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In brief

Fox et al. develop a deep-learning-based

disease subtyping method, iSubGen

(integrative subtype generation), which

can seamlessly handle multi-omics data.

iSubGen accounts for both individual

data features and the inter-relationships

between different data types, with the

capability of handling missing data.
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MOTIVATION Identifying disease subtypes is a strategy to address heterogeneity by identifying patient sub-
groupswithmore homogeneous presentation, progression, and response.Many studies have identified sub-
types using single data types or by clustering groups of single data-type clusters; however, the best way to
create subtypes by integration of diverse data types remains unclear. To address this, we created a multi-
dimensional subtyping framework that incorporates two key innovations: a consensus integrative similarity
score, which quantifies inter-relationships between different data types, and independent reduced features
generated through deep-learning-based autoencoders, which standardize dimensionality across data types.
SUMMARY
There are myriad types of biomedical data—molecular, clinical images, and others. When a group of patients
with the same underlying disease exhibits similarities across multiple types of data, this is called a subtype.
Existing subtyping approaches struggle to handle diverse data types with missing information. To improve
subtype discovery, we exploited changes in the correlation-structure between different data types to create
iSubGen, an algorithm for integrative subtype generation. iSubGen can accommodate any feature that can be
compared with a similarity metric to create subtypes versatilely. It can combine arbitrary data types for sub-
type discovery, such as merging genetic, transcriptomic, proteomic, and pathway data. iSubGen recapitu-
lates known subtypes across multiple cancers even with substantial missing data and identifies subtypes
with distinct clinical behaviors. It performs equally with or superior to other subtyping methods, offering
greater stability and robustness to missing data and flexibility to new data types. It is available at https://
cran.r-project.org/web/packages/iSubGen.
INTRODUCTION

Most diseases show substantial interpatient variability in presen-

tation, progression, and response to treatment; this heterogene-

ity is a hallmark of cancer, autoimmune disorders, and neurolog-

ical disorders, among many others.1–6 Clinical heterogeneity

in behavior often reflects common patterns of disease features,

called subtypes, which can be important for clinical manage-

ment by reducing the heterogeneity in presentation and

progression.2,7,8
Cell Reports Methods 4, 100884, Novem
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Disease subtypes play a particularly important role in cancer,

where almost all tumors arise from a single cell, and features of

that cell shape tumor initiation, progression, and evolution.9,10

The location of the primary cancer lesion influences the types

of interventions possible and their efficacies, leading cancers

to be grouped clinically based on their tissue of origin. Individual

tissues contain cells of different types and distinct gene-expres-

sion landscapes, and these evolve into cancers with distinct

characteristics.11 Further, cells of a single cell type can lead to

different types of cancer based on the identity and timing of
ber 18, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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driver mutations and on the microenvironmental pressures they

experience during tumorigenesis.10,12,13

The variable, but repeatedly observed, evolutionary courses of

cancers originating in a single anatomical location are termed

‘‘cancer subtypes.’’ Historically, cancer subtypes have been

defined histopathologically.3–6 More recently, high-throughput

molecular assays have discovered and defined subtypes.7,14–17

Both approaches can identify groups of cancers with less het-

erogeneous prognoses and responses to treatment.7,14,18,19

Subtypes can sometimes be discovered from a single data

type,7 but often cannot be precisely defined without considering

multiple layers of biological information.14

The classical approach to subtype discovery is to apply unsu-

pervised learning methods to a subset of input data that varies

substantially between individuals. These input data can be bi-

nary (e.g., single-nucleotide variants [SNVs]), categorical (e.g.,

copy-number alterations [CNAs]), continuous (e.g., mRNA abun-

dance), bounded continuous (e.g., methylation b values, ranging

from0 to 1), or have other distributional features.Manymolecular

data are gene based, but some represent processes such as

pathway activity or trinucleotide mutational signatures.20

This classic approach has several limitations when applied to

multiple data types simultaneously. First, standard unsupervised

learningmethods can produce artifactual results when applied to

datasets with highly variable distributional features, often implic-

itly assigning heavier weights to data types withmany features or

larger numerical ranges. To address this, some integrative sub-

typing algorithms transform input into a latent variable space

or use summary features from each individual data type.21–23

Second, clinical practice routinely produces partial information,

and most unsupervised learning methods struggle to accommo-

date large amounts of missing data.24,25 Third, most methods do

not exploit differential covariance or correlation across data

types nor provide clear understanding of how each data type

contributes to the final subtyping.

We created iSubGen (integrative subtype generation) to create

subtypes by directly quantifying inter-relationships between

different data types. iSubGen recapitulates known molecular

and histological subtypes, robustly handles missing data, sup-

ports high subtype and feature numbers, and seamlessly inte-

grates gene-based and non-gene-based features.
Figure 1. Integrative similarities

Pairwise integrative similarities in the training cohort of METABRIC breast cance

(A) CNAs with genes ordered by genomic position on the x axis and patients on

(B) CNA patient-by-patient similarity matrix using Jaccard distance as the simila

(C) SNVs for genes mutated in more than 13 patients. Genes (x axis) are ordered

(D) SNV patient-by-patient similarity matrix calculated using SNVs without patien

(E and F) Comparison of CNA and SNV similarities relative to patient MB.0131 (E

indicated in (A) and (B) by the boxes and arrows in red and blue, respectively. Jacc

was randomly selected as an example of a patient with positive CIS. MB.0529 w

(G) Patients grouped by clustering CISs.

(H) The distributions of CIS for each data-type pair.

(I) Area under the receiver operating characteristic curve for predicting overall sur

(J and K) Overall survival differences for patients dichotomized using CISTAC mRN

positive rate in the training cohort (J) and using the training cohort threshold in th

(L) Schematic overview of iSubGenwith three data types as an example for n patie

in pairs for comparison of the patient profiles using similarity measures. Output fro

m columns) were rescaled and reweighted, if necessary, and merged into a single

used the autoencoder bottleneck layer for independent feature reduction and CI
RESULTS

Development dataset
To develop iSubGen, we used the 1,991-patient METABRIC

breast cancer dataset (European Genome-Phenome Archive:

EGAS00000000083), which has clinical, CNA, SNV, microRNA

(miRNA) abundance, and mRNA abundance data, with the latter

computationally deconvolved into tumor cell (TC) and tumor-

adjacent cell (TAC) components.14,26–28 We initially focused on

the 1,071 patients with complete data and split these into the

684-patient training cohort and 367-patient testing cohort as in

the original publication.14 Initial method development used the

684 patients in the training cohort with complete data.

Consensus integrative similarities
Typical approaches to subtype identification quantify the rela-

tionship between each pair of patients using a similarity metric.

For an n-patient cohort, this information is encoded in an n 3 n

similarity matrix, which can be clustered using unsupervisedma-

chine learning.29 Thus, clustering of CNA profiles (Figure 1A)

generates CNA subtypes (Figure 1B), and clustering of SNV pro-

files (Figure 1C) generates SNV subtypes (Figure 1D) in the

METABRIC training dataset.

To integrate multiple data types into subtyping, there are two

basic strategies. First, all data can be standardized to a common

scale and a single metric applied to the appended matrix. Thus,

for an n-patient dataset with m data types each having pm fea-

tures, this results in performing similarity calculations on an

n3 Spm feature matrix, producing a final n 3 n similarity matrix.

This approach intrinsically preferences data types withmore fea-

tures or larger values because they hold more weight in similarity

calculations.30 An alternative strategy instead analyzes each

data type separately and relates the m separate n 3 n similarity

matrices. For example, each data type can be clustered sepa-

rately, after which the patient classifications from each data

type can themselves be clustered.11 This discretizes patient

classifications and intrinsically weights each data type either

equivalently if cluster number is held constant or as a function

of cluster number if it is not.

To create a more flexible method of merging multiple data

types, we directly reduced the pair of n 3 n similarity matrices
r patients.

the y axis. Gains are red and deletions are blue.

rity metric.

by mutation frequency. Patients are on the y axis.

t recurrence filtering and Jaccard distances.

) and MB.0529 (F). The CNA and SNV profiles for MB.0131 and MB.0529 are

ard distances are used for measuring similarity in both CNA and SNV.MB.0131

as randomly selected as an example of a patient with a CIS near zero.

vival at 5 years using CISs. Error bars represent the 95% confidence intervals.

