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Abstract

Superconducting quantum circuits theory and application
by

Xiuhao Deng
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Advisor: Professor Raymond Chiao

Superconducting quantum circuit models are widely used to understand superconducting
devices. This thesis consists of four studies wherein the superconducting quantum circuit is
used to illustrate challenges related to quantum information encoding and processing, quantum
simulation, quantum signal detection and amplification.

The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades.
Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase fac-
tor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal
interference effect as a consequence of scalar AB phase. Using the superconducting quantum
circuit model, the physical system is solved and resulting AB effect is predicted. Further dis-
cussion in this chapter shows that treating the experimental apparatus quantum mechanically,
spatial scalar AB effect, proposed by Aharanov-Bohm, can’t be observed. Either a decoherent
interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is
used to observe temporal scalar AB effect.

The second study involves protecting a quantum system from losing coherence, which is
crucial to any practical quantum computation scheme. We present a theory to encode any qubit,
especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where
low frequency noise is suppressed significantly. Numerical simulations for superconducting
charge qubit using experimental parameters show that its coherence time is prolong by two
orders of magnitude using our universal degeneracy point approach. With this improvement,
a set of universal quantum gates can be performed at high fidelity without losing too much
quantum coherence.

Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting
qubits with photons. We applied quantum optical approach to model coupled resonators and
obtained a four-wave mixing toolbox to operate photons states. The model and toolbox are
engineered with a superconducting quantum circuit where two superconducting resonators are
coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete
set of quantum operations between these two photon modes. This helps open a new field to treat
photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits
one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler.

Along with Feynman’s idea using quantum to simulate quantum, superconducting quan-
tum simulators have been studied intensively recently. Taking the advantage of mesoscopic size
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of superconducting circuit and local tunability, we came out the idea to simulate quantum phase
transition due to disorder. Our first paper was to propose a superconducting quantum simulator
of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid
phase transition. The side-band cooling of an array of superconducting resonators is solved
after the paper was published.

In light of the developed technology in manipulating quantum information with supercon-
ducting circuit, one can couple other quantum oscillator system to superconducting resonators
in order manipulation of its quantum states or parametric amplification of weak quantum signal.
A theory that works for different coupling schemes has been studied in chapter 5. This will be
a platform for further research.
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Chapter 1

Introduction

1.1 Background

Extrordinary progress has been made in building and improving superconducting quan-
tum devices for various applications throughout these two decades. In biological and medical
area, superconducting quantum devices are widely used to detect and manipulate weak signals
at quantum level, such as SQUID and other Josephson junction devices. Along the line of
operating information at quantum level, quantum computer is expected to be built with super-
conducting quantum circuits. In 2011, D-wave machine has become the first commercialized
quantum computation platform. Using Quantum Annealing approach, one can implement some
demonstrative computation on D-wave syistem [1]. Although the algorithm in a quantum an-
nealor is different from traditional quantum algorithm, such as Shor’s algorithm, [2] where
quantum coherence needs to be preserved consistantly, D-wave machine can solve some opti-
mization problems [3] and is aimed to eventually solve problems such as traveling salesman
problem. After all, D-wave machine is just a specialized computation machine for some par-
ticular problems. In order to build a generic quantum computer on superconducting circuits,
Google, IBM, Microsoft and some other high-tech companies have been investing in research
on quantum computing machine using quantum algorithm based on superconducting quantum
circuits. Nevertheless, to realize a complete quantum computer that can solve NP-complete
problem, [2] there are still a lot of fundamental research to pursue and problems to solve, such
as improving coherence time up to shreshold of fault tolerent quantum computing, improving
the robustness of superconducting qubits, integrating massive qubits on to a chip, improving
quantum operation implemented on chips, improving measurement especially quantum non-
demolition measurement (QND), etc. Feymann’s idea ”using quantum to simulate quantum”
inspires physicists to study quantum systems using a quantum simulator. Along the journey to-
wards building quantum computers, intensive research is also focus on using a quantum system
based on superonconducting circuits to simulate and study quantum many body physics. [4–6]

Note that, besides the low loss from superconductivity, a key feature of superconduct-
ing quantum circuits is its nonlinearity. One of the most important ingredients is Josephson
junction, named after B.D.Josephson who discovered and predicted nonlinear Cooper pairs tun-
neling current through a barrier sandwiched by two superconductors. In 1962, B.D. Josephson
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published a suggestion that it should be possible for electron pairs to tunnel between closely
spaced superconductors even with no potential difference [7]. Based on this effect, a type of
active devices has been popular in superconductor electronics is a junction between two su-
perconductors which is weak enough to allow only a slight overlap of the electron pair wave
functions of the two superconductors. Under this condition, electron pairs can pass from one
superconductor to the other even with no applied voltage. Such weak links can be formed
with fdinsulating tunnel barriers, metal or semiconductors, and even superconductor with grain
boundaries, very narrow constrictions or damaged regions.

1.2 Cooper pairs Tunneling: The Josephson Relations

Barriers embeded in-between two superconductors will scatter supercurrent running through
each superconductor. Current pass across the barrier in tunneling way. Let’s formulate the
tunneling current in this section following B.D. Josephson’s theory [7, 8]. First consider qual-
itatively the effect on the pair wave functions in two superconductors that are brought close
together. Remember that if the separation between the superconductors is large, the pairs in
each can be described by a macroscopic wave function

Ψ(−→r , t) =
∣∣∣Ψ(−→r )

∣∣∣ exp{i[θ(−→r ) − (2EF/~)t]}.

θ is the gauge invariant phase in a superconductor bulk. The phases of the two wave functions
are unrelated and, in fact, are only definable to within arbitrary additive constants. As the sepa-
ration of the superconductors is reduced, the wave functions penetrate the barrier sufficiently to
couple and the system energy is reduced by the coupling. When the energy associated with the
coupling exceeds the thermal fluctuation energy, the phases become locked and pairs can pass
from one superconductor to the other without energy loss. We shall see that phases of the wave
functions are not locked together but rather slip relative to each other at a rate that is precisely
related to the voltage.

We now give a simple derivation of the Josephson relations for an arbitrary location in
the plane of the junction. [9] The time evolution of the wave functions of the superconductors
on each side of a coupled Josephson junction can be described by

i~∂Ψ1
∂t = U1Ψ1 + KΨ2

i~∂Ψ2
∂t = U2Ψ2 + KΨ1

(1.1)

where the Us are the energies of the wave functions for the two superconductors and K is a
coupling constant that measures the interaction of the two wave functions. It is asumed that a
voltage source is applied between the two sides; a difference of energy e∗(V2 − V1) = e∗V is
imposed between the two sides so that U2−U1 = e∗V , e∗ is the charge of a pair. For convenience,
the zero of energy can be taken midway between the energies U1 and U2. Then equations (1.1)
become

i~∂Ψ1
∂t = −e∗V

2 Ψ1 + KΨ2

i~∂Ψ2
∂t = e∗V

2 Ψ2 + KΨ1
(1.2)
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It is convenient to express the wave functions in terms of the pair density

Ψk =
√

n∗s1eiθk (1.3)

where k is 1 or 2. Substituting (1.3) into (1.2), separating real and imaginary parts, and intro-
ducing the phase difference across the junction as φ = θ2 − θ1, we find the following:

∂n∗s1

∂t
=

2
~

K
√

n∗s1n∗s2 sin φ (1.4)

∂n∗s2

∂t
= −

2
~

K
√

n∗s1n∗s2 sin φ (1.5)

∂θ1

∂t
= −

K
~

√
n∗s2

n∗s1
cos φ +

e∗V
2~

(1.6)

∂θ2

∂t
= −

K
~

√
n∗s1

n∗s2
cos φ −

e∗V
2~

(1.7)

From (1.4) and (1.5) we see that the rate of decrease of pair density in one superconductor is the
negative of that in the other. This rate of change represents only a tendency to change. There
cannot be an actual change of pair density since that would create a charge imbalance between
the electrons and the background of ions; the imbalance is avoided by the currents that flow in
the circuit connected to the junction. Thus, the tendency toward rate of change of pair charge
density e∗n∗s times the thickness of the junction electrodes is the density of current flowing from
one electrode to the other.

The sign of the current density can be deduced from a comparison with the phenomena
in a bulk superconductor. There the current density

−→
J is in the opposite direction from that of

the gradient of phase ∇θ, as seen from the following equation

p = ~∇θ =
m∗

n∗e∗
−→
J s + e∗

−→
A . (1.8)

In the Josephson junction, φ > 0 corresponds to a positive gradient of phase from 1 to 2.
Therefore, current density from 2 to 1 is positive when φ > 0. Since there must be a transfer
of electrons from 1 to 2 for this current polarity, then ∂n∗s2/∂t > 0. Therefore, K is a negative
quantity. Equation (1.4) gives, for the current density from 2 to 1:

J = Jc sin φ (1.9)

where the constant Jc is the critical current density whose value must be found by more sophis-
ticated means [8]. Subtracting (1.6) from (1.7) and equating n∗s1 and n∗s2 gives the time evolution
of the difference of phase across the junction at any point.

∂φ

∂t
=

2e
~

V (1.10)
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where we have used e∗ = −2e. Equations (1.9) and (1.10) are the Josephson relations that
express the behavior of the electron pairs. At nonzero temperature and with nonzero voltage
across the junction, there is also a current of quasiparticles. [8] I am not going to details about
the theory to treat the simultaneous presence of pair and quasiparticle currents instead I will
just refer to Tinkham’s book [ [8]] and Duzer’s book [ [10]].

It can be inferred from (1.9) and (1.10) that coupling of the wave functions reduces the
energy below the uncoupled system (for small junctions) by an amount

Ec =
~Ic

2e
cos φ (1.11)

Here Ic is the critical current in the junction. When φ = 0, the current density is zero and
the coupling energy has its maximum value. As the current density is raised to its maximum,
φ → π/2 and the coupling energy is reduced to zero. For higher currents, the wave functions
become uncoupled and begin to slip relative to each other at a rate determined by (1.10).

The general expression for the maximum zero-voltage current density, the critical current
density, in a tunnel junction has been derived from microscopic theory: [9]

Jctu =
Gn

A
(
π∆(T )

2e
) tanh

∆(T )
2kBT

(1.12)

where Gn is the tunneling conductance for V � 2∆/e and A is the junction area. Fig.1.1(a)
shows the I-V characteristic of a tunnel junction at T = 0. The critical current Ic is Jc times the
area, assuming the coupling energy is constant over the junction surface, which is the case for
a small junction with no applied magnetic field. Notice that Ic equals the tunneling current that
would have existed in the absence of pairing at a voltage of about three-quarters (π/4) of the
gap voltage Vg = 2∆/e. Fig.1.1(b) shows the effect of temperature on lead-insulator-thin and
tin-insulator-tin Josephson junctions, as calculated using (1.12) and from experiment.

Figure 1.1: (a) I-V characteristic of a tunnel junction at T = 0. (b) Temperature dependence of
the maximum zero-voltage current from experiment. [11] (c) Dependence of the critical current
Ic on the Josephson frequency. The peak occurs where the applied dc voltage is 2∆/e. [12]
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1.2.0.1 DC Effects:

The DC Josephson effect is a direct current crossing the insulator in the absence of any
external electromagnetic field, owing to tunneling. This DC Josephson current is proportional
to the sine of the phase difference across the insulator, and may take values between −Ic and Ic,
as discribed by Eq.(1.9).

1.2.0.2 AC Effects:

If a dc voltage V is applied to a junction, integration of (1.10) shows that

φ = φ0 + (2e/~)Vt (1.13)

Substitut this into (1.9) one obtains the result

I = Ic sin(ωJt + φ0) (1.14)

so there is an ac current at the frequency

fJ =
ωJ

2π
= (

1
2π

)
2e
~

V. (1.15)

The coefficient in the last term in (1.15) is 483.6× 1012Hz/V .(Ref. [10]) It has been shown that
Ic is frequency dependent; thus the amplitude of the current oscillations varies with frequency.
Riedel [9] predicted the form shown in Fig.1.1(c) and this has been verified experimentally
[9]. One important aspect of this result is that substantial ac pair currents flow even when the
junction voltage exceeds the gap by several times.

It is of interest to make an observation here about the I − V characteristic in Fig.1.1(a).
There it appears that it is possible to increase the current along the ordinate from zero to Ic

without developing any voltage. That is not true, since by (1.10), it takes voltage to change the
phase, and through (1.9), the current. At Ic the phase difference is π/2; to reach this value from
φ = 0 in say, 20ps, it would be necessary to apply a voltage of about 25µV .

It should be pointed out that the derivation of the Josephson relations (1.9) and (1.10)
was based on the use of a simple coupling constant K in (1.1) and was not at all specific to the
physics of tunneling. Ref.[ [8]] and [ [10]] discussed a number of different structures in which
there is a weak coupling between two superconductors; they all obey the Josephson relations
as long as the coupling is weak enough, and not too weak. When the coupling strength is
increased, the sinusoidal dependence in (1.9) changes to another function, but the periodicity of
oscillations in (1.15) remains the same.

We should comment about the idealization in Fig.1.1(a). In real tunnel junctions there is
some current in the sub-gap range of voltages for various reasons; it usually rises with voltage
and is considered a defect. The sub-gap current can be characterized by

Vm = Ic × R(2mV) (1.16)

where R(2mV) is the inverse of the slope of a line from the origin to the characteristic at 2mV .
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For some applications, it is essential to have the highest possible Vm and for others it is less
critical.

Ic depends on a lot of physical quantities. In this article, I am not studying its properties
so I skipped the discussion about the physics of critical current of JJ.

1.2.0.3 Inverse AC Effects:

When a Josephson junction is irradiated with radiation of angular frequency ω1, the re-
sponse of the supercuddrent gives rise to constant-voltage Shapiro steps [13, 14] in the dc I-V
curve at voltages Vn = n~ω1/2e,

For simplicity, we start by treating a junction with an ideal voltage bias of

V = V0 + V1 cosω1t (1.17)

we obtain
φ = φ0 + ω0t + (2eV1/~ω1) sinω1t (1.18)

where φ0 is a constant of integration and ω0 ≡ 2eV0/~. Inserting this into Eq.(1.9) to calculate
the current through junction, and using the standard mathematical expansion of the sine of a
sine in terms of Bessel functions, we have

Is = Ic

∑
(−1)nJn(2eV1/~ω1) sin(φ0 + ω0t − nω1t) (1.19)

This contributes a dc component only when ω0 = nω1, i.e. when the dc voltage V0 has one of
the Shapiro step values

Vn = n~ω1/2e. (1.20)

If we include the normal current Vn/R as well, the total dc current on the nth Shapiro step can
take on any value in the range

Vn/R − IcJn(2eV1/~ω1) ≤ I ≤ Vn/R + IcJn(2eV1/~ω1) (1.21)

In other words, the half-width of the nth step is In = IcJn(2eV1/~ω1).
Note that the dc average supercurrent giving the steps exists only for V exactly equal to

one of the Vn for this simple voltage-biased case. At all voltages between the Vn there would
be no dc effect of the supercurrent. Of course, the same would be true of the dc I-V curve of
unirradiated junction, if it could be coltage-biased. The I-V curves that we have been discussing
were all based on the more realistic assumption of dc-current bias, on the basis that the current
of a zero resistance device is fixed by the external resistance in the circuit. SImilarly, in the rf
case, the drive is never an ideal voltage source, and in most cases, it is closer to a current drive
for rf as well as for dc. Numerical calculations are then required to obtain the step widths [8].
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1.3 Gauge Invariant phase: Effect of a Magnetic Field

We saw in Eq.(1.9) that the current density is directly related to the phase difference. In
this section we shall see how to re-define the phase difference in such a way that the choice of
mathematical formulation for any magnetic field that may be present will not affect the value of
current density. That is, we shall ensure that the current density is gauge invariant.

Figure 1.2: Integration path to relate flux in a junction and the phase difference along the junc-
tion. Current density in the bounding superconductors. [10]

Consider two points on opposite sides of the barrier in a JJ as shown in Fig.1.2. If a gauge
change is made so that

−→
A ′ =

−→
A + ∇χ (1.22)

where χ is an arbitrary scalar function, the phases at the two points become

θ′1 = θ1 − (2e/~)χ1
θ′2 = θ2 − (2e/~)χ2

(1.23)

Let us define the gauge invariant phase difference between points 1 and 2 to be

φ = θ2 − θ1 +
2e
~

∫ 2

1

−→
A(x, t) ·

−→
dl (1.24)

We can easily see by substitution of (1.22) and (1.23) that φ is independent of the choice of
gauge, i.e., the choice of χ. This modified definition of φ does not affect its being canonically
conjugate to the number of pairs transferred, so the Josephson relations still apply.
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Now let us use (1.24) to develop a relation between the phase difference and the magnetic
field passing through a junction in the plane of the barrier. Consider two pairs of points Q1,Q2
and P1, P2 at two different positions along the junction as in Fig.1.2. The choice of gauge is
arbitrary, so let us choose the London gauge in which ∇θ = 0 inside each of the two electrodes.
Then θ2 is the same at P2 and Q2, so it is for θ1. Using (1.24), we can form

φ(P) − φ(Q) =
2e
~

[
∫ P2

P1

−→
A ′(P, t) ·

−→
dl −

∫ Q2

Q1

−→
A ′(Q, t) ·

−→
dl] (1.25)

The outward-directed magnetic flux through the rectangular contour in Fig.1.2 is

Φy =

∫
S

−→
B ·
−→
dS =

∮ −→
A ′ ·
−→
dl

=

∫ Q2

Q1

−→
A ′ ·
−→
dl +

∫ P1

Q1

−→
A ′ ·
−→
dl +

∫ P2

P1

−→
A ′ ·
−→
dl +

∫ Q2

P1

−→
A ′ ·
−→
dl (1.26)

It can readily be argued as follows that the second and fourth integrals on the right side of (1.26)
are negligible if the superconductors are much deeper than the penetration depth. The canonical
momentum in the transformed gauge is −→p ′ = m∗/n∗e∗ − (2e/~)χ1 and −→p ′ = ~∇θ′. Since the
gauge was chosen so ∇θ′ = 0 in the superconductors, then m∗

n∗e∗2
−→
J s = −

−→
A ′. The integrals in

(1.26) are equivalent to integrals of current density. The current is predominantly parallel to the
junction surface, so those portions of the contour that are perpendicular to the surface make no
significant contribution to the integrals in (1.26). We have located the portions of the contours
lying parallel to the surface deep enough (appreciably beyond one penetrationi depth) within
the superconductor that the current is essentially zero there, as illustrated in Fig.1.2. Therefore,
the Q1 − P1 and P2 − Q2 integrals may be neglected. What remains in (1.26) are the same two
integrals that appear in (1.25), so we obtain

φ(P) − φ(Q) =
2e
~

Φy (1.27)

The difference of the phase differences between two points along a junction is simply propor-
tional to the magnetic flux passing through the junction between the points, including that in
the pennetration depths of the superconductors.

It is useful to obtain a differential equation for the phase difference. Suppose the points P
and Q are separated by a differential distance dz. The flux in that distance will be B0

ydz(λ1 +λ2 +

d), where B0
y is the flux density in the barrier, λ1 and λ2 are the penetration depths in the two

superconductors, and d is the barrier thickness. Then, letting d′ = λ1 + λ2 + d, (1.27) becomes

∂φ

∂y
= −

2ed′

~
B0
y (1.28)

where we have used partial-derivative notation to take account of the fact that there can also be
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a component of
−→
B in the z direction leading to

∂φ

∂y
= −

2ed′

~
B0

z (1.29)

Combining (1.28) and (1.29) we can write the gradient of the phase difference in the plane of
the junction as

∇φ =
2ed′

~
(̂n ×
−→
B0) (1.30)

where n̂ is the unit vector directed from superconductor 1 toward superconductor 2.
Although the results of this section were derived in the context of tunnel junctions, they

are equally applicable to the conductive barrier junctions as well. [9] This relationship between
magnetic field on the junction and the gauge invariant phase indicates a dependance of maxi-
mum current at ZERO-voltage, the central spike in Fig.1.1(a), which is the critical current in
magnetic field. Combining equation (1.9) and (1.30) one obtains

Ic(B0) = Ic(0)

∣∣∣∣∣∣sin(ed′LB0/~)
ed′LB0/~

∣∣∣∣∣∣ (1.31)

where L is the length of the junction and Ic(0) = WLJc is the total critical current with zero
magnetic field. Since the current source has only one polarity, φ(0) flips from +π/2 to −π/2 and
back as necessary to keep Ic(B0) positive. We can put the above equation in another useful fform
by noting that e/~ = π/Φ0, where Φ0 is the flux quantum (2.07 × 10−15Wb) and expressing the
total flux through the junction as Φ = d′LB0 to get

Ic(B0) = Ic(0)
∣∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣∣ (1.32)

This equation will lead to an important superconducting quantum devices to be introduced in
the next chapter.
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Chapter 2

Superconducting quantum circuits

2.1 Introduction of Superconducting quantum circuits and super-
conducting quantum bits

In this Chapter, I am going to introduce the modeling of superconducting quantum circuit,
following with its application to build quantum bits. Decoherence in superconducting circuits
will briefly introduced as well. Then I am going to present two of my published papers. One
is to propose a detector for scalar Aharonov-Bohm effect, supervised by professor Raymond
Chiao and collaborated with professor Munoz, professor Douglas Singleton, professor Kyle
Sundyst, and so on. The other is to engineer circuit to protect quantum coherence, supervised
by professor Lin Tian.

2.1.1 Circuit Model of Josephson junction

The Josephson relations derived in Sec.1.2 apply to any junction between two supercon-
ductors with a sufficiently weak coupling between them. Equation 1.2-(1.28) and (1.29), upon
integrating the current density over the junction cross section, become

I = Ic sin φ (2.1)
·

φ =
2e
~

V (2.2)

In general, the critical current Ic depends on an applied magnetic field, as Eq.(1.32); in that
case φ is the phase difference at the center of the junction if the junction characteristics are
spatially uniform. The Josephson current relation reveals that Josephson junction includes a
nonlinear inductance. This electron pair current is represented in the equivalent circuit model
in Fig.2.1(a).

Capacitance: Besides the nonlinear inductance from Josephson junction, another compo-
nent is the displacement current which flows between the adjacent superconducting electrodes
and is represented in the circuit model by a capacitance. This would be easy to calculate in
the case of a tunnel junction if the barrier thickness d and dielectric constant εr were know. In
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Figure 2.1: (a) Equivalent circuit model of a Josephson junction. Nonlinear inductor is con-
nected parallelly with a capacitor. (b) Specific capacitance of Nb/AIOx/Nb Josephson junc-
tions. [15] Inset in dashed box is the circuit used in the experiment. (c) Two wide superconduc-
tors (blue) are connected with a long barrier (orange). The integrated loop along the dashed line
can be modeled as the circuit in the inset of (b).

practice, these are only estimated and the capacitance used in modeling is obtained experimen-
tally. The parallel-plane capacitance formula is assumed; C = ε0εrA/d where A is junction
area. Experimental evaluations have been published; a key result is shown in Fig.2.1(b), which
gives the capacitance per unit area as a function of the Josephson current density for important
niobium/aluminum oxide/niobium junctions. [16] Note that the dependence is weak, which re-
flects the fact that the tunneling current density is exponentially dependent on barrier thickness
and capacitance is only linearly dependent. In semiconductor sandwich-form junctions, a rea-
sonable estimate can be made since the thickness can be determined and the dielectric constant
is usually known.

Conductance: The conductance element G(V) in the equivalent circuit represents the
quasiparticle current in the case of tunnel junctions. Its value is the slope of a line from the
origin to the quasiparticle part of the I-V characteristic. In modeling of junctions for numerical
computation, the conductance term is usually handled by piecewise-linear approximation. In
some cases, analytic functions are fitted to the quasi-particle characteristic.

Other Issues in Modeling: For junctions long enough that the inductance of the electrodes
is significant with respect to the Josephson inductance LJ = Φ0/2πIc, as suggested in Fig.2.1(c),
one should use a parallel set of circuits shown as two L′s in Fig.2.1(b)’s inset, connected by
inductance representing the electrodes. This issue becomes crucial for further discussion of
superconducting quantum interference devices (SQUID).
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2.1.2 Hamiltonian of Josephson junction

It should be noted that in many different kinds of junctions, the extrapolation downward
of the linear part of the I-V characteristic (Fig.1.1(a)) found above the energy gap V = 2∆/e
does not always go to the origin. Often there is either so-called ”excess current” or ”deficit
current” and the reasons are complex. [17] In this text, we simplify by assuming there is neither
excess nor deficit in the analytic model and, in computer simulation, the actual shape can be
modeled.

Based on the circuit model Fig.2.1(a), using φ as independent variable, we can write
down Kirchhoff’s current law for this Josephson junction

~

2e
CJ
··

φ + Ic sin φ = Inet (2.3)

This is the motion of equation for the phase difference across Josephson junction. Correspond-
ingly, the charge energy of the junction, as the kinetic part of φ is

K(
·

φ) =
1
2

CJV2

=
CJ

2
(
~

2e
)2 ·φ

2

=
~2
·

φ
2

4Ec
(2.4)

where Ec = 1
2

(2e)2

CJ
is the charging energy of one Cooper pair in the effective capacitor. The

inductive energy of the junction, as the potential part

U(φ) =
~

2e

φ∫
0

Ic sin φdφ

=
~

2e
Ic(1 − cos φ)

= EJ(1 − cos φ) (2.5)

where EJ = ~
2e Ic is the Josephson energy of the junction. Therefore, without external field, the

Hamiltonian of the junction is

H =
~2
·

φ
2

4Ec
+ EJ(1 − cos φ) (2.6)

Hence, the resonant frequency of JJ

ωJ =

√
2eIc

~CJ
(2.7)

According to experimental data, [18, 19] this is at the order of GHz, same as radio frequency.
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Figure 2.2: (a) A small superconducting island (small blue square) is connected to a big bulk
of superconductor (blue) via a junction (Orange). Gate voltage Vg is used to bias the system
energy. (b) Schematic circuit model of charge qubit. (c) Charge energy diagram.

We can see in the Hamiltonian (2.6) that phase difference φ behaves like position x in

configuration space. So effective mass mE = ~2

2Ec
, and canonical momentum p =

~2
·

φ
2Ec

. In
quantum limit, the quadratures φ̂ and p̂ need to be quantized by applying quantum commutation
rule

[φ̂, p̂] = i~ (2.8)

2.1.3 Coulomb blockade and charge qubit

When the area of junction is small, Fig.2.2(a)., tunneling rate is small so EJ is small
and capacitance is also small enough so that charging energy of a Cooper pair in the Junction
capacitor dominates the Hamiltonian, Ec = 1

2
(2e)2

CJ
� EJ . This means it costs too much energy

for a Cooper pair to tunnel across the junction. As a result, they tends to stay where it was. This
is called Coulomb blockade. Since number of Cooper pairs is

N =
Q
2e

=
CJV
2e

=
CJ

2e
~

2e

·

φ =
~

2Ec

·

φ =
p
~

(2.9)

where Q is total charge on the island. So we can use N as a quadrature. The commutator
becomes

[φ̂, N̂] = i (2.10)

And the quantized Hamiltonian becomes

H = EcN̂ + EJ(1 − cos φ̂) (2.11)

Since inductive energy now becomes a small term and the total energy mainly depends on

charge energy, we move to number representation, where φ̂ = i
·

N̂, and use take {|n〉} as basis,
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where n represents the number of pairs on superconducting island. Physically this indicates that
the number of Cooper pairs on the island becomes a good quantum number. The energy diagram
of this case is shown in Fig.2.2(c). At the crossings of different levels the degeneracy will be
avoided due to Josephson tunneling energy EJ . This anti-crossings are called ”degeneracy
points” or ”sweet points”, in convention. The two quantum level structure at degeneracy points
is usually used to build a qubit. In order to do so in the Coulomb blockade regime, we can
apply an biasing gate voltage across the junction, taking the value Vg = 1

2
N(2e)

CJ
. In this case, the

canonical momentum becomes (N̂ − ng) where ng is half integer number of pairs due to bias.

Recall that φ = i
·

N means φ displaces number N. So the Hamiltonian now becomes

H = Ec(N̂ − ng) − EJ cos φ̂

= Ec(n − ng) |n〉 〈n| −
EJ

2
(|n〉 〈n + 1| + |n + 1〉 〈n|) (2.12)

Considering the lowest two levels |0〉 , |1〉 and let ng = 1/2, the Hamiltonian is simplified to be
qubit form

H =
Ec

2
(|1〉 〈1| − |0〉 〈0|) −

EJ

2
(|0〉 〈1| + |1〉 〈0|)

=
Ec

2
σz −

EJ

2
σx (2.13)

where σx,y,z are Pauli matrices. Since this Hamiltonian is in pair number picture, correspond-
ingly electric charge on the SC island, people usually call it ”Charge Qubit”.

Note that in Coulomb blockade regime the superconducting island with small junction
can be a electrometer to detect numbers of Cooper pairs, so charge qubit has also a name single
Cooper pair transistor (SCT). This is similar to single electron transister (SET), whose island is
not superconducting and the tunneling particle is single electron.

Two requirements must be met for Coulomb blockade to be clearly observed [8]: (1)
Ec must exceed kT to avoid having its effects washed out by thermal fluctuations and (2) the
resistance seen by the junction capacitance (i.e., the parallel combination of its internal tun-
neling resistance and any external shunting impedance) must exceed the quantum resistance
RQ = h/4e2 to avoid having its effects washed out by quantum fluctuations.

2.1.4 Large junction and phase qubit

For a junction with large area and thin barrier, critical current is large and capacitance is
large as well. Consequently, EJ � Ec. In this case, n is not a good quantum number any more.
We need to return to phase representation and write down the Hamiltonian as

H =
~2
·

φ
2

4Ec
− EJ cos φ (2.14)

The dominant term becomes the inharmonic potential −EJ cos φ where the energy levels are
splitted in-equally. Though the bottom of the cosinusoidal potential well is still very close to a
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harmonic potential, where the lowest level separations are too close to be a qubit.

Figure 2.3: (a) Schematic circuit of DC current biased Phase Qubit. Cross stands for Josephson
nonlinear inductor. (b) Washboard-like potential energy diagram of Phase Qubit. By adjusting
Ie one can engineer each local potential well to include only three levels |g〉, |a〉, |b〉.

One way to enhance the inharmonicity is to apply a current bias Ie across the junction, as
Fig.2.3(a) shows. Now the Hamiltonian becomes

H =
~2
·

φ
2

4Ec
− EJ cos φ −

~

2e
Ieφ (2.15)

Defining sin γ0 = Ie/Ic, we can write down the potential term to be

U(φ) = −
~

2e
Ic cos φ −

~

2e
Ieφ

= −EJ(cos φ +
Ie

Ic
φ)

= −EJ(cos φ + sin γ0φ) (2.16)

Expand cos φ around γ0 up to third order to get the in-harmonic term

cos φ = cos γ0 − sin γ0(φ − γ0) −
1
2!

cos γ0(φ − γ0)2 +
1
3!

sin γ0(φ − γ0)3

Again neglecting constant terms, the potential term turns into

U(φ) =
EJ

2!
cos γ0(φ − γ0)2 −

EJ

3!
sin γ0(φ − γ0)3 (2.17)

The energy diagram is depicted in Fig.2.3(b). Adjusting external current bias Ie one can change
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the portion of the quadratic term cos γ0
2 and the cubic term sin γ0

6 to change the inharmonicity.
The lowest two levels in the local well can be used as qubit.

2.1.5 SQUID and tunable qubits

In superconductor, a loop of current gives integer numbers of flux quantum, i.e. fluxon.
The existence of Josephson junction in the loop doesn’t change magnetic screening property of
superconductor as long as supercurrent dominates. [8] Let Φe be the external magnetic flux add
into a loop of supercurrent. We have ∑

i

φi + 2π
Φe

Φ0
= 2nπ (2.18)

where Φ0 is a fluxon. The first term in (2.18) sums over the phase difference across all the
Junctions along the integral loop.

Flux qubit: If there is one JJ as Fig.2.4(a) shows, φ = 2nπ − 2πΦe
Φ0

= 2nπ − 2πφe, where
φe is the gauge invariant phase factor due to external field. As mention in Sec.(2.1.1), when
dealing with a loop of superconductor, the inductance on the electrodes needs to be considered.
Therefore, an lindear inductor is connected in series with junction, Fig.2.4(b). The Hamiltonian
can be written down as

H =
~2
·

φ
2

4Ec
+ EJ(1 − cos φ) +

EL

2
(φ − φe)2 (2.19)

where EL =
Φ2

0
(2π)2L

= ~2

(2e)2L and L here is self-inductance. In large junction regime EJ > Ec,

its potential energy diagram is depicted as Fig.2.4(c). With external field biased at φe = 1
2φ0,

we obtain a double-well potential (dashed line) giving rise to two degenerate ground state |le f t〉
for clockwise supercurrent and |right〉 for counter-clockwise supercurrent, corresponding to
magnetic flux in the loop going down and up. Because the finite barrier between the two wells,
the degeneracy is lifted due to the overlap of ground state wavefunction. So at the sweet point
the two actual lowest states are {

|↑〉 = |le f t〉 + |right〉
|↓〉 = |le f t〉 − |right〉

(2.20)

With these two flux states one can build a qubit, the so called ”flux qubit”. And this loop
structure is sometimes called rf-SQUID. However, in real experiments, people usually shunt
two large junctions and one small junction along the superconducting loop. [20] But the ground
states have same physical meaning.

dc-SQUID: When there are two JJs along the loop, Fig.2.4(d), one needs two variables φ1
and φ2 as the phase difference across the two JJs. The superconducting loop now comes back to
the form shown in Eq.(1.24). Coming with screening effect (2.18) one gets φ1 + φ2 = 2nπ − φe.
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Figure 2.4: (a) A big superconductor loop (blue) embedded with a Josephson junction (orange).
Magnetic flux Φe goes through the loop to adjust the phase difference across the junction. (b)
Schematic circuit of one-junction SQUID. The superconductor loop is treated as an inductor
that is connected with Josephson junction in series. (c) Potential energy diagram of the one-
junction SQUID. When Φe = π, it forms two degenerate double well system that can be used as
a Flux Qubit. (d) Tunable dc SQUID.

