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THE IRREDUCIBILITY OF THE PRIMAL COHOMOLOGY OF THE THETA
DIVISOR OF AN ABELIAN FIVEFOLD

ELHAM IZADI AND JIE WANG

Abstract. We prove that the primal cohomology of the theta divisor of a very general principally

polarized abelian fivefold is an irreducible Hodge structure of level 2.
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Introduction

Let A be a principally polarized abelian variety of dimension g ≥ 4 with smooth theta divior Θ.

By the Lefschetz hyperplane theorem and Poincaré Duality (see, e.g., [IW14]) the cohomology of Θ

is determined by that of A except in the middle dimension g − 1. The primitive cohomology of Θ,

in the sense of Lefschetz, is

Hg−1
pr (Θ) := Ker

(
Hg−1(Θ,Z)

∪θ|Θ−→ Hg+1(Θ,Z)
)
.
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2 ELHAM IZADI AND JIE WANG

The primal cohomology of Θ is defined as (see [IW14] and [ITW])

K := Ker(j∗ : Hg−1(Θ,Z) −→ Hg+1(A,Z))

where j : Θ→ A is the inclusion. This is a Hodge substructure of Hg−1
pr (Θ,Z) of rank g!− 1

g+1

(
2g
g

)
and level g − 3 while the primitive cohomology Hg−1

pr (Θ,Z) has full level g − 1.

The primal cohomology is therefore a good test case for the general Hodge conjecture. The

general Hodge conjecture predicts that KQ := K ⊗ Q is contained in the image, via Gysin push-

forward, of the cohomology of a smooth (possibly reducible) variety of pure dimension g − 3 (see

[IW14]). This conjecture was proved in [IS95] and [ITW] in the cases g = 4 and g = 5. When

g = 4, it also follows from the proof of the Hodge conjecture in [IS95] that for (A,Θ) generic, K

is an irreducible Hodge structure (isogenous to the third cohomology of a smooth cubic threefold).

When g = 5, the cohomology of the variety whose cohomology contains K is no longer irreducible

and the irreducibiity of K no longer follows from the proof of the Hodge conjecture.

Our main result is the somewhat unexpected (see [KW, 2.9])

Theorem 0.1. For a very general ppav A of dimension 5 with smooth theta divisor Θ. The primal

cohomology K of Θ is an irreducible Hodge structure of level 2.

As explained in [IW14], the above theorem considerably simplifies the proof of the Hodge con-

jecture in [ITW]: it is no longer necessary to show that the image of the Abel-Jacobi map in [ITW]

contains all of K, only that it intersects K non-trivially.

If A is replaced by a projective space and Θ by a smooth hypersurface, then the primitive and

the primal cohomology coincide. The primitive cohomology of a general hypersurface is irreducible

(see, e.g., [Lam81, 7.3]).

Our strategy, expalined below, for proving Theorem 0.1 is to use the Mori-Mukai proof [MM83]

of the unirationality of A5.

Let T be an Enriques surface and

f : S −→ T

the K3 étale double cover corresponding to the canonical class (which is 2-torsion) KT ∈ Pic(T ).

Let H be a very ample line bundle on T with H2 = 10. A general element in the linear system

|H| ∼= P5 is a smooth curve of genus 6 and such smooth curves are parametrized by the Zariski

open subset |H| \ D, where D is the dual variety of the embedding of T in |H|∗. For each element
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u ∈ |H| \ D, we obtain a nontrivial étale double cover Du := f−1(Cu)→ Cu. Associating to such a

cover its Prym variety P (Du, Cu) defines a morphism from |H| \ D to A5:

|H| \ D //

PH ##GGGGGGGGG
R6

P~~}}}}}}}}

A5

.

Mori and Mukai [MM83] showed that as we vary (T,H) in moduli, the family of maps PH dominates

A5.

The ppav (A,Θ) with singular theta divisor form the Andreotti-Mayer divisor N0 in A5 ([Bea77]).

The divisor N0 has two irreducible components θnull and N ′0 ([Deb92],[Mum83])) (as divisors, N0 =

θnull + 2N ′0). The theta divisor of a general point (A,Θ) ∈ θnull has a unique node at a two-torsion

point while the theta divisor of a general point in N ′0 has two distinct nodes x and −x.

The primal cohomologies of the theta divisors form a variation of (polarized) Hodge structures

over U := |H| \ (D∪P−1
H (N0)). Inspired by [Lam81, 7.3], we prove Theorem 0.1 via a detailed study

of the monodromy representation

ρ : π1(U) −→ Aut(KQ, 〈, 〉)

where 〈, 〉 is the natural polarization on KQ induced by the intersection pairing on H4(Θ,Q).

1. Prym varieties associated to a Lefschetz pencil

1.1. A pencil of double covers. We denote by

τ : S −→ S

the fixed point free covering involution such that S/τ ∼= T . By [Nam85, Prop. 2.3] the invariant

subspace of the involution ι∗ acting on the Néron Severi group NS(S) is equal to f ∗(NS(T )). Since

the pullback

f ∗ : NS(T ) −→ NS(S)

is injective, we deduce that f ∗(NS(T )) is a rank 10 primitive sublattice in NS(S). It follows that

the Picard number of S is greater than or equal to 10. By [Nam85, Prop. 5.6], when T is general

in moduli,

NS(S) = f ∗NS(T ).(1.1)

Hypothesis: Throughout this paper, we will assume T satisfies (1.1).
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Suppose l ∼= P1 ⊂ |H| is a Lefschetz pencil, i.e., it is transverse to the dual variety D, hence the

singular curves of the pencil consist of finitely many irreducible nodal curves. Denote T̃ := Bl10T

(resp. S̃ := Bl20S) the blow-up of T (resp. S) along the base locus of l (resp. f ∗l). We obtain a

family of étale double covers parametrized by l:

S̃
f̃

//

π′ ��========
T̃

π����������

l.

