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ABSTRACT:

Let H be an infinite-dimensional real separable Hilbert space. Given an unknown mapping

M : H →H that can only be observed with noise, we consider two modified Robbins-Monro pro-

cedures to estimate the zero point θo ∈ H of M. These procedures work in appropriate finite

dimensional sub-spaces of growing dimension. Almost-sure convergence, functional central

limit theorem (hence asymptotic normality), law of iterated logarithm (hence almost-sure loglog

rate of convergence), and mean rate of convergence are obtained for Hilbert space-valued mix-

ingale,θ -dependent error processes.
__________________
* We thank the editor, an associate editor, two referees, Max Stinchcombe, Elias
Masry, and Kurt Hornik for helpful comments. Errors are the authors’
responsibility. This work was supported by NSF Grants SES-8921382, SES-
9209023, and SES-0111238.



I. INTRODUCTION

To locate the root  θo  in  H ( a Hilbert space ) of an unknown measurable mapping

 M  : H → H , one can use the stochastic approximation (SA) method introduced by Robbins and

Monro (1951). The Robbins-Monro (RM) procedure recursively approximates  θo  by:

  θ̂ n +1 = θ̂ n  + anMn(Zn ,θ̂ n) ,   n =1,2,...,

where  θ̂ 1 is a randomly chosen element in H,  an  is a step size tending to zero, and  Mn(Zn  , θ ) 

is a measurement of  M (θ ) at time  n , i.e.,

  Mn(Zn ,θ ) ≡ M (θ ) + Un(Zn ,θ ) , 

where the error term  Un(Zn ,θ ) is influenced by random elements  Zn  .

Robbins and Monro (1951) treated the case  H =  RI   (real line). Since then, various finite

dimensional SA procedures have been studied intensively. Generally,  RI   d (d <∞) −valued SA

processes are captured asymptotically by the solutions to deterministic ordinary differential

equations (ODE’s) in  RI   d :  θ
.
(t) = M ( θ (t) ) . Kushner, Ljung, and others have obtained

numerous elegant results about almost-sure convergence, asymptotic normality and rate of con-

vergence of such SA procedures under very general but rather abstract conditions. These results

have been widely utilized in such different areas as estimation in statistics, adaptive learning in

control theory, simulation in computation, and signal processing in engineering.

Recently, these techniques have been applied in various economic theory and econometric

contexts. For example, Marcet and Sargent (1989), Woodford (1990), Sargent (1993), Evans and

Honkapohja (1995), Crawford (1995), and many others have applied recursive nonlinear least

squares (a special case of  RI   d (d <∞) −valued RM algorithms) to model boundedly rational

economic agents’ learning behavior in macroeconomics and game theory. Pakes and McGuire
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(2001) have applied Q-learning (another special case of  RI   d (d <∞) −valued RM algorithms) to

solve and estimate complicated empirical IO models. Kuan and White (1993) have established

the consistency and asymptotic normality of the   RI   d −valued recursive  m−estimator and then

applied these to possibly misspecified nonlinear parametric regression models, including a lead-

ing neural network model. Patilea and Renault (2001) have applied the  RI   d (d <∞) −valued RM

algorithm to perform option pricing with stochastic volatility (latent factor) models.

However, all the preceding applications require correct parametric specifications. Kuan

and White (1994) present an example where agents misspecify the form of a heterogeneous vari-

ance, and the resulting recursive nonlinear least squares procedure fails to converge to the

rational expectations equilibrium. Chen and White (1998b) consider an example where a com-

petitive firm misspecifies the parametric form of market supply function, and the recursive least

squares learning procedure leads to a fixed point which is not a rational expectations equilibrium

market price. Because economic systems are generally too complicated to be plausibly specified

correctly as parametric models and because SA is appealing in its simplicity, our goal here is to

develop some nonparametric SA procedures. By their nature, nonparametric procedures have

less scope for misspecification. For example, Chen and White (1998b), in the example cited

above, show that nonparametric learning procedures of the type studied here do in fact converge

to the rational expectations equilibrium price.

The results in this paper will be useful for deriving large sample properties for all kinds of

nonlinear, nonparametric, or semi-nonparametric recursive moment- or score-type estimators,

especially those involving latent state variables such as stochastic volatility models, Garch

models, the nonlinear Kalman filter, on-line forecasting of density, or on-line regression in a

heterogeneous, dependent dynamic environment. Moreover, the results presented in this paper

and those in Chen and White (1998b) will allow for nonlinear learning where the agents do not
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specify the parametric form of a model, but allow for more and more flexible possibly nonlinear

functional forms to be learned as new information arrives as time goes by. Most of the results in

this paper are derived under the assumption that the true errors { Un(Zn ,θo) } are Hilbert-valued

mixingale processes or Hilbert-valued near epoch dependent functions of mixing processes (see

Chen and White (1996) for definitions). Thus, our results allow for lots of heterogeneity and

temporal dependence, which are important features in modeling economic agents’ adaptive

learning behavior. To avoid further lengthening this paper we do not provide specific examples

here, but interested readers can find many examples in Chen and White (1996, 1998a, 1998b),

including recursive nonparametric density and regression estimation, nonparametric goodness-

of-fit tests, and nonparametric adaptive learning.

There are already many papers that treat the infinite dimensional SA ( e.g., Venter (1966),

Walk (1977), Berman and Shwartz (1989), Yin and Zhu (1990) ). The asymptotic properties are

again determined by the associated deterministic ODE. The conditions are similar to those of the

finite dimensional case. However, most of these results are restricted to the  θ−independent  error

case, (i.e.,  Un = Fn(Zn) ,  Fn a Borel-measurable mapping of  Zn  , independent of  θ  ) . Also,

most of the results assume  a priori that the elements of the sequence { θ̂ n  } lie in a certain

compact subset. An even more serious problem from an applications point of view is that previ-

ous results are cast directly in either an infinite dimensional Hilbert space or a general Banach

space. Since the infinite dimensional SA is not computable, it is preferable to develop sieve-like

SA procedures for the purposes of estimation and inference. So far, there are three papers in this

direction: Goldstein (1988) has proved almost-sure convergence in the norm topology for a

modified Kiefer-Wolfowitz ( 1952 ) procedure in infinite dimensional Hilbert space using a sieve

approach; Nixdorf (1984) has shown asymptotic normality for a modified sieve-type RM pro-

cedure; and Yin (1992) has proved almost-sure convergence in the weak topology for a sieve-
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type RM procedure. However, all three papers impose the restrictive  θ−independence  condi-

tion on the error terms; and the first two papers require that the error sequence { Un } is a mar-

tingale difference sequence.

This paper combines the direct abstract approach ( Venter (1966), Walk (1977), Yin & Zhu

(1990), etc. ) with the sieve approach ( Nixdorf (1984), etc. ). In Section II, we present some

modified Hilbert-space valued RM procedures, and obtain their almost-sure norm-convergence

properties. Our procedures do not require a prior compact subset to which { θ̂ n  } must belong.

For  θ−independent  errors, we need not even assume a prior bound on  θo  , exploiting the

advances of Yin & Zhu (1990). Under the assumption of a prior bound on  θo  , we relax Yin &

Zhu’s (1990) conditions to allow a  θ−dependent error ( i.e., Un(Zn , θ ) , where  Un is a Borel-

measurable mapping in both  Zn  and  θ  ). Given the existence of a sieve, that is an increasing

sequence of finite-dimensional subspaces whose union is dense in the estimation space, our

finite-dimensional estimation procedure delivers a consistent estimator when the errors form a

mixingale process, a condition much weaker than that of Goldstein (1988) and Nixdorf (1984).

Section III obtains functional central limit theorems (FCLT’s) and asymptotic normality for the

sieve-based RM procedures when errors are  θ−dependent  ,  H−valued mixingale processes.

Our results include Nixdorf’s (1984) result for the  θ−independent  , martingale difference error

case as a special example, and we need weaker conditions than he does. Section IV gives laws of

iterated logarithm (LIL’s) ( hence almost-sure loglog rate of convergence results ), which is a

refinement of the asymptotic normality results. The results for the cases of  θ−dependent  , 

weakly stationary mixingale error processes are new even for the   RI   d ( d < ∞ )−valued RM pro-

cedures. Section V presents mean rates of convergence under conditions similar to those for the

almost-sure convergence, which are weaker than the conditions for the FCLT’s and LIL’s. Like

the previous sections, the results are stated for both the direct H-RM and the sieve-based RM
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procedures when errors are H-valued mixingale processes. The results for the direct  H−RM

procedures include Yin & Zhu’s (1990) as a special case. The results for the sieve-based RM

procedure are to our knowledge new. Section VI is a brief summary and indicates some further

research directions. A Mathematical Appendix contains the proofs.

II. ALMOST-SURE CONVERGENCE

We need the following definitions throughout the paper: Let (Ω , F , P) be a complete pro-

bability space. Let   BI    be a generic real separable Banach space with norm  L L . L L . Let  B (  BI    ) be

the Borel  σ  −field generated by the Borel open sets of   BI    . We call  W  :  Ω →  BI    a   BI    −valued

random element (  BI   −r.e. ) if  W  is  F / B ( BI   ) −measurable.

A function  X : Ω →  BI    is simple if for an integer m and eachω ∈Ω

X (ω) = 
i =1
Σ
m

 xi  1Ai
(ω),   where  xi  ∈   BI   ,  Ai ∈  B,  ∪ 1≤i ≤m  Ai = Ω  and  Ai ∩ Aj  = ∅  if i ≠ j  .

The  Bochner  integral of the simple function X is defined as

  ∫Ω  X (ω) P (dω) = 
i =1
Σ
m

 xi  P (Ai) .

A  BI   −r.e. W is Bochner  integrable if there exists a sequence of simple functions { Xn : Ω →  BI    }

such that

  Xn → W    a.s.−P    and  ∫Ω  L L Xn(ω) − W (ω) L L P (dω) → 0   as  n → ∞ . 

The mathematical  expectation of W in the sense of Bochner ( or in the strong sense ) is defined

as the limit of Bochner integrals of simple functions

  ∫Ω  W (ω) P (dω) ≡ limn→∞  ∫Ω  Xn(ω) P (dω) .
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It has been shown that a  BI   −r.e. W has a mathematical expectation in the sense of Bochner if and

only if  E [ L L W  L L ] < ∞ . 

Let  G and  H be real separable Hilbert spaces.  H is endowed with inner product

 ( . , . ) , norm  L L x  L L = ( x  , x  )1/2 , and identity operator  I  . Let

{ Mn  :  G × H → H , n = 1,2,... } be a sequence of B(G  × H) / B(H) −measurable mappings. Let

 Z ≡ { Zn : Ω → G ; n = 1,2,... } be a sequence of F / B(G)−measurable mappings that is gen-

erated by nature, and is not Granger-caused by { θ̂ n  } to be defined below.

ASSUMPTION A.1: Let  M  :  H → H be a Borel measurable mapping such that:

(1)  M  has a zero point  θo  ∈  H , i.e.,   M ( θo  ) = 0 .

(2)  M  is uniformly continuous on any norm-bounded subset of  H .

Condition A.1(2) implies that  M  is continuous and maps bounded sets into bounded sets. Yin

and Zhu (1990) give examples of  M  that satisfy Assumption A.1(2). These include continuous

linear operators, Hölder and Lipschitz operators, uniformly continuous operators, continuous

operators with "polynomial growth", some compact operators, and others.

ASSUMPTION A.2: { an  ;  n =1,2,... } is a sequence of nonincreasing positive real numbers

such that:

(1)  an→0  as n→ ∞ ,  
n =1
Σ
∞

an= ∞ ;   and  (2)  an ≤ an +1 (1 + b an)   for some  0 < b ≤ 1 .

A Hilbert space-valued RM procedure (RM) is

  θ̂ n +1 =  θ̂ n  +  an Mn(Zn ,θ̂ n) ,   n =1,2,...,

where  θ̂ 1 is an arbitrary  H −valued random element, denoted  θ̂ 1 arb.  H −r.e. . Note that for

each  n ,  θ̂ n  is an  H−r.e. by the measurability of  Mn  . 
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Define  Un :  G × H → H as  Un(. , θ ) ≡ Mn(. , θ ) − M(θ ) . Then one can rewrite the

 H−valued RM procedure as :

   θ̂ 1  arb.  H −r.e. ,      θ̂ n +1 = θ̂ n  +  an [ M(θ̂ n) + Un(Zn  , θ̂ n) ]  ,    n=1,2,...,

where  Un(Zn  , θ̂ n) is an  H−r.e. by the definition.

Let { Fn } be a family of increasing sub  σ  −algebras of  F generated as follows:

 Fn = σ  ( ∅  , Ω )   for  n < 0 ;     F0 = σ  ( θ̂ 1 ) ;     Fn = σ  ( Zj  , θ̂ j +1 ;  j  ≤ n )   for  n > 0  . 

Then  θ̂ n  is  Fn−1 − measurable, while  Zn  ,  Un(Zn ,θ̂ n) and  θ̂ n +1 are  Fn − measurable.

There are various methods used to prove almost sure convergence of { θ̂ n  } to  θo  , and

there are a variety of corresponding assumptions on the step size { an  }, the error term

{ Un(Zn ,θ̂ n) }, the mapping  M( . ) , and the measurement { Mn(Zn ,θ̂ n) }. Nevertheless, all try to

establish the following two essential relations:

(i)  supn L L θ̂ n  L L < ∞   a.s.−P ; and (ii) For every  T > 0 , 

limn→∞supn <i ≤m (n,T)  L L Σn ≤ j ≤i −1 aj  [Mj(Zj , θ̂ j) − M(θ̂ j)] L L = 0      a.s.−P , 

where   m (n,T) ≡ max { i : Σn ≤ j ≤i −1 aj  ≤ T }.

Kushner & Clark’s (1978) "weak convergence" methods typically impose weak conditions

on  M  and  Un to obtain (ii). But they often assume that { Mn( Zn  , θ  ) ≡ m (Zn ,θ ) }, and either

directly require (i) or assume that {  θ̂ n  } lies in a compact set   a.s.−P . Although the compact-

ness assumption is not very restrictive for   RI   d (d <∞) −valued RM procedures, it is too strong a

requirement for { θ̂ n  }, generated by an infinite-dimensional Hilbert space-valued RM pro-

cedure, to belong to a compact set in the norm topology. Berman and Shwartz (1989) have

assumed that { θ̂ n  } lies in a convex, compact set under a topology induced by an invariant

metric. They get almost-sure convergence in this metric for a Banach space-valued RM algo-
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rithm when { Un } are  θ−independent  errors. Although we can follow their method and get a

Banach space extension of Kushner and Clark (1978)’s Theorem 2.4.2 for

 θ−dependent   Un( . , . ) , we do not adopt this approach here, since we are interested in

almost-sure convergence in the norm metric.

Metivier & Priouret’s (1984) "martingale" methods explicitly assume the existence of a

Liapunov functional, and impose stronger conditions on the growth of  M  and on the error  Un 

to obtain (i) and (ii). Some typical assumptions are that  M (θ ) grows at most linearly in  θ  , and

{ Un } is a martingale difference sequence. An important advance is the paper by Yin & Zhu

(1990). They establish almost sure convergence for an  H −valued RM procedure with

 θ−independent  errors, under weak conditions on the growth of  M (θ ) and the average of the

errors, without an a  priori assumption on the uniform boundedness of { θ̂ n  }. We shall extend

Yin & Zhu’s results to include finite-dimensional projected RMs and RM procedures with

 θ−dependent  errors. We allow weak conditions on { Un } akin to Kushner and Clark’s, but we

do not assume a prior compact set to which { θ̂ n  } belongs. Also, we allow  Mn(. , θ ) to depend

on  n .

To establish the uniform boundedness of { θ̂ n  } generated by RM procedures, we consider

certain truncated RM procedures. Let { Bn ,  n =1,2,... } be a sequence of strictly increasing

positive real numbers. Define a sequence of positive integer-valued random variables by

   T (1) = 1,   T (n +1) = T (n) + 1 (Jn
c  ),       

where  1 (A) denotes the indicator of the set  A ∈  F ,  Jn  ≡ { L L θ̂ n  + an Mn  L L ≤ BT (n )  }, and Jn
c is

the complement of the set Jn . A truncated RM procedure (TRM) is :

   θ̂ 1  arb.  H −r.e. , 

  θ̂ n +1 = [ θ̂ n  +  an Mn(Zn ,θ̂ n) ] 1 (Jn) + θ
_

n  1 (Jn
c) ,   n =1,2,...,
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where { θ
_

n  } is a sequence of arbitrary fixed elements of  H such that  L L θ
_

n  L L < B for all  n and

for some  0 < B < B1 < ∞ . One example of { θ
_

n  } is as follows: Let  θ
_

j  , j =1,2 be two arbi-

trary fixed points of  H , with  θ
_

1 ≠ θ
_

2 , and  L L θ
_

j  L L < B . Put

  θ
_

n  = θ
_

1   if  T (n) = 2 j  ;     θ
_

n  = θ
_

2   if  T (n) = 2 j  − 1 ;       j =1,2,3,... .

More generally, we take { θ
_

n  } to be a sequence of arbitrary  H −r.e. generated by nature,

independent of  θ̂ 1 and { Zn  }, such that  L L θ
_

n  L L < B   a.s.−P for all  n . For this we set

 Fn = σ  ( Zj , θ
_

j , θ̂ j +1 ;  j  ≤ n ) for  n > 0 . For example, set  θ
_

n  ≡ θ
_

 , for  θ
_

 arb. H −r.e. ,

independent of  θ̂ 1 , with  L L θ
_

 L L < B   a.s.−P .

Depending on whether or not we have prior information on the bounded region to which

 θo  belongs, we consider two situations:

(1) If there is no prior information on where  θo  belongs, we adopt a "randomly truncated RM

procedure" (RTRM) by choosing { Bn } such that   limn→∞  Bn = ∞ . This includes Yin and

Zhu’s (1990) algorithm as a special case. Yin and Zhu (1990) only consider the case in

which  θ
_

n  = θ
_

 for all  n . By considering a more general scheme, we lessen the possibil-

ity of the algorithm following similar paths to undesirable regions of  H .

(2) If there is prior information on where  θo  belongs, e.g.,  L L θo  L L < Bo < B , we consider a

"bounded truncated RM procedure" (BTRM) by choosing { Bn ;  n =1,2,... } such that

  limn→∞  Bn = B
_

 < ∞  with   B
_

 > B . For example, we can choose   Bn = B + 10 Σ j =1
n  2−j  

with   B
_

 = B + 20 . 

From now on, we use TRM to denote that conditions or results hold for both RTRM and BTRM.

ASSUMPTION A.3: There is a twice continuously Fréchet differentiable functional

 V : H →  RI    such that
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(1)   V (θo) = 0 ;   lim L L θ L L →∞  V (θ ) = ∞ ;   V (θ ) > 0 ,   ( V´(θ ) , M (θ ) ) ≤ 0     for  θ  ≠ θo   .  

(2)   for  any  η  > 0 ,    inf [ − ( V´(θ ) , M (θ ) ) :  L L θ  − θo  L L ≥ η  ] > 0 , 

where  V´  denotes the first Fréchet derivative of  V .

This assumes the existence of a Liapunov functional  V , which implies the asymptotic stability

of the solution  θo  for the nonstochastic, Hilbert-space valued ODE    θ
.
(t) = M (θ (t)) . Note that

Assumption A.3 implies that  V maps bounded subsets of  H into bounded subsets of   RI    .

When  M  is Fréchet differentiable at  θo  with first Fréchet derivative  A , we can choose  V to

be a local quadratic form

    V (θ ) = ( θ  − θo  , A (θ−θo) ) + o ( L L θ  − θo  L L 2 )  . 

However, as we do not impose differentiability on  M  , we only assume the existence of  V .

LEMMA 2.1: Given TRM with Assumptions A.1, A.2 and A.3(1) holding , if there exists

 0 ≤ ε  < 1 such that

 lim supn→∞  L L an 
j =1
Σ
n

 [Mj(Zj ,θ̂ j) − M(θ̂ j)] L L = ε       a.s.−P  , 

then there exists a positive integer-valued random variable  T such that

  P (supn T (n) ≤ T < ∞ ) = 1  .