A-miRNA at the maximum geometric mean of the true positive rate and the false

e testing cohort (K). p values are from log-rank tests.

nts. Each data typewas separately run through feature reduction and combined

m feature reduction (n rows by k columns) and similarity comparison (n rows by

matrix for unsupervised machine learning to create the final classifications. We

Ss as our pairwise similarity measures.

Cell Reports Methods 4, 100884, November 18, 2024 3



Report
ll

OPEN ACCESS
for two data types into a continuous value representing the sim-

ilarity between any two patients’ similarity profiles (Figures 1E

and 1F). Thus, the two n-length similarity vectors for a single pa-

tient, one per data type, are collapsed into a single value. Here,

we used Spearman’s correlation to measure similarity. We used

resampling to robustify this value, leading to a consensus inte-

grative similarity (CIS) for each patient (Figures 1E and 1F). A vec-

tor of n CISs is created for each pair of data types, yielding an

n3 [m3 (m � 1)/2] matrix encompassing the inter-relationships

between data types for each patient. Figure 1G shows thismatrix

for 684 patients from the METABRIC dataset with simple unsu-

pervised clustering applied to it. Luminal breast cancers cluster

together and basal-like breast cancers cluster together, sug-

gesting that CIS values can reflect disease biology.

CIS values are near zero for data types with independent

(orthogonal) information, positive for data types with shared in-

formation, and negative when patients similar to one another in

one data type are dissimilar in the other. In METABRIC, the me-

dian CIS across all data types was near zero (Figure 1H; median

0.06, range �0.38 to 0.88). The two data types that shared the

most information were TC mRNA abundance and TAC (stromal)

mRNA abundance (median CISTC mRNA-TAC mRNA 0.77, range

�0.07 to 0.88). The relationships between different types of infor-

mation encapsulated in CISs were predictive of clinical features.

In the training cohort, four of ten CISs predicted 5-year survival

(area under the receiver operating characteristic [AUROC] > 0.6)

without applying any statistical learning. This was validated in the

367-patient testing cohort (Figure 1I). For example, stronger as-

sociations between TAC mRNA and miRNAs were associated

with improved overall patient survival (Figures 1J and 1K).

To further test the validity of CISs, we evaluated whether

CIS constituting mRNA abundance retained key information

such as mRNA-based subtypes of breast cancer (PAM50) and

whether other CISs were also predictive of breast cancer

molecular subtypes. Using the training and testing cohorts, we

compared CIS distributions between PAM50 subtypes (Fig-

ure S1A). Almost all CISs differed among PAM50 subtypes

(19/20, ANOVA q < 0.01). A random forest trained using

CIS values predicted subtypes with AUROCs in the testing

cohort ranging from 0.58 to 0.95 (Figure S1B). CISTC mRNA-miRNA

was the most important feature for the random forest

luminal A classifier followed closely by CIS
TC mRNA-TAC mRNA

and

CISTAC mRNA-miRNA (Figure S1C). We also trained a random forest

in The Cancer Genome Atlas (TCGA) breast cancer dataset to

predict subtypes from CIS values. This achieved AUROCs

ranging from 0.71 to 0.88 (Figure S1D). Different features were

important for classification of each subtype (Figure S1E).

To determine whether CISs were associated with known sub-

types in other cancers, we exploited pan-cancer TCGA data

(Broad GDAC Firehose 2016-01-28 Release: https://gdac.

broadinstitute.org) of 12 cancer types with six data types per

patient (mRNA abundance, miRNA abundance, methylation,

CNAs, SNVs, and SNV trinucleotide signatures). We created

pan-cancer training and testing cohorts each comprising

1,709 patients. All CIS combinations in the training and testing

cohorts distinguished cancer types (30/30 in both cohorts,

ANOVA q < 0.01; Figure S1F). CIS distributions for some can-

cer types were bimodal, such as thyroid cancer (THCA)
4 Cell Reports Methods 4, 100884, November 18, 2024
CISmRNA-SNV. Histopathological subtypes may cause this bimo-

dality: in THCA, patients with tall cell thyroid cancer had

higher CISmRNA-SNV than those with follicular thyroid cancer

(p = 3.09 3 10�3; Figure S1G). Bimodality and high variance

in CIS across many cancers increases the chance of finding

subpopulations/subtypes. Random forest classifiers trained

on CISs predicted all cancer types with AUROCtesting cohort > 0.9

(Figure S1H). CISs vary in importance for predicting cancer

types, with different CISs being important in distinguishing

each cancer type (Figure S1I). For example, CIS
methylation-mRNA

was most important in identifying liver cancers (LIHC),

CISmRNA-miRNA for predicting kidney clear cell cancers (KIRC),

and CISSNV-mRNA for predicting kidney papillary cancers.

Thus, CISs can distinguish histological cancer types and

subtypes.

iSubGen framework and integrative subtyping
CISs capture the changing relationships between different types

of data. To integrate them with information present in patterns of

a single data type, we created a second set of engineered fea-

tures. This feature set was generated by training an autoencoder

for each data type, using its bottleneck layer as the set of inde-

pendent reduced features (IRFs). iSubGen is thus a four-step

subtype generation framework: consensus pairwise similarity

construction (CIS generation), data-type independent feature

reduction (IRF generation), weighting of features, and unsuper-

vised machine learning (Figure 1L). The CIS values represent

how different data types inter-relate, while the IRF values identify

general patterns within each data type. A detailed schematic

overview of the algorithm is online at the iSubGen GitHub repos-

itory (https://github.com/uclahs-cds/package-iSubGen) and in

the package vignette (https://cran.r-project.org/web/packages/

iSubGen/vignettes). This strategy helps to balance groups of en-

gineered features so that their relative weights are not primarily a

function of the total feature number. In step three of the subtyp-

ing framework, the user sets the weightings of CIS vs. IRF and

merges the two feature sets to create the combined engineered

feature matrix. This provides a parameterizable decision for

users that can optimize based on internal features (e.g., cluster

silhouette profiles) or external ones (e.g., separation of meta-

data). Finally, applying pattern discovery to the combined sets

of engineered features generates the final iSubGen subtypes.

Here, we performed pattern discovery using consensus clus-

tering,29 but iSubGen supports multiple algorithms at each

step. For example, CISs can use different correlation metrics

or mutual information, with or without subsampling.

Pan-cancer grouping discovery with iSubGen
To demonstrate how iSubGen combines CISs and IRFs to

generate robust subtypes, we applied it to the pan-cancer

cohort evaluated in Figures S1F–S1I. Using six data types

(miRNA abundance, mRNA abundance, methylation, CNA,

SNV, and trinucleotide signatures), we subtyped the two

1,709-patient subsets of 12 cancer types separately using iSub-

Gen (Figures S2A–S2F and Table S1). Each subset was indepen-

dently analyzed to evaluate iSubGen subtype consistency.

Comparing the adjusted Rand index of the iSubGen clusters

with TCGA cancer types, we identified 14 iSubGen groupings

https://gdac.broadinstitute.org
https://gdac.broadinstitute.org
https://github.com/uclahs-cds/package-iSubGen
https://cran.r-project.org/web/packages/iSubGen/vignettes
https://cran.r-project.org/web/packages/iSubGen/vignettes
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Figure 2. Breast cancer iSubGen combining integrative omics features and cancer hallmark mRNA features
(A) Using iSubGen, the breast cancer patients in the training cohort were classified into ten subtypes using integrative omics features andmRNA cancer hallmark

features.

(legend continued on next page)
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in both subsets: iSubGen-P1 through iSubGen-P14 and iSub-

Gen-Q1 through iSubGen-Q14 in the discovery and validation

cohorts, respectively.

iSubGen-P1, which is composed almost entirely of skin

cutaneous melanoma (SKCM), had the highest CISSNV-signature

(Figures S2A and S2B). Lung adenocarcinomas (LUAD), stomach

and esophageal carcinoma (STES), breast cancers (BRCA),

bladder cancers (BLCA), and head and neck squamous cell can-

cers (HNSC) were classified together in multiple groups. THCA

were separated from the other cancers into two thyroid cancer

groups: iSubGen-P10/iSubGen-Q10 and iSubGen-P11/iSub-

GenQ11 (Figures S2B and S2D). iSubGen-P10/iSubGen-P11

contained 90% (135/150) and iSubGen-Q10/iSubGen-Q11 97%

(146/150)ofTHCApatients in their respectivecohorts.Theobvious

differences between these two thyroid cancer groups were

elevations of CISSNV-methylation (p < 2.2 3 10�16), CISSNV-mRNA

(p < 2.2 3 10�16), and CISSNV-miRNA (p < 2.2 3 10�16) in iSub-

Gen-P10/iSubGen-Q10 relative to iSubGen-P11/iSubGen-Q11,

representing subtypes of thyroid cancer (Figures S2C and S2E).

