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RESEARCH ARTICLE Open Access

Contrast-enhanced CT radiomics for
predicting lymph node metastasis in
pancreatic ductal adenocarcinoma: a pilot
study
Ke Li1†, Qiandong Yao2†, Jingjing Xiao3, Meng Li3, Jiali Yang4, Wenjing Hou1, Mingshan Du1, Kang Chen1,
Yuan Qu1, Lian Li1, Jing Li1, Xianqi Wang1, Haoran Luo1, Jia Yang5 , Zhuoli Zhang5 and Wei Chen1*

Abstract

Background: We developed a computational model integrating clinical data and imaging features extracted from
contrast-enhanced computed tomography (CECT) images, to predict lymph node (LN) metastasis in patients with
pancreatic ductal adenocarcinoma (PDAC).

Methods: This retrospective study included 159 patients with PDAC (118 in the primary cohort and 41 in the
validation cohort) who underwent preoperative contrast-enhanced computed tomography examination between
2012 and 2015. All patients underwent surgery and lymph node status was determined. A total of 2041 radiomics
features were extracted from venous phase images in the primary cohort, and optimal features were extracted to
construct a radiomics signature. A combined prediction model was built by incorporating the radiomics signature
and clinical characteristics selected by using multivariable logistic regression. Clinical prediction models were
generated and used to evaluate both cohorts.

Results: Fifteen features were selected for constructing the radiomics signature based on the primary cohort. The
combined prediction model for identifying preoperative lymph node metastasis reached a better discrimination
power than the clinical prediction model, with an area under the curve of 0.944 vs. 0.666 in the primary cohort, and
0.912 vs. 0.713 in the validation cohort.

Conclusions: This pilot study demonstrated that a noninvasive radiomics signature extracted from contrast-
enhanced computed tomography imaging can be conveniently used for preoperative prediction of lymph node
metastasis in patients with PDAC.

Keywords: Pancreatic ductal adenocarcinoma, Radiomics, CT, Lymph node metastasis

Background
Pancreatic ductal adenocarcinoma (PDAC) is an aggres-
sive disease and the fourth leading cause of cancer-related
death worldwide, although it is predicted to become the
second leading cause by 2030 [1, 2]. PDAC has a poor
prognosis, and the 5-year survival rate for all stages is ap-
proximately 6%; whereas after surgical resection, the 5-

year survival rate can reach 25% [3–6]. Lymph node (LN)
metastasis is an independent prognostic factor in PDAC,
and preoperative chemotherapy can improve the progno-
sis of node-positive patients [7–10]. Therefore, accurate
preoperative identification of LN involvement in patients
with PDAC is crucial for predicting prognosis and for de-
signing better treatment strategies. However, postopera-
tive pathological specimens are generally needed for
detecting LN metastasis. In recent years, novel serum
markers such as MMP7, MUC1, MUC2, and NLR have
been proposed for detecting LN metastases preoperatively
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in PDAC patients [11–13]. However, their clinical applica-
tion is limited because of technical and accuracy issues.
Computed tomography (CT), which is commonly used

in preoperative work-up, is important for the preopera-
tive diagnosis of LN metastasis in PDAC patients, in
clinical practice. CT relies on the identification of en-
larged LNs to diagnose metastasis. However, the signifi-
cance of enlarged LNs in PDAC is not well defined.
Enlarged LNs can be due to local inflammation or biliary
obstruction, and metastatic LNs may not be enlarged
[14–17]. Radiomics is a rapidly developing discipline that
converts medical images into high-dimensional,
mineable data via high-throughput extraction of quanti-
tative features to reflect cellular and biological changes
in tissues [18–21]. Two previous studies showed that CT
radiomics can predict the malignant potential of intra-
ductal papillary mucinous neoplasms, with important
implications for clinical decision-making [22, 23]. How-
ever, standardized studies, including large sample sizes
are needed to confirm the reliability of this method.
The purpose of this study was to investigate the value

of radiomics features extracted from contrast-enhanced
CT (CECT), combined with clinical information, for
the preoperative prediction of LN metastasis in patients
with PDAC.