This lemma demonstrates that { θ̂ n  } generated by RTRM or BTRM becomes bounded for all

large  n , i.e., the truncation is only invoked a finite number of times. Therefore, the asymptotic

properties of the RTRM and BTRM are the same as that of the original RM with

  supn L L θ̂ n  L L < ∞   a.s.−P . This result provides the fundamental property on which all of our sub-

sequent results for the truncated methods rest.
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To get an almost sure consistency result, we need stronger assumptions than those in

Lemma 2.1.

ASSUMPTION A.4:

   lim supn→∞  L L an 
j =1
Σ
n

 Uj(Zj ,θ̂ j) L L = 0      a.s.−P  .

By Kronecker’s Lemma and Assumption A.2(1), Assumption A.4 is implied by

     lim supn→∞  L L 
j =1
Σ
n

 ajUj(Zj ,θ̂ j) L L < ∞      a.s.−P  .

The following consistency result is proven by following the proof of Theorem 3.2 of Yin and

Zhu (1990).

THEOREM 2.2: If TRM and Assumptions A.1 - A.4 hold, then   L L θ̂ n  − θo  L L → 0  as

  n → ∞    a.s.−P .

Note that our error terms { Uj  } can depend on { θ̂ j  }, while the error terms in Yin and Zhu

(1990)’s paper are independent of { θ̂ j  }. In their case, Yin and Zhu (1990) have shown that the

error condition A.4 is a sort of necessary and sufficient condition for the almost sure conver-

gence result to occur, given the other assumptions . This is true here as well, a fortiori, but we

will not give a formal statement of this fact. Yin and Zhu show that martingale difference, mov-

ing average, and stationary  φ −mixing error sequences { Un } satisfy assumption A.4. Here we

provide a weaker set of sufficient conditions for A.4 based on Chen and White (1996)’s results

on H-valued, Lp-mixingale processes. Let  L L . L L p  denote the  Lp  −norm for an  H −r.e.  X ,

 L L X L L p ≡ [ E L L X L L p  ]1/p  , 1 ≤ p <∞ . Let { Wn  ; −∞ < n < ∞ } be a sequence of  H− r.e.´s with

finite  Lp  −norms, 1 ≤ p <∞ . Let { An } be a filtration of  F . Then { Wn  , An  } is an  H −valued

 Lp  −mixingale sequence if there exist sequences of finite nonnegative constants { cn  ; n ≥ 1 }
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and { ψm  ; m ≥ 0 } with  ψm  → 0 as  m → ∞ such that the following two inequalities hold for

all  n ≥ 1 , m ≥ 0 :

  L L E ( Wn  |  An−m  ) L L p  ≤ ψm  cn  ;

  L L Wn  − E ( Wn  |  An +m  ) L L p  ≤ ψm +1 cn  . 

If, in addition,  Wn  is  An −measurable, then { Wn  , An  } is an adapted  H −valued

 Lp  −mixingale sequence.

An  H −valued  Lp  −mixingale with  1 ≤ p <∞ has zero mean. We can choose

{ ψm  ; m ≥ 0 } to be non-increasing in  m when { Wn  , An  } is an adapted  Lp  − mixingale

( p  ≥ 1 ). We say that  ψm  is of size −a  if  
m =0
Σ
∞

 [ψm]δ < ∞ or  ψm  = o ( m−1/δ ) for some

 a < ( 1/δ ) or  ψm  = O ( mλ  ) for some  λ  < − a .

 θ−independent error case : Suppose for each  θ  ∈  H ,  Un(Zn ,θ ) ≡ Fn(Zn) , where

 Fn : G → H is a Borel measurable mapping,  n = 1,2,... .

ASSUMPTION A.5: { Fn(Zn) , Fn  } is an  H −valued  Lp  −mixingale, 1 < p < ∞ , with param-

eters { ψm  } and { cn  } satisfying either

(i) 
i =1
Σ
∞

(ci  ai)
2  < ∞  and   

m=1
Σ
∞

(ψm)2  < ∞  if  p ≥ 2;    or

(ii) 
i =1
Σ
∞

(ci ai)
p  < ∞ and  

m =1
Σ
∞
ψm  < ∞  if  1 < p < 2  . 

The following corollary is a consequence of Theorem 2.2 and Chen and White’s (1996)

Corollaries 3.8 and 3.9.

COROLLARY 2.3: Let { θ̂ n  } be given by RTRM . Suppose Assumptions A.1-A.3 and A.5

hold for  θ  −independent  errors { Un } . Then L L θ̂ n  − θo  L L → 0   as   n → ∞    a.s.−P .
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Gyorfi and Masry (1990) establish consistency and convergence rates for a class of recursive

kernel estimators for  Zn  ∈   RI   d  (d <∞) . A consequence of Corollary 2.3 is an extension of their

consistency result to  Zn  ∈  G , where  G is not necessarily a finite dimensional space and

{ Fn(Zn) } is not necessarily an  L 2 −mixingale.

ASSUMPTION A.6: { Fn(Zn) , Fn  } is an adapted  H −valued  Lp  −mixingale , p  ≥ 1 with

 supn E [ L L Fn(Zn) L L r ] < ∞ for some  r ≥ p , r > 1 and  ψm  = O ( ( log m )−2−β  ) for some small

 β  > 0 . 

The following corollary is a simple consequence of Theorem 2.2 and Chen and White’s (1996)

Theorem 3.10.

COROLLARY 2.4: Let { θ̂ n  } be given by RTRM . Suppose Assumptions A.1-A.3 and A.6

hold for  θ  −independent  errors { Un } . If  an = O ( n−1 log n ) , then  L L θ̂ n  − θo  L L → 0   as

  n → ∞    a.s.−P .

 θ  −dependent  error case : The error terms  Un are influenced by both  Zn  and  θ̂ n  , where

 Un is  B(G × H) / B(H) −measurable.

First we adapt the "martingale" approach to get almost-sure convergence results for the RM

procedure by imposing stronger versions of Assumptions A.1 - A.3. Some common conditions

are : (a)  M (θ ) and  Mn(Zn ,θ )   ( a.s.−P ) grow at most linearly in  θ  ;  (b) the Liapunov func-

tional is taken to be  V (θ ) ≡ L L θ  − θo  L L 2; (c) some control is imposed on the noise via { an  }; or (d)

some restrictions are imposed on the inner products of both   ( V´(.) , M (.) ) and

  ( V´(.) , Un(Zn ,.) ) .

If we do not impose linear growth restrictions on  Mn  and  M  , we need to assume that
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  L L θo  L L < Bo < B and use the BTRM. The key point here is that truncations are only invoked

finitely many times, given proper control of the growth of the average of the errors (via Lemma

2.1). The following three corollaries yield almost-sure convergence results of this sort by pro-

viding sufficient conditions for Assumption A.4.

COROLLARY 2.5: Let { θ̂ n  } be given by BTRM. Suppose Assumptions A.1 - A.3 and the

following conditions hold :

(1) There exist sequences of mappings { M
__

n  : H → H } and { sn : H → (0,∞) } such that,

for each  n ,  M
__

n  is  B(H) / B(H) −measurable, sn is  B(H) / B( RI   ) −measurable, and for

any  ξ  that is  Fn  −measurable,

   E [ Mn(Zn ,ξ ) |  Fn ] = M
__

n(ξ )   a.s.−P  ;       E [ L L Mn(Zn ,ξ ) L L 2 |  Fn  ] = sn(ξ )   a.s.−P  . 

For any  0 < K < ∞ and for all  n , define

 bK,n  ≡ sup L L θ L L ≤ K L L M
__

n(θ ) − M (θ ) L L  ,       cK,n  ≡ sup L L θ L L ≤ K [ sn(θ ) ]  .

(2)   limn→∞  bK,n  = 0  ;    
j =1
Σ
∞

( aj  bK, j  ) < ∞    .

(3)   cK,n  < ∞   ;    
j =1
Σ
∞

( aj
2 cK, j  ) < ∞    .

Then  L L θ̂ n  − θo  L L → 0   as   n → ∞    a.s.−P .

Remark: Here we can identify

   Un(Zn ,θ̂ n) ≡ [ M
__

n(θ̂ n)−M (θ̂ n) ] + [ Mn(Zn ,θ̂ n)−M
__

n(θ̂ n) ]   .

Condition 2.5(1) assumes that both  Mn(Zn ,θ̂ n) and  L L Mn(Zn ,θ̂ n) L L 2 have a kind of Markovian

structure, which is a typical assumption in the stochastic approximation literature. This corollary

includes the classical Robbins-Monro algorithm as a special case. Metivier and Priouret (1984)
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present an   RI   d (d <∞) −valued classical RM algorithm of this type without truncation. They

choose a quadratic Liapunov functional  V (θ ) = L L θ− θo  L L 2 . Under an additional condition on the

growth of  sn , namely  sn(θ ) ≤ cn  ( 1+ L L θ− θo  L L 2 ) , they get almost sure convergence. Our

corollary relaxes these conditions and extends their result to  H , although we need truncation

but they do not.

The following is a less abstract sufficient condition for Assumption A.4:

ASSUMPTION A.7:

(1) (a) For any  θ  ∈  H and all  n ,  E [ Un(., θ ) ] = 0 ; and (b) For any   K > 0 , 

  limn sup L L θ L L ≤ K L L an 
j =1
Σ
n

 Uj(Zj ,θ ) L L = 0  a.s.−P . 

(2) There exists a sequence of  B(G) / B( RI   ) −measurable functions { hn  : G → [0,∞) } and a

constant  h < ∞ such that:

(a) supnE [hn(Zn)] ≤ h;

   limn an
j =1
Σ
n

 ( hj(Zj) − E [ hj(Zj) ] ) = 0   a.s.−P   ;        

(b) for all   z ∈  G ,   θ , θ ´ ∈  H ,

    L L Un( z , θ  ) − Un( z , θ ´ ) L L ≤ hn(z) L L θ  − θ ´ L L .   

(3) For any  K  > 0 , there exists a sequence of  B(G) / B( RI   ) −measurable functions

{ gK,n  : G → [0,∞) } and a constant  gK = O ( K  ) such that:

(a) supn  E [ gK,n(Zn) ] ≤ gK; and

limn an
j =1
Σ
n

 (gK, j(Zj) − E [ gK, j(Zj) ] ) = 0   a.s.−P   ;         
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(b) sup L L θ L L ≤ K L L Un(Zn ,θ ) L L ≤ gK,n(Zn)   a.s.−P .

(4)    sup L L θ L L ≤ K L L M (θ ) L L = O ( K  ) . 

This assumption is satisfied by many dependent Hilbert space-valued random sequences.

COROLLARY 2.6: Let { θ̂ n  } be given by the BTRM with   Bn +1 ≥ Bn ( 1 + c  an ) for some

positive number  c  . Suppose Assumptions A.1 - A.3 and A.7 hold when { Un } are

 θ  −dependent  errors. Then    L L θ̂ n  − θo  L L → 0   as   n → ∞   a.s.−P .

This corollary includes linear algorithms as special cases. It also includes an   RI   d (d <∞) -valued

RM algorithm driven by an ergodic process as in Metivier and Priouret (1984).

COROLLARY 2.7: Let { θ̂ n  } be given by the BTRM with   Bn +1 ≥ Bn ( 1 + c  an ) for some

positive number  c  . Suppose Assumptions A.1 - A.3, A.7(2)(b), A.7(3)(b), and A.7(4) hold

when { Un } are  θ  −dependent  errors. Suppose further the following conditions hold:

(1) For each  θ  ∈  H , { Un(Zn ,θ ) , Fn } is an adapted  H −valued  L 2 −mixingale sequence

with { ψm  } of size −1/2 and  
n =1
Σ
∞

 ( an cn  )2 < ∞ . 

(2)  supn L L hn(Zn) L L 2 < ∞ and { hn(Zn) − E [ hn(Zn) ] , Fn  } is an   RI    −valued  L 2 −mixingale

with { ψm  } and { cn  } as in (1) .

(3)  supn L L gK,n(Zn) L L 2 < ∞ and { gK,n(Zn) − E [ gK,n(Zn) ] , Fn  } is an   RI    −valued

 L 2 −mixingale with { ψm  } and { cn  } as in (1) .

Then    L L θ̂ n  − θo  L L → 0   as   n → ∞   a.s.−P .

Note that the conditions in this corollary are similar to Kuan & White’s (1994) sufficient condi-

tions for almost sure convergence of an   RI   d (d <∞) −valued RM with  θ  −dependent  errors.
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For estimation purposes, we consider finite dimensional approximation modifications of the

above RM and TRM procedures. The separability of  H implies the existence of a complete

orthonormal basis { ej  , j  = 1,2,... }. Let  Pk (n )  :  H → Hk (n )  be the orthogonal projection of  H 

onto  Hk (n )  , where  Hk (n )   is the closure of linear space spanned by  (e 1 , . . . , ek (n )  ) , and

{ k (n), n =1,2,...} is an integer-valued sequence such that:

   1 ≤ k (n) ≤ k (n +1) ≤ k (n)+1 ;    and         limn→∞k (n) = ∞ .

From this it follows that  dim (Hk (n ) ) = k (n) ≤ n  .

An RM procedure with orthonormal projection (RMP) can be defined as

   θ̂ 1  arb.  Hk (1)  −r.e. , 

  θ̂ n +1 = [ θ̂ n  +  an Pk (n +1)  Mn(Zn ,θ̂ n) ]  .

A truncated RM with projection (TRMP) is

   θ̂ 1  arb.  Hk (1)  −r.e. , 

  θ̂ n +1 = [ θ̂ n  +  an Pk (n +1)  Mn(Zn ,θ̂ n) ] 1 (Jn) + θ*
n +1 1 (Jn

c) ,

where  Jn  ≡ { L L θ̂ n  + an  Pk (n +1)  Mn  L L ≤ BT (n )   };    Jn
c  ≡ { L L θ̂ n  + an  Pk (n +1)  Mn  L L > BT (n )   }.

Here { θ*
n +1 } is either a sequence of arbitrary fixed (nonrandom) elements in  Hk (n +1)  , with

 L L θ*
n +1 L L < B   for all  n ; or a sequence of arbitrary  Hk (n +1)  −r.e.´s which are generated by

nature and independent of  θ̂ 1 and { Zn  }, with  L L θ*
n +1 L L < B   a.s.−P for all  n .

Again, depending on whether or not there is prior information on where  θo  belongs, we

can specify TRMP to be either a "randomly truncated RM with projection" (RTRMP) or a

"bounded truncated RM with projection" (BTRMP).

The following Assumptions A.3P-A.7P play the same roles for RMP and TRMP as do
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Assumptions A.3-A.7 for RM and TRM :

ASSUMPTION A.3P: There is a twice continuously Fréchet differentiable functional

 V : H →  RI    such that

(1) V (θo) = 0 ;   lim L L θ L L →∞  V (θ ) = ∞; and V (θ ) > 0 ,  ( V´(θ ) , Pk (n )M (θ ) ) ≤ 0, for all

θ  ∈  Hk (n )  ,   θ  ≠ θo ;

(2) There exists a finite integer  No  such that for all  n ≥ No  , for any  η  > 0 , 

  inf [ − ( V´(θ ) , Pk (n )M (θ ) ) :  L L θ  − θo  L L ≥ η  ,  θ  ∈  Hk (n )  ] > 0 .

ASSUMPTION A.4P:

     lim supn→∞  L L an 
j =1
Σ
n

 Pk ( j +1)Uj(Zj ,θ̂ j) L L  =  0      a.s.−P.

ASSUMPTION A.5P: { Pk (n +1)Fn(Zn) , Fn  } is an adapted  H −valued  Lp  −mixingale with

 1 < p < ∞ , and with parameters { ψm  } and { cn  } as in A.5.

ASSUMPTION A.7P: Assumption A.7 holds with  Un replaced by  Pk (n +1)  Un .

It is easy to prove that A.5 implies A.5P and A.7 implies A.7P .

We can now state some consistency results for TRMP.

THEOREM 2.8 ( Corresponding to Theorem 2.2 ) : Given Assumptions A.1, A.2, A.3P, A.4P,

let { θ̂ n  } be given by the TRMP. Then  L L θ̂ n  − θo  L L → 0   as   n → ∞   a.s.−P .

COROLLARY 2.9 ( Corresponding to Corollary 2.3 ) : Let { θ̂ n  } be given by RTRMP when

{ Un } are  θ  −independent  errors. Suppose Assumptions A.1, A.2, A.3P, and A.5P hold. Then

  L L θ̂ n  − θo  L L → 0   as   n → ∞   a.s.−P .

COROLLARY 2.10 ( Corresponding to Corollary 2.6 ) : Let { θ̂ n  } be given by the BTRMP
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with   Bn +1 ≥ Bn ( 1 + c  an ) for some positive number  c  . Suppose A.1, A.2, A.3P and A.7P

hold when { Un } are  θ  −dependent  errors. Then  L L θ̂ n  − θo  L L → 0   as   n → ∞   a.s.−P .

Assumption A.3P plays an important role for the exact analog of Corollaries 2.8, 2.9 and

2.10 to Theorem 2.2, Corollaries 2.3 and 2.6, respectively. Since A.3P(2) might be unduly res-

trictive, now we consider a weaker assumption:

ASSUMPTION A.8: There is a twice continuously Fréchet differentiable functional

 V : H →  RI    , and there is a sequence of elements { θo
n  ∈  Hk (n )  } such that :

(1) There exists a finite integer  No  such that for all  n ≥ No  , for any  η  > 0 , 

  inf [ − ( V´(θ ) , Pk (n )M (θ ) ) :  L L θ  − θo
n  L L ≥ η  ,  θ  ∈  Hk (n )  ] > 0 .

(2)   
n =1
Σ
∞

 an  L L θo
n +1 − θo  L L < ∞ .

THEOREM 2.11 ( Corresponding to Theorem 2.2 ) : Given Assumptions A.1, A.2, A.3P(1),

A.4P and A.8, let { θ̂ n  } be given by TRMP. Then  L L θ̂ n  − θo  L L → 0   as   n → ∞   a.s.−P .

COROLLARY 2.12 ( Corresponding to Corollary 2.9 ) : Let { θ̂ n  } be given by RTRMP when

{ Un } are  θ  −independent  errors. Suppose Assumptions A.1, A.2, A.3P(1), A.5P and A.8 hold.

Then  L L θ̂ n  − θo  L L → 0   as   n → ∞   a.s.−P .

COROLLARY 2.13 ( Corresponding to Corollary 2.10 ) : Let { θ̂ n  } be given by the BTRMP

with   Bn +1 ≥ Bn ( 1 + c  an ) for some positive number  c  . Suppose A.1, A.2, A.3P(1), A.7P

and A.8 hold when { Un } are  θ  −dependent  errors. Then  L L θ̂ n  − θo  L L → 0   as

  n → ∞   a.s.−P .

The comparison of Assumptions A.3P and A.8 remains valid for the "martingale" approach.

Here we present two propositions as an illustration. Again, the linear growth restriction on
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 Pk (n +1)Mn  and the quadratic form of  V guarantee the  a.s.−P uniformly boundedness of

{ θ̂ n  } generated by RMP; hence, no truncation is needed.

PROPOSITION 2.14: Let { θ̂ n  } be given by RMP satisfying   E [ L L θ̂ 1− θo  L L 2 ] < ∞ when

{ Un } are  θ  −dependent  errors. Suppose A.1(1), A.2(1) and the following two conditions hold:

(1) For any  η  > 0 , 

 lim infn ( inf [ − ( θ− θo  , Pk (n +1)Mn(Zn ,θ ) ) :  L L θ  − θo  L L ≥ η  ,  θ  ∈  Hk (n +1)  ] ) > 0     a.s.−P  .

(2) There exist sequences of  B(G) −measurable functions { hn : G → [0,∞) } and

{ gn : G → [0,∞) } such that,

 (a)  for  each z  ∈  G , θ  ∈  Hk (n +1)  ,    L L Pk (n +1)Mn(z,θ ) L L 2 ≤ hn(z) + gn(z) L L θ−θo  L L 2 

 (b)   
n =1
Σ
∞

 an
2 E [ hn(Zn) |  Fn−1 ] < ∞   a.s.−P  ;   and      

n=1
Σ
∞

 an
2 E [ gn(Zn) |  Fn−1 ] < ∞   a.s.−P  .   

