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Abstract 12 

What happens to memories as we forget?  They might gradually lose fidelity, lose their 13 

associations (and thus be retrieved in response to the incorrect cues), or be completely 14 

lost.  Typical long-term memory studies assess memory as a binary outcome 15 

(correct/incorrect), and cannot distinguish these different kinds of forgetting.  Here we 16 

assess long-term memory for scalar information, thus allowing us to quantify how 17 

different sources of error diminish as we learn, and accumulate as we forget.  We trained 18 

subjects on visual and verbal continuous quantities (the locations of objects and the 19 

distances between major cities, respectively), tested subjects after extended delays, and 20 

estimated whether recall errors arose due to imprecise estimates, misassociations, or 21 

complete forgetting.  Although subjects quickly formed precise memories and retained 22 

them for a long time, they were slow to learn correct associations, and quick to forget 23 

them. These results suggest that long-term recall is especially limited in its ability to form 24 

and retain associations. 25 

 26 

Keywords: Visual memory, Long-term memory, Associative memory 27 

  28 
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What happens to memories as we forget? If, for instance, you return from a trip and try to 29 

remember where you left your car keys, there are different ways your memory of their 30 

location could have deteriorated. You may misremember the location of the keys by 31 

several feet (imprecise recall of the correct location). Perhaps you will look for your car 32 

keys in the place where you left your umbrella (associate objects with the incorrect 33 

locations). Or maybe you will completely forget where you left your keys, and randomly 34 

guess where they might be. How much do imprecise recall, misassociations, and 35 

altogether losing locations contribute to memory errors? 36 

Most investigations of long-term memory examine recollection in an all-or-none 37 

manner: either a memory is recalled/recognized or it is not. Consequently, these studies 38 

rely on indirect measures and qualitative manipulations to estimate association fidelity 39 

and memory precision. For instance, by comparing recall for individual items with cued 40 

recall for paired associates, researchers have tried to isolate failure to recall an item from 41 

failure to correctly associate that item (Tulving & Wiseman, 1975). Similarly, others 42 

have qualitatively estimated memory precision by comparing people’s ability to 43 

distinguish categorically (e.g., two different mailboxes) and perceptually (e.g., a mailbox 44 

when it is open vs. closed) similar images (Brady, et al., 2008). Superficially, it would 45 

seem that the application of signal detection theory to recognition memory provides a 46 

framework for estimating the strength of memories via binary accuracy rates at different 47 

confidence judgments (Green & Swets, 1966; Wickelgreen & Norman, 1966). However, 48 

this “memory strength” could be interpreted either as memory precision or as association 49 

fidelity. Although these studies have provided important insights into the content and 50 

structure of memory, they can only indirectly assess how memories degrade over time by 51 
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using confidence judgments as proxies for precision or by comparing accuracy rates in 52 

qualitatively different conditions.  53 

In contrast, recent visual working memory studies have used continuous report 54 

tasks in which subjects recall the exact features of objects (e.g., color, orientation, size) to 55 

test how different types of errors affect memory. Analyses of such continuous report data 56 

via mixture models can then estimate the extent to which errors arose due to imprecise 57 

responses about the correct feature value, misassociations and random guesses (Bays & 58 

Husain, 2008; Zhang & Luck, 2008; Anderson, Vogel, & Awh, 2011; Bays, Wu, & 59 

Husain 2011; see Ma, Husain & Bays, 2014, for a review).  60 

 Despite the recent explosion of interest in continuous report tasks in visual 61 

working memory, relatively few studies have investigated how different types of errors 62 

contribute to forgetting in visual long-term memory. Brady, et al. (2013) used a 63 

continuous report task to examine the extent to which the fidelity of memories and 64 

complete forgetting affected memory, finding that the rate of random guesses increases 65 

with delays but long-term memory precision matches that of working memory when it is 66 

least precise. However, Brady, et al.’s retention intervals did not exceed about an hour, so 67 

they could not assess forgetting over longer intervals.  Moreover, they did not examine 68 

misassociations and consequently may have mischaracterized misassociations as random 69 

guesses, and underestimated how much information long-term memory retained.  70 

Here we examine the time course over which memories are acquired, gain 71 

precision, and form associations during training, and how these memories then 72 

deteriorate over time.  We asked subjects to learn and later recall the locations of objects 73 

(Experiments 1, 2, 3) or the distances between cities (Experiment 4). We then used a 74 
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mixture model to estimate the precision of their memories, as well as the proportion of 75 

their responses that reflected imprecise reports of the correct item, imprecise reports of 76 

one of the other items (a misassociation), or a random guess. 77 

 78 

Experiments 1 & 2 79 

To assess how memories formed over the course of learning and were lost over time, we 80 

used a cued recall task to train subjects on the locations of objects until they reached a 81 

performance criterion (Experiment 1) and test them after delays up to one week 82 

(Experiment 2). On both training and testing trials, subjects recalled the location of cued 83 

objects, but they received the correct location as feedback only on training trials. 84 

 85 

Methods 86 

Subjects. 40 subjects from the Amazon Mechanical Turk marketplace participated in 87 

Experiment 1. Because Experiment 2 required subjects to participate in 3 sessions 88 

spanning a week, we recruited 35 members of the UCSD Psychology Department’s 89 

online subject pool. In both experiments subjects received a flat payment as well as a 90 

bonus based on their performance.  91 

 92 

Design. Experiment 1 focused on the acquisition of memories.  Each subject learned the 93 

locations of ten objects using testing with feedback over multiple blocks.  Each subject 94 

proceeded through as many of these training blocks as required to recall the locations of 95 

all the objects in a block sufficiently precisely (see Procedure). The order of the ten 96 

objects was randomized within each block.  97 
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Experiment 2 focused on the forgetting of memories.  The training session was 98 

similar to Experiment 1 with the exception that objects dropped out when they were 99 

recalled correctly three blocks in a row. Once subjects learned the locations of all the 100 

objects to sufficient precision, they performed a distractor task (12 addition and 101 

subtraction problems, each containing two operands that were whole numbers between 0 102 

and 40), and were then tested on the object locations. Subjects then returned for two 103 

testing sessions after delays of one day (test day-1) and seven days (test day-7).  104 

 105 

 106 

 107 

 108 

Figure 1.  The objects used in Experiments 1, 2 and 3 and an example trial for 109 

Experiments 1 and 2. (A) The ten objects used in the visuospatial memory task:  boot, die, 110 

hat, chair, camera, fan, clock, key, bowl and comb (in the experiment objects were 111 

presented in full color). In each trial, (B) subjects were cued to recall the location of the 112 

item indicated in the top-left (here: a die). (C) Subjects then clicked a location to respond 113 

and a red crosshair marked their selection. (D) During training trials, subjects were then 114 

C D B 

A 
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shown the item in its correct location for one second (this feedback was omitted during 115 

test trials). 116 

 117 

Stimuli. In both experiments subjects trained on the locations of ten everyday objects 118 

(Figure 1A). The cover story for the task was that the subject had lost several of their 119 

personal belongings in the ocean and had to remember where those objects were 120 

underwater. Objects were presented in a light blue circle with an island in the center that 121 

acted as a central location landmark and enhanced engagement with the cover story (see 122 

Figure 1B). Apart from their role in the cover story, the color of the background and the 123 

island in the center were unrelated to the task.  124 

Because our focus was on learning over many repeated presentations under free-125 

viewing, we did not ask subjects to maintain fixation. Additionally, because each 126 

participant performed the study in their own web browser, screen size and viewing 127 

distance were not explicitly controlled but subjects were instructed to adjust their browser 128 

window size such that the entire experiment display would fit on the screen.  129 