Materials and methods
Patients
This retrospective study included a primary cohort of
patients who underwent surgical resection of PDAC, be-
tween January 2012 and December 2014 at Southwest
Hospital (Chongqing, China). A patient recruitment
flowchart and inclusion and exclusion criteria are de-
scribed (Fig. 1). The primary cohort comprised 118 pa-
tients, including 82 men and 36 women with a mean age
of 57.75 ± 10.28 years. Between January 2015 and De-
cember 2015, 41 consecutive patients were recruited
using the same criteria as that used for the primary co-
hort; they constituted the independent validation cohort,
comprising 23 men and 18 women with a mean age of
58.32 ± 9.85 years. Ethical approval was obtained from
the Ethics Committee of Southwest Hospital, Third Mili-
tary Medical University (approval No.KY201802) and in-
formed consent requirements were waived.

Clinical and histopathological analyses
Surgical specimens were evaluated for pathological grad-
ing and LN metastasis according to the World Health
Organization 2010 and AJCC 8th edition criteria [24, 25].
Clinical data included age, gender, carcinoembryonic anti-
gen (CEA) levels, cancer antigen-19-9 (CA19–9) levels,

Fig. 1 Flow chart of the study population, with exclusion criteria
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and total bilirubin (TBIL) levels. The threshold values
were 5 μg/L for CEA, 35 U/mL for CA 19–9, and
22 μmol/L for TBIL, based on normal ranges as deter-
mined in our hospital.

CT protocols and radiographic evaluations
Patients with PDAC were scanned on a dual-source
MDCT scanner (FLASH, Siemens Healthineers). The
scanning protocol was as follows: 120 kVp, 300mA, 0.6–
0.8 pitch and 128 × 0.6 mm. CT scans of patients in-
cluded both arterial and venous phases according to in-
stitutional protocols. Patients received an injection of
100–120mL of iohexol (Omnipaque, GE Healthcare) via
the cubital vein before scanning. Arterial phase imaging
was performed using bolus triggering, approximately
30–40 s after injection, and venous phase imaging was
performed approximately 60–70 s after injection. Images
were reconstructed into 2 mm sizes for radiographic
evaluation and reconstructed into 1 mm sizes for seg-
mentation and radiomics analysis.
CECT images were retrospectively analyzed by two ra-

diologists (one with 8 years of abdominal imaging ex-
perience and one with 10 years of abdominal imaging
experience) who were blinded to the clinical and patho-
logical data. Assessments included the following: (1) le-
sion location (head, body or tail); (2) LN status based on

abdominal imaging evaluation criteria (location, size,
shape, and LN enhancement) [26, 27]. If the evaluation
results were different, the final data were obtained after
consultation between the two observers. The original
evaluation results were retained for consistency analysis.

Image segmentation and radiomics feature extraction
The venous phase image was selected for image segmen-
tation because it was more accurate for displaying the le-
sion boundary. The region of interest (ROI) of the
lesions was delineated manually by two radiologists
using in-house developed computer-aided segmentation
tools (QJImageEditor, Quanjing Medical Co. Ltd.) and
segmented in 3D. The ROI included cystic and necrotic
lesions, whereas blood vessels and lymph nodes were
not included (Fig. 2). Subsequent feature extraction was
performed to select the segmentation area common to
both radiologists. The original segmentation results were
retained for consistency analysis.
The pyradiomics package (http://www.radiomics.io/

pyradiomics.html) was used for feature extraction.

Statistical analysis
Statistical analysis was performed using R software (ver-
sion 3.5.3, http://www.r-project.org). Significance was two-
sided, and p < 0.05 was considered statistically significant.