Then  L L θ̂ n  − θo  L L → 0   as   n → ∞   a.s.−P .

PROPOSITION 2.15: Let { θ̂ n  } be given by RMP satisfying   E [ L L θ̂ 1−Pk (1)θo  L L 2 ] < ∞ when

{ Un } are  θ  −dependent  errors. Suppose A.1(1), A.2(1) and the following three conditions hold:

(1) For any  η  > 0 , 

 lim infn ( inf [ − ( θ−Pk (n +1)θo  , Mn(Zn ,θ ) ) :  L L θ  − Pk (n +1)θo  L L ≥ η  ,  θ  ∈  Hk (n +1)  ] ) > 0     a.s.−P  .

(2) There exist sequences of  B(G) −measurable functions { hn : G → [0,∞) } and

{ gn : G → [0,∞) } such that,

 (a)  for  each  z  ∈  G , θ  ∈  Hk (n +1)  ,    L L Pk (n +1)Mn(z,θ ) L L 2 ≤ hn(z) + gn(z) L L θ−Pk (n +1)θo  L L 2 . 

 (b)   
n =1
Σ
∞

 an
2 E [ hn(Zn) |  Fn−1 ] < ∞   a.s.−P  ;   and      

n=1
Σ
∞

 an
2 E [ gn(Zn) |  Fn−1 ] < ∞   a.s.−P  .   

(3)  
n =1
Σ
∞

 L L Pk (n )θo  − Pk (n +1)θo  L L < ∞ .
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Then  L L θ̂ n  − θo  L L → 0   as   n → ∞   a.s.−P .

Remarks: (i) In these two propositions,   V (θ ) ≡ L L θ−θo  L L 2 / 2 , and   θo
n  = Pk (n )θo  in Proposi-

tion 2.15. (ii) Since for any   θ  ∈  Hk (n +1)  , 

  L L θ−Pk (n +1)θo  L L 2 + L L (I−Pk (n +1))θo  L L 2 ≡ L L θ −θo  L L 2         and   

     ( θ−Pk (n +1)θo  , Mn( . , θ ) ) = ( θ− θo  , Pk (n +1)Mn( . , θ ) )  , 

condition 2.14(1) implies 2.15(1). Since   limn→∞  k (n) = ∞ ,   limn→∞  L L θo−Pk (n +1)θo  L L 2 = 0 , 

2.14(2) and 2.15(2) are equivalent.

III. ASYMPTOTIC NORMALITY

This section presents asymptotic normality results for the RMP and TRMP algorithms.

Nixdorf (1984) has obtained an asymptotic normality result for an RMP algorithm when { Un }

is a sequence of  H−valued martingale difference,  θ−independent  errors. Here we follow

Nixdorf’s approach, but relax his noise conditions to allow { Un } to be a sequence of  H−valued

mixingale  θ−dependent  errors. Our improvements are applications of Walk’s (1987) results and

Chen and White’s (1998a) new central limit theorems for near epoch dependent functions of

 H−valued mixing processes.

In this section, we always assume that A.1,  an  = 1/n  , A.3P and A.4P hold. Hence,

 a.s.−P , {  θ̂ n   } converges to  θo  in norm, and is uniformly bounded for all   n ≥ no  . For sim-

plicity and without loss of generality, we set   no = 1  from now on. Also, we only consider the

 θ−dependent  error case since it includes  θ−independent  errors as a special case. Thus, we

study limiting distribution properties of the following algorithm :
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  θ̂ n +1 = θ̂ n  + n−1 Pk (n +1)M (θ̂ n) + n−1 Pk (n +1)Un(Zn , θ̂ n) . 

We begin with the following smoothness condition.

ASSUMPTION B.1:  M ( . ) is continuously Fréchet differentiable at  θo  with first derivative

 A .

Note that whereas  M  could be any uniformly continuous ( possibly nonlinear ) operator on any

bounded set in the previous section, the present assumption requires  M  to be a locally linear

operator around the true root  θo  . Under this local smoothness assumption, RMP or TRMP can

be translated into a recursive procedure of Fabian’s (1968):

  θ̂ n +1 − θo  = ( I + n−1 An ) ( θ̂ n  − θo) + n−(1+β)/2 ν n  + n−1−(β/2)  T 1n  + n−1−(β/2)  T 2n   , 

where   β  > 0 , 

  An ≡ A + Pk (n +1)  ( F [θ̂ n] − F [θo] )  , 

with  F :  H → L (H,H) , such that for any  y  ∈  H ,

  F [θo] (y ) = A y            for  θ  = θo    , 

  F [θ ] (y ) = A y  + [ M (θ ) − A (θ−θo) ] ( θ−θo  , y  ) / ( θ−θo  , θ−θo  )      for   θ  ≠ θo  ; 

   ν n  ≡ n (β−1)/2 Pk (n +1)  [ Un(Zn ,θo) − EUn(Zn ,θo) ] ; 

  T1n  ≡ nβ/2 Pk (n +1)  [ Un(Zn ,θ̂ n) − Un(Zn ,θo) + EUn(Zn ,θo) ]  ;

  T2n  ≡ nβ/2 ( Pk (n +1)  A − A ) ( θ̂ n  − θo  ) 

           ≡ nβ/2 ( Pk (n +1)  − I  ) A Pk (n +1)( θ̂ n  − θo  ) − nβ/2 ( Pk (n +1)  − I  ) A ( θo  − Pk (n +1)θo  ) .

Under Assumption B.1,  F is continuous at  θo  . If in addition, we have

 L L θ̂ n  − θo  L L → 0    a.s.−P , then   L L An − A L L → 0    a.s.−P  .
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ASSUMPTION B.2:  σ *  ≡ inf [ Re γ :  γ ∈   spec ( − A ) ] > β /2 ,  where spec ( − A ) is the

spectrum of  − A . Equivalently, for any  u ∈  (0,∞) ,  L L exp ( u A ) L L < exp ( − u σ *  ) with

 σ *  > β /2 . 

This is a stability assumption. Under this assumption, the solution to the differential equation

should be insensitive to "small" perturbations of  An  ,  T1n   ,  T 2n   and the partial sum   
j =1
Σ
n

 ν j   .

Given   T1n  → 0 , T 2n  → 0  in a suitable sense, results like the central limit theorem (CLT),

functional central limit theorem (FCLT), and law of iterated logarithm (LIL) for the sequence

{ θ̂ n  } are consequences of the corresponding results for the partial sum   
j =1
Σ
n

 ν j  . Berger’s

(1986) and Walk’s (1987) results for general Fabian-type recursive schemes in a Banach space

are applicable.

Assumption B.2 requires that the spectrum of  A is contained in { γ :  Re γ < − σ *  }, which

is in turn contained in { γ :  Re γ < − β /2 }. Hence  A cannot be a compact operator when  H is

an infinite-dimensional Hilbert space or any general infinite-dimensional Banach space. This

means that  A cannot be the operator norm-limit of any sequence of finite rank operators . In

particular, this assumption rules out that   L L Pk (n +1)  A − A L L → 0  as  n → ∞ . Nevertheless, we

can always rewrite  A in the form  a I  + b C  , where  a ≠ 0 , a , b are constants, and  C  is a

compact operator.

Before proceeding to asymptotic normality results obtained using Walk (1977,1987) and

Berger (1986), we need assumptions ensuring that " T1n  → 0 ,  T2n  → 0 in a suitable sense,"

and that " the partial sum   
j =1
Σ
n

 ν j   follows a FCLT."
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ASSUMPTION B.3:

(1)   L L (I  − Pk (n ) ) A Pk (n )  L L → 0 as   n → ∞ . 

(2) nβ  L L θo  − Pk (n )θo  L L 2 → 0   as  n → ∞  for some  β  ∈  ( 0 , 1 ] .

Note that B.3(2) relaxes Nixdorf’s (1984) requirement that  β  = 1 . Assumption B.3 and

  L L θ̂ n  − θo  L L → 0   a.s.−P  imply that  T 2n  → 0  as   n → ∞  almost in first mean,   i.e., for any

 ε  > 0 , there exists  Ω´ ∈  F with  P ( Ω´ ) ≥ 1 − ε  such that   ∫Ω´  L L T 2n  L L d P → 0 as  n→ ∞ . This

notion of convergence is weaker than convergence  a.s. and convergence in first mean, but

stronger than convergence in probability. (See Nixdorf (1984), Berger (1986), Walk (1987).)

ASSUMPTION B.4: Let  δo  ≡ max ( 0 , (1+β )/2 − σ *  ) . 

(1) There exists  δ ∈  ( δo  , 1/2 ) such that

  n−3/2 
l =1
Σ
n

 (n /l)δ+1 L L 
j =1
Σ
l

 ν j  L L = OP (1)  . 

(2) There exists   δ*  ∈  ( δo  , 1/2 )  such that

  n−1/2 max1≤l ≤n  (n /l)δ
*
 L L 

j =1
Σ
l

 j−1/2 T 1 j  L L → 0   in Prob.   as  n→ ∞ . 

A sequence of   BI   −r.e.´s { Wn  } converges  in distribution to a   BI   −r.e.  W ( Wn  => W  in

  BI    ) if the sequence of distributions of { Wn  } converges  weakly to the distribution of  W  on

  BI    , i.e., if for all bounded and (norm -) continuous functionals  F :  BI    →  RI    , 

  limn→∞  ∫  BI    F (x ) η n(dx ) = ∫  BI    F (x ) η (dx )  ,    

where the distributions { η n  } and  η  are given by, for any  ∆ ∈  B( BI   ) , 

  η n(∆) ≡ P [ ω ∈  Ω :  Wn(ω) ∈  ∆ ]     and    η (∆) ≡ P [ ω ∈  Ω :  W(ω) ∈  ∆ ] .

Let  CH[0,1] denote the space of continuous mappings from  [0,1] to  H with sup-norm
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 L L X L L ∞  ≡ sup{ L L X (t) L L :  t ∈  [0,1] }. This is a real separable Banach space. Let

 X = { X(t) ; t ∈  [0,1] } be a  CH[0,1] − valued random element. Define the  CH[0,1] − valued

random elements  Xn = { Xn(t) ; t ∈  [0,1] } ,  Yn  = { Yn(t) ; t ∈  [0,1] } , and

 Y = { Y (t) ; t ∈  [0,1] } as follows:

  Xn(t) ≡ n−1/2 
j =1
Σ

[nt ]
 ν j  + n−1/2 (nt−[nt ]) ν [nt ]+1  ,    t ∈ [0,1] ; 

  Yn(t) ≡ n−1/2 R [nt ]  + n−1/2 (nt−[nt ]) (R [nt ]+1−R [nt ] )  ,    t ∈ [0,1]       with   Rn ≡ n (1+β)/2 (θ̂ n +1−θo)  ; 

  Y (t) ≡ X(t) + [A +I (1+β )/2] ∫(0,1]  s
−[A +I (3+β)/2]  X (st) ds  ,    t ∈ [0,1]  .  

In the definition of Y and elsewhere, for  t > 0 and  Γ , Λ  ∈  L (H,H) , we define

 tΓ  ≡ exp ( ( log t ) Γ ) and  exp ( Λ  ) ≡ 
j =0
Σ
∞

 Λ j  / j ! . The integrals are Bochner integrals in

 L (H,H) . Assumption B.2 ensures that the integral in the definition of Y exists  a.s.−P . 

ASSUMPTION B.5: For some  X ∈  CH[0,1] ,   Xn => X  (as   n → ∞) in  CH[0,1] . 

THEOREM 3.1: Suppose  L L θ̂ n  − θo  L L → 0  a.s. −P  and Assumptions B.1-B.5 hold. Then

  Yn => Y    (as   n → ∞ ) in  CH[0,1] . 

This theorem is proved by mimicing the proofs of theorem 1 in Walk (1987), corollary 2.12 in

Berger (1986) and theorem 1 in Nixdorf (1984).

Before we state our next result, we need some definitions and notations. (Details can be

found in Chen and White (1998a) ). An  H−r.e. W  ( or the distribution  µ  of an  H−r.e. W  ) is

weakly  second  order if  E [ ( W  , h )2 ] ≡ ∫H  ( w  , h )2 µ (dw ) < ∞ for all  h ∈  H . For a weakly

second order  H−r.e.  W with expectation  E [W ] , we define the  covariance  of  W  , Cov

W  :  H × H →  RI    , as
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  Cov W (x,y) ≡ E [ ( W  − E [W ] , x  ) ( W − E [W ] , y  ) ] ,   for any  x,  y  ∈  H .  

This is a symmetric, positive, and continuous bilinear form. Alternatively, we can define a

 covariance  operator  SW  :  H → H as  SW  x  ≡ E ( ( W  − E [W ] , x  ) [ W − E [W ] ] ) for any

  x  ∈  H . By the definitions we have

 ( SW  x  ) (y) ≡ ( SW  x  , y  ) = Cov W  (x,y)  for any  x,  y  ∈  H .

Let  L (H,H) denote the space of bounded linear operators with the operator norm  L L . L L defined

as  L L S L L = sup [ L L S x  L L :  L L x  L L ≤ 1 ,  x  ∈  H ] . For a compact operator  S in  L (H,H) , if

 Σ j =1
∞  | ( S  ej  , ej  ) |  < ∞ and  Σ j =1

∞  ( S ej  , ej  ) is independent of the choice of complete ortho-

normal system (cons) { ej  }, we call  S a nuclear operator and tr (S) ≡ Σ j =1
∞  ( S ej  , ej  ) the

(matrix) trace of  S . When a nuclear operator  S is self-adjoint and positive, we have

tr(S) = Σ j =1
∞ λ j(S) , where { λ j(S) , j  ≥ 1 } are the eigenvalues of S  . Let  S (H) be the set of

all self-adjoint positive nuclear operators. This is a Polish space under the metric

 d (S,J) ≡ L L S − J  L L tr ≡ tr ( [(S−J)*(S−J)]1/2 ) , where (S−J)*  is the adjoint of (S−J) , for any

 S , J  ∈  S(H) . In probability theory,  S (H) consists of all covariance operators of Gaussian

measures on  H . 

An  H−r.e.  N has a Gaussian distribution on  H if for all  h ∈  H , the real-valued ran-

dom variable  ( h , N ) has a Gaussian distribution on   RI    , or equivalently, an arbitrary finite set

of coordinates of N (in an arbitrary cons) has a finite-dimensional Gaussian distribution. We call

 N an  H−valued  Gaussian , and  N ( 0 , S ) an  H−valued Gaussian with zero mean and

covariance  S ∈  S(H) . 

A Brownian motion (BM) in  H is a  CH[0,1] −r.e.  X satisfying the following conditions:

(a)  X (0) = 0 ; (b) the increments on disjoint time intervals are independent; (c) for all

 0 ≤ t < t +s ≤ 1 , the increment  X (t +s) − X (t) has a Gaussian distribution on  H with mean



- 27 -

zero and covariance operator  s S , where  S ∈  S(H) , does not depend on  t , s . 

COROLLARY 3.2: In Theorem 3.1, if B.5 holds for  X a Brownian motion in  H with

 X (0) = 0  ,  E X (1) = 0 and Cov X (1) = S , then:

(i)  Yn  => Y  where  Y is a Brownian motion in  H with  Y (0) = 0  ,  E Y (1) = 0 and

Cov Y (1) = K  , where  K  is the unique solution of the operator equation   A
_

 K  + K   A
_

*
 = − S 

in  L (H , H) , with  A
_

 ≡ ( β /2 ) I + A , 

  K ≡ ∫(0,1]  s
−(A +I)  S s−(A *+I)  ds  ≡ ∫(0,∞)  exp (A

_
u) S  exp (A

_
*
u) du   ; and

(ii)   nβ/2 ( θ̂ n +1 − θo  ) => N ( 0 , K  )  (as   n → ∞ ) in  H . 

Assumptions B.4 and B.5 are abstract conditions. In the rest of this section, we provide

sufficient conditions in terms of various dependent, possibly heterogeneous  H−valued random

sequences. In particular, we consider a general class of  H−valued mixingales. Before we pro-

vide sufficient conditions for Assumption B.4, we state a lemma that contains some general cri-

teria for B.4(1) and B.4(2). These results can be found in Berger (1986) and Walk (1987).

LEMMA 3.3: Let { ν n  } and { Tn  } be any sequences of  H −r.e.´s .

(i) If there exists   δ´ ∈  ( δo  , 1/2 )  such that

  B.4(1´)    n−1/2 max1≤l ≤n  (n /l)δ´  L L 
j =1
Σ
l

 ν j  L L = OP (1)  , 

then { ν n  } satisfies B.4(1).

(ii) If B.4(1’’):    E L L 
j =1
Σ
n

 ν j  L L = O ( n1/2 ) , then B.4(1’) holds.

(iii) If B.4(2’):    n−1 
j =1
Σ
n

 L L Tj  L L → 0 almost in first mean, then { Tn  } satisfies B.4(2).

(iv) If   Tn → 0 almost in first mean, then B.4(2’) is satisfied.
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(v) If B.4(2’’):    n−1 L L 
j =1
Σ
n

 Tj  L L → 0   a.s.−P , then { Tn  } satisfies B.4(2).

To verify the conditions in the above lemma for an  H−valued mixingale process, we can apply

Chen and White’s (1996) maximal inequalities and law of large numbers for  Lp(H)−mixingales.

ASSUMPTION B.6:

(1) For any  θ  ∈  H and all  n ,  E [ Pk (n +1)  Un(. , θ ) ] = 0 .

(2) For every bounded set  Θ ⊂  H , there is a sequence of nonnegative square integrable

functions { φΘ,n  } such that  supl ∈  NI    E [φ2
Θ,l]< ∞ and for all  θ  , θ ´ ∈  Θ  ,  n ∈   NI    , 

  L L Pk (n +1)Un( . , θ  ) − Pk (n +1)Un( . , θ ´ ) L L ≤ φΘ,n  L L θ  − θ ´ L L .

(3) For some  r ∈  (2,∞) , for any bounded subset  Θ ⊂  H ,

  supn ∈  NI    E [ supθ∈Θ  L L Pk (n +1)Un( . , θ  ) L L r ] < ∞ .   

(4) { Pk (n +1)Un(Zn ,θo) , Fn  } is an adapted  L 2−mixingale sequence with { ψm  } of size

−1/2 , and  
j =1
Σ
n

 jβ−1 cj
2 = O ( n ) .

The following is a set of sufficient conditions for B.6. In particular, for j=1,2,3,4, B.7( j)

implies B.6( j) respectively.

ASSUMPTION B.7:

(1) For any  θ  ∈  H and all  n ,  E [ Un(. , θ ) ] = 0 .

(2) For every bounded set  Θ ⊂  H , there is a sequence of nonnegative square integrable

functions { φΘ,n  } such that  supl ∈  NI    E [φ2
Θ,l] < ∞ and for all  θ  , θ ´ ∈  Θ  ,  n ∈   NI    , 

  L L Un( . , θ  ) − Un( . , θ ´ ) L L ≤ φΘ,n  L L θ  − θ ´ L L .

(3) For some  r ∈  (2,∞) , for any bounded subset  Θ ⊂  H ,
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  supn ∈  NI    E [ supθ∈Θ  L L Un( . , θ  ) L L r ] < ∞ .   

(4) { Un(Zn ,θo) , Fn } is an adapted  L 2−mixingale sequence with { ψm  } of size −1/2 , 

and  
j =1
Σ
n

 jβ−1 cj
2 = O (n) .

PROPOSITION 3.4: (i) Conditions B.6(1) and B.6(4) imply B.4(1’’);

(ii) Conditions B.6(1) - B.6(3) and  L L θ̂ n  − θo  L L → 0    a.s. − P imply B.4(2).

Before we present sufficient conditions for B.5, we need the definition of Lp(H)−near

epoch dependent processes and related results; see Chen and White (1998a) for details.

DEFINITION 3.5:

(1) Let  A ,  G be two  σ−subfields on the probability space  ( Ω , F , P ) . Define two measures

of dependence as :

   α  ( A , G ) ≡ sup [ |  P ( A C  ) − P (A) P (C ) |  :  A ∈  A , C  ∈  G ] ;

   φ ( A , G ) ≡ sup [ |  P ( C  |  A ) − P (C ) |  :  A ∈  A , P (A) > 0 ,  C ∈  G ] .