The Hamiltonian now becomes

H =
~2(

·

φ1
2
−
·

φ2
2
)

4Ec
+ EJ(1 − cos φ1) + EJ(1 − cos φ2) +

EL

2
(φ1 − φ2 − φe)2

=
~2(

·

φ1
2
−
·

φ2
2
)

4Ec
+ 2EJ cos

φ1 + φ2

2
cos

φ1 − φ2

2
+

EL

2
(φ1 − φ2 − φe)2

=
~2
·

φ
2

2Ec
+ 2EJ cos

φe

2
cos φ +

EL

2
(φ1 − φ2 − φe)2

where the new variable φ =
φ1−φ2

2 . Here I assumed the two junctions are identical so they have
the same charge energy Ec and Josephson energy EJ . If the loop is small, the self-inductance
L is too big so that energy EL is negligible. With an external current across the SQUID, the
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Hamiltonian becomes a phase qubit like form

H =
~2
·

φ
2

2Ec
+ 2EJ cos

φe

2
cos φ −

~

2e
Ieφ (2.21)

Comparing with (2.15) we can see in this dc-SQUID, the inductance energy term becomes
tunable. So in large junction limit, this dc-SQUID is made as a tunable phase qubit.

Charge qubit: We replace the single junction in Sec.2.1.3 with a two-junction SQUID.
The two junctions are in small junction limit Ec � EJ . Similar to the derivation in dc-SQUID,
we just need to replace the Josephson energy in Eq.(2.13) with a tunable term 2EJ cos φe

2 , and
get the Hamiltonian

H =
Ec

2
(|1〉 〈1| − |0〉 〈0|) −

EJ

2
(|0〉 〈1| + |1〉 〈0|)

=
Ec

2
σz − EJ cos

φe

2
σx (2.22)

As a summary, so far I have introduced some fundamental theory of superconducting
circuit and superconducting qubits. This is an important ingredient of my research throughout
these years.

In the following sections, I am going to show my published work based on this theoretical
frame work of superconducting circuits.

2.2 Observability of the scalar Aharonov-Bohm effect inside a 3D
Faraday cage with time-varying exterior charges and masses

2.2.1 Introduction

In the 19th century, Faraday showed that when the exterior of a large, enclosed cubical
metallic cage (i.e., a “Faraday cage”) is electrified at such a high voltage that sparks started
to dart from the corners of the cage, he could still safely conduct many sensitive electrical
experiments within the cage, such as sensitive electroscope measurements of the charge residing
on the interior surface of the cage. He found the complete absence of any charges residing on
the interior surface. Therefore in the special case of a spherical “Faraday cage” configuration,
such as the one depicted in Figure 1, one would never expect any kind of electrical effects to be
detectable inside the hollow spherical cavity which is carved out of this metallic sphere.

But what is impossible classically is sometimes possible quantum mechanically. For ex-
ample, a 2D, cylindrical (i.e., tubular) Faraday cage was used in Aharonov and Bohm’s original
paper [21], in which they first proposed the electric (or “scalar”) Aharonov-Bohm (AB) effect.1

A metallic tube shielded an electron passing through the tube from any exterior electric fields.
However, if a voltage pulse were to be applied to the exterior of the tube only when the electron
wavepacket were to be deep in the interior of the tube, then the electron could not feel any

1We do not use the term “scalar” here to refer to neutron interferometry experiments that have been conducted
in a uniform magnetic field, but reserve it to refer to the electric and gravitational AB effects.
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forces during its passage through the tube. Nevertheless, the electron would pick up the scalar
AB phase shift

φ(t) =
e
~

∫ t

0
V

(
t′
)

dt′ (2.23)

caused by the voltage pulse V (t) applied to the tube whilst the electron was deep in the interior
of the Faraday cage.

The scalar (electric) AB effect is less known than the vector (magnetic) version of the
AB effect since it is harder to achieve the situation required for the electric AB effect where
fields are vanishing while the potentials are non-zero. If one considers the fields and potentials
for the cylindrical Faraday cage used in Aharonov and Bohm’s original paper, then the electron
will invariably pass through some region with a non-zero electric field, although the field may
be extremely small. To have the electron pass only through regions where there is no field, one
needs to switch the fields and potentials on and off completely, i.e., it is necessary to consider
the time-dependent fields and potentials described by equation (2.23), where V(t) is a function
with compact support.

The existence of the scalar AB effect has been questioned (see for example the paper by
Walstad [22]) exactly on the basis that some experimental confirmations of the effect [23] have
the interfering electron passing through regions where the electric field is non-zero, and thus
(potentially) one could explain the shift in an interference pattern in terms of classical forces
rather than as a quantum phase effect.

In this paper we are proposing two variants of the scalar AB effect as two “thought exper-
iments” which address these questions with setups where a quantum system that is influenced
by potentials is always deep inside a field-free region of space. However, since both of these
“thought experiments” involve time-dependent potentials which have no spatial gradients, the
resulting effect on the system is not a spatial interference phenomenon, as in the vector (mag-
netic) AB effect, but rather a temporal interference phenomenon.

From equation (2.23) it can be seen that the phase in the case of the electric AB effect
involves just an open time integration as opposed to the usual closed-path spatial line integral of
the vector (magnetic) AB effect. This opens the possibility of setting up a scalar AB experiment
where one does not split the system along different spatial paths, as in the vector AB setup, but
instead the quantum system stays at a single location while the potential will be varying in time.
Since we will not be spatially splitting and recombining our system, no spatial interference
pattern will result, and therefore no shift in the spatial fringes as in the vector (magnetic) AB
effect. However, we shall see below that there can still be a shift in the fringes of a purely
temporal interference pattern, or a change of the frequency spectrum of the system.

Our proposal directly tests the scalar AB effect without any “loopholes” that would allow
for the effect to be explained any other way. The basic setup involves a spherical metallic
shell (i.e., a Faraday cage) that has an oscillating charge Q (t) or mass M (t) deposited on it.
Inside the shell, the potential is spatially uniform, but is time-varying. The two systems that are
placed inside this shell are a Josephson-circuit setup and a two-level atom. In both cases, the
interior system does not move spatially and there is a complete absence of any field (electric
or gravitational), but the system will experience a time-varying potential energy U (t) which
creates an observable AB effect.
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2.2.2 An electric scalar AB effect via Josephson interferometry

We present here a method to observe the electric scalar AB effect by a superconducting
artificial atom [18, 19]. In a bulk superconductor, phase factor in the order parameter has the
form of scalar AB phase φ(t) = 2 e

~

∫ t
0 V (t) dt, according to Josephson effect [7]. Another

Josephson relation Is = Ic sin ∆φ gives rise to zero-voltage tunneling current, where Ic is critical
current of Josephson junction. This reveals a possibly observable physical effects only due to
this scalar phase instead of electrical potential change, accordingly electric force. Consider
an ”atom”, formed of Josephson junction circuit, confined within a Faraday cage, as shown
in Figure 2.5. The cage has to be superconductive to rule out magnetic field within it due to
Meissner effect, and to preserve the coherence of bulk phase factor from washing out by thermal
fluctuations. Internal electric potential differences arise by sending rf-signals onto the surface
of the cage, consequently to change the relative gauge invariant phase on surface. Asume the
driving on surface is symmetric enough around the sphere. Because the skin effect on the
surface of the superconducting cage doesn’t affect the interior and the cage shields all external
EM-field, communication between the exterior and interior can only be in way of the phase
factor, in the limit of electrostatics equilibrium established instantly all over the whole Faraday
cage. Note that this doesn’t work for classical metal cage where phase factor is randomized.
The indications of this internal effect can be measured from the external circuit by detecting the
scattering signal from the interior.

This system can be modeled as the circuit shown in Figure 2.6. Neglecting possible
readout circuit, we construct the Lagrangian using node potentials and phases {V1, φ1; V2, φ2} in
the standard way [24, 25]. Charge energy gives rise to kinetic energy in the circuit model

T =
Csph

2
V2

1 +
C′

2
(V1 − V2)2

And inductive energy plays the role of potential energy.

V =
1

2L
(Φ1 − Φ2)2 −

~Ic

2e
cos

2π
Φ0

(Φ1 − Φ2)

=
1

2L

(
~

2e

)2

(φ1 − φ2)2 − EJ cos (φ1 − φ2)

where Φ0 = h/2e is flux quantum and φ1,2 =
2πΦ1,2

Φ0
are node phases. Josephson energy EJ =

~Ic
2e .

Josephson effect Allowing quasiparticle tunneling current through Josephson junctions, node
potentials are related to phases by V1,2 = ~

2e

·

φ1,2.
Omitting bias conditions, we find

L

(
φ2,

·

φ2, t
)

= T −V

=

(
~

2e

)2

[
Csph

2

·

φ
2

1 +
C′

2

(
·

φ2 −
·

φ1

)2
−

1
2L

(φ1 − φ2)2 + EJ cos (φ1 − φ2)] (2.24)

An AC signal is introduced onto the sphere by charging its self-capacitance, so the electric
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Figure 2.5: In the spherical superconducting (SC) shell, the SC artificial atom is formed with
the hollow cavity and a superconducting wire on the horizontal axis. A SC island is connected
to the cavity with a SC wire on one end and via a large Josephson junction on the other end.
The effective inductance between the wire and cavity can be enhanced by increasing the number
of switchbacks depicted as a solenoid. The spherical SC shell is made thick enough to prevent
magnetic flux penetration into interior.

potential V1 = V0 sinωt. For a superconductor subject to a voltage V (t), a phase factor
φ(t) develops within the order parameter of the Cooper pair condensate, Ψ =

√
ρeiφ. The order

parameter propagation to the interior gets retarded due to the junction. Hence a phase differ-
ence arises between the superconducting banks of the Josephson junction. This time-dependent
difference drives a supercurrent according to the inverse AC Josephson effect, i.e. the Levinsen
effect [13, 14].

We use new independent variables ∆φ = φ2 − φ1 and ∆
·

φ =
·

φ2 −
·

φ1. This allows us to
obtain the following equation of motion out of the Lagrangian Eq.2.24.

0 = ∆
··

φ + ω2
C∆φ +

(
2e
~

)2 EJ

C′
sin ∆φ +

(
2e
~

)2 CsphV0ω

C′
cosωt (2.25)

where ωC =
1

LC′
. We adopt the following initial conditions, which assume an initial steady

state throughout the system.  φ2 (t = 0) = φ1 (t = 0)
·

φ2 (t = 0) =
·

φ1 (t = 0)
(2.26)
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Figure 2.6: A simplified circuit includes three circuit loops that connected on node 1. In the
leftmost loop, a signal generator drives the system. The next loop with the capacitor Csph

represents the spherical SC shell. C′ and L are the effective capacitance and inductance of the
SC island, respectively. The superconducting phase ϕ2 on the central superconductor (node 2)
and ϕ1 on the sphere (node 1) are separated by a Josephson junction modeled with nonlinear
inductance LJ and effective capacitance CJ . The right loop demonstrates a simple example
of measurement, an rf-SQUID (light blue), although many possible variations of external low-
noise readout exist to detect the change of ϕ1 in time.

The first equation means initially the phases between interior and exterior are set to equal so that
there is no current running across the junction. The second equation means initially the whole
cage including inner circuit is in equipotential equilibrium. Numerical solution of ∆φ is depicted
in Fig.(2.7). When the floating circuit at node 2 is initially grounded and the internal circuit is
cooled down to ground state, a AC signal at V1 drives ∆ϕ starting at some moment according to
the equation of motion (2.25). As mentioned at the beginning of this section, non-vanishing ∆φ

across the Josephson junction furthermore drives zero voltage supercurrent across the junction
[7]. Hence the junction behaves as an emf only sensitive to phase changes. As a conclusion,
with magnetic field and electric forces ruled out by the superconductive Faraday cage, this
internal current is started by phase factor while the electric potential difference remains zero.
Therefore, this will be the expected scalar AB effect.

Let’s discuss the possibility of measurement here. The internal circuit absorbs driving
signal, rf-photons, and turns into ac current. After the driving signal is turned off, the current
maintains and change the phase φ1. By connecting an rf-SQUID to the surface (light blue part
in Figure 2.6) time dependent phase φ1 is picked up and turns into current signal in the SQUID
that can be detected. This process can be considered as some kind of scattering.

Also notice that the internal Josephson junction circuit, with the possible addition of
current or flux biasing, reminds a similar circuit topology to phase or flux qubits, respec-
tively [20, 26]. For large area Josephson junction, the anharmonic potential energy U (∆ϕ) =(
~
2e

)2 1
2L (∆ϕ)2 − EJ cos (∆ϕ) dominates the dynamics. The wave function of the internal circuit
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Figure 2.7: Phase difference across JJ ∆ϕ in terms of tme, solved from the Lagrangian equation
of motion, when ω0 ≈ 8.5GHz, α ≈ 2 × 10−15Wb,V0 = 1µV, ω = 150MHz.

is trapped in this potential. Energy is quantized into split levels, as depicted in Fig.(2.8). Similar
to an atom occupying the local minimas of this periodic potential, for the ground state of this
quantum circuit, the phase across the junction is trapped in the minimum of potential and be-
comes a good quantum number. This artificial ”atom” in the cage, as we have just determined,
can be affected by external AC signal. The phase difference ∆ϕ can be displaced from minimum
of the potential well. If a 2π phase difference happens, a quanta of magnetic flux is generated
in the cage, which now can treated as a cavity. Correspondingly in the energy vs phase diagram
in Fig.(2.8), the ”atom” jumps into secondary local minimum. After releasing the driving, the
system may stay in the ∆ϕ = 2π state until there is a relaxation back to ∆ϕ = 0 and emit AC
signal to the surface of the cage. This signal can be detected via measurement of the rf-SQUID
(rightmost loop in Figure 2.6). If the driving finishes one cycle from ∆ϕ = 0 to ∆ϕ = 0, the
magnetic flux quantum comes back to zero in the cavity. Therefore, the internal magnetic flux
becomes the consequence of a temporal scalar AB effect.

Here we make the following observations:
(1) The supercurrent arises when the voltage across the junction remains zero but a phase

difference is increasing due to external signal. This doesn’t have to be periodic AC field. Any
change to the surface scalar AB phase can drive internal supercurrent, for example a single step
wave signal will do.

(2) The scalar AB phase discussed here is only for a single Cooper pair instead of a bulk
system. As pointed out earlier, the phase difference drives the supercurrent that in principle can
be detected. Considering the bulk system, the AB phase factor should include the phase from all
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Figure 2.8: A plot of potential energy for EL = 1GHz × h, EJ = 25GHz × h. Blue is the ground
state for each well while red is the first excited state. Inter-well tunneling may occur, in which
microwave photons may be emitted or absorbed.

Cooper pairs, ϕC.P. (t) = 2e
~

∫ t
0 NC.P. (t) V (t) dt, and electrons, ϕels (t) = e

~

∫ t
0 Nels (t) V (t) dt. Here

NC.P. (t) is the total number of Cooper pairs (which is not conserved in principle) and Nels (t)
is the total number of electrons of the whole system. Also, AB phase factor from ionic lattice
should be included as well ϕion (t) = −e

~

∫ t
0 Nion (t) V (t) dt. For the case of this superconducting

”atom” confined within the Faraday cage (see Figure 2.5), there will arise time-varying charge
imbalances between the charge of the fixed ionic lattice and the charge of the mobile Cooper
pairs on the SC island, which will give rise to a nonzero total AB phase developed in the internal
circuit. The AB effect here merely drives the Cooper pair condensate and generates a magnetic
field in the internal cavity. This is the physical reaction caused by the scalar AB phase that we
expect here by theoretical analysis.

2.2.3 A gravitational AB phase shift observable as a time-dependent gravita-
tional red shift

Here we consider the problem of a two-level atom that is undergoing a time-dependent
gravitational red shift when the atom is placed inside a time-varying spherical mass shell M(t)
(see Figure 5) Again, as in the electric case, the gravitational scalar potential will be uniform
everywhere within the interior of a mass shell, so that no gravitational force will be experienced
by the atom. Nevertheless, there can in general arise a scalar AB phase [27], which arises from
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the Newtonian gravitational scalar potential Φ

ϕ (t) =
1
~

∫ t

0
m

(
t′
)
Φ

(
t′
)

dt′ (2.27)

where m (t′) is the time-varying rest mass of the quantum system that is acquiring this phase
shift. The Newtonian gravitational scalar potential for a time-varying mass shell M (t), such
as that associated with the sinusoidally time-varying charge Q (t) on the surface of the shell
depicted in Figure 1, is given by

Φ (t) = −
GM (t)

r0

= −
G (M0 + M1 cosωt)

r0
(2.28)

where G is Newton’s constant, r0 is the radius of the mass shell, M0 is the DC component of the
mass shell, and M1 is the amplitude of the AC component of the time-varying mass shell. It goes
without saying that the mass-to-charge ratio of the electron is so tiny that the AC component
associated with M1 will be extremely small, so that there would be no hope for any practical
laboratory experiment in connection with the Faraday cage configuration shown in Figure 5.
However, we are concerned here with the problem of whether in principle the gravitational AB
phase exists or not, so that a “thought experiment” would suffice here.

Nevertheless, there exist astrophysical situations, such as in the case of an exploding mass
shell of a supernova, where the radius r0 (t) is the time-dependent quantity rather than the mass
M (t). Then the gravitational AB phase shift may be large enough to be seen in practice. In
any case, although the gravitational scalar potential may vary with time, nevertheless it must be
independent of the position of the field point within the interior of the mass shell. This follows
from Gauss’s theorem. Therefore the atom within the mass shell experiences no classical forces.
However, it can experience a nonzero quantum phase shift arising from the gravitational AB
effect.

The rest mass of the excited state of an atom or of a nucleus will be larger than the rest
mass of the ground state of this atom or nucleus. This follows from Einstein’s equation

E = mc2 (2.29)

In quantum mechanics, Einstein’s equation becomes

mc2 = 〈ψ (t)| i~
∂

∂t
|ψ (t)〉 (2.30)

Thus the rest mass m in relativity is the expectation value of the energy operator i~∂/∂t in quan-
tum mechanics. For example, when an atom is in a stationary state |ψ (t)〉 = |ΨE〉 exp (−iEt/~),
it follows from (2.30) that

mc2 = E 〈ΨE |ΨE〉 = E (2.31)

and thus we recover Einstein’s equation (2.29). We shall assume that (2.30) holds in general
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Figure 2.9: Two-level atom inside a spherical mass shell with a time-dependent mass M(t) that
arises from a time-dependent charge Q(t). The mass M(t) results a time-dependent gravitational
redshift that leads to observable FM sidebands in the spectrum of the atom.

for open quantum systems, such as that of an atom inside a time-varying mass shell depicted in
Figure 5.

Now from the expression for the gravitational AB phase (2.27), we expect that the atom
in a stationary state with an energy E inside the mass shell will pick up an AB phase factor, so
that

|ψ (t)〉 = |ΨE〉 exp (−iEt/~) exp (−iϕ (t)) (2.32)

Substituting this into (2.30), we find

mc2 = 〈ΨE | {E + ~ϕ̇} |ΨE〉 = E + ~ϕ̇ (2.33)

which is an application of (2.30) to the case of a time-dependent environment, such as the time-
varying mass shell. To find ϕ̇, let us take the time derivative of the expression for the AB phase
(2.27). Then one obtains the relationship

ϕ̇ =
1
~

m (t) Φ (t) (2.34)

The physical meaning of this relationship is that the “instantaneous” frequency ϕ̇ associated
with the modulation of the phase of the atomic wavefunction due to an “instantaneous” change
in the gravitational potential energy m (t) Φ (t) of the atom inside the mass shell, leads to an
”instantaneous” energy change of the energy level of the atom given by

δE = ~ϕ̇ = m (t) Φ (t) (2.35)

Upon substitution of ϕ̇ from (2.34) back into (2.33), it follows that

mc2 = E + m (t) Φ (t) (2.36)
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from which we infer that

E = mc2
(
1 −

Φ

c2

)
(2.37)

which leads to the conclusion that the rest mass of quantum mechanical systems may be in-
creased due to its external gravitational environment.

If we now take the difference in the upper and lower energy levels of the two-level atom
and set it equal to the frequency of an emitted photon f0 times Planck’s constant h, we will find
that

h f0 = h f
(
1 −

Φ

c2

)
(2.38)

Since Φ is a negative quantity, this implies that the photon of energy h f as seen by an observer at
infinity will be smaller in energy than the photon of energy h f0 as seen by an observer near to the
atom. Thus we have recovered Einstein’s gravitational redshift starting from the gravitational
AB phase shift.

Now if the potential Φ were to be time varying due to changes in the mass shell, the
gravitational red shift would be changed by the time variation of Φ. If the time variation were
to be sinusoidal, then we would expect the emission and absorption spectrum of the atom to
undergo FM modulation. To see this, let us assume that the states of a two-level atom are
represented by |i〉 for the initial state and by | f 〉 for the final state. Then Fermi’s Golden Rule
states that the rate of transitions w f←i between these two states will be given by the absolute
square of the transition matrix element connecting the initial and final states, i.e.,

w f←i ∝
∣∣∣〈 f |H′ |i〉∣∣∣2 (2.39)

where H′ is the time-dependent perturbation that causes the transitions to occur. (For the present
purposes, we ignore the proportionality constant and the density of final states in Fermi’s Golden
Rule.)

Let us first consider the effect of the electric scalar AB effect on the transitions between
the initial and final states of a charged atom, i.e., an ion, within the spherical shell of the Faraday
cage. The electric AB phase is given by

ϕq (t) =
q
~

∫ t

0
V

(
t′
)

dt′ (2.40)

where q is the charge of the ion. Since the initial and final states of the transition must have
the same charge q (which follows from Wigner’s charge superselection rule), it follows that the
electric AB phase factors in the transition matrix elements in Fermi’s Golden Rule must cancel
out, i.e.,

w f←i ∝
∣∣∣〈 f | e+iϕq(t)H′e−iϕq(t) |i〉

∣∣∣2
=

∣∣∣〈 f |H′ |i〉∣∣∣2 (2.41)

since [H′,V (t)] = 0. From (2.41), we conclude that the electric AB effect cannot be observed
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in the spectroscopy of any charged atomic system.
However, this is not true for the gravitational AB effect. This is because of the fact that

the rest mass of an excited atom will be greater than the rest mass of the unexcited atom.
(Recall that there exists no superselection rule for mass, unlike for the case of charge.)

Now from Einstein’s equation (2.29), it follows that there exists a rest mass difference
between the final and the initial states of the two-level atom, which is given by

∆m =
∆E
c2 =

E f − Ei

c2 (2.42)

where E f is the energy level of the final state and Ei is the energy level of the initial state.
Therefore from (2.27), we see that the difference in the gravitational AB phase picked up by the
final state and the phase picked up the initial state will no longer vanish, but will differ by the
amount

∆ϕ (t) =
∆m
~

∫ t

0
Φ

(
t′
)

dt′

=
E f − Ei

~c2

∫ t

0
Φ

(
t′
)

dt′ (2.43)

where, to a a first approximation, the energy difference E f − Ei is independent of Φ.
As a simple example of how the difference in the gravitational AB phases in the initial

and final states can lead to an observable AB interference effect, let us consider a superposition
of the initial and final states which is initially given by

|Ψ (t = 0)〉 ∝ |i〉 + | f 〉 (2.44)

After a time t = T , this superposition will evolve to pick up phase factors, viz.,

|Ψ (t = T )〉 ∝ |i〉 e−
i
~EiT e−iϕiT

+ | f 〉 e−
i
~E f T e−iϕ f T (2.45)

where

ϕi (T ) =
Ei

~c2

∫ T

0
Φ

(
t′
)

dt′ (2.46)

ϕ f (T ) =
E f

~c2

∫ T

0
Φ

(
t′
)

dt′ (2.47)

are the gravitational AB phases picked up by the initial and final states, respectively. From
(2.43) and (2.45) it follows that

|Ψ (t = T )〉 ∝ |i〉 + | f 〉 e−
i
~ (E f−Ei)T e−i∆ϕT (2.48)

where ∆ϕ (T ) = ϕ f (T ) − ϕi (T ) is the difference of the two AB phases. From (2.27) and (2.28),

30



we see that
ϕi (T ) = αi sinωt (2.49)

ϕ f (T ) = α f sinωt (2.50)

where αi = GM1mi/~ωr0 and α f = GM1m f /~ωr0 are the FM modulation parameters for the
initial and final wavefunctions, respectively, of the two-level atom. The sinusoidal modulations
of the phases given by (2.49) and (2.50) will lead to many FM harmonics of the frequency ω via
the Jacobi-Anger expansion of the wavefunctions of the two-level atom (see Appendix 1). For
large values of αi and α f , the dominant upper and lower FM sidebands of the FM-modulated
wavefunctions of the atom will occur at the frequency shifts ±αiω and ±α fω away from their
usual frequencies of Ei/~ and E f /~.

It follows that the usual energy-conservation-enforcing delta function in the Fermi Golden
rule will be modified from the usual two-level atom resonance condition not only by the usual
gravitational red shift stemming from the DC component of the mass shell M0, but it will also
be modified due to the FM sidebands that arise from the AC component of the time-varying
mass shell M (t). The bottom line of this analysis is that the usual absorption or emission line
of the two-level atom will be split into upper and lower FM sideband frequencies occurring on
either side of the unsplit line of the atom with frequency shifts of ±(∆α)ω, where

∆α =
(
α f − αi

)
=

GM1
(
m f − mi

)
~ωr0

(2.51)

is the difference between the FM modulation parameters of the final state and the initial state
that stems from the difference in their rest masses, m f − mi.

2.2.4 Conclusions

We conclude from the above two “counter-examples” that the claims of the non-existence
of the scalar AB effect are false. Although these two “counter-examples” are by nature merely
“thought experiments,” they do establish the existence of the electric AB effect and the existence
of the gravitational AB effect in principle. However, they may ultimately lead to actual ex-
periments in the laboratory in the Josephson interferometry case, and to actual observational
evidence in astrophysical settings in the gravitational redshift case.

Finally, we note that the magnetic (vector) AB effect as observed by Tonomura [28] using
ferromagnetic toroids in electron interference experiments, are obviously topological in nature.
However, the electric and gravitational (scalar) AB effects that are predicted to occur here inside
the metallic shells of Figures 1 and 5, are obviously non-topological in nature.
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2.3 Some further discussion on Scalar AB Effect with Professor
Walstad

Scalar AB effect remains an open question so far. Professor Walstad published a paper
in 2010 [22] criticizing observation experiments for scalar AB effect. Furthermore, he came
to a conclusion that there is no physical reason for the existence of scalar AB phase. After
submitting my paper, professor Walstad has some discussion with us. I am summarizing some
important points and some further discussions for scalar AB effect in this section.

2.3.1 Where is the interference from?

Interference in AB effect comes from relative phase factor difference between two ways
of electron, also it can be called coherence. If the relative phase difference becomes random,
interference pattern disappears. The idea of the two way experiments are very similar for mag-
netic AB effect and scalar AB effect.

Equation (3) in literature [22] says the total wavefunction including the electron and
apparatus in scalar AB effect experiment is

Ψ = ΨpΨs

= ei∆Et/~Ψpe−i∆Et/~Ψs

= ΨpΨs (2.52)

where Ψp is wavefunction of electron and Ψs is wavefunction of the rest of the system. Prof.
Walstad addressed this equation to show that because of energy conservation phase factor in
the electron is eleminated, see the second line of the above equation, hence he concludes that
interference due to scalar AB phase can’t happen.

However, the problem is that Ψp can never be written into a single term as ei∆Et/~Ψp.
As a typical ”two way” experiment, the voltage between two paths generates an extra phase
difference between two eigen states. The wavefunction of the electron should be a superposition
of states corresponding to these two paths (Ψupp + Ψdown). When the voltage is added only to
the lower path a local phase factor appears. The wavefunction of electron becomes

Ψp = ei∆Et/~Ψupp + Ψdown. (2.53)

Or this form
Ψp = (ei∆Et/2~Ψupp + e−i∆Et/2~Ψdown, (2.54)

if the voltage is added between two paths. By taking probability of final state for both cases,
one gets the interference term can be taken by

ΨpΨ∗p = ei∆Et/~[Ψupp(Ψdown)∗ + (Ψupp)∗Ψdown]. (2.55)

so that ∣∣∣Ψp
∣∣∣2 = cos(∆Et/~)[Ψupp(Ψdown)∗ + (Ψupp)∗Ψdown]. (2.56)
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It shows the origin of interference patterns.
Towards matrix formalism of this measurement, one can define Pauli matrix σx as the

observable used to observe the interference pattern. Therefore the measurement operation can
be formulated as

Tr(ρσx) = cos(∆Et/~). (2.57)

But if Tr(ρσx) = 0 it means no interference pattern.

2.3.2 Is the apparatus classical or quantum mechanical?

Let’s see what would happen if the apparatus is quantum mechanical. Due to the coupling
between the capacitor and electron, capacitor reacts differently for electron’s going different
way. In other words, the apparatus is entangled with the electron and the total wavefunction
should be as following:

Ψ = ΨpΨs = (ei∆Et/~Ψuppe−i∆Et/~Ψs
1 + ΨdownΨs

2)/
√

2

= (ΨuppΨs
1 + ΨdownΨs

2)/
√

2 (2.58)

In this case the phase factor would be eleminated due to conservation of energy, as what Walstad
concluded [22]. So the question is that should we include the entanglement? In other word,
is the state of the apparatus a pure state or a mix state? A related question is that whether
the observer (or apparatus) is entangled with the electron or not? Whether we should treat
”apparatus + electron” as open quantum system or closed quantum system? If ”apparatus +

electron” is a closed quantum system, the observer is decoupled from the electron. So they
are in a pure state. By tracing out apparatus subspace to measure the electron one gets no
superposition in the electron state because it becomes a mix state, therefore the interference
pattern is invisible.

However, when the electron is weakly coupled to the apparatus while the apparatus is
much stronger coupled to observer, the phase factor in the apparatus will be averaged out tak-
ing classical approximation, and the coherence in electron will be preserved for longer. From
this analysis, we conclude that there is a competition between two different total states: first,
entanglement state between electron and apparatus

Ψent. = (ei∆Et/~Ψuppe−i∆Et/~Ψs
1 + ΨdownΨs

2)/
√

2 (2.59)

= (ΨuppΨs
1 + ΨdownΨs

2)/
√

2;

Second, product state between pure electron state and apparatus mix state

Ψprod. = ΨpΨ
s

= (ei∆Et/~Ψupp + Ψdown)Ψ
s
, (2.60)

where Ψ
s

means classical treatment of the density matrix of apparatus. There is no phase factor
in Ψ

s
. We can see that Ψent. doesn’t include scalar AB phase while Ψprod. does. Therefore,

whether eAB effect exists or not, in this sense, depends on whether we treat apparatus/observer
classically or quantum mechanically. Physically, it means whether we want to know the in-
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terference result between the two paths or not. If we do, the apparatus couples to observer,
otherwise it decouples to observer. However, it seems that a measurement apparatus should be
always treated as classical because the reason one does measurement using an apparatus is to
get the measurement result.

2.3.3 Cancellation of phase factor between electron and apparatus for magnetic
AB effect?

Assume electron is strongly coupled to apparatus and the apparatus decohere slowly
(weakly coupled to observer). Electon’s going different ways also gives different torque on the
solenoid. This gives rise to the coupling between electron and apparatus, from which observer
knows the information of which way the electrons goes. If this information is not averaged out
by treating apparatus to be classical, the apparatus will be entangled with electron and the phase
factor will be canceled, because the motion of electron creates current hence magnetic flux on
the solenoid, therefore it exerts the same amount of phase shift on solenoid. The entanglement
state can be written down and one can see the same state as Equation.(2.59).

The phase difference the electron exerts on solenoid is

∆ϕelect =
qΦelect.

~
. (2.61)

To simplify the calculation, we can assume the traveling electron has the same speed ve as
electrons in the solenoid. Also, we can assume the electrons goes around circumference of the
solenoid. In order to simplify the calculation of the flux due to an electron, we treat the loop
of electron as a single piece of solenoid so that Φelect. =

Belect
2 A =

µ0IelectnA
2 =

µ0eveA
2 , where n

is effective loop density Nelect/lelect of the loop of electron and the 1
2 is due to the edge effect

of single electron solenoid. So the phase difference on solenoid due to two different paths of
electron is

∆ϕelect = qsolenoid
∆Φelect.