Proposition 1.1. There are 42 singular fibers in the family T̃
π−→ l.

Proof. We use the formula

χtop(T̃ ) = χtop(T ) + 10 = χtop(P1)χtop(C) +N,

where C is a smooth fiber in the pencil and N is the number of singular fibers. We obtain N =

42. �

Denote Ct the fiber over t ∈ l of π and Dt the corresponding étale double cover in S̃ and

{si ∈ l : i = 1, ..., 42} the 42 points where π is singular.

Proposition 1.2. For any t ∈ l, the étale double cover Dt of Ct is an irreducible curve.

Proof. Suppose Dt is reducible for some t. If Ct is smooth, Dt must be the trivial cover. If Ct

has one node, Dt is either the trivial cover or the Wirtinger cover. In either case, the involution ι

permutes the two components D1
t and D2

t of Dt. By (1.1), the class of Di
t in NS(S) is ι invariant,

thus D1
t and D2

t have the same class in NS(S) and H = 2D1
t . However, since H2 = 10, the class of

H in NS(T ) is not 2-divisible, a contradiction. �

Corollary 1.3. For a singular fiber Csi = Cpq := C
{p∼q} in the pencil l, the étale double cover

Dsi := Dpq is obtained by glueing pi with qi for i = 1, 2 on a nontrivial étale double cover D of C,

where pi, qi ∈ D are the inverse images of p, q ∈ C respectively.

Proof. The étale double cover Dpq of Cpq is determined by a 2-torsion point in Pic0(Cpq). The

statement follows immediately from the irreducibility of Dsi and the exact sequence

1 // Z2
// Pic0(Cpq)2

ν∗ // Pic0(C)2
// 0 ,
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where ν : C → Cpq is the normalization map and the kernel of ν∗ is generated by the point of order

2 corresponding to the Wirtinger cover. �

1.2. The compactified Prym variety. We describe the compactified Prym variety for the cover

Dpq → Cpq as in Corollary 1.3. The semiabelian part Gpq of the Prym variety is the identity

component Ker0(Nmpq) of Ker(Nmpq) ⊂ Pic0(Dpq) in the following commutative diagram with

exact rows and columns

0

��

0

��

0

��

1 // C∗ //

��

Ker(Nmpq) //

��

Ker(Nm) //

��

0

1 // (C∗)2

��

// Pic0(Dpq)

Nmpq
��

// Pic0(D) //

Nm
��

0

1 // C∗ //

��

Pic0(Cpq) //

��

Pic0(C) //

��

0

0 0 0.

It follows immediately that the group scheme Gpq is a C∗-extension of the Prym variety (B,Ξ) :=

Prym(D,C):

1 // C∗ // Gpq
// B // 0 .

Let p : P ν → B be the unique P1 bundle containing Gpq and write P ν \Gpq = B0 q B∞, where B0

and B∞ are the zero and infinity sections of P ν .

The compactified ‘rank one degeneration’ P is constructed as follows (c.f. [Mum83, §1]).

(1) On P ν , we have B0 −B∞ vlin p−1(Ξ− Ξb) for a unique b ∈ B. Thus

B0 + p−1Ξb vlin B∞ + p−1Ξ.

(2) Let Lν := OP ν (B0 + p−1Ξb). Then Lν |B0
∼= OB(Ξ) and Lν |B∞ ∼= OB(Ξb). Via the Leray

spectral sequence for p, we see that h0(P ν , Lν) = 2 and B0 + p−1Ξb, B∞ + p−1Ξ span |Lν |.

(3) The compactified Prym variety P is constructed from P ν by identifying the zero section

B0

p∼= B with the infinity section B∞
p∼= B via translation by b ∈ B. We also denote

ν : P ν → P the normalization morphism.
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(4) The line bundle Lν descends to a line bundle L on P , i.e., ν∗L ∼= Lν . The linear system |L|

is a point.

(5) The theta divisor Υ ⊂ P is the unique divisor in |L|.

Remark 1.4. The P1 bundle P ν → B contains an open subset P ν \ B∞ (resp. P ν \ B0), which is

isomorphic to the total space of NB0|P ν
∼= OB0(B0) ∼= OB(Ξ−Ξb) (resp. OB(Ξb−Ξ)). We conclude

that P ν ∼= PB(OB(Ξ− Ξb)⊕OB(Ξb − Ξ)). In particular Gpq → B and P ν → B are topologically

trivial C∗ and P1 bundles, respectively.

Proposition 1.5. For a general rank one degeneration, the normalization Υν of the theta divisor

is isomorphic to BlΞ∩ΞbB ⊂ P ν , the theta divisor Υ ⊂ P is obtained from Υν by identifying the

proper transforms of Ξ and Ξb.