The CIS values for iSubGen-P and iSubGen-Q groupings had

high concordance (Figure S2F). iSubGen generates CIS and IRF

values that are both useful for supervised learning and that allow

unsupervised learning to independently create concordant classi-

fications in two pan-cancer datasets.

Integrative molecular-based and pathway-based breast
cancer subtyping
To demonstrate the utility of iSubGen for integrative multi-modal

subtype discovery, we next applied it to the METABRIC breast

cancer cohort, integrating 19,877 mRNA features for both TC

and TAC mRNA, 18,852 CNA features, 823 miRNA features,

and SNV mutation status of 173 driver genes. When applied to

these five data types, iSubGen identified five subtypes (Fig-

ure S2G and Table S2), which differed in patient survival

(Figure S2H). We named subtypes such that patients in iSub-

Gen-B1 had the best outcome and iSubGen-B5 the worst. iSub-

Gen-B1 and iSubGen-B2 had lower tumor grade (Figure S2I) and

size (Figure S2J) than iSubGen-B4 and iSubGen-B5. The five

iSubGen-B subtypes were tightly associated with the PAM50

subtypes.7,31 Notably, iSubGen-B5 contained most HER2-en-

riched and basal-like breast cancers in both training and testing

cohorts (Figure S2K), linked to its lower CISTC mRNA-TAC mRNA

(p < 2.2 3 10�16), CISTC mRNA-miRNA (p < 2.2 3 10�16), and

CISTAC mRNA-miRNA (p < 2.2 3 10�16) (Figure S2L). This reflects a

higher transcriptome similarity among luminal breast cancers

than among HER2-enriched or basal-like cancers. Even among

the luminal cancers, the good-outcome iSubGen-B1 and iSub-
(B) Overall survival for the iSubGen-BH breast cancer subtypes. p value is from

(C) Comparison of the iSubGen breast cancer subtypes and PAM50 subtypes in

each overlap.

(D) Comparison of the iSubGen breast cancer subtypes and PAM50 subtypes in

(E) Comparison of CISCNA-SNV distributions between iSubGen-BH subtypes in th

(F) Association of SNV and CNA features with the CISCNA-SNV. The top barplot show

tests and false discovery rate (FDR) adjustment.

(G) Comparison of CIS between angiogenesis mRNA set and Wnt/b-catenin sign

(H) Association of CISangiogenesis-Wnt/b-catenin signaling with Z-scaled mRNA abundan

eachmRNA and the CIS using Spearman’s correlation and FDR adjustment. Gene

middle and the CIS panel.

6 Cell Reports Methods 4, 100884, November 18, 2024
Gen-B2 subtypes had higher CISSNV-mRNA and CISSNV-miRNA

(p < 2.23 10�16; Figure S2L). We similarly identified strong asso-

ciations between iSubGen-B andMETABRIC IntClust subtypes14

(Figure S2M). We calculated the Akaike information criterion (AIC)

scores of accelerated failure timemodels using iSubGen, PAM50,

and IntClust subtypes (Figures S2H and S2N). The PAM50 (AIC:

2,165) and iSubGen (AIC: 2,168) subtypes had similar scores,

while IntClust performed slightly worse (AIC: 2,181). We conduct-

ed a comprehensive comparison between iSubGen (K = 10) and

IntClust subtypes (K = 10). The contingency table showed a

high overlap for certain subtypes, such as IntClust-7 and -9 within

iSubGen-2, while other subtypes did not correspond as neatly but

were spread over several subtypes (Figure S2O). To understand

the distinction between iSubGen and IntClust, we performed sur-

vival and clinical association analyses for each iSubGen subtype

within IntClust categories and vice versa (Table S4). Despite all

being categorized in IntClust-4, iSubGen-4 and iSubGen-9 ex-

hibited significant differences in patient outcome and inmolecular

features such as ER status and PAM50 subtype (Figures S2P–

S2T). Since the normal-like PAM50 subtype in breast cancer

might result in part from contamination of tumor-adjacent normal

tissue,32–34 we excluded these samples from our initial analyses.

When normal-like samples were included, iSubGen again pro-

duced subtypes (Figures S3A–S3D and S3E; Table S2) strongly

associated with PAM50 subtypes (Figures S3B and S3C) and

associated with patient survival (Figure S3F).

To demonstrate that iSubGen can be useful with only a single

molecular data type, we next focused on the mRNA abundance

data of METABRIC, evaluated as a set of 13 cancer hallmark

pathways35,36 (Figure S3G and Table S2). In the training cohort,

iSubGen identified seven hallmark subtypes associated with

overall survival (Figure S3I). The CISs between cancer hallmarks

were generally higher (median CIS 0.5) than CISs between

different data types (median CIS 0.06, p < 2.23 10�16). iSubGen

hallmark-based breast cancer subtypes (iSubGen-H1 through

iSubGen-H7) were associated with PAM50 (Figure S3H),

iSubGen-B subtypes (Figure S3J), and IntClust (Figure S3K). In

general, higher CISs between hallmarks in the iSubGen-H sub-

types were associated with better overall patient survival

(Figures S3G and S3I). iSubGen subtypes are concordant with

the idea that tumors with more dysregulation across data types

and signaling pathways have poorer outcomes.

The iSubGen-B and iSubGen-H subtypes assess breast can-

cer by two different paradigms: iSubGen-B is a genome-wide

approach, and iSubGen-H is a pathway approach.We combined

the engineered features from these two approaches within a sin-

gle model to demonstrate the flexibility of iSubGen. Together,
a log-rank test.

the training cohort. Heatmap coloring represents the number of the patients in

the testing cohort.

e training cohort.

s significance between each feature and CISCNA-SNV usingWilcoxon rank-sum

aling mRNA set for iSubGen-BH subtypes in the training cohort.

ce from each gene set (q < 0.01). The top barplot shows significance between

s are ordered by Spearman’s correlation with correlations decreasing out from
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these six molecular data types comprise 39,725 molecular fea-

tures and 13 pathway activities. We identified ten subtypes in

our training cohort (Figure 2A and Table S2) and again named

them by their association with overall survival: iSubGen-BH1

through iSubGen-BH10 (Figure 2B). The iSubGen-BH subtypes

associated with PAM50 subtypes and improved the separation

of basal-like breast cancers and HER2-enriched cancers relative

to iSubGen-B and iSubGen-H (Figure 2C). These associations

were validated in the testing cohort via centroid classification

(Figure 2D), highlighting the reproducibility of iSubGen subtypes.

iSubGen has the potential to capture features that are not pre-

sent in traditional histological or PAM50 subtypes. For example,

analysis of the basal-like cancer subtypes in iSubGen-BH8 and

iSubGen-BH10 revealed distinct patterns of SNV-paired CISs,

suggesting two subtypes of basal-like cancer differentiated by

their somatic mutation profiles.

To characterize the iSubGen-BHCISs, we examined their asso-

ciations with the individual input features. Higher CISCNA-SNV was

associated with iSubGen-BH7 (p = 1.4 3 10�7), iSubGen-BH8

(p < 2.2 3 10�16), iSubGen-BH9 (p = 1.7 3 10�7), and iSubGen-

BH10 (p < 2.2 3 10�16) compared to iSubGen-BH1 through

iSubGen-BH6 (Figure 2E). We identified six SNV associations

(out of 156) and 1,283 CNA associations (out of 10,662;

q < 0.01) where mutation of a specific gene was associated with

higher or lower CISCNA-SNV (Figure 2F). Patients with TP53 SNVs

had high CISCNA-SNV, while GATA3 SNVs and ARID1A SNVs

were associated with low CISCNA-SNV. Among the associated

CNAs, deletion of the q arms of chromosome 11 and chromo-

some 16 were associated with lower CISCNA-SNV. We also exam-

ined individual input feature association with the hallmark CISs.

Lower CISangiogenesis-Wnt/b-catenin differentiated iSubGen-BH5

from the other iSubGen-BH subtypes (p < 2.23 10�16; Figure 2G).

There were 36 angiogenesis mRNAs and 42 Wnt/b-catenin

signaling mRNAs in the individual hallmark gene sets that were

used to calculate CISangiogenesis-Wnt/b-catenin. We found three

genes, including VEGFA, from the angiogenesis gene set and

ten genes, including MYC, from the Wnt/b-catenin signaling

gene set where higher mRNA abundance was associated

with lower CISangiogenesis-Wnt/b-catenin signaling (p < 0.01; Figure 2H).