~

=
NI
lve

∆Φelect.

~
(2.62)

=
NI
lve

2Φelect.

~

=
NI
lve

µ0eveA
~

= e
µ0NI

l
A
~

= e
BsolenoidA
~

= e
Φsolenoid

~
. (2.63)
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Therefore,
∆ϕelect = ∆ϕsolenoid (2.64)

which means the entanglement state between the electron and solenoid is

Ψent. = (ei∆ϕelect/2Ψuppe−i∆ϕsolenoid/2Ψs
1+

e−i∆ϕelect/2Ψlowei∆ϕsolenoid/2Ψs
2)/
√

2

= (ΨuppΨs
1 + ΨdownΨs

2)/
√

2. (2.65)

From the above equation we see that the magnetic AB phase is canceled out as well for this
case.

As an CONCLUSION, the apparatus/observer has to be CLASSICAL in order to see
interference between two paths of electron!

2.3.4 Phase shift due to electric force?

In order to prove the physical reason of the existence of scalar AB phase, one has to
demonstrate that the interference only comes from the difference of scalar AB phase instead of
any other physical quantities. It is true that in Aharonov’s original proposal, it is very hard to
eliminate the interference due to electric force because of the geometric of the apparatus. How-
ever one doesn’t have to eliminate electric force, because the electric force used to accelerate
electrons can be, in principle, compensated by applying same electric field to both paths at the
same time, to equalize the acceleration process in the two paths. An straight forward way to
examine the effect due to electric force is depicted in Figure.(2.10). By scanning V3 one can
check how the force affect interference patter.

Figure 2.10: The red box represents another cylinder that covers the region in the box. V3 is
added to this part and it can be tuned between V/2 and V .

One can even go further. As Figure.(2.11) depicted, the cylinder in the upper part can be
splitted into two sections, the first of which is added with V3 = V . In this case the the issue due to
electric force will be the same between upper and lower paths but the duration in two different
cylinders are different, which give to different scalar AB phase φupp,low = e

~

∫ tupp,low

0 V(t′)dt′.
Simply by choosing different length of the cylinders one gets tupp , tlow hence φupp , φlow and
when the two paths join at b interference pattern emerges.
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Figure 2.11: The upper cylinder is cut into two sections. One is grounded. Another is added
with V3.

2.3.5 Quantum measurement theory of AB effect

Without loss of generality, we can assume any AB effect appears as a relative phase factor
eiφ between two paths of electron. We now study how this phase factor affects measurement
results due to different measurement schemes and treatments of the entire system.

If the electron is entangled with apparatus, as argued by Prof. Walstad, and they are
decoupled from environment, which is classical, the total state of the closed quantum system is

ρea =
1
√

2
(|↑〉e |↑〉a + eiφ |↓〉e |↓〉a)

1
√

2
(〈↑|e 〈↑|a + e−iφ 〈↓|e 〈↓|a)

=
1
2


1 0 0 e−iφ

0 0 0 0
0 0 0 0

eiφ 0 0 1

 , (2.66)

where e−iφ is the relative phase factor between |↑〉e |↑〉a and |↓〉e |↓〉a. If the local phase factor
isn’t canceled out due to conservation of energy or other mechanisms, e−iφ , 1 and can be a
controllable phase factor.

Let’s study two different measurement schemes to check how one can observe interfer-
ence pattern for this entangled system.
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2.3.5.1 Local measurement on electron

According to equation.(2.57), local measurement on electron means total observable to
the coupled system electron × apparatus is M(1)

ea = σx ⊗ I. The measurement gives output as

Tr[ρeaM(1)
ea ] = Tr

1
2


1 0 0 e−iφ

0 0 0 0
0 0 0 0

eiφ 0 0 1




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




= Tr

1
2


0 e−iφ 1 0
0 0 0 0
0 0 0 0
0 1 eiφ 0




= 0, (2.67)

which indicates no interference pattern depending on the relative phase factor eiφ. To interpret
more physically, this result means when the electron is entangled with apparatus and one lo-
cally measures the interference of electron, he sees no interference effect due to relative phase
between two paths. Furthermore, according to Walstad’s reasoning in his paper, if a magnetic
AB phase exists when electron and solenoid are entangled (corresponding to a relative local
phase in equation.(2.66), a local measurement on electron won’t give any magnetic AB Effect!
The question, whether magnetic AB phase between electron and solenoid get canceled or not,
doesn’t even need to be discussed.

The reason of losing the interference is that the phase factor will be hidden in the state of
apparatus and get averaged out. Because the reduced interference observable matrix of appara-
tus:

M(1)
a = Tre[ρeaM(1)

ea ]

= Tre

1
2


0 e−iφ 1 0
0 0 0 0
0 0 0 0
0 1 eiφ 0




=
1
2

(
1 0 0 0
0 1 0 0

) 
0 e−iφ 1 0
0 0 0 0
0 0 0 0
0 1 eiφ 0




1 0
0 1
0 0
0 0


+

1
2

(
0 0 1 0
0 0 0 1

) 
0 e−iφ 1 0
0 0 0 0
0 0 0 0
0 1 eiφ 0




0 0
0 0
1 0
0 1


=

1
2

(
0 e−iφ

eiφ 0

)
. (2.68)
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However, after measurement, the reduced density matrix of apparatus becomes a mix state
density matrix.

ρa = Tre (ρea)

=
1
2

(
1 0 0 0
0 1 0 0

) 
1 0 0 e−iφ

0 0 0 0
0 0 0 0

eiφ 0 0 1




1 0
0 1
0 0
0 0


+

1
2

(
0 0 1 0
0 0 0 1

) 
1 0 0 e−iφ

0 0 0 0
0 0 0 0

eiφ 0 0 1




0 0
0 0
1 0
0 1


=

1
2

(
1 0
0 1

)
. (2.69)

Because Tr (ρa) = 1 and Tr
(
ρ2

a

)
< 1, the state of apparatus ρa is a mix state. Therefore,

the phase factor, in other word the interference information, disappears. In order to observe
interference, one way to do is to make a joint measurement on the total entanglement state.

2.3.5.2 Joint measurement on the total entanglement state electron × apparatus

In this case, the total measurement observable is M(2)
ea = σx ⊗ σx. This measurement

gives the results as

Tr[ρeaM(1)
ea ] = Tr

1
2


1 0 0 e−iφ

0 0 0 0
0 0 0 0

eiφ 0 0 1




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




= Tr

1
2


e−iφ 0 0 1

0 0 0 0
0 0 0 0
1 0 0 eiφ




= cos φ. (2.70)

Therefore, by measuring interference terms, one sees patterns depending on relative local phase
associated with different paths the electron goes. Note that, in joint measurement scheme, one
has to measure σx on the entire closed quantum system and treat all the rest classically. The
total state is ρea ⊗ ρenviroment.

In reality, the above analysis are too idealistic. First, there is hardly perfectly isolated
quantum system as big as the apparatus discussed in AB Effect so the ”closed quantum sys-
tem” is just an assumption. Hence, energy conservation in the ”closed” system is also just an
assumption. Second, it is very hard to include all the small closed systems that is entangled
with the electron. So when observer plans to measure the interference it is very hard to do
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a total σx measurement to the entire entangled system. An easier treatment is to assume the
apparatus is massive and strongly coupled to environment. So that the apparatus can be treated
classically. In this case, although it is still coupled to electron but the energy or phase factor
transferred from electron to apparatus will decohere very quickly to the environment, and en-
ergy in electron×apparatus system is not conserved! This also replies Prof. Walstad’s argument
”Scalar AB phase is canceled due to conservation of energy”.

To simplify calculation, apparatus is included in the environment. And the total state is
now a product state ρelectron ⊗ ρenviroment, where ρenviroment is classical. The interference mea-
surement theory can now be referred to Section.1-A.

And actually, the magnetic phase factors discussed before take different signs for electron
and solenoid because this is a recoil effect. This means there is also a conservation rule in
magnetic AB effect and the phase factor is canceled in the case when electron × apparatus
system is a closed entanglement quantum system.

As a conclusion of the discussion in this section, whether interference effect exists or
not depends on whether it is observed or not. When the interferometer is treated classically,
spatial interference patterns emerges when observed, as Aharonov-Bhom predicted. When the
interferometer is treated quantum mechanically and entangled with electron, interference pat-
tern disappeared. However, temporal interference should be still observable with the quantum
Faraday cage.

2.4 Decoherence in superconducting qubits

Superconducting qubits have macroscopic physical size, in some sense Schrödinger’s cat,
so they could be expected to be very sensitive to decoherence sources. One of my work is to
study how to suppress decoherence due to 1/ f noise using a universal quantum degeneracy point
encoding technique, as discuss in the following section. So it is necessary to briefly introduce
quantum decoherence in superconducting circuits in this section.

There are two process giving rise to decoherence rate 1/T2: relaxation, noted as relax-
ation rate 1/T1 to describe the time scale of a qubit relaxing from upper level to lower level and
losing of energy; dephasing, noted as dephasing rate 1/τφ to describe the time scale of losing
off-diagonal entries in density matrix due to low-frequency fluctuating noise. [18, 19, 29] The
decoherence rate

1
T2

=
1

2T1
+

1
τφ

(2.71)

Imagine each type of qubit is described by a single degree of freedom ideally by elimi-
nating all other degrees of freedom. Using John Clarke’s way to distinguish two classes of de-
cohering element: extrinsic and intrinsic. [19] Obvious extrinsic sources include external elec-
tromagnetic signals; these can generally be eliminated by using careful shielding and enough
broadband filters. A more challenging extrinsic source is the local EM environment, e.g., cir-
cuit control signals. This type of decoherence can be well modeled using Amir Caldeira and
Anthony Leggett’s theory of quantum dissipation [30]. This theory maps any linear dissipation
onto a bath of harmonic oscillators. The effects of these oscillators can be calculated from the
Johnson–Nyquist noise that is generated by the complex impedance of the environment.
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The main intrinsic limitation on the coherence of superconducting qubits results from
low-frequency fluctuations in two level defects in Josephson junction devices. These two level
defects come from three major sources. The first is critical-current fluctuations, which arise
from fluctuations in the transparency of the junction caused by the trapping and untrapping of
electrons in the tunnel barrier. The second source is charge fluctuations arising from the hopping
of electrons between traps on the surface of the superconducting film or the surface of the sub-
strate. The third source is magnetic-flux fluctuations due to the fluctuations of unpaired electron
spins on the surface of the superconductor or substrate. Each defect produces random telegraph
noise, and a superposition of such uncorrelated processes leads to a 1/ f power spectrum. So
the low frequency noise is also called 1/ f noise.

2.5 Protect quantum coherence with Universal Quantum Degener-
acy Point approach

2.5.1 Introduction

Decoherence due to the low-frequency noise is commonly considered as the major hur-
dle for implementing fault-tolerant quantum computing in superconducting qubits [18, 19, 31].
The low-frequency noise, often with 1/ f -type of spectrum [32, 33], is ubiquitous in Josephson
junction devices [34–37]. In the past, extensive efforts have been devoted to study the micro-
scopic origin of the low-frequency noise [38–44]. Most recently, theoretical and experimental
researches suggested that one source of the low-frequency noise is the spurious two-level system
fluctuators in the substrate or in the oxide layers of the Josephson junctions [45–49].

To protect the coherence of the superconducting qubits from the low-frequency noise,
various approaches have been developed during the past few years, including the dynamic con-
trol technique, the quantum degeneracy point approach, the calibration of the qubit parameters
by continuous measurement, and the design of novel quantum circuits and materials [46,50–62].
Among these approaches, the quantum degeneracy point approach [55–57] has been demon-
strated to protect the qubit effectively from the low-frequency noise that couples with the qubit
through the off-diagonal matrix elements, i.e. the transverse noise. The qubit decoherence time
was increased by orders of magnitude by operating the qubit at its quantum degeneracy point,
also called the optimal point or the “sweet spot”, where the first order derivative of the qubit en-
ergy to the noise fluctuation is zero. This approach has already been applied to both the charge
qubit and the flux qubit [63, 64].

Meanwhile, due to the diverse origins of the low-frequency noise in solid-state systems,
the qubit can couple with either transverse or longitudinal low-frequency noise, where the lon-
gitudinal noise couples with the qubit in the diagonal elements and shifts the qubit energy.
The simple quantum degeneracy point approach can only protect the qubit from transverse
low-frequency noise. For longitudinal low-frequency noise, this approach can’t reduce the de-
coherence of the qubit. For instance, in the quantronium qubit [55], when the low-frequency
noise appears as a fluctuation in the Josephson energy, the qubit energy obtains an energy shift
proportional to the noise, which generates qubit dephasing.

In this work, we propose a universal quantum degeneracy point (UQDP) scheme where
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the encoded qubits can be protected from generic low-frequency noise. The physical qubits in
this scheme are subject to transverse and (or) longitudinal low-frequency noises. We construct
an encoded qubit in a subspace where the low-frequency noise only generates off-diagonal
elements and can be effectively treated as transverse noise. We will show that universal quantum
logic gates can be implemented in this architecture and are protected from the low-frequency
noise as well. To test the analytical results, we numerically simulate the quantum logic gates
in the presence of the low-frequency noise. The gate operations, protected by the encoding,
demonstrate high fidelity in the simulation. Moreover, we will show that the proposed scheme
is robust again small fabrication errors in the parameters of the Josephson junctions. The paper
is organized as follows. In Sec. 2.5.2, we first present the UQDP scheme and the formation of
the encoded qubits. Then, the decoherence of the encoded qubits under generic low-frequency
noise is calculated analytically. In Sec. 2.5.6, we study the realization of the quantum logic
gates on the encoded qubits. Numerical simulation of the quantum logic gates is also presented
in this section. The discussions on the effects of the parameter spreads, different choices of
the coupling between the physical qubits, and comparison with the Decoherence Free Subspace
(DFS) approach are presented in Sec. 2.5.7 together with the conclusions.

2.5.2 Universal Quantum Degeneracy Point (UQDP)

The basic idea of the (simple) quantum degeneracy point approach is to use the finite
energy separation between the two eigenstates of a qubit to protect the qubit from transverse
low-frequency noise. Consider the qubit coupling with the transverse noise as

Hs = Ezσz + δVx(t)σx (2.72)

where the energy separation between the qubit states | ↑〉 and | ↓〉 is 2Ez and δVx(t) is the
low-frequency noise with |δVx(t)| � Ez. The noise couples with the qubit via the σx operator
which provides a transverse coupling in the off-diagonal elements. Here, we treat δVx(t) as
a classical noise for simplicity, but our results can be applied to quantum noises. The low-
frequency nature of the noise determines that it can’t resonantly (effectively) excite the qubit
between its two states due to the large energy separation between the qubit states. Hence, the
noise can be treated as static fluctuations. The qubit energy can be written as

Hs ≈ (Ez + δV2
x (t)/2Ez)σz (2.73)

by second order perturbation approach, i. e. the qubit Hamiltonian adiabatically follows the
time dependence of the noise via the second order term δV2

x (t)/2Ez. The qubit dephasing is
determined by this second order term and is hence significantly suppressed by a factor of ∼
|δVx(t)/2Ez|

2.
However, as we mentioned in Sec. 2.1, in real experiments, the qubit-noise coupling can

be more complicated than that in Eq. 2.72. In this work, we consider a generic noise model
with

∑
δVα(t)σα including an arbitrary coupling with the qubits in all Pauli operators. We will

show that an encoded subspace can be constructed in which the generic low-frequency noise
can be converted to a transverse noise for the encoded qubit.
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2.5.3 The encoded qubit

The encoded qubit can be constructed from two identical superconducting qubits con-
nected by a coupling circuit. The form of the total Hamiltonian for the coupled qubits can be
quite generally written as

H0 = Ez(σz1 + σz2) +
∑
α

Emασα1σα2 (2.74)

where σα j are the Pauli operators of the j-th qubit and α = x, y, z.

Vn =
∑
α j

δVα j(t)σα j (2.75)

where δVα j(t) accounts for the noise coupling with σα j of the j-th qubit. This Ising coupling
is quite general for superconducting qubits in some sense, because cross terms like σx1σz2,
corresponding to the interaction between the electric energy in the first qubit and the Joseph-
son energy in the second qubit, are so small that they don’t need to be considered. The total
Hamiltonian including the system and the noise can be written as Hen = H0 + Vn.

The coupling Hamiltonian in Eq.(2.74) can be realized in many circuits. For example,
consider two charge qubits biased in their quantum degeneracy points with effective Josephson
energy EJ , Josephson capacitance CJ , and gate capacitance Cg. We then have Ez = EJ/2.
The qubits are connected by a superconducting quantum interference device (SQUID) with
capacitance Cm and Josephson energy EJ2 [18]. It can be derived that

Emx = Cme2/[
(
Cm + CJ + Cg

)2
−C2

m] (2.76)

and Emy = Emz = −EJ2/4. Similar couplings can be derived for other superconducting qubits
such as phase qubits and flux qubits.

The eigenstates of the Hamiltonian H0 in Eq. (2.74) can be derived as

|1〉 = − sin θ| ↓↓〉 + cos θ| ↑↑〉,
|2〉 = cos θ| ↓↓〉 + sin θ| ↑↑〉,
|3〉 = (−| ↓↑〉 + | ↑↓〉) /

√
2,

|4〉 = (| ↓↑〉 + | ↑↓〉) /
√

2,

(2.77)

with
cos θ = 2Ez/

√
4E2

z + Emx2 (2.78)

and θ ∈ [0, π/2]. The corresponding eigenenergies are E1 = −

√
4E2

z + Emx2, E2 =

√
4E2

z + Emx2,
E3 = −Emx, and E4 = Emx respectively. It can be shown that couplings in this general form
can generate the encoded qubit under the condition: Emx , 0 and (or) Emy , 0. In the follow-
ing, we set Emy = Emz = 0 with a finite Emx for simplicity of discussion. So Em = Emx The
low-frequency noise coupled with the qubits have the general form We can rewrite the Pauli
operators of the physical qubits in the eigenbasis in the order from |1〉 to |4〉. For example, in
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the eigenbasis, we have

σz1 =


− cos θ − sin θ 0 0
− sin θ cos θ 0 0

0 0 0 −1
0 0 −1 0

 , (2.79)

and

σy2 = i


0 0 cos φ sin φ
0 0 sin φ − cos φ

− cos φ − sin φ 0 0
− sin φ cos φ 0 0

 . (2.80)

with the angle φ = θ/2 + π/4.
An interesting observation is that the diagonal elements of all the Pauli matrices in the

subspace of the states {|3〉, |4〉} are zero, i.e.

〈3|σα j |3〉 = 〈4|σα j |4〉 = 0 (2.81)

for α = x, y, z and j = 1, 2. The only non-zero matrix elements in this subspace are the off-
diagonal elements 〈3|σz j|4〉 and their conjugate elements. We know that the qubits couple with
the low-frequency noise through the Pauli matrices as is given in Eq.(2.75). Hence, the noise
only couples with this subspace through off-diagonal coupling elements. This coupling, how-
ever, will not generate effective excitation between the states |3〉 and |4〉 due to the low-frequency
nature of the noise and the finite energy difference 2Em between these two states. We thus select
{|3〉, |4〉} as the subspace for the encoded qubit and name the parameter point where the Hamilto-
nian has the form of Eq. (2.74) as the “universal quantum degeneracy point” (UQDP). Note that
because of the generality of the form of the Hamiltonian, the UQDP may not be just one point,
but can be a curve in the parameter space. At the UQDP, the subspace {|3〉, |4〉} couples with all
the noise δVα j(t) transversely and suffers only quadratic dephasing. In addition, due to the same
reasons that protect the encoded qubit from dephasing, the leakage from the encoded subspace
to the redundant space of {|1〉, |2〉} due to the perturbation of the noise is also prohibited in the
lowest order. The matrix elements of σx j and σy j (hence the noise components δVx j(t) and
δVy j(t) induce only virtual excitations between {|3〉, |4〉} and {|1〉, |2〉}.

Note we only consider decoherence due to the low-frequency noise, notably ‘1/f noise’,
because it is the dominant source of decoherence for superconducting qubits [19]. High-
frequency noises such as Johnson noise in the electric circuits can generate transitions between
the encoded subspace. Relaxation between the two encoded levels is of high frequency noise
too, because the energy spacing of UQDP is at the same order of magnitude as of common QDP
schemes therefore is still great enough compared to noises. The relaxation rate is so low that
high-frequency noises can be neglected [63].

2.5.4 Proposed circuit for superconducting qubits

We study the circuit in Fig. 2.12 as an example to show the derivation of coupling energy
Emx in Eq.5.
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Figure 2.12: A circuit for coupled qubits.

Let Cg1 = Cg2, CJ1 = CJ2. The electric energy of this circuit is

Ec =
1
2

∑
i

CiV2
i − Qg1Vg1 − Qg2Vg2. (2.82)

Here i = J1, J2,m, and g1 and g2.The last two terms substract the work done by the
voltage source to give the available electric (free) energy. The voltage across each Josephson
junction is given by the Josephson voltage-phase relation Vi = (2e/~)

·
ϕi, where the over-dot

indicates a partial time derivative. The ground in the circuit labels the zero of potential and is
a virtual ground. The voltage across the gate capacitor g1 is VCg1 = Vg1 − VA and similarly for
VCg1 = Vg2 − VB, where VA and VB are the potentials at nodes A, B. The electric energy can
then be written in terms of the time derivatives of the phases as

Ec =
CΣ

2

(
~

2e

)2 ( ·
ϕ1 +

·
ϕ2

)
−Cm

(
~

2e

)2
·
ϕ1
·
ϕ2, (2.83)

where CΣ =
(
CJ + Cm + Cg

)
and constant term − 1

2Cg

(
V2
g1 + V2

g2

)
has been neglected.

The canonical momentum are

P1 =
∂EC

∂
·
ϕ1

=
(
CΣ
·
ϕ1 −Cm

·
ϕ2

)
/ (2e/~)2 (2.84)
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P2 =
∂EC

∂
·
ϕ2

=
(
CΣ
·
ϕ2 −Cm

·
ϕ1

)
/ (2e/~)2 (2.85)

By solving equations (2.83), (2.84), (2.85) we get Ec =
(2e/~)2CΣ

2(C2
Σ
−C2

m)
(
P2

1 + P2
2

)
−

(2e/~)2Cm

(C2
Σ
−C2

m) P1P2.

After quantization Pi = − (i~/2) ∂/∂ϕi, we notice only the coefficience of the term P1P2 con-
tributes to σx1σx2. So

Emx =
e2Cm(

C2
Σ
−C2

m

) , (2.86)

which is exactly the same as Eq.(2.76).

2.5.5 Dephasing of the encoded qubit

The dephasing of the encoded qubit can be calculated with perturbation theory. Without
loss of generality, we assume that the noise contains only the x component δVx j(t) and the z
component δVz j(t), both of which are Gaussian 1/ f noises with the spectra

S x j(ω) =

∫ ∞

−∞

〈
δVx j(t)δVx j(0)

〉 eiωtdt
2π

=
A2 cos2 η

ω
(2.87)

S z j(ω) =

∫ ∞

−∞

〈
δVz j(t)δVz j(0)

〉 eiωtdt
2π

=
A2 sin2 η

ω
(2.88)

where the angle η is a parameter that describes the noise power distribution and A2 is the total
noise power. When η = 0, the low-frequency noise is a transverse noise with only the x (and
y) component; When η = π/2, the low-frequency noise is a longitudinal noise with only the z
component.

We introduce the Pauli operators for the encoded qubit as X = |3〉 〈4| + |4〉 〈3|, Y =

−i|3〉 〈4|+ i|4〉 〈3|, and Z = |3〉 〈3| − |4〉 〈4|. When projected to the encoded subspace of {|3〉, |4〉},
the effective Hamiltonian of the system coupling with the low-frequency noise can be written
as

Hen =

−Em −
Em(

∑
j δVx j(t))2

2E2
z

+
(
∑

j δVz j(t))2

2Em

 Z (2.89)

by applying second order perturbation. Here j=1,2. The noise enters this Hamiltonian in
quadratic form. The dephasing of the encoded qubit due to arbitrary low-frequency noise hence
only involves quadratic terms, similar to Eq.(2.73) for the simple quantum degeneracy point.
Even the longitudinal noise δVz j only contributes to the dephasing in quadratic terms.

To calculate the dephasing of the encoded qubit, we use the analytical results on dephas-
ing due to Gaussian 1/ f noise [65]. In the calculation, we assume the noises δVα j(t) are not
correlated with each other [66]. The parameters we choose are Ez/2π~ = 5 GHz, A = 2×10−4Ez

with an infrared cutoff for the 1/ f noise ωir/2π = 1 Hz. The dephasing times are plotted in
Fig. 2.13 at different coupling ratio Em/Ez. For the bare qubit, the decoherence time decreases
rapidly by a few orders of magnitude as the noise distribution changes from transverse noise to
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longitudinal noise. For the encoded qubit at Em/Ez = 1, in contrast, the decoherence time only
varies smoothly over the whole range of η.
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Figure 2.13: Dephasing time of the bare qubit (star) and the encoded qubit versus the noise
power angle at different ratio Em/Ez as is labelled in the plot (other curves). The decoherence
times reach a maximum value around η/π = 1/4 for Em/Ez = 1 because summation of the
second and third terms in quation(13) gives a coefficient cos2η to the amplitude of noise in the
effective encoded hamiltonian, resulting in a minimum noise when η = π/4. The maximum
value of decoherence time drifts to left with smaller η due to the change of the noise amplitude
on x and y directions associating with the increasing ratio Em/Ez.

2.5.6 Protected Quantum Logic Gates for Encoded Qubits

In the previous section, we showed that the encoded qubit is immune to arbitrary low-
frequency noise to the first order of the coupling and the dephasing is dominated by quadratic
terms derived from perturbation theory. As a result, the encoded qubit can be a highly-coherent
quantum memory for storing quantum information. In this section, we will further show that
universal quantum logic gates on the encoded qubits are also protected from the low-frequency
noise with high fidelity. The gate operations require manipulations on the physical qubits.
We will test our theoretical results for the gate operations with a numerical simulation. The
numerical results give high gate fidelity for the UQDP.

2.5.6.1 Single-qubit gates

Quantum logic gates on single encoded qubit can be performed by manipulating the
operators of individual physical qubits σαi or by manipulating the interaction terms between
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two physical qubits σαiσα j. In the encoded space, the effective Hamiltonian of the encoded
qubit is H(e)

0 = −EmZ. When projected to this subspace, the operators σz1 can be expressed as

Peσz1Pe = −X (2.90)

where Pe is the projection operator onto the subspace {|3〉, |4〉}. From Eq. (2.79), it can also
be shown that the operator σz1 generates no coupling between the encoded subspace and states
in {|1〉, |2〉}. By pumping the first physical qubit with a pulse HX = 2λ cos(2Emt/~)σz1 for a
duration of θ~/2λ, we can implement the X-rotation gate Ux(θ) = exp(iθX/2).

Similarly, the operator σy1σy2 + σz1σz2 can be expressed as

Pe(σy1σy2 + σz1σz2)Pe = −1 − Z (2.91)

which generates a rotation in the Z-component of the encoded qubit. This operator can be
realized in superconducting circuits. For example, for charge qubits connected by a coupling
SQUID, this operator can be realized by varying the flux in the SQUID loop. By applying an ac
pumping on the coupling SQUID with HZ = 2λ cos(2Emt/~)(σy1σy2 +σz1σz2) for a duration of
θ~/2λ, we have a Z-rotation gate Uz(θ) = exp(iθZ/2). Combining the operations in Eq. (2.90)
and Eq. (2.91), we achieve a complete S U(2) generator set that generates arbitrary single-qubit
quantum logic gates on the encoded qubit.

2.5.6.2 Controlled quantum logic gates

Two-qubit gates on the encoded qubits can be achieved by connecting the circuits of the
encoded qubits as is shown in Fig. 2.14a. We consider two encoded qubits and use σα j as the
Pauli operators for the first encoded qubit and τα j as Pauli operators for the second encoded
qubit. Assume that the lower physical qubits in each encoded qubit are connected with the
coupling Hamiltonian

Hcgate = −2λc cos(2(Em1 − Em2)t/~)σz2τz2. (2.92)

The operators can be projected as
Peσz2Pe = X1 (2.93)

Peτz2Pe = X2 (2.94)

onto the encoded subspaces. Hence, in the rotating frame the above coupling Hamiltonian can
be written as

H(rot)
cgate = −

λc

2
(X1X2 + Y1Y2), (2.95)

which provides a swap-like interaction between the encoded qubits. Combining this interac-
tion with the single-qubit gates Ux(θ) and Uz(θ), we obtain a universal set of quantum logic
operations for the encoded qubits. We can also design various geometries to connect arrays of
encoded qubits. For example, in Fig. 2.14b, the lower physical qubits of the encoded qubits are
connected to their nearest neighbors in a chain. In this case, the system can be viewed as a one-
dimensional chain of qubits with nearest neighbor coupling. Universal quantum computation
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can be implemented in this configuration.
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Figure 2.14: Encoded qubits connected with their nearest-neighbors. Blue dots mean physical
qubit while the black crosses are tunable Josephson junctions.

For superconducting qubits, the above coupling Hamiltonian can be constructed using a
tunable Josephson junction (a SQUID) that connects the physical qubits. For a SQUID with
Josephson energy EJc and capacitive energy Ecc, we have

Hcgate = −
EJc

4
(σz2τz2 + σy2τy2) + Eccσx2τx2 (2.96)

where both the Josephson energy and the capacitive energy can be tunable [67–70]. The cou-
pling includes the extra terms σy2τy2 and σx2τx2, which only contain off-resonant leakage terms
such as |1〉σ〈3| ⊗ |3〉τ〈1|. Under the time-dependent modulation cos(ωdt) by choosing proper
pumping frequency, these terms can be neglected.

2.5.6.3 Numerical simulation

To test the analytical results in the previous subsections, we numerically calculated the
fidelities of quantum logic gates. We simulated the evolution of the total time dependent hamil-
tonian containing gate operation and noise (2.97) with fourth-order Runge-Kutta method. This
is repeated hundreds of times, randomly-generating 1/ f noise for each time. Average gate fi-
delities were being tracked during the simulation and have been plotted as the figures shown in
the paper.

In the simulation, we made the following assumptions on the 1/ f noise: 1. all the phys-
ical qubits couple with the environmental noise in the form of δVx j(t)σx j + δVz j(t)σz j; 2. the
noise power A2 and the noise distribution angle η are the same for all physical qubits. The
simulation of the 1/ f noise can be implemented as

Vα j(t) =

ωuv∑
ω=ωir

aα j(ω) cos(ωt + φ)∆ω (2.97)

where aα j is a gaussian distribution with zero average and satisfies

〈aαx(ω1)aαx(ω2)〉 = A2 cos2(η)δ(ω1 + ω2)/ω1 (2.98)
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Figure 2.15: a). Gate fidelity Fx of single-qubit gate Ux(π) versus η and Em. Here, EJ = 2Ez.
b). Fx versus Em at various η as is labelled in the plot. c). Fx versus η at various Em/Ez as is
labelled in the plot. d). The gate fidelity FC of two-qubit gate UC versus η at various Ecc/2π~
as is labelled in the plot.

〈aαz(ω1)aαz(ω2)〉 = A2 sin2(η)δ(ω1 + ω2)/ω1 (2.99)

in connection with the definitions in Eq.(2.87) and Eq.(2.88). Here, discrete noise components
are used to replace the continuous integral on the spectral density with ∆ω/2π = 10−4 MHz. The
phase φ is a random number with the uniform distribution between 0 and 2π. The parameters
we choose for the physical qubits and the noise are Ez/2π~ = 5 GHz for the physical qubits,
the infrared limit of the noise frequency ωir/2π = 1 Hz, the upper bound of the noise frequency
ωuv/2π = 0.1 MHz, and the noise power A/Ez = 2 × 10−4 s/rad.

To simulate the effect of UQDP under one-qubit quantum operations, we use the follow-
ing definition for the gate fidelity [71]

Fx =
1
2

+
1
12

∑
i=1,2,3

Tr(Ux(π)ΣiU†x(π)ε(Σi)) (2.100)

where Σi = X, Y, Z for i = 1, 2, 3 are the Pauli operators for the encoded qubit and ε(Σi) =

PeL(Σi)P
†
e is the projection of the final state onto the encoded subspace after applying the
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quantum process on the initial density matrix Σi. The coupling constant is chosen to be λ/2π~ =

300 MHz. The gate fidelity Fx of Ux(π) versus η and Em is plotted in Fig. 2.15a, b, c. For finite
coupling Em, where the encoded subspace is protected by the coupling, the fidelity only varies
smoothly as the noise varies from transverse noise to longitudinal noise. While for Em = 0,
i.e. the uncoupled (bare) qubits, the fidelity decreases sharply as η increases to π/2. At fixed
noise distribution η, the fidelity first rises rapidly when the coupling Em increases from zero,
then becomes saturated and even shows oscillatory behavior as Em further increases. With
Em ∼ 0.4Ez, Fx exceeds 0.997 for η ∈ [0, π/2]. In this regime, the optimal Em for a particular η
usually can be found within the range of (0.4Ez, Ez).