(2) Let { Dn } be a sequence of   BI    −r.e.´s defined on the probability space  ( Ω , F , P ) , and

denote  Aa
b  ≡ σ  ( Dj  ;  a ≤ j  ≤ b ) . Define

   α (m) ≡ supn [ α  ( A−∞
n  , An +m

∞  ) ] ;    φ(m) ≡ supn [ φ ( A−∞
n  , An +m

∞  ) ] . 

If  limm→∞  α (m) = 0 , then { Dn } is called an  α −mixing sequence. If  limm→∞  φ(m) = 0 , 

then { Dn } is called a  φ−mixing sequence.

(3) Let { Dn ;  −∞ < n < ∞ } be a   BI   −r.e. sequence and { Wn  ;  −∞ < n < ∞ } be an  H −r.e. 

sequence. Then { Wn  } is called  Lp(H) −near  epoch  dependent (NED) on { Dn } if

 L L Wn  L L p < ∞ , 1≤ p <∞, and there exist constants { µm  ≥ 0 ;  m ≥ 0 } with  µm  decreasing to
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zero as  m → ∞ and { dn ≥ 0 ;  n ≥ 1 } with  supn dn  < ∞ such that

    L L Wn  − E [ Wn  |  An−m
n +m  ] L L p  ≤ µm  dn  ,    where Aa

b  is as in (2) .

Let { ej  ;  j  ≥ 1 } be an arbitrary cons of  H , and let  Hk  be the closed linear span of

 [ ej  ;  1 ≤ j  ≤ k  ] . Let  Pk :  H → Hk be the orthonormal projection operator. Let { Wn  } be an

 H − r.e. sequence. Let  Sn be the covariance operator of  n−1/2 
j =1
Σ
n

 Wj  . Define

 Sn
k  ≡ Pk Sn Pk and

Xn(t) ≡ n−1/2 
i =1
Σ

[nt ]
 Wi  + n−1/2 (nt−[nt ]) W [nt ]+1  ,    t ∈ [0,1] . 

Let  S [nt ]
k  ≡ Pk S [nt ]  Pk be the covariance matrix of  n−1/2 

j =1
Σ

[nt ]
 PkWj  .

Now we are ready to provide sufficient conditions for Assumption B.5, using the following

lemma, which is Theorem 4.14 in Chen and White (1992).

LEMMA 3.6: Suppose that { Wn  = n (β−1)/2 Pk (n +1)Un(Zn ,θo) , Fn  } has zero means and uni-

formly bounded  r −th  moments (r > 2) and satisfies

(1) (a) { Wn  } is  L 2(H) −NED on { Dn } with  µm  of size −1/2 and  dn  ≡ 1 ;

(b) { Dn } is a mixing   BI    −r.e. sequence with either  α (m) of size −r /(r−2) or  φ(m) of size

−r /2(r−1) . 

(2) Suppose there exists  S ∈  S(H) ,  S ≠ 0 such that:

(a) For each   k  ≥ 1 , let { λ l( Sn
k  ) ;  1≤l≤k  } be the eigenvalues of  Sn

k  in nonincreasing

order. Then

  diag [ λ 1
−1( Sn

k  ) ,  . . .  , λ k
−1( Sn

k  ) ] = O (1)  ;

(b) For each  k  ≥ 1 ,  S [nt ]
k  → t PkSPk  as  n → ∞  for any   t ∈  [0,1] ; and



- 31 -

 (c)   lim supn |  tr(S [nt ] ) − tr(PkS [nt ]Pk) |  → 0   uniformly in t ∈  [0,1]    as  k  → ∞ . 

Then Assumption B.5 is satisfied when  X is a Brownian motion in  H with

 X (0) = 0  ,  E X (1) = 0 and Cov X (1) = S . 

The following result summarizes Corollary 3.2, Proposition 3.4 and Lemma 3.6. It gives a

CLT and an FCLT for the RMP and TRMP algorithms when errors are  θ−dependent and

 L 2(H)−NED on some mixing processes.

COROLLARY 3.7: Suppose  L L θ̂ n  − θo  L L → 0  a.s. −P  and Assumptions B.1-B.3, B.6(1) -

B.6(3) hold. If { Wn  = ν n  = n (β−1)/2 Pk (n +1)Un(Zn ,θo) , Fn  } satisfies conditions 3.6(1) and

3.6(2), then all the conclusions in Corollary 3.2 hold.

Using the same approach, we can also obtain a CLT and an FCLT for the RM and TRM

algorithms when errors are  θ−dependent and  L 2(H) −NED on some mixing processes. In par-

ticular, we consider the case where errors are weakly stationary mixingale processes and { θ̂ n  }

is given by the RM algorithm:

  θ̂ n +1 = θ̂ n  + n−1 M (θ̂ n) + n−1 Un(Zn  , θ̂ n)  .

We obtain the following result using Theorem 3.9 in Chen and White (1998a).

COROLLARY 3.8: Given the RM as above, suppose  L L θ̂ n  − θo  L L → 0  a.s. −P  and Assump-

tions B.1, B.2, B.7(1) - B.7(3) hold. Suppose { Wn  = ν n  = n (β−1)/2 Un(Zn ,θo) , Fn  } is weakly

stationary and satisfies the following conditions:

(1) (a) { Wn  } is  L 2(H) −NED on { Dn } with  µm  of size −1 and  dn  ≡ 1 ;

(b) { Dn } is a mixing   BI   −r.e. sequence with either  α (m) of size −2r /(r−2) or  φ(m) of size

−r /(r−1);
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(2) For each  k  ≥ 1 , min [ ( PkSPk  x  , x  ) :  L L x  L L = 1 , x  ∈  H ] > 0 , 

Then all the conclusions in Corollary 3.2 hold.

In practice,  A is unknown and  S is unobservable; hence, the corresponding  K  is

unknown. The following result is useful for statistical inference.

LEMMA 3.9: Let { Γ̃n  } be a random sequence in  L (H,H) and let { S̃n  } be a random

sequence in  S(H) . Suppose for each  n , spec ( Γ̃n  ) ⊆  [ γ ∈  CI    :  Re γ > −1/2 ]  a.s.−P , and

let

  K̃n  ≡ ∫(0,1]  s
Γ̃n  S̃n  s Γ̃n

*

 ds . 

If there exist a nonrandom Γ in L (H, H) with spec (Γ ) ⊆  [ γ ∈  CI    :  Re γ > −1/2 ] and a nonran-

dom S in S(H) such that limn L L Γ̃n  − Γ L L = 0 in Prob. ( resp. a.s.-P), and limn L L S̃n  − S L L tr = 0 in

Prob. (resp. a.s.-P), then   limn L L K̃n  − K  L L tr = 0   in Prob. ( resp.  a.s.−P ), where

 K  ≡ ∫(0,1]  s
Γ  S sΓ

*
 ds . 

Given Corollary 3.7 ( or Corollary 3.8 ) and Lemma 3.9, we can then apply Dippon’s (1991)

Theorem 1 to construct asymptotic confidence regions for  L L θ̂ n  − θo  L L . 

IV. LAWS OF ITERATED LOGARITHM

This section derives a law of iterated logarithm (LIL) for the RMP and TRMP algorithms

when { Un } is a sequence of  H−valued NED,  θ−dependent errors. Our approach is akin to that

for the asymptotic normality results; thus the basic setup of section III remains valid.

Just as a CLT for the partial sum { 
j =1
Σ
n

 ν j  } implies a CLT for { θ̂ n  }, an LIL for { 
j =1
Σ
n

 ν j  }
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implies an LIL for { θ̂ n  }. The following result is a simple corollary of Walk’s (1987) Theorem

2.

COROLLARY 4.1: Suppose  L L θ̂ n  − θo  L L → 0  a.s. −P, and Assumptions B.1, B.2, and the fol-

lowing conditions hold :

 (1)   ( n log log n )−1/2 L L 
j =1
Σ
n

 ν j  − BM(n) L L → 0     as  n → ∞      a.s.−P ,

where   BM = { BM(t) ;  t ∈  [ 0 , ∞ ) } is a Brownian motion in  H with covariance operator

 S ; 

 (2)  n−1 ( log log n )−1/2 L L 
j =1
Σ
n

 T 1 j  L L → 0     as  n → ∞      a.s.−P ;

 (3)  n−1 ( log log n )−1/2 L L 
j =1
Σ
n

 T 2 j  L L → 0     as  n → ∞      a.s.−P .

 Then       (i)     ( t log log t )−1/2 L L [t ](1+β)/2 ( θ̂ [t ]+1 − θo  ) − GM(t) L L → 0     as  t → ∞      a.s.−P ,

 and       (ii)     lim supt→∞  ( 2 λ  t log log t )−1/2 L L [t ](1+β)/2 ( θ̂ [t ]+1 − θo  ) L L = 1     a.s.−P , 

where   λ  ≡ sup [ ( K h , h ) :  L L h L L ≤ 1 ,  h ∈  H ] is the largest eigenvalue of  K  , as defined in

Corollary 3.2, and   GM = { GM(t) ;  t ∈  [ 0 , ∞ ) } is a Gaussian Markov process in  H with

  GM (t) ≡ BM (t) + (A +I (1+β )/2) ∫(0,∞)  s
−(A +I (3+β)/2)  BM (st) ds . 

Now we give sufficient conditions for 4.1(1), 4.1(2) and 4.1(3). Condition 4.1(1) assumes an

LIL for the partial sum { 
j =1
Σ
n

 ν j  }. The following LIL for a general adapted  L 2(H)−mixingale of

size −1 is a consequence of Philipp’s (1986) theorem.

LEMMA 4.2: Let  d ≡ dim (H) ≤ ∞ , and let { Wn  ;  n ≥ 1 } be an H−valued sequence with
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 supn E [ L L Wn  L L 2+δ ] < ∞ for some  δ > 0 . Suppose the following conditions hold:

(1) { Wn  , Fn  ;  n ≥ 1 } is an adapted  Lp(H)−mixingale of size −1 for some  p ≥ 1 . 

(2) There exist  δ > 0 and an  S ∈  S(H) , S ≠ 0 , such that   E [ L L Cn,m  − n S L L tr ] = O ( n1−δ ) 

uniformly in  m ≥ 0 , where  Cn,m  :  H → H is defined as

  Cn,m  h ≡ E [ ( h , Σm +1≤ j ≤m +n  Wj  ) Σm +1≤ j ≤m +n  Wj  |  Fm ] ,   h ∈  H . 

Then without changing its distribution we can redefine the sequence { Wn  } on a richer probabil-

ity space on which there exists an  H−valued  i.i.d. Gaussian sequence { N j  ( 0 , S ) } such that

  (i)  L L 
j =1
Σ
n

 Wj  − 
j =1
Σ
n

 N j  ( 0 , S ) L L = O ( n (1/2)−η  )   a.s.−P     if  d ≡ dim (H) < ∞  ,   

where  η  > 0 is a constant depending only on  r and  d ; and

  (ii)  L L 
j =1
Σ
n

 Wj  − 
j =1
Σ
n

 N j  ( 0 , S ) L L = o ( [ n log log n ]1/2 )   a.s.−P     if  d ≡ dim (H) = ∞  . 

The following LIL for a weakly stationary, adapted  L 2(H)−NED sequence is an applica-

tion of Lemma 4.2, Chen and White’s (1996) Theorem 3.7 and Lemma 4.2, and Chen and

White’s (1998a) Lemma 3.8.

LEMMA 4.3: Let  d ≡ dim (H) ≤ ∞ and let { Wn  } be an adapted weakly stationary  H −r.e. 

sequence with zero means and uniformly bounded  Lr −norm ( r > 2 ) satisfying condition

3.8(1). Let  Sn be the covariance operator of  n−1/2 
j =1
Σ
n

 Wj  with  L L n Sn  L L tr → ∞ as  n → ∞ . 

Then there exists  S ∈  S(H) , S ≠ 0 , such that  L L Sn − S L L tr → 0 as   n → ∞ . Moreover, without

changing its distribution we can redefine the sequence { Wn  } on a richer probability space on

which there exists an  H −valued  i.i.d. Gaussian sequence { N j  ( 0 , S ) } such that the conclu-

sions of Lemma 4.2 and the following hold:
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lim supn→∞  [ 2 τ n  n log log n ]−1/2 L L 
j =1
Σ
n

 Wj  L L = 1    a.s.−P  ,

where   τ n  ≡ sup [ ( Sn h , h ) :  L L h L L ≤ 1 ,  h ∈  H ] is the largest eigenvalue of  Sn  . 

REMARK 4.4: If { Wn  = ν n  = n (β−1)/2 Pk (n +1)Un(Zn ,θo) } satisfies all the conditions of

Lemma 4.2, then without changing its distribution we can redefine the sequence { ν n  } on a

richer probability space on which 4.1(1) holds.

We can apply Chen and White (1996) to provide sufficient conditions for 4.1(2); one such

example is as follows.

ASSUMPTION C.1:

(1) For each  θ  ∈  H , { Pk (n +1)Un(Zn ,θ ) , Fn  } is an adapted  H −valued  L 2 −mixingale

sequence with { ψm  } of size −1/2 and  
n =1
Σ
∞

 n−(2−β)  ( log log n )−1 (cn)2  < ∞ . 

(2) There exists a sequence of  B(G) / B( RI   ) −measurable functions { hn  : G → [0,∞) } such that

for all   z ∈  G ,   θ , θ ´ ∈  H ,

    L L Pk (n +1)Un( z , θ  ) − Pk (n +1)Un( z , θ ´ ) L L ≤ hn(z) L L θ  − θ ´ L L .   

(3)  supn L L hn(Zn) L L 2 < ∞ and { hn(Zn) − E [ hn(Zn) ] , Fn  } is an   RI    −valued  L 2 −mixingale with

{ ψm  } of size −1/2 . 

Assumption C.1 is implied by the following stronger assumption.

ASSUMPTION C.2:

(1) For each  θ  ∈  H , { Un(Zn ,θ ) , Fn } is an adapted  H −valued  L 2 −mixingale sequence with

{ ψm  } of size −1/2 and  
n =1
Σ
∞

 n−(2−β)  ( log log n )−1 (cn)2  < ∞ . 
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(2) There exists a sequence of  B(G) / B( RI   ) −measurable functions { hn  : G → [0,∞) } such that

for all   z ∈  G ,   θ , θ ´ ∈  H ,

    L L Un( z , θ  ) − Un( z , θ ´ ) L L ≤ hn(z) L L θ  − θ ´ L L .   

(3)  supn L L hn(Zn) L L 2 < ∞ and { hn(Zn) − E [ hn(Zn) ] , Fn  } is an   RI    −valued  L 2 −mixingale with

{ ψm  } of size−1/2 . 

The proof of the following result is similar to those of Corollaries 2.6 and 2.7.

PROPOSITION 4.5: Given the RMP or TRMP as in Section III, A.3(2), C.1 and

 L L θ̂ n  − θo  L L → 0   a.s.−P , then 4.1(2) is satisfied.

The following assumption together with { L L θ̂ n  L L } uniformly bounded  a.s.−P implies condition

4.1(3).

ASSUMPTION C.3:

 (1)   n−1 ( log log n )−1/2 L L 
j =1
Σ
n

 jβ/2 ( I − Pk ( j +1)  ) A Pk ( j +1)  L L → 0    as  n → ∞ ;

 (2)   n−1 ( log log n )−1/2 L L 
j =1
Σ
n

 jβ/2 ( θo  − Pk ( j +1)  θo  ) L L → 0   as  n → ∞ . 

This assumption only imposes very mild restrictions on the choice of the projection subspaces.

By Kronecker’s Lemma, Assumption C.3 is implied by

ASSUMPTION C.4:

 nβ/2 L L ( I − Pk (n +1)  ) A Pk (n +1)  L L = O (1) ;     nβ/2 L L θo  − Pk (n +1)  θo  L L = O (1) .

The following result summarizes Corollary 4.1, Remark 4.4 and Proposition 4.5. It gives an LIL

for the RMP and TRMP algorithms when errors are  θ−dependent  , Lp(H)−mixingales ( p  ≥ 1 ).

COROLLARY 4.6: Given the RMP or TRMP as in Section III, B.1, B.2, C.1, C.3, and
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 L L θ̂ n  − θo  L L → 0   a.s.−P , 

if { Wn  = ν n  = n (β−1)/2 Pk (n +1)  Un(Zn ,θo) } satisfies conditions 4.2(1) - 4.2(2), then the conclu-

sions of Corollary 4.1 hold.

Finally, we present an LIL for the RM and TRM algorithms when { Un } is a weakly sta-

tionary  θ−dependent process,  L 2(H)−NED on some mixing processes.

COROLLARY 4.7: Given the RM or TRM as in Section III, B.1, B.2, C.2, and

 L L θ̂ n  − θo  L L → 0   a.s.−P , if { Wn  = ν n  = n (β−1)/2 Un(Zn ,θo) } satisfies condition 3.8(1), then the

conclusions of Corollary 4.1 hold.

REMARK 4.8: When  H =  RI   d , d < ∞ , the approximation error ( result 4.2(i) ) is small

enough to directly deliver a CLT and an FCLT in addition to the almost-sure loglog rate result

4.3(i). Heunis (1992) has followed this approach to get an almost-sure loglog rate of conver-

gence and an FCLT for a special RM algorithm in   RI   d ( d < ∞ ) ( i.e., the Wiener-Hopf prob-

lem) when the error sequence { Un } is a linearly  θ−dependent  , strictly stationary mixing pro-

cess. Our Corollaries 3.8 and 4.7 and Lemma 4.3 extend most of his results to various RM algo-

rithms in   RI   d ( d < ∞ ) when errors { Un } are  θ−dependent  , weakly stationary NED func-

tions of some mixing processes, and nonlinear in  θ  . 

REMARK 4.9: When dim (H) = ∞ , the approximation error in result 4.2(ii) is not small

enough to directly imply a CLT and an FCLT. But it is easy to verify that all conditions of Chen

and White’s (1992) Theorem 4.10 are satisfied given the assumptions of Lemma 4.2 above. Thus

an FCLT and a CLT still hold, although the conditions for the LIL are in general stronger than

those needed for an FCLT when dim (H) = ∞ ( Max Stinchcombe has constructed a clever
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example which satisfies an FCLT trivially yet fails an LIL). We note also that the mixingale rate

condition in Lemma 4.2 is stronger than that in Lemma 3.6; therefore the results of Section III

are not redundant.

V. MEAN RATE OF CONVERGENCE

Section IV provides an almost-sure loglog rate of convergence for { θ̂ n  } when  M (.) is

locally linearizable about  θo  . This section investigates another type of convergence rate pro-

perty without the smoothness assumption B.1. In particular, we obtain some results on the order

of magnitude of  E [ V ( θ̂ n  ) ] , where  V is a Liapunov functional. The method of proof com-

bines Venter’s (1966) lemma and Kushner’s (1984) perturbed Liapunov functional technique.

The conditions are slightly stronger than those specified for almost-sure convergence, but are

weaker than those for asymptotic normality and law of iterated logarithm. They cover many

different types of noise assumptions, including adapted  H−valued mixingale sequences ( e.g.,

near epoch dependent (NED) functions of  α  − or  φ − mixing sequences ) as special cases. Since

our approach is valid for direct  H−valued RM and "truncated" RM (TRM) procedures, as well

as sieve-based RM projected (RMP) and TRM projected (TRMP) procedures, we only provide

the conditions, results and proofs for the sieve-based RMP (TRMP) in detail and state those for

the direct  H−valued RM (TRM) in brief. We specialize our results to get rates of convergence

for  E [ L L θ̂ n  − θo  L L 2 ] under two kinds of Liapunov functional assumptions.

Assumptions A.1, A.3P and A.4P are always in force in this section. We also set  an = 1/n  

from now on. Hence we always have   L L θ̂ n  − θo  L L → 0 as n  → ∞ a.s. −P. By an argument simi-

lar to Yin and Zhu’s (1990) Theorem 3.3, we can rewrite Assumption A.4P as

  limn→∞  L L n−1 
j =1
Σ
n

 Pk ( j +1)  Uj(Zj ,θ̂ j) L L = 0      a.s.−P  . 
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We use the following Assumption AP to simplify notation.