Proof. Let σ0, σ∞ be elements of H0(P ν , Lν), such that div(σ0) = B0 + p−1Ξb and div(σ∞) =

B∞ + p−1Ξ. After rescaling, we may assume, under the natural identification B0

p∼= B
p∼= B∞,

that σ0|B∞ and σ∞|B0 differ by translation by b. Then σ0 + σ∞ descends to a section of L. Since

(σ0 +σ∞)|B0 vanishes precisely on Ξ and (σ0 +σ∞)|B∞ vanishes precisely on Ξb, we conclude that for

u ∈ B \(Ξ∩Ξb), 0 6= (σ0 +σ∞)|p−1(u) ∈ H0(OP1(1)). Thus Υν := div(σ0 +σ∞) maps one-to-one to B

away from Ξ∩Ξb. On the other hand, the base locus of the pencil |Lν | is clearly p−1(Ξ∩Ξb). Thus

Υν = m[BlΞ∩ΞbB], for some integer m, as divisors in P ν . Since (σ0 + σ∞)|B0 is reduced, m = 1. �

2. Numerical calculations

The family of compactified Prym varieties defines a morphism ρ : l→ Ã5 where Ã5 is the partial

compactification of A5 parametrizing ppav (A,Θ) of dimension 5 and their rank 1 degenerations.

This space is a quasi-projective variety and is essentially the blow-up of the open set A5qA4 in the

Baily-Borel compactification A∗5 along its boundary A4 ([Igu67]). The coarse moduli space Ã5 is

the union of A5 and a divisor ∆ parametrizing rank 1 degenerations. Mumford [Mum83] computed

the class of the closure of θnull and N ′0 in Ã5 to be

[θnull] = 264λ− 32δ,(2.1)

[N ′0] = 108λ− 14δ,(2.2)

[N0] = [θnull] + 2[N ′0] = 480λ− 60δ,(2.3)
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where λ is the first Chern class of the Hodge bundle Λ and δ is the class of ∆.

Lemma 2.1. The degree of ρ∗λ is 6.

Proof. The pull-back of the Hodge bundle Λ to l fits in the exact sequence

0 −→ π∗ωT̃ /l −→ π′∗ωS̃/l −→ ρ∗Λ −→ 0,

where ωT̃ /l and ωS̃/l are the relative dualizing sheaves. Thus c1(ρ∗λ) = c1(π′∗ωS̃/l) − c1(π∗ωT̃ /l).

We directly compute that the relative dualizing sheaf ωT̃ /l = KT̃ ⊗ π∗K−1
l has self intersection

number (ωT̃ /l)
2 = 30. Applying Mumford’s relation [ACG11, Chapter 13.7] on M6, we see that

c1(π∗ωT̃ /l) = 30+42
12

= 6. Similarly, we compute c1(π′∗ωS̃/l) = 12 and therefore c1(ρ∗λ) = 6. �

Corollary 2.2. In the pencil l, there are 240 fibers with theta divisor singular at a unique two-

torsion point and 60 fibers with theta divisor singular at two points.

Proof. We directly compute l · [θnull] = l · (264λ − 32δ) = 240 and l · [N ′0] = l · (108λ − 14δ) = 60.

It follows from [SV90, Lemma B] that all these points occur with mutiplicity 1 in the intersection

l ∩N0 for a generic choice of l. �

To summarize, we have a family of (compactified) Prym varieties and theta divisors associated

to the pencil

Θ −→ A −→ l.

This family has 240 fibers where theta has a single node, 60 fibers where theta has two nodes, and

42 fibers where theta is as in Proposition 1.5. Furthermore, we have

Proposition 2.3. The total spaces A and Θ are smooth.

Proof. We show that the tangent spaces to A and Θ have dimension 6 and 5 respectively everywhere.

Let p ∈ At, resp. p ∈ Θt, be a point of the fiber of A → l, resp. Θ → l, at t ∈ l. If At is smooth

at p, it follows from [ITW, Proposition 3.1] that, for a generic choice of l, both A and Θ (when

p ∈ Θ) are smooth at p. Assume therefore that At is singular at p. In such a case, it follows from

the description of Θt in Proposition 1.5 that, if p ∈ Θ, Θt is also singular at p. By the description

of At in Section 1.2, resp. Θt in Proposition 1.5, the tangent space to At at p, resp. Θt at p, has

dimension 6, resp. 5. We therefore need to show that the tangent space to the total space A, resp.

Θ, is equal to the tangent space of the fiber. The tangent space to the fiber is the kernel of the

differential of the map A→ l, resp. Θ→ l. Since the map Θ→ l is the scheme-theoretic restriction
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of the map A → l, we need to show that the differential of the map A → l is 0 at p to obtain the

smoothness of A at p and also of Θ at p when p ∈ Θ.

The total space A is the inverse image of the generic line l ⊂ |H| in the relative Prym variety

PH → |H| constructed in [AFS15]. By [AFS15, Prop. 3.10, Prop. 4.4, Prop. 5.1], the singular

locus of PH lies above a union of lines or points mi in |H|. We can therefore assume that l does not

meet any of the mi. Furthermore, since all pull-backs are scheme-theoretic and all fibers reduced,

the restriction of the differential of PH → |H| to A is the differential of the projection A→ l. The

rank of the differential of PH → |H| is not maximal at p, i.e., its image is a proper subspace of the

tangent space of |H| at t. Since l is generic, the tangent space of l at t intersects this image in 0.