Each object was represented by a 60 × 60 px image of an everyday object (drawn 130 

from a stock image website: www.freeimages.com). We selected ten perceptually and 131 

semantically distinct objects to minimize their confusability, and every subject saw those 132 

same ten objects. The circle containing the objects had a radius of 450 px and the island 133 

was 50 × 50 px.  134 

For each subject, we generated the locations of objects from a uniform 135 

distribution across the circle (with the constraint that they did not overlap with the island).  136 

 137 
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Procedure. Subjects were trained and then tested on the locations of objects using a cued 138 

recall task (Figure 1B). During the training phase of both experiments, on each trial 139 

subjects saw an image of an object and reported that object’s location by clicking within 140 

the display circle. After the response, a 50 × 50 px red crosshair appeared at the selected 141 

location, and an image of the object appeared at the correct location. If the response was 142 

within 50 px of the correct location (such that the crosshair overlapped with the object 143 

image), the response was considered correct.  144 

In the training experiment (Experiment 1), a subject completed the training phase 145 

(and thus the experiment) once she recalled all the objects correctly in one block.  146 

In the training phase of the retention experiment (Experiment 2), an object was 147 

“dropped” out of the training loop after it was correctly recalled in three consecutive 148 

blocks, and the training phase was complete once all objects had been dropped.  149 

Trials in the testing phase of Experiment 2 were the same as training trials, but 150 

lacked corrective feedback (instead the subject’s response was indicated by a red 151 

crosshair onscreen for an extra second). 152 

 153 

Results 154 

 155 
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   156 

Figure 2. Learning curves from Experiment 1 and the forgetting curve from Experiment 2. 157 

Y-axis is the across-subject mean (±1 SEM across-subjects) of the root mean squared 158 

error (Euclidean pixel distance between the recalled and the correct object location). 159 

Training performance from Experiment 1 is shown on the left (in Blocks) and testing 160 

performance from Experiment 2 on the right (in Days). Training performance is shown 161 

relative to the beginning of training (Blocks 0 to 20) and relative to the end of training 162 

(Blocks -2 to 0) to illustrate criterion performance. Root mean square error (RMSE) 163 

decreased during training and increased during testing, indicating the subjects learned and 164 

forgot the locations of objects.  165 

 166 
 167 

Did subjects learn and forget the locations of objects? To coarsely assess learning and 168 

forgetting, we can consider the average distance between the reported and correct 169 

locations (calculated as the root mean squared error across objects; RMSE).  This coarse 170 



Fragile associations in long-term memory 10 

measure of learning shows that subjects learned the locations of objects over 171 

approximately 12.25 blocks (SEM=1.08) of training in Experiment 1 (Figure 2, Training) 172 

and forgot some, but not all, of what they learned during the 1-week retention interval in 173 

Experiment 2  (Figure 2, Testing). Because the number of blocks it took subjects to finish 174 

training varied, we examined how well subjects recalled the locations once they 175 

completed training by calculating the RMSE of each subject‘s last three blocks of 176 

training (Figure 2, Training, blocks -2—0). Performance was worse during the first 177 

testing block (Experiment 2) compared to the end of training (Experiment 1) (t(75)=6.45, 178 

p<.001), though we cannot say how much this should be attributed to rapid forgetting or 179 

subtle differences in the training protocol between the two experiments. While this coarse 180 

error measure shows that subjects are indeed learning and forgetting something about the 181 

locations of objects, it cannot discern whether errors are attributable to imprecision, 182 

misassociations, or complete forgetting. 183 

 184 

Measuring imprecision, misassociations, and random guessing 185 

 186 
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  187 

Figure 3. Schematic of the types of errors we aim to characterize with the mixture model: 188 
imprecise report of the target, misassociation, or random guess (illustrated with just two 189 
objects that are displayed disproportionately large for visual clarity). The top-row shows 190 
the true locations of the objects and the bottom-row shows possible types of responses. 191 
Grey dots represent the locations of the target object (the chair) and a possible non-target 192 
object (the boot). The grey X indicates the center of the environment. We use the mixture 193 
model to estimate the probability of each type of error, denoted here by Pr(Target), 194 
Pr(Misassociation) and Pr(Random). If there are multiple non-target objects, 195 
Pr(Misassociation) is divided evenly among them. Under our error model, target reports 196 
and misassociations are recalled with isotropic, two-dimensional Gaussian noise around 197 
the selected location (small, grey dashed circles). The model treats random guess 198 
responses as samples from a broad, truncated, two-dimensional Gaussian distribution 199 
around the display center (large, dashed circle). 200 
 201 
 202 

To characterize the contributions of imprecision, misassociation, and complete forgetting 203 

of memories during learning and forgetting, we analyzed subjects’ responses with a 204 

mixture model, similar to that used in Bays, et al. (2011) (Figure 3; see Appendix A, 205 

Model overview, for technical details). Under this model, each response is either an 206 
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imprecise report of the target item, an imprecise report of one of the other items (a 207 

misassociation), or a random guess. A report of the target object location or a 208 

misassociated location is assumed to be distributed as an isotropic two-dimensional 209 

Gaussian centered on an object’s location. Random guesses are assumed to be samples 210 

from a truncated two-dimensional Gaussian distribution centered in the environment and 211 

bound by the environment’s edge*. The model estimates a single parameter for the 212 

precision of location memories; thus it assumes that correctly associated responses and 213 

responses when objects are associated with the wrong location have the same precision 214 

around their latent location†. The model also estimates the mixture weights of each type 215 

of response, corresponding to the probabilities that subjects report the location of the 216 

target item, make a misassociation, and randomly guess. Thus, by analyzing responses 217 

via this mixture model, we can estimate the precision of location memory, the probability 218 

of misassociations, and the probability of complete forgetting (random guessing). We fit 219 

the model in the native coordinate space rather than to the distribution of response errors 220 

(as in Zhang & Luck, 2008), though our results do not depend on this distinction. 221 

 In several of our analyses, we report the posterior distributions of the parameters 222 

estimated by the model in the form of 95% Posterior Quantile Intervals (95% PQI). For 223 

further explanation of 95% Posterior Quantile Intervals and how we report Bayesian 224 

statistics, see Appendix C, Bayesian statistics reports. 225 

                                                             
* Although we did not use truncated normal distributions to model target or misassociated 
responses due to computational efficiency, the small standard deviation of location 
memories should result in a negligible portion of the probability density extending 
outside of the environment, thus making the truncation correction unnecessary. 
† It is possible that locations associated to incorrect objects would be remembered with 
different levels of precision. However, we assume that locations and associations are 
stored and decay separately such that whether a location is correctly associated with an 
object will be independent of its precision. 
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 227 

 228 

  229 

Figure 4. Estimated imprecision, misassociation and random guessing for Experiments 1 230 

and 2. (A) The probability of selecting the target objects (dotted lines and squares), 231 

B 

A 
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misassociation (associating an object with the wrong location; dashed lines and 232 

diamonds) and randomly guessing (solid lines and dots) during the training blocks in 233 

Experiment 1, and testing blocks in Experiment 2. In the training blocks, the points show 234 

across-subject estimates of the different response types and the lines show exponential 235 

fits to those estimates. (B) The estimated imprecision (standard deviation) of remembered 236 

locations. Consistent with subjects’ RMSE, the imprecision of locations, the probability 237 

of making misassociations and the rate of random guessing decreased during training and 238 

increased during testing. All error bars indicate posterior SD. 239 

 240 
 241 

 Target Misassociation Random guess SD 

Initial (𝑨)  .07(.03–.11) .20(.12–.28) .82(.74–.90) 1116.2(78.2–170.9) 