Fig. 2 Tumor segmentation on CT images with pancreatic ductal adenocarcinoma and heat map. a Segmentation on axial image slice-by-slice
(yellow regions). b Three-dimensional view of the tumor. c IoU scores of each patient. d Heat map representation of radiomics features on the x-
axis and cases on the y-axis. Right color bar represents color coding of Z-scores of each radiomics feature on 118 cases, in the primary cohort
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Consistency test
The Kappa consistency test examined the diagnostic re-
sults of two radiologists regarding lesion location and
LN status. To evaluate the consistency of segmentation
results, intersection-over-union (IoU) was used as an
evaluation metric and calculated with the following
formula:

IoU aA; aBð Þ¼ aA∩aB
aA∪aB

where aA and aB represent the segmented areas of the
same patient’s data obtained by each radiologist.

Feature selection and radiomics signature construction
The Z-score was standardized for the extracted features.
The least absolute shrinkage and selection operator
(LASSO) method, which is suitable for the reduction of
high dimensional data [28], was used to select optimal
predictive features from the primary cohort. Its perform-
ance was verified using a 10-fold cross-validation ap-
proach. Features with nonzero coefficients in the LASSO

regression model were selected. Then, multivariable lo-
gistic regression analysis was used to build a prediction
model base on the feature selected. Receiver operating
characteristic (ROC) curves and area under the curve
(AUC) were used to evaluate the predictive ability of the
model, and its verification on the validation cohort. The
radiomics signature of each patient was the linear com-
bination of selected features weighted by their coeffi-
cients, denoted as:

Xn

i¼1

β0þβi�Xi

Where β0 is the intercept, Xi is the i th selected feature
and βi is the coefcient of the i th selected feature.

Establishment of clinical and combined prediction models
Univariate analysis assessed the relationship between the
clinical characteristics of the patients and LN metastasis
in the primary cohort, including age, gender, patho-
logical grading, CEA levels, CA19–9 levels, TBIL levels,

Table 1 Clinical characteristics of patients in the primary cohort and validation cohort

Characteristic Primary Cohort p Validation Cohort p

LN Metastasis (+) LN Metastasis (−) LN Metastasis (+) LN Metastasis (−)

Age, mean ± SD, years 58.75 ± 10.07 56.95 ± 10.44 0.348 59.12 ± 9.69 57.75 ± 10.13 0.667

Gender, No. (%) 0.647 0.767

Male 35 (67.3) 47 (71.2) 10 (58.8) 13 (54.2)

Female 17 (33.7) 19 (28.8) 7 (41.2) 11 (45.8)

CEA level, No (%) 0.185 0.273

Normal 41 (78.8) 58 (87.9) 10 (58.8) 18 (75.0)

Abnormal 11 (21.2) 8 (12.1) 7 (41.2) 6 (25.0)

CA19–9 level, No (%) 0.116 0.529

Normal 13 (25.0) 9 (13.6) 5 (29.4) 5 (20.8)

Abnormal 39 (75.0) 57 (86.4) 12 (70.6) 19 (79.2)

TBIL level, No (%) 0.281 0.729

Normal 19 (36.5) 18 (27.3) 4 (23.5) 8 (33.3)

Abnormal 33 (63.5) 48 (72.7) 13 (76.5) 16 (66.7)

Lesion location, No (%) 0.595 0.262

Head 43 (82.7) 52 (78.8) 15 (88.2) 17 (70.8)

Body or tail 9 (17.3) 14 (21.2) 2 (11.8) 7 (29.2)

CT-reported LN status, No (%) 0.020* 0.019*

LN- positive 34 (65.4) 29 (43.9) 12 (70.6) 8 (33.3)

LN- negative 18 (34.6) 37 (56.1) 5 (29.4) 16 (66.7)

Pathological grade 0.008* 0.022*

Well 8 (15.4) 22 (33.3) 3 (17.6) 11 (45.8)

Moderately 17 (32.7) 24 (36.4) 6 (35.3) 9 (37.5)

Poorly 27 (51.9) 20 (30.3) 8 (47.1) 4 (16.7)

Abbreviations: CEA carcinoembryonic antigen, CA19–9 cancer antigen-19-9, TBIL total bilirubin, CT computed tomography, LN lymph node, SD standard deviation
* highlights the p values that are smaller than 0.05
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CT-reported lesion location and CT-reported LN status.
Continuous variables were assessed using independent t-
tests or Mann-Whitney U tests, and categorical variables
were evaluated using chi-square tests, Kruskal-Wallis
tests, or Fisher’s exact tests. Statistically significant
variables were included in the multivariate logistic re-
gression analysis, and clinical predictive models were
established. The combined prediction model was built
by integrating the radiomics signature and the selected
clinical characteristics.