Therefore the differential of A→ l is 0 at p. �

3. General facts about the Clemens-Schmid exact sequence

We briefly review some general facts about the Clemens-Schmid exact sequence. We will apply the

general theory in this section to compute the local monodromy representations near the degenerate

theta divisors in the pencil.

3.1. The Clemens-schmid exact sequence. Let

Y0
//

��

Y

��

Yt
itoo

��

{0} // V {t}oo

be a one-parameter semistable degeneration (i.e., the total space Y is smooth and the central fiber

Y0 is reduced with simple normal crossing support) over a small disk V , and 0 6= t ∈ ∂V a general

point. The total space Y deformation retracts to Y0. For such a family, the image of the monodromy

representation

ρ : π1(V \ {0}, t) −→ GL(H•(Yt))

is generated by a unipotent operator T : H•(Yt) → H•(Yt), i.e. (T − Id)k = 0 for some integer k

[Lan73]. Thus

N := log T := (T − Id)− 1

2
(T − Id)2 +

1

3
(T − Id)3 + ...

is nilpotent.

It follows from the work of Clemens-Schmid [Cle77], [Sch73] and Steenbrink [Ste76] that one can

define mixed Hodge structures on H•(Yt), H
•(Y) and H•(Y) such that we have an exact sequence
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of mixed Hodge structures (with suitable weight shifts)

// H2n+2−m(Y)
α // Hm(Y)

i∗t // Hm(Yt)lim

N // Hm(Yt)lim

β
// H2n−m(Y) //(3.1)

where n is the relative dimension of the fibration, α is the composition

H2n+2−m(Y)
PD // Hm(Y , ∂Y) // Hm(Y),(3.2)

and β is the composition

Hm(Yt)
PD // H2n−m(Yt)

it∗ // H2n−m(Y).(3.3)

Here ‘PD’ stands for Poincaré duality. The mixed Hodge structure on H•(Yt) is not the usual pure

Hodge structure but rather the ‘limit mixed Hodge structure’ (c.f. Section 3.3). We use the notation

H•(Yt)lim to distinguish it from the pure Hodge structure.

3.2. The weight filtrations on Hm(Y) and Hm(Y). Denote

Hm := Hm(Y) ∼= Hm(Y0),

Hm := Hm(Y) ∼= Hm(Y0).

Recall from [Mor84, p. 103] that there is a Mayer-Vietoris type spectral sequence abutting to

H•(Y0) with E1 term

Ep,q
1 = Hq(Y

[p]
0 ).

Here Y
[p]

0 is the disjoint union of the codimension p strata of Y0, i.e.,

Y
[p]

0 :=
∐
i0,...,ip

Zi0 ∩ . . . ∩ Zip

where the Zij are distinct irreducible components of Y0.

The differential d1

Ep,q
1

∼=
��

d1 // Ep+1,q
1

∼=
��

Hq(Y
[p]

0 )
d1 // Hq(Y

[p+1]
0 )

is the alternating sum of the restriction maps on all the irreducible components. By [Mor84, p.

103] this sequence degenerates at E2.

The weight filtration is given by

WkH
m := ⊕p+q=m, q≤kEp,q

∞ = ⊕p+q=m, q≤kEp,q
2 .
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Therefore the weights on Hm go from 0 to m and

GrkH
m ∼= Em−k,k

2 =
Ker(d1 : Hk(Y

[m−k]
0 )→ Hk(Y

[m−k+1]
0 )

Im(d1 : Hk(Y
[m−k−1]

0 )→ Hk(Y
[m−k]

0 )
.

There is also a weight filtration on Hm:

W−kHm := (Wk−1H
m)⊥

under the perfect pairing between Hm and Hm. With this definition,

Gr−kHm
∼= (GrkH

m)∨.

3.3. The limit mixed Hodge structure Hm(Yt)lim. The weight filtration associated to the nilpo-

tent operator N has the following form,

0 ⊂ W0 ⊂ W1 ⊂ ... ⊂ W2m = Hm(Yt).

We refer to [Mor84, pp. 106-109] for the precise definition of the monodromy weight filtration and

only summarize the properties we need here.

In the applications in this paper, the nilpotent operator N satisfies

N2 = 0.

Thus the monodromy weight filtration satisfies the following

Wk = 0 for k ≤ m− 2,

Wm−1 = Im(N),

Wm = Ker(N),

Wk = Hm(Yt) for k ≥ m+ 1.

Let Km
t := Ker(N) ⊂ Hm(Yt) be the monodromy invariant subspace. It inherits an induced

weight filtration from Hm(Yt). The graded pieces of Hm(Yt)lim thus satisfy

GrmH
m(Yt)lim

∼= GrmK
m
t
∼=

Ker(N)

Im(N)
(3.4)

Grm+1H
m(Yt)lim

N∼= Grm−1H
m(Yt)lim

∼= Grm−1K
m
t
∼= Im(N).(3.5)

The weight filtrations on Hm and Km
t are related by the Clemens-Schmid exact sequence. Below

are the basic facts we will use (see [Mor84, pp. 107-109])
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(1) i∗t induces an isomorphism

GrkH
m

∼= // GrkK
m
t for k ≤ m− 1.(3.6)

(2) There is an exact sequence

0 // Grm−2K
m−2
t

// Grm−2n−2H2n+2−m
α // GrmH

m // GrmK
m
t

// 0 .(3.7)

The limit Hodge filtration on Hm(Yt)lim is given by ([Mor84], [Sch73])

F p
∞ = lim

im z→∞
exp(−zN)F p(z)(3.8)

where f : U ′ → U \ {0}, f(z) = e2πiz is the universal cover of the punctured disk and F p is the

usual Hodge filtration on Hm(Yf(z)) on the fixed underlying space Hm(Yt).