Asymptote (𝑩)  .90(.87–.93) .07(.06–.09) .04(.01–.06) 29.2(28.4–30.0) 

Slope (𝛕)  2.3(1.7–3.0) 1.7(.49–3.0) 1.9(1.3–2.7) .72(.50–1.06) 

Table 1. Mean exponential fit parameters. SD indicates standard deviation. We fit the 242 

parameters using the exponential decay function 𝐵 + 𝐴 − 𝐵 𝑒
!!
! . 𝐴 and 𝐵 determine the 243 

initial and asymptotic values of the function and 𝜏  is the time constant (exponential slope) 244 

and t is time. Numbers in parentheses indicate the 95% PQI. 245 

 246 
 247 

How did the sources of error change during learning? The imprecision of location 248 

memories, the probability of making a misassociation, and the probability of random 249 

guessing all decreased over the course of training (Figure 4, Training).  To assess whether 250 

some aspects of memories were more quickly acquired, we quantified the speed with 251 
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which these sources of error changed during learning by fitting exponential decay 252 

functions of the form 𝐵 + 𝐴 − 𝐵 𝑒
!!
!   to each parameter (Table 1).  A and B indicate the 253 

initial and asymptotic values of the function (such that when A is greater than B the 254 

function will decrease over time), τ is a “time constant” and t is the block number. A 255 

larger time constant of the exponential decay function indicates a slower rate of change in 256 

a given parameter, and thus slower acquisition of this facet of memory during learning.  257 

To estimate these parameters across subjects, we used a hierarchical model that 258 

assumes that the parameters for each subject are normally distributed around the 259 

population value, thus allowing us to efficiently pool estimates across subjects by using 260 

the statistics of the group to compensate for uncertainty in any one subject’s parameters. 261 

We fit the parameters using a Metropolis-Hastings algorithm (Metropolis, et al., 1953).  262 

The time constant for the increasing rate of correct associations (2.3, 95% PQI = 263 

1.7–3.0) was considerably larger than that for the decreasing imprecision of locations (.72, 264 

95% PQI = .50–1.06; 95% PQI on the difference between P(target) and SD time 265 

constants=.87–2.4), indicating that subjects learned to associate objects to locations more 266 

slowly than they learned to accurately recall the exact positions of those locations. This 267 

pattern indicates that precise location memories are acquired quickly, but it takes some 268 

time to correctly associate them with their respective targets. 269 

 270 

How did the sources of error change during forgetting? Although all sources of error 271 

increased during forgetting (Figure 4), misassociations, unlike noise and random guessing, 272 

increased abruptly after the first day. During testing, the standard deviation of location 273 

memories steadily increased from 28 to 38 to 48 pixels. The probability of random 274 
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guessing remained constant over the first two days (95% PQI on the difference between: 275 

test day-0 and test day-1 =-.076–.032) and then increased somewhat by the final day of 276 

testing (95% PQI on the difference between: test day-0 and test day-7 =-.11–.004; test 277 

day-1 and test day-7=-.10–.03). In contrast, in the immediate post-training test, subjects 278 

made almost no misassociation errors (1.6%), but at the 1-day retention interval these 279 

jumped to 11%, and by day 7 had only increased slightly to 14% (95% PQI on the 280 

difference between: test day-0 and test day-1 = .04–.14; test day-1 and test day-7 = -.10–281 

.03). When we directly compared changes in the rates of misassociation and random 282 

guessing, the probability of misassociations trended towards increasing more from test 283 

day-0 to test day-1 than the number of random guess (95% PQI on the difference 284 

between: misassociations day-0 and day-1 and random guesses test day-0 and test day-1 285 

= -.014–.15), further suggesting that misassociations were exceptionally fragile early on 286 

during forgetting. While location memories steadily became less precise from the end of 287 

training and gradually became irretrievable, memories of associations were preserved in 288 

the immediate post-training test but deteriorated sharply after a single day.  289 

 290 
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 291 

Figure 5. Learning curves from Experiment 1 and the forgetting curve from Experiment 2 292 

with errors partitioned based on their estimated source. The black line indicates subjects’ 293 

raw root mean square error (RMSE) (Identical to Figure 2). Shading indicates the 294 

estimated errors due to noise from recalled locations, misassociations and random 295 

guessing. Decreasing errors due to random guessing characterized learning while 296 

increasing errors due to misassociation drove forgetting.  297 

 298 
 299 

How did errors contribute to performance during learning and forgetting? Based on 300 

the estimated probabilities of random guessing and misassociations, and the imprecision 301 

of location memories, we can infer how much each of these sources of error contributes 302 

to the overall RMSE at different points in time. To do so we use maximum likelihood 303 

estimation (MLE) to classify responses as noisy correct responses, noisy misassociations 304 

or random guesses. We then calculate the model’s expected RMSE for each type of error 305 
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given the parameter estimates (Figure 5).  Specifically, for each response we calculated 306 

the error due to precision as the estimated standard deviation of location memories, the 307 

error due to misassociations as the distance between the target location and the location 308 

of the misassociated item (if applicable), and the error due to random guessing as the 309 

distance between the target location and the center of the environment (if applicable); we 310 

then aggregated these across items and subjects. The bulk of error reduction during 311 

learning arises from decreasing rates of random guessing as people learn the locations of 312 

objects, but the increased error during forgetting seems to arise from increasing 313 

misassociations as people retain the locations, but fail to map them onto the correct 314 

objects. 315 

 316 

Experiment 3 317 

In Experiments 1 and 2, we found that the precision of locations, and the ability to 318 

retrieve and correctly associate locations improved during learning and deteriorated 319 

during forgetting. Although all sources of error decreased with training and increased 320 

with forgetting, memories for associations were exceptionally unstable and contributed 321 

disproportionately to overall error during learning and especially forgetting.  322 

One shortcoming of the cued recall task we used in Experiments 1 & 2 is that it 323 

can only reveal latent knowledge of locations that subjects have associated (either 324 

correctly or as an incorrect misassociation) with a cue. If a subject learned a location, but 325 

failed to match it with any of the potential retrieval cues, they may never produce that 326 

location in a cued response.  Consequently, this latent knowledge might not be detectable, 327 

even in a model that can detect misassociations.   328 
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In Experiment 3 we aimed to directly measure knowledge of locations by asking 329 

subjects to report the locations in a two-step procedure: first in a free recall portion they 330 

reported all the locations they remembered, and then matched these locations to objects. 331 

Thus, like verbal paired associates tasks that aim to distinguish object and associative 332 

information (Tulving & Wiseman, 1975) this design removes the demand for correct 333 

associations during location recall, and might reveal latent location knowledge that was 334 

obscured in Experiments 1 and 2.  335 

 336 

Subjects. A new set of subjects from the UCSD Psychology Department’s online subject 337 

pool who did not overlap with the subjects from Experiment 2 participated in this 3-338 

session experiment for payment. 74 subjects finished at least session 1, and 25 completed 339 

all three sessions. Subjects who completed all three sessions received a monetary bonus 340 

based on their performance. 341 

 342 

Design. Experiment 3, like Experiment 2, was comprised of three sessions. In the first 343 

session subjects were trained to criterion.  They were tested (without feedback) 344 

immediately after training (testing day-0), one day after training (test day-1) and seven 345 

days after training (test day-7).  346 

The critical change introduced in Experiment 3 is the use of a free recall task that 347 

occurred after every two blocks (starting after block 1) during training and that replaced 348 

cued recall during testing. In this free recall task subjects reported all the locations they 349 

remembered, and then matched objects to those locations (see Procedure). 350 

In further contrast to Experiment 2, we omitted the math distractor task between 351 
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training and the immediate day-0 test. Additionally, rather than drop out individual 352 

objects during training (as in Experiment 2), subjects recalled the locations of all ten 353 

objects in each block until all were reported correctly (as in Experiment 1).  354 

