εθ+ t(κ− ε), and

the expected regret is θ−T j
i (θ)≥ (1−ε)θ− t(κ−ε). As ε can be chosen to be arbitrarily small,

the expected regret goes to infinity as θ goes to infinity17.

Theorem 13 follows immediately from Proposition 13 and 14.

3.5 Special Cases

In this section, I present the results for two special cases in which I = 1 and J = 1

respectively, which correspond to multi-dimensional screening (Section 3.5.1) and single-good

auction (Section 3.5.2).

3.5.1 Multi-Dimensional Screening: I = 1

Let the mechanism (M∗
1,q

∗
1, t

∗
1) (resp, the joint distribution π∗

1 ) be the specialization of

the mechanism (M∗,q∗, t∗) (resp, the joint distribution π∗) to the case in which I = 1. I omit

their descriptions for brevity. Note that the mechanism (M∗
1,q

∗
1, t

∗
1) is a separate randomized

17This proof is similar to the proof of Proposition 1 in Carrasco et al. (2017).
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posted-price mechanism: each good is sold separately with a random posted price. In the joint

distribution π∗
1, the marginal distribution of each good is an equal-revenue distribution and the

values across goods are comonotonic.

Corollary 4 (Multi-Dimensional Screening). If I = 1, then the mechanism (M∗
1,q

∗
1, t

∗
1) is a

minimax regret mechanism with the regret cap of ∑ j∈J
v̄1

j

e . The joint distribution π∗
1 is a worst-

case distribution.

Proof. The proof is a straightforward adaptation of the proof of Theorem 13 to the case in which

I = 1.

Remark 20. There are very limited results in multi-dimensional screening for other correlation

structures. McAfee et al. (1989) show that with independent continuous distributions, separate

selling is essentially never optimal. Therefore an independent joint distribution, where the

marginal distributions remain the same but the values across the goods are independent, is not a

worst-case distribution.

Remark 21. There is another minimax regret mechanism for the multi-dimensional screening: a

randomized grand bundling. It can be described as follows. The designer sells the bundle of all

the goods only. Let b be the bid for the bundle of all the goods. If b > ∑ j∈J
v̄1

j

e , then allocate

the bundle with a probability of 1+ ln b
∑ j∈J v̄1

j and charge a price of b−∑ j∈J
v̄1

j

e ; otherwise, no

goods are allocated and the buyer (the bidder 1) pays nothing. It is straightforward to show that

the regret cap of this mechanism is ∑ j∈J
v̄1

j

e .

3.5.2 Single-Good Auction: J = 1

Let the mechanism (M1∗,q1∗, t1∗) (resp, the joint distribution π1∗ ) be the specialization

of the mechanism (M∗,q∗, t∗) (resp, the joint distribution π∗) to the case in which J = 1. I

omit their descriptions for brevity. Note that the mechanism (M1∗,q1∗, t1∗) is a second-price

auction with random reserves: the single good is auctioned via a second-price auction with
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bidder-specific random reserves. In the joint distribution π1∗, only the bidder with the highest

upper bound of the values for the good has a positive value (breaking ties arbitrarily) and the

marginal distribution of this bidder’s value is an equal-revenue distribution.

Corollary 5 (Single-Good Auction). If J = 1, then the mechanism (M1∗,q1∗, t1∗) is a minimax

regret mechanism with the regret cap of maxi∈I
v̄i

1

e . The joint distribution π1∗ is a worst-case

distribution.

Proof. The proof is a straightforward adaptation of the proof of Theorem 13 to the case in which

J = 1.

3.6 Discussion

3.6.1 Solution Concept

In this paper, I consider the class of all mechanisms that secure bidders’ participation

and the worst Bayes Nash Equilibrium for the designer. The solution concept follows from a

recent literature on informationally robust mechanism design, e.g., Du (2018) and Brooks and

Du (2021). Several remarks can be made in sequence. First, if we assume that the class of

mechanisms is the set of dominant-strategy mechanisms and that the truth-telling equilibrium

is played, then the same result will hold by a simple extension of the current proofs. This

is because under the constructed worst-case distribution, the expected regret under the best

dominant-strategy mechanism is the same as that under the best Bayesian incentive-compatible

mechanism. Second, for the main result, it is not crucial that adversarial nature has to pick the

worst equilibrium. That is, we can allow adversarial nature to pick the best equilibrium for the

designer, and the same result will still hold. So the main result may be a priori surprising result:

the class of the mechanisms is much wider than the set of dominant-strategy mechanisms, yet, a

dominant-strategy mechanism emerges as a minimax regret mechanism.
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3.6.2 Comparative Statics

It is instructive to discuss some comparative statics assuming that there is no trivial good

or bidder, i.e., v̄i
j > 0 for any i ∈ I and j ∈ J . First, the minimax regret is strictly increasing in J.

To understand this, note that the comonotonic structure in the worst-case distribution reduces

multi-dimensional screening to single-dimensional screening, then when adding a new good,

the minimax regret will increase by the amount of the minimax regret when there is only this

new good. Second, the minimax regret is weakly increasing in I. To understand this, note that

the zero values in the worst-case distribution eliminate the competition18 for a given good, then

as the full surplus weakly increases with I, the minimax regret also weakly increases with I

(strictly increases with I when the new bidder’s upper bound of the values of some good is higher

than that of any previous bidder). Third, for the symmetric case where the upper bounds of the

values for a given good are the same across bidders, or v̄i
j = v̄k

j for any i ∈ I , any k ∈ I and any

j ∈ J , the average minimax regret (the minimax regret divided by I) is strictly decreasing in I.