4. Local monodromy representations near N0

4.1. Local monodromy near θnull. The local monodromy representation on the cohomology of

the theta divisor near a general point (A0,Θ0) ∈ θnull is given by the classic Picard-Lefschetz

formula. Fix a point p0 ∈ l ∩ θnull and pick a small disk U ⊂ l containing p0. We have a family of

theta divisors with smooth total space ΘU (see Proposition 2.3):

Θ0
//

��

ΘU

��
p0

// U.

The local monodromy representation on the cohomology of a general fiber Θt for t ∈ U \ {p0}

ρ : π1(U \ {p0}, t) −→ GL(Hk(Θt))

is trivial when k 6= 4. When k = 4, the Picard-Lefschetz formula (see, for instance, [Voi03, p. 78])

shows that ρ(π1(U \ {p0}, t)) is generated by

TU : H4(Θt) −→ H4(Θt)

α 7→ α− 〈α, γ〉γ

where 〈, 〉 is the intersection product on H4(Θt), and γ ∈ H4(Θt) is the class of the vanishing

4-sphere with 〈γ, γ〉 = 2.

One checks immediately that

T 2
U = Id.(4.1)
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4.2. Local monodromy near N ′0. Next we fix a point p0 ∈ l ∩ N ′0 and a small disk U ⊂ l

containing p0. The central fiber Θ0 of the family ΘU has two ordinary double points x and −x.

If we make a degree two base change V → U ramified at p0:

ΘV
//

��

ΘU

��
V // U,

then blow up the two singular points of ΘV , we obtain a family

Θ̃0

��

// Θ̃V

��
p0

// V,

where the central fiber Θ̃0 = Θ′0 ∪ Q1 ∪ Q2 is reduced with simple normal crossing support. Here

Θ′0 is the blow-up of Θ0 at the two singular points and Q1
∼= Q2 are smooth quadric 4-folds. The

double loci Θ′0 ∩Q1 and Θ′0 ∩Q2 are smooth quadric 3-folds.

Since V → U is a degree 2 ramified cover, the local monodromy operator TV for the family

Θ̃V → V is equal to T 2
U ∈ GL(H4(Θt)).

Proposition 4.1. Notation as above, TV = T 2
U = Id ∈ GL(H4(Θt)).

Proof. Since the central fiber Θ̃0 = Θ′0 ∪Q1 ∪Q2 only has a double locus, we have

GrkH
4(Θt) = 0

for k 6= 3, 4, 5. Since H3(Θ′0 ∩Q1)⊕H3(Θ′0 ∩Q2)) = 0, we conclude

Gr5H
4(Θt) ∼= Gr3H

4(Θt) ∼= Gr3H
4(Θ̃0) = Im(NV ) = 0,

where NV := log TV = 0. Therefore TV = Id. �

5. Local monodromy near the boundary ∆

Near the boundary ∆, the family of Prym varieties AU → U parametrized by a small disk

U ⊂ l has smooth general fiber (At,Θt) and central fiber (P,Υ) as in Proposition 1.5. We use the

Clemens-Schmid exact sequence to compute the monodromy action.
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5.1. The semi-stable reduction. Making a ramified base change V → U of order 2 of the family

AV //

��

AU

��
V // U,

and then blowing up the singular locus P \Gpq of AV , we obtain a family ÃV → V .

Proposition 5.1. The central fiber Ã0 of the family (ÃV , Θ̃V )→ V is the union of two copies P ν
1

and P ν
2 of P ν , with B0 ⊂ P ν

1 identified with B∞ ⊂ P ν
2 via the identity map and B∞ ⊂ P ν

1 identified

with B0 ⊂ P ν
2 via translation by b. The intersection P ν

1 ∩ P ν
2 = B0∞ qB∞0 is the disjoint union of

two copies of B.

Proof. Clearly the main component P ν
1
∼= P ν . We will show the exceptional divisor P ν

2 is also

isomorphic to P ν . In the semistable family ÃV → V , we have

N∨B0∞/P ν1
∼= NB0∞/P ν2

.

Therefore P ν
2 contains the total space of OB(Ξb − Ξ) ∼= OB0(−B0) ∼= NB0∞|P ν2 = P ν

2 \ B∞0 as a

Zariski open subset. Apply the same argument to B∞0, we see that P ν
2 also contains the total space

of OB(Ξ−Ξb) ∼= NB∞0|P ν2 = P ν
2 \B0∞ as an open subset. We conclude that P ν

2
∼= PB(OB(Ξ−Ξb)⊕

OB(Ξb − Ξ)) ∼= P ν . The statement about the gluing follows from the fact that after contracting

P ν
2 , the infinity and zero sections of P ν

1 are identified via translation by b. �

Corollary 5.2. The central fiber Θ̃0 of the family (ÃV , Θ̃V ) → V is the union Υν ∪ QΞ, where

Υν = BlΞ∩ΞbB and the conic bundle QΞ is the restriction of P ν
2 → B to Ξ. The intersection

Υν ∩QΞ = Ξ0∞ q Ξ∞0 is the disjoint union of two copies of Ξ.