Model validation and evaluation
The predictive ability of the clinical and combined pre-
diction models was assessed in the primary cohort using
ROC curve analysis. Integrated discrimination improve-
ment (IDI) was performed to determine whether differ-
ences in predictive ability between the two models were
statistically significant. The best performing model was

then presented as a nomogram. The logistic regression
formula used in the primary cohort was applied to the
validation cohort for verification.
A calibration curve was plotted to assess consistency

between the estimated probability and the actual rate of
LN metastasis, together with a Hosmer-Lemeshow test
in the two cohorts [29]. A decision curve analysis was
performed to evaluate the clinical usefulness of the
nomogram, by quantifying the net benefits at different
threshold probabilities [30].

Results
Consistency test results
Both radiologists showed good consistency in determin-
ing lesion locations and LN status (kappa coefficient =
0.914 and 0.897, respectively). The IoU scores of each
patient are shown (Fig. 2). The average IoU score was
0.89, indicating that consistency was high.

Fig. 3 Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. a Optimal
parameter (lambda) selection in the LASSO model used 10-fold cross-validation via minimum criteria. The partial likelihood deviance (binomial
deviance) curve was plotted versus log (lambda). Dotted vertical lines were drawn at the optimal values using the minimum criteria and the 1 SE
of the minimum criteria (the 1-SE criteria). b LASSO coefficient profiles of the 2041 features. A coefficient profile plot was produced against the
log (lambda) sequence. A vertical line was drawn at the value selected, using 10-fold cross-validation, where optimal lambda resulted in 15
features with nonzero coefficients. c ROC curves of radiomics signatures in primary cohorts. d Validation cohort
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Clinical characteristics
There were no significant differences in the rate of LN
metastasis (44.07 and 41.46% in the primary and valid-
ation cohorts, respectively, p = 0.772) and clinical charac-
teristics between the two cohorts, which confirmed their
use as primary and validation cohorts. The differences in
clinical characteristics between the LN metastasis-positive
group and LN metastasis-negative group were not signifi-
cant, except for CT-reported LN status and pathological
grades in the primary and validation cohorts (Table 1).

Feature selection and radiomic signature construction
The results of the 2041 radiomics features for both LN
metastasis-positive and -negative cases in the primary
cohort are shown (Fig. 2). The heat map represents a
color-coded array of all feature values (x-axis) in all
cases (y-axis). Because there were redundant feature
groups that may have affected the classification, we used
the LASSO method and selected 15 optimal features
with nonzero coefficients in the primary cohort, for con-
structing the radiomics signature prediction model
(Fig. 3). The coefficients of each feature of the model are

shown (Table 2). In the ROC analysis, the radiomics sig-
nature prediction model yielded an AUC of 0.922 [95%
confidence interval (CI), 0.878–0.967] in the primary co-
hort and 0.890 (95% CI, 0.769–1) in the validation co-
hort (Fig. 3).

Establishment, validation and evaluation of clinical and
combined prediction models
The radiomics signature, CT-reported LN status, and
pathological grades were subjected to multivariable logis-
tic regression analysis in the primary cohort (Table 3).
Then, in the two cohorts, the clinical prediction model
was built based on the two clinical characteristics, and the
combined prediction model was built, based on the two
clinical characteristics and radiomics signature. The clin-
ical prediction model yielded an AUC of 0.666 (95% CI,
0.569–0.762) in the primary cohort and 0.713 (95% CI,
0.548–0.878) in the validation cohort. The combined pre-
diction model yielded an AUC of 0.944 (95% CI, 0.905–
0.982) in the primary cohort and 0.912 (95% CI, 0.778–1)
in the validation cohort (Fig. 4). The IDI value of 0.5046
(95% CI, 0.4106–0.5986, p < 0.0001) in the primary cohort
and 0.3294 (95% CI, 0.1714–0.4875, p < 0.0001) in the val-
idation cohort indicated a significantly improved predict-
ive ability of the combined prediction model, when
compared with the clinical prediction model.
A nomogram was built based on the combined predic-

