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ABSTRACT:

Let H be an infinite-dimensional real separable Hilbert space. Given an unknown mapping
M :H - H that can only be observed with noise, we consider two modified Robbins-Monro pro-
cedures to estimate the zero point 8, 0H of M. These procedures work in appropriate finite
dimensional sub-spaces of growing dimension. Almost-sure convergence, functional central
limit theorem (hence asymptotic normality), law of iterated logarithm (hence almost-sure loglog

rate of convergence), and mean rate of convergence are obtained for Hilbert space-valued mix-

Asymptotic Properties of Some Proj ection—baseg
Robbins-Monro Proceduresin aHilbert Space

by

Xiaohong Chen
Department of Economics
London School of Economics & Poalitical Science

and
Halbert White
Department of Economics

University of California, San Diego

First version
November 1992

Thisversion
January 2002

ingale, B-dependent error processes.
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. INTRODUCTION

To locate the root 8, in H ( a Hilbert space ) of an unknown measurable mapping
M :H - H, one can use the stochastic approximation (SA) method introduced by Robbins and

Monro (1951). The Robbins-Monro (RM) procedure recursively approximates 8, by:

~

6n+1:én+ anMn(Zn,én), n:1,2,...,

where él isarandomly chosen element in H, a, isastep size tending to zero, and M,(Z, , )

isameasurement of M () attime n,i.e,
Mn(Zq,0) =M (6) + Un(Zn.6) ,
where the error term U, (Z,,0) isinfluenced by random elements Z, .

Robbins and Monro (1951) treated the case H = IR (real ling). Since then, various finite
dimensional SA procedures have been studied intensively. Generaly, IRY (d<o) —valued SA
processes are captured asymptotically by the solutions to deterministic ordinary differential
equations (ODE’s) in IRY: é(t) =M(6O(t)). Kushner, Ljung, and others have obtained
numerous elegant results about almost-sure convergence, asymptotic normality and rate of con-
vergence of such SA procedures under very general but rather abstract conditions. These results
have been widely utilized in such different areas as estimation in statistics, adaptive learning in

control theory, simulation in computation, and signal processing in engineering.

Recently, these technigues have been applied in various economic theory and econometric
contexts. For example, Marcet and Sargent (1989), Woodford (1990), Sargent (1993), Evans and
Honkapohja (1995), Crawford (1995), and many others have applied recursive nonlinear least
squares (a special case of IRY (d<w) —-valued RM algorithms) to model boundedly rational

economic agents learning behavior in macroeconomics and game theory. Pakes and McGuire
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(2001) have applied Q-learning (another special case of IRY (d <o) —valued RM algorithms) to
solve and estimate complicated empirical 10 models. Kuan and White (1993) have established
the consistency and asymptotic normality of the IRY —valued recursive m-estimator and then
applied these to possibly misspecified nonlinear parametric regression models, including a lead-
ing neural network model. Patilea and Renault (2001) have applied the IR? (d <) —valued RM

algorithm to perform option pricing with stochastic volatility (latent factor) models.

However, all the preceding applications require correct parametric specifications. Kuan
and White (1994) present an example where agents misspecify the form of a heterogeneous vari-
ance, and the resulting recursive nonlinear least squares procedure fails to converge to the
rational expectations equilibrium. Chen and White (1998b) consider an example where a com-
petitive firm misspecifies the parametric form of market supply function, and the recursive least
squares learning procedure leads to a fixed point which is not arational expectations equilibrium
market price. Because economic systems are generally too complicated to be plausibly specified
correctly as parametric models and because SA is appealing in its simplicity, our goal hereisto
develop some nonparametric SA procedures. By their nature, nonparametric procedures have
less scope for misspecification. For example, Chen and White (1998b), in the example cited
above, show that nonparametric learning procedures of the type studied here do in fact converge

to the rational expectations equilibrium price.