There were 17 genes from the angiogenesis gene set and

nine genes from the Wnt/b-catenin signaling gene set

where lower mRNA abundance was associated with lower

CISangiogenesis-Wnt/b-catenin signaling (q < 0.01). Thus, iSubGen en-

hances subtype development by integrating individual features

(IRFs) with feature-feature interactions.

Subtyping using genic and non-genic molecular data
To evaluate whether iSubGen could be used to generate sub-

types from more diverse molecular data, we sought to subtype

using a combination of gene-based and mutational-process in-

formation. We used trinucleotide signatures20 for 557 patients

from three kidney cancer types from the pan-cancer TCGA data-

sets,37–39 which to our knowledge have not been previously inte-

grated into multi-modal subtyping strategies. Each cancer type

had six available data types: CNA, SNV, trinucleotide signature

exposures, methylation, mRNA abundance, and miRNA abun-

dance. We randomly divided patients with all six data types

into equal-sized training and testing cohorts. In the training
cohort, we used iSubGen to identify eight subtypes: iSubGen-

K1 through iSubGen-K8 (Figure 3A and Table S3). iSubGen-K1

contained almost all kidney chromophobe (KICH) cancers, while

iSubGen-K2 through iSubGen-K5 comprised predominantly kid-

ney papillary (KIRP) cancers and iSubGen-K6 through iSubGen-

K8 predominantly clear cell (KIRC) cancers. Centroid classifica-

tion in the testing cohort validated the presence and relative

frequencies of these subtypes (Figure 3B). Interestingly, KIRC

patients in iSubGen-K5 had poorer overall survival than other

KIRC patients in both training and testing cohorts (Figure 3C),

while KIRP patient survival was not associated with iSubGen-K

subtypes (Figure 3D). Trinucleotide signatures were associated

with both histological classifications20 and iSubGen-K subtypes

(Figure 3E), which provided a possible etiology for each subtype.

KIRC patients classified in iSubGen-K6 and iSubGen-K8 had

fewer point mutations attributed to SBS5 than iSubGen-K7.

KIRP patients had many mutations attributed to SBS2 and

SBS13 relative to KICH and KIRC, suggesting stronger overall

AID/APOBEC activity. We also compared iSubGen subtypes to

histological classifications (Figure S4A), whereby three subtypes

were strongly associated with chromophobe tumors (78.9%–

97.6%), three with clear cell tumors (84.4%–100%), and one

with papillary tumors (75%). Both chromophobe and clear cell

tumors can be subdivided into novel subtypes. The iSubGen kid-

ney subtypes revealed significant disparities in cancer stages,

though not in age or sex, underscoring their utility as distinct en-

tities with unique tumor biology (Figures S4C–S4E). iSubGen

provides a framework for integrating both mutational and muta-

tional-process information into subtype discovery.

iSubGen subtyping is robust to missing data
Because human cancers vary in size and are often profiled from

biopsy rather than surgical specimens, it is common for only a

subset of possible molecular assays to be performed. For this

and many other reasons, missing data are common in genomic

studies. To evaluate iSubGen’s performance in the face of

missing data, we randomly separated TCGA lung cancer data

into a 512-patient training cohort and a 509-patient testing

cohort.40,41 Overall, 446 of 1,021 patients (47%) lacked one or

more of the six data types used in classification, split evenly be-

tween training and testing cohorts (Figure 4A and Table S3). To

select the number of iSubGen subtypes, we assessed the asso-

ciation between histological subtypes and different numbers of

iSubGen clusters using the adjusted Rand index in the training

cohort. Lung cancers formed two subtypes, iSubGen-L1 and

iSubGen-L2. Subtype structure was robust to missing data

(Figures 4B and Table S3). iSubGen-L1 largely comprised lung

adenocarcinomas, and iSubGen-L2 largely comprised lung

squamous cell carcinomas in both training (Figure 4E) and

testing (Figure 4F) cohorts. Overall, 89% (230/257) of training

and 87% (227/260) of testing cohort lung adenocarcinomas

were in iSubGen-L1. Similarly 87% (221/255) of training and

80% (198/249) of testing cohort lung squamous cell carcinomas

were in iSubGen-L2 (Figure S4B). iSubGen-L2 had higher me-

dian CISmRNA-SNV than iSubGen-L1 (mediantraining L1 = �0.04,

mediantraining L2 = 0.18, ptraining < 2.2 3 10�16; mediantesting L1 =

�0.04, mediantesting L2 = 0.16, ptesting < 2.2 3 10�16;

Figures 4C and 4D).
Cell Reports Methods 4, 100884, November 18, 2024 7
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Figure 3. Kidney cancer iSubGen using non-gene-based features

(A) Using iSubGen, patients in the training cohort were classified into six subtypes.

(B) Centroid classification of the iSubGen-K subtypes in the testing cohort.

(C) Overall survival between iSubGen classifications for KIRC patients. Groups with fewer than ten patients are not included. p values are from log-rank tests.

(D) Overall survival between iSubGen classifications for KIRP patients. Groups with fewer than ten patients are not included. p values are from log-rank tests.

(E) Association of patients in the training and testing cohorts with trinucleotide mutation signatures. Each column is a group of patients. The top covariate shows

the TCGA histological cancer type, and the second covariate is the iSubGen classification of the patients. Patient groups with fewer than ten patients are not

shown. Each dot is sized to the proportion of patients with mutations from the trinucleotide signature. If the dot is orange, the proportion for the group is greater

than the proportion of patients not in the group. Similarly, if the dot is blue, the proportion is less than in the other patients. The background shading is the q value

from the proportion test comparing the proportion for patients in the group to the proportion for those not in the group.
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To visualize these underlying associations between data

types, we focused on CISs from exemplar patients and on

mRNA and SNV features prior to feature engineering.

TCGA.44.5645 had lower overall CISmRNA-SNV and near-median

values for iSubGen-L1 patients (Figure 4G). TCGA.78.7155 had

the highest CISmRNA-SNV of all patients in the training cohort

and had high CISmRNA-SNV for iSubGen-L2 (Figure 4H).

TCGA.44.5645 and TCGA.78.7155 both clustered with their

respective histological subtype using mRNA abundance (Fig-

ure 4I). By contrast, SNVs did not separate patients by histolog-

ical subtype (Figure 4J): TCGA.44.5645 had more total somatic

SNVs than TCGA.78.7155 and clustered with other highly

mutated tumors. Other randomly selected patients, including

lung squamous cell carcinoma (LUSC) samples TCGA.05.4422

(iSubGen-L2) and TCGA.66.2793 (iSubGen-L2), and LUAD

samples TCGA.50.5936 (iSubGen-L2) and TCGA.55.6970

(iSubGen-L1), also showed that LUSC samples have higher

CISmRNA-SNV than LUAD samples (Figures S4F–S4I). The low
8 Cell Reports Methods 4, 100884, November 18, 2024
CISmRNA-SNV values show that SNVs and mRNA provide orthog-

onal information, leading iSubGen to create composite subtypes

that merge them.

To assess the association of CIS values with epidemiological

features, we considered sex differences, which have been

widely reported in lung cancer.42–44 We tested whether CISs

differed between tumors arising in patients with XX and XY germ-

line chromosome conformations, whereby 7 of 15 CISs were

associated with sex (Table S4). For example, XY patients had

higher CISmRNA-SNV than XX patients: mRNA and SNV profiles

were more concordant in lung tumors arising in men than those

arising in women. Thus, CISs reflect underlying epidemiological

features, independent of missing data.

Benchmarking relative to other subtyping strategies
We compared iSubGen to other integrative subtyping algorithms:

concatenation of the data types, clusters of clusters (COCA),

similarity network fusion (SNF), and iClusterBayes.22,45,46 We
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Figure 4. iSubGen is robust to missing data in lung cancer

(A) The number of data types held by each patient.

(B) Using iSubGen, patients from the training cohort were classified into two subtypes including patients with missing data. The top panel shows the centroids

from subtyping with missing data. To assess the effect of missing data, a subset of patients that had all six data types were also independently clustered, and

these centroids are shown in the bottom panel.

(C) CISmRNA-SNV for the training cohort, with the CISs of TCGA.78.7155 and TCGA.44.5645 circled. p values are from Wilcoxon rank-sum tests.