ASSUMPTION AP: Assumptions A.1 and A.3P(1) hold,  an  = 1/n, and  L L θ̂ n  − θo  L L → 0  as

 n → ∞   a.s.−P .

Although we can work directly with  E [ V (θ̂ n) ] , we consider instead the behavior of the

expectation of a perturbed Liapunov functional to allow for highly dependent error processes. In

particular, we consider the perturbed Liapunov functional  S (n) ≡ V(θ̂ n) + V
_

(θ̂ n  , n) , where

    V
_

(θ  , n) ≡ 
j =n
Σ
∞

 j−1 E [ ( V´(θ ) , Pk ( j +1)  Uj(Zj , θ  ) ) |  Fn−1 ]  ,  

where as before  Fn−1 is the  σ−algebra generated by { Zj  , θ̂ j +1 ; j  ≤ n−1 }. Denote

DV
___

n  ≡ E [ V
_

(θ̂ n +1 , n +1) − V
_

(θ̂ n  , n +1) |  Fn−1 ]  .   

By definition,  V
_

(θ̂ n  , n) ,  DV
___

n  , and  S (n)  are measurable−Fn−1 . 

ASSUMPTION D.1P:

(1) There exists a sequence { cn  > 0 } with  limn→∞  cn  = c  for some  0 < c < ∞ , and a

finite integer  No  , such that for all  n ≥ No  ,

   ( V´(θ ) , Pk (n )M (θ ) ) ≤ − cn  V (θ ) ,    for  any  θ  ∈  Hk (n ) ,  θ  ≠ θo  . 

(2)  L L V´(θ ) L L 2 ≤ K  ( 1 + V (θ ) ) for all  θ  ∈  H , and some  0 < K < ∞ .

Condition D.1P(1) is stronger than A.3P(2), and is crucial for rate of mean convergence results.

Condition D.1P(2) is very mild and is merely a convenient way to deliver a nonnegative per-

turbed Liapunov functional.

LEMMA 5.1: Given TRMP, suppose Assumptions AP and D.1P(1) hold. Suppose further the
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following conditions hold for some  a , b ∈ ( 0 , 1 ] β ∈ [ 0 ,1 ) and all sufficiently large  n :

 (1)  E [ V
_

(θ̂ n  , n) ] ≤ O (n−a) ;     (2)  E [ DV
___

n  ] ≤ O (n−(1+b) ) ;    

 (3)  E [ S (n) ] ≥ 0 ;   and  (4)  E [ L L Pk (n +1)Un(Zn ,θ̂ n) L L 2 | Fn−1 ] = O ( nβ ) . 

Denote   q ≡ min ( a , b , 1−β ) . Then for  n sufficiently large,

   E [ V (θ̂ n) ] = O ( n−q  )    for  c > q ;     E[ V (θ̂ n) ]  = O ( n−q  log n )    for  c = q ;

  and     E[ V (θ̂ n) ] = O ( n−c  )   for  0 < c < q .  

The key point is that  E [S (n)] and  E [V (θ̂ n)] have the same convergence rate, while

 E [V
_

(θ̂ n ,n)] will go to zero at the same or faster rate. Conditions 5.1(1) - 5.1(4) are satisfied by

many kinds of dependent random sequences. We now give some sufficient conditions.

If { Un ≡ Fn(Zn) } is  θ−independent  , we have the following simple sufficient conditions :

ASSUMPTION D.2P:

(1)     L L E [ 
j =n
Σ
∞

 j−1 Pk ( j +1)Fj(Zj) |  Fn−1 ] L L 2 ≤ O (n−b)  for some b > 0  and all sufficiently large n   . 

(2)        supn E [ L L Pk (n +1)Fn(Zn) L L 2 ] < ∞  .    

By Minkowski’s inequality, D.2P(1) is implied by

(3)       
j =n
Σ
∞

 j−1 L L E [ Pk ( j +1)Fj(Zj) |  Fn−1 ] L L 2 ≤ O (n−b)   for some b > 0  and all sufficiently large n   . 

COROLLARY 5.2: Given Assumptions AP, D.1P, D.2P and TRMP with  θ−independent  errors

{ Un }, then all the conclusions of Lemma 5.1 hold.

The following assumption is a stronger version of A.5P:

ASSUMPTION A.5P’: { Pk (n +1)Fn(Zn) , Fn  } is an adapted  Lp−mixingale sequence of

 H −r.e.´s with uniformly bounded second moments, and { ψm  } satisfies either
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(1) { ψm  } is of size −1 for  1 < p ≤ 2 ; or

(2) { ψm  } is of size −a  , 1/2 ≤ a < 1 for  p = 2 .

THEOREM 5.3: Given AP, D.1P, and TRMP with  θ−independent  errors { Un },

(i) if A.5P’(1) is satisfied, then all the conclusions of Lemma 5.1 hold with  q = 1 . 

(ii) if A.5P’(2) is satisfied, then all the conclusions of Lemma 5.1 hold with

 q = a ∈  [ 1/2 , 1 ) . 

If { Un ≡ Un(Zn ,θ ) } is  θ−dependent  , we have the following sufficient conditions :

ASSUMPTION D.3P:

(1) For anyθ  ∈  H,  some  b > 0 and all sufficiently large n,

  L L E [ 
j =n
Σ
∞

 j−1 Pk ( j +1)Uj(Zj ,θ ) |  Fn−1 ] L L 2 ≤ O (n−b) . 

(2) For any K > 0,

supn  E [ supL L θ L L ≤ K L L Pk (n +1)Un(Zn ,θ ) L L 2 ] < ∞     . 

(3) For every  K  > 0, there is a sequence of nonnegative  B(G)−measurable functions

{ hK,n  : G → [ 0 , ∞ ) } such that

 Σj ≥n +1 j−1 E [ hK, j(Zj) |  Fn  ] = O ( n−b  )

for some  b > 0 and all sufficiently large  n    a.s.−P, and

L L Pk (n +1)Un(z,θ ) − Pk (n +1)Un(z,θ ´) L L ≤ hK,n(z) L L θ  − θ ´ L L  , 

for all  z ∈  G,  L L θ  L L ≤ K, L L θ ´ L L ≤ K  , n ∈   NI   .

By Minkowski’s inequality, a sufficient condition for D.3P(1) is

(4) For anyθ  ∈  H,  some  b > 0 and all sufficiently large n,
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j =n
Σ
∞

 j−1 L L E [ Pk ( j +1)Uj(Zj ,θ ) |  Fn−1 ] L L 2 ≤ O (n−b) .

Comparing the sufficient conditions for the  θ−dependent  error case with those for the

 θ−independent  error case, it is obvious that we need some local Lipschitz condition ( say

D.3P(3) ) on the  θ−dependent  errors { Un(Zn ,θ ) }. Notice that D.3P(1) is an analog of D.2P(1),

whereas D.3P(2) implies 5.1(4) . Since  θ−independent  errors { Un ≡ Fn(Zn) } satisfy D.3P(3)

automatically, we can regard  θ−independent  errors as a special case of  θ−dependent  errors.

COROLLARY 5.4: Given TRMP with  θ−dependent  errors { Un }, suppose Assumptions AP,

D.1P and D.3P hold. Then all the conclusions of Lemma 5.1 hold.

In the same fashion, we can obtain rates of mean convergence for direct  H −valued RM or

RTRM procedures:

ASSUMPTION A: Assumptions A.1 and A.3(1) hold,  an = 1/n, and  L L θ̂ n  − θo  L L → 0  as

 n → ∞   a.s.−P .

ASSUMPTION D.1:

(1) ( V´(θ ) , M (θ ) ) ≤ − c  V (θ ) for some  0 < c < ∞ and all   θ  ∈  H,  θ  ≠ θo  .

(2)  L L V´(θ ) L L 2 ≤ K  ( 1 + V (θ ) ) for all  θ  ∈  H , and some  0 < K < ∞ . 

ASSUMPTION A.5’: { Un ≡ Fn(Zn) , Fn } is an adapted  Lp−mixingale sequence ( 1 < p ≤ 2 )

of  H −r.e.´s with uniformly bounded second moments, and { ψm  } satisfies either A.5P’(1) or

A.5P’(2).

It is again easy to prove that A.5’ implies A.5P’.

ASSUMPTION D.3:
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(1) For anyθ  ∈  H , some b  > 0 and all sufficiently large n,

L L E [ 
j =n
Σ
∞

 j−1 Uj(Zj ,θ ) |  Fn−1 ] L L 2 ≤ O (n−b) .

(2) For any K  > 0,

supn  E [ supL L θ L L ≤ K L L Un(Zn ,θ ) L L 2 ] < ∞     . 

(3) For every  K  > 0, there is a sequence of nonnegative  B(G) −measurable functions

{ hK,n :G  → [ 0 ,∞)} such that  Σj ≥n +1 j−1 E [ hK, j(Zj) |  Fn  ] = O ( n−b  ) for some

 b > 0 and all sufficiently large n  a.s.−P, and

L L Un(z,θ ) − Un(z,θ ´) L L ≤ hK,n(z) L L θ  − θ ´ L L  for  all   z ∈  G ,  L L θ  L L ≤ K  , L L θ ´ L L ≤ K  , n ∈   NI      .

A sufficient condition for D.3(1) is

(4) For anyθ  ∈  H , some b  > 0 and all sufficiently large n,

j =n
Σ
∞

 j−1 L L E [ Uj(Zj ,θ ) |  Fn−1 ] L L 2 ≤ O (n−b) .

COROLLARY 5.5: Given Assumptions A, D.1 and D.3 with the TRM, let  q ≡ min ( 1 , b ) . 

Then for all  n sufficiently large,

   E [ V (θ̂ n) ] = O ( n−q  )    for  c > q ;     E[ V (θ̂ n) ]  = O ( n−q  log n )    for  c = q ;

  and     E[ V (θ̂ n) ] = O ( n−c  )   for  0 < c < q .  

EXAMPLE 5.6: Given Assumptions A, D.1 and A.5’ with the RTRM when { Un } are

 θ−independent errors, then all the conclusions of Corollary 5.5 hold.

Note that this example includes Proposition 5.1 of Yin and Zhu (1990) as a special case. There,

Yin and Zhu assume  θ−independent  errors { Un } to be a stationary  φ−mixing sequence with

 
m =1
Σ
∞

[ φ(m) ](r−2)/r < ∞ , and  supn E [ L L Un L L r ] < ∞ , where  r > 2 . Our Example 5.6 relaxes their

conditions in three ways : (i) we do not impose stationarity; (ii) we allow  r ≥ 2 ; (iii) we permit
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mixingales of size −1 . Yin and Zhu (1990) require  φ(m) of size − a r /(r−1) where

 a ≡ (r−1)/(r−2) > 1 , corresponding to an  L 2−mixingale of size −a  ,  a > 1 . 

Our rate of mean convergence results depend heavily on the properties of the error terms

{ Un }, and the choice of a Liapunov functional, which is in general related to the choice of the

projections { Pn } and the properties of  M  . We have shown that our error conditions, such as

D.3P, are reasonably mild. In the rest of this section, we illustrate effects of the choice of

Liapunov functional. In particular, we consider Assumption D.1P when  V(θ ) can be some local

quadratic form, and obtain convergence rates for  E [ L L θ̂ n  − θo  L L 2 ] corresponding to two ver-

sions of assumption D.1P. As long as  M  is relatively smooth at  θo  , we can choose a quadratic

form as a Liapunov functional. The following corollaries are thus applicable in many situations.

COROLLARY 5.7: Given TRMP, suppose Assumptions AP, D.3P with  b = 1 hold and that

(1) there exists a sequence { cn  > 0 } with  limn→∞  cn  = c  for some  0 < c < ∞ such

that

   2 ( θ  − θo  , Pk (n )M (θ ) ) ≤ − cn  L L θ  − θo  L L 2 ,  for all  θ  ∈  Hk (n )  . 

Then for all  n sufficiently large,

  E [ L L θ̂ n  − θo  L L 2] = O (1/n)    for  c > 1 ;    E[ L L θ̂ n  − θo  L L 2] = O ( n−1 log n )    for  c = 1 ;

  and       E[ L L θ̂ n  − θo  L L 2] = O ( n−c  )   for  0 < c < 1 .  

Note that 5.7(1) is just Assumption D.1P with  V (θ ) = L L θ  − θo  L L 2 .

COROLLARY 5.8: Given TRMP, suppose Assumptions AP, D.3P with  b = 1 hold and that

(1) there exists a sequence { cn  > 0 } with  limn→∞  cn  = c  for some  0 < c < ∞ such

that
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   2 ( θ  − Pk (n )θo  , M (θ ) ) ≤ − cn  L L θ  − Pk (n )θo  L L 2 ,   for all  θ  ∈  Hk (n )  ;  and

(2) 
n =1
Σ
∞

 n−1 L L θo  − Pk (n +1)θo  L L < ∞ . 

(i) Then for all  n sufficiently large,

  E [ L L θ̂ n  − Pk (n )θo  L L 2] = O (1/n)   for  c > 1 ;    E[ L L θ̂ n  − Pk (n )θo  L L 2] = O ( n−1 log n )    for  c = 1 ;

  and       E[ L L θ̂ n  − Pk (n )θo  L L 2] = O ( n−c  )   for  0 < c < 1 .  

If we slightly strengthen (2) to

(3)   L L θo  − Pk (n )θo  L L = O ( n−α  ) for some  0 < α  ≤ 1/2 , 

(ii) then for all  n sufficiently large,

  E [ L L θ̂ n  − θo  L L 2] = O ( n−2α  )   for  c > 1 ;  

  E [ L L θ̂ n  − θo  L L 2] = O ( max [ n−1 log n , n−2α  ] )    for  c = 1 ;

  and       E[ L L θ̂ n  − θo  L L 2] = O ( n−δ )   for  0 < c < 1   and  δ = min ( c , 2 α  )  .  

Note that 5.7(1) implies 5.8(1), and that 5.8(1) and 5.8(2) together imply Assumption A.8.

Comparing Corollary 5.7 and Corollary 5.8, we can see that the rate of convergence

heavily depends on assumption D.1P. If one only imposes the weaker version of Assumption

D.1P, ( e.g., 5.8(1) ), one needs additional assumptions on the rate of increase of  k (n) , ( e.g.,

5.8(3) ), in order to get a comparable rate of convergence for the RMP estimators.

VI. SUMMARY

This paper has improved the current asymptotic theory on Hilbert-space valued Robbins-

Monro procedures in the following ways:

(1)  M  : H → H is allowed to be an operator uniformly continuous on any norm-bounded set.

This includes all bounded linear operators, all uniformly continuous nonlinear operators,
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some compact nonlinear operators, and continuous nonlinear operators with "polynomial

growth" ( i.e.,  L L M (θ ) L L ≤ K  [ 1 + L L θ  L L p ] for  θ  ∈  H ,  K > 0 ,  p ∈   NI     ).

(2)  Un ≡ Mn(Zn ,θ ) − M(θ ) is allowed to be a Borel mapping from  G × H to  H , i.e., error

terms  Un(Zn ,θ̂ n) can be influenced by both the random process  Zn  generated by nature,

and the process  θ̂ n  generated by our various RM procedures.

(3) A large class of Hilbert space-valued dependent random processes is permitted by our

assumptions on { Un }.

(4) Our modified RM procedures work without an  a priori bound on { θ̂ n  } .

(5) Our modified RM procedures work with finite-dimensional approximations.

Our almost-sure norm-convergence and mean rate of convergence results are inspired by

those of Yin and Zhu (1990). We generalize their results to allow  θ  −dependent  errors, to permit

Hilbert space-valued mixingale error processes, and to finite-dimensional approximations. Our

functional central limit theorems and asymptotic normality results are inspired by Nixdorf’s

(1984) . We generalize his result to cover  θ  −dependent  errors by following Berger’s (1986)

approach. We relax his error assumptions to allow Hilbert space-valued NED functions of mix-

ing processes by applying Walk’s (1987) and Chen and White’s (1998a) functional central limit

theorems for a general class of Hilbert space-valued random processes. Our law of iterated log-

arithm for the  θ  −dependent  mixingale error processes is new, to the best of our knowledge.

Our modified RM procedures can be applied to nonparametric recursive m−estimation. We

will give examples in another paper. In concrete situations, involving for example the Wiener-

Hopf equation, we might have more information about the functional form of  Mn(Zn  , θ ) , 

hence the error  Un(Zn  , θ ) . We then can make some reasonable assumptions for just the data

process { Zn  } and derive the dependence structure for  Un as a consequence.
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This paper ignores several important issues, such as covariance estimation, optimal stop-

ping rules, and the possibility of multiple roots. We will address some of these problems in our

future research.

All the results in this paper are proved under the assumption that { θ̂ n  :  n ≥ 1 } does not

affect { Zn  :  n ≥ 1 }. Since it is very natural in economic time series analysis and learning

models for economic agents that { θ̂ n  } affects { Zn  } (feedback), we need to extend our current

results to cover the case of { Zn  } being Granger-caused by { θ̂ n  }. Kushner’s and others’

methods for studying the   RI   d , ( d < ∞ ) −valued stochastic approximation algorithms with feed-

back may well be helpful in studying convergence of infinite-dimensional RM algorithms with

feedback. Chen and White (1998b) established almost sure convergence for  H valued RM

algorithms with feedbacks. It will be important to establish convergence rates and limiting dis-

tribution for the feedback case as well. The results in this paper, and those in Chen and White

(1998b), allow for the study of representative agents’ nonparametric adaptive learning behavior

in the sense that the representative agents do not need to specify a fixed parametric model while

they are learning as new information arrives. Thus our work extends the parametric recursive

least squares learning models studied by Marcet and Sargent and others. Moreover, our

infinite-dimensional RM procedure also allows for heterogeneous agents’ learning -- each can in

principle use a different learning algorithm (countably many). See Chen and White (1998b) for

an example. In this sense our procedure should thus have some connection with the algorithms

studied by Spear (1989), and we plan to look into this in our future research.
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VII. MATHEMATICAL APPENDIX

PROOF OF LEMMA 2.1: By the definition of  θ
_

n  , there exists  Ωo  ∈  F with  P ( Ωo  ) = 1 

such that for all  ω ∈  Ωo  ,  L L θ
_

n(ω) L L < B . Fix an  ω ∈  Ωo  , and suppose that   T = ∞ ; then   θ̂ n  

would cross the sphere { θ  :  L L θ  L L = B } infinitely often. Let   d1 ≡ sup { V (θ ) : L L θ  L L < B } and

  d2 ≡ inf { V (θ ) : L L θ  L L > B1 }. Then there exist  0 < δ1 < δ2 such that   [ δ1 , δ2 ] ⊂  ( d1 , d 2 ) . 

Let   D ≡ { θ  : δ1 ≤ V (θ ) ≤ δ2 } ∩ { θ  : L L θ  L L ≤ B1 }. Then  D is a closed set. Now we can follow

the proof of Proposition 4.1 in Yin and Zhu (1990) for both the RTRM and the BTRM, except

that we only need Assumption A.3(1) .

PROOF OF COROLLARY 2.3: It suffices to show that Assumption A.5 implies A.4 when

{ Un } are  θ−independent  errors. By Assumption A.5 and the definition of mixingales, we know

that { an Fn(Zn) , Fn } is an adapted  L 2− mixingale with parameters { ψm  } and { an  cn  }. Let

{ bn
−1 = an } in Corollary 3.8 or Corollary 3.9 in Chen and White (1996). Then by Assumption

A.5, we get A.4:  lim supn an L L 
j =1
Σ
n

 Fj(Zj) L L = 0  a.s.−P .

PROOF OF COROLLARY 2.4: It suffices to show that Assumption A.6 and

 an = O ( n−1 log n ) imply A.4 when { Un } are  θ−independent  errors. By Assumption A.6, we

can set  cn  = L L Fn(Zn) L L p and get  supn cn  < ∞ . Let

   bn = an
−1  ,   m (n) = O ( nα  )  for some 0 < α  < 1/2  ,    Bn

1−r = O ( ( log n )−2 )  .

Then all three conditions of Theorem 3.10 in Chen and White (1996) are satisfied, which gives

us A.4 with  an = O ( n−1 log n ) . 