Proof. Immediate. �

5.2. The weight filtration on Hm(Ã0). By Section 3.2 and Proposition 5.1, the weight filtration

on Hm(Ã0) only has the following possibly nontrivial graded pieces

GrmH
m(Ã0) = Ker(d1 : Hm(P ν

1 )⊕Hm(P ν
2 ) −→ Hm(B0∞)⊕Hm(B∞0))

and

Grm−1H
m(Ã0) = Coker(d1 : Hm−1(P ν

1 )⊕Hm−1(P ν
2 ) −→ Hm−1(B0∞)⊕Hm−1(B∞0))
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Proposition 5.3. We have

GrmH
m(Ã0) ∼= Hm−2(B)⊕Hm(P ν),

and

Grm−1H
m(Ã0) ∼= Hm−1(B).

Proof. By Remark 1.4, P ν → B is a topologically trivial P1 bundle. The statements then follow

easily from Proposition 5.1 and the Künneth formula. �

Corollary 5.4. The monodromy weight filtration on Hm(At)lim satisfies

Grm+1H
m(At)lim

∼= Grm−1H
m(At)lim

∼= Hm−1(B).

Furthermore, dimCGrmH
m(At)lim =

(
10
m

)
− 2
(

8
m−1

)
.

Proof. By (3.5) and (3.6), Grm+1H
m(At)lim

∼= Grm−1H
m(At)lim

∼= Grm−1H
m(Ã0) which is isomor-

phic to Hm−1(B) by Proposition 5.3. The second part follows from Sequence (3.7). �

5.3. The weight filtration on Hm(Θ̃0). By Section 3.2 and Proposition 5.2, the weight filtration

on Hm(Θ̃0) only has the following possibly nontrivial graded pieces

GrmH
m(Θ̃0) = Ker(d1 : Hm(Υν)⊕Hm(QΞ) −→ Hm(Ξ0∞)⊕Hm(Ξ∞0))

and

Grm−1H
m(Θ̃0) = Coker(d1 : Hm−1(Υν)⊕Hm−1(QΞ) −→ Hm−1(Ξ0∞)⊕Hm−1(Ξ∞0))

Proposition 5.5. For m ≤ 4,

GrmH
m(Θ̃0) ∼= Hm(B)⊕Hm−2(Ξ ∩ Ξb)⊕Hm−2(Ξ),

and for all m,

Grm−1H
m(Θ̃0) ∼= Hm−1(Ξ).

Proof. By Corollary 5.2, Hm(Υν) ∼= Hm(B) ⊕ Hm−2(Ξ ∩ Ξb) and the restriction map Hm(Υν) →

Hm(Ξ0∞) can be identified with the map

Hm(B)⊕Hm−2(Ξ ∩ Ξb)
(j∗,i∗)−→ Hm(Ξ).

Thus the image of

Hm(Υν) −→ Hm(Ξ0∞)⊕Hm(Ξ∞0)
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is contained in the image of

Hm(QΞ) ∼= Hm(Ξ)⊕Hm−2(Ξ) −→ Hm(Ξ0∞)⊕Hm(Ξ∞0),

which is equal to the diagonal of Hm(Ξ0∞)⊕Hm(Ξ∞0). Thus

Grm−1H
m(Θ̃0) ∼= Hm−1(Ξ).

Next we compute GrmH
m(Θ̃0) ⊂ Hm(Υν) ⊕ Hm(QΞ). By the previous discussion, for any x ∈

Hm(Υν), we can find y ∈ Hm(QΞ) such that (x, y) ∈ GrmHm(Θ̃0). Thus we have an exact sequence

0 −→ Hm−2(Ξ) −→ GrmH
m(Θ̃0) −→ Hm(Υν) −→ 0

Therefore, we have a noncanonical isomorphism

GrmH
m(Θ̃0) ∼= Hm−2(Ξ)⊕Hm(Υν) ∼= Hm(B)⊕Hm−2(Ξ ∩ Ξb)⊕Hm−2(Ξ)

�

Corollary 5.6. The monodromy weight filtration on Hm(Θt)lim satisfies

Grm+1H
m(Θt)lim

∼= Grm−1H
m(Θt)lim

∼= Hm−1(Ξ).

Furthermore, dimCGrmH
m(Θt)lim = hm(Θt)− 2hm−1(Ξ).

Proof. Analogous to the proof of Corollary 5.4. �

5.4. The vanishing cocycles near the boundary. Let Z
ι→ |H| ∼= P5 be the 2-to-1 cover

ramified exactly along Γ := D+P−1
H (N0) and set X := ι−1l, V := Z \Γ. Note that Z exists since Γ

has even degree by Proposition 1.1 and Corollary 2.2. The curve X is a 2-to-1 cover of l ramified

along X ∩ Γ. After base change to X and blowing up the singular locus of each singular theta

divisor, we obtain a family (Ã, Θ̃) with general fiber (At,Θt).

Θt

it //

jt

��

Θ̃

j

��

At

��

ht // Ã

p

��
{t} // X.

The total spaces of Ã and Θ̃ are smooth and the local pictures are described in Sections 4.1, 4.2

and 5.1.
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For each si, i = 1, ..., 42, corresponding to the degeneration in Section 1 (also see Section 5.1),

choose a small disk Vi 3 si and pick a general point ti ∈ Vi. Let γi ⊂ X be a general path connecting

t with ti. The family Θ̃|∪γi deformation retracts to Θt. Thus we have induced diffeomorphisms

ψi : Θt −→ Θti .