(D) CISmRNA-SNV for the testing cohort. p values are from Wilcoxon rank-sum tests.

(E) iSubGen classification of the training cohort.

(F) Centroid classification of the iSubGen-L subtypes in the testing cohort.

(G) The CIS for patient TCGA.44.5645, who is the patient with the median CISmRNA-SNV in iSubGen-L1. Spearman rank correlation coefficient and associated p

values are denoted in the plot.

(legend continued on next page)
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considered the other iCluster algorithms, but iCluster requires that

all data types have the same features, and iClusterPlus is

restricted to four or fewer data types.21,47 Since we have more

than four data types, iClusterBayes was used to represent the

iCluster algorithms. iClusterBayes is limited to a maximum of six

data types, which is the maximum here but could be a limitation

for other studies. SNF and iClusterBayes also do not accept pa-

tients with missing data (particularly missing all data for a single

data type), so lung cancer results were compared to results

from the patient subset without missing data. We conducted

robustness testing by selecting subsets of varying sample sizes

(n = 100, 200, 400, 800, and 1,000) from the METABRIC dataset.

We assessed subtypes by analyzing survival outcomes with log-

rank tests and examining their associations with established clas-

sifications (PAM50, IntClust) with the adjusted Rand index

(Figures S4J–S4L). Overall, iSubGen performed better in 159 of

the 324 pairwise comparisons, as determined by the �log10
(log-rank p value) between iSubGen and the other algorithms.

iSubGen outperformed COCA and SNF but performed similarly

to iClusterBayes. The adjusted Rand index, which measures the

concordance of subtypes with clinical ground truth, indicated

that iSubGen was more effective than iClusterBayes but not

COCA and SNF. In the pairwise comparison of the adjusted

Rand index, iSubGen performed better than or equal to the others

in 109 of 324 tests for PAM50 and in 130 of 324 tests for IntClust.

Moreover, iSubGen achieved robustnesswhen sample sizeswere

400 or more and returned substantially more stable and coherent

clusters with larger sample sizes. Overall, these findings confirm

that iSubGen performs similarly to or better than the bestmethods

across a range of metrics.

We have also conducted survival and association analyses

within theTCGAkidneyand lungdatasets. Across32comparisons

ofdatasetsandkvalues, iSubGen rankedfirst14 timesandsecond

7 times (Figures S4M and S4N), thereby outperforming all other

algorithms. However, silhouette analysis demonstrates a prefer-

ence for specific data types across various cancer types

(FiguresS4O–S4Q). Overall, iSubGenhadperformance equivalent

to the best performance of these alternative methods but was

more stable across datasets, being able to handle arbitrary

numbers of data types and tolerant to significant missing data.

DISCUSSION

Many factors influence the status and progression of cancer: so-

matic mutations (e.g., CNAs, SNVs), epigenomic alterations,

chromatin reorganization, and external cellular signals all occur

on a background of the individuals’ health, stress, and expo-

sures over a lifetime. Capturing how all these data types inter-

relate is an open problem subject to intensive investigation.

We introduce iSubGen to capture the associations between
(H) The CIS for patient TCGA.78.7155, who is the patient with the highest CISmRN

values are denoted in the plot.

(I) Z-scaled mRNA abundance for mRNAs with standard deviation greater than 2

abundance patient-by-patient similarity matrix using 1 minus Pearson correlation

(J) SNVs for genes mutated in more than 50 patients. Genes (x axis) are ordered

patient-by-patient similarity matrix calculated using SNVs without patient recurre

In (I) and (J), TCGA.78.7155 is indicated in blue and TCGA.44.5645 in red.
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different types of data. For iSubGen, we developed a metric

called CIS to capture how different data types inter-relate. If

feature patterns from two data types define the same patient as-

sociations (high CIS), then the two data types may reflect a

regulatory relationship of some type. For example, a higher

CISSNV-mRNA could be explained by a set of mutated genes,

such as transcription factors, that drive broadmRNA abundance

patterns. CISs, alongwith a reduced form of the single-data-type

information termed IRFs, both serve as intermediaries for inte-

grative subtype discovery and can be used for direct supervised

biomarker development.

iSubGen facilitatesmaximumdata-type inclusion andmodular

replacement of the framework steps to personalize for different

situations. However, with increased options comes increased

parameterization and the need to check that the underlying en-

gineered features are reproducible. Indeed, iSubGen does not

directly incorporate prior information (although its robustness

to missing data provides a natural pathway for doing so). Almost

all subtype-development approaches face this challenge: there

is no one metric to quantitatively optimize clustering results

when selecting weightings, the number of clusters, and the ulti-

mate subtypes. We considered inter-subtype differences, asso-

ciation with CISs, prognostic associations, and, since we were

assessing well-characterized cancer types, association with

known histopathological subtypes. In any subtyping, it is up to

the user to decide what is most important in choosing a subtype

number when multiple different values can bring statistically

reasonable results using domain knowledge.

Subtypes provide fundamental understanding about poly-

genic disease—they identify groups of patients whose current

diseases share similar appearance and thus might share both

similar histories and future responses to treatment. Potential ap-

plications of iSubGen extend to almost any complex biological

system. For example, to understand the effect of human micro-

biomes on health, we will need to recognize patterns across un-

derlying human genetics, epigenetics, metabolomics, and the

microorganisms present in the gut. Data arising from mobile de-

vices provide a completely different setting with a plethora of

data types to combine and interpret. iSubGen provides a flexible

framework within which to capture multi-modal interactions in

diverse science-data applications.

Limitations of the study
A caveat of iSubGen is its long execution time relative to other

subtype discovery methods. The calculation of CIS values is

computationally demanding because of the number of similarity

calculations for, first, similarity matrices for each data type

and second, CIS calculations between data types. CIS is a

consensus metric and so requires iterations of all the similarity

calculations. For large numbers of patients, as in our pan-cancer
A-SNV in iSubGen-L2. Spearman rank correlation coefficient and associated p

. mRNA is on the x axis and patients on the y axis. Far-right plot shows mRNA

as the similarity metric.

by mutation frequency. Patients are on the y axis. Far-right plot shows SNV

nce filtering and Jaccard distance as the similarity metric.
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analysis, creation of the CIS matrix can take several hours on a

single CPU (one core), although this can be readily parallelized.

Another limitation of iSubGenmay be the lack of a feature-selec-

tion function within the package, and indeed the optimal strategy

to feature select in the context of subtype discovery remains

unclear.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Paul C. Boutros (pboutros@mednet.ucla.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data used in this research are all publicly available. Accession numbers

are listed in the key resources table.

d All original code has been deposited at GitHub and is publicly

available as of the date of publication. iSubGen is freely available as

an R package from CRAN at https://cran.r-project.org/web/packages/

iSubGen/index.html. Its code is available at https://github.com/

uclahs-cds/public-R-iSubGen. An archival DOI is listed in the key re-

sources table.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.

ACKNOWLEDGMENTS

P.C.B. was supported by a Terry Fox Research Institute New Investigator

Award and a CIHR New Investigator Award, and by the NIH/NCI under awards

P30CA016042, U24CA248265, U01CA214194, and U2CCA271894. N.S.F.

was supported by a CIHR Canadian Graduate Scholarship, a CIHR Michael

Smith Foreign Study Supplement, a Medical Biophysics Excellence University

of Toronto Fund Scholarship, a University of Toronto Geoff Lockwood and Ke-

vin GrahamMedical Biophysics Graduate Scholarship, and a Prostate Cancer

Canada Philip Feldberg Studentship.

AUTHOR CONTRIBUTIONS

Conceptualization, N.S.F. and P.C.B.; software, N.S.F.; data curation and re-

sources, S.H., C.H.L., M.T., and A.L.M.; formal analysis, investigation, and

visualization, N.S.F., M.T., and A.L.M.; data interpretation, N.S.F., M.T.,

and P.C.B.; writing – original draft, N.S.F.; writing – review & editing, M.T.

and P.C.B.; supervision, project administration, and funding acquisition,

P.C.B. All authors approved the manuscript.

DECLARATION OF INTERESTS

P.C.B. sits on the scientific advisory boards of Sage Bionetworks Inc.,

BioSymetrics Inc., and Intersect Diagnostics Inc. At the time of publication,

N.S.F. was an employee of Hoffman-La Roche Limited (Roche Canada). All

contributions by N.S.F. were completed prior to this employment.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d METHOD DETAILS
B METABRIC breast cancer dataset

B TCGA data

B Independent reduced features

B Consensus integrative similarities
B Integrative subtype generation (iSubGen)

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Survival associations of CISs

B Random forest classifiers

B Breast cancer integrative multi-omics subtypes

B Breast cancer subtypes from mRNA of cancer hallmarks and path-

ways

B Breast cancer subtypes combining integrative-omics features and

mRNA sets

B Kidney cancer subtypes

B Lung cancer subtypes

B Robustness comparison to other algorithms

B Pan-cancer subgroups

B Visualization

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

crmeth.2024.100884.