For the two-qubit operation UC = exp[−iπ(X1X2 + Y1Y2)/4], the gate fidelity can be
defined as [71]

FC =
1
5

+
1
80

∑
i, j

Tr(UC(Σi ⊗Ω j)U
†

Cε(Σi ⊗Ω j)) (2.101)

where Ωi = X, Y, Z for i = 1, 2, 3 are the Pauli operators for the second encoded qubit and
the super-operator gives ε(Σi ⊗ Ω j) = PeL(Σi ⊗ Ω j)P

†
e . We choose the coupling of the first

encoded qubit to be Em1/2π~ = 5 GHz and the coupling of the second encoded qubit to be
Em2/2π~ = 2 GHz. The operating Hamiltonian is given by Eq. (2.96) and is applied for a
duration of π~/4λc with λc/2π~ = 300 MHz. The gate fidelity Fc for UC versus η is plotted in
Fig. 2.15.d at various capacitive coupling Ecc. For zero Ecc, the gate UC can be accomplished
with high fidelity and shows only weak dependence on the distribution angle η, which proves
the “universality” of our scheme. However, for non-zero Ecc, the fidelity drops quickly, and
hence the implementation of the two-qubit gate requires the capacitive coupling to be small.

2.5.6.4 State preparation and detection

To implement the above quantum logic gates, we need to prepare the initial state of
system in the encoded subspace. This can be achieved by letting the coupled qubits relax to
their ground states |1〉 via thermalization. Then, an ac driving

Hprep = 2λp cos [(E1 − Em)t/~]σx1 (2.102)

can be applied on the first physical qubit, which generates a Rabi oscillation between the states
|1〉 and |3〉 given the non-zero matrix element 〈3|σx1|1〉 = − sin(θ/2 + π/4). After a period of
π/2λp sin(θ/2 + π/4), the state becomes |3〉 which is now in the encoded subspace.

State detection of the encoded qubits can be implemented with the assistance of single-
qubit rotations as well. To measure the probability of an encoded qubit in the state |3〉 or |4〉,
apply single-qubit gate exp[−iπX/4] as discussed above which converts the state |3〉 to the state
| ↑↓〉 and converts the state |4〉 to the state | ↓↑〉. Then, measuring the physical qubits can give
us information of the encoded states.

2.5.7 Discussions and Conclusions

The encoded qubit proposed above is made of two identical physical qubits with qubit
energy Ez. For superconducting qubits, this parameter can be the Josephson energy EJ of
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a charge qubit in the degeneracy point or the energy gap in the flux qubit. This parameter
depends on the parameters of the Josephson junctions in the circuit. In real devices, the junction
parameters usually have fabrication errors with an error spread on the order of 5%. Below we
discuss the effect of the parameter error on the proposed scheme. We introduce a factor a0 as the
ratio between the energy of the second qubit and the energy of the first qubit with |a0 − 1| � 1.
The Hamiltonian in Eq. (2.74) becomes

H0n = Ez(σz1 + a0σz2) + Emσz1σz2. (2.103)

The eigenbasis of this Hamiltonian still includes the encoded subspace {|3〉, |4〉}, but with the
new eigenstates and eigenenergies

|3〉n = cosϕ|3〉 + sinϕ|4〉, E3n = −Em,n;
|4〉n = − sinϕ|3〉 + cosϕ|4〉, E4n = Em,n;

(2.104)

where Em,n =

√
(1 − a0)2E2

J + E2
m and

ϕ = 1/2 sin−1[(a0 − 1)Ez/Em,n] (2.105)

respectively. The operators σx1, σx2, σy1, and σy2 only contain non-vanishing matrix elements
connecting {|1〉, |2〉} and {|3〉, |4〉}. However, σz1 and σz2 now include non-trivial diagonal terms

n〈3|σz1|3〉n = −n〈4|σz1|4〉n =
−(1−a0)Ez

Em,n
,

n〈3|σz2|3〉n = −n〈4|σz2|4〉n =
(1−a0)Ez

Em,n
,

(2.106)

which induce residual longitudinal noises on the encoded qubit. The residual coupling can be
derived as

Vres ≈
(a0 − 1)Ez

Em,n
(δVz1 − δVz2)Z (2.107)

in terms of the effective Pauli operator Z, which generates dephasing in first order terms of δVz j.
However, the residual coupling contains the ratio |a0 − 1| of the error spread which is less than
5% or even smaller with the advance of current technology. The dephasing by this term is hence
reduced by a factor of |a0 − 1|2 < 2 × 10−3. Given the recent experimental measurement [56] of
|δVz j/Ez| < 10−2, the longitudinal dephasing due to the error spread can be comparable with or
even lower than the quadratic dephasing due to the transverse noise in Eq. (2.89).

We would like to mention that the proposed scheme is different from the Decoherence
Free Subspace (DFS) approach that has been widely studied in quantum information processing
[72]. The DFS approach protects qubits from spatially correlated noises by choosing a subspace
that is immune to such noises, i.e. the dephasing is suppressed by the noise correlation. While
in our scheme, we explore the energy separation of the encoded subspace and the low-frequency
nature of the noise (which can’t excite transitions between states with large energy separation
in the first order) to protect the quantum coherence.

In Sec. 2.5.2 and 2.5.6, we studied the encoded subspace and the gate operations using
the coupling Hamiltonian with Emx = Em, Emy = Emz = 0 for the simplicity of our discussions.
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It can be shown that the UQDP approach can be applied to the general form of coupling given
in Eq. (2.74) as far as either Emx , 0 or Emy , 0 can be satisfied. As an example, consider the
situation

Emx = Em, Emy = Emz = b0Em (2.108)

with a coefficient b0. In real system, this coupling can be obtained from a Josephson junction
with energy EJ2 that connects the two physical qubits and b0 = −

EJ2
4Em

. It can be found that the
states |3, 4〉 defined in Eq. (2.77) still form the subspace for the encoded qubit. The energies of
these states become ε3 = −Em − 2b0Em and ε4 = Em including a shift due to the finite b0. It
can also be shown that the projections to the encoded subspace are −Peσz1Pe = Peσz2Pe = X
and PeσxiPe = PeσyiPe = 0. The encoded qubit is protected against any first order dephasing
by the low-frequency noise. This observation shows that the UQDP scheme can be applied to
various superconducting qubits such as flux qubits and phase qubits as far as we can construct
the coupling in Eq.(2.74).

In conclusion, we have proposed a scheme of a universal quantum degeneracy point
(UQDP) that can protect the superconducting qubits from generic low-frequency noise. Using
coupled qubits to form the encoded qubits, we find a subspace where the low-frequency noise
only affects the qubit dephasing to quadratic order. We have shown that universal quantum logic
gates can also be performed on the encoded qubits with high fidelity. The scheme is robust again
parameter spreads due to fabrication errors. The scheme can be applied to systems with very
general form of couplings and provides a promising approach to protect superconducting qubits
against low-frequency noise.
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Chapter 3

Circuit QED

3.1 Introduction of superconducting circuit quantum electrical dy-
namics

In atomic quantum information devices, manipulation on qubit state can be enhanced by
placing atoms into a cavity and hence coupled to coherent light. The dynamics is modeled as
cavity quantum electrodynamics (CQED). Consider the qubit on a superconducting chip as an
artificial ”atom”, AC signals propagating in the circuits as light. By coupling a superconducting
qubit either capacitively or inductively to superconducting resonators, scientists have implement
CQED method to manipulate quantum information on superconducting chips. Circuit QED is
the formal terminology as the on-chip analogue of cavity QED. A key difference is that in circuit
QED, the ‘atom’ does not move inside the ”cavity”, so the ‘atom’–field interaction has time to
act without losing the ‘atom’ and a trapping system is not needed. Together with the fact that the
coupling strength is larger than the rate of photon lost from the cavity, which allows the strong
coupling limit, even ultra-strong limit, of QED to be achieved in a relatively straightforward
manner.

Fig.(3.1) shows schematic picture of charge qubit capacitively coupled to a transmission
line resonator (TLR), as long as circuit model of the circuit QED system. [73] The Hamiltonian
is

H = ~ωr(a†a +
1
2

) +
~ωq

2
σz − e

Cg

CΣ

√
~ωr

Lc
(a† + a)(1 − 2ng − σz cos θ + σx sin θ) (3.1)

Here σx, σz are Pauli operators of the qubit, mixing angle θ = arctan[EJ/4Ec(1−2ndc
g )] depends

on dc bias charge ndc
g , and the qubit energy splitting is ~ωq =

√
E2

J + [4Ec(1 − 2ndc
g )]2. At the

charge degeneracy point, ndc
g = 1/2, θ = π/2, Eq.(3.1) reduces to

H = ~ωr(a†a +
1
2

) +
~ωq

2
σz + ~gσx(a† + a) (3.2)
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Figure 3.1: The upper part of the panel depicts a microstrip cavity (blue) that contains a charge
qubit (green) placed at an antinode of the electric field. The microstripline can be used as a
quantum bus. The lower part depicts this circuit in a lumped circuit representation. (Figure
from Ref. [19]) C0 is the capacitance of the coupling capacitor to the measurement electronics,
and Cg is the capacitance of the coupling capacitor to the charge qubit.

Neglecting rapidly oscillating terms, Hamiltonian further reduces to

H = ~ωr(a†a +
1
2

) +
~ωq

2
σz + ~g(a†σ− + aσ+) (3.3)

where coupling strength g =
eCg

CΣ

√
ωr

~Lc . This is the famous Jaynes-Cumming Hamiltonian used
a lot in cavity QED. We note that we have omitted dampings for the moment. According to
recent experimental results, ωq and ωr is in the range of 3−20GHz, Q factor in superconducting
resonators is up to 106 for on-chip TLR and 109 for 3D cavity. g can varies from 1 − 700MHz,
[74] which means circuit QED covers weak coupling, strong coupling and ultrastrong coupling
regime, whereas, strong coupling is mostly studied so far.

Circuit QED can be operated in two distinct strong-coupling limits: the resonant regime,
and the off-resonant dispersive regime. In the resonant regime, the qubit energy-level splitting
is in resonance with the cavity frequency. While in off-resonant dispersive regime, qubit energy
is off resonant with cavity. Dressed state, as combination of qubit excitation and cavity exci-
tation, become the resultant state. Depending on whether qubit has bigger energy splitting or
not, dressed states give rise to photon interaction in the cavity either repulsive or attractive. I
will focus on the off-resonant dispersive regime in my thesis. In this case, the qubit and cavity
eigenstates are not entangled, and the two systems cannot share excitations. The mutual ener-
gies, however, are still correlated, because the energy-level splitting of the qubit depends on the
cavity state, and vice versa. Consequently, the cavity can be used to read out the qubit and to
couple qubits to each other [74, 75].
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Figure 3.2: Illustration of dispersive FWM toolbox with controllable parameters Φm,Φ1,Φ2.

3.2 Parametric four-wave mixing toolbox for Circuit QED.

3.2.1 Introduction

Superconducting quantum circuits have been intensively studied as building blocks for
quantum information processing. [19, 65, 76–86] Among these devices, superconducting mi-
crowave resonators have demonstrated relatively high quality factors and strong coupling with
various superconducting qubits. [87] Various quantum optical phenomena and novel quantum
many-body effects involving microwave photons, in particular, circuit quantum electrodynamics
(CQED), have been observed in the superconducting resonators. [88]

The generation of non-classical states such as Fock states, entangled states, and NOON
states in the superconducting resonators has been studied in recent experiments and theoreti-
cal proposals. [89–102] In most of these schemes, quantum state manipulation is achieved via
the coupling between superconducting resonators and superconducting qubits. Several schemes
have been proposed to generate unitary transformations on the microwave photons by engi-
neering effective interaction Hamiltonians between the resonator modes, including Kerr and
cross-Kerr interactions, beam-splitter operation, and squeezing operation. [70, 103–106] In all
previous work, the proposed circuits can only realize specific quantum operation on the res-
onator modes.

Implementing quantum operations on superconducting resonators is crucial for realiz-
ing quantum information protocols in such devices. A basic set of quantum operations for
both the discrete-state and the continuous variable quantum information protocols on the res-
onator modes include the Bogoliubov-linear operations such as the beam-splitter operation, the
squeezing operation and the phase shifter, and nonlinear operations such as the cross-Kerr in-
teraction. [107,108] A discussion of these operations can be found in Appendix 2. In this work,
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we present a scheme that can generate all of these operations within one single circuit. This
toolbox is made of two superconducting qubits coupled with each other to form a quantum
four-level system. Each qubit interacts with one superconducting resonator. By adjusting the
parameters of the toolbox, we design dispersive four-wave mixing (FWM) processes to gener-
ate effective quantum operations on the resonator modes, as is illustrated in Fig. 3.2. During
the operations, the quantum four-level system is always preserved in its quantum ground state
by large detunings, and hence this scheme is a parametric scheme. Using numerical simulation,
we show that high-fidelity quantum operations can be achieved with realistic circuit parameters.
Compared with the previous schemes, [70,103–106] our results provide a switchable circuit that
can generate all of the basic quantum operations by adjusting the parameters of the toolbox.

The paper is organized as the following. In Sec. 3.2.2, we present the general idea of
the toolbox and illustrate the idea with a specific circuit made of two coupled superconducting
charge qubits. In Sec. 3.2.3, we describe the dispersive FWM processes for generating effective
Hamiltonians on the resonator modes using the toolbox. The realizations of four quantum
operations are presented in detail in Sec. 3.2.4. In Sec. 3.2.5, we discuss the main sources of
quantum errors in this scheme and present our numerical simulation of the quantum operations.
Conclusions are given in Sec. 3.2.6. In Appendix 2, we briefly discuss all of the basic quantum
operations and their roles in the quantum information processing for the resonator modes.

3.2.2 Circuit

The central element of the toolbox is a quantum four-level system that couples with the
superconducting resonators and can be constructed in many ways. For the discussion in this
paper, we will consider a circuit for the toolbox that is made of two superconducting qubits
coupling with each other. The Hamiltonian for the total system has the form

Htot = Hq + Hr + Hp, (3.4)

which includes the Hamiltonian for the four-level system Hq =
∑

j E j| j〉〈 j| with eigenstates | j〉
and eigenenergies E j ( j = a, b, c, d), the Hamiltonian for the resonators and their couplings to
the qubits

Hr =
∑

i

~ωai â
†

i âi + ~giσxi(â
†

i + âi), (3.5)

with resonator frequencies ωai and coupling constants gi, and the Hamiltonian for the classical
drivings on the qubits Hp =

∑
~Ωi(t)σxi with driving amplitudes Ωi. Without loss of generality,

we have assumed that each resonator couples only with one qubit via the σxi operator and the
classical driving is also on the σxi operator. Other forms of coupling and driving could also be
considered for the toolbox.

The coupling terms in Hr (the driving terms in Hp) generate transitions between the
eigenstates of the four-level system which involve absorption or emission of resonator pho-
tons (classical field). The transition matrix elements induced by these terms can be derived by
projecting the σxi operator in the eigenbasis | j〉.

Superconducting qubits in various parameter regimes and circuit geometries have been
studied, including flux qubit, phase qubit, charge qubit, transmon qubit, and etc.. [18, 19] The
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Figure 3.3: Schematic circuit for the toolbox. The resonators are labelled by capacitances Cri

and inductances Lri.

qubits can be controlled by external electromagnetic fields such as the magnetic flux in the loop
of a superconducting quantum interference device (SQUID) and the bias voltage on a supercon-
ducting island, depending on specific circuit design. Different coupling mechanisms between
superconducting qubits have also been studied, such as capacitive coupling, Josephson cou-
pling, and inductive coupling. [109–113] Decoherence in superconducting qubits has improved
greatly in the past few years with T?

2 exceeding 95 µsec. recently observed. [59, 114–116]
To illustrate our scheme, we study a toolbox made of two superconducting charge qubits.

[18] We want to emphasize, however, the FWM approach studied here is a general scheme that
can be applied to other superconducting qubits with different forms of coupling. As shown in
Fig. 3.3, the charge qubits couple with each other via a tunable Josephson junction and a capac-
itor where the effective Josephson energy EJm can be adjusted by varying the magnetic flux Φ

in the loop. The Josephson energies EJi of the qubit junctions can be adjusted by changing the
magnetic flux Φ1,2 in the qubit loops. The Hamiltonian for the coupled qubits can be derived
using a Lagrangian approach with

Hq = (EJ1/2)σz1 + (EJ2/2)σz2 + Hint (3.6)

Hint = Emx
(
σx1σx2 + b0σy1σy2 + b0σz1σz2

)
(3.7)

where Emx is the capacitive coupling due to capacitance Cm and b0 = EJm/4Emx is the ratio
between the Josephson coupling and the capacitive coupling. Here, we assume the qubits are
biased to have zero charging energy so that the qubit energies are the Josephson energies EJi.
[117] We define the total capacitance connected to the superconducting island of the ith qubit as
CΣi = CJi +Cgi +Cm and the total capacitance connected to the ith resonator as CΣri = Cri +Cgi +

C0i, where Cgi is the capacitance that couples a resonator to its corresponding qubit, CJi is the
Josephson capacitance, Cri is the resonator capacitance, and C0i is the capacitance that couples
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to external circuit, as labeled in Fig. 3.3. With the capacitances satisfying CΣri � CΣi � Cm,
the capacitive coupling Emx can be derived as

Emx ≈ Cme2/
[
CΣ1CΣ2 −C2

m

]
. (3.8)

The eigenenergies of the Hamiltonian Hq are

Ea = Emxb0 − Es+/2, (3.9a)

Eb = −Emxb0 − Es−/2, (3.9b)

Ec = −Emxb0 + Es−/2, (3.9c)

Ed = Emxb0 + Es+/2, (3.9d)

where Es± =
√

(EJ1 ± EJ2)2 + 4E2
mx(1 ∓ b0)2 can be adjusted by varying the qubit energies EJi

and the Josephson coupling EJm. The eigenstates are

|a〉 = − sin θ+ |0102〉 + cos θ+ |1112〉 , (3.10a)

|b〉 = cos θ− |0112〉 − sin θ− |1102〉 , (3.10b)

|c〉 = sin θ− |0112〉 + cos θ− |1102〉 , (3.10c)

|d〉 = cos θ+ |0102〉 + sin θ+ |1112〉 , (3.10d)

where |0i〉 and |1i〉 are the single-qubit eigenstates in the σzi basis and

sin θ± =
√

[Es± ± (EJ1 ± EJ2)] /2Es±.

The resonator-qubit coupling gi for the ith resonator in Eq. (3.5) can also be derived using
the Lagrangian approach with

gi =

(
CgiCΣī

CΣ1CΣ2 −C2
m

) (
e2

2CΣri
~ωai

)1/2

(3.11)

where CΣī is the total capacitance of the īth qubit with the index ī referring to the qubit in the
opposite side of the toolbox from the ith resonator. We also find that the ith resonator couples
with the īth qubit as well as the īth resonator in the opposite side of the toolbox due to the
cross-talk of the circuit elements. These indirect couplings have the forms of ~g(2)

i σxi(â
†

ī
+ âī)

and ~g(3)(â1 + â†1)(â2 + â†2) with coupling constants much weaker than the dominant couplings
gi in Eq. (3.11), as will be discussed in Sec. 3.2.5.

Both the resonator-qubit coupling and the classical driving Hp are associated with the
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qubit operators σxi. In the eigenbasis in Eqs. (3.10a, 3.10b, 3.10c, 3.10d), we have

σx1 = cos(θ+ − θ−)(σab + σdc)

+ sin(θ+ − θ−)(σdb − σac) + h.c. (3.12a)

σx2 = − sin(θ+ + θ−)(σab − σdc)

+ cos(θ+ + θ−)(σac + σdb) + h.c. (3.12b)

where σi j = |i〉 〈 j| defines the transition operator connecting the eigenstates |i〉 and | j〉. From
these expressions, it follows that each resonator (and classical driving) generally couples to
four transitions. For example, the σx1 term includes the σab, σdc transitions with amplitude
g1 cos(θ+ − θ−) and the σac, σdb transitions with amplitude ±g1 sin(θ+ − θ−).

In the following sections, we will show how to engineer the energy levels of the quantum
four-level system to have the resonators couple only with selected transitions by adjusting the
circuit parameters.

3.2.3 Dispersive FWM scheme

The effective Hamiltonians to implement quantum operations on the resonators can be
realized via the resonator-qubit coupling and classical driving in the circuit studied above. Here,
we exploit four-photon processes, [118–123] in which single-photon transitions and two-photon
processes are in the dispersive regime with large detunings while the designated four-photon
processes are nearly at resonance. As an example, in Fig. 3.5a, consider a classical driving
of frequency ω1 generating the transition σac with Rabi frequency Ω1 and the resonator mode
â1 generating the transition σdc with effective transition matrix element g̃1. For the single-
photon transition induced by the classical driving, the dispersive condition requires that |∆1| =

|ω1 − Eca/~| � Ω1; and for the single-photon transition induced by mode â1, it requires that
|ωa1 − Edc/~| � g̃1

√
n1 with Ei j = Ei − E j and n1 being the average photon number in â1.

For the two photon process involving these two transitions, it requires that |∆1δ| � Ω1g̃1
√

n1
with |δ| = |ω1 + ωa1 − Eda/~| being the two-photon detuning. Under the dispersive conditions,
the dominant physical processes in this scheme are four-photon processes which can generate
effective coupling between the resonator modes. Because the dispersive conditions prevent real
transitions, the quantum four-level system is preserved in its ground state during the operation.
The processes studied here are hence parametric schemes where the four-level system is subject
to a “quantum” energy shift. [118]

To implement a quantum operation, we need to adjust the parameters of the supercon-
ducting circuit to find appropriate effective coupling constants and energy separations between
the eigenstates. For the circuit in Fig. 3.3, we adopt two approaches to determine the circuit pa-
rameters. The first approach uses the relation in Eq. (3.12a, 3.12b) to tune the effective transition
matrix elements by adjusting the angles θ±. By adjusting the circuit parameters EJ1, EJ2, b0, the
angles can be varied in a large range. The second approach exploits the controllability of the
energy levels to engineer large detunings to suppress unwanted transitions. As an example, in
Fig. 3.4, we plot the eigenenergies as functions of the ratio b0 (defined in Sec. 3.2.2). As b0
varies, the state |a〉 (|c〉) can be either above or below the state |b〉 (|d〉), which provides the
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Figure 3.4: Eigenenergies of the four-level system at EJ1/2π~ = 8.9 GHz, EJ2/2π~ = 13.9 GHz,
and Emx/2π~ = 4 GHz (parameters used in the cross-Kerr operation in Sec. 3.2.4.2).

possibility to arrange both the order and the energy separation of the eigenstates. To make, e.g.
the mode â1 only couples strongly to the σab transition, we choose the parameters to have: (1)
cos(θ+ − θ−) � sin(θ+ − θ−) and (2) |ωa1 − Eba/~| � |ωa1 − Edc/~|. The first condition sig-
nificantly reduces the effective coupling between â1 and the σac, σdb transitions and the second
condition suppresses the â1σdc term by large detuning. Now, mode â1 couples mainly with
the σab transition. In general, by combining the above two approaches, all quantum operations
described in Appendix 2 can be realized with the FWM scheme within one single circuit.

3.2.4 Realization of operations

In this section, we present the realization of four quantum operations described in Ap-
pendix 2 using the quantum toolbox. The system parameters are chosen as the following:
ωa1/2π = 10 GHz and ωa2/2π = 16 GHz for the resonator frequencies, g1/2π = g2/2π =

0.3 GHz for the coupling constants, and Emx/2π~ = 4 GHz for the capacitive coupling defined
in Eq. (3.8). The effective Josephson energies EJ1, EJ2, and EJm can be adjusted by tuning the
magnetic flux Φ1, Φ2, and Φ respectively. The energy diagrams of the dispersive FWM schemes
for the operations are shown in Fig. 3.5.

3.2.4.1 Beam-splitter operation

Consider the energy diagram in Fig. 3.5a, where the detunings are defined as ∆1 =

ω1 − Eca/~, ∆2 = ω2 − Eba/~, and δ = ω1 + ωa1 − Eda/~ with ωi being the frequency of
the classical driving. In the energy diagram, the resonator modes only couple with the upper
transitions σdb, σdc and the classical drivings only couple with the lower transitions σab, σac.
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The selection of these couplings can be achieved by choosing the adjustable parameters as
b0 = −1, EJ1/2π~ = 13 GHz, and EJ2/2π~ = 19 GHz to generate highly asymmetric energy
levels. Under these parameters and appropriate classical driving frequencies, the detunings
for the desired single-photon and two-photon processes as labelled in the energy diagram are
∆i/2π = −3.65 GHz and δ/2π = −0.55 GHz. The detunings for the unwanted transitions, e.g.
ωa1 − Eba/~, ωa2 − Eca/~,∼ 13 GHz, are on a much larger scale, and hence the unwanted tran-
sitions are suppressed. These parameters also give | cos(θ+ − θ−)| � | sin(θ+ − θ−)| so that the
coupling between the mode â1 (â2) and the transition σdb (σdc) is much weaker than the cou-
pling between the mode â1 (â2) and the transition σdc (σdb). As a result, the mode â1 mainly
couples with the σdc transition. Similar arguments apply to other transitions in the energy dia-
gram.

We divide the total Hamiltonian into two parts: Htot = H0 + V where

H0/~ = ω1σcc + ω2σbb + (ω1 + ωa1)σdd +
∑

i

ωai â
†

i âi, (3.13)

σii = |i〉〈i|, and V includes all remaining terms in the total Hamiltonian. Here, the ground
state energy is set to zero. The Hamiltonian in the interaction picture of H0 can be written as
eiH0t/~Ve−iH0t/~ ≈ HI0 + VI under the rotating wave approximation with HI0/~ = −∆1σcc −

∆2σbb − δσdd and

VI/~ = Ω1σca + Ω2σba + g̃1â1σdc + g̃2ei∆F tâ2σdb + h.c.. (3.14)

The effective couplings g̃1 = g1 cos(θ+ − θ−) and g̃2 = g2 cos(θ+ + θ−) are derived from
Eqs. (3.12a, 3.12b). And, ∆F = ω1 + ωa1 − ω2 − ωa2 is a small detuning for the four-photon
process designed to balance the extra terms in the effective Hamiltonian for the resonators.

Given the dispersive conditions discussed in Sec. 3.2.3, we treat VI as a perturbation to
the Hamiltonian HI0. Assume that the toolbox is initially prepared in its ground state |a〉. It can
be shown that the dominant correction to HI0 by the perturbation VI is a fourth-order term that
generates a “quantum” energy shift in the ground state in the form of σaaHbm where

Hbm/~ =
∑

i

δεbm
i â†i âi +

(
χbmâ†1â2ei∆F t + h.c.

)
(3.15)

with the energy shifts δεbm
i = Ω2

i g̃
2
i /∆

2
i δ, the effective coupling constant

χbm = Ω1Ω2g̃1g̃2/∆1∆2δ, (3.16)

and the four-photon detuning ∆F = δεbm
2 − δεbm

1 . The small four-photon detuning is chosen to
balance the effect of the mode shifts δεbm

i . The above effective Hamiltonian performs the beam-
splitter operation on the resonators while the toolbox is preserved in the ground state during the
operation. The beam-splitter operation can perform the swap gate on the resonators after applied
for a gate time of π/2χbm. [107] With the parameters given above and with Ωi/2π = 1 GHz, the
effective coupling is |χbm|/2π = 11.6 MHz and the swap gate has a gate time of 21.6 nsec..
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(a) (b) 

(c) (d) 

Figure 3.5: (Color online) Energy diagram for the FWM schemes of (a) beam-splitter operation,
(b) cross-Kerr interaction, (c) two-mode squeezing, and (d) single-mode squeezing. The labels
are: detuning ∆i for single-photon transition, detuning δ for two-photon process, detuning ∆F

for four-photon process, Rabi frequency Ωi for classical driving (red arrows), and operator âi

for resonator mode (light and dark blue arrows).

3.2.4.2 Cross-Kerr nonlinearity

The energy diagram for the cross-Kerr operation is shown in Fig. 3.5b with the detunings
defined as ∆1 = ωa1 − Eba/~, ∆2 = ωa2 − Eca/~, and δ = ωa1 + ωa2 − Eda/~. Compared
with the beam-splitter operation, the asymmetry in the energy levels is reduced and no classical
driving needs to be applied. The parameters are chosen to be b0 = −0.6, EJ1/2π~ = 8.9 GHz,
and EJ2/2π~ = 13.9 GHz, which give ∆1/2π = −4.9 GHz, ∆2/2π = −4.8 GHz, and δ/2π =

−0.12 GHz. Under these parameters, the effective coupling constants for the desired couplings
â1σdc, â1σab are g̃1/2π ≈ 0.3 GHz. While the unwanted couplings â1σdb, â1σac are strongly
suppressed with g̃1/2π ≈ 0.01 GHz. The unwanted coupling â2σdc has a detuning of |ωa2 −

Edc/~|/2π ≈ 11 GHz and is suppressed by the large detuning.
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We divide the total Hamiltonian as Htot = H0 + V with

H0/~ = ωa1σbb + ωa2σcc + ωtσdd +
∑

i

ωai â
†

i âi (3.17)

and ωt = ωa1 + ωa2 . The Hamiltonian in the interaction picture of H0 is eiH0t/~Ve−iH0t/~ ≈

HI0 + VI under the rotating wave approximation where HI0/~ = −∆1σbb − ∆2σcc − δσdd and

VI/~ = g̃1â1(σdc + σba) + g̃2â2(σdb + σca) + h.c. (3.18)

with the effective couplings g̃1 = g1 cos(θ+ − θ−) and g̃2 = g2 cos(θ+ + θ−). With the same
perturbation theory approach as used in the previous subsection, we derive the fourth-order
perturbation correction to the ground state energy σaaHck. Here,

Hck/~ =
∑

i

δεck
i â†i âi + χckâ†1â†2â2â1, (3.19)

with the energy shifts δεck
i = g̃2

i /∆i and the effective coupling

χck = (1/∆1 + 1/∆2)2
(
g̃2

1g̃
2
2/δ

)
. (3.20)

With the above parameters, |χck|/2π = 8.4 MHz which generates the controlled phase gate with
a gate time of 59.5 nsec..

3.2.4.3 Two-mode squeezing

In Fig. 3.5c, we present an energy diagram that can realize the two-mode squeezing
operation with the detunings defined as ∆1 = ω1 − Eab/~, ∆2 = ω2 − Edb/~, and δ = ω2 −ωa1 −

Ecb/~. Here, the order of the eigenstates is switched with Ea > Eb, i.e. the state |b〉 is the ground
state of the toolbox. The circuit parameters are chosen to be b0 = 0.8, EJ1/2π~ = 4 GHz and
EJ2/2π~ = 22 GHz. Under these parameters, we tune the classical driving frequencies to have
∆i/2π = 3 GHz and δ/2π = 0.9 GHz. The classical drivings generate the σab, σdb transitions
in the energy diagram. It can also be shown that the mode â1 mainly couples with the σdc

transition and the mode â2 mainly couples with the σac transition.
Using the approach in the previous subsections with

H0/~ = ω1σaa + ωsσcc + ω2σdd +
∑

i

ωai â
†

i âi, (3.21)

and ωs = ω2 − ωa1 , we derive that HI0/~ = −∆1σaa − ∆2σdd − δσcc and

VI/~ = Ω1σab + Ω2σdb + g̃1â1σdc + g̃2ei∆F tâ2σac + h.c. (3.22)

with the effective couplings g̃1 = g1 cos(θ+ − θ−) and g̃2 = g2 cos(θ+ + θ−), and a small four-
photon detuning ∆F = ω2 − ω1 − ωa1 − ωa2 . The fourth-order perturbation correction to the
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ground state energy is σaaHsq with

Hsq/~ =
∑

i

δε
sq
i â†i âi +

(
χsqâ†1â†2ei∆F t + h.c.

)
, (3.23)

where the energy shifts are δεsq
i = Ω2

ī
g̃2

i /∆
2
ī
δ with the index ī referring to the circuit elements in

the opposite side of the ith resonator (e.g. for i = 1, ī = 2), the effective coupling is

χsq = Ω1Ω2g̃1g̃2/∆1∆2δ, (3.24)

and the four-photon detuning is ∆F = −δε
sq
1 − δε

sq
2 . The nonzero four-photon detuning balances

the effect of the energy shifts and makes the squeezing operation possible. With the parameters
given above and with Ωi/2π = 1 GHz, we have |χsq|/2π = 9.7 MHz.

3.2.4.4 Single-mode squeezing

The single-mode squeezing operation can be realized with the energy diagram in Fig. 3.5d
with the detunings defined as ∆1 = ωa1−Eab/~, ∆2 = ω2−Edb/~, and δ = ω2−ωa1−Ecb/~. The
circuit parameters are chosen to be b0 = 1.25, EJ1/2π~ = 8 GHz and EJ2/2π~ = 24 GHz. Tun-
ing the frequencies of the classical drivings, we can have ∆1/2π = 4 GHz, ∆2/2π = −3.5 GHz,
and δ/2π = 0.5 GHz. We adjust the circuit parameters to increase the energy separation between
the states |a〉 and |b〉 to be close to the frequency of the mode â1 so that â1 couples strongly with
the σab transition as well as with the σdc transition. Meanwhile, the energy levels are adjusted
so that the frequency of the mode â2 is largely detuned from all possible transitions and is
effectively decoupled from the toolbox. The classical drivings generate the σac, σdb transitions.