To understand this, note that when adding a symmetric bidder, the full surplus does not change

given the worst-case distribution, and, again, there is still no competition for any good. Then, the

minimax regret remains the same and thus the average minimax regret is strictly decreasing in I.

3.6.3 Digital Goods

Consider a related problem in which the designer auctions digital goods19 to I bidders,

e.g., e-books, mobile apps, online courses, etc. Each bidder demands at most one unit of the

good. Bidder i has a private value vi ∈ [0, v̄i]. The designer aims to minimize the worst-case

expect regret. The formal objective function can be similarly defined. Indeed, this problem may

be interpreted as a special case of the model: there are I different goods, but each bidder values

18The competition would increase with I for general joint distributions. For example, consider a joint distribution
in which bidders’ values of a given good follow i.i.d. uniform distributions. It is straightforward to show that
the expected regret under an optimal mechanism would eventually go to 0 as I goes to infinity given this joint
distribution.

19A digital goods auction is an auction in which the designer has an unlimited supply of the same good.
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only one of the goods and the good each bidder values is different. Under this interpretation,

adversarial nature’s ability is “constrained” in that the set of possible joint distributions is smaller

than the previous one. Note however that the worst-case distribution in Theorem 13 is not

excluded. Then a direct implication of Theorem 13 is that a separate randomized posted-price

mechanism as follows is a minimax regret mechanism for this problem:

qi(v1,v2, · · · ,vI) =

 1+ ln vi
v̄i

if v̄i
e ≤ vi ≤ v̄i;

0 if 0 ≤ vi <
v̄i
e .

And the payment rule is characterized by the envelope theorem. Note that the allocation to bidder

i depends on bidder i’s value only. In addition, an independent equal-revenue distribution as

follows is a worst-case distribution: the marginal distribution of vi follows an equal-revenue

distribution whose cumulative distribution function is

πi(vi) =

 1− v̄i
evi

if v̄i
e ≤ vi < v̄i;

1 if vi = v̄i.

And the values across bidders are independent.

3.7 Concluding Remarks

In this paper, I characterize a simple minimax regret mechanism for auctioning multiple

goods given general upper bounds of values. It is worth noting that the proposed mechanism is

strategy-proof. Hence, it (essentially20) remains a minimax regret mechanism even without the

assumption of a common prior among bidders. Critically, I drop the extreme assumption made

by the traditional mechanism design literature that the designer knows the joint distribution over

value profiles, but impose an equally extreme assumption that the designer has no distributional

20A strategy-proof mechanism can be slightly perturbed so that truth-telling is the unique equilibrium.
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information except for the upper bounds of values, on which the result heavily relies. I believe

the truth lies in intermediate cases, which are interesting to further explore. I further conjecture

that separation remains a property in many other informational environments.

3.8 Appendix

An additional information structure consists of a measuable set of additional information

Si for each bidder i, with S = ×I
i=1Si, and a joint distribution δ ∈ ∆(V × S). An additional

information structure is denoted by T = (S,δ). I say T is π− consistent if the marginal of δ on

V is π, i.e., for every measurable Ṽ ⊆V , δ(Ṽ ×S) = π(Ṽ ). The set of all π−consistent additional

information structures is denoted by T(π). As before, each bidder i knows his private value vector

vi ∈Vi. And π is their common prior. But, before playing a mechanism, each bidder i may observe

a signal si ∈ Si from an additional information structure T ∈ T(π). And T is their common

knowledge. The definition of and the requirement for a mechanism are the same as before. Given

a mechanism M and a common prior π and an additional information structure T ∈T(π), I have a

game of incomplete information. With slight abuse of notations, a Bayes Nash Equilibrium (BNE)

of the game is a strategy profile σ = (σi), σi : Vi ×Si → ∆(Mi), such that σi is best response to

σ−i: Let Ui(vi,si,M ,π,T ,σ) =
∫

v−i,s−i
Ui(vi,(σi(vi,si),σ−i(v−i,s−i)))dδ(v−i,s−i|vi,si) where

Ui(vi,(σi(vi,si),σ−i(v−i,s−i))) is the multilinear extension of Ui in Equation (1), then for any

i,vi,si,σ
′
i,

Ui(vi,si,M ,π,T ,σ)≥Ui(vi,si,M ,π,T ,(σ′
i,σ−i)). (BR’)

The set of all Bayes Nash Equilibria for a given mechanism M and a given common prior π and

a given additional information structure T ∈ T(π) is denoted by Σ(M ,π,T ).

Given a common prior π and an additional information structure T ∈ T(π), the

expected regret is ER′(M ,π,T ,σ) =
∫

v,s{∑
J
j=1 maxi∈I v j

i − ∑
I
i=1 ti(σ(v,s))}dδ(v,s). The

designer evaluates a mechanism by its worst-case expected regret across all possible common
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priors and consistent additional information structures and equilibria. Formally, the designer

evaluates a mechanism M by GER′(M ) = supπ∈∆(V ) supT ∈T(π) supΣ(M ,π,T )ER′(M ,π,T ,σ).

The designer’s goal is to find a mechanism with the minimal worst-case expected regret. Formally,

the designer aims to find a mechanism, referred to as a min-3max regret mechanism, that solves

the following problem:

inf
M

GER′(M ). (MRM’)

Theorem 13’. The mechanism (M∗,q∗, t∗) is a min-3max regret mechanism.

Proof. For adversarial nature’s strategy, let the common prior be π∗ and the set of additional

information S be a singleton. The proof of Theorem 13 then applies.

Intuitively, adversarial nature cannot generate strictly more expected regret even though

it can use additional information structures because the mechanism (M∗,q∗, t∗) is strategy-proof.
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