Received: December 6, 2021

Revised: July 6, 2023

Accepted: October 1, 2024

Published: October 23, 2024

REFERENCES

1. Thenganatt, M.A., and Jankovic, J. (2014). Parkinson Disease Sub-

types. JAMA Neurol. 71, 499–504. https://doi.org/10.1001/jamaneurol.

2013.6233.

2. Isaacs, J.D., and Ferraccioli, G. (2011). The need for personalised medi-

cine for rheumatoid arthritis. Ann. Rheum. Dis. 70, 4–7. https://doi.org/

10.1136/ard.2010.135376.

3. Ellis, I.o., Galea, M., Broughton, N., Locker, A., Blamey, R.w., and Elston,

C.w. (1992). Pathological prognostic factors in breast cancer. II. Histolog-

ical type. Relationship with survival in a large study with long-term follow-

up. Histopathology 20, 479–489. https://doi.org/10.1111/j.1365-2559.

1992.tb01032.x.

4. Govindan, R., Page, N., Morgensztern, D., Read, W., Tierney, R., Vlahiotis,

A., Spitznagel, E.L., and Piccirillo, J. (2006). Changing epidemiology of

small-cell lung cancer in the United States over the last 30 years: analysis

of the surveillance, epidemiologic, and end results database. J. Clin. On-

col. 24, 4539–4544. https://doi.org/10.1200/JCO.2005.04.4859.

5. Patard, J.-J., Leray, E., Rioux-Leclercq, N., Cindolo, L., Ficarra, V., Zis-

man, A., De La Taille, A., Tostain, J., Artibani, W., Abbou, C.C., et al.

(2005). Prognostic value of histologic subtypes in renal cell carcinoma: a

multicenter experience. J. Clin. Oncol. 23, 2763–2771. https://doi.org/

10.1200/JCO.2005.07.055.

6. (1982). The World Health Organization histological typing of lung tumours.

Second edition. Am. J. Clin. Pathol. 77, 123–136. https://doi.org/10.1093/

ajcp/77.2.123.

7. Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees,

C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000). Mo-

lecular portraits of human breast tumours. Nature 406, 747–752. https://

doi.org/10.1038/35021093.

8. Carlson, R.W., Scavone, J.L., Koh, W.-J., McClure, J.S., Greer, B.E., Ku-

mar, R., McMillian, N.R., and Anderson, B.O. (2016). NCCN Framework for

Resource Stratification: A Framework for Providing and Improving Global

Quality OncologyCare. J. Natl. Compr. Cancer Netw. 14, 961–969. https://

doi.org/10.6004/jnccn.2016.0103.

9. Nowell, P.C. (1976). The Clonal Evolution of Tumor Cell Populations. Sci-

ence 194, 23–28. https://doi.org/10.1126/science.959840.

10. Gerstung, M., Jolly, C., Leshchiner, I., Dentro, S.C., Gonzalez, S., Rose-

brock, D., Mitchell, T.J., Rubanova, Y., Anur, P., Yu, K., et al. (2020). The
Cell Reports Methods 4, 100884, November 18, 2024 11

mailto:pboutros@mednet.ucla.edu
https://cran.r-project.org/web/packages/iSubGen/index.html
https://cran.r-project.org/web/packages/iSubGen/index.html
https://github.com/uclahs-cds/public-R-iSubGen
https://github.com/uclahs-cds/public-R-iSubGen
https://doi.org/10.1016/j.crmeth.2024.100884
https://doi.org/10.1016/j.crmeth.2024.100884
https://doi.org/10.1001/jamaneurol.2013.6233
https://doi.org/10.1001/jamaneurol.2013.6233
https://doi.org/10.1136/ard.2010.135376
https://doi.org/10.1136/ard.2010.135376
https://doi.org/10.1111/j.1365-2559.1992.tb01032.x
https://doi.org/10.1111/j.1365-2559.1992.tb01032.x
https://doi.org/10.1200/JCO.2005.04.4859
https://doi.org/10.1200/JCO.2005.07.055
https://doi.org/10.1200/JCO.2005.07.055
https://doi.org/10.1093/ajcp/77.2.123
https://doi.org/10.1093/ajcp/77.2.123
https://doi.org/10.1038/35021093
https://doi.org/10.1038/35021093
https://doi.org/10.6004/jnccn.2016.0103
https://doi.org/10.6004/jnccn.2016.0103
https://doi.org/10.1126/science.959840


Report
ll

OPEN ACCESS
evolutionary history of 2,658 cancers. Nature 578, 122–128. https://doi.

org/10.1038/s41586-019-1907-7.

11. Hoadley, K.A., Yau, C., Hinoue, T., Wolf, D.M., Lazar, A.J., Drill, E., Shen,

R., Taylor, A.M., Cherniack, A.D., Thorsson, V., et al. (2018). Cell-of-Origin

Patterns Dominate the Molecular Classification of 10,000 Tumors from 33

Types of Cancer. Cell 173, 291–304.e6. https://doi.org/10.1016/j.cell.

2018.03.022.

12. Bhandari, V., Hoey, C., Liu, L.Y., Lalonde, E., Ray, J., Livingstone, J., Le-

surf, R., Shiah, Y.-J., Vujcic, T., Huang, X., et al. (2019). Molecular land-

marks of tumor hypoxia across cancer types. Nat. Genet. 51, 308–318.

https://doi.org/10.1038/s41588-018-0318-2.

13. Bhandari, V., Li, C.H., Bristow, R.G., and Boutros, P.C.; PCAWG Con-

sortium (2020). Divergent mutational processes distinguish hypoxic and

normoxic tumours. Nat. Commun. 11, 737. https://doi.org/10.1038/

s41467-019-14052-x.

14. Curtis, C., Shah, S.P., Chin, S.-F., Turashvili, G., Rueda, O.M., Dunning,

M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., et al. (2012).

The genomic and transcriptomic architecture of 2,000 breast tumours

reveals novel subgroups. Nature 486, 346–352. https://doi.org/10.1038/

nature10983.

15. Parsons, D.W., Jones, S., Zhang, X., Lin, J.C.-H., Leary, R.J., Angenendt,

P., Mankoo, P., Carter, H., Siu, I.-M., Gallia, G.L., et al. (2008). An Inte-

grated Genomic Analysis of Human Glioblastoma Multiforme. Science

321, 1807–1812. https://doi.org/10.1126/science.1164382.

16. Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., So-

neson, C., Marisa, L., Roepman, P., Nyamundanda, G., Angelino, P.,

et al. (2015). The consensus molecular subtypes of colorectal cancer.

Nat. Med. 21, 1350–1356. https://doi.org/10.1038/nm.3967.

17. Roepman, P., Schlicker, A., Tabernero, J., Majewski, I., Tian, S., Moreno,

V., Snel, M.H., Chresta, C.M., Rosenberg, R., Nitsche, U., et al. (2014).

Colorectal cancer intrinsic subtypes predict chemotherapy benefit, defi-

cient mismatch repair and epithelial-to-mesenchymal transition. Int. J.

Cancer 134, 552–562. https://doi.org/10.1002/ijc.28387.

18. Osborne, C.K., Yochmowitz, M.G., Knight, W.A., and McGuire, W.L.

(1980). The value of estrogen and progesterone receptors in the treatment

of breast cancer. Cancer 46, 2884–2888. https://doi.org/10.1002/1097-

0142(19801215)46:12+<2884::aid-cncr2820461429>3.0.co;2-u.

19. Siev, M., Renson, A., Tan, H.-J., Rose, T.L., Kang, S.K., Huang, W.C., and

Bjurlin, M.A. (2020). Prognostic Value of Histologic Subtype and Treatment

Modality for T1a Kidney Cancers. Kidney Cancer 4, 49–58. https://doi.org/

10.3233/kca-190072.

20. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A.J.R., Behjati,

S., Biankin, A.V., Bignell, G.R., Bolli, N., Borg, A., Børresen-Dale, A.-L.,

et al. (2013). Signatures of mutational processes in human cancer. Nature

500, 415–421. https://doi.org/10.1038/nature12477.