PROOF OF COROLLARY 2.5: It suffices to show that conditions 2.5(1) - 2.5(3) imply A.4.
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By the triangle inequality we have

  L L 
j =1
Σ
n

 aj  Uj(Zj ,θ̂ j) L L ≤ A1 + A2 ,     where 

 A1 ≡ L L 
j =1
Σ
n

 aj  [ M
__

j(θ̂ j) − M (θ̂ j) ] L L ,       A2 ≡ L L 
j =1
Σ
n

 aj  [ Mj(Zj ,θ̂ j) − M
__

j(θ̂ j) ] L L . 

Since { θ̂ n  } is generated by the BTRM,  L L θ̂ n  L L ≤ B
_

  a.s.−P for all  n . Now let  K  = B
_

 in

Assumptions 2.5(2) and 2.5(3). By 2.5(2),  limn→∞  A1 ≤ 
j =1
Σ
∞

 ajbB
__

, j  < ∞   a.s.−P .

By the definition of  M
__

n(θ̂ n) , we have that { Mn(Zn ,θ̂ n) − M
__

n  , Fn  } is a  H −valued mar-

tingale . It is a  L 2 −martingale by assumption 2.5(3). Now Doob’s inequality , the conditional

Jensen’s inequality, and 2.5(3) imply   lim supn→∞  A2 < ∞  a.s.−P Hence A.4 is satisfied.

The next lemma is used in the proof of Corollary 2.6.

LEMMA A.1: Let { an } satisfy Assumption A.2. For a given index set  L and every  ρ  ∈  L , 

let { yρ,n  } be a sequence of  H −r.e.´s such that

  limn supρ∈ L  L L an  
j =1
Σ
n

 yρ,n  L L = 0   a.s.−P . 

Then for all  α  > 0 there exists an integer-valued random variable  N  such that for all

 m > n > N  , 

  supρ∈ L  L L Σn ≤ j ≤m−1 ajyρ, j  L L ≤ α  ( 1 + Σn ≤ j ≤m−1 aj  )    a.s.−P . 

Remark: This lemma extends lemma D of Metivier and Priouret (1984, page 147) for a finite-

dimensional space to an infinite-dimensional Hilbert space. The proof is similar.

PROOF OF COROLLARY 2.6: First we prove that there exists an integer-valued random
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variable  No  such that, for all   n ≥ No  , there is no truncation   a.s.−P , i.e.,

 for all  n ≥ No  ,  θ̂ n +1 = θ̂ n  + an  [ M (θ̂ n) + Un(Zn ,θ̂ n) ]    a.s.−P . 

Fix an  ω ∈  Ω . We have that for all  n ,   BT (n )  ≤ Bn  , and by A.7(3) and A.7(4),

 L L θ̂ n(ω) + an  [ M (θ̂ n(ω)) + Un(Zn(ω),θ̂ n(ω)) ] L L ≤ Bn + an O (Bn) .

Because { θ̂ n  } is generated by the BTRM and

  limn→∞  Bn = B
_

 ,     limn→∞  an  = 0 ,     Bn+1 ≥ Bn ( 1 + c  an  ) ,

there exists an integer  No(ω) such that for all  n ≥ No(ω) ,   Bn + an O (Bn) ≤ Bn +1 . Hence

there will be no truncation invoked from  No(ω) on.

We must now show that A.4 is satisfied, as this ensures the almost sure convergence by

Theorem 2.2. To verify A.4, it suffices to show the following:

for each T  > 0 ,   limn→∞  supn <i ≤m (n,T)  L L Σn ≤ j ≤i −1 ajUj(Zj ,θ̂ j) L L = 0 . 

To prove this, we apply Lemma A.1 and follow an argument similar to that in Metivier and

Priouret (1984) for the   RI   d (d <∞) -valued RM. We fix  α  ∈  ( 0 , 1 ) , and set  τ  ≡ α 1/2 T . 

Define by recurrence   i0 = n,...,  ir = m ( ir−1 , τ  ),..., 

   S (p,q) ≡ Σp ≤ j ≤q−1 aj  Uj(Zj ,θ̂ j) = S 1(p,q) + S 2(p,q) ; 

   S1(p,q) ≡ Σp ≤ j ≤q−1 aj  Uj(Zj ,θ̂ p)  ;    S2(p,q) ≡ Σp ≤ j ≤q−1 aj  [ Uj(Zj ,θ̂ j) − Uj(Zj ,θ̂ p) ] .

By the BTRM,   L L θ̂ ir  L L ≤ B
_

 for every  r . By Lemma A.1 and A.7(1), there exists

 N 1(α ,ω) ≥ No(ω) such that   n > N 1(α ,ω) implies that for every  ir , and any  i ∈  ( ir , ir +1 ] , 

 L L S 1(ir ,i) L L < α  ( 1 + τ  ) ; while A.7(2)(b) gives

  L L S 2(ir ,i) L L ≤ Σir≤ j ≤i −1 aj  L L θ̂ j  − θ̂ ir  L L hj(Zj) . 



- 51 -

But if   ir < j  ≤ i−1 < ir +1 , there is no truncation, and we have

  L L θ̂ j  − θ̂ ir  L L ≤ Σir≤l ≤ j −1 al  L L M (θ̂ l) + Ul(Zl ,θ̂ l) L L 

 ≤ Σir≤l ≤ j −1 al  L L M (θ̂ l) L L + Σir≤l ≤ j −1 al  L L Ul(Zl ,θ̂ l) L L ≡ A1 + A2 . 

As   L L θ̂ l  L L ≤ B
_

 , by A.1(2),   L L M (θ̂ l) L L ≤ CB
__
 , a constant. Since   τ  ≥ Σir≤l ≤ir +1−1 al  by definition,

we have   A1 ≤ τ  CB
__
 . By A.7(3),

  A2 ≤ Σir≤l ≤ j −1 al  ( gB
__

,l(Zl ) − E [gB
__

,l(Zl )] ) + gB
__
 Σir≤l ≤ j −1 al  . 

By Lemma A.1 and A.7(3), there exists  N 2(α ,ω) ≥ No(ω) such that   n > N 2(α ,ω) implies that

for every  ir , and any  j  ∈  ( ir,i−1 ] ⊂  ( ir,ir +1 ) ,

 L L θ̂ j  − θ̂ ir  L L < α  ( 1 + τ  ) + τ  ( CB
__
 + gB

__
 ) ≤ α  + τ  ( 1+CB

__
+gB

__
 ). 

Hence by A.7(2),

  L L S 2(ir ,i) L L ≤ [ α+τ (1+CB
__
+gB

__
) ] Σir≤ j ≤i −1 ajhj(Zj) 

 ≤ [ α+τ (1+CB
__
+gB

__
) ] Σir≤ j ≤i −1 aj  ( hj(Zj) − E [hj(Zj)] ) + [ α+τ (1+CB

__
+gB

__
) ] h τ  . 

By Lemma A.1 and A.7(2), there exists  N 3(α ,ω) ≥ No(ω) such that   n > N 3(α ,ω) implies that

for every  ir , and any  i ∈  ( ir,ir +1 ] , 

  L L S 2(ir ,i) L L ≤ [ α+τ (1+CB
__
+gB

__
) ] [ α (1+τ ) + h τ  ] . 

Hence there exists a constant  C (B
_
,g,h) such that

for every ir  ,  i ∈  ( ir,ir +1 ] ,    L L S 2(ir ,i) L L ≤ [ α  + τ  C (B
_
,g,h) ]

2
 . 

Hence

supir<i ≤ir +1
 L L S (ir ,i) L L ≤ α  (1+τ ) + (α+cτ )2  = α  (1+α 1/2T) + (α+c  α 1/2T)2  ≤ C  α  , 

where  c  , C  are constants depending only on  B
_

 , T .
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By the definitions of   tn ,  m (n,T) ,  ir and  τ  , there exists  N (α ,ω) such that for all

  n > N (α ,ω) , 

  supn <i ≤m (n,T)  L L Σn ≤ j ≤i −1 ajUj(Zj ,θ̂ j) L L ≤ ( 1 + 2 α −1/2 ) C  α  . 

Letting  α  → 0 , we get

for each T  > 0 ,   limn→∞  supn <i ≤m (n,T)  L L Σn ≤ j ≤i −1 ajUj(Zj ,θ̂ j) L L = 0  . 

This completes the proof.

PROOF OF COROLLARY 2.7: It suffices to show that all conditions in Corollary 2.6 are

satisfied.

Because an adapted  Lp−mixingale (1≤p <∞) has zero mean, 2.7(1) implies A.7(1)(a). By Corol-

lary 3.8 in Chen and White (1996) with { bn
−1 = an  }, 2.7(1) implies A.7(1)(b), 2.7(2) implies

A.7(2)(a), and 2.7(3) implies A.7(3)(a). Hence all conditions in Corollary 2.6 are satisfied.

We use the following lemma to prove Theorem 2.8.

LEMMA A.2: Suppose Assumptions A.1, A.2 and A.3P(1) hold for TRMP. If there exists

 0 ≤ ε  < ∞ such that

  lim supn→∞  L L an  
j =1
Σ
n

 Pk ( j +1)[Mj(Zj ,θ̂ j) − M(θ̂ j)] L L = ε       a.s.−P  , 

then there exists a positive integer-valued random variable  T such that:

  P (supn T (n) ≤ T < ∞ ) = 1  .

PROOF OF LEMMA A.2: In the proof of Lemma 2.1,  Pk ( j +1)M (θ̂ j) replaces  M (θ̂ j) ; and

 Pk ( j +1)Uj  replaces  Uj  . We also use the relation

L L Pk ( j +1)M (θ̂ j) − Pk (u +1)M (θ̂ u) L L ≤ L L Pk ( j +1)M (θ̂ j) − Pk ( j +1)M (θ̂ u) L L 
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      + L L Pk ( j +1)M (θ̂ u) − Pk (u +1)M (θ̂ u) L L ≤ L L M (θ̂ j) − M (θ̂ u) L L + 2 L L M (θ̂ u) L L . 

PROOF OF THEOREM 2.8: First, by Lemma A.2 , there is an  no  ∈   NI    such that for all

 n ≥ no , the truncations are terminated. The RTRMP procedure becomes

(a. 1)   for all n ≥ no  ,    θ̂ n +1 = θ̂ n  + an Pk (n +1)  Mn(Zn  , θ̂ n) = θ̂ n  + an  Pk (n +1)  [M(θ̂ n) + Un] ,

and the sequence { θ̂ n  ;  n ≥ no } is bounded  a.s.−P ( i.e.,  L L θ̂ n L L ≤ BT  ,    a.s.  , for all  n ≥ no  ).

Secondly, define

(a. 2)   µ n +1 ≡ µ n  − an  µ n  + anPk (n +1)Un(Zn ,θ̂ n) .

Then Assumptions A.2 and A.4P imply

(a. 3)   lim supn→∞  L L µ n  L L = 0      a.s.−P . 

(a. 1) and (a. 2) imply that for all  n ≥ no ,

(a. 4)  θ̂ n +1 − µ n +1 = θ̂ n  − µ n  + anPk (n +1)M(θ̂ n) + an  µ n  . 

By Taylor expansion in a Hilbert space, (a. 3), and the boundedness of  M, V´ , and V´´   , we get

(a. 5)  V (θ̂ n +1 − µ n +1) ≤ V (θ̂ n  − µ n) + an  ( V´(θ̂ n) , Pk (n +1)M (θ̂ n) ) + O (  an
2 )       a.s.−P , 

which corresponds to Yin and Zhu’s (1990) inequality (4.15).

For  θ  ∈  Hk (n +1)  and any  η  > 0, define

λ n +1(η ) ≡  min [ − ( V´(θ ) , Pk (n +1)M (θ ) ) :  L L θ−θo  L L ≥ η  , L L θ  L L ≤ BT ]  /  max [ V (θ ) :  L L θ  L L ≤ BT + 1 ] ,

and   λ (η ) ≡ inf  [ λ n +1(η ) :  n ≥ N 1 ] , where  N 1 is an integer-valued random variable. Then

  λ (η ) > 0 by Assumption A.5P.2. We can now follow Yin and Zhu’s (1990) proof of their

theorem 3.1 ( from page 127(4.16) on ), and obtain the  a.s. − P convergence result.

PROOF OF COROLLARY 2.9: In the proof of Corollary 2.3,  Pk ( j +1)Fj(Zj) replaces
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 Fj(Zj) , 

and Assumption A.4P and A.5P replace A.4 and A.5 respectively.

PROOF OF COROLLARY 2.10: In the proof of Corollary 2.6,  Pk ( j +1)Uj(Zj ,θ̂ j) replaces

 Uj(Zj ,θ̂ j) and Assumption A.7P replaces A.7.

PROOF OF THEOREM 2.11: By Lemma A.2 , the truncation is invoked only finitely many

times. The proof is similar to that for Theorem 2.8 except with the following changes:

For  θ  ∈  Hk (n +1)  and any  η  > 0, define

λ n +1(η ) ≡  min [ − ( V´(θ ) ,

Pk (n +1)M (θ ) ) :  L L θ  − θo
n +1 L L ≥ η  , L L θ  L L ≤ BT ] /  max [ V (θ ) : L L θ  L L ≤ BT + 1 ] 

and   λ (η ) ≡ ∞ [ λ n +1(η ) :  n ≥ N 1 ] , where  N 1 is an integer-valued random variable. Then,

  λ (η ) > 0 by Assumption A.8(1).

With  L L θ̂ n  − θo
n +1 L L ≤ η  , 

  V (θ̂ n− µ n) = V (θo
n +1) + R1(θo

n +1 , θ̂ n− µ n− θo
n +1) ≤ V (θo

n +1) + K 3 η  + O (ε ) . 

Since A.8(2) and A.2(1) imply that  θo
n  → θo  as  n → ∞ , given A.3(1), we have for  n large

enough, say  n ≥ N 2 ≥ N 1 ,

 V (θo
n +1) ≤ K 4 L L θo

n +1 − θo  L L .    

Hence for all  n ≥ N 2 and  L L θ̂ n  − θo
n +1 L L ≤ η  ,  V (θ̂ n− µ n) ≤ K 5 η  + O (ε ) for some constant

 K 5 > 0 . Instead of Yin and Zhu’s (1990) inequality (4.16), we have

 (a. 6)   V (θ̂ n− µ n) ≤ ΠN2≤ j ≤n  ( 1 − aj  λ (η ) ) V ( θ̂ N2
− µN2

 ) 

 + ΣN2≤i ≤n  Πi +1≤ j ≤n  ( 1 − aj  λ (η ) ) [ K 5 ai  η  λ (η ) + O ( ai  ε  ) + O ( ai
2 ) ] 

 + ΣN2≤i ≤n  Πi +1≤ j ≤n  ( 1 − aj  λ (η ) ) K 6 ai  L L θo
i +1 − θo  L L  .   
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Since

 Πi +1≤ j ≤n  ( 1 − aj  λ (η ) ) ≤ exp( − λ (η ) Σi ≤ j ≤n  aj  ) → 0    as  n → ∞ ,

we have by A.8(2),

   limn ΣN2≤i ≤n  Πi +1≤ j ≤n  ( 1 − aj  λ (η ) ) ai  L L θo
i +1 − θo  L L = 0  .   

We can now follow Yin and Zhu (1990)’s proof of their Theorem 3.1 ( from page 127(4.17) on ),

and obtain the  a.s. − P convergence result.

PROOF OF COROLLARY 2.12: When { Un } is a sequence of  θ−independent errors, A.5P

implies A.4P. Hence the result follows from Theorem 2.11.

PROOF OF COROLLARY 2.13: When { Un } is a sequence of  θ−dependent errors, A.7P

implies A.4P just as A.7 implies A.4 in the proof of Corollary 2.6. Hence the result follows from

Theorem 2.11.

We use the next lemma to prove Proposition 2.14.

LEMMA A.3: Let xn , un , vn , and wn be nonnegative An−measurable real valued random vari-

ables, n = 1, ..., defined on a complete probability space ( Ω, F, P ), where {An} is an increasing

family of subσ -algebras of F. Suppose

   
n =1
Σ
∞

un  < ∞  a.s.−P  ;      
n=1
Σ
∞

vn  < ∞   a.s.−P  ;  

 E [ x 1
2 ] < ∞   and    E[ xn +1

2 |  An  ] ≤ (1 + un) xn
2 + vn  − bnwn     a.s.−P , 

where {bn  , n =1,2,...} is non-random real sequence such that  bn > 0 ,   
n =1
Σ
∞

bn  = ∞ . 

Then there exists a random variable  x  on ( Ω, F, P ), and a subsequence {n ( j), j =1,2,...}

such that:
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  xn  → x    as n → ∞   a.s.−P     and   wn( j)  → 0   as j  → ∞   a.s.−P .

PROOF: This result is a slight modification of Goldstein’s (1988) Lemma 4.1. It can be proved

by mimicing the proof of Goldstein’s (1988) Theorem 4.1.

PROOF OF PROPOSITION 2.14: By definition,

 θ̂ n +1 − θo  = [(θ̂ n  − θo) ] + [an  Pk (n +1)  Mn(Zn  , θ̂ n)] . 

Taking the inner product on both sides gives

  L L θ̂ n +1 − θo L L 2 = L L θ̂ n  − θo  L L 2 + L L an Pk (n +1)Mn(Zn  , θ̂ n) L L 2 

 + 2 an ( θ̂ n−θo  , Pk (n +1)Mn(Zn ,θ̂ n) )   .

We shall take the conditional expectation  E [ . |  Fn−1 ] on both sides, and make use of the fol-

lowing facts:

(1) Since θ̂ n is  Fn−1 − measurable;

    E [ L L θ̂ n  − θo  L L 2 |  Fn−1] = L L θ̂ n  − θo  L L 2 ≡ xn
2 ;  

(2) by condition 2.14(2),

  E [ L L anPk (n +1)Mn(Zn ,θ̂ n) L L 2 |  Fn−1] ≤ vn  + un  xn
2  ,  

 where   vn  ≡ an
2 E [ hn(Zn) |  Fn−1 ] ≥ 0   a.s.−P ;     and   un ≡ an

2 E [ gn(Zn) |  Fn−1 ] ≥ 0  a.s.−P ;

(3) By condition 2.14(1),

 wn  ≡ − E [ ( θ̂ n−θo  , Pk (n +1)Mn(Zn ,θ̂ n) ) |  Fn−1] ≥ 0  a.s.−P .

Letting  bn ≡ 2 an and  xn  ≡ L L θ̂ n  − θo  L L ≥ 0  a.s.−P , we get

   E [xn +1
2 |  Fn−1 ] ≤ ( 1 + un  ) xn

2 + vn  − bn  wn     a.s.−P . 

By condition 2.14(2)(b) and  E [ x 1
2 ] < ∞ , all hypotheses of Lemma A.3 are satisfied. Hence

there exists a random variable  x  on ( Ω, F, P ), and a subsequence {n ( j), j =1,2,...} such
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that:

  xn  → x    as n → ∞   a.s.−P     and   wn( j)  → 0   as j  → ∞   a.s.−P .

Further, we can show that  x  = 0  a.s.−P (see Goldstein, 1988),

i.e.,  L L θ̂ n  − θo  L L → 0   as  n → ∞    a.s.−P . 

PROOF OF PROPOSITION 2.15: By definition,

θ̂ n +1 − Pk (n +1)θo  = θ̂ n  − Pk (n +1)θo  + anPk (n +1)Mn(Zn ,θ̂ n) . 

Let  xn +1 ≡ L L θ̂ n +1 − Pk (n +1)θo  L L . Then

  xn +1
2  = L L θ̂ n  − Pk (n +1)θo  L L 2 + an

2 L L Pk (n +1)Mn(Zn ,θ̂ n) L L 2  

 + 2 an ( θ̂ n  − Pk (n +1)θo  , Pk (n +1)Mn(Zn ,θ̂ n) ) . 