tion model in the primary cohort (Fig. 5). The decision
curve analysis for the nomogram showed that if the
threshold probability of a patient and a doctor is 1 and
89%, respectively, then by using the radiomics nomo-
gram to predict LN metastases, this adds more benefit
than either the treat-all-patients scheme or the treat-
none scheme. Within this range, the net benefit was
comparable with several overlaps on the basis of the
nomogram. The calibration curve of the combined pre-
diction model in the two cohorts demonstrated good
agreement between prediction and observation. The
Hosmer-Lemeshow test yielded a non-significant statis-
tic (p = 0.215 and 0.462, respectively) (Fig. 4).

Discussion
This study determined the correlation between certain
radiomic signatures and preoperative LN metastasis, in a
retrospective analysis of 159 patients with PDAC. A

Table 2 List of selected feature parameters for establishing the
radiomics signature

Feature name and intercept Coefficient

Intercept −0.353

original_firstorder_Skewness −0.833

log-sigma-1-0-mm-3D_glszm_LowGrayLevelZoneEmphasis 0.404

log-sigma-1-0-mm-3D_ngtdm_Busyness 0.379

wavelet-LLL_glcm_JointAverage −14.890

wavelet-LHL_glszm_SmallAreaLowGrayLevelEmphasis −0.127

wavelet-LHH_firstorder_Skewness 1.068

wavelet-LHH_glcm_Imc1 9.466

wavelet-LHH_glcm_Imc2 2.352

wavelet-LHH_glszm_SmallAreaEmphasis −0.462

wavelet-HLL_firstorder_Maximum −4.677

exponential_firstorder_Energy −0.937

exponential_glszm_SizeZoneNonUniformity 3.390

gradient_glcm_Idn 2.041

gradient_glszm_SmallAreaLowGrayLevelEmphasis 0.091

lbp-3D-k_glszm_SmallAreaLowGrayLevelEmphasis 3.205

Table 3 Multivariable logistic regression analyses

Intercept and
variable

Combined prediction model in the primary cohort

Coefficient Odds ratio (95% CI) p

Intercept −0.461 – 0.499

Radiomic signature 3.533 34.233 (7.344~159.575) < 0.001

CT-reported LN status 1.130 3.095 (0.941~10.174) 0.063

Pathological grade 0.473 1.605 (0.755~3.412) 0.219
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combined prediction model, based on the preoperative
CECT imaging radiomics signature, CT-reported LN
status, and pathological grade, was built to identify pa-
tients with LN metastasis before surgery. AUC values of
0.944 in the primary cohort and 0.912 in the validation

cohort were obtained. This suggested that this model
can be of clinical value for the diagnosis of preoperative
LN metastasis in patients with PDAC.
The TNM-based staging system of the American Joint