 355 

Stimuli. The objects were identical to those used in Experiments 1 and 2. We made 356 

minor aesthetic changes to the framing of the task: omitting the island cover story, 357 

replacing the central island with a fixation cross and changing the color of the 358 

background to white. To prevent locations from overlapping during the free recall task, 359 

we required the centers of objects to be located 120 px (2 objects) from each other. We 360 

also decreased the size of the environment to a radius of 275 px to allow room for the free 361 

recall task. 362 

 363 

 364 

 365 

Figure 6. Example free recall trial from Experiment 3. (A) Subjects saw 10 black circles 366 

that would mark the locations of objects and (B) placed the circles wherever they recalled 367 

the location of an object. (C) Once subjects placed all ten circles, they saw all 10 objects 368 

in a random order and (D) matched the objects to the locations. Subjects had unlimited 369 

time to do the location recall and object matching phases and could rearrange the 370 

locations and object-to-location assignments as much as they wanted. 371 

B A C D 
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 372 
 373 

Procedure. In session 1, subjects recalled the location of a cued object and received 374 

feedback, as in Experiment 1. We interleaved these training blocks with a free recall 375 

phase (Figure 6). Free recall occurred after the first block and every two blocks 376 

afterwards. During the free recall phase, subjects saw 10 black circles at the bottom of the 377 

screen, and were instructed to place those (by clicking and dragging) at the locations of 378 

the ten objects.  They could rearrange the placed circles as much as they desired.  Once 379 

subjects indicated that they were done placing the circles, they saw all 10 objects on the 380 

bottom of the screen, and matched the objects to their locations by clicking on an object 381 

and then a location. They had unlimited time to perform the location recall and object 382 

matching subtasks, and they received no feedback at the end of free recall and matching.  383 

During testing, subjects reported the locations of the objects using the free recall task 384 

instead of the cued recall task. 385 

 386 

Results 387 

 388 
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 389 

Figure 7. Learning and forgetting in Experiment 3 measured in root mean square error 390 

(RMSE) for the cued recall task during training and the free recall task during training 391 

and testing. The grey line indicates cued recall performance and the black points and line 392 

indicate free recall performance. Training results reflect all 74 subjects that finished 393 

session 1 and testing results reflect the 25 subjects that finished all three sessions. Cued 394 

and free recall performance during training were very similar. Error bars indicate ±1 395 

SEM across subjects. 396 

 397 

Did subjects learn and forget the locations of objects? As in Experiments 1 and 2, 398 

subjects learned the locations of objects during training and forgot them during testing 399 

(Figure 7). During training, the cued and free recall performance of each subject in each 400 

block was strongly correlated (r=.72, p<.001), indicating that both tasks adequately 401 

evaluate memory. We used a mixed effects model to test whether subjects performed 402 

better in the free recall vs. cued recall task, treating task type, block and their interaction 403 
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as fixed effects and subjects as random effects. Subjects performed better in the free 404 

recall task (t(600)=3.84, p<.001), perhaps because this task discourages random guessing 405 

and encourages misassociations or allows subjects to choose the order in which they 406 

recall the objects (e.g., strongest items first). Additionally, this improvement significantly 407 

interacted with block number (t(600)=2.98, p=.002), reflecting subjects learning 408 

associations for the cued recall task over time. 409 

 410 

 411 

Figure 8. Estimated number of unique object locations recalled as either correctly 412 

associated responses or misassociations during training and testing. Grey points are the 413 

number of locations recalled in blocks of the cued recall task matched to the free recall 414 

blocks. Black points indicate the number of locations reported in the free recall task. For 415 

comparison, the shaded grey areas show the number of locations recalled in single blocks 416 

from Experiments 1 (Training) and 2 (Testing). Subjects correctly recalled more locations 417 
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in the free recall task than in cued recall tasks. Error bars indicate ±1 SEM across 418 

subjects. 419 

 420 
 421 

How did subjects learn and forget locations separate from associations? We used our 422 

error model to obtain MLE estimates of the number of unique locations recalled (i.e., 423 

locations that were classified as either correctly associated or as misassociations) during 424 

the cued recall and the free recall task (Figure 8). For comparison, we also determined the 425 

locations recalled during cued recall in Experiments 1 and 2. The training results reflect 426 

all 74 subjects who completed session 1 and the testing results reflect the 25 subjects who 427 

completed all three sessions. To compare the number of locations recalled across tasks, 428 

we again used mixed effect models, treating task type, block and their interaction as fixed 429 

effects and subjects as random effects. The number of locations recalled during cued 430 

recall was similar to Experiment 1, suggesting that including the free recall task did not 431 

change how subjects learned the locations of objects. 432 

 During training, subjects recalled more locations when using free recall than when 433 

using cued recall (t(600)=9.67, p<.001). For instance, after the first block, subjects 434 

recalled on average 8.0 (SEM=.13) of the 10 locations during free recall compared to 5.2 435 

(SEM=.28) during cued recall. There was also a significant interaction between task type 436 

and block number (t(600)=7.52, p<.001), reflecting subjects learning the associations 437 

between objects and locations and consequently recalling locations increasingly 438 

accurately during cued recall. 439 

 By comparing the number of locations recalled during free recall in Experiment 3 440 

to cued recall performance in Experiment 2, we could directly assess the contribution of 441 
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lost associations to apparent forgetting.  In the immediate post-training test (testing day-442 

0), we found that the number of locations recalled during free recall trended towards 443 

being greater than the number of locations recalled during cued recall; nevertheless they 444 

did not significantly differ (t(60)=1.89, p=.06). However, there was a significant 445 

interaction between task type and block number (t(179)=2.06, p=.041), indicating that 446 

subjects performing free recall increasingly recalled more locations than subjects 447 

performing the cued recall task. Altogether, over delays up to a week subjects appear to 448 

remember the locations they learned, but forget the objects to which those locations 449 

correspond. During recall, this loss of associations can result in subjects either making 450 

misassociations or randomly guessing. 451 

 452 

Experiment 4 453 

In the previous experiments, we found that forming and maintaining associations were 454 

the main factors limiting long-term visuospatial memory for locations. Is this also true for 455 

verbal memory? On one hand, both visual and verbal memory exhibit classic memory 456 

phenomena like a benefit to retention from spaced practice (visual: Paivio, 1974; verbal: 457 

Ebbinghaus, 1913) as well as advantages from primacy and recency (visual: 458 

Hollingworth, 2004; verbal: Ebbinghaus, 1913). So we might expect that forgetting 459 

operates similarly for both types of memory.  On the other hand, visual and verbal 460 

working memory seem to rely on mechanisms dissociable with interference tasks 461 

(Baddeley & Hitch, 1978) and there are discrepancies in the magnitude of recency effects 462 

for auditory and visual information (Murdock & Walker, 1969; Madigan, 1971), so 463 

perhaps forgetting would also operate differently.  In Experiment 4 we assess the 464 
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contributions of imprecision, misassociation, and wholesale forgetting to long-term 465 

memory errors during learning and forgetting for verbally presented qualities.   466 