We shall take the conditional expectation  E [ . |  Fn−1 ] on both sides, and make use of the fol-

lowing facts:

(1) since  θ̂ n is Fn−1 − measurable, so is  θ̂ n  − Pk (n +1)θo  , therefore,

  E [ L L θ̂ n  − Pk (n +1)θo  L L 2 |  Fn−1] = L L θ̂ n  − Pk (n +1)θo  L L 2 ;

(2) by condition 2.15(2),

  E [ L L anPk (n +1)Mn(Zn ,θ̂ n) L L 2 |  Fn−1] ≤ v 1n  + u 1n  L L θ̂ n  − Pk (n +1)θo  L L 2 ,

 where   v 1n  ≡ an
2 E [ hn(Zn) |  Fn−1 ] ≥ 0   a.s.−P ;     and   u1n  ≡ an

2 E [ gn(Zn) |  Fn−1 ] ≥ 0  a.s.−P ;    

(3) by condition 2.15(1),

 wn  ≡ − E [ ( θ̂ n−Pk (n +1)θo  , Mn(Zn ,θ̂ n) ) |  Fn−1] ≥ 0  a.s.−P .

Letting  bn ≡ 2 an and  xn  ≡ L L θ̂ n  − Pk (n )θo  L L ≥ 0  a.s.−P , we get

   E [xn +1
2 |  Fn−1 ] ≤ ( 1 + u 1n  ) L L θ̂ n  − Pk (n +1)θo  L L 2 + v 1n  − bn  wn     a.s.−P .

By the triangle inequality,
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 L L θ̂ n  − Pk (n +1)θo  L L ≤ L L θ̂ n  − Pk (n )θo  L L + L L Pk (n )θo  − Pk (n +1)θo  L L ≡ xn  + rn .

Hence,

   L L θ̂ n  − Pk (n +1)θo  L L 2 ≤ xn
2 + rn

2 + 2 xn  rn ≤ (1+ rn) xn
2 + ( rn + rn

2) .

(The second inequality is due to rn  ≥ 0 and   0 ≤ xn  ≤ 2 xn  ≤ xn
2 + 1 ). Hence,

   E [ xn +1
2 |  Fn−1 ] ≤ (1 + u 1n) (1 + rn) xn

2 + (1 + u 1n) ( rn + rn
2) + v 1n  − bnwn  . 

Let

un  ≡ u 1n  + rn + u 1n  rn  ;  vn ≡ (1 + u 1n) (rn  + rn
2) + v 1n  .

By condition 2.15(3),  
n =1
Σ
∞

 rn < ∞ ; since  rn ≥ 0 and condition 2.15(2)(b) holds, we have

 
n =1
Σ
∞

 un < ∞   a.s.−P and  
n =1
Σ
∞

 vn  < ∞   a.s.−P . Since  E [ x 1
2 ] < ∞ , all hypotheses of Lemma

A.3 are satisfied. Hence there exists a random variable  x  on ( Ω, F, P ), and a subsequence

{n ( j), j =1,2,...} such that:

  xn  → x    as n → ∞   a.s.−P     and   wn( j)  → 0   as j  → ∞   a.s.−P .

Further, we can show that  x  = 0  a.s.−P (see Goldstein, 1988), i.e., L L θ̂ n  − Pk (n )θo  L L → 0 as

  n → ∞    a.s.−P . By the triangle inequality:

     L L θ̂ n  − θo  L L ≤ L L θ̂ n  − Pk (n )θo  L L + L L Pk (n )θo  − θo  L L .  

We conclude  L L θ̂ n  − θo  L L → 0  as   n → ∞  a.s.−P . 

PROOF OF THEOREM 3.1: We verify that all conditions of Walk’s (1987) Theorem 1 are

satisfied as follows: First, Walk’s (1987) condition (1) is satisfied with  Tn  ≡ T 1n  + T 2n  . 

Second, our B.2 satisfies his condition (2). Third, our B.1 and  L L θ̂ n  − θo  L L → 0  a.s.−P imply

that  L L An − A L L → 0  a.s.−P , hence his condition (3) is satisfied; this together with B.4(1) imply

his condition (4). Fourth, our B.5 is his condition (5). Finally, our B.3 and
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 L L θ̂ n  − θo  L L → 0  a.s.−P imply that  T 2n  → 0 almost in first mean; this together with B.4(2)

imply Walk’s (1987) condition (6) with  T = 0 via Lemma 3.3. Thus, the result follows from

Walk’s (1987) Theorem 1.

We prove that  T 2n  → 0 almost in first mean as follows: for any fixed  0 < ε  < 1 , 

 L L θ̂ n  − θo  L L → 0  a.s.−P and Egorov’s theorem imply that there exists  Ω´ ∈  F with

 P ( Ω´ ) ≥ 1 − ε  such that  L L θ̂ n  − θo  L L → 0 uniformly in  Ω´ , i.e., for any  η  > 0 , there exists

 m ∈   NI    such that for any  n ≥ m and  ω ∈  Ω´ ,  L L θ̂ n(ω) − θo  L L ≤ η  . We now define a new

sequence { θ
..

n  } by

  θ
..

1 ≡ θ̂ m +1 1 ( L L θ̂ m +1 − θo  L L ≤ η  ) ,  

  θ
..

n +1 ≡  θ
..

n  − (n +m)−1 Pk (n +m +1)  [ M̃(θ
..

n) + Un +m(Zn  , θ
..

n) ] , 

where  M̃(θ ) ≡ M (θ ) if  L L θ  − θo  L L ≤ η  , and  M̃(θ ) ≡ A θ  otherwise. By the definition,  θ
..

n  and

 θ̂ m +n  coincide on  Ω´ , hence  L L θ
..

n  − θo  L L → 0 as  n → ∞ uniformly in  Ω´ . For  η  small

enough, we follow Walk’s (1977) proof of his equation 44 (p.149) and get

 nβ  E [ L L θ
..

n  − θo  L L 2 ] = O (1) . Given the definition of  T 2n  and assumption B.3, we get

 [ ∫Ω´  L L T 2 , n +m  L L d P ]2 ≤ o (1) (n +m)β  E [ L L θ
..

n  − θo  L L 2 ] + o (1) → 0     as  n→ ∞ .

Hence  T 2n  → 0 almost in first mean.

PROOF OF COROLLARY 3.2: (i) is obviously true given Theorem 3.1. By the continuous

mapping theorem we get result (ii).

PROOF OF PROPOSITION 3.4: (i) Under B.6(1),  ν j  = j (β−1)/2 Pk ( j +1)Uj(Zj ,θo) . B.6(4)

implies that { ν n  , Fn  } is an adapted  L 2(H) − mixingale sequence with parameters { ψm  } of

size  − 1/2 , and { n (β−1)/2 cn  }. By Chen and White (1996, Theorem 3.7) and assumption
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B.6(4),

 E [ L L 
j =1
Σ
n

 ν j  L L 2 ] = O ( 
j =1
Σ
n

 jβ−1 cj
2 ) = O (n)  . 

Hence B.4(1’’) is satisfied, and so is B.4(1) via Lemma 3.3(ii).

(ii) Under B.6(1),

 T 1n  = nβ/2 Pk (n +1)  [ Un(Zn ,θ̂ n) − Un(Zn ,θo) ]  .

Since { ψm  } is decreasing and is of size  − β  , there exists  µ  :   NI    →  NI    such that

  1 < µ ( j) < j     for  j  > 2  ,    µ ( j) = o (j 1/2)  ,    ψµ( j)  = o (j−β/2)  .

Take  ε  ∈  ( 0 , 1/2 ) . As  L L θ̂ n  − θo  L L → 0   a.s.−P , there exists  K (ε ) > 0 such that

 P [ ω : supn L L θ̂ n−θo  L L ≥ K (ε ) ] ≤ ε   . 

Define

  T̂1n  ≡ nβ/2 Pk (n +1)  [ Un(Zn  , θ̂ n  1[ L L θ̂ n  − θo  L L ≤ K (ε )] ) − Un(Zn  , θo) ]  .

Then  P ( ∪ n ≥1
[ T̂ 1n  ≠ T 1n  ] ) ≤ ε  . Hence it suffices to show that there exists  δ*  ∈  ( δo  , 1/2 ) 

such that

 n−1/2 max3≤ j ≤n(n /j)δ
*
 L L 

i =3
Σ
j

 i−(1/2)  T̂ 1i  L L  → 0    in  Prob.   as  n → ∞ .

Write  T̂ 1n  ≡ n 1/2 
j =1
Σ
3

 Djn , where

  D1n  ≡ T
_

n  − E ( T
_

n | Fn−µ(n )  )  ;    D2n  ≡ E ( T
_

n | Fn−µ(n )  )  ;    

  T
_

n  ≡ n (β−1)/2 [ Pk (n +1)  Un(. , θ̂ n−µ(n )1[ L L θ̂ n−µ(n )− θo  L L ≤ K (ε )] ) − Pk (n +1)Un(. , θo) ]  ;

D 3n  ≡ n (β−1)/2 Pk (n +1)Un(. , θ̂ n1[ L L θ̂ n− θo  L L ≤ K (ε )] ) 
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  − n (β−1)/2 Pk (n +1)  Un(. , θ̂ n−µ(n )1[ L L θ̂ n−µ(n )−θo  L L ≤ K (ε )] ) . 

By Lemma 3.3(iv), it suffices to show that: (a)   D1n  → 0 almost in first mean; (b)   D2n  → 0 

almost in first mean; and (c )   D3n  → 0 almost in first mean.

Since B.6(2) implies that  Pn +1Un(ω , .) is continuous for each  ω ∈  Ω , and since

 L L θ̂ n− θo  L L → 0  a.s.−P and  β  ∈  (0,1] , we get  L L T
_

n  L L → 0   a.s.−P . This together with B.6(3)

implies that  E [ L L T
_

n  L L r ] → 0 ( see Serfling, 1980, p.11, theorem 1.3.7 ). Hence  E [ L L T
_

n  L L ] → 0 .

By the conditional Jensen’s inequality,

  E [ L L D2n  L L ] = E [ L L E (T
_

n | Fn−µ(n ) ) L L ]≤ E [ L L T
_

n  L L ] → 0     as  n → ∞ ,

this implies (b). Further

  E [ L L D1n  L L ] ≤ E [ L L T
_

n  L L ] + E [ L L D2n
 L L ] → 0      as  n → ∞ ,

which gives us (a).

Let Ωε  ≡ Ω \ [ ω : supn L L θ̂ n  − θo  L L ≥ K (ε ) ]. Then P [ ω ∈  Ωε  ] ≥ 1 − ε .

Define  m ( j) = max [ i ∈   NI    : j +i−µ ( j +i) < j  ] . By assumption B.6(2),

  E [ L L D3n  L L 1(Ωε )] 

 ≤ n (β−1)/2 supn[ ( Eφ2
B (ε),n  )1/2 ( E [ L L θ̃ n  − θ̃ n−µ(n )  L L 2] 1(Ωε ) )1/2 ] , 

where

  θ̃ n  = θ̂ n  1( L L θ̂ n− θo  L L ≤ K (ε ) )  ;  θ̃ n−µ(n )  = θ̂ n−µ(n )  1( L L θ̂ n−µ(n )− θo  L L ≤ K (ε ) ) , 

and  B (ε ) ≡ [ θ  ∈  H :  L L θ− θo  L L ≤ K (ε ) ] . Hence we get (c ) provided

 (d)   supj ≤m (n ) [ ( E L L θ̂ n− θ̂ n−j  L L 2 1(Ωε ) )1/2 ] = o ( n−β/2 ) . 

Because

  θ̂ n +1− θ̂ n  = n−1 An (θ̂ n− θo) + n−1 Pk (n +1)Un(. , θ̂ n) + n−1−(β/2)T 2n  , 
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and  T 2n  → 0    in  first  mean  implies  T 2n  → 0    in  Prob , we get

  (e)   ( E L L θ̂ n +1− θ̂ n  L L 2 1(Ωε ) )1/2 ≤ n−1 ( E L L An(θ̃ n− θo) L L 2 1(Ωε ) )1/2 

 + n−1 ( E L L Pk (n +1)Un(. , θ̃ n) L L 2 1(Ωε ) )1/2 + o ( n−1 ) = O ( n−1 )  , 

where the last relation is implied by B.6(3) and the definition of  Ωε  . Since

 m (n) = max [ j  ∈   NI    : n+j−µ (n +j) < n ] = max [ j  ∈   NI    : j  < µ (n +j) ] , and  µ (i) = o (i 1/2) , 

 1 < µ (i) < i for all  i > 2 , we have   m (n) = o (n 1/2) . This, (e ), and  β  ∈  (0,1] give us (d),

hence (c ). This completes the proof.

PROOF OF LEMMA 3.6: Immediate, as it follows from Chen and White’s (1992), Theorem

4.14.

PROOF OF COROLLARY 3.7: By Lemma 4.2 in Chen and White (1996), B.6(1), B.6(3) and

3.6(1) imply that B.6(4) is satisfied. This together with B.6(2) and  L L θ̂ n  − θo  L L → 0   a.s.−P 

imply that B.4 is satisfied via Proposition 3.4. B.6(1) and B.6(3) imply that

{ Wn  = ν n  = n (β−1)/2 Pk (n +1)Un(Zn ,θo) } has zero means and uniformly bounded

 r −th  moments. This together with 3.6(1) and 3.6(2) imply by Lemma 3.6 that

{ ν n  = n (β−1)/2 Pk (n +1)Un(Zn ,θo) } satisfies B.5 when  X is a Brownian motion in  H with

 X (0) = 0 , EX (1) = 0 and Cov X (1) = S . Now all the conditions of Corollary 3.2 are satisfied

and the results follows.

PROOF OF COROLLARY 3.8: The proof is similar to that for Corollary 3.7 except with

 Pk (n +1)  omitted, and using Chen and White’s (1998a) Theorem 3.9 or Chen and White’s (1992)

Corollary 4.16 instead of Chen and White’s (1992) Theorem 4.14.

PROOF OF LEMMA 3.9: We write  K̃n  − K  ≡ a 1n  + a 2n  + a 3n  , where



- 63 -

 a 1n  ≡ ∫(0,1]  s
Γ̃n  S̃n  [ s Γ̃n

*

 − sΓ
*
 ] ds ; 

 a 2n  ≡ ∫(0,1]  [ s
Γ̃n  − sΓ  ] S̃n  sΓ

*
 ds ; 

 a 3n  ≡ ∫(0,1]  s
Γ  [ S̃n  − S ] sΓ

*
 ds . 

Since

  L L a 1n  L L tr ≤ L L S̃n  L L tr ∫(0,1]  L L s
Γ̃n  L L L L s Γ̃n

*

 − sΓ
*
 L L ds , 

  L L a 2n  L L tr ≤ L L S̃n  L L tr ∫(0,1]  L L s
Γ̃n  − sΓ  L L L L sΓ

*
 L L ds , 

  L L a 3n  L L tr ≤ L L S̃n  − S L L tr ∫(0,1]  L L sΓ  L L 2 ds , 

under the assumptions, we have

  limn→∞  L L ajn  L L tr = 0     in Prob.   or  a.s.−P    for  j  = 1, 2, 3 . 

This gives us  limn L L K̃n  − K  L L tr = 0   in Prob. or  a.s.−P . 

PROOF OF COROLLARY 4.1: It is easy to verify that all conditions of Walk’s (1987)

Theorem 2 are satisfied. Hence the result 4.1(i) follows. Since

  a1(t) − a 2(t) ≤ [ 2 λ  t log log t ]−1/2 L L [t ](1+β)/2 ( θ̂ [t ]+1 − θo  ) L L ≤ a 1(t) + a 2(t) ,

where  a 1(t) ≡ [ 2 λ  t log log t ]−1/2 L L GM (t) L L , and

 a 2(t) ≡ [ 2 λ  t log log t ]−1/2 L L [t ](1+β)/2 ( θ̂ [t ]+1 − θo  ) − GM (t) L L  ,

we have

  lim supt→∞  a 1(t) − lim inft→∞  a 2(t)

 ≤ lim supt→∞  [ 2 λ  t log log t ]−1/2 L L [t ](1+β)/2 ( θ̂ [t ]+1 − θo  ) L L 

  ≤ lim supt→∞  a 1(t) + lim supt→∞  a 2(t) . 

Einmahl’s (1991) theorem ( p. 1228 ) gives that

  lim supt→∞  [ 2 λ  t log log t ]−1/2 L L GM (t) L L = 1    a.s.−P , 

where   λ  ≡ sup [ ( K h , h ) :  L L h L L ≤ 1 ,  h ∈  H ] is the largest eigenvalues of  K  . Also, result

4.1(i) implies
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 lim inft→∞  a 2(t) = lim supt→∞  a 2(t) = limt→∞  a 2(t)

 = [ 2 λ  ]−1/2 limt→∞  [ t log log t ]−1/2 L L [t ](1+β)/2 ( θ̂ [t ]+1 − θo  ) − GM (t) L L = 0    a.s.−P .  

This gives us result 4.1(ii).

PROOF OF LEMMA 4.2: We simply verify that all conditions of Philipp’s (1986) Theorem 1

are satisfied by our random sequence { Wn  ;  n ≥ 1 }. The uniformly bounded  Lr −norm ( r > 2 )

of { Wn  } is Philipp’s condition (2.1). Since { Wn  } is an  Lp−mixingale of size −1  (1≤ p <∞) , 

Philipp’s condition (2.2) is satisfied. Condition 4.2(2) is Philipp’s condition (2.3). Now Philipp’s

(1986) theorem 1 gives results (i) and (ii).

PROOF OF LEMMA 4.3: Condition 3.8(1) and Lemma 4.2 in Chen and White (1996) imply

4.2(1). Also the assumptions and Lemma 3.8 in Chen and White (1992) imply 4.2(2). Thus

results 4.2(i) and 4.2(ii) hold. The proof of result 4.3(i) is akin to that for result 4.1(ii). Because

  b1(n) − b 2(n) ≤ [ 2 τ n  n log log n ]−1/2 L L 
j =1
Σ
n

 Wj  L L ≤ b 1(n) + b 2(n) ,

where

 b 1(n) ≡ [ 2 τ n  n log log n ]−1/2 L L 
j =1
Σ
n

 N j  (0,S) L L , 

 b 2(n) ≡ [ 2 τ n  n log log n ]−1/2 L L 
j =1
Σ
n

 Wj  − 
j =1
Σ
n

 N j  (0,S) L L , 

we have

  lim supn→∞  b 1(n) − lim infn→∞  b 2(n) ≤ lim supn→∞  [ 2 τ n  n log log n ]−1/2 L L 
j =1
Σ
n

 Wj  L L 

  ≤ lim supn→∞  b 1(n) + lim supn→∞  b 2(n) . 

Einmahl’s (1991) theorem ( p. 1228 ) gives

  lim supn→∞  [ 2 τ  n log log n ]−1/2 L L 
j =1
Σ
n

 N j( 0 , S ) L L = 1    a.s.−P  ,
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where τ  ≡ sup [ ( S h , h ) :  L L h L L ≤ 1 ,  h ∈  H ] is the largest eigenvalues of  S . Because

 limn→∞  τ n  = τ  by Lemma 2.1(ii) in Chen and White (1998a), and  0 < τ  < ∞ , we have

 lim supn→∞  b 1(n) = 1   a.s.−P . Also Lemma 4.2(i) and 4.2(ii) imply

 lim infn→∞  b 2(n) = lim supn→∞  b 2(n) = limn→∞  b 2(n)

 = [ 2 τ  ]−1/2 limn→∞  [ n log log n ]−1/2 L L 
j =1
Σ
n

 Wj  − 
j =1
Σ
n

 N j  (0,S) L L = 0   a.s.−P . 

This gives us result 4.3(i).

PROOF OF PROPOSITION 4.5: The proof is similar to those of Corollaries 2.6 and 2.7,

except with the following changes: Let  an = n−1 ( log log n )−1/2 nβ/2 and

  S (p,q) ≡ Σp ≤ j ≤q−1 aj  Pk ( j +1)  [ Uj(Zj  , θ̂ j) − Uj(Zj  , θo) ] ≡ S 1(p,q) + S 2(p,q) ,

where,

  S1(p,q) ≡ Σp ≤ j ≤q−1 aj  Pk ( j +1)  [ Uj(Zj  , θ̂ p) − Uj(Zj  , θo) ]  ,

and

  S2(p,q) ≡ Σp ≤ j ≤q−1 aj  Pk ( j +1)  [ Uj(Zj  , θ̂ j) − Uj(Zj  , θ̂ p) ] . 