21. Shen, R., Olshen, A.B., and Ladanyi, M. (2009). Integrative clustering of

multiple genomic data types using a joint latent variable model with appli-

cation to breast and lung cancer subtype analysis. Bioinformatics 25,

2906–2912. https://doi.org/10.1093/bioinformatics/btp543.

22. Hoadley, K.A., Yau, C.,Wolf, D.M., Cherniack, A.D., Tamborero, D., Ng, S.,

Leiserson, M.D.M., Niu, B., McLellan, M.D., Uzunangelov, V., et al. (2014).

Multiplatform analysis of 12 cancer types reveals molecular classification

within and across tissues of origin. Cell 158, 929–944. https://doi.org/10.

1016/j.cell.2014.06.049.

23. Vaske, C.J., Benz, S.C., Sanborn, J.Z., Earl, D., Szeto, C., Zhu, J., Hauss-

ler, D., and Stuart, J.M. (2010). Inference of patient-specific pathway activ-

ities frommulti-dimensional cancer genomics data using PARADIGM. Bio-

informatics 26, i237–i245. https://doi.org/10.1093/bioinformatics/btq182.

24. Voillet, V., Besse, P., Liaubet, L., SanCristobal,M., andGonzález, I. (2016).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

METABRIC Breast Cancer Dataset European Genome-Phenome Archive14 EGAS00000000083

TCGA Dataset Broad GDAC Firehose https://gdac.broadinstitute.org/

Software and algorithms

iSubGen(v1.0.2) This paper https://cran.r-project.org/web/packages/iSubGen

and https://github.com/uclahs-cds/package-iSubGen

and https://doi.org/10.5281/zenodo.13852306

ConsensusClusterPlus (v1.8.1) Wilkerson and Hayes, 201029 https://bioconductor.org/packages/release/

bioc/html/ConsensusClusterPlus.html

keras: R Interface to ’Keras’ (v2.15.0) https://github.com/rstudio/keras/tree/r2 https://cran.r-project.org/web/packages/keras

tensorflow: R Interface to

’TensorFlow’ (v2.16.0)

https://github.com/rstudio/tensorflow https://cran.r-project.org/web/packages/tensorflow
METHOD DETAILS

METABRIC breast cancer dataset
The METABRIC cohort contains 1,991 patients each with a primary fresh frozen breast cancer specimen.14,26,27 METABRIC anno-

tation includes overall survival and PAM50 subtype classifications. Six patients had subtype classification NC (not classified) and 211

patients had subtype classification of normal-like breast cancer were excluded in themain analysis. For one supplementary analysis,

we included the normal-like breast cancer samples for integrative subtype generation (Figures S3A–S3F). The cohort also has mRNA

profiles from Illumina HT-12 v3 microarrays for 144 adjacent normal breast tissue samples from a subset of the patients with breast

cancer samples. The METABRIC dataset includes mRNA abundance, CNAs, miRNA and SNVs. The relative mRNA abundances of

19,877 genes were profiled using Illumina HT-12 v3 microarrays for 1,988 patients. CNA data covers 18,852 genes profiled using

Affymetrix SNP 6.0 microarrays for 1,989 patients. There are 823 relative miRNA abundances profiles using Agilent Human miRNA

Microarray 2.0 for 1,285 patients.26 The METABRIC cohort also included targeted sequencing data covering 173 genes frequently

mutated in breast cancer (i.e., candidate driver genes) with somatic SNV calls.27 The mRNA abundance was deconvolved into tumor

cell and tumor adjacent cell mRNA abundance using ISOpure.28,48,49 TC/TAC deconvolution was performed for all patients in the

training cohort and all patients in the testing cohort. We used the training and testing cohort divisions from the METABRIC paper.

Subtypes were discovered using only the training cohort.

TCGA data
TCGA datasets were downloaded from Broad GDAC Firehose (https://gdac.broadinstitute.org/), release 2016-01-28. We used the

mRNA abundance, CNAs, SNVs for the TCGA samples. The mRNA abundances of 20,531 genes were profiled using exome

sequencing. CNA data covers 24,776 genes profiled using Affymetrix SNP 6.0 microarrays. There are 18,152 genes with a mutation

for the SNV data. Per patient trinucleotide mutational signatures calls were also downloaded. miRNAwas downloaded from the GDC

Data Portal (https://portal.gdc.cancer.gov/), data Release 25.0 – July 22, 2020. There were 1,881miRNA abundance profiled through

sequencing.

For breast cancer, we excluded samples classified as normal-like PAM50 subtype and used 777 patients with four available data

types: mRNA, CNAs, SNVs and trinucleotide mutational signature. Patients were randomly equally split into training and testing

cohorts, stratifying by subtype.

For kidney cancer, we used 241 kidney renal papillary cell carcinomas (KIRP), 267 kidney renal clear cell carcinomas (KIRC) and 49

chromophobe renal cell carcinomas (KICH).37–39 We only used patients with all six data types. Patients were randomly divided per

subtype to create equally sized training and testing cohorts.

For lung cancer, we used 1,021 patients from the TCGA lung cancer cohorts,40,41 which is a combination of lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma (LUSC). Using random sampling per subtype, we divided the patients into a training cohort

of 512 and a testing cohort of 509 patients.

For the pan-cancer cohort, twelve TCGA datasets with more than 200 patients with the data types were chosen: BLCA, BRCA,

HNSC, KIRC, KIRP, LGG, LIHC, LUAD, PRAD, SKCM, STES, THCA. From each cancer type, we equally divided up to 300 randomly

selected patients in two non-overlapping subsets. In total each subset had 1,709 patients.
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Independent reduced features
The reduced feature matrix is a matrix where each row is a patient and each column is an IRF. For each data type, an autoencoder

was created using the keras (v2.1.5) and tensorflow (v1.10) packages in R. RNA profiles were scaled before inputting to the autoen-

coder. The autoencoders were trained with mean squared error loss function, Adam optimization and tanh as the activation function.

Each autoencoder had three hidden layers with fifteen nodes, two nodes, fifteen nodes respectively. We tested one, three and five

hidden layers with various node sizes (1, 2, 5, 15, 30, 25, 50, 100, 200). The IRFswere then extracted from the layer with the bottleneck

layer (here the layer with two nodes). These IRFs for each data typewere combined into amatrix where each column corresponded to

a node in the bottleneck layer from the autoencoders. There were two columns from each data type.

Consensus integrative similarities
The pairwise comparisonmatrix is amatrix where each row is a patient, and each column is a pair of data types. The entries in thematrix

are correlations or consensus correlations. To calculate the correlation for a patient and a pair of data types, the similarities between that

patient and each of the other patients in the cohort were calculated for each of the data types. These similarities were then correlated

between two data types. This was repeated for each patient and each pair of data types using Spearman’s correlations. The similarity

metric varied depending on the molecular data type. For CNA, SNV, trinucleotide mutational signatures data types, we used Jaccard

distance as the similarity metric. For mRNA, miRNA and methylation data types, we used 1 - Pearson’s correlation as the similarity

metric. To create CISs, patients were correlated with bootstrapping and each CIS was the median correlation from the sub-sampled

repetitions. For each bootstrap, 80%of the patients were sampled without replacement and all the patients were individually correlated

to that 0.8 subset of patients. This was repeated 10 times and the median of the correlations for each patient and data type pair.

Integrative subtype generation (iSubGen)
There are four steps to creating subtypes with iSubGen. (1) Create a pairwise comparison matrix which assesses the relationships

between patient similarities in a pairwise approach such as CISs. (2) Create a reduced feature matrix to assess the main pattern of

each independent matrix. (3) Combine the pairwise similarity matrix and the reduced feature matrix with appropriate re-weighting. (4)

Perform pattern discovery on the combined matrix. We used consensus clustering (v1.8.1)29 with a seed of 17, with 1000 clustering

repetitions and Euclidean distance metric and hierarchical clustering with Ward linkage. The number of clusters was determined us-

ing the consensus cluster results, including the consensus matrix and cumulative distribution functions and association with CISs

and clinical features.

QUANTIFICATION AND STATISTICAL ANALYSIS

Survival associations of CISs
We created a receiver operating characteristic curve using the CISs for each pair of data types. For each pair of data types, the

CISs were dichotomized at every possible threshold and agreement with overall survival was assessed. For further examples

of the survival associations, we created Kaplan-Meier curves and assessed the survival association using log rank tests for

CISTAC mRNA - miRNA. CIS dichotomization threshold was chosen to maximize the harmonic mean of true positive and false positive

rates for predicting five-year overall survival using all the patients in the training cohort.