Over each Vi we have the Clemens-Schmid exact sequences (3.1) for the degenerations of the abelian

varieties and their theta divisors

// Hm(Θ̃Vi)
i∗ti //

j∗
��

Hm(Θti)lim

Ni //

jti∗

��

Hm(Θti)lim

βi
//

jti∗

��

H10−m(Θ̃Vi)

j∗
��

//

// Hm+2(ÃVi)
// Hm+2(Ati)lim

// Hm+2(Ati)lim
// H10−m(ÃVi)

// .

(5.1)

Here j∗ : Hm(Θ̃Vi) → Hm+2(ÃVi) is defined to be the transpose of j∗ : H10−m
c (ÃVi) → H10−m

c (Θ̃Vi)

under Poincaré duality and is a morphism of mixed Hodge structures [ITW, ??].

Denote Vm
i := ψ∗i Ker βi = ψ∗i Im(Ni) = ψ∗iGrm−1H

m(Θti)lim ⊂ Hm(Θt)lim.

Proposition 5.7. The space Vi is the space of ‘local vanishing m-cocycles’, i.e., cohomology classes

whose Poincaré dual vanishes in ΘVi .

Proof. This follows immediately from the definition of βi in (3.3). �

By Corollary 5.6, we have

Im(Ni) = Grm−1H
m(Θti)lim

i∗ti∼= Grm−1H
m(Θ̃Vi)

∼= Hm−1(Ξ).

When m = 4, we can further rewrite the above isomorphisms as

Gr3H
4(Θti)lim

∼= H3(Ξ) ∼= H3(B)⊕H′i ∼= j∗tiGr3H
4(Ati)lim ⊕H′i,(5.2)

where H′i ⊂ H3(Ξ) is the primal cohomology of Ξ in B, which is 10-dimensional. Let Hi ⊂ V4
i ⊂

H4(Θt) be the image of H′i under the composition

H3(B)⊕H′i ∼= Gr3H
4(Θti)lim ⊂ H4(Θti)lim

ψ∗i−→ H4(Θt).

6. Global monodromy

Let Hm(Θt)var := Ker(it∗ : Hm(Θt) → Hm+2(Θ̃)) and Hm(At)var := Ker(ht∗ : Hm(At) →

Hm+2(Ã)) be the variable cohomology of Θt in Θ̃ and At in Ã, respectively.
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6.1. The primal cohomology and the variable cohomology. The next four propositions de-

scribe the variable middle cohomology H4(Θt)var and its relation with the primal cohomology Kt.

Proposition 6.1. The variable cohomology Hm(Θt)var is equal to
∑42

i=1 Vm
i .

Proof. By Equation (4.1) and Proposition 4.1, when the theta divisor has one or two nodes, the

local monodromy representation is trivial after we make a base change of order 2. Thus from the

Clemens-Schmid sequence, there is no ’local vanishing cocycles’ near these singular theta divisors.

Therefore the space of vanishing cocycles is generated by the ‘local vanishing cocyles’ near Θsi ,

i = 1, ..., 42. �

Proposition 6.2. The pull-back maps i∗t : H4(Θ̃)→ H4(Θt) and (j ◦ it)∗ : H4(Ã)→ H4(Θt) have

the same image. As a consequence, H4(Θt)var = (Ker(j ◦ it)∗ : H4(Θt)→ H8(Ã)).

Proof. Choose another general point u 6= t in X. Write W := X \ {u}, and (ÃW , Θ̃W ) :=

(p−1(W ), (p ◦ j)−1(W )).

Consider the Gysin sequence

// H4(Ã) //

j∗

��

H4(ÃW )

j∗W
��

Res // H3(Au)
hu∗ //

∼= j∗u
��

H5(Ã)

j∗

��

//

// H4(Θ̃) // H4(Θ̃W )
Res // H3(Θu)

iu∗ // H5(Θ̃) //

where Res denotes Griffiths’ residue map. We claim that j∗W : Hk(ÃW ) → Hk(Θ̃W ) is an isomor-

phism for k ≤ 4 and injective for k = 5 (this is the Lefschetz hyperplane theorem in a slightly

modified setting). To this end, apply the long exact sequence of singular cohomology of the pair

(ÃW , Θ̃W ). The relative cohomology Hk(ÃW , Θ̃W ) is isomorphic to H12−k(ÃW \ Θ̃W ) [Voi03, p. 33].

Note that Θ̃ is p-ample, and therefore Θ̃ + kAu is ample in Ã for some k > 0. We conclude that

the open set ÃW \ Θ̃W = Ã \ (Θ̃ ∪ Au) is affine, thus has the homotopy type of a CW-complex of

real dimension 6. Therefore H12−k(ÃW \ Θ̃W ) = 0 for k ≤ 6, which implies the claim.

By Proposition 6.1 and Corollaries 5.4 and 5.6, H3(Au)var := Ker(hu∗) ∼= H3(Θu)var, thus by

the Gysin sequence and the fact that j∗W is an isomorphism when k = 4, the restriction map

H4(Θ̃)→ H4(Θ̃W ) has the same image as the composition H4(Ã)→ H4(ÃW )
j∗W→ H4(Θ̃W ). Taking

the restriction map from H4(Θ̃W ) to H4(Θt), the first statement follows immediately.