Now Assumption C.1 and  L L θ̂ n  − θo  L L → 0  a.s.−P and the algorithm specified at the beginning

of Section III allow us to follow the proof of Corollaries 2.6 and 2.7 to yield:

 lim supn→∞  n−1 ( log log n )−1/2 L L 
j =1
Σ
n

 T 1 j  L L = 0    a.s.−P .

By a similar proof to that of Yin & Zhu’s (1990) Theorem 3.3, since  L L θ̂ n  − θo  L L → 0   a.s.−P , 

we get

 limn→∞  n−1 ( log log n )−1/2 L L 
j =1
Σ
n

 T 1 j  L L = 0    a.s.−P , 

This completes the proof.
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PROOF OF COROLLARY 4.7: Condition 4.1(1) is satisfied due to Lemma 4.3. Condition

4.1(2) is satisfied as the similar proof of Proposition 4.5. Condition 4.1(3) is trivially satisfied

since  T 2n  ≡ 0 in the RM and TRM algorithms. The result follows.

The next two lemmas are used in the proof of Lemma 5.1.

LEMMA A.4: Given TRMP, Assumptions AP and D.1P(1), if for all n,

     E[ L L Pk (n +1)Un(Zn ,θ̂ n) L L 2 ] < ∞ ,    E [ | V
_

(θ̂ n ,n) |  ] < ∞ ,  and  E [ | DV
___

n |  ] < ∞  , 

then there exists  no  ∈   NI    , such that for all  n ≥ no  ,

  E [ S(n +1) ] ≤ ( 1−n−1cn ) E [ S (n) ] + n−1 cn  E [ V
_

(θ̂ n  , n) ] + O (n−2)  

 + O (n−2) E [ L L Pk (n +1)Un(Zn ,θ̂ n) L L 2 ] + E [ DV
___

n  ]  . 

PROOF OF LEMMA A.4: First, substitute  an  = n−1 into (a. 1) to give,

(a. 7)   for all n ≥ no ,    θ̂ n +1 = θ̂ n  + n−1 Pk (n +1)  [M(θ̂ n) + Un(Zn ,θ̂ n)]  .

Given Assumptions AP and D.1P(1), the sequence { θ̂ n  ;  n ≥ no  } is bounded  a.s.−P and con-

verges to   θo  in norm  a.s.−P . Hence there exists a positive non-random real number  B
_

 such

that   L L θ̂ n  L L ≤ B
_

   a.s.−P  . By Taylor expansion in Hilbert space ,

 V (θ̂ n +1) = V (θ̂ n) + n−1 ( V´(θ̂ n) , Pk (n +1)M (θ̂ n) ) 

     + n−1 ( V´(θ̂ n) , Pk (n +1)  Un(Zn ,θ̂ n) ) + R2( θ̂ n  , θ̂ n +1 − θ̂ n  )  ,     

where R2( x  , h ) = ∫[0,1]  ( 1−s ) V´´( x +sh ) h2 d s, and

 L L R2( θ̂ n  , θ̂ n +1 − θ̂ n  ) L L ≤ sup L L θ L L ≤ B
__
 L L V´´(θ ) L L L L θ̂ n +1−θ̂ n  L L 2 

 ≤ K  n−2 sup L L θ L L ≤ B
__
 L L V´´(θ ) L L [ L L M (θ̂ n) L L 2 + L L Un(Zn ,θ̂ n) L L 2 ]     a.s.−P   for some K > 0  .



- 67 -

The uniform boundedness of  V´  ,  V´´  ,  M imply that there exist finite positive non-random

real numbers  K 1 ,  K 2 ,  K 3 such that for any  L L θ  L L ≤ B
_

 ,

  (a. 8.i)     L L V´(θ ) L L ≤ K 1  ,   L L V´´(θ ) L L ≤ K 2  ,   L L M (θ ) L L ≤ K 3  . 

Thus  V (θ̂ n) ,  V´(θ̂ n) , and  M (θ̂ n) have finite first and second moments. Furthermore,

(a. 8.ii)     E [ L L V´(θ̂ n) L L ] ≤ K 1  ,    E [ L L M (θ ) L L ] ≤ K 3  , 

 and  E [ L L R2( θ̂ n  , θ̂ n +1 − θ̂ n  ) L L ] ≤ O ( n−2 ) + O ( n−2 ) E [ L L Un(Zn ,θ̂ n) L L 2 ]  . 

By Assumption D.1P(1), for all  n ≥ no  ,

(a. 9)   E [ V (θ̂ n +1) ] ≤ (1−n−1cn ) E [ V (θ̂ n) ] + n−1 E [( V´(θ̂ n) , Pk (n +1)  Un(Zn ,θ̂ n) ) ]  

 + O (n−2) + O (n−2) E [ L L Pk (n +1)Un(Zn ,θ̂ n) L L 2 ] .

By the definition of  V
_

  ,

(a. 10)  E [ V
_

(θ̂ n  , n +1) |  Fn−1 ] − V
_

(θ̂ n  , n) = − n−1 ( V´(θ̂ n) , Pk (n +1)  E [ Un(Zn ,θ̂ n) |  Fn−1 ] )  . 

By the definitions of  S (n) and  DV
___

n  ,

(a. 11)  E [ S (n +1) |  Fn−1 ] − S (n) ≡ E [ V (θ̂ n +1 |  Fn−1 ] − V (θ̂ n)  

 + E [ V
_

(θ̂ n  , n +1) |  Fn−1 ] − V
_

(θ̂ n  , n) + DV
___

n    .

Substituting (a.9) and the expectation of (a.10) into the expectation of (a.11), we get that for all

 n ≥ no ,

  E [ S(n +1) ] ≤ (1−n−1cn ) E [ S (n) ] + n−1 cn  E [ V
_

(θ̂ n  , n) ] 

 + O (n−2) + O (n−2) E [ L L Pk (n +1)Un(Zn ,θ̂ n) L L 2 ] + E [ DV
___

n  ]  . 

LEMMA A.5 ( Venter, 1966 ):

Let { sn } be a sequence of non-negative numbers such that for all  n large enough

    sn+1 ≤ (1 − n−1 cn) sn + d n−(1+q)  ,  
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where  d > 0 and  cn  → c  as  n → ∞ . Then for  n sufficiently large,

  sn = O (n−q)    if  c > q > 0 ;      sn = O (n−c  log n)    if  c = q > 0 ;   and    sn = O (n−c)    if  q > c  > 0 . 

PROOF OF LEMMA 5.1: Lemma A.4, conditions 5.1(1), 5.1(2) and 5.1(4) imply

(a. 12)  E [ S(n +1) ] ≤ (1−n−1cn ) E [ S (n) ] + O ( max [ n−(1+b)  , n−2 ] )  .

Now 5.1(3), Lemma A.5 and (a. 12) imply

E [ S (n) ] = O ( n−q  ) for  c  > q;

E [ S (n) ] = O ( n−q  log n ) for c  = q;

E [ S (n) ] = O ( n−c  ) for q  > c  > 0.

Given the definition of  S (n) and condition 5.1(1), we get

E [ V (θ̂ n) ] = O ( n−q  ) for c  > q;

E [ V (θ̂ n) ] = O ( n−q  log n ) for c  = q;

E [ V (θ̂ n) ] = O ( n−c  ) for q  > c  > 0.

PROOF OF COROLLARY 5.2: It suffices to verify that all conditions of Lemma 5.1 are

satisfied with  Un ≡ Fn(Zn) . It is obvious that D.2P(2) implies 5.1(4). Since  θ̂ n  is

 Fn−1 −measurable, by the definition of  V
_

 , we have

 V
_

(θ̂ n  , n) = 
j =n
Σ
∞

 j−1 ( V´(θ̂ n) , E [ Pk ( j +1)Uj  |  Fn−1 ] ) = 

 ( V´(θ̂ n) , E [ 
j =n
Σ
∞

 j−1 Pk ( j +1)Uj  |  Fn−1 ] )  . 

By the Cauchy-Schwartz inequality, D.1P(2), D.2P(1) and (a. 8), we get

  E [ |  V
_

(θ̂ n  , n) |  ] ≤ L L V´(θ̂ n) L L 2 L L E [ 
j =n
Σ
∞

 j−1 Pk ( j +1)Uj  |  Fn−1] L L 2 
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 ≤ K 4 ( 1 + E [ V (θ̂ n) ] )1/2 O (n−b) ≤ O (n−b)  .

Hence  E [ V
_

(θ̂ n ,n) ] is defined and satisfies 5.1(1). Also, by the definition of  S (n) , we have

that  E [ S (n) ] is defined and satisfies 5.1(3).

Since  θ̂ n +1 and  θ̂ n  are  Fn −measurable, by the definition of  DV
___

n  we have

  DV
___

n  ≡ E [ Σj≥n +1 j−1 E [ ( V´(θ̂ n +1)−V´(θ̂ n) , Pk ( j +1)Uj  ) |  Fn  ] |  Fn−1 ]  

 = E [ ( V´(θ̂ n +1)−V´(θ̂ n) , E [ Σj≥n +1 j−1 Pk ( j +1)Uj  |  Fn  ] ) |  Fn−1 ]  . 

By Taylor expansion,

   V´(θ̂ n +1) − V´(θ̂ n) = ∫[0,1]  V
´´(θ̂ n  + s (θ̂ n +1 − θ̂ n)) (θ̂ n +1 − θ̂ n) ds  . 

By (a. 7),

   DV
___

n  = n−1 E [ (  (∫[0,1]  V
´´(θ̂ n  + s (θ̂ n +1 − θ̂ n)) ds ) Pk (n +1)  (M (θ̂ n) + Un) ,

 Σj ≥n +1 j−1 Pk ( j +1)  E [Uj  |  Fn]  ) |  Fn−1 ]  .

Denote  DV
___

1n  and  DV
___

2n  as

  DV
___

1n  = E [ (  (∫[0,1]  V
´´(θ̂ n  + s (θ̂ n +1 − θ̂ n)) ds ) ( Pk (n +1)  M (θ̂ n) ) ,

 Σj ≥n +1 j−1 Pk ( j +1)  E [Uj  |  Fn]  ) |  Fn−1 ]  .

  DV
___

2n  = E [ (  (∫[0,1]  V
´´(θ̂ n  + s (θ̂ n +1 − θ̂ n)) ds ) ( Pk (n +1)  Un) ,

 Σj ≥n +1 j−1 Pk ( j +1)  E [Uj  |  Fn]  ) |  Fn−1 ]  .

D.2P(1) and (a. 8) imply that for a finite constant  K 5 

 E [ |  DV
___

1n  | ] ≤ K 5 L L Pk (n +1)M (θ̂ n) L L 2 L L E [ Σj ≥n +1 j−1 Pk ( j +1)Uj  |  Fn] L L 2 = O ( n−b  )    .

Further D.2P(1), D.2P(2) and (a. 8) imply that for a finite constant  K 6 

 E [ |  DV
___

2n  | ] ≤ K 6 L L Pk (n +1)Un  L L 2 L L E [ Σj ≥n +1 j−1 Pk ( j +1)Uj  |  Fn] L L 2 = O ( n−b  ) .

Because   DV
___

n  = n−1 [ DV
___

1n  + DV
___

2n  ] ,
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  E [ DV
___

n  ] ≤ E [ |  DV
___

n  |  ] ≤ n−1 ( E [ |  DV
___

1n  |  ] + E [ |  DV
___

2n  |  ] ) ≤ O ( n−(1+b)  )  .

This gives 5.1(2). Now the conclusion follows from Lemma 5.1.

PROOF OF THEOREM 5.3: By the conditional Jensen’s inequality, with  1 < p ≤ 2 

  L L E [ Pk ( j +1)Uj  |  Fn−1 ] L L p ≤ E [ L L Pk ( j +1)Uj  L L p  |  Fn−1 ]    for  any  j  ≥ n  ,  hence 

     L L E [ Pk ( j +1)Uj  |  Fn−1 ] L L p  ≤ L L Pk ( j +1)Uj  L L p    for  any  j  ≥ n  . 

Since  supn L L Pk (n +1)Un  L L 2 ≤ ∆ < ∞ , we can pick mixingale parameters { cn  } such that

 cn  ≤ ∆ . Hence,   
i =1
Σ
∞

( ci /i  )
2 < ∞ . That A.5P’ implies A.4P is a simple consequence of Corol-

laries 3.8 and 3.9 in Chen and White (1996).

By the definition of  Lp  −mixingales with  ψm  of size −1 , we have

  
j =n
Σ
∞

j−1 L L E [ Pk ( j +1)Uj  |  Fn−1 ] L L p  ≤ 
j =n
Σ
∞

j−1ψ j +1−ncj  

 ≤ n−1 ∆ 
j =n
Σ
∞

 ψ j +1−n  = n−1 ∆ 
m =1
Σ
∞

 ψm  = O ( n−1 )  .

Hence A.5P’(1) implies D.2P(3) with  b = 1 , and we get result (i) .

By the definition of  L 2 − mixingale with  ψm  of size  − a , ( 1/2 ≤ a < 1 ) , we have from

the Hölder inequality that

  
j =n
Σ
∞

j−1 L L E [ Pk ( j +1)Uj  |  Fn−1 ] L L 2 ≤ 
j =n
Σ
∞

j−1ψ j +1−ncj  

 ≤ ∆ ( 
j =n
Σ
∞

 ψ 1/a
j +1−n  )a  ( 

j =n
Σ
∞

 j−1/(1−a)  )1−a  

≤ ∆ ( 
m =1
Σ
∞

 ψ 1/a
m  )a  ( O ( n [−1/(1−a)]+1 ) )1−a  = O ( n−a  )  .

Hence A.5P’(2) implies D.2P(3) with  b = a , and we get result (ii) .

PROOF OF COROLLARY 5.4: It suffices to verify that all conditions of Lemma 5.1 are
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satisfied .

First we show that D.3P(2) implies 5.1(4). Since  θ̂ n  is  Fn−1 − measurable, and

 supn L L θ̂ n  L L ≤ B
_

   a.s.−P ,

  supn E [ L L Pk (n +1)Un(Zn ,θ̂ n) L L 2 ] = supn E [ E [ L L Pk (n +1)Un(Zn ,θ̂ n) L L 2 |  Fn−1 ] ] 

 ≤ supn E [ E [ sup L L θ L L ≤ B
__
 L L Pk (n +1)Un(Zn ,θ ) L L 2 |  Fn−1 ] ] 

 = supn E [ sup L L θ L L ≤ B
__
 L L Pk (n +1)Un(Zn ,θ ) L L 2 ] < ∞ . 

Hence D.3P(2) implies 5.1(4).

The verification for conditions 5.1(1) and 5.1(3) is similar to the corresponding proof for

Corollary 5.2. By D.3P(1), D.1P(2) and (a. 8), since  θ̂ n  is  Fn−1 −measurable, we get

  E [ |  V
_

(θ̂ n  , n) |  ] ≤ L L V´(θ̂ n) L L 2 L L E [ 
j =n
Σ
∞

 j−1 Pk ( j +1)Uj(Zj ,θ̂ n) |  Fn−1] L L 2 

 ≤ [ 1 + E V (θ̂ n) ]1/2 O (n−b) ≤ O (n−b)    .

Hence  E [ V
_

(θ̂ n  , n ) ] ,  E [ S (n) ] , and  E [ DV
___

n  ] are defined, and 5.1(1) and 5.1(3) are also

satisfied. By the definition of  DV
___

n  , we have  DV
___

n  ≡ E [ D1n  + D2n  |  Fn−1 ] , where

  D1n  ≡ Σj≥n +1 j−1 E [ ( V´(θ̂ n +1)−V´(θ̂ n) , Pk ( j +1)Uj(Zj ,θ̂ n +1) ) |  Fn  ] , 

  D2n  ≡ Σj≥n +1 j−1 E [ ( V´(θ̂ n) , Pk ( j +1)[ Uj(Zj ,θ̂ n +1)−Uj(Zj ,θ̂ n) ] ) |  Fn ]  . 

( Comparing this with the proof of Corollary 5.2, here  E [ D 1n  |  Fn−1 ] corresponds to the

entire expression for  DV
___

n there, while there is no  D2n  term in the  θ  −independent  error case. )

First we bound  D2n  as

 | D 2n |  ≤ L L V´(θ̂ n) L L × Σj≥n +1 j−1 L L E [ Pk ( j +1)Uj(Zj ,θ̂ n +1) − Pk ( j +1)Uj(Zj ,θ̂ n) |  Fn  ] L L   a.s.−P . 

Because  θ̂ n +1 and  θ̂ n  are  Fn  −measurable, (a. 8) and condition D.3P(3) imply
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 | D 2n |  ≤ O (1) L L θ̂ n +1−θ̂ n  L L Σj≥n +1 j−1 E [ hB
__

, j(Zj) |  Fn  ] ≤ O ( n−b  ) L L θ̂ n +1− θ̂ n  L L   a.s.−P . 

Hence,  E [ | D 2n |  ] ≤ O (n−b) E [ L L θ̂ n +1− θ̂ n  L L ] . Now (a. 7) and the triangle inequality imply

  L L θ̂ n +1 − θ̂ n  L L 2 ≤ n−1 L L Pk (n +1)M (θ̂ n) L L 2 + n−1 L L Pk (n +1)Un(Zn ,θ̂ n) L L 2  . 

Next, (a. 8) implies   L L M (θ̂ n) L L 2 ≤ O (1) , and we have shown that D.3P(4) and (a. 8) imply

5.1(4). Hence

  (a. 13)    E [ L L θ̂ n +1 − θ̂ n  L L ] ≤ L L θ̂ n +1 − θ̂ n  L L 2 ≤ O (n−1) ,   

so that   E [ | D 2n |  ] ≤ O ( n−(1+b)  ) for   n ≥ no  .

Now we bound  D1n  . ( The proof is akin to that for Corollary 5.2; hence we just record the

main steps ).

Since  θ̂ n +1 and   θ̂ n  are  Fn  − measurable,

 E [ | D 1n | ] ≤ L L V´(θ̂ n +1) − V´(θ̂ n) L L 2 L L E [ Σj≥n +1 j−1 Pk ( j +1)Uj(Zj ,θ̂ n +1) |  Fn  ] L L 2 .

By D.3P(1),

(a. 14)   E [ | D 1n |  ] ≤ L L V´(θ̂ n +1) − V´(θ̂ n) L L 2 O ( n−b  ) .  

By Taylor expansion,

  V´(θ̂ n +1) − V´(θ̂ n) = ∫[0,1]  V
´´(θ̂ n  + s (θ̂ n +1 − θ̂ n)) (θ̂ n +1 − θ̂ n) ds . 

Then (a. 8) and (a. 13) imply

  L L V´(θ̂ n +1) − V´(θ̂ n) L L 2 = O ( n−1 )       for  n ≥ no  .

Substituting this into (a. 14), we get  E [ | D 1n |  ] ≤ O ( n−(1+b)  ) for   n ≥ no   Hence,

  |  E [DV
___

n] |  ≤ |  E [D 1n] |  + |  E [D 2n] |  ≤ E [ | D 1n |  ] + E [ | D 2n |  ] = O ( n−(1+b)  ) .

This gives 5.1(2). The conclusion now follows from Lemma 5.1.
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PROOF OF COROLLARY 5.7: Notice that 5.7(1) implies D.1P with  V(θ ) = L L θ  − θo  L L 2 .

Then all conditions of Corollary 5.4 are satisfied with  b = 1 , and the result follows.

PROOF OF COROLLARY 5.8: Notice that 5.8(1) and 5.8(2) imply A.8, so we get

  L L θ̂ n− θo  L L → 0   a.s.−P  . Following the proof of Lemma 5.1 and Corollary 5.4 with

 Vn(θ ) = L L θ  − Pk (n )θo  L L 2 , we get for  n sufficiently large,

  E [ L L θ̂ n  − Pk (n )θo  L L 2] = O (1/n)   for  c > 1 ;    E[ L L θ̂ n  − Pk (n )θo  L L 2] = O ( n−1 log n )    for  c = 1 ;

  and       E[ L L θ̂ n  − Pk (n )θo  L L 2] = O ( n−c  )   for  0 < c < 1 .  

Thus result (i) holds. Now result (ii) follows due to 5.8(3) and the following relation :

  E [ L L θ̂ n  − θo  L L 2 ] = E [ L L θ̂ n  − Pk (n )θo  L L 2 ] + L L θo  − Pk (n )θo  L L 2 . 
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