Specifically, we aimed to assess whether verbal memory follows a similar pattern of 467 

deterioration as visuospatial memory by training subjects on numerical values: the “great 468 

circle” distance between pairs of cities. Furthermore, we extended the delay period to 469 

examine forgetting over even longer periods of time. 470 

 471 

Methods 472 

Subjects. 24 subjects recruited through our online subject pool participated in this 4-473 

session experiment for payment with an additional monetary reward for good 474 

performance. 475 

 476 

Design. Subjects participated in one training session followed by three testing sessions. 477 

In the first session, subjects were trained on 24 facts. Like in Experiment 2, within each 478 

block the order of the facts was randomized and facts dropped out when they were 479 

recalled accurately. At the end of the first session, subjects recalled all 24 facts (testing 480 

week-0). Subsequent testing sessions occurred 1 week (testing week-1), 2 weeks (testing 481 

week-2) and 4 weeks (testing week-4) following the training session. To control for 482 

testing effects, of the 24 facts, 6 were presented on all three testing sessions, while the 483 

other 18 appeared in only one testing session (6 in each of the three testing sessions). 484 

Thus, in each testing session participants were probed on 12 facts: 6 that were tested in 485 

every session, and 6 unique to that session. 486 

 487 
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Stimuli. Subjects learned 24 distances‡ between pairs of cities. The distances were the 488 

great circle distances (the shortest distance between two points on a sphere). For example, 489 

subjects would learn that the distance between Amsterdam, Netherlands and Athens, 490 

Greece is 1343 miles. Henceforth, we report the log10 distances§. The mean log distance 491 

was 3.6, with a standard deviation of .35. 492 

 493 

Procedure. In session 1, subjects trained on 24 city-distance pairs over multiple blocks. 494 

On every trial, subjects saw two city names and reported the great circle distance between 495 

those cities; subjects then received feedback with the correct distance. Thus, in the first 496 

block, every response was a guess informed only by subjects’ prior geography knowledge, 497 

but in subsequent blocks, subjects would have learned from the feedback.  As in 498 

Experiment 2, subjects were trained to criterion with dropout; specifically, after subjects 499 

reported the distance for a particular city-pair correctly (within 1%) once, that item was 500 

excluded from subsequent training blocks.  501 

In each test session, subjects recalled 12 of the distances (see Design) but did not 502 

receive feedback. 503 

  504 

Results 505 

 506 

                                                             
‡ Subjects chose whether the distances were in miles or kilometers. Here all distances are 
presented in miles. 
§ Analysis in log space respects the Weber-law like noise pattern common to magnitude, 
number and length estimation. 
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 507 

Figure 9. Learning and forgetting curves for Experiment 4. Error was measured in log10 508 

root mean square error (RMSE). The first 20 blocks of training is left (in Blocks) and 509 

testing is right (in Days). Because subjects completed training in different numbers of 510 

blocks, we imputed their results for subsequent blocks in the learning curve to avoid 511 

misrepresenting errors in later blocks (our analyses do not rely on these imputed values). 512 

For testing, the continuous black lines indicate facts that were tested every session and 513 

the grey points indicate facts that were only tested in that session. Subjects learned the 514 

locations during training and appeared to return to baseline after one week. Error bars 515 

indicate ±1 SEM across subjects. 516 

 517 

 518 

Did subjects learn and forget the facts? Subjects’ raw performance (as measured by the 519 

RMSE of their log-transformed responses) improved throughout training and deteriorated 520 

during the testing sessions (Figure 9). Training took on average 17.21 blocks (SEM=.24). 521 
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Subjects forgot the facts quickly such that RMSEs in testing weeks 1, 2 and 4 were 522 

indistinguishable from the first training block (mixed effect model treating block as a 523 

fixed effect and subject as a random effect, main effect of block: t(94)=1.58, p=.11)**. 524 

There were also no discernible differences in RMSE for facts recalled during repeated 525 

testing sessions vs. only during individual testing sessions (mixed effect model treating 526 

task, block and their interaction as fixed effects and subject as a random effect, main 527 

effect of task: t(140)=.037, p=.97; interaction between task and block: t(140)=.64, 528 

p=.52): thus we pool them in subsequent analyses. 529 

 530 

 531 

 532 

  533 

 534 

                                                             
** This rapid forgetting compared to the previous experiments may reflect any of a 
number of differences between the experiments: e.g., the larger number of items, the 
lower training criterion, or differences in associating city pairs with continuous numbers. 

A 

B C 
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   535 

Figure 10. Estimated noise, misassociation and random guessing for Experiment 4. (A) 536 

Estimated probability of selecting the target (dotted lines and squares), making a 537 

misassociation (dashed lines and diamonds) and randomly guessing (solid lines and dots). 538 

(B) The standard deviation (SD) of recalled facts. (C) The standard deviation of random 539 

guesses around the mean distance. In these graphs, the first block of training acts as 540 

baseline performance (Base). The continuous lines indicate performance during the four 541 

testing blocks. During forgetting, subjects remembered many distances precisely but 542 

associated them to the wrong city pairs. Error bars indicate posterior SD. 543 

 544 

 545 

How did the sources of error change during learning and forgetting? We fit the error 546 

model to subjects’ responses to estimate the sources of errors in the first training block 547 

and the four testing blocks (Figure 10). Objects dropping out during training prevented us 548 

from analyzing the other training blocks.  549 

In the first training block, a combination of imprecise prior knowledge, and 550 

mutual information across items (e.g., learning the distance between Amsterdam and 551 

Greece may bias estimates of the distance between Berlin and Ankara) precluded any 552 

decisive analyses of error contributions.  Specifically: responses were frequently 553 

characterized as recalled target distances or as misassociations, despite this being the first 554 



Fragile associations in long-term memory 31 

training block.  These responses may have reflected subjects’ imprecise prior knowledge 555 

of geography since these apparently informed responses had very low precision (.16, 95% 556 

PQI = .14–.19), or may correspond to subjects making responses based on feedback they 557 

received in previous trials of the same block. In short, people started out training with 558 

vague ideas about city-pair distances and their relationships.  559 

In the immediate post-training test (testing week-0), subjects recalled the 560 

locations precisely (.0069, 95% PQI = .0060–.0079), and made few misassociations (.25, 561 

95% PQI = .20–.30), consistent with their overall low RMSE in this immediate test. 562 

RMSE in testing sessions at 1-4 week delays suggests that subjects returned to their 563 

baseline pre-training performance after just a one-week delay. At face value, this could 564 

indicate that subjects forgot everything they learned and reverted to randomly guessing 565 

based on their prior knowledge. On the other hand, the high RMSE might instead reflect 566 

subjects making many misassociations, which would indicate that subjects actually 567 

retained accurate memories of facts, but not associations between city pairs and distances.  568 

Indeed, the high RMSEs in testing weeks 1, 2 and 4 seem to be caused by very 569 

high rates of precisely reported, but incorrectly associated, distances.  For instance, 570 

testing week 1, distance imprecision was just .030 (95% PQI = .023–.039), compared 571 

to .16 (95% PQI = .14–.19), in the first training block (95% PQI on the difference 572 

between: baseline and day-7=.11–.16) demonstrating that facts are being remembered 573 

precisely.  Overall RMSE is indistinguishable, however, due to a 49% (95% PQI = 38–574 