With the Hamiltonian

H0/~ = ωa1σaa + ωsσcc + ω2σdd +
∑

i

ωai â
†

i âi, (3.25)

and ωs = ω2 − ωa1 , we have HI0/~ = −∆1σaa − ∆2σdd − δσcc and

VI/~ = Ω1σcaei∆F t + Ω2σdb + g̃1â1(σdc + σab) + h.c. (3.26)

with the effective coupling constant g̃1 = g1 cos(θ+ − θ−) and the four photon detuning ∆F =

ω2 − ω1 − 2ωa1 . Then, we derive the fourth-order perturbation correction to the ground state
energy σaaHsq1 with

Hsq1/~ = δε
sq1
1 â†1â1 +

(
χsq1â†1â†1e−i∆F t + h.c.

)
(3.27)

where the energy shifts are

δε
sq1
1 =

(
δ/∆1 + Ω2

1/∆
2
1 + Ω2

2/∆
2
2

) (
g̃2

1/δ
)
, (3.28)

64



F
id

el
it

y
  

Emx/2π (GHz)

Emx/2π (GHz)

Figure 3.6: Fidelity and gate time versus Emx for the controlled phase gate using the scheme
and parameters in Sec. 3.2.4.2

the effective coupling constant is

χsq1 = Ω1Ω2g̃
2
1/∆1∆2δ, (3.29)

and the four-photon detuning is ∆F = 2δεsq1
1 . With the parameters given above and with

Ωi/2π = 1 GHz, we find that |χsq1|/2π = 11.1 MHz.

3.2.5 Error sources

Quantum errors can affect the effective quantum operations on the superconducting res-
onators. In our system, the main sources of quantum errors include (1) unwanted transitions
induced by resonator-qubit coupling and classical driving, (2) indirect coupling due to the cross-
talk between different circuit elements, and (3) decoherence of the qubits and resonators.

We first study the effect of unwanted transitions on the effective quantum operations.
In the schemes discussed in the previous section, the circuit parameters can be adjusted to
either reduce the coupling matrix element of the unwanted transitions or vary the energy levels
to produce large detuning to suppress the unwanted transitions. To test the effectiveness of
our approach, we numerically simulate the quantum operations using the full Hamiltonian in
Eq. (3.4) which includes all coupling terms. In Fig. 3.6, we show the simulation results for
the controlled quantum phase gate on Fock states. This gate is realized with the cross-Kerr
operation which applies the operator exp(−iχckt) to the states. [107] This gate generates a π
phase on the states after a gate time of π/χck when both resonators are in state |1〉. For the initial
state (|01〉+ |11〉)(|02〉+ |12〉)/2, the target final state is (|0102〉+ |0112〉+ |1102〉− |1112〉)/2. In our
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simulation, we calculate the fidelity of this gate for Emx/2π ∈ (3.5, 4.5) GHz. For each value of
Emx, we search for a set of parameters EJi and b0 that yields high gate fidelity. At Emx/2π =

4 GHz with the parameters in the previous section, the fidelity exceeds 0.99. Our results show
that high fidelity can be achieved for this operation by choosing appropriate parameters.

Another source of quantum errors is the circuit cross-talk between different circuit ele-
ments. In Eqs. (3.5, 3.11), the direct coupling between the resonator and its neighboring qubit is
presented. However, due to the cross-talk, each resonator also couples with the qubit in the op-
posite side of the circuit in the form of ~g(2)

i σxi(â
†

ī
+ âī). The coupling constant for this indirect

coupling is

g(2)
i =

(
CgiCm

CΣ1CΣ2 −C2
m

) (
e2

2CΣri
~ωai

)1/2

(3.30)

with g(2)
i /gi = Cm/CΣī � 1. Another indirect coupling is the coupling between the two res-

onators in the form of g(3)(a1 + a†1)(a2 + a†2) with the coupling constant

g(3) =

√
Cg1Cg2Cm

CΣ1CΣ2 −C2
m

√
Cg1Cg2

4CΣr1CΣr2

√
~ωa1~ωa2 . (3.31)

It can be shown that

g(3)/gi ∼
Cm

CΣī

√
Cgi

4CΣri

√
~ωai

e2/2Cgi
� 1. (3.32)

These indirect coupling terms can hence be neglected.
Decoherence of the superconducting qubits and resonators is one of the key barriers for

scalable quantum computing and has been intensively studied. The superconducting resonators
have relatively high Q-factors. With Q exceeding 106, it corresponds to a damping time of
∼ 100 µsec.. In recent experiments, the decoherence time of superconducting qubits has been
significantly improved and T?

2 can reach 95 µsec.. [114, 116] Meanwhile, for the dispersive
FWM schemes studied in this work, the quantum toolbox is preserved in its ground state during
the quantum operations and is not affected by the decoherence of the qubits. Our study in
the previous section also shows that the time scale for the quantum operations - ∼ π/χα for
operation α - is well below 100 nsec. which is shorter than the decoherence time by 2− 3 orders
of magnitudes. Hence, decoherence has very weak effect on our schemes.

3.2.6 Conclusions

To conclude, we presented a superconducting quantum toolbox that can perform various
quantum operations on superconducting resonators in one single circuit. The scheme exploits
the dispersive FWM approach to generate effective couplings between the resonator modes.
By adjusting the circuit parameters, the energy levels and coupling constants can be varied to
generate specific quantum operation. We discussed the main error sources in the schemes and
numerically simulated the controlled phase gate on Fock states. Our results showed that high-
fidelity quantum operations can be achieved in this circuit. One advantage of this scheme is that
nearly all quantum operations for both discrete-state and continuous-variable quantum protocols

66



Figure 3.7: Schematic circuit diagram of phase qubit.

can be realized in one single circuit. [107,108,124] Our scheme can advance the implementation
of quantum information processing on the microwave modes in the superconducting circuits.

3.3 Three wave-mixing scheme with phase qubit

3.3.1 Parametric three-level artificial atom

The three-level structure is implemented with a phase qubit. A single junction phase
qubit, with current bias, can be modeled as Fig.(3.7) by parallelly connecting a nonlinear in-
ductor and a capacitor with current Ic sin φ and ~

2eC
··

φ respectively. Using Kerchhoff’s Law a
classical equation of motion for φ yields:

~

2e
C
··

φ + Ic sin φ = Ie, (3.33)

Potential energy term is U(φ) = EJ(1 − cos φ) − Ieφ,where EJ =
~Ic
2e . Kinetic energy

term K(
·

φ) = 1
2 ( ~2e )2C

·

φ
2
,mφ = ( ~2e )2C, single eletron charging energy Ec = e2

2C , being the dual

operator of phase difference the number operator n = ~C
(2e)2

·

φ,K(
·

φ) = 4Ecn2. So hamiltonian for
phase qubit becomes

Hqb = 4Ecn2 + EJ(1 − cos φ) −
~

2e
Ieφ = 4Ecn2 + EJ[(1 − cos φ) −

Ie

Ic
φ], (3.34)

For potential U(φ), considering the bottom part, it can be treated as a simple harmonic potential
U(φ)S HO ≈ EJ cos φ0(φ − φ0)2/2,where sin φ0 = Ie/Ic corresponds to potential minimum, with
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the plasma frequency ωp = ( 2e
~C )1/2[I2

c − I2
e ]1/4 =

√
8EcEJ cos φ0. Barrier height ∆U = Umax −

Umin = ~
2e [Ie(2 sin−1 Ie

Ic
− π) + 2

√
I2
c − I2

e ] = EJ[sin φ0(2φ0 − π) + 2 cos φ0]. Then, we can adjust
the barrier height in order to keep only three levels in the well.

In order to quantize energy levels in the well, we need to do some approximation to U(φ).
Considering biasing with dc-current Ie close to Ic, we have Ie = Ic sin φ0. Expanding to third
order of (φ − φ0) because the forth order term has very small coefficient cos φ0/4! considering
Ie is usually close to Ic,

U(φ) = EJ[(1 − cos φ) −
2e
~
φ sin φ0] (3.35)

= EJ[1 −
2e
~
φ0 sin φ0 − cos (φ − φ0) cos φ0 + sin (φ − φ0) sin φ0 − (φ − φ0) sin φ0] (3.36)

≈ EJ[(φ − φ0)2 cos φ0

2
− (φ − φ0)3 sin φ0

6
], (3.37)

Constant terms have been neglected in the last step. This result shows the well potential of
phase qubit can be treated as cubic potential.

Now the hamiltonian turns into Hphase = 4Ecn2 + (φ − φ0)2 EJ
cos φ0

2 − (φ − φ0)3 EJ sin φ0
6 .

In order to solve energy levels, we firstly transform Hphase with

a = (
1
2~

)1/2(
EJ cos φ0

8Ec
)1/4 (φ − φ0) + i(

1
2~

)1/2(
8Ec

EJ cos φ0
)1/4n, (3.38)

a+ = (
1
2~

)1/2(
EJ cos φ0

8Ec
)1/4 (φ − φ0) − i(

1
2~

)1/2(
8Ec

EJ cos φ0
)1/4n, (3.39)

so that,

Hqb = ~ωp(a†a +
1
2

) − ζ(a + a+)3, (3.40)

where ζ = 1/
√

54Ns and Ns = 23/4

3 ( EJ
Ec

)1/2(1 − sin φ0)5/4 meaning the number of harmonic
oscillator states. Solving eigenvalues of this cubic potential energy requires perturbation theory
and recursion Method [125, 126]. For Ec

EJ
� 1, to the fourth order:

E0(φ0) = ~ωp(
1
2
−

11
8
ζ(φ0)2 −

465
32

ζ(φ0)4), (3.41)

E1(φ0) = ~ωp(
3
2
−

71
8
ζ(φ0)2 −

5625
32

ζ(φ0)4), (3.42)

E2(φ0) = ~ωp(
5
2
−

191
8
ζ(φ0)2 −

23475
32

ζ(φ0)4). (3.43)

Figure-1 shows the energy levels of E0, E1, E2.
And figure-2 shows dependance of ζ on bias current sin φ0.
In order to satisfy perturbative condition, ζ needs to be at least one order of magnitude

smaller than ζ2, to which order the perturbation terms will be neglected.(see following) By
tuning current bias sin φ0, we can adjust the energy splitting between different levels.
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Figure 3.8: Energy levels are shown in terms of bias sin φ0. Inset is for photon energy in
resonance with possible transitions among these three levels.

∆E10(φ0) = E1 − E0 = ~ωp(1 −
15
2
ζ(φ0)2 −

5160
32

ζ(φ0)4), (3.44)

∆E21(φ0) = E2 − E1 = ~ωp(1 −
30
2
ζ(φ0)2 −

17850
32

ζ(φ0)4), (3.45)

∆E20(φ0) = E2 − E0 = ~ωp(2 −
45
2
ζ(φ0)2 −

23010
32

ζ(φ0)4). (3.46)

Eigenstates(un-normalized) for the first three levels |g〉 , |a〉 , |b〉 to the second order is
approximated as
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Figure 3.9: ζ in terms of bias current rate is plotted.

|g〉 = |0〉 + ζ(
3

2
√

2
|1〉 +

1

2
√

3
|3〉) + ζ2(

27
√

2
16

|2〉 +
7
√

6
16
|4〉 +

2
√

5
24
|6〉), (3.47)

|a〉 = |1〉 + ζ(−
3

2
√

2
|0〉 + 3 |2〉 +

√
3

3
|4〉) + ζ2(

67
√

6
16

|3〉 +
11
√

30
16

|5〉 +

√
35

12
|7〉), (3.48)

|b〉 = |2〉 + ζ(−3 |1〉 +
9
√

3

2
√

2
|3〉 +

√
15

3
√

2
|5〉) + ζ2(−

9
√

2
16
|0〉 +

121
√

3
8

|4〉

+
45
√

10
16

|6〉 +

√
465
18

|8〉). (3.49)

Since a and a† are annihilation and creation operators for basis {|0〉 , |1〉 , |2〉 , ...},

〈g| a |a〉 = 1 + 04.83ζ2 + 51.66ζ4, (3.50)

〈a| a |g〉 = 3.75ζ2 + 353.47ζ4, (3.51)

〈g| a |b〉 = −1.5ζ + 40.09ζ3, (3.52)

〈b| a |g〉 = 0.5ζ + 1.26ζ3, (3.53)

〈b| a |a〉 = 36.86ζ2 + 232.16ζ4, (3.54)

〈a| a |b〉 = 1.414 + 33ζ2 + 639.48ζ4, (3.55)
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〈g| a+ |a〉 = 0.13ζ2 + 343.65ζ4, (3.56)

〈a| a+ |g〉 = 1 + 4.82ζ2 + 51.66ζ4, (3.57)

〈g| a+ |b〉 = 0.5ζ + 0.42ζ3, (3.58)

〈b| a+ |g〉 = −1.5ζ + 20.34ζ3, (3.59)

〈b| a+ |a〉 = 1.414 + 33ζ2 + 625.42ζ4, (3.60)

〈a| a+ |b〉 = 10.61ζ2 + 232.15ζ4, (3.61)

〈g| (a − a+) |a〉 = 1 + 4.70ζ2 − 291.99ζ4, (3.62)

〈a| (a − a+) |g〉 = −1 − 1.08ζ2 + 301.81ζ4, (3.63)

〈g| (a − a+) |b〉 = −2ζ + 39.67ζ3, (3.64)

〈b| (a − a+) |g〉 = 2ζ − 19.08ζ3, (3.65)

〈b| (a − a+) |a〉 = −1.41 + 3.86ζ2 − 111.49ζ4, (3.66)

〈a| (a − a+) |b〉 = 1.41 + 22.39ζ2 + 407.3ζ4, (3.67)

〈g| (a + a+) |a〉 = 1 + 4.96ζ2 + 295.69ζ4, (3.68)

〈a| (a + a+) |g〉 = 1 + 8.58ζ2 + 401ζ4, (3.69)

〈g| (a + a+) |b〉 = −1ζ + 40.5ζ3, (3.70)

〈b| (a + a+) |g〉 = −1ζ + 21.6ζ3, (3.71)

〈b| (a + a+) |a〉 = 1.41 + 69.9ζ2 + 857ζ4, (3.72)

〈a| (a + a+) |b〉 = 1.41 + 43.6ζ2 + 971.6ζ4, (3.73)

By taking average,

〈g| a+ |a〉 = 0.13ζ2 + 293.84ζ4, (3.74)

〈a| a+ |g〉 = 1 + 4.82ζ2 + 201.10ζ4, (3.75)

〈g| a+ |b〉 = 0.5ζ + 0.42ζ3, (3.76)

〈b| a+ |g〉 = −1.5ζ + 20.34ζ3, (3.77)

〈b| a+ |a〉 = 1.414 + 33ζ2 + 625.42ζ4, (3.78)

〈a| a+ |b〉 = 10.61ζ2 + 282.15ζ4. (3.79)

To the first order of perturbation

a† ≡

 0 0 0.5ζ
1 0 0
−1.5ζ 1.414 0

 , a ≡
 0 1 −1.5ζ

0 0 1.414
0.5ζ 0 0

 . (3.80)
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we can see the perturbation approach have good agreement for different cases.

3.3.2 Phase qubit coupled to a resonator

3.3.2.1 Hamiltonian

Consider two transmission line resonators with hamiltonian Htlr1,2 = ~ω1,2b1,2b+
1,2,where

ω1,2 = 2π
L1,2
√

lc
and l, c are capacitance per unit length of transmission line. The phase qubit is

capacitively connected to them leading to electrostatic energy on coupling capacitor Cg1 and
Cg2. So coupling hamiltonian can be derived as following

Hcoupling =
1
2

Cg1(Ṽ1 − V)2 +
1
2

Cg2(Ṽ2 − V)2 (3.81)

=
1
2

(Cg1 + Cg2)V2 −Cg1VṼ1 −Cg2VṼ2 +
1
2

Cg1Ṽ2
1 +

1
2

Cg1Ṽ2
1 (3.82)

where Ṽ1, Ṽ2,V are voltage over Cg1 Cg2 and phase qubit. Quantized cavity field arises Ṽ1,2 =

V1,2(b+
1,2+b1,2),where V1 and V2 are amplitudes depending on location. And V1,2 =

√
ω1,2
lc cos( 2πx

L1,2
), x

is the position to couple the phase qubit on TLR. Notice that the second and third term of the
previous hamiltonian means interaction between phase qubit and TLRs. So interaction hamil-
tonian would be

Hint = −Cg1VṼ1 −Cg2VṼ2 (3.83)

= −2eV1
Cg1

C
n(b+

1 + b1) − 2eV2
Cg2

C
n(b+

2 + b2) (3.84)

Using transform in equation3.38,

Hint = ig1(a − a+)(b+
1 + b1) + ig2(a − a+)(b+

2 + b2) (3.85)

where coupling strengths g1,2 = eV1,2
Cg1,2

C ( 1
2~ )
−1/2( 8Ec

EJ cos φ0
)−1/4.

3.3.2.2 Transition matrices

In order to realize three wave-mixing, we need to adjust the barrier height to allow only
three levels in the well. Assume the ground state, first excited state and second excited state are
|g〉 , |a〉 , |e〉, corresponding to |Ψ0〉 , |Ψ1〉 , |Ψ2〉 in the discussion of phase qubit.
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Represents (a − a+)i in the eigen-states yields: transission selection rules

σag/i = 〈g| (a − a+) |a〉 = 1 + 4.70ζ2 − 291.99ζ4, (3.86)

σga/i = 〈a| (a − a+) |g〉 = −1 − 1.08ζ2 + 301.81ζ4, (3.87)

σbg/i = 〈g| (a − a+) |b〉 = −2ζ + 39.67ζ3, (3.88)

σgb/i = 〈b| (a − a+) |g〉 = 2ζ − 19.08ζ3, (3.89)

σab/i = 〈b| (a − a+) |a〉 = −1.41 + 3.86ζ2 − 111.49ζ4, (3.90)

σba/i = 〈a| (a − a+) |b〉 = 1.41 + 22.39ζ2 + 407.3ζ4, (3.91)

The small asymmetric between two conjugate elements is due to perturbation cut-off.
Assume EJ = 50Ec and sin φ0 = 0.9, which means Ie is very close to Ic. This is a usual bias
case in phase qubit experiment(ref.). Then perturbation parameter ζ ≈ 0.2. We can keep the
lowest terms

σag = σ+
ga = 〈g| i(a − a+) |a〉 = i, (3.92)

σbg = σ+
gb = 〈g| i(a − a+) |b〉 = −0.62i, (3.93)

σab = σ+
ba = 〈b| i(a − a+) |a〉 = −1.41i, (3.94)

These Pauli matrices are the transission matrices when the phase qubit is capacitively coupled
to cavities.

3.3.3 Three wave-mixing approach

Now we have a three level artificial atom coupled to two cavities. And all the possible
transissions are coupled to cavity modes. We are going to discuss a general case of three wave-
mixing approach using perturbation theory. Considering frequency selection rules similar to
atom system, we neglect large detunings and leave small detunings remaining in the dispersive
regime to avoid real excitation. Using RWA we get the following effective hamiltonian

Hint

~
=gα

(
σaec+

1 ei∆αt + σeac1e−i∆αt
)
+

gβ
(
σgac+

2 ei∆βt + σagc2e−i∆βt
)
+

gp
(
σegc3e−i∆pt + σgec+

3 ei∆pt
)
. (3.95)

where coupling strengths to each transission have been rewrited as gα, gβ, gp respectively and
c1, c2, c3 corresponds to three photon modes.

By performing transformation T = exp i
[(
−∆α + ∆p

)
σaa + ∆pσee

]
t we obtain following
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Hamiltonian

H
~

=
(
∆α − ∆p

)
σaa − ∆pσee + gp

(
σegc3 + σgec+

3

)
(3.96)

+ gα
(
σaec+

1 + σeac1
)

+ gβ
(
σgac+

2 ei∆F t + σagc2e−i∆F t
)
. (3.97)

where
∆F ≡ ∆α + ∆β − ∆p (3.98)

Assuming that system in the three-photon resonance ∆F = 0 the Hamiltonian became time-
independent. Using third-order perturbation theory to solve this hamiltonian we have zero-order
energies E0

g = 0, E0
a = ∆α − ∆p, E0

e = −∆p, and perturbation potential

V = gα
(
σaec+

1 + σeac1
)

+ gβ
(
σgac+

2 + σagc2
)

+ gp
(
σegc3 + σgec+

3

)
. (3.99)

Then we have perturbation terms E1
n =

〈
Ψ0

n |V |Ψ
0
n

〉
= 0, E2

g =
g2
βc2c+

2
∆β

+
g2

pc3c+
3

∆p
, E2

a =

g2
βc+

2 c2

∆α−∆p
+

g2
αc1c+

1
∆a

, E2
e =

g2
αc+

1 c1

−∆a
+

g2
pc+

3 c3

−∆p
, E3

g = 1
∆p∆β

[
gβgαgpc3c+

1 c+
2 + gpgαgβc+

3 c1c2
]
. In order to

avoid transition from the ground state the following conditions have to be fulfilled.

gβ
√nβ∣∣∣∆β

∣∣∣ << 1,
gp
√np∣∣∣∆p

∣∣∣ << 1,
gαgp

√nαnp∣∣∣∆p∆β

∣∣∣ << 1,
gβgα

√nβnα∣∣∣∆p∆β

∣∣∣ << 1. (3.100)

Effective Hamiltonian becomes:

He f f

~
=
g2
βc2c+

2

∆β
+
g2

pc3c+
3

∆p
+
gpgαgβ

∆p∆β

[
c3c+

1 c+
2 + c+

3 c1c2
]

(3.101)

3.3.4 Electricmagnetical Induced Transparence(EIT)

By adjusting current bias on phase qubit to sin φ = 0.963, ζ = 0.14,
(
Ea − Eg

)
'

5.2GHz, (Eb − Ea) ' 3.2GHz. Capacitively drive the phase qubit at resonance between Ea

and Eb. The capacitive transition matrix (a† + a) =

 0 1 −0.14
1 0 1.414
−0.14 1.414 0

, in which case

transition between g and b is so small that it can be treated as dipole forbiden. (a† + a)≈ 0 1 0
1 0 1.414
0 1.414 0

 .Capacitively couple a transmission line resonator, detuned from
(
Ea − Eg

)
with ∆, to phase qubit. ∆ can vary within domain [−1.5GHz, 1.5GHz]. The diagram shows as:

And numerical simulation of EIT is shown as:
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Figure 3.10: Energy diagram of EIT.
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Chapter 4

Quantum simulation using
superconducting quantum circuits

4.1 Introduction of quantum simulation

”Nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical... Let the computer itself be built of
quantum mechanical elements which obey quantum mechanical laws.—-Feynman”

The simulation of quantum systems in general remains a extremely difficult, if not im-
possible, task for classical computers, even for latest and most powerful supercomputers. [6]
Quantum state of a large physical system is described by a number of parameters that prolifer-
ates exponentially with the system size, which is generally defined as the number of particles
or degrees of freedom in the system. Furthermore, simulating the temporal evolution of the
system requires a number of operations that also increases exponentially with the size of the
system. This exponential explosion is unavoidable, unless approximation methods (e.g.,Monte
Carlo methods) are used. However, depending on the specifics of the problemunder study, good
approximations are not always available or they also face some limitations. Quantum simula-
tion fights fire with fire, in a manner of speaking, employing a controlled quantum-mechanical
device to mimic and investigate other quantum systems. The advantage of quantum simulators
over classical devices is that, being quantum systems themselves, they are capable of storing
large amounts of information in a relatively small amount of physical space. For example, the
storage capacity of N qubits is exponentially larger than that of N classical bits. The quantum
state of N = 40 spin-1/2 particles, which would require a 4TB classical memory register, [6]
can be represented by a 40-qubit (i.e., 5-quantum-byte) register.

Quantum simulation is not tied to any particular physical implementation. [4–6] The idea
of a quantum simulator can be illustrate as Fig.(4.1).

The alternative simulation method initially proposed by Feynman, i.e., quantum simula-
tion, can be loosely defined as simulating a quantum system by quantum mechanical means.
This very general definition allows us to include three types of simulation: [6] 1) Digital quan-
tum simulation; 2) Analog quantum simulation; 3) Quantum-information-inspired algorithms
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Figure 4.1: A quantum system with state φ and evolution U0 is mapped to a quantum simulator
with state ϕ and simulative evolution U′. Initial state preparation, simulating evolution operator,
and final state measurement are the fundamental three steps of doing quantum simulation. [6]

for the classical simulation of quantum systems.
The realizations of systems exhibiting these characteristics range from ultracold atoms

in traps and optical lattices, measurement-based linear optics, and trapped ions, to Josephson-
junction arrays, electrons in quantum-dot arrays and on the surface of liquid helium, etc, and
recently experimentally-realized digital superdoncuting computer. [127] In this Chapter, I am
going to present my results of using superconducting quantum circuit to simulate Bosonic
and Fermionic many body physics. Sec.4.2 presents a paper simulating Bose-Hubbard Model
(BHM) with site-wise manipulation induced phase transition, which is published on Phys.Rev.B..
Sec.4.3 presents my recent result to demonstrate the cooling scheme proposed in Sec.4.2. Sec.??
presents my continuous work on the simulation of Hubbard model that is going to be submitted
very soon.

4.2 Sitewise manipulations and Mott insulator-superfluid transi-
tion of interacting photons using superconducting circuit sim-
ulators

4.2.1 Introduction

Intensive research has been focused on simulating complex matter using well-controlled
quantum systems in order to better understand their behavior and create useful analogues [6,
128–132]. Successful examples include cold atoms trapped in optical potentials [128], trapped
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ions [129, 130], spins in defects in diamonds [131], photonic arrays [132], etc. Recently, an-
other class of quantum simulators based on superconducting circuits opens more opportuni-
ties [133–137], which is made possible due to progresses in fabricating well-designed circuits
on chips. In those superconducting circuits, dissipation and decoherence have been suppressed
significantly [133, 138]. Moreover, interacting superconducting qubits and resonators can be
fabricated on a chip, where quantum error-correction encoding and high fidelity operations
have been realized [139, 140]. Various designs of couplers for connecting different qubits or
resonators with wide tuning ranges have also been demonstrated [141–143]. Those progresses
in superconducting circuits provide a promising perspective of scalable superconducting cir-
cuits as quantum simulators for many-body systems, which may be bosonic [134, 144–146] or
fermionic [147, 148] in nature.

The Bose-Hubbard Model (BHM) has been a paradigm in many-body theories, and the
Mott insulator-superfluid (MI-SF) phase transition associated with the BHM has been of broad
interest [128, 149]. This transition was observed unambiguously in cold atoms trapped in op-
tical lattices and can be probed with single-atom resolutions [150, 151]. On the other hand,
a theoretical framework for obtaining the BHM using the Jaynes-Cummings Hubbard Model
has been established [152, 153]. Simulating this general model in cavity arrays has been pro-
posed [123, 152, 154, 155]. One may envision that introducing inhomogeneity into the BHM
parameters can lead to richer physics, some of which has been explored in Refs. [156, 157].
Simulating those phenomena requires tunability of single-site parameters, which could be hard
in current available simulators [6, 128–131].

As a candidate of quantum simulators, superconducting circuit has the following addi-
tional features [6, 65, 134]: (I) The circuit can be manipulated by applying voltages, currents
and/or magnetic flux. Hence useful classical circuit techniques can be introduced in similar
ways. (II) Circuit manipulations can be implemented locally to a single site/unit or globally to
the whole system. (III) The circuit can be tailored to certain characteristic frequency, interac-
tion strength, etc., and the circuit geometry can be fabricated in desired patterns. Furthermore,
according to recent reports the decoherence time of superconducting qubits based on different
superconducting circuits is approaching 0.1 ms [114–117]. The Q factor of an on-chip trans-
mission line resonator [62] can even go beyond 105. A 3D superconducting resonator [116,138]
can have a quality factor up to 109, which implies that the life time of photons in superconduct-
ing resonators may approach 10 ms. This is good enough to allow one to practically consider
the photon number as a conserved quantity in the circuit if compared to the operation frequency
in the circuit typically in the range of 100 MHz−10 GHz [19, 65, 133, 158].

Having those features of superconducting circuit in mind, we propose a scheme to sim-
ulate the BHM with controllable inhomogeneous parameters. To demonstrate some interesting
features, we consider how the phase transition between the delocalized SF and localized Mott
insulator can be induced by manipulating the parameters of one single site. In conventional
setups, global parameters such as the overall density or interaction drive the system across this
transition, and here we propose that in superconducting-circuit simulators, one may observe
this transition with a single-site manipulation by exploiting the sensitivity to the commensurate
filling close to the transition. The details of our proposed scheme are verified by the exact di-
agonalization method [159], which already shows signatures of this transition in moderate-size
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systems. Thus this proposed scheme should be feasible in experiments.
Here the simulator is based on an array of superconducting transmission line resonators

(TLRs). The goal is to simulate the BHM [149]

H = −
∑

i

µini +
∑

i

Ui

2
ni(ni − 1) −

∑
i

ti(b
†

i bi+1 + bib
†

i+1). (4.1)

Here µi is the on-site energy and plays the role of the chemical potential, Ui is the on-site
interaction, and ti is the nearest-neighbor hopping coefficient. In cold atoms one can control the
filling and motion of a single atom [150], but manipulations of the energy and interaction on
each site remain a challenge.

A superconducting TLR with a length in the range of centimeters can support a mi-
crowave resonant frequency corresponding to the oscillations of the electric potential and mag-
netic flux from the standing waves of the Cooper pair density. Those microwaves are referred
to as the photons in the TLR [73]. The quantum electrodynamics (QED) framework can then
be applied to the TLR-qubit system to get the so-called circuit QED [73]. A single site of the
system is modeled by the Jaynes-Cummings (JC) model [160] while an array of circuit QED
systems, as schematically shown in Figure 4.2, can be described by the Jaynes-Cummings Hub-
bard model [161]

H =
∑

n

[~ωc
na†nan + ~ωqσz

n + gn(anσ
+
n + a†nσ

−
n )]

+
∑

n

Jn(a†nan+1 + ana†n+1), (4.2)

where ωc
n is the cavity frequency, ωq is the qubit frequency, gn is the coupling strength between

the cavity and qubit, and Jn is the effective hopping coefficient between cavities.
When the qubit is close to resonance with the cavity, they are co-excited and the excitation

on a single site has the form of a polariton. Simulating polaritonic many-body behavior has been
studied recently based on various physical systems [144,145,162]. Here we consider a different
regime in the parameter space to take advantage of the tunability of superconducting quantum
circuits. We focus on the dispersive regime [153], where the excitation is limited in the TLR
while the qubit stays in its ground state. Hence the on-site excitation becomes photonic. In
this regime, a perturbation calculation shows that the system can simulate the BHM. To make
connections to experiments, feasible controlling and probing methods of the quantum phase
transition between localized and delocalized states will be discussed. The exact diagonalization
(ED) [159] method is used to numerically demonstrate the details of the phase transition.

4.2.2 Architecture of the simulator

As illustrated in Figure 4.2, the proposed simulator is a one dimensional (1D) array of
superconducting circuit elements. One site is formed by a TLR capacitively coupled to a super-
conducting charge qubit [19, 65, 133, 158], which is labeled as SQUID-A, and the qubit energy
is tunable. The TLRs on different sites are connected via the SQUID-B, which leads to tunable
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couplings between nearest neighbor sites. Here a derivation of how the Bose-Hubbard Hamil-
tonian (4.1) can be simulated by the superconducting circuit will be presented. Here we will
use Hz×2π as the unit of energy and set ~ ≡ 1.

φ
e

B

φ
e

A

Figure 4.2: Schematic plot of the 1D TLR array. SQUID-A as a tunable charge qubit is capac-
itively coupled to the center of a TLR. Nearest neighbor sites are connected by SQUID-B. The
external magnetic flux φA

e and φB
e through SQUID A and B can be used to tune their Josephson

energies.

4.2.2.1 TLR as a lattice element

The qubit-TLR system is an analogue of an atom-cavity system. In the strong coupling
regime the dynamics of the latter system can be modeled by the Jaynes-Cummings Hamiltonian
[73]. Our superconducting circuit Hamiltonian can be derived following the work of circuit-
QED in Refs. [73, 81, 163]. The Hamiltonian of a single lattice site is

Hsite = HT LR + Hqubit. (4.3)

The TLR with length D could be treated as a cavity with a single mode of the first harmonic.
The excitation in the TLR is modeled as

HT LR = ωca†a. (4.4)

The cavity frequency is ωc = 2π√
CcLc = 2π

√
Ec

cEc
L, where the net capacitance and inductance of

the TLR are Cc and Lc, and the charge and inductive energies of the cavity are Ec
c =

(2e)2

Cc and
Ec

L = 1
Lc(2e)2 . For the first harmonic, the spatial distribution [73] of N peaks at x = −D

2 , 0,
D
2 .