Random forest classifiers
We created random forest classifiers predicting breast cancer subtype or pan-cancer cancer type fromCISs using the randomForest

(v4.6-14) R package. Receiver Operating Characteristic (ROC) curves and the area under ROC curve (AUROC or AUC) were calcu-

lated using the pROC (v 1.18.2) R package.

Breast cancer integrative multi-omics subtypes
iSubGen was run on the 684 patients in the training cohort with all five data types: CNA, SNV, miRNA abundance, TC mRNA abun-

dance and TAC mRNA abundance. TC mRNA, TAC mRNA and miRNA features were Z-scaled per feature before autoencoder

training. For each data type, the autoencoder had three hidden layers with fifteen nodes, two nodes, fifteen nodes respectively.

Therefore there were two independent reduced features (IRFs) per data type. Consensus clustering was performed for 2 to 10 sub-

types with 0.8 sub-sampling of features and patients. A weighting of 1:8 for CISs to independent reduced features was selected. The

hyperparameter of five for subtype number was selected by visual assessment of iSubGen subtypes with CIS, PAM50 subtypes and

prognosis in the training cohort. There were 367 patients in the testing cohort with all five data types. Testing cohort independent

reduced features were created using the trained autoencoders with TC mRNA, TAC mRNA and miRNA features scaled using the

mean and standard deviations from the training cohort. Testing cohort CISs were calculated for each patient relative to the patients

in the training cohort, not relative to the patients in the other patients in the testing cohort.

Breast cancer subtypes from mRNA of cancer hallmarks and pathways
iSubGen was run on the 996 patients in the training cohort with mRNA abundance. Thirteen gene sets were selected from the

MSigDB hallmark gene sets collection and mRNA abundance for each gene set was used as a separate data type. mRNA features
Cell Reports Methods 4, 100884, November 18, 2024 e2



Report
ll

OPEN ACCESS
were Z-scaled per feature per mRNA set before autoencoder training. For each data type, the autoencoder had three hidden layers

with fifteen nodes, two nodes, fifteen nodes respectively. Therefore there were two IRFs per data type. Consensus clustering was

performed for 2 to 10 subtypes with 0.8 sub-sampling of features and patients. A weighting of 1:4 for CISs to independent reduced

features was selected. The hyperparameter of nine for subtype number was selected by visual assessment of iSubGen subtypes with

CIS, PAM50 subtypes and prognosis in the training cohort.

Breast cancer subtypes combining integrative-omics features and mRNA sets
iSubGen was run on the 684 patients in the training cohort with all five data types: CNA, SNV, miRNA abundance, TC mRNA abun-

dance and TACmRNAabundance. Features were used as described frombreast cancer integrativemulti-omics subtypes and breast

cancer subtypes from mRNA of cancer hallmarks and pathways. A weighting of 1:2 for CISs to IRFs was selected. Consensus clus-

tering was performed for 2 to 18 subtypeswith 0.2 sub-sampling of features and 0.8 sub-sampling of patients. The hyperparameter of

ten for subtype number was selected by visual assessment of iSubGen subtypes with CIS, PAM50 subtypes and prognosis in the

training cohort.

Kidney cancer subtypes
iSubGen was run on the 283 patients in the training cohort with all six data types: CNA, SNV, trinucleotide mutational signa-

tures, methylation, mRNA abundance and miRNA abundance. mRNA and miRNA features were Z-scaled per feature before au-

toencoder training. For each data type, the autoencoder had three hidden layers with fifteen nodes, two nodes, fifteen nodes

respectively. Therefore, there were two IRFs per data type. Consensus clustering was performed for 2 to 10 subtypes with 0.8

sub-sampling of features and patients. A weighting of 1:2 for CISs to independent reduced features was selected. The hyper-

parameter of five for subtype number was selected by visual assessment of iSubGen subtypes with CIS, TCGA kidney cancer

types and prognosis in the training cohort. There were 274 patients in the testing cohort with all six data types that were clas-

sified using centroid classification. Testing cohort independent reduced features (IRFs) were created using the trained autoen-

coders with mRNA and miRNA features scaled using the mean and standard deviations from the training cohort. Testing cohort

CISs were calculated for each patient relative to the patients in the training cohort, not relative to the patients in the other pa-

tients in the testing cohort.

Lung cancer subtypes
iSubGen was run on the 512 patients in the training cohort with any of the six data types: CNA, SNV, trinucleotide mutational signa-

tures, methylation, mRNA abundance andmiRNA abundance. All patients had at least two data types. If missing data, NAwas used in

the matrix. mRNA and miRNA features were Z-scaled per feature and trinucleotide mutational signatures features were log10-scaled

before autoencoder training. For each data type, the autoencoder had three hidden layers with fifteen nodes, two nodes, fifteen no-

des respectively. Therefore, there were two IRFs per data type. Consensus clustering was performed for 2 to 10 subtypes with 0.5

sub-sampling of features and patients. Diana, instead of hclust, was used within consensus clustering because it can handle clus-

tering missing data. A weighting of 1:8 for CISs to independent reduced features was selected. The hyperparameter of two for sub-

type number was selected based on the number of histological types.

Using a subset of 126 patients (63 LUAD, 63 LUSC) with all six data types, we ran iSubGen as we did with the cohort including

patients with missing data. Since the cohort with missing data has equivalent numbers of LUAD and LUSC patients, we down-

sampled to have a cohort with equal proportion of each subtype with all data types. There were 63 LUSC patients with all data types

so we randomly selected 63 LUAD patients from the 212 LUAD patients with all data types.

Therewere 279 patients in the testing cohort with all five data types that were classified using centroid classification. Testing cohort

independent reduced features were created using the trained autoencoders with mRNA and miRNA features scaled using the mean

and standard deviations from the training cohort and trinucleotide mutational signatures features were again log10-scaled. Testing

cohort CISs were calculated for each patient relative to the patients in the training cohort, not relative to the patients in the other pa-

tients in the testing cohort.

Robustness comparison to other algorithms
For robustness testing across different sample sizes, samples were randomly selected from the METABRIC cohort. For concate-

nated integrative subtyping, the features from the data types were combined and clustered using consensus clustering for 2 to 10

subtypes with 0.5 sub-sampling of features and patients, seed of 17 and 1000 reps. For COCA subtyping, consensus clustering

was performed for each data type and the clusters with the maximummedian silhouette coefficient were selected. Clustering results

from each data type were encoded as dummy variables, combined and the combined matrix was clustered using consensus clus-

tering. The consensus clustering used 0.5 subsampling of patients, seed 17 of 1000 reps. For iClusterBayes, the tuned.iClusterBayes

function was used with Gaussian type. Since the other algorithms cannot all handle missing data, the lung cancer subtyping was run

on the subset of the cohort that has all data types. Silhouette scores were computed as the mean silhouette coefficient of clustering

algorithms and was calculated using silhouette_score function of the scikit-learn (v1.1.1) library. The AIC scores of AFT models were

calculated using R package flexsurv (v 2.2.2) flexsurvreg function.50
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Pan-cancer subgroups
Two subsets were randomly created with the twelve TCGA datasets (BLCA, BRCA, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, PRAD,

SKCM, STES, THCA) with more than 200 patients for the six data types (mRNA, CNA, SNV, trinucleotide mutational signatures,

methylation, miRNA). From each cancer type, we randomly selected 300 patients or all the patients and evenly divided thembetween

the two subsets. There were 1,709 patients in the first subset and 1,709 patients in the second subset. Both subsets were indepen-

dently run through iSubGen. mRNA features were Z-scaled per feature before autoencoder training. For each data type, the autoen-

coder had three hidden layers with fifteen nodes, two nodes, fifteen nodes respectively. Therefore, there were two IRFs per data type.

Consensus clustering was performed for 2 to 30 subtypes with 0.8 sub-sampling of features and 0.1 sub-sampling of patients.

A weighting of 1:4 for CISs to independent reduced features was selected. The hyperparameter of fourteen for subtype number

was selected in both subsets by assessing association of the iSubGen groups with cancer types using adjusted Rand index in

the training cohort.

Visualization
All plotting was performed in the R statistical environment (v3.4.3) using the lattice (v0.20-38), latticeExtra (v0.6-28), RColorBrewer

(v1.1-2) and cluster (v2.0.7–1) packages via the BPG library (v5.9.8).51
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