Committee on Cancer is commonly used for PDAC

Fig. 4 ROC curves of clinical and combined prediction models in both cohorts; decision curve analysis for the combined prediction model in the
primary cohort, and calibration curve analysis for the combined prediction model in both cohorts. a ROC curves of clinical and combined
prediction models in the primary cohort. b ROC curves of clinical and combined prediction models in the validation cohort. c Decision curve
analysis for the nomogram. Nomogram for the combined prediction model in the primary cohort. To use this nomogram, first locate the CT
reported LN status, then draw a line straight up to the points axis on the top to get the score associated with negative or positive. Repeat the
process for the other covariates (pathological grade and radiomic signatures). Add the score of each covariate together and locate the total score
on the total points axis. Next, draw a line straight down to the “probability of LN metastasis” axis at the bottom to obtain the probability. The y-
axis measures the net benefit. The blue line represents the nomogram. The gray line represents the assumption that all patients have LN
metastases. The thin black line represents the assumption that no patients have LN metastases. The decision curve showed that if the threshold
probability of a patient and a doctor is 1 and 89%, respectively, using this nomogram to predict LN metastasis risk adds more benefit than the
intervention-all-patients scheme or the intervention-none scheme. d Calibration curve analysis for the combined prediction model in the primary
cohort and e validation cohort. The x-axis represents the predicted LN metastasis risk. The y-axis represents the actual diagnosed LN metastases.
The diagonal dotted line represents a perfect prediction by an ideal model. The solid line represents the performance of the combined
prediction model, of which a closer fit to the diagonal dotted line represents a better prediction
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staging, with LN status being an important compo-
nent [31]. Preoperative lymph node metastasis is an
independent prognostic factor for PDAC and has an
important impact on the choice of treatment strat-
egies [7, 8, 32–35]. A French prospective multicenter
study that included 147 patients, indicated that preopera-
tive LN involvement had a greater effect on prognosis
than resection margin status [36]. Another study showed
that the prognosis of patients with preoperative LN metas-
tasis positive PDAC can be improved by neo-adjuvant
therapy for fibrosis of LNs [35]. Therefore, accurate pre-
operative diagnosis of LN status in patients with PDAC
has important clinical significance. CA 19–9 levels are in-
dependent predictive indicators for LN metastasis [37],
however, in this study, CA 19–9 levels had no statistical
significance (p > 0.05). This observation may be related to
sample size, therefore large-scale clinical trials are needed
to verify this result. Traditionally, the diagnosis of pre-
operative LN status in PDAC depends on imaging exami-
nations. Studies have shown that the accuracy of CECT
diagnosis for LN metastasis is 48%, and even with 18-
fluorodeoxyglucose PET/CT, the accuracy is only approxi-
mately 68% [38]. In this study, the diagnostic accuracy of
CT-reported LN status in the primary cohort was 60, and
68% in the validation cohort. The AUCs of the clinical
prediction model based on CT-reported LN status, and
pathological grade in the primary cohort and validation
cohort were 0.666 and 0.713, respectively. Considering
that pathological grade is obtained from postoperative
specimens, its predictive ability will be further reduced
after removal pathological grade.

Radiomics has been recognized as an important tech-
nology for the conversion of digital medical images to
mineable high-dimensional data, and great achievements
have been made in recent years [19, 20, 39]. The applica-
tion of radiomics to PDAC has generated optimism, but
it is also challenging because of nonspecific clinical pres-
entation and subtle imaging findings. Previous studies
on the application of radiomics to PDAC have focused
on prognostic assessments and differential diagnosis
[40–43]. The current study used radiomics features of
the entire 3D volume to assess preoperative LN status in
patients with PDAC. A recent important study in colo-
rectal cancer, revealed associations between CT radio-
mics and LN metastases [44], thereby providing a
reference for this study. We used CT imaging, which is
easily accessible as a routine examination method. The
2041 candidate radiomics features extracted from venous
phase images were reduced to 15 potential predictors,
and the radiomics signature was generated by shrinking
the regression coefficients, with the LASSO method. The
combined prediction model, including the radiomics sig-
nature and clinical characteristics, demonstrated ad-
equate discrimination when compared with the clinical
prediction model in the primary cohort (IDI, 0.5046),
which was improved in the validation cohort (IDI,
0.3294). This indicated that the radiomics signature was
stable and robust for LN metastasis prediction.
The present study had some limitations. Firstly, owing

to the nature of a pilot study design, the radiomics analysis
was retrospectively applied to single-center data, which
lacked external validation. Multicenter data analysis will

Fig. 5 Nomogram for the combined prediction model in the primary cohort
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be incorporated in future studies. Secondly, the radiomics
signature of this study was obtained from the venous
phase of CECT images, and multimodal parameters were
lacking. Finally, we did not stratify the analysis of LN me-
tastasis, although each case had exact pathological results.

Conclusion
In summary, this pilot study showed that a noninvasive
radiomics signature, extracted from CECT images, can
be conveniently used to predict preoperative LN metas-
tasis in patients with PDAC.
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