The node charge number and node flux at the maxima correspond to N =
√
ωc/Ec

c(a† + a) and
φc = −i

√
ωc/Ec

L(a† − a).
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Since the qubit consists of two Josephson junctions in a superconducting loop, its Hamil-
tonian is

Hqubit = EA
c (n − ng)2 + 2EA

J cos(
φA

e

2
)(1 − cos φ). (4.5)

Here n = CA
Σ

VJ/2e and ng = CA
gVg/2e are the numbers of Cooper pairs on the island and the

gate, respectively. The capacitance between the qubit and TLR is CA
g . EA

c =
(2e)2

2CA
Σ

with CA
Σ

being

the total effective capacitance in the qubit. The Josephson tunneling energy is EA
J and the phase

φ displaces the number of Cooper pairs. Because of the giant Kerr effect due to the Josephson
junction, the energy difference between the lowest two levels |0〉 and |1〉 is separated from
the other energies. Therefore SQUID-A in Fig. 4.2 behaves like a superconducting qubit [65]
with the Hamiltonian Hqubit = EA

c
1−2ng

2 σ̃z + 2EA
J cos(φ

A
e

2 )σ̃x, where σ̃x = |0〉 〈1| + |1〉 〈0| and
σ̃z = − |0〉 〈0| + |1〉 〈1|. Furthermore, ng = ndc + CA

g

√
ωc/Ec

c(a† + a) by investigating the gate
voltage Vg at the point of the TLR where the qubit couples to, which includes the DC gate
voltage on the qubit and a quantum mode of the TLR: Vg = Vdc + V̂ac. As Figure 4.2 shows,
the qubit is coupled to the center of the TLR so V̂ac =

√
2eN/Cc =

√
ωc/2Cc(a† + a) for the

fundamental mode.
Here we focus on the case when the DC gate voltage bias is at the degeneracy point, ndc =

1
2 . Then by introducing |↑〉 = (|0〉 + |1〉)/

√
2 and |↓〉 = (|0〉 − |1〉)/

√
2 with σx = |↑〉 〈↓| + |↓〉 〈↑|

and σz = − |↓〉 〈↓| + |↑〉 〈↑| and dropping constant terms, the one-site Hamiltonian becomes

Hsite = ωca†a −
ωqσz

2
+ gqσx(a† + a), (4.6)

where ωq = 4EA
J cos(φ

A
e

2 ) and gq = 2e
CA
g

CA
Σ

√
ωcCc. We define H0 = ωc(a†a − σz/2) and V =

∆σz/2 + gqσx(a† + a) with ∆ = ωc − ωq being the detuning between the cavity and qubit
frequencies. Thus Hsite = H0 + V and V is treated as a perturbation.

The qubit frequency and cavity frequency are in the same range of about 10GHz, so it is
natural to apply the rotating wave approximation (RWA). Then ∆ � ωc + ωq. Moving into the
interaction picture and rotating frame one gets the Jaynes-Cummings interaction gq(σ+eiωqt +

σ−e−iωqt)(a†eiωct + ae−iωct)
RWA
≈ gq(σ−a†ei∆t + σ+ae−i∆t), where σ± are the ladder operators.

Moving back to the non-rotating frame we get an effective interaction gq(σ−a† + σ+a). Here
we consider the dispersive regime [153, 164] so ∆ � gq and there is virtually no excitation
from |↑〉 to |↓〉. Applying standard perturbation theory with E(0)

↑
= 0, E(0)

↓
= ∆, V↑↑ = V↓↓ = 0,

V↑↓ = gqa† = V†
↑↓

and going up to the fourth order, the quartic Kerr term gives rise to an effective
on-site interaction.

Going back to the Schrodinger picture, the single-site Hamiltonian becomes

Hsite = ωc,e f f a†a +
ωq

2
σz + (

gq

∆
)3gqa†a(a†a − 1). (4.7)

The charge qubit could be either a single Cooper-pair transistor or a transmon [19, 59, 65, 158]
whose qubit frequency can be tuned by changing the magnetic flux bias through a SQUID
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loop in the qubit circuit. ωc,e f f = ωc −
gq2

∆
+ (g

q

∆
)3gq is the effective onsite frequency and the

quartic term is the effective on-site interaction of the photons. Those two terms are functions
of the controllable parameter ∆. Assuming gq = 120MHz×2π [19, 158], ∆ ≥ 0.9GHz×2π so(
ωc − ωc,e f f

)
∈ [−0.1, 0.1]GHz×2π. We remark that the case ∆ ∼ gq, where the excitations are

polaritons rather than photons, has been discussed in the literature [145].

4.2.2.2 Tunable TLR array

Different architectures for implementing a tunable coupler between two superconducting
TLRs have been realized and discussed in Refs. [100, 100, 109, 113, 142, 143, 165]. Here we
present a basic design. As shown in Figure 4.2, SQUID B with different size and energy from
those of SQUID A is coupled adjacent TLRs. The coupling Hamiltonian is

HB =
∑

i=upp,low

[
CB

J

2

(
φ̇

j j
i

)2
+ EB

J (1 − cos φ j j
i )], (4.8)

where φ j j
i=upp,low are the phase differences across the upper and lower Josephson junctions of

SQUID B (see Fig. 4.2). The two Josephson junctions in SQUID B are assumed to be uni-
form with the same capacitance CB

J and Josephson energy EB
J . The external magnetic flux bias

through SQUID B is φB
e = φ

j j
upp + φ

j j
low and φ̇ j j

upp + φ̇
j j
low = φ̇B

e = 0. Here we introduce φc
1,2 on the

two ends connecting to TLR 1 and 2 as the node phases and N1,2 as the numbers of Cooper pairs
on the node. According to the geometry of the SQUIDs, φc

1 − φ
c
2 = 1

2 (φ j j
upp − φ

j j
low). Josephson

equations then give
CB

J
2

(
φ̇c

1,2

)2
= 1

2
(2e)2

CB
J

N2
1,2 = EB

c N2
1,2. Therefore, the charge-energy term of HB

becomes 2EB
c N2

1 − 4EB
c N1N2 + 2EB

c N2
2 . Meanwhile, the Josephson energy is approximated by

EB
J cos(φ

B
e

2 )[(φc
1)2 − 2φc

1φ
c
2 + (φc

2)2], where higher-order terms are negligible because the phase
difference across SQUID B

(
φ

j j
upp − φ

j j
low

)
can initially be set to zero by shorting both sides. It

will be shown that 2EB
J cos(φ

B
e

2 ) can be tuned to the same order of magnitude as the on-site in-
teraction term (g

q

∆
)3gq in Eq. (4.7), which is needed to place the system near the MI-SF phase

transition.
The Hamiltonian for SQUID B, after those manipulations, becomes

HB =
∑
i=1,2

[2EB
c N2

i + EB
J cos(

φB
e

2
)(φc

i )2]

− [4EB
c N1N2 + 2EB

J cos(
φB

e

2
)φc

1φ
c
2], (4.9)

Here the simple harmonic terms inside the summation give an additional frequency shift to the
TLR Hamiltonian in Eq. (4.4), which becomes HT LR

net,i = 1
2 Ec∗

c N2
i + 1

2 Ec∗
L (φc

i )2 with Ec∗
c = Ec

c+4EB
c

and Ec∗
L = Ec

L + 2EB
J cos(φ

B
e

2 ). This corresponds to a dressed cavity frequency

ωc∗ = 2π
√

Ec∗
c Ec∗

L (4.10)
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as the TLRs are connected into an array with those SQUID Bs. The cross term in HB leads to
a coupling Hamiltonian Hcoup = −gcap(a†1 + a1)(a†2 + a2) + gind(a†1 − a1)(a†2 − a2) with gcap =

ωcEB
c /E

c∗
c and gind = ωc4EB

J cos(φ
B
e

2 )/Ec∗
L . A similar coupling Hamiltonian can be found in

Ref. [165], which is supported by experiments [141]. By considering two identical resonators
ωc∗

1 = ωc∗
2 and applying RWA and conservation of the photon number, one obtains

Hcoup
12 ' −(gcap + gind)(a†1a2 + a1a†2). (4.11)

We define g = gcap + gind, which gives rise to the effective hopping Jn in Eq. (4.2).
For the simulator discussed here, typical values [19, 133] of EB

c = 300MHz×2π, EB
J =

500MHz×2π, Ec∗
c = 10GHz×2π, Ec∗

L = 10GHz×2π will be considered. Note that φB
e can be

tuned within [0, 2π], so gind ∈ [2,−2]GHz×2π. The net coupling strength is g = −(gcap +gind) ∈
[−2.3, 1.7]GHz×2π. Since the perturbation approach is applied to the on-site Hamiltonian, in
order to keep Hcoup with the same order of magnitude as the highest order term in Eq. (4.7), the
coupling strength g has to fulfill the condition g < gq. By biasing the system in the range φB

e
around π, one should be able to get a smaller range of g ∈ [−30, 30] MHz×2π.

4.2.2.3 Superconducting-circuit simulator of the BHM

Collecting all terms we obtain a many-body Jaynes-Cummings Hubbard Hamiltonian:

HJCHM =
∑

i

Hsite
i +

∑
〈i j〉

Hcoup
i j , (4.12)

where 〈i j〉 denote nearest-neighbor pairs. In the dispersive regime, where our perturbation
approach is applicable, the qubit does not get excitations and stays in its ground state. Therefore
the qubit term

∑
i ω

q
i σ

z
i does not contribute to the many-body energy. In this case, the Jaynes-

Cummings Hubbard model can be mapped to the Bose Hubbard model [153] by treating the
photons in the TLR as interacting bosons.

When compared to Eq. (4.1), the on-site energy, on-site interaction, and hopping terms
are

µi = −[ωc∗
i − (

g
q
i

∆i
)gq

i + (
g

q
i

∆i
)3g

q
i ] (4.13)

Ui

2
= (

g
q
i

∆i
)3g

q
i (4.14)

ti = (gcap
i + gind

i ) = gi. (4.15)

As discussed previously, ∆i and gi can be tuned by a magnetic flux bias, so they are the in-
dependent variables in this model. One may recall that |t| = |g| ∈ [0, 30]MHz×2π from
previous discussions. In the dispersive regime |∆| ∈ [0.35, 1.0]GHz×2π should give reason-
able values [19, 133] of gq = 120MHz×2π. Hence U ∈ [0.0024, 10] MHz×2π. To meet the
traditional treatment of BHM, we analyze parameters in the unit of t. Thus gq/t ∈ [4,+∞),
|∆/t| ∈ [10,+∞), U/t ∈ (0,+∞), which implies that the range of U/t in this simulator should

83



cover the MI-SF transition. To avoid going beyond the valid range of our approximation, the
parameters are chosen in the range |∆/t| ∈ [30, 103].

In this simulation scheme the on-site energy µi, interaction strength Ui, and hopping
coefficient ti can be explicitly made site-dependent, which leads to a versatile simulator of the
BHM, especially if phenomena due to spatial inhomogeneity are of interest. When compared
to ultracold atoms in optical lattices, this superconducting circuit simulator has some additional
features. The interacting bosons in the simulator is confined inside the TLRs so there is no need
for background trapping potentials, which is common in cold-atom systems. Various geometries
can be studied by fabricating the elements accordingly. In addition, open boundary conditions
(OBCs) with hard walls can be introduced by terminating the coupling SQUID at the ends of
the superconducting TLR array. Even in the presence of stray weak capacitive couplings, a high
Q factor can still be maintained [62]. On the other hand, periodic boundary conditions (PBCs)
can be realized by fabricating a loop structure so bulk properties can be studied with a relatively
small number of sites. The examples given in the following section will illustrate those features.

We remark that the wide range of U/t, which covers the SF-MI transition, is a conse-
quence of the independent tunability of t and U in this simulator. Other interesting phenomena,
such as the hardcore boson exhibiting nontrivial scaling behavior [166,167] may be beyond the
scope of this simulator because the t needs to remain finite as U goes to infinity. Such a regime
requires gq/∆→ ∞ so it is outside the dispersive regime investigated here.

4.2.3 Single-site manipulations of the MI-SF transition

Here we present one interesting application of this superconducting circuit simulator,
where the MI-SF transition of the BHM can be induced by single-site manipulations. Other
possible applications will be discussed later. To concentrate on the underlying physics, we
consider a 1D array of N sites. The main idea is to exploit the commensurability of the BHM
close to the MI-SF transition.

The parameters of a selected site (called site 1) is tuned by external magnetic flux through
the charge qubit coupled to the TLR of this site. One may consider, for site 1, a shift of the
onsite energy by δ and a shift of the onsite coupling constant by η. The choice of which site to
be manipulated is not important since the conclusions remain the same for the case with PBC.
According to Eq. (4.13), when the detuning energy between the qubit and TLR on site 1, ∆1, is
different from the detuning energy on the other sites ∆i = ∆0, i = 2, · · · ,N, the BHM parameters
of site 1 are different form those on the other sites. Thus the BHM Hamiltonian of this 1D array
with manipulations of site 1 is rewritten as

H = [δn1 + ηn1(n1 − 1)] − µ
N∑

i=1

ni

+
U
2

N∑
i=1

ni(ni − 1) − t
N′∑
i

(b†i bi+1 + b†i+1bi). (4.16)
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The first two terms summarize the effects of a different detuning on site 1. Here δ = −g2
q( 1

∆1
− 1

∆0
) + g4

q

[
( 1

∆1
)3 − ( 1

∆0
)3
]

η = g4
q

[
( 1

∆1
)3 − ( 1

∆0
)3
] . (4.17)

A diagram of δ and η as a function of ∆1 is shown in Figure 4.3, which gives an estimation of
the BHM parameters in the presence of a single-site manipulation. N′ = N − 1 for the OBC and
N′ = N for the PBC in the upper limit. We keep ti = t the same in the whole lattice because it
does not depend on ∆1. The unit of energy will be t. The value of U is fixed by ∆0 and gq.

(II)

(II) (II)

(II)(I) (I)

(I) (I)

Figure 4.3: δ (solid lines) and η (dashed lines) as functions of ∆1 for U/t = 1, 5, 8, 10 and
gq = 120MHz×2π. As Eq. (4.16) shows, δ and η are the displacements of the on-site energy
and on-site interaction of the first site. The vertical lines (I) and (II) indicate the mean-field
critical values of the two cases discussed in Sec. 4.2.3.

We vary ∆1/t as an independent variable. The advantages of this protocol are: (1) The
qubit energy is intact away from the manipulated site. (2) Particles are conserved in the whole
system. We define the particle density ρ as the ratio between the photon number and site number.
In the following we consider the phase transition due to this single-site manipulation when
ρ < 1 and ρ = 1. For ρ = (N − 1)/N the system is a delocalized SF state in the absence of
manipulations and a single-site push leads to a localized MI state, which is shown schematically
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Figure 4.4: (Color online) Illustration of single-site manipulations of the Mott insulator to su-
perfluid transition for N − 1 bosons with strong repulsion in N sites ((a) and (b)) and for N
bosons with strong repulsion in N sites ((c) and (d)). (a) The on-site energy of site-1 is in-
creased and the system is pushed into a localized Mott insulator. The dashed circle implies that
the first site is virtually empty. (b) The system becomes a delocalized superfluid as the on-site
energy is lowered. (c) The system is a localized Mott insulator when the onsite energy of site
1 is small. (d) By increasing the on-site energy of site 1, photons are pushed into the bulk and
form a delocalized superfluid.

in Fig. 4.4(a)(b). The second case with ρ = 1 is illustrated by Fig. 4.4(c)(d), where the system
is in an MI state without manipulations and becomes an SF after a single-site push.

To characterize those single-site manipulated transitions and to identify where the tran-
sitions take place, we analyze a useful quantity called the fidelity metric, which has been
shown to capture quantum phase transitions or sharp quantum crossovers in fermion Hubbard
model [167, 168] and other model Hamiltonians [169, 170]. Given a Hamiltonian of the form
H(λ) = H0 + λH1, the fidelity is defined as the overlap between two (renormalized) ground
states obtained with a small change δλ in the parameter λ:

F(λ, δλ) = 〈Φ0(λ)|Φ0(λ + δλ)〉. (4.18)

However, the fidelity has been shown to be an extensive quantity that scales with the system
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size [170, 171]. Therefore, the fidelity metric is induced as [167, 170, 172]

g(λ, δλ) = (2/N)(1 − F(λ, δλ))/δλ2, (4.19)

whose limit as δλ → 0 is well defined away from the critical points and standard perturbation
theories apply. More precisely,

lim
δλ→0

g(λ, δλ) =
1
N

∑
α,0

|〈Φα(λ)|H1|Φ0(λ)〉|2

[E0(λ) − Eα(λ)]2 . (4.20)

The fidelity metric measures how significantly the ground-state wave function changes as the
parameter λ changes. A dramatic increase of the fidelity metric as a function of the varying
parameter indicates a quantum phase transition or sharp quantum crossover [169].

4.2.3.1 Case 1: ρ < 1

When there are (N − 1) photons in an array of N sites, the ground state should be de-
localized due to the incommensurate filling if all the sites have the same on-site energy and
interaction energy. As will be shown in Figure 4.5 and Figure 4.6, non-uniform distribu-
tions of ni and stronger fluctuations of the on-site photon density, quantified by the variance
σi =

〈〈
n2

i

〉
− 〈ni〉

2
〉
, in the small ∆1/t regime indicates delocalization of the photons with inter-

actions up to U = 10t. By increasing the on-site energy of site 1, which can be performed by
increasing ∆1, a transition to a localized MI state of the remaining N − 1 sites occurs. The setup
is summarized in Figure 4.4(a)(b). Based on current experimental technology [134–136, 173],
the size of the lattice in our exact diagonalization are chosen as N = 4, 8, 12. An estimation of
the phase transition point can be obtained from a mean-field approximation.

For a homogeneous 1D array of N sites, the (N − 1) photons are not localized if the hop-
ping coefficient is finite. By increasing the on-site energy of the first site, it becomes unfavorable
if any particle hops into it. If the repulsive interactions between the bosons exceed the critical
value of the MI-SF transition (Uc/t ≈ 3.28 in 1D [174,175]), the ground state for the rest N − 1
sites becomes a Mott insulator with a wavefunction in Fock space as |ϕ1〉 = |0, 1, 1, ..., 1〉. From
the Hamiltonian (4.16), one gets the ground state energy E1 = 〈ϕ1|H |ϕ1〉 = −µ(N − 1).

Then we estimate the ground state of a SF to determine where the transition occurs when
∆1 is varied. In our mean-field approximation, a simplified trial ground state with no double (or
higher) occupancy is used, which is appropriate for the case U � t. The trial ground state is
|ϕ2〉 = 1√

N
(|0, 1, 1, ..., 1〉 + |1, 0, 1, ..., 1〉 + |1, 1, 0, ..., 1〉 + ... + |1, 1, 1, ..., 0〉). The ground state

energy is E2 = 〈ϕ2|H |ϕ2〉 ≈ δ + η − 2t − µ(N − 1). The energy difference between the two
ground states is

∆E = E1 − E2 ≈ 2t − (δ + η). (4.21)

A phase transition occurs at the crossing point ∆E = 0, or (δ + η) = 2t. Thus the system
forms a Mott insulator by emptying the first site. From Eqs. (4.17) and (4.21) we obtain an
estimation of the phase transition point at ∆1 ≈ 390t for U = 10t. The mean-field estimations
are shown on Fig. 4.3. To check this prediction and provide more accurate estimations, we
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Figure 4.5: (Color online) Exact diagonalization results of the density ni and its variance σi as
a functions of ∆1 for Case-1 with OBC. Site 2 to N are uniform and U = 10t. (a)-(c) show the
results for a 4-site array with 3 photons. In (a) the dashed line and solid line on the first site
correspond to the two schemes shown in Fig. 4.4. (d)-(f) correspond to the case of 8 sites with
7 photons. (g)-(i) correspond to 12 sites with 11 photons.

implement the ED method for several moderate-size systems. Figures 4.5 and 4.6 show ground
state properties including ni and σi on different sites as ∆1 varies. The energy gap of the first
excited state, shown in Figure 4.6(a), verifies the existence of the SF (gapless) and MI (gapped)
states.

The fidelity metric shown in Figures 4.6(b) and 4.7 captures and locates the critical
regime when the on-site energy of site 1 is manipulated. In Figure 4.5, above ∆1/t ≈ 365,
the density is uniform away from site 1. The variance σi is also suppressed in the bulk. Thus
the system is in the MI regime. Below ∆1/t ≈ 365, the photons tend to congregate at the two
ends of the array, but the variance is small. At the center of the array, the photon density is
smaller with a larger variance. This corresponds to a delocalized state. The density ni thus
captures the main conclusion of our mean-field analysis, and shows corrections from finite-size
effects.

The critical values in the numerical results are close to the mean-field estimations. The
location of the critical point does not change much as N changes, but the MI features become
more prominent when N increases. Due to finite-size and boundary effects, the edge of the
Mott insulator is distorted but the bulk indeed exhibits features such as an integer filling and
suppressed fluctuations σi. Boundary effects can also be observed on the neighbors of the
manipulated site as their values of ni deviate from the bulk. Those observations are also valid
in Figure 4.6(a)(b), where site 1 is connected to site 2 and site 12 due to PBC.

For small U/t, as shown in Figure 4.6 and the insets of Figure 4.7, the SF state dominates
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Figure 4.6: (Color online) Photon density profiles and its variance for selected values of U and
boundary conditions. (a) and (b): U/t = 10 and PBC. In this case, the photons in site 2 and N
can both tunnel to site 1. Hence the photon density on site 2 and N are different from the bulk
value due to boundary effects. (c) and (d): U/t = 5 and OBC. (e) and (f): U/t = 1 and OBC.
The non-uniform density and its significant variance of the last case indicate that there is no
Mott insulator in this setting. Here N = 12 with 11 photons.

the whole parameter space explored in our ED calculations, which confirms that no artifact is
induced if the system is in the SF regime. In the insets of Figure 4.7, the results of a broader
range of ∆1 for the case of U = t is shown and the small smooth gap through out the range of
∆1 is consistent with a SF state of the case U = t in Figure 4.6(e)(f).

Figure 4.7 shows another signature of the phase transition as ∆1/t ≈ 365 for U = 10t
when N = 4, 8, and 10, as indicated by a minimum in the energy gap followed by a rapid rise.
For different values of U/t, ∆i in the bulk are different according to Eq. (4.14). Hence the critical
point shifts in the ∆1/t axis according to Eqs. (4.17) and (4.21) and this is consistent with the
results shown in Figure 4.7.

4.2.3.2 Case 2: ρ = 1

As illustrated in Figure 4.4(c)(d), here we consider N photons placed in an N-site array.
If U/t is large, the system is in a Mott insulator state. As the on-site energy of site 1 increases,
the boson in that site is expected to be pushed to the bulk and this should lead to a delocalized
state because of the extra boson. Following a similar procedure, we estimate the critical value
of ∆1 that controls δ and η for this case.

The localized MI ground state can be written as |ϕ1〉 = |1, 1, 1, ..., 1〉, with the ground
state energy E1 = 〈ϕ1|H |ϕ1〉 = δ − Nµ. We consider a trial delocalized trial ground state
|ϕ2〉 = 1√

N−1
(|0, 2, 1, ..., 1〉 + |0, 1, 2, ..., 1〉 + ... + |0, 1, 1, ..., 2〉), whose ground state energy is
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Figure 4.7: (Color online) (a) Energy gap for different values of U and N. The inset shows a
regime when U = t, in yellow, for N = 12 with OBC compared to U = 5t from the main figure.
(b) The peaks of the fidelity metric indicate the critical points. When N varies, the location of
the critical point remains intact. However, varying the on-site interaction U changes the location
of the critical point, which is consistent with the analysis in Sec. 4.2.3. Note that PBC gives the
same critical point as OBC.

E2 = 〈ϕ2|H |ϕ2〉 ≈ −Nµ + U
2 − 2t. Thus the energy difference is

∆E = E1 − E2 ≈ δ −
U
2

+ 2t. (4.22)

The MI-SF phase transition occurs when ∆E = 0, and one may notice that the critical point
depends explicitly on U, which is in contrast to the U-independent critical point in the mean-
field analysis of case 1. For case 2 we obtain that the critical points are δ = 3t,∆1 ≈ 390t for
U/t = 10 and δ = 0.5t,∆1 ≈ 445t for U/t = 5. The mean-field predictions are also shown in
Fig. 4.3.

Numerical results from the ED method for this case are shown in Figure 4.9. As shown
in panels (a) and (b), below the critical point ∆1 ∼ 470t, the system is an MI with one photon
per site and above ∆1 ∼ 470t the system becomes an SF with significant σi in the bulk. The
fidelity metric shown in panel (d) verifies that the critical point is close to the estimation from
our mean-field analysis. These results verify the feasibility of inducing and observing those
transitions in moderate-sized systems.
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(a)

(b)

Figure 4.8: (Color online) (a) Fidelity metric as a function of ∆1 for different values of U for
N = 8 and 7 photons. (b) Peak position of Fidelity metric as a function of U/t. The full width
at half maximum (FWHM) is shown as the bar spanning across each point.

4.2.4 Implications for experimental realization

State Preparation: In the MI regime, the particle density on each site is an integer. One
may prepare an arbitrary n-photon state in each site, including n = 0, 1 that are of interest, by
adiabatically swapping the qubit state to the TLR [89, 176]. This single site preparation can be
performed simultaneously on all the sites. Then starting from the MI regime, one can transform
it to the many-body ground state for different cases. For example, in case 1 in Sec.III, the ground
state in the MI regime is |0, 1, 1, 1, ...〉. Recent work also proposes a scheme of a N photon state
preparation in a superconducting TLR array supported by numerical results [162].

Cooling: Solid state simulators based on superconducting circuits including the one we
propose here contain many degrees of freedom, which not only provide great tunability but
also introduce relatively strong couplings to external fields. To experimentally implement the
simulator proposed here, cooling such a complex system can be a great challenge. We sug-
gest the following three stages. In stage 1, the whole system is kept in the superconducting
phase and thermal excitations in the superconducting circuits and Josephson junctions should
be suppressed [19, 65, 88, 133, 158]. They are also associated with suppression of dissipation
and decoherence. As mentioned in the introduction, the life time of the photons at this stage
is already much longer than the operation time of the superconducting circuit by a factor about
107.

In stage 2, cooling of the TLR-qubit single site system should be performed before con-
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Figure 4.9: (Color online) Exact diagonalization results for Case 2 with N = 8 and 8 photons.
Here U = 10t. (a) and (b) show the density profile in the array and the density variance. The
energy gap (E Gap) and fidelity metric (Fid. M.) in (c) and (d) clearly exhibit signatures of the
MI-SF transition.

necting the whole array. This is associated with the state preparation of the TLR array and a
different degree of freedom from that of stage 1 needs to be dealt with. The quantum computa-
tion community has been making significant progresses related to the cooling at this stage [88].
Inspired by ideas from optical systems, Sisyphus cooling and side-band cooling of supercon-
ducting systems have successfully cooled a qubit to its ground state [177–179].

In stage 3, once a multi-site array is connected by turning on the hopping between ad-
jacent sites, the desired many-body Hamiltonian follows. In order to simulate and observe the
quantum phase transition discussed here, one needs to constantly cool the system and keep the
number of photons conserved during the operation. This is more challenging than cooling just
a single site, especially inhomogeneity of the on-site energies is present. Applying a bias or
other manipulations can cause excitations as well and need to be performed quasi-adiabatically.
Moreover, to take out the heat from the multi-site system when operating near the critical regime
leads to yet another issue. Advanced schemes for cooling a single site have been available while
cooling a multi-site array like the one studied here has not been reported so far. Development of
such technologies is important for realizing the proposed simulator. Based on current ground-
state preparations and state-manipulation technologies developed in coupled superconducting
cavity systems [90,180], it is promising that photon-number-conserving cooling processes may
be realized by scaling up the cooling methods for those coupled systems.

Detection of the phase transition: Since the single-site manipulations of the MI-SF
transition exhibit strong signatures in the density distribution, we briefly discuss a direct mea-
surement of the photon numbers and number fluctuations on each site. Interestingly, the mea-
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Figure 4.10: Measuring the photons in the simulator: Each site of the simulator is connected to a
memory unit formed by another qubit-TLR system via a tunable SQUID (labeled as SQUID C)
acting as a switch. Measurements of the photon number in the memory unit can be applied [181–
183]. This memory unit can also serve as a circuit for preparing the initial state by manipulating
SQUID-C and SQUID-B.

surement can be turned on and off when needed to minimize the coupling of simulator to those
external circuits. As shown in Figure 4.10, each site can be coupled to a memory TLR via the
additional circuit. The central SQUID-C is used to switch the coupling between the on-site
unit and the measurement unit [184] for controlling the memorizing window. This is possi-
ble by changing the bias flux through SQUID-C (labeled on Figure 4.10), φm. A fast photon
state SWAP between the two TLRs can be applied by a four-wave mixing scheme proposed in
Ref. [164] to get |non−site0measure〉 → |0on−sitenmeasure〉, so that the photons in the TLR of the
simulator are transferred and stored into the measurement TLR. Fast measurements of single-
photon states can be applied to measure photon numbers in the memory TLR with technologies
developed in circuit QED recently [83, 84, 106, 181–183]. By repeating the measurement one
gets the average photon number 〈ni〉 and variation 〈σi〉 as depicted in Figure 4.5 for detecting
different quantum phases in the TLR array.
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The conservation of photon numbers is important in realizing the single-site induced MI-
SF transitions. The circuit may lose or gain photons due to couplings to external circuits or
the AC control signals in the circuit. Recent progresses in superconducting quantum circuits
has extended the lifetime of photons in each site with a TLR coupled to a qubit to millisec-
onds [62, 116, 138], which is long enough compared to the manipulations and measurements
that are on the order of nano-seconds [19, 65, 133, 158]. Furthermore, the couplers, SQUID-B,
can have very different energy scale from that of the photons in the simulator to avoid trap-
ping photons. Therefore, the photon numbers in the TLRs can be treated as constants. The
manipulations, in particular those due to the couplers between sites, can be introduced in an
adiabatic fashion and minimize photon loss. Even in driven systems single photon can be
transferred faithfully among multiple TLRs [90], which predicts a promising perspective for
photon-conserving manipulations in quantum circuits. Other theoretical work [185–187] for
number-conserving manipulations of photon excitations in superconducting circuits also pro-
vide exciting alternatives. Moreover, stabilizing photon coherent states in driven systems has
been experimentally demonstrated [188]. Those progresses hint the feasibility of the proposed
simulator based on superconducting circuits.

4.2.5 Conclusion

A versatile quantum simulator of interacting bosons based on a tunable superconducting
TLR-SQUID array has been presented. The BHM with tunable parameters on each site can be
studied using the photons in this simulator. We have demonstrated the feasibility of inducing
the MI-SF transition by manipulating only one single site. Our results are further supported by
the exact diagnolization method, and details of the transition with realistic parameters are pre-
sented. The fidelity metric, energy gap, and on-site photon number show signatures of the phase
transition. We also discussed possible schemes for state preparation, cooling, and detection of
the phase transition for this proposed simulator.

Besides the manipulations of the phase transition discussed here, this quantum simulator
is also capable of demonstrating topological properties in the BHM with superlattice structures
and should exhibit the topological properties, edge states, and topological phase transitions
studied in Refs. [156, 157, 189]. Moreover, quantum quenches [190, 191] and their associated
dynamics may also be simulated by this superconducting circuit simulator as well. For example,
similar to Ref. [192] one can separate the TLR array into two sections by turning off the hopping
between the two sections. Then different photon numbers are prepared in the two sections. By
switching on the hopping between the two sections, photons are expected to slosh back and
forth between the two sections, which should be detectable with similar measurement methods.
Thus the superconducting circuit simulator adds more excitement to the physics of interacting
bosons and complements other available simulators.
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Figure 4.11: Schematic circuit of the cooling scheme. (a) A low Q cavity is capacitively coupled
to every site of the TLR array. (b) A low Q cavity is capacitively coupled to each on-site SQUID.

4.3 Side-band cooling of an array of TLRs

4.3.1 Motivation and circuit

Simulator of Bose-Hubbard Model has been intensively studied recently with supercon-
ducting quantum circuits (SCQC). But cooling of the many body state of an array of SCQC
remains un-developed. I studied a quantum simulator of BHM and briefly mentioned cooling
of the simulatorin [193]. In this section, I am going to detailed theory to study the cooling
mechanism of an array of TLR. We can start with a simple scheme where a big cooling cav-
ity is coupled to all the sites of this array, via two different coupling ways: 1. cooling cavity
directly capacitively coupled to on-site TLR (see Figure.4.11-(a)); 2. cooling cavity coupled
to on-site qubits (see Figure.4.11-(b)). The theoretical treatments for these two schemes are
slightly different. So we discuss it separately as following.

Physics of the cooling approach is referred to Fig.4.12.(a). One sends in a red-detuned
driving signal ωd into the cavity with resonant frequency ωc, where ∆β = ωd − ωc < 0. If there
is any energy separation in the collective state of the TLR array close to the detuned frequency
∆β, it will form a 3-wave mixing scheme. The cavity absorbs a collective excitation quantum
from the array and gains one resonant photon out of a driving photon. The photons in the cavity
will decay eventually then the array keeps getting lower levels of collective state.
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Figure 4.12: The three-wave mixing transition diagram of cooling process. ωdrive is the fre-
quency of driving signal. ωcavity is the resonant frequency of cooling cavity. ∆β = ωd −ωc is the
detuning. Here it shows red-detune. |n〉cavity is the photon state of cavity, while, in (b), |g〉array

|a〉array are ground state and one of the excited state of the array, whose energy separation is ωga.