The second statement follows from the fact that Gysin push-forward is the transpose of the

pull-back map. �
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Proposition 6.3. The primal cohomology Kt := Ker(jt∗ : H4(Θt) → H6(At)) is contained in the

variable cohomology H4(Θt)var.

Proof. By Proposition 6.2, we have H4(Θt)var = (Ker(j ◦ it)∗ : H4(Θt) → H8(Ã)), which implies

Kt ⊂ H4(Θt)var. �

Proposition 6.4. The primal cohomology Kt is equal to
∑42

i=1 Hi.

Proof. The morphism j∗ : H4(Θ̃Vi) → H6(ÃVi) in (5.1) is a morphism of mixed Hodge structures.

The induced morphism

Gr3H
4(Θ̃Vi)

//

∼=
��

Gr5H
6(ÃVi)

∼=
��

H3(Ξ) // H5(B)

is Gysin pushforward. By construction, H′ ⊂ Gr3H
4(Θ̃Vi) ⊂ H4(Θ̃Vi) is contained in Ker(j∗). Thus

by sequence (5.1), i∗tiH
′ ⊂ Ker(jti∗ : H4(Θti) → H6(Ati)), or equivalently, Hi ⊂ Kt. It remains

to show Kt ⊂
∑42

i=1 Hi. To this end, pick any α ∈ Kt, by Proposition 6.1 and Equation (5.2),

we can write α =
∑42

i=1(xi + yi), where xi ∈ j∗tH
4(At) and yi ∈ Hi ⊂ Kt. From the direct sum

decomposition

H4(Θt) = j∗tH
4(At)⊕Kt,

we conclude
∑42

i=1 xi = 0 and α ∈
∑42

i=1 Hi. �

6.2. The proof of the main theorem. From now on we will abuse notation by considering Ni in

(5.1) as an endomorphism on H4(Θt) via ψ∗i and then restricting it to Kt. With the new notation,

Ni : Kt → Kt satisfies

N2
i = 0,(6.1)

Ni(Kt) = Hi.(6.2)

Since the monodromy operator preserves the intersection product 〈, 〉 on Kt, Ni also satisfies the

equality

〈Ni(x), y〉+ 〈x,Ni(y)〉 = 0(6.3)

for any x, y ∈ Kt.

Each Ni induces a ‘limit mixed Hodge structure’ Ki
lim on Kt as in Section 3.3.
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Lemma 6.5. We have ∩42
i=1 Ker(Ni) = 0.

Proof. Equation (6.3) implies that 〈Ni(x), y〉 = 0 for any x ∈ Kt and y ∈ Ker(Ni). Thus

Ker(Ni) ⊥ Hi. Any element in ∩42
i=1 Ker(Ni) is therefore perpendicular to all Hi, i = 1, ..., 42.

The statement now follows immediately from Proposition 6.4 and the fact that the intersection

product is nondegenerate. �

Lemma 6.6. With the notation of Section 5.4, all Hi, i = 1, ..., 42 are conjugate under the mon-

odromy representation

ρ : π1(V , t) −→ Aut(Kt, 〈, 〉).

Proof. For any i 6= j, choose a path δ′ in l connecting ti and tj. By perturbing δ′, we can assume δ′

does not intersect the inverse image of N0. We can lift δ′ to a path δ ⊂ X ∩ V as a smooth section

over δ′ in the tubular neighborhood of the smooth locus D0 of D in V . A C∞-trivialization of the

total space of the theta divisors over δ induces a map on cohomology, which sends H′i ⊂ H4(Θti) to

H′j ⊂ H4(Θtj). This precisely means that under the monodromy action, ρ(γi · δ · γ−1
j ) sends Hi to

Hj. �

Proof. of Theorem 0.1. It suffices to show that for very general t ∈ X ∩ V , Kt is an irreducible

Hodge structure. Suppose 0 $ Ft ⊂ Kt is a rational Hodge substructure, then Ft is an invariant

subspace under the action of the Mumford-Tate group MT (Kt). For very general t, MT (Kt)

contains the identity component IV of the algebraic monodromy group GV , i.e., the Zariski

closure in GL(Kt) of the monodromy group ρ(π1(V)), (c.f. [Sch11, Prop. 6]), thus by further

passing to a finite étale cover V ′ of V , we can assume Ft is invariant under ρ(π1(V ′)). Therefore, we

obtain a local subsystem FV ′ ⊂ KV ′ over V ′.

Note that

IV ′ = IV ,

since IV ′ ⊂ IV is of finite index and IV is connected. Moreover, Ti = exp(Ni) ∈ IV = IV ′ . (Because

Ti is in the image of the exponential map exp : gl(Kt)→ GL(Kt).) We conclude that Ft is invariant

under Ti and therefore Ni. Each Ni then induces a ‘limit mixed Hodge structure’ Filim on Ft.

By Lemma 6.5, for any 0 6= x ∈ Ft, x /∈ Ker(Ni) for some i, thus 0 6= Ni(x) ∈ Ft ∩ Hi =

Ft ∩W3Ki
lim = W3Filim. Since Hi = W3Ki

lim is an irreducible pure Hodge structure (follows from

the main result of [IS95]), we conclude Hi ⊂ Ft. By Lemma 6.6, the Hi are conjugate under the

monodrmy group π1(V), thus Hi ⊂ Ft for all i and, by Proposition 6.4, Ft = Kt. �
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