60%) misassociation rate.  Similarly, the precision of correctly and incorrectly associated 575 

distances after 2 weeks (.064, 95% PQI = .049–.083) and 4 weeks (.10, 95% PQI 576 

= .072–.13) is better than baseline (95% PQI on the difference between: baseline and 577 
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day-14 = .067–.13; baseline and day-28 = .024–.10), but this latent knowledge is not 578 

evident in RMSE due to high misassociation rates (day-14: 56%, 95% PQI = 44 to 67%; 579 

day-28: 47%, 95% PQI = 34–60%). Thus, it seems that verbal numerical memory for 580 

city-pair distances–like memory for object locations–is primarily hampered by 581 

misassociations, so much so that they obscure relatively precise, and stable, latent 582 

knowledge of learned distances when considering overall measures of error. 583 

 584 

General Discussion 585 

Previous work has primarily evaluated the acquisition and loss of information in long-586 

term memory by using binary measures such as “recalled versus not-recalled”. These 587 

studies have documented long-term memory’s large capacity and temporal stability. Here, 588 

we examined the mechanisms of forgetting in a finer grained manner, asking how noise, 589 

misassociations and complete loss of memory traces contributed to declines in memory 590 

performance over time. Consistent with previous characterizations of long-term memory, 591 

we found that verbal and visual long-term memory representations were extremely robust 592 

over long delays and that visual long-term memories formed very quickly. The chief 593 

limitation on long-term memory—apparent in both acquisition and forgetting—was a 594 

difficulty forming the correct associations and maintaining those associations over time. 595 

Accordingly, our comparison of performance in cued and free recall tasks suggests that 596 

the free recall task helped disentangle memories of locations and associations, allowing 597 

us to more accurately assess the contents of visual memory. 598 

 599 

Learning and forgetting in long-term memory 600 
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We show that although long-term memory is impressive in its ability to retain precise 601 

facts, it is strikingly limited in its ability to form and recall associations between 602 

memories. These results are consistent with earlier investigations of verbal long-term 603 

memory demonstrating that the recency effect deteriorates much more rapidly for paired 604 

associates (Murdock, 1967) than for individual items (Murdock & Kahana, 1993). This 605 

may reflect associative information being fragile or memories interfering with each other 606 

(Briggs, 1954; Barnes & Underwood, 1959; Underwood, 1957).  607 

We find that misassociations drive forgetting in long-term memory and, to a 608 

lesser extent, these memories become less precise over time.  In contrast, Brady et al. 609 

(2013) found that long-term memories exist in a constant, low-fidelity state and 610 

spontaneously give way to random guesses.  Although seemingly in conflict, these two 611 

sets of results may actually be quite consistent.  Our subjects were trained to criterion, 612 

while the subjects trained by Brady et al. saw stimuli only briefly. Consequently, long-613 

term memories in Brady et al. may have never gained enough precision to yield 614 

detectable losses. Moreover, because Brady et al. could not estimate misassociations, 615 

such responses would have appeared as random guesses in their data. Thus, both sets of 616 

results are consistent with misassociations being the primary cause of forgetting. 617 

 618 

Comparison to visual working memory 619 

Our finding that during learning and forgetting subjects often knew locations but did not 620 

associate them is somewhat similar to previous findings that visual working memory 621 

represents (Vul & Rich, 2010) and forgets (Fougnie & Alvarez, 2011) the features of 622 

objects independently, and that the appropriate binding (association) of these features is 623 
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fragile over time (Gorgoraptis, et al. 2011). The difficulty of binding features together in 624 

visual working memory and the associative limits of visual long-term memory may 625 

reflect a common limitation on our ability to correctly associate features together. 626 

When we removed the need to associate locations with objects in the free recall 627 

task, we found subjects recalled many more locations than during parallel cued recall 628 

tasks. Similarly, using different stimuli and memory probes in working memory 629 

experiments can affect the difficulty of recalling associative information. Stimuli with 630 

dependent integral features (Fougnie & Alvarez, 2011; Bae & Flombaum, 2013) or that 631 

do not suffer from proactive interference (Endress & Potter, 2014) result in larger 632 

estimates of visual short-term memory capacity. Likewise, probing memory using a two-633 

alternative forced-choice task instead of a same-different task can make it more difficult 634 

to keep track of associations (Makovski, et al., 2010). Varying the distinguishability of 635 

stimuli and the method of recall may help determine when visual working memory is 636 

limited by observers’ ability to recall features vs. the associations between them. 637 

 638 

Limitations  639 

We treated the free recall and cued recall tasks in Experiment 3 as comparable tasks, 640 

differing only in how subjects recalled locations. However, the tasks may have 641 

encouraged subjects to encode the objects differently. Simultaneous report (as in the free 642 

recall task) compared to sequential report (as in the cued recall task) may have 643 

encouraged subjects’ to encode objects based on their “ensemble statistics” (Chong & 644 

Treisman, 2005; Brady & Alvarez, 2011). Using such statistics may have even helped 645 

subjects remember the objects more accurately (Orhan, et al., 2014). Although free recall 646 
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helped us assess subjects’ memories of unassociated and/or incorrectly associated 647 

locations, whether the free recall task introduced differences in performance requires 648 

further investigation.  649 

 Additionally, recall performance may have been hindered by the lack of natural 650 

structure in our task. Memory relies on prior expectations (Bartlett, 1932) and using real-651 

world priors can impair recall when those priors are inconsistent with structure in the 652 

experiment (Orhan & Jacobs, 2014). In Experiments 1-3, for example, subjects could 653 

have expected the hat and boot to be close together (because both are articles of clothing), 654 

conflicting with the actual randomness of locations in the experiment. In contrast, using 655 

stimuli that are structured consistently with subjects’ prior expectations improves the 656 

fidelity of memories (Orhan, et al., 2014). If the structure of the stimuli in our task was 657 

consistent with subjects’ prior expectations, subjects may have exhibited different 658 

patterns of learning and forgetting. 659 

   660 

Implications 661 

Instead of passively observing stimuli during training, in our study subjects reported 662 

locations/distances and received feedback. Many studies have shown that different 663 

training manipulations such as spacing presentations (see Cepeda, et al., 2008, for a 664 

review), review through testing rather than restudy (Bjork & Bjork, 1992; Roediger & 665 

Karpicke, 2006) and allowing self-directed learning (Markant & Gureckis, 2014) can aid 666 

the formation and long-term survival of memories. Asking how these different training 667 

techniques affect the sources of people’s error may help reveal the mechanisms that these 668 

techniques rely upon and the associative limitations of long-term memory. 669 
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 670 

Conclusions 671 

We described a number of experiments designed to assess the contributions of 672 

imprecision, misassociation, and the absence of relevant memory traces in memory to 673 

limited performance in learning and forgetting.  When remembering visual and verbal 674 

stimuli, people quickly formed fairly accurate memories for scalar quantities (locations 675 

and distance), with this precision decaying only minimally over time.  In both cases, 676 

however, associations between those memories were learned slowly and were readily lost 677 

over time.  678 

  679 
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Appendix 786 

 787 

Appendix A: Model overview 788 

We used a finite mixture model similar to that used in Bayes, et al. (2011) to estimate the 789 

precision of memories and the probability of responses reflecting misassociations and 790 

random guessing. Formally, we are interested in estimating three parameters: the 791 

probability of selecting the target object (pT), the probability of making a misassociation 792 