4.3.2 Cooling Cavity directly coupled to on-site TLRs

4.3.2.1 Modelling the circuit

The total Hamiltonian of this system is

H = ωca†a +
∑

i

gi(bia† + b†i a)

+
∑

i

ωT LR
i b†i bi + J

∑
i

(bib
†

i+1 + b†i bi+1)

+
∑

i

ω
q
i c†i ci +

∑
i

g
q
i σx,i(b

†

i + bi)

+ ε(t)(a†e−iωdt + aeiωdt) (4.23)

where a, b, c are annihlation operators of cooling cavity, on-site TLR and on-site qubit, andωc is
the cooling cavity frequency, g is the coupling between on-site TLR mode with cooling cavity,
ωT LR is the on-site TLR frequency, J is the coupling between different sites of TLRs, ωq is on-
site qubit frequency, gq is coupling between on-site qubit and on-site TLR, σx is Pauli operator
of on-site qubit, ε (t) is the amplitude of pumping field, ωd is pumping frequency. Tuning and
biasing circuit parameters to selectively stay in the regime (ωT LR

i − ω
q
i ) � g

q
i � J, one gets

Bose-Hubbard Model Hamiltonian [193] from the second and third line of the total Hamiltonian
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in equation (4.23) using fourth order perturbation theory. The total Hamiltonian becomes

H = ωca†a +
∑

i

gi(bia† + b†i a) +
∑

i

ω
p
i b†i bi + J

∑
i

(bib
†

i+1 + b†i bi+1)

+
α

2

∑
i

b†i b†i bibi + ε(a†e−iωdt + aeiωdt) (4.24)

where α is on-site photon interaction strength and ωp is effective on-site photon frequency. In
this case g is at the same magnitude as J, which is around 5MHz, so that the pertubative treat is
applied up to the same order as g and J.

Move to rotating frame of following the unitary transformation U = exp{iωdt(a†a +∑
i

b†i bi)}, and the total Hamiltonian follows the transformation H̃ = UHU† − iU
·

U†. Use

Baker-Campbell-Hausdor formula

eXHe−X = H + [X,H] +
1
2!

[X, [X,H]] +
1
3!

[X, [X, [X,H]]] + ...

where X = iωdt(a†a +
∑

i

b†i bi). Because [a†a, a] = −a, [a†a, a†] = a† and [b†b, b] = −b,

[b†b, b†] = b†,

[X, ωca†a] = 0

[X, gi(bia† + b†i a)] = 0

[X, ωp
i b†i bi] = 0

[X, J
∑

i

(bib
†

i+1 + b†i bi+1)] = 0

[X,
α

2

∑
i

b†i b†i bibi] = 0. (4.25)

And,

UaeiωdtU† = a

Ua†e−ia†ωdtU† = a†,

so
Uε(a†e−iωdt + aeiωdt)U† = ε(a† + a). (4.26)

Also,

iU
·

U† = iU[−iωd(a†a +
∑

i

b†i bi)]U† = ωd(a†a +
∑

i

b†i bi). (4.27)
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Therefore, we get the transformed Hamiltonian as

H̃ = (ωc − ωd)a†a +
∑

i

gi(bia† + b†i a) +
∑

i

(ωp
i − ω

d)b†i bi

+ J
∑

i

(bib
†

i+1 + b†i bi+1) +
α

2

∑
i

b†i b†i bibi + ε(a† + a)

= ∆ca†a +
∑

i

gi(bia† + b†i a) +
∑

i

∆
p
i b†i bi

+ J
∑

i

(bib
†

i+1 + b†i bi+1) +
α

2

∑
i

b†i b†i bibi + ε(a† + a), (4.28)

where ∆c = ωc −ωd is the detuning between driving signal and cooling cavity, ∆p = ωp −ωd is
the detuning between driving signal and photon frequency.

4.3.2.2 Diagonalization of the total Hamiltonian

Consider a four-site array, which is the smallest size example in Ref. [193]. With-
out the driving term and nonlinear terms, the Hamiltonian on five-component vector C =

(a, b1, b2, b3, b4) can be written as H̃0 = C†H̃0C, where

H̃0 =


∆c g1 g2 g3 g4
g1 ∆

p
1 J 0 0

g2 J ∆
p
2 J 0

g3 0 J ∆
p
3 J

g4 0 0 J ∆
p
4


. (4.29)

For simplified Hamiltonian

H̃0 =


∆c g g g g

g ∆p J 0 0
g J ∆p J 0
g 0 J ∆p J
g 0 0 J ∆p


.

The eigenvalues of this Hamiltonian are

λ0 = 1
2 (−J −

√
5J + 2∆p)

λ1 = 1
2 (−J +

√
5J + 2∆p)

λ2 = x1
λ3 = x2
λ4 = x3

(4.30)
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where x1, x2, x3 are the solutions of polynomial equation

(−2g2J + 4g2∆p + J2∆c − J∆p∆c − ∆p,2∆c)

+ (J∆p + ∆p,2 + J∆c + 2∆p∆c − 4g2 − J2)x

− (J + 2∆p + ∆c)x2 + x3

= 0. (4.31)

Because H̃0 is hermitian matrix, the three roots of this polynomial equation are real. Their
values can be solved numerically with Cardano’s formula (citation). For the general 5 × 5
dimensional lindear Hamiltonian from equation.(4.29) The diagonalized linear Hamiltonian can
be written as H̃diag.

0 = NH̃0N−1 with unitary transformation N. The new basis becomes D =

NC = (A, B1, B2, B3, B4) given by A = N00a +
∑4

j=1 N0 jb j

Bi = Ni0a +
∑4

j=1 Ni jb j

Define M = N−1. Correspondingly the original basis can be written into polynomial of new
basis  a = M00A +

∑4
j=1 M0 jB j

bi = Mi0A +
∑4

j=1 Mi jB j

with eigenvalues (λ0, λ1, λ2, λ3, λ4). The entries of M and N are function for ∆c, ∆p, g, and J.
However the analytical solutions for these are complicated. Numerical solutions can be made
instead. But in this article I have skipped this step because theses formulas doesn’t affect the
principle of cooling. It only affects the magnitude of cooling rate, so the details of matrices M
and N will be studied in the near future.

In this new basis, the linear Hamiltonian is diagonlized as

H̃0 = λ0A†A +

4∑
i=1

λiB
†

i Bi. (4.32)

The driving term

ε(a† + a) = ε[M00(A† + A) +

4∑
j=1

M0 j(B
†

j + B j)]. (4.33)

In the regime gi/∆
p
i � 1, one gets M0 j/M00 � 1. So driving term can be approximated with

ε(a† + a) ≈ εM00(A† + A). (4.34)
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The on-site interaction term

α

2

4∑
i=1

b†i b†i bibi =
α

2

4∑
i=1

[(Mi0A† +

4∑
j=1

Mi jB
†

j)(Mi0A† +

4∑
k=1

MikB†k)

(Mi0A +

4∑
m=1

MimBm)(Mi0A +

4∑
n=1

MinBn)]

RWA
≈

α

2

4∑
i=1

{M4
i0A†A†AA +

4∑
j,k,m,n=1

(Mi jMikMimMin)B†j B
†

k BmBn

+ 4M2
i0A†A

4∑
m,n=1

(MimMin)B†mBn}. (4.35)

Here, the fast rotating terms A†B†i B jBk, A†B†i B†j Bk and their conjugate terms are neglected due
to RWA. Look at different terms in equation.(4.35) we got three nonlinear terms in the total
Hamiltonian:

(1) Self-Kerr correction in the cooling cavity

Vc =
α

2
(

4∑
i=1

M4
i0)A†A†AA

=
α

2
Π0A†A†AA (4.36)

where Π0 =

4∑
i=1

M4
i0.

(2) Self-Kerr correction in the on-site TLR

VT LR =
α

2

4∑
j,k,m,n=1

(
4∑

i=1

Mi jMikMimMin)B†j B
†

k BmBn

=
α

2

4∑
j,k,m,n=1

µ jkmnB†j B
†

k BmBn, (4.37)

where µ jkmn =

4∑
i=1

Mi jMikMimMin.
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(3) Photon number correlation term (Cross-Kerr) between cooling cavity and TLRs

Vcouple = 2α
4∑

i=1

M2
i0A†A

4∑
m,n=1

(MimMin)B†mBn

= 2αA†A
4∑

m,n=1

ηmnB†mBn, (4.38)

where ηmn =

4∑
i=1

M2
i0MimMin.

Therefore, the total Hamiltonian in this new basis D becomes

H̃D = λ0A†A +

4∑
i=1

λiB
†

i Bi +
α

2
Π0A†A†AA

+
α

2

4∑
j,k,m,n=1

µ jkmnB†j B
†

k BmBn + 2αA†A
4∑

m,n=1

ηmnB†mBn + εM00(A† + A). (4.39)

Again, in the large detuning regime between the cooling cavity and TLRs, M0 j � Mi j

with i j , 0. Hence, Π0 � η jkmn � µ jkmn, which means self-Kerr effect of on-site TLR is
much stronger than cross-Kerr effect between cooling cavity and TLRs, and cross-Kerr is much
stronger than self-Kerr effect in cooling Cavity.1

4.3.2.3 Obtaining cooling term

Notice that the fock state in cooling cavity will be a mixture of classical field and quantum
field. The cavity operator A now includes a classical part and a quantum part:

A = A(t) + Λ

A† = A
∗
(t) + Λ†. (4.40)

So unitary operator UΛ = exp{A(t)A† − A
∗
(t)A} becomes displacement operator on A, because

UΛAU†
Λ

= exp{A(t)A† − A
∗
(t)A}A exp{A

∗
(t)A − A(t)A†}

= A − A(t)

= Λ (4.41)

Applying UΛ on total Hamiltonian H̃D to separate classical field from quantum field, one

1Part of the derivation in the first circuit model are learned through personal communication with Claudia
Grandi from prof. Girvin’s group at Yale University.
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gets...

H̃Λ = UΛH̃DU†
Λ
− iUΛ

·

U
†

Λ

= λ0[
∣∣∣A∣∣∣2 + (AΛ† + A

∗
Λ) + Λ†Λ] +

4∑
i=1

λiB
†

i Bi + εM00(A† + A)

+
α

2

4∑
j,k,m,n=1

µ jkmnB†j B
†

k BmBn +
α

2
Π0[Λ†Λ†ΛΛ + 4

∣∣∣A∣∣∣2 Λ†Λ

+
∣∣∣A∣∣∣4 + 2(A

∗
A

2
Λ† + AA

∗2
Λ) + A

∗2
ΛΛ + A

2
Λ†Λ† + 2(A

∗
Λ†ΛΛ + AΛ†Λ†Λ)]

+ 2α[
∣∣∣A∣∣∣2 + (AΛ† + A

∗
Λ) + Λ†Λ]

4∑
m,n=1

ηmnB†mBn − i(
·

AΛ† −

·

A
∗
Λ). (4.42)

For a constant classical driving field
·

A = 0, hence

H̃Λ = λ0[
∣∣∣A∣∣∣2 + (AΛ† + A

∗
Λ) + Λ†Λ] +

4∑
i=1

λiB
†

i Bi

+
α

2

4∑
j,k,m,n=1

µ jkmnB†j B
†

k BmBn + εM00(A† + A)

+
α

2
Π0[Λ†Λ†ΛΛ + 4

∣∣∣A∣∣∣2 Λ†Λ +
∣∣∣A∣∣∣4 + 2(A

∗
A

2
Λ† + AA

∗2
Λ)

+ A
∗2

ΛΛ + A
2
Λ†Λ† + 2(A

∗
Λ†ΛΛ + AΛ†Λ†Λ)]

+ 2α[
∣∣∣A∣∣∣2 + (AΛ† + A

∗
Λ) + Λ†Λ]

4∑
m,n=1

ηmnB†mBn. (4.43)

(AΛ†+ A
∗
Λ) in the last term of above Hamiltonian exchanges energy between TLR array

and cooling cavity. Notice that in cooling cavity quantum field decohere very fast, so < Λ >= 0.
The last term of above Hamiltonian becomes

2α[
∣∣∣A∣∣∣2 + AΛ† + Λ†Λ]

4∑
m,n=1

ηmnB†mBn (4.44)

where AΛ† indicates that driving signal keeps turning into higher energy photons. The addi-
tional energy comes from the TLR array hence cooling process is induced! Also

∑4
m,n=1 ηmnB†mBn

conserves total photon numbers in the array. Therefore, we conclude that this scheme gives rise
to a photon-conserving side band cooling.
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4.3.3 Cooling Cavity capacitively coupled TLRs via on-site SQUID

4.3.3.1 Modelling the circuit

The total Hamiltonian of this system is

H = ωca†a +
∑

i

g
qc
i σ

x
i (a† + a)

+
∑

i

ω
q
i σ

z
i +

∑
i

g
qT LR
i σx

i (b† + b)

+
∑

i

ωT LR
i b†i bi +

∑
i

Ji(bib
†

i+1 + b†i bi+1)

+ ε(t)(a†e−iωdt + aeiωdt) (4.45)

where a, b, c are annihlation operators of cooling cavity, on-site TLR and on-site qubit, and ωc

is the cooling cavity frequency, gqc is the coupling strength between qubit and cooling cavity,
gqT LR is the coupling strength between qubit and on-site TLR, ωT LR is the on-site TLR fre-
quency, J is the coupling between different sites of TLRs, ωq is on-site qubit frequency, σx is
Pauli operator of on-site qubit, ε (t) is the amplitude of pumping field, ωd is pumping frequency.
Tuning and biasing circuit parameters to selectively stay in the dispersive regime, without loss
of generality we assume ∆ = (ωc − ω

q
i ) = (ωT LR

i − ω
q
i ) � g

qT LR
i = g

qc
i � J, one gets Bose-

Hubbard Model Hamiltonian [193] from the second and third line of the total Hamiltonian in
equation (4.45), using fourth order perturbative treatment with on-site interaction between qubit
and TLR. The total Hamiltonian becomesα2

∑
i

b†i b†i bibi

H = ωca†a +
∑

i

g
qc
i (σ−i a† + σ+

i a) +
∑

i

(ωT LR
i b†i bi + ω

q
i σ

z
i )

+
∑

i

g
qT LR
i (σ−i b†i + σ+

i bi) +
∑

i

Ji(bib
†

i+1 + b†i bi+1) + ε(t)(a†e−iωdt + aeiωdt) (4.46)

= ωca†a +
∑

i

(ωT LR
i b†i bi + ω

q
i σ

z
i ) +

∑
i

gi[σ−i (a† + b†i ) + σ+
i (a + bi)]

+
∑

i

Ji(bib
†

i+1 + b†i bi+1) + ε(t)(a†e−iωdt + aeiωdt) (4.47)

Separate the Hamiltonian into three terms

H = H0 + V + D (4.48)

The on-site interaction term

V =

N∑
i=1

gi[σ−i (a† + b†i ) + σ+
i (a + bi)] + Ji(bib

†

i+1 + b†i bi+1), (4.49)
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and driving term
D = ε(t)(a†e−iωdt + aeiωdt), (4.50)

while
H0 = ωca†a +

∑
i

ωT LR
i b†i bi

In interaction picture
V int = e jH0tVe− jH0t

The evolution operator in interaction picture can be expand into Dyson series as following

U(t) = 1 − j
∫ t

0
dt1

∑
m,n

〈
m

∣∣∣V int
∣∣∣ n〉 e− j(En−Em)t1 |m〉 〈n|

−

∫ t

0
dt1

∫ t1

0
dt2

∑
m,n,q

e− j(En−Em)t1
〈
m

∣∣∣V int
∣∣∣ n〉 〈

n
∣∣∣V int

∣∣∣ q〉 e− j(Eq−En)t2 |m〉 〈q|

+ j
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∑
m,n,q,p

e− j(En−Em)t1e− j(Eq−En)t2e− j(Ep−Eq)t3

〈
m

∣∣∣V int
∣∣∣ n〉 〈

n
∣∣∣V int

∣∣∣ q〉 〈
q
∣∣∣V int

∣∣∣ p
〉
|m〉 〈p|

+

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4

∑
m,n,q,p,k

e− j(En−Em)t1e− j(Eq−En)t2e− j(Ep−Eq)t3e− j(Ek−Ep)t4

〈
m

∣∣∣V int
∣∣∣ n〉 〈

n
∣∣∣V int

∣∣∣ q〉 〈
q
∣∣∣V int

∣∣∣ p
〉 〈

p
∣∣∣V int

∣∣∣ k〉 |m〉 〈k|
+ ... (4.51)

To evaluate different terms of U(t), two following assumptions are going to be made as well. (1)
The array of TLRs are uniform, which means all TLR frequencies, qubits and coupling terms
are the same; (2) All qubits are in ground state which means all σz terms gives only −1 value.

The first order term gives three different species:
1) Cooling cavity↔ on-site qubit (qi)

Ucq(1) = −
gc

∆c e− j∆ct
∑
i,nc

[
√

nc
∣∣∣nc ↓

q
i nT LR

i

〉 〈
(nc − 1) ↑q

i nT LR
i

∣∣∣ + h.c.]

= −
gc

∆c e− j∆ct
∑

i

(σ+
i a + σ−i a†) (4.52)

where ∆c
i = ω

q
i − ω

c,∆i = ωT LR
i − ω

q
i .
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2) on-site qubit↔ TLR

UTq(1) = −
gT LR

∆c e− j∆T LRt
∑
i,nc

[
√

nT LR
∣∣∣nc ↑

q
i (nT LR

i − 1)
〉 〈

nc ↓
q
i nT LR

i

∣∣∣ + h.c.]

= −
∑

i

gc

∆c
i
e− j∆ct(σ−i b†i + σ+

i bi) (4.53)

3) TLRi ↔ TLRi+1
UTT (1) = jtJ

∑
i

(bib
†

i+1 + b†i bi+1) (4.54)

The second order term gives
1) Cooling cavity↔ on-site qubit↔ TLR

UcqT (2) =
∑

i

gc
i g

T
i

∆i(∆i + ∆c
i )

e− jt(∆i+∆c
i )(a†σ−i σ

+
i bi + b†i σ

−
i σ

+
i a)

(1)
=

gcgT

∆(∆ + ∆c)
e− jt(∆+∆c)

∑
i

1 − σz
i

2
(bia† + b†i a)

(2)
=

gcgT

∆(∆ + ∆c)
e− jt(∆+∆c)

∑
i

(bia† + b†i a) (4.55)

Notice that when (∆ + ∆c) = 0, e− jt(∆+∆c)

(∆+∆c) = − jt, hence

UcqT (2) = − jt
gcgT

∆

∑
i

(bia† + b†i a) (4.56)

2) on-site qubit↔ TLRi ↔ TLRi+1

UqTT (2) = −
∑

i

gT
i Ji

∆2
i

(1 + j∆it)e− j∆it(b†i+1bib
†

i σ
−
i + σ+

i bib
†

i bi+1)

= −
∑

i

gT
i Ji

∆2
i

(1 + j∆it)e− j∆t(σ−i b†i+1 + σ+
i bi+1)bib

†

i

≈ −
∑

i

gT
i Ji

∆2
i

e j∆te− j∆t(σ−i b†i+1 + σ+
i bi+1)bib

†

i

(1)
= −

gT J
∆2

∑
i

(σ−i b†i+1 + σ+
i bi+1)(b†i bi + 1) (4.57)
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3) Cooling cavity↔ qi ↔ Cooling cavity

Ucqc(2) = jt
∑

i

gc,2
i

∆c
i

a†σ−i σ
+
i a

= jta†a
∑

i

gc,2
i

∆c
i

1 − σz
i

2

(1)
= jt

gc,2

∆c a†a
∑

i

1 − σz
i

2

(2)
= jt

gc,2

∆c Na†a (4.58)

4) TLRi ↔ qi ↔ TLRi

UTqT (2) = − jt
∑

i

gT,2
i

∆i
b†i bi

1 − σz
i

2

(1)
= − jt

gT,2

∆

∑
i

b†i bi
1 − σz

i

2

(2)
= − jt

gT,2

∆

∑
i

b†i bi (4.59)

5) TLRi ↔ TLRi+1/TLRi−1 ↔ TLRi

UTTT (2) = −
1
2

t22
∑

i

J2
i b†i bi

= −t2J2
∑

i

b†i bi (4.60)

The third order term gives
1) Cooling cavity→ qi → TLRi → qi

UcqTq(3) =
∑

i

gc
i g

T,2
i

∆
c,2
i (∆i + ∆c

i )
e− jt∆c

iσ+
i bib

†

i σ
−
i σ

+
i a

=
∑

i

gc
i g

T,2
i

∆
c,2
i (∆i + ∆c

i )
e− jt∆c

iσ+
i a(b†i bi + 1)

1 − σz
i

2

(1)
=

gcgT,2

∆c,2(∆ + ∆c)
e− jt∆c

∑
i

σ+
i a(b†i bi + 1)

1 − σz
i

2

(2)
=

gcgT,2

∆c,2(∆ + ∆c)
e− jt∆c

∑
i

σ+
i a(b†i bi + 1) (4.61)
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2) qi → TLRi → qi → Cooling cavity

UcqTq(3) =
∑

i

gc
i g

T,2
i

∆i∆
c
i

(−1 + jt)e jt∆c
i a†σ−i (b†i bi + 1)

1 + σz
i

2

(1)
=
gcgT,2

∆∆c (−1 + jt)e jt∆c
∑

i

a†σ−i (b†i bi + 1)
1 + σz

i

2

(2)
= 0 (4.62)

3) Cooling cavity→ qi → TLRi → TLRi+1

UcqTT (3) =
∑

i

Jig
c
i g

T
i

∆c
i (∆i + ∆c

i )2 e− jt(∆i+∆c
i )b†i+1bib

†

i σ
−
i σ

+
i a

=
∑

i

Jig
c
i g

T
i

∆c
i (∆i + ∆c

i )2 e− jt∆c
i b†i+1a(b†i bi + 1)

1 − σz
i

2

(1)
=

JgcgT

∆c(∆ + ∆c)2 e− jt∆c
∑

i

b†i+1a(b†i bi + 1)
1 − σz

i

2

(2)
=

JgcgT,2

∆c(∆ + ∆c)2 e− jt∆c
∑

i

b†i+1a(b†i bi + 1) (4.63)

4) Cooling cavity← qi ← TLRi ← TLRi+1

UTTqc(3) =
∑

i

Jig
c
i g

T
i

∆c
i (∆i + ∆c

i )2 e− jt(∆i+∆c
i )a†σ−i σ

+
i bib

†

i bi+1

=
∑

i

Jig
c
i g

T
i

∆c
i (∆i + ∆c

i )2 e− jt∆c
i b†i+1a(b†i bi + 1)

1 − σz
i

2

(1)
=

JgcgT

∆c(∆ + ∆c)2 e− jt∆c
∑

i

b†i+1a(b†i bi + 1)
1 − σz

i

2

(2)
=

JgcgT,2

∆c(∆ + ∆c)2 e− jt∆c
∑

i

b†i+1a(b†i bi + 1) (4.64)
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5) qi ↔ TLRi ↔ TLRi+1 ↔ qi+1

UqTTq(3) =
∑

i

Jig
T
i g

T
i+1

∆2
i ∆i+1

e jt(∆i−∆i+1)σ+
i+1bi+1b†i+1bib

†

i σ
−
i

=
∑

i

Jig
T
i g

T
i+1

∆2
i ∆i+1

e jt(∆i−∆i+1)σ+
i+1σ

−
i bi+1b†i+1bib

†

i

(1)
= − jt

JgT,2

∆2

∑
i

σ+
i+1σ

−
i bi+1b†i+1bib

†

i

(2)
= 0 (4.65)

For the fourth order terms, because they are very small already, so we just need to analyse
non-oscillating elements. There are following cases:

1) TLRi ↔ qi ↔ Cooling cavity↔ qi ↔ TLRi

UTiqcqTi(4) = jt
∑

i

gc,2
i gT,2

i

∆2
i (∆i + ∆c

i )
b†i σ

−σ+aa†σ−σ+bi

= jt
∑

i

gc,2
i gT,2

i

∆2
i (∆i + ∆c

i )

1 − σz
i

2
b†i aa†bi

(1)
= jt

gc,2gT,2

∆2(∆ + ∆c)

∑
i

(
1 − σz

i

2
)b†i bi(a†a + 1)

(2)
= jt

gc,2gT,2

∆2(∆ + ∆c)

∑
i

b†i bi(a†a + 1) (4.66)

2) TLRi ↔ qi ↔ Cooling cavity↔ qk ↔ TLRk

UTiqcqTk(4) =
∑
i,k

gc
i g

T
i g

c
kg

T
k e− j(∆i+∆c

i−∆k−∆c
k)t

∆i(∆i + ∆c
i )(∆i + ∆c

i − ∆k)(∆i + ∆c
i − ∆k − ∆c

k)

(b†kσ
−σ+aa†σ−σ+bi + b†i σ

−σ+aa†σ−σ+bk)

=
∑
i,k

gc
i g

T
i g

c
kg

T
k e− j(∆i+∆c

i−∆k−∆c
k)t

∆i(∆i + ∆c
i )(∆i + ∆c

i − ∆k)(∆i + ∆c
i − ∆k − ∆c

k)

1 − σz
i

2
(b†kbi + b†i bk)aa†

(1)
= jt

gc,2gT,2

∆2(∆ + ∆c)
(a†a + 1)

∑
i,k

1 − σz
i

2
(b†i bk + bib

†

k)

(2)
= jt

gc,2gT,2

∆2(∆ + ∆c)
(a†a + 1)

∑
i,k

(b†i bk + bib
†

k) (4.67)
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3) TLRi ↔ qi ↔ TLRi ↔ qi ↔ TLRi

UTqTqT (4) = jt
∑

i

gT,4
i

∆3
i

b†i σ
−
i σ

+
i bib

†

i σ
−
i σ

+
i bi

= jt
∑

i

gT,4
i

∆3
i

1 − σz
i

2
b†i bib

†

i bi

(1)
= jt

gT,4
i

∆3
i

∑
i

1 − σz
i

2
b†i bib

†

i bi

(2)
= jt

gT,4
i

∆3
i

∑
i

b†i bib
†

i bi (4.68)

Again, under the above assumptions (1) and (2), pick up the diagonal terms

img{Udiag} = jt
gc,2

∆c Na†a − jt
gT,2

∆

∑
i

b†i bi

+ jt
gc,2gT,2

∆2(∆ + ∆c)

∑
i

b†i bi(a†a + 1) + jt
gT,4

i

∆3
i

∑
i

b†i bib
†

i bi (4.69)

and
real{Udiag} = −t2J2

∑
i

b†i bi (4.70)

and coupling terms with oscillation frequency ω � min{∆i,∆
c
i },

img{Uosc} = jtJ
∑

i

(bib
†

i+1 + b†i bi+1) +
gcgT

∆(∆ + ∆c)
e− jt(∆+∆c)

∑
i

(bia† + b†i a)

+ jt
gc,2gT,2

∆2(∆ + ∆c)
(a†a + 1)

∑
i,k

(b†i bk + bib
†

k) (4.71)

and

real{Uosc} = −
gT J
∆2

∑
i

(σ−i b†i+1 + σ+
i bi+1)(b†i bi + 1). (4.72)
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Collecting the imaginary terms to get effective Hamiltonian without driving

Ve f f =
gc,2

∆c Na†a +
gT,2

∆

∑
i

b†i bi + J
∑

i

(bib
†

i+1 + b†i bi+1)

+
gc,2gT,2

∆2(∆ + ∆c)

∑
i

b†i bi(a†a + 1) +
gcgT

∆(∆ + ∆c)
e− jt(∆+∆c)

∑
i

(bia† + b†i a)

+
gc,2gT,2

∆2(∆ + ∆c)
(a†a + 1)

∑
i,k

(b†i bk + bib
†

k) +
gT,4

i

∆3
i

∑
i

b†i bib
†

i bi. (4.73)

Now the total effective Hamiltonian

He f f = H0 + Ve f f + D

= (ωc +
gc,2

∆c N)a†a + (ωT +
gT,2

∆
)
∑

i

b†i bi

+ J
∑

i

(bib
†

i+1 + b†i bi+1) +
gc,2gT,2

∆2(∆ + ∆c)
(a†a + 1)

∑
i,k

(b†i bk + bib
†

k)

+
gc,2gT,2

∆2(∆ + ∆c)

∑
i

b†i bi(a†a + 1) +
gT,4

i

∆3
i

∑
i

b†i bib
†

i bi

+
gcgT

∆(∆ + ∆c)
e− jt(∆+∆c)

∑
i

(bia† + b†i a)

+ ε(t)(a†e−iωdt + aeiωdt) (4.74)

Move into rotating frame using unitary transformation U = exp{ jωdt(a†a +
∑

i

b†i bi)}, we

gets

Ṽe f f = ∆cda†a + ∆Td
∑

i

b†i bi +
gc,2gT,2

∆2(∆ + ∆c)

∑
i

b†i bi

+ J
∑

i

(bib
†

i+1 + b†i bi+1) +
gc,2gT,2

∆2(∆ + ∆c)
(a†a + 1)

∑
i,k

(b†i bk + bib
†

k)

+
gT,4

∆3

∑
i

b†i bib
†

i bi +
gc,2gT,2

∆2(∆ + ∆c)
a†a

∑
i

b†i bi

+
gcgT

∆(∆ + ∆c)
e− jt(∆+∆c)

∑
i

(bia† + b†i a) + ε(t)(a† + a) (4.75)

(Check if there are only −ωd in the first two terms) where ∆cd = ωc +
gc,2

∆c N − ωd and ∆Td =

ωT +
gT,2

∆
−ωd. Different terms in this Bose-Hubbard Hamiltonian are photons in cooling cavity,

photons in TLRs, hopping between neighbour sites of TLRs, fourth order correction to photon
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numbers in TLRs, fourth order coupling between different sites of TLRs (not necessarily to be
neighbors), interaction between on-site photons, cross-Kerr term between cooling cavity and
TLRs.

Simplify the interaction Hamiltonian,

Ṽe f f = ∆cda†a + Γik

∑
i,k

(b†i bk + bib
†

k) + Υika†a
∑
i,k

b†i bk

+ Θi

∑
i

b†i bib
†

i bi + ε(t)(a† + a) + Ωe− jt(∆+∆c)
∑

i

(bia† + b†i a) (4.76)

where

Γik =


(
∆Td +

gc,2gT,2

∆2(∆+∆c)

)
/2, when i = k(

J +
gc,2gT,2

∆2(∆+∆c)

)
, when i , k

Υik =
gc,2gT,2

∆2(∆ + ∆c)

Θ =
gT,4

∆3

Ω =
gcgT

∆(∆ + ∆c)
.

Asume the photon in the LRC circuit decays fast, so resonant photon number in cooling
cavity Nc =

〈
a†a

〉
= 0. Hence the cross-Kerr term in the effective Hamiltonian is eliminated

H̃e f f = Γik

∑
i,k

(b†i bk + bib
†

k) +
gT,4

i

∆3
i

∑
i

b†i bib
†

i bi

+ ε(t)(a† + a) + Ωe− jt(∆+∆c)
∑

i

(bia† + b†i a) (4.77)

This Hamiltonian has the same form as equation (4.28) following the same method as the first
circuit, by separating a† into a summation of quantum Λ† and classical term A, we get cool-
ing term AΛ†

∑4
m,n=1 ηmnB†mBn out of the Hamiltonian (4.77). Again, the physical meaning of

AΛ†
∑4

m,n=1 ηmnB†mBn is that driving signal turns into resonant photon in cooling cavity by ab-
sorbing energy from the array of TLRs and meanwhile maintain the total photon numbers in
TLR array. Note that the rotating factor e− jt(∆+∆c) can be eliminated by choosing appropriate
detunings. And advantage of the second scheme is that the effective coupling between TLR and
cooling cavity can be controlled via tunable qubit energy. This may be a better experimental
design to optimize cooling rate!

It is necessary to point out that that we have asumed the coupling strength between the
cooling cavity and all the on-site SQUIDs are uniform. This is hard for a long array of TLRs.
But we can take the advantage of the tunability of SQUID and compensate the periodicity of
coupling strength by changing magnetic bias on each SQUID. Further, we are going to discuss
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the case when only the two ending sites are coupled to the cooling cavity, which is much easier
to realize by putting these two site at simmetric location in the cavity.

4.3.4 Work To Do for the next step

4.3.4.1 A more accurate theory to obtain cooling term

Notice that the approach we get here has made a lot of assumptions, including critical
ones

ε(a† + a) ≈ εM00(A† + A) (4.78)〈
a†a

〉
= 0 (4.79)

For the first assumption, a direrct three-wave mixing derivation will be present to obtain
the cooling term κΛ†AΞ, where Ξ is the creation operator of collective mode of the TLR array
and κ is the cooling rate. The second assumption is actually not true because in a cavity-assisted
cooling, the cooling cavity has a high quality factor. However referring to steady photon state
in the cooling cavity, one can define a relative photon operator α = a − 〈a〉, therefore the
fluctuations of photon number in the cooling cavity

〈
α†α

〉
= 0. We can expect the fundamental

physics doesn’t change but a different form of cooling strength might be obtained for the second
scheme. Hence, a further adjustment using α = a− 〈a〉 to the derivation the cooling rate will be
made.