(pM), and the imprecision of correct responses and misassociations around remembered 793 

features (σ). The probabilities of selecting the target object and making a misassociation 794 

determined the probability of random guesses (pR=1– pT – pM). Thus, the basic mixture-795 

model likelihood of reporting a particular feature, y, for a particular item t out of n items 796 

total is: 797 

 798 

P y t( ) = pTN y xt,σ( )+ pM
1
n−1
"

#
$

%
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 800 

where xi is the feature value for item i and |!
!!! denotes a sum over all the non-target 801 

items (candidate misassociations). Thus, the probability of making a misassociation is 802 

evenly split among all the items that are candidate misassociations.  𝑁 𝑦 𝑚, 𝑠  denotes 803 

the density at 𝑎 of a normal distribution with mean 𝑚 and standard deviation 𝑠 and 𝑅(𝑦) 804 

indicates the likelihood of randomly guessing y.  805 

 We modified the likelihood of random guessing (𝑅(𝑦)) in two ways to reflect the 806 

specific structure of our tasks. First, for Experiments 1-3 we modeled the distribution of 807 

random guesses as a two-dimensional Gaussian distribution around the mean feature 808 
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value  (the center of the environment) truncated by the borders of the environment. In 809 

Experiment 4, we used a one-dimensional Gaussian distribution centered on the mean 810 

feature value (the average log10 distance between cities) but because log distances are 811 

unbounded we did not truncate the distribution. In contrast, many prior studies using 812 

mixture models use a uniform distribution for random guesses (e.g., Zhang & Luck, 813 

2008). In those cases, the feature values are often circular (e.g., hue angle) and thus have 814 

no natural “center”.  However, in both of our tasks, there is a natural center (either the 815 

center of the display, or the average distance) to which random guesses may be drawn to 816 

minimize expected errors. The truncated two-dimensional Gaussian and unbounded one-817 

dimensional Gaussian likelihood functions offer a convenient way to parameterize 818 

between these random guessing strategies. With large standard deviations, these 819 

distributions will behave like a uniform distribution and with a small standard deviation 820 

will resemble responses around the central value.  821 

In Experiments 1-3, we set the standard deviation of random guesses (σR) to the 822 

empirical standard deviation of all responses (we discuss this decision in later in 823 

Appendix D, Dispersion of random guesses). In Experiment 4, we estimated the standard 824 

deviation of random guesses (σR), just as we estimated the standard deviation of recalled 825 

locations (σ). We fit these parameters differently across experiments because the range of 826 

possible locations in Experiments 1-3 was constrained by the border of the environment 827 

but in Experiment 4 subjects’ estimates of the range of possible distances changed over 828 

time. 829 

Second, in Experiments 1-3, in addition to subjects selecting random values 830 

around the mean, we accounted for two other types of random guessing. When first 831 
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learning the locations of the objects, subjects often either clicked the same location 832 

repeatedly or clicked the location of the preceding object. The first clearly does not 833 

reflect an attempt to recall the cued object’s location. The second could indicate an 834 

attempt to correctly recall the cued object’s location. However, given that the order of 835 

presentation was block randomized and that it is unlikely subjects forgot the correct 836 

object-location association over the course of a single trial, in these trials subjects most 837 

likely reported the wrong location intentionally. Our decision to account for these 838 

additional types of random guessing was supported by alternate forms of random 839 

guessing having a shorter response time than randomly guessing around the center of the 840 

environment (mixed effect model treating error type as a fixed effect and subject as a 841 

random effect, main effect of error type: t(1667)=3.4, p<.001). Consequently, we account 842 

for both types of responses and classify them as random guessing.  843 

We extend our random guessing process to account for responses based on the 844 

previous response or feedback by treating them as responses centered on the previous 845 

response or previous object, respectively, with small standard deviations (𝜎!). This 846 

introduces one additional parameter that describes the probability of random guesses 847 

broadly distributed around the center (𝑝!") and the probability of structured random 848 

guesses (1–𝑝!"). (1–𝑝!") is evenly split between the two types of structured random 849 

guessing. Thus the probability that responses are broadly distributed random clicks 850 

around the environment will be (1– pT – pM)pR1; the guesses that are repeated clicks of the 851 

previous response, or repetitions of the previously presented location, will both be 852 

(!–  !!  –  !!)(!–!!!)
!

.  In the main paper, we report the probability of random guesses as (1– 853 

pT – pM)=𝑝!. 854 
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We vary the random guessing parameters based on the constraints of the different 855 

tasks in our experiments. In Experiment 1 and cued recall in Experiment 3, when 856 

structured forms of random guessing were most likely to occur, we estimate 𝑝!". In 857 

Experiment 2 (where subjects know the locations), free recall in Experiment 3 (where 858 

subjects cannot use a structured form random guessing) we set 𝑝!" to zero. 859 

For Experiments 1-3, we modified random guessing to use a truncated two-860 

dimensional Gaussian distribution and to account for additional forms of random 861 

guessing results in the likelihood of random guessing, 𝑅(𝑦) becoming: 862 

 863 

R(y) = 1− pT − pM( ) pR1Φ y µR,σ R, r( )+
1− pT − pM( ) 1− pR1( )

2
N y xresp,σ o( )+

1− pT − pM( ) 1− pR1( )
2

N y xobj,σ o( )
 

864 

 865 

where 𝛷 𝑎 𝑚, 𝑠, 𝑏  indicates the density at 𝑎 of a truncated normal distribution with 866 

mean 𝑚, standard deviation 𝑠 and bound 𝑏. 𝜇!, 𝜎!  and 𝑟 indicate the center of the 867 

environment, the empirical standard deviation of responses and the radius of the 868 

environment, respectively. 𝑥!"#$ indicates the previous response, 𝑥!"# indicates the 869 

previously presented stimuli (in the first trial, the previous response/stimuli was 870 

substituted with the mean value) and 𝜎!  is the standard deviation of responses around 871 

repeated responses/locations which we set to be very small (𝜎! = 5  𝑝𝑥). 872 

  Consequently, the full likelihood of reporting a particular feature, y, is:  873 

 874 

P y t( ) = pTN y xt,σ( )+ pM
1
n−1
"

#
$

%

&
' N(y xi,σ )
i≠t
∑ + 1− pT − pM( ) pR1Φ y µR,σ R, r( )+

1− pT − pM( ) 1− pR1( )
2

N y xresp,σ o( )+
1− pT − pM( ) 1− pR1( )

2
N y xobj,σ o( )

 875 



Fragile associations in long-term memory 47 

 876 

For Experiment 4, the random guessing likelihood is just a normal distribution; 877 

thus the complete likelihood function is: 878 

P y t( ) = pTN y xt,σ( )+ pM
1
n−1
"

#
$

%

&
' N(y xi,σ )+ pRN y µR,σ R( )
i≠t
∑  879 

where 𝜇! and 𝜎! indicate the mean distance between cities and the estimated standard 880 

deviation of random guesses (in log units), respectively. 881 

For each block we fit the model across subjects using a Gibbs sampler (Geman & 882 

Geman, 1984). Our analyses of the parameter fits use 700 samples from the posterior 883 

(without thinning). 884 

 885 

 886 

A 

B C 
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 887 

Figure A1. Model comparison of the mixture model with and without different types of 888 
errors for Experiments 1 and 2. Full is the full model (solid black line), No Mis is the 889 
model without misassociations (solid grey line), No Rand is the model without random 890 
guessing (dotted black line), and Target is the model with neither misassociations nor 891 
random guessing, making solely noisy guesses around the target object (dotted grey line). 892 
(A) Model fits as measured by Akaike Information Criterion (AIC). Smaller AIC values 893 
indicate better fits. Decreasing AICs during training reflect subjects completing the 894 
experiment and dropping out. (B) The difference in AIC between the full model and best 895 
fitting model that wasn’t the full model. Differences greater than zero indicate the full 896 
model fit best (C) Model fits as measured by average log-likelihoods. Less negative log-897 
likelihoods indicate better fits. Although the model without random guessing performs 898 
best during early training, the full model captures subjects’ performance best in the rest 899 
of the study. AIC error bars indicate posterior SD, likelihood error bars indicate SEM. 900 
 901 
Appendix B: Model comparison 902 

In our analyses, we used a finite mixture model that captures errors due to noise, 903 

misassociations and random guessing. However, it is possible that the model falsely 904 

interpreted locations recalled very noisily as misassociations or random guesses. To 905 

examine whether subjects indeed made misassociations and random guesses, for 906 

Experiments 1 and 2 we tested how well mixture models without misassociations, 907 

without random guessing and without either type of error predicted subjects’ responses. 908 

For each model, we calculated how well the model fit subjects’ responses in each block 909 

or session, as measured by their Akaike information criterion (AIC) (Figure A1A). 910 

Smaller AICs reflect better model fits.  911 
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 The full model fit subjects’ responses well during training in Experiment 1 and 912 

testing during Experiment 2. To test when the full model provided the best fit, for each 913 

block/session we found the difference between the model with the smallest AIC (that 914 

wasn’t the full model) and the full model (Figure A1B). Differences greater than zero 915 

indicate that the full model had a smaller AIC and was a better fit. The full model 916 

provided the best fit during the last 13 blocks of training in Experiment 1 and the first 917 

two sessions of testing in Experiment 2, indicating that subjects did indeed make 918 

misassociations and random guesses throughout our studies. Additionally, the model 919 

without random guessing but with misassociations performed much better than the full 920 

model during training early on and comparably during the final block of testing. The 921 

good fit of the model without random guessing demonstrates that possessing the correct 922 

associations was an important part of learning and forgetting.  923 

 924 

Appendix C: Bayesian statistic reports 925 

Several of our analyses report the posterior distributions of the parameters. Consider this 926 

example-“The time constant for the increasing rate of correct associations (2.3, 95% PQI 927 

= 1.7–3.0)”. Here, 2.3 indicates the mean time constant. 95% PQI denotes the 95% 928 

Posterior Quantile Interval, such that 1.7 is the time constant at the 0.025 posterior 929 

quantile and 3.0 is the time constant at the 0.975 posterior quantile; and the posterior 930 

probability that the time constant falls within that interval is 95%. Because 95% of the 931 

sampled time constants fell above 0, this 95% PQI demonstrates that we can be confident 932 

that the time constant was positive. 933 

 934 
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 935 

Figure A2. Empirical vs. estimated dispersion of random guessing. Empirical (black, 936 
dotted line) indicates the standard deviation of all of the subjects’ responses around the 937 
center of the environment in each block/session. Estimated (grey, solid lines) indicates 938 
the model estimated standard deviation of random guesses around the center of the 939 
environment. The empirical standard deviation was generally a good approximation for 940 
the standard deviation of random guesses, and was far more stable, given that some 941 
blocks contained very few random guesses. Error bars indicate 95% PQI. 942 
 943 
Appendix D: Dispersion of random guesses 944 

In Experiments 1-3, we used the empirical standard deviation of subjects’ responses 945 

around the center of the environment as the standard deviation of the truncated two-946 

dimensional random guessing Gaussian distributions. However, because this calculation 947 

includes all reported locations (including those classified as correct reports and 948 

misassociations), it may have systematically overestimated the dispersion of random 949 

guesses. To examine whether the empirical standard deviation of responses was an 950 

accurate measure of the dispersion of random guesses, we modified our mixture model to 951 

estimate the standard deviation of random guesses and then compared the empirical and 952 

model estimated dispersion. 953 
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 In every block and session, the empirical standard deviation fell within the 95% 954 

PQI of the dispersion estimated by the model (Figure A2), demonstrating that the 955 

empirical standard deviation was an accurate substitute for estimating the dispersion of 956 

random guesses explicitly. Moreover, since random guessing was relatively rare in later 957 

training blocks, explicit estimates of random guessing dispersion were highly unstable (as 958 

reflected by the very large 95% posterior intervals). In contrast, using the empirical 959 

standard deviation of responses yields a consistent, and stable estimate throughout the 960 

training session.   961 

 962 

  963 

 964 

Figure A3. Imprecision parameter recovery when responses are A) a mixture of correct 965 
target selections and random guesses and B) a mixture of misassociations and random 966 
guesses. From left to right, each panel indicates mixtures with increasing proportions of 967 
random guesses. For example, in A3A, the panel “Probability Random Guess=.9” 968 

A 

B 
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indicates that the probability of selecting the correct object was .1 and the probability of 969 
randomly guessing was .9. Each black point indicates the true log imprecision used to 970 
generate responses (X-axis) and the log imprecision estimated by the model (Y-axis). 971 
Dashed grey lines indicate equality. The model was able to consistently recover the 972 
imprecision of responses, even under very high levels of random guessing. 973 
 974 
Appendix E: Imprecision parameter recovery with high levels of random guessing 975 

We used our model to estimate the probability of selecting the target object, making a 976 

misassociation, randomly guessing, and the imprecision of recalled locations. However, 977 

in early training blocks the small number of locations recalled as targets or 978 

misassociations may have undermined our ability to estimate the imprecision of locations. 979 

Furthermore, in such situations high levels of random guesses may have been interpreted 980 

as very noisy correct responses or misassociations, inflating estimates of imprecision.  981 

To examine whether the model could accurately estimate the imprecision of 982 

responses, we generated artificial data by drawing samples from our model with different 983 

parameter values. We focused on parameter values with high levels of random guessing 984 

to best capture conditions during early training blocks. Half of our parameters sets had a 985 

high probability of random guesses and a small probability of correct target selections 986 

(Figure A3A). The second half had a high probability of random guesses and a small 987 

probability of making misassociations (Figure A3B). We then used the model to recover 988 

the parameter values used to generate the data. For simplicity, we kept 𝑝!" to zero when 989 

generating samples and estimating parameters. 990 

The model was able to successfully recover the parameters used to generate the 991 

artificial data. The true and recovered imprecision were highly correlated (smallest r: 992 

r=.99, p<.001), and deviated only slightly from the identity line, reflecting a slight 993 

tendency to underestimate imprecision when random guessing was common (most 994 
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regression slopes in the range [.95—.99], most deviant slope from 1 was =0.96, 95% 995 

CI=.95—.98). Rather than inflate noise estimates, the model slightly underestimated the 996 

imprecision of responses (largest slope: .987, 95% CI=.981—.994); this underestimation 997 

may reflect exceptionally noisy responses being more likely to be interpreted as random 998 

guesses, when the base rate of random guessing is high. Together, these results suggest 999 

that the model was able to adequately recover the imprecision of responses even under 1000 

high levels of random guessing.   1001 

 1002 

Appendix F: Reaction times and response type  1003 

In Experiments 1 and 2, we examined how reaction times varied for selecting the target 1004 

item, making a misassociation and randomly guessing. We used mixed effect models that 1005 

treat error type as a fixed effect and subject as a random effect to test whether different 1006 

types of errors had different response times. We found no effect of error type on reaction 1007 

time in Experiment 1(t(4678)=1.2, p=.23) and Experiment 2 (t(1108)=.22, p=.84). 1008 