4.3.4.2 Numerical estimation of cooling rate

Fermion golden rule will be applied to solve for analytical form of cooling rate. Experi-
mental parameters will be applied. I will need to play with different values of quality factor Q
and detuning ∆c in order to optimize cooling rate.

4.4 Simulator of a spin-1 array

4.4.1 XX coupling

Notice that by adjusting bias current on phase qubit, we can make ζ → 0 and the same
time keep three levels in the washboard potential, so that the capacitive coupling matrix becomes

(a† + a)≈

 0 1 0
1 0 1.414
0 1.414 0

 (see EIT section). Define it as S x. Suppose that there is a chain
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of phase qubits coupled with capacitors, hamiltonian of which is:

HXX

~
=

N∑
j=1

∑
n=g,a,b

ω
j
na j†a j + gc

N−1∑
j=1

(a j† + a j)(a j+1† + a j+1) (4.80)

=

N∑
j=1

∑
n=g,a,b

ω
j
nS j

n + gc

N−1∑
j=1

S j
xS j+1

x . (4.81)

Here capacitive coupling strength between two sites gc=e2/C1C2Ec. The first term is from on-
site three level phase qubit, which can be treated as spin {-1,0,1} respectively.

S j
g =

 −1 0 0
0 0 0
0 0 0

 , S j
a =

 0 0 0
0 1 0
0 0 0

 , S j
b =

 0 0 0
0 0 0
0 0 1

 , (4.82)

and ωga = ωa−ωg, ωab = ωb−ωa are defined as previous sections. Let S j
z =

 −1 0 0
0 0 0
0 0 1 − s

,
where s is a nonlinear factor s = (ωab−ωga)/ωga. In this case, the hamiltonian can be simplified
as

HXX

~
=

N∑
j=1

∑
n=−1,0,1

ω
j
0S j

z + gc

N−1∑
j=1

S j
xS j+1

x . (4.83)

It has to be noted that S x and S z don’t satisfy Lie Group’s commutator rules.(more math-
ematical calculation or theory. theoretically is it doable?) This system is just a simulator but
not a precise physical realization. However, numerical simulation will be done to show the sim-
ilarity of this system to spin-1 chain (Heisenberg model?) and demonstrate whether this way of
modeling the system is good or not. A figure of this circuit shows as following:

Figure 4.13: A chain of phase qubits coupled with capacitors.
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4.4.2 XXZ coupling

Replace the capacitor with a loop SQUID and get a coupling hamiltonian H j, j+1
couple/~ =

gc(a j†+a j)(a j+1†+a j+1)−gi(a j†−a j)(a j+1†−a j+1),where gi = 4EJ cos(φe
2 ) is inductive coupling

strength between two sites and can be tuned by controlling the magnetic bias φe. Rewrite the
hamiltonian into {S j

x,y,z} form.

HXXZ

~
=

N∑
j=1

∑
n=−1,0,1

ω
j
0S j

z + gc

N−1∑
j=1

S j
xS j+1

x + gi

N−1∑
j=1

S j
zS j+1

z . (4.84)

Figure 4.14: A chain of phase qubits coupled with SQUID

Figure 4.15: Three level structure of a phase qubit is shown. The three levels can be treated as
Spin 1,0,-1 states respectively.
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Chapter 5

Superconducting resonator coupled to
other oscillators

In this Chapter, I am going to explore the theory of a superconducting resonator coupled
to different types of AC signal, including electrical, flux and mechanical oscillators. Hamilto-
nians are derived. The general formalism give rises to different regime of physical effect which
reconcile with reported experiments. The initial motivation of this work was to study a para-
metric amplifier of gravitational wave in quantum limit, using superconducting circuit. The
theory derived in this chapter, however, works for various system. Some future research could
be pursued based on the formalism established here.

5.1 Parametric oscillator in superconducting cavity

In Chapter 3, we introduced superconducting transmission line resonator (TLR). When
the two ends of TLR are capacitively coupled to external leads, one gets boundary condition for
time independent solution are V(0) = V(D) and ∂

∂x V(x) |x=0= ∂
∂x V(x) |x=D. Here D is effective

electrical length of the TLR. By solving Schrödinger equation, we get the static solutions with
separate energy levels, [73] which means standing waves of Cooper pair density arises in TLR.
The time independent part is depicted in Fig.5.1(a). This generates standing wave of radio
frequency photons between TLR and substrates, and becomes one dimensional cavity. Only
considering fundamental mode with resonant frequency ωr

0, TLR has quantized Hamiltonian

H0 = ωr
0(a†a +

1
2

) (5.1)

Assuming the capacitance and inductance per unit length of the resonator are c and l, we get
ωr

0 = 2π
D
√

cl
. The reason we use unit length values of capacitance and inductance instead of net

values is based on the assumption that the mechanical motion at one end doesn’t change the
bulk property of the circuit.

Let’s now consider a transmission line resonator with one end electrically coupled to a
small AC voltage signal, so the amplitude of electric potential at that end V(D) = Vd cosωt,

115



Figure 5.1: (a) A transmission line resonator with one end coupled to an AC signal. (b) An
schematic LC circuit. The upper plate of the capacitor is movable and driven by mechanical
motion δD(t).

see Fig.5.1(a). The driving signal changes the potential value at one end, equivalently changes
TLR’s effective electrical length D → D + δD(t). Hence the boundary condition under driving
takes the new form {

V(0) = V(D + δD)
∂
∂x V(x) |x=0= ∂

∂x V(x) |x=D+δD= 0

Because what changes here is effective boundary condition but the TLR doesn’t change me-
chanically, so the capacitance and inductance per unit length of TLR stays the same. Asume the
driving is slow ω � ωr

0, we have following consequences. The first is that driving signal is too
slow to change TLR’s static ground state, so we can expect at every instance, the amplitude of
electrical potential at the end D takes this form

V(D) = V0 − |Vd cosωt| (5.2)

Let V(D) = V0−V0 sin θ(t), where V0 is the voltage amplitude of the ground state standing wave
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in TLR. Instant phase at the end D

θ(t) = 2π
δD(t)

D
(5.3)

and θ ∈ [−π2 ,
π
2 ]. Without loss of generality, we can assume ωt ∈ [−π2 ,

π
2 ] to get rid of the

absolute sign in Eq.(5.2), hence

θ(t) = sin −1(
Vd

V0
cosωt) (5.4)

Note that the instant resonant frequency ωr(t) is a function for electrical length

ωr(t) =
2π

D
√

cl

1
1 + δD(t)/D

=
2π

D
√

cl
[1 −

δD(t)
D

+ O(
δD2(t)

D2 )]

In the weak signal regime, Vd � V0, δD/D � 1, we keep the lowest order of δD(t)
D and sin θ(t) ≈

θ(t). Plug in with Eq.(5.3) and (5.4) we get

ωr(t) ≈ ωr
0(1 −

Vd cosωt
2πV0

)

= ωr
0 − ω

r
0

Vd

2πV0
cosωt

= ωr
0 −

ωr
0

4πV0
Vd(eiωt + e−iωt)

= ωr
0 −

ωr
0

4πV0
(Ṽd + Ṽ∗d )

where Ṽd = Vdeiωt. When the AC signal is in quantum limit classical variable Ṽd needs to
be quantized and replaced with operator V̂†d = d†eiωdt. So the instant resonant frequency is a
function of AC signal

ωr(t) = ωr
0 −

ωr
0

4πV0
(V̂†d + V̂d)

= ωr
0 −

ωr
0

4πV0
(d†eiωdt + de−iωdt) (5.5)

Plug this instant resonant frequency into TLR Hamiltonian Eq.(5.1), we obtain the TLR Hamil-
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tonian with coupling to small AC signal as following

H = ωr
0[1 −

Vd

2πV0
(de−iωt + d†eiωt)]a†a

= ωr
0a†a −

ωr
0Vd

2πV0
a†a(de−iωt + d†eiωt)

= H0 + Hint.

The interaction between transmission line and driving

Hint = χa†a(de−iωdt + d†eiωdt) (5.6)

where coupling strength χ = −
ωr

0Vd

2πV0
. Since number operator n = a†a, so interaction hamiltonian

has a classical form as Hint˜QV , which can be interpreted as electrical potential energy.
ωr

0 for a TLR is usually in the range of GHz, since ω � ωr
0, we can expect ω to be in the

range of KHz to MHz. We know that mechanical oscillation could be in this range (citation).
Hence we can expect that if red-detuned driving field is sent into the resonator, it will absorb
the low frequency AC signal and turns into resonant photon in the cavity. In this way, weak
low frequency signal ω can be detected in a three wave mixing way. Alternatively, sideband
cooling, squeezing or heating up the signal source can be implemented.

It’s worthful to note that this formalism works not only for a cavity but also works for LC
circuit which has fundamental mode with resonant frequency ωr

0. Also, the physical cause of
small AC signal can be an capacitive antenna or inductive antenna, where the signal becomes
magnetic flux φ(t) = φd cosωt. This AC flux signal is just going to change the boundary
condition like the way electrical signal does. Modeling of an AC signal at one end of the
resonator has been examined by experiment. [194]

5.2 Superconducting cavity coupled to mechanical oscillator

5.2.1 Quantum LC circuit coupled to acoustic mode

Now we consider another configuration which is showed in K. W. Lehnert’s paper [195].
Now we consider the circuit shown in Fig.5.1(b), instead of a cavity, a superconducting LC
resonator is formed of a big inductance connected to a capacitor, one plate of which is mov-
able. The typical frequency of the mechanical motion of this plate is from KHz to MHz. Let’s
study the Hamiltonian formalism of the quantum system including electrical oscillation in the
superconducting LC circuit and mechanical oscillation on the moving plate of the capacitor. For
simplicity and without loss of generality, we treat the capacitor as two parallel plates, so C = εA

D ,

where D is the distance between two plates and A is the plate area. The mechanical vibration
causes change of δD(t), so the modulated capacity C = εA

D+δD , and the resonant frequency of the
LC circuit ω0 = 2π√

LC
. Assume vibration is small compare to the total distance between the two

plates δD � D, so we can expand modulated frequency ωmod in terms of ∆d = δD/D and keep
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the first order term

ωmod(t) =
2π
√

LC(t)

=
2π√
L εA

D

√
1 + ∆d

= ω0[1 +
1
2

∆d + O(∆2
d)]

≈ ω0(1 + ∆d/2) (5.7)

Without loss of generality we can assume the mechanical vibration is cosinusoidal ∆d(t) =

2∆ cos(ωmt). Consequently, the hamiltonian of the LC circuit becomes

H = ωr0(a†a +
1
2

)(1 + ∆ cos(ωmt)) (5.8)

Furthermore, the quantized Hamiltonian is

H = ωr0(a†a +
1
2

)[1 + ∆(d†eiωmt + de−iωmt)]

= ωr0(a†a +
1
2

) + ∆ωr0a†a(d†eiωmt + de−iωmt) (5.9)

The second term ∆ωr0a†a(d†eiωmt + de−iωmt) indicates a interaction Hamiltonian similar as
Eq.(5.6) in previous section.

5.2.2 General theory of Superconducting cavity coupled to mechanical oscillator

Again, the mechanical oscillator is coupled to the the capacity of a superconducting cav-
ity. This can be achieved in different ways, such as the way in previous subsection, or as the way
in Fig.5.2(a), where one end of a 3D superconducting cavity is a movable piston connected with
a mechanical oscillator, etc. The idea is to make the mechanical oscillator modulates collective
capacitance of the cavity. Without loss of generality, the capacitance can be always modeled as
a double plate capacitor and the effective circuit hence can be modeled again as Fig.5.1(b). In
this subsection we proceed the theory to general case in cluding different frequency regions of
the mechanical signal.

We start with a general Hamiltonian of the quantum LC circuit before quantization

H =
C
2

·

φ
2

+
1

2L(2e)2φ
2 (5.10)
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Figure 5.2: (a) A 3D superconducting cavity with one end coupled to mechanical oscillator. (b)
Three wave mixing scheme when ω = 2ω0. (c) Four wave mixing scheme when ω , 2ω0.

By quantizing the Hamiltonian using Cooper pair number operator N = C2
·

φ
2
/(2e)2,

H0 =
(2e)2

2C
N2 +

1
2L(2e)2φ

2 (5.11)

=
1
2

EcN2 +
1
2

ELφ
2 (5.12)

where charge energy Ec =
(2e)2

C and inductive energy EL = 1
L(2e)2 . Because capacitor is coupled

to mechanical oscillator, the movable plate gives rise to a modulated distance between two
plates D(t) = D(1 + ∆d cosωt). The capacitive energy becomes

Ec(t) =
(2e)2

C
=

(2e)2

εA/D(t)
=

(2e)2

εA/D
(1 + ∆d cosωt) = Ec(1 + ∆d cosωt) (5.13)
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Hence, capacitively coupling to a mechanical oscillator, the Hamiltonian (5.11) becomes

H =
1
2

Ec(1 + ∆d cosωt)N2 +
1
2

ELφ
2

=
1
2

EcN2 +
1
2

ELφ
2 +

1
2

Ec∆d cosωtN2

= H0 +
1
2

Ec∆d cosωtN2 (5.14)

Replacing with creation and annihlation operators
N =

√
ω0
Ec

(a + a†)

φ = i
√

ω0
EL

(a − a†)

and quantized mechanical oscillator cosωt = d† + d, we get

H = ω0(aa† + a†a) +
1
2
ω0∆d(d† + d)(a† + a)2 (5.15)

= H0 + Hint (5.16)

where resonant frequency in the cavity ω0 = 2π
√

EcEL, interaction part Hint =
χ
2 (d† + d)(a† +

a)2, and for convenience ~ has been set to 1. In order to study different coupling regime we
need to expand Hint

Hint = χ(d† + d)(a† + a)2

= χ(d†a†2 + d†aa† + d†a†a + d†a2 + da†2 + daa† + da†a + da2)

= χ(d†a†2 + d†aa† + d†a†a + d†a2 + h.c.) (5.17)

Write it in Heisenburg picture with d → de−iωt and a→ ae−iω0t

H̃int = χ[ei(ω+2ω0)td†a†2 + eiωtd†aa† + eiωtd†a†a + ei(ω−2ω0)td†a2 + h.c.] (5.18)

For any frequency regime, with rotating wave approximation the fast rotating terms with
frequency (ω + 2ω0) are always negligible.

H̃int ≈ χ[eiωtd†(aa† + a†a) + ei(ω−2ω0)td†a2 + h.c.] (5.19)

For acoustic mechanical oscillator ω � ω0, rotating terms with frequency (2ω0 −ω) are
fast rotating terms so they can be neglected. The Hamiltonian now becomes

Hint ≈ χ[d†(aa† + a†a) + h.c.] (5.20)

which is exactly as the form (5.6) in previous discussion.
For high frequency mechanical oscillation when ω is at the order GHz. If (ω−2ω0) � ω,
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terms with frequency ω are fast rotating terms and hence negligible. The Hamiltonian now is

Hint ≈ χ[d†a2 + da†2] (5.21)

In this Hamiltonian da†2 indicates squeezing effect. If ω = 2ω0, there arises three-wave mixing,
where one mechanical phonon is mixed with two photons, and a mechanical quantum turns into
two radio wave photons in superconducting cavity, as Fig.5.2(b). in this scheme, dynamical
Casimir effect (citation) arises if starting from vacuum in the cavity. If ω , 2ω0, one can send
in a driving signal with frequency ωd = |ω − 2ω0|, there arises a four wave mixing process,
where with compensation of driving field, a phonon is turned into two photons in the cavity, as
Fig.5.2(c).

5.3 Superconducting cavity coupled to EM wave via SQUID

Connect one end of the transmission line resonator with a SQUID as Fig.5.3(a). AC
magnetic field is sent into SQUID φe(t) = φd sinωt, which modulates boundary condition at
this end, so it is expected to get similar effect as discussed in previous section. The interaction
Hamiltonian can be obtained in a similar way but now it is the inductive part of Hamiltonian
that is coupled to modulating signal. Consider the schematic circuit show in Fig.5.3(b). A LC
quantum circuit connected with a SQUID giving a Hamiltonian

Figure 5.3: (a) A TLR has a SQUID at right end, with both sides open. Magnetic flux Φe(t) is
sent into SQUID loop. Variable φ(t) is the gauge invariant phase at the left edge of SQUID. (b)
Schematic circuit of (a). (c) Three wave mixing. (d) Four wave mixing.
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H =
(C + CJ)

2

·

φ
2

+ 2EJ cos φe(1 − cos φ) +
1

2L(2e)2φ
2

=
1
2

E′cN2 +
1
2

ELφ
2 − 2EJ cos φe cos φ

=
1
2

E′cN2 +
1
2

ELφ
2 − 2EJ cos φe[1 −

φ2

2
+
φ4

4!
+ O(φ4)]

=
1
2

E′cN2 +
1
2

(EL + 2EJ cos(φd sinωt))φ2 −
2
4!

EJ cos φeφ
4 + O(φ4) (5.22)

where E′c =
(2e)2

C+CJ
. Now from the generating function for Bessel functions, one obtains the

Jacobi-Anger expansion

cos(φd sinωt) =

∞∑
n=−∞

Jn(φd) cos(nωt) (5.23)

where Bessel functions of the first kind Jn(φd) =
∑∞

m=0
(−1)m

m!Γ(m+n+1) (
φd
2 )2m+n. For weak driving, φ

is trapped near the minimum φ ∼ 0, also φd/2π � 1, so we can truncate cos φ to second order
and cos(φd sinωt) to

cos(φd sinωt) ≈
∞∑

n=−∞

(
φd

2
)n cos(nωt)

≈ 1 +
φd

2
cos(ωt) (5.24)

Therefore, the Hamiltonian becomes

H =
1
2

E′cN2 +
1
2

[EL + 2EJ + EJφd cos(ωt)]φ2

=
1
2

E′cN2 +
1
2

(EL + 2EJ)φ2 +
1
2

EJφd cos(ωt)φ2

=
1
2

E′cN2 +
1
2

E′Lφ
2 + |g| cos(ωt)φ2

=
1
2

E′cN2 +
1
2

E′Lφ
2 + (g∗e−iωt + geiωt)φ2 (5.25)

where E′L = EL + 2EJ , g = 1
2 EJφd. Quantizing phase φ, N and AC signal cos(ωt) as previous

section

H =
1
2

E′cN2 +
1
2

E′Lφ
2 + g(d† + d)φ2

= ω0a†a −
1
2
ω0

EJ

EL
φd(d† + d)(a† + a)2

= ω0a†a − χ′(d† + d)(a† + a)2 (5.26)
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where ω′0 = 2π
√

E′cE′L, χ′ = 1
2ω0

EJ
E′L
φd. We get the same interaction as previous section. We

apply rotating wave approximation to discuss different regimes.
Neglecting fast rotating terms with frequency (ω + 2ω0)

H̃int ≈ χ′[d†(aa† + a†a) + d†a2 + h.c.] (5.27)

For low frequency signal, e.g. the time dependent AC circuit giving rise to AC magnetic field,
ω � ω0, rotating terms with frequency (2ω0 − ω) are fast rotating terms so they can be ne-
glected. The Hamiltonian now becomes

Hint ≈ χ[d†(aa† + a†a) + h.c.] (5.28)

This is not interesting for magnetic signal.
For microwave ω is at the order GHz. If (ω− 2ω0) � ω, terms with frequency ω are fast

rotating terms and hence negligible. The Hamiltonian now is

Hint ≈ χ[d†a2 + da†2] (5.29)

In this Hamiltonian da†2 indicates squeezing effect. If ω = 2ω0, there arises three-wave mixing,
where one mechanical phonon is mixed with two photons, and a mechanical quantum turns into
two radio wave photons in superconducting cavity, as Fig.5.2(c). in this scheme, dynamical
Casimir effect arises if starting from vacuum in the cavity. And actually Wilson, et al, has
done an experiment [196] to verify dynamical Casimir effect based on this scheme. In order
to enhance this nonlinearity, Lähteenmäki, et al., accomplished to couple a transmission line
resonator with an array of dc-SQUIDs and observed dynamical Casimir effect. [194] Same
interaction Hamiltonian was obtained in their paper. If ω , 2ω0, one can send in a driving
signal with frequency ωd = |ω − 2ω0|, there arises a four wave mixing process, where with
compensation of driving field, a phonon is turned into two photons in the cavity, as Fig.5.2(d).

Note that the coupling strength χ′ = 1
2ω0

EJ
E′L
φd is not limited to 300MHz, which is a

typical coupling strength in latest circuit QED experiments. [73,81] This means that ultra-strong
coupling beyond Jaynes-Cummings model can be studied in this type of system by directly
connecting a superconducting resonator with Josephson junction devices, such as dc-SQUID.
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Chapter 6

Summary and Future Work

In this dissertation, I have applied quantum circuit theory to model superconducting de-
vice. With the circuit model, I am able to study different designs and applications of supercon-
ducting circuit. Relating with qubits and decoherence, I have worked on an encoding method
based on a universal quantum degeneracy point (UQDP). Working on UQDP, the encoded qubit
is coupled to generic noise up to second order and the first order coupling is suppressed. Numer-
ical simulation of the qubit in a noisy environment has demonstrate a two order of magnitude
longer decoherence time and high fidelity for one-qubit and two-qubit gates. A possible imple-
mentation using superconducting circuit is discussed. This piece of work is covered in chapter
2. The UQDP with superconducting circuit includes a typical circuit geometry that gives rise
to tunable four-level structure as an artificial atom. Connecting this structure with two different
TLR and applying four-wave mixing method, I am able to get a parametric toolbox processing
photon states of these two TLRs and implement circuit QED. Potentially, this scheme can be
used to implement universal quantum computation by processing on-chip photons. The para-
metric toolbox includes universal set of two mode operations. This piece of work is covered
in chapter 3. By coupling many sites of TLR with SQUID into an array, quantum computation
or quantum simulation can be implemented. In chapter 4, I have studied sitewise manipulation
induced Mott-insulator to superfluid transition using a quantum simulator based on this type of
superconducting circuit. The critical point in microcanonical ensemble, solved with exact diag-
nolization numerical method, satisfies our mean field estimation. This type of coupling can be
extended to 2D or 3D array. A photon preserving cooling scheme is proposed to study ground
state of collective ground state in this simulator. In light of the quantum nature of a mesocopic
or macroscopic size, one can use superconducting devices to detect and amplify weak quantum
signals. In chapter 1, I proposed a superconducting Faraday cage to observe interference effect
only due to scalar AB phase. External AC signal can drive internal circuit in a superconducting
Faraday cage. Quantum jump in the internal state can be detected from the exterior surface
in order to observe and demonstrate scalar AB effect. And in chapter 5, I studied paramet-
ric amplifier of mechanical signals using superconducting cavity. Using the same mechanism,
dynamical Casimir effect has been observed.

Some future work based on my study during these years is summarized as following:

Flat band states simulator using 2D array of superconducting quantum circuit
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We have demonstrated using circuit can simulate a two dimensional Bose-Hubbard model.
We have also study different phases of two interacting photons in a saw-tooth type 2D lat-
tice. Our numerical simulation of this system has shown flat band states. Also, this is ro-
bust against small un-uniformity of on-site energy and hopping strength between different sites.
Same circuit topology can be applied to simulate Fermi-Hubbard model and obtain flat band
states of fermions. The circuit ingredients are different from previous case. We borrowed ref-
erence [127]’s idea to encode Fermions with X-mon qubits and managed to engineer the total
Hamiltonian of the simulated system to be encoded with X-mon qubits. This piece of work is
being written and going to be submitted soon.

Cavity-assisted sideband cooling of an array of TLRs

The first step of this theory is present in Chapter 4. However, further work need to be
done, for example, to apply Fermi-golden rule to obtain cooling rate and numerical estimations
of cooling rate for different cooling schemes based on experimental parameters. This further
work needs to be collaborated with an experimental group.

Also, I have made assumptions

ε(a† + a) ≈ εM00(A† + A)〈
a†a

〉
= 0

in the derivation of cooling. For the first assumption, a direrct three-wave mixing derivation will
be present to obtain the cooling term κΛ†AΞ, where Ξ is the creation operator of collective mode
of the TLR array and κ is the cooling rate. The second assumption is actually not true because
in a cavity-assisted cooling, the cooling cavity has a high quality factor. However referring to
steady photon state in the cooling cavity, one can define a relative photon operator α = a − 〈a〉,
therefore the fluctuations of photon number in the cooling cavity

〈
α†α

〉
= 0. We can expect the

fundamental physics doesn’t change but a different form of cooling strength might be obtained
for the second scheme. Hence, a further adjustment using α = a − 〈a〉 to the derivation the
cooling rate will be made.

Quantum simulator of spin-1 array

As the theory presented in the last section of Chapter 4, spin-1 atom can be simulated
with phase qubits. Different types of coupling can be implemented as well. Therefore, one
can build an array of these ”atom”s or use them as coupler between spin-1/2 ”atom”s, such as
charge qubits, to get a universal quantum simulator.
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Chapter 7

Appendix

7.1 Bloch’s theorem for scalar potentials that are periodic in time

Consider the general case in which the potential energy inside the Faraday cages depicted
in Figures 1 and 5 satisfy the periodicity condition in time

U (t + T ) = U (t) (7.1)

where the period T = 2π/ω is that of an arbitrary periodic waveform generator that replaces
the sine-wave generators in Figures 1 and 5. Then it is apparent that this temporal periodicity
condition is mathematically identical to the spatial periodicity condition

U (x + a) = U (x) (7.2)

that applies to a 1D crystalline lattice with a lattice constant a.
Bloch’s theorem [197] then tells us that the wavefunction inside the 1D crystalline lattice

is given by
ψ (x) = eipx/~up (x) (7.3)

where p is the “crystal momentum” or “quasi-momentum”, and where

up (x + a) = up (x) (7.4)

is a periodic function of x within the spatial crystalline lattice.
Similarly, the temporal version of Bloch’s theorem (also known as “Floquet’s theorem”)

is given by
ψ (t) = e−iEt/~uE (t) (7.5)

where E is the “crystal energy” or “quasi-energy” [198] [199], and where

uE (t + T ) = uE (t) (7.6)

is a periodic function of t within a certain “temporal crystalline lattice.” [200] (We have sup-
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pressed the spatial dependence of the wavefunction ψ (t) and of the periodic function uE (t)
as being understood in (7.5). This also applies to all of the following expressions for ψ (t)
and uE (t)). Both the “crystal momentum” and the “crystal energy” are physically observable
quantities that obey conservation laws, because of the discrete translational symmetry of the
crystalline systems in x and in t, respectively, which follow from the translational symmetry of
(7.1) and (7.2).

Since uE (t) is a periodic function of time with a period T , it can be expanded by Fourier’s
theorem into a Fourier series expansion

uE (t) =

+∞∑
n=−∞

cn exp (−inωt) (7.7)

where cn are the Fourier coefficients of uE (t), and where ω = 2π/T is the frequency of periodic
charge waveform Q (t) that is being injected onto the surface of the Faraday cage in Figures 1
and 5 by the arbitrary periodic waveform generator. Substituting (7.7) into (7.5), one finds that

ψ (t) =

+∞∑
n=−∞

cn exp (−i (E + n~ω) t/~)

=

+∞∑
n=−∞

cn exp (−iEnt/~) (7.8)

so that we conclude that
En = E + n~ω (7.9)

which describes the “quasi-energy” levels [198] of any charged quantum system inside the
cavity of a Faraday cage which is being driven by an arbitrary periodic waveform.

Note that this derivation of the spectrum of quasi-energy levels (7.9) applies to the case
of any periodic potential energy function U (t) . However, let us now consider the important
special case of a sinusoidal time variation of U (t).

The wavefunction of a quantum system inside the Faraday cage such as the ones depicted
in Figures 1 and 5, will be phase modulated by the time-varying potential energy in accordance
with the time-dependent Schrödinger equation

i~
∂ψ

∂t
= Hψ = (H0 + U(t))ψ (7.10)

where the H is the total Hamiltonian, H0 is the unperturbed Hamiltonian, and U (t) is the poten-
tial energy of the quantum system inside the spherical shell, which results, for example, from
the injection of the charge Q (t) onto the surface of the spherical metallic shell (i.e., Faraday
cage) in Figure 1. Note that U (t) will be independent of the position of any field point in the
volume within the shell. Thus

U (t) = U0 cosωt (7.11)

for the case of an oscillating charge Q (t) = Q0 cosωt which is exterior to the Faraday cage.
However, any field arising from the spatial gradients of U (t) interior to the space containing

128



the quantum system is zero.
Now we shall assume that the quantum system is initially in an unperturbed eigenstate of

the unperturbed Hamiltonian H0, i.e.,

H0ψ = Eψ (7.12)

where E is the unperturbed energy level of the system. Since [H0,U(t)] = 0, it follows that the
solution to the time-dependent Schrödinger equation is

ψ (t) = ψ (0) e−
i
~

(
Et+

∫ t
0 U(t′)dt′

)
= ψ (0) e−

i
~Ete−iϕ(t) (7.13)

where ϕ(t) is the phase shift of the wavefunction of the system which is associated with the
scalar AB effect, i.e.,

ϕ (t) =
1
~

∫ t

0
U

(
t′
)

dt′ (7.14)

in agreement with (2.23). Using the explicit functional form of (7.11) in order to evaluate this
integral, we find that

ϕ (t) = α sinωt (7.15)

where the “FM depth of modulation” α parameter is defined as follows:

α =
U0

~ω
(7.16)

Thus we find that the wavefunction of the system in the presence of the interior potential
energy U (t), which is caused, for example, by the exterior charge Q (t), will have the form

ψ (t) = ψ (0) e−
i
~Ete−iα sinωt (7.17)

Now from the generating function for Bessel functions, one obtains the Jacobi-Anger expansion
[201]

e−iα sinωt =

∞∑
n=−∞

Jn (α) e−inωt (7.18)

where Jn (α) is the nth order Bessel function of the argument α. The meaning of the index n
is that it denotes the nth harmonic sideband of the phase modulated wavefunction, which will
end up modifying the quasi-energy level structure of the quantum system. Positive values of
n will correspond to upshifted-frequency sidebands, and negative values of n to downshifted-
frequency sidebands in the quasi-energy spectrum.
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Substituting the Jacobi-Anger expansion into the wavefunction (7.17), we conclude that

ψ (t) = ψ (0) e−
i
~Et

∞∑
n=−∞

Jn (α) e−inωt

= ψ (0)
∞∑

n=−∞

Jn (α) e−
i
~ (E+n~ω)t

= ψ (0)
∞∑

n=−∞

Jn (α) e−
i
~Ent (7.19)

where the quasi-energy levels En are once again given by the expression

En = E + n~ω (7.20)

7.2 Basic quantum operations for the photon modes

Quantum information processing with photons has been widely studied either with dis-
crete states or continuous variable states. [107,108] Here, we briefly summarize the basic quan-
tum operations for the photon modes. [124] Two categories of quantum operations are consid-
ered: the Bogoliubov-linear operations and the nonlinear interactions. The photon modes are
represented by the annihilation (creation) operators â1 and â2 (â†1 and â†2).

7.2.1 Bogoliubov-linear operations

The Bogoliubov-linear operations perform the following transformation

âi →
∑

j

(
Ai jâ j + Bi jâ

†

j

)
+ Ci (7.21)

with coefficients Ai j, Bi j Ci. An arbitrary Bogoliubov-linear operation can be constructed using
the basic elements: the beam-splitter operation, the squeezing operation, and the phase shifter.

The beam-splitter operation can be realized by Hbm = ~χbmeiφâ†1â2 + h.c. with coupling
amplitude χbm. Under this Hamiltonian, the operators evolve as(

â1(t)
â2(t)

)
=

(
cosϕ −eiφ sinϕ

−e−iφ sinϕ cosϕ

) (
â1(0)
â2(0)

)
(7.22)

with ϕ = χbmt. At ϕ = π/2, the beam-splitter operation swaps the states of the two modes up
to a phase factor. In discrete-state quantum computing schemes, this operation can generate
single-qubit Hadamard gate.

The squeezing operation can be realized by Hsq = i~χsqâ†1â†2 + h.c. with coupling ampli-
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tude χsq. Under this Hamiltonian, the operators evolve as(
â1(t)
â†2(t)

)
=

(
coshϕ sinhϕ
sinhϕ coshϕ

) (
â1(0)
â†2(0)

)
(7.23)

with ϕ = χsqt, which describes the parametric amplification process that generates two-mode
squeezing. [124] When applied to the vacuum state, it generates the so-called continuous-
variable EPR states. When combined with the beam-splitter operation, it can generate squeezing
on individual mode. A related operation is the single-mode squeezing operation which can be
generated by Hsq1 = i~χsq1(â†)2

i + h.c. on mode âi.
The phase shifter operation can be realized by Hph = ~∆phâ†i âi which creates a shift in

the resonator frequency. The above quantum operations can be combined to generate arbitrary
linear transformations in Eq. (7.21).

7.2.2 Cross-Kerr nonlinearity

One nonlinear operation is the cross-Kerr interaction given by Hck = ~χckâ†1â1â†2â2 be-
tween two modes with interaction amplitude χck. This interaction can lead to controlled gates
on photon qubits. [107] For continuous-variable schemes, this operation together with the lin-
ear operations can generate operations that are arbitrary polynomials of the quadrature vari-
ables. [107,108,118] This operation can also be exploited for quantum nondemolition measure-
ment on photon states.
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