The results in this paper will be useful for deriving large sample properties for all kinds of
nonlinear, nonparametric, or semi-nonparametric recursive moment- or score-type estimators,
especially those involving latent state variables such as stochastic volatility models, Garch
models, the nonlinear Kalman filter, on-line forecasting of density, or on-line regression in a
heterogeneous, dependent dynamic environment. Moreover, the results presented in this paper

and those in Chen and White (1998b) will alow for nonlinear learning where the agents do not
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specify the parametric form of a model, but allow for more and more flexible possibly nonlinear
functional formsto be learned as new information arrives as time goes by. Most of the resultsin
this paper are derived under the assumption that the true errors { U,(Z,,08,) } are Hilbert-valued
mixingale processes or Hilbert-valued near epoch dependent functions of mixing processes (see
Chen and White (1996) for definitions). Thus, our results allow for lots of heterogeneity and
tempora dependence, which are important features in modeling economic agents adaptive
learning behavior. To avoid further lengthening this paper we do not provide specific examples
here, but interested readers can find many examples in Chen and White (1996, 1998a, 1998b),
including recursive nonparametric density and regression estimation, nonparametric goodness-

of-fit tests, and nonparametric adaptive learning.

There are already many papers that treat the infinite dimensional SA ( e.g., Venter (1966),
Walk (1977), Berman and Shwartz (1989), Yin and Zhu (1990) ). The asymptotic properties are
again determined by the associated deterministic ODE. The conditions are similar to those of the
finite dimensional case. However, most of these results are restricted to the 8—independent error
casg, (i.e, U,=F,(Z,), F, aBorel-measurable mapping of Z,, independent of 6) . Also,
most of the results assume a priori that the elements of the sequence { én } liein a certain
compact subset. An even more serious problem from an applications point of view is that previ-
ous results are cast directly in either an infinite dimensional Hilbert space or a general Banach
gpace. Since the infinite dimensional SA is not computable, it is preferable to develop sieve-like
SA procedures for the purposes of estimation and inference. So far, there are three papersin this
direction: Goldstein (1988) has proved amost-sure convergence in the norm topology for a
modified Kiefer-Wolfowitz ( 1952 ) procedure in infinite dimensional Hilbert space using asieve
approach; Nixdorf (1984) has shown asymptotic normality for a modified sieve-type RM pro-

cedure; and Yin (1992) has proved amost-sure convergence in the weak topology for a sieve-
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type RM procedure. However, all three papers impose the restrictive 6—-independence condi-
tion on the error terms; and the first two papers require that the error sequence { U, } isa mar-

tingal e difference sequence.

This paper combines the direct abstract approach ( Venter (1966), Walk (1977), Yin & Zhu
(1990), etc. ) with the sieve approach ( Nixdorf (1984), etc. ). In Section I, we present some
modified Hilbert-space valued RM procedures, and obtain their amost-sure norm-convergence
properties. Our procedures do not require a prior compact subset to which { én } must belong.
For 6-independent errors, we need not even assume a prior bound on 8, , exploiting the
advances of Yin & Zhu (1990). Under the assumption of a prior bound on 6, , werelax Yin &
Zhu's (1990) conditions to alow a 6—dependent error ( i.e., U,(Z,, 8) , where U,, is a Bore-
measurable mapping in both Z, and 6 ). Given the existence of a sieve, that is an increasing
sequence of finite-dimensional subspaces whose union is dense in the estimation space, our
finite-dimensional estimation procedure delivers a consistent estimator when the errors form a
mixingale process, a condition much weaker than that of Goldstein (1988) and Nixdorf (1984).
Section |11 obtains functional central limit theorems (FCLT’s) and asymptotic normality for the
sieve-based RM procedures when errors are 6—dependent , H-valued mixingale processes.
Our results include Nixdorf’s (1984) result for the 8—-independent , martingale difference error
case as a specia example, and we need weaker conditions than he does. Section IV gives laws of
iterated logarithm (LIL’s) ( hence almost-sure loglog rate of convergence results ), which is a
refinement of the asymptotic normality results. The results for the cases of 6-dependent ,
weakly stationary mixingale error processes are new even for the IRY (d < o )-valued RM pro-
cedures. Section V presents mean rates of convergence under conditions similar to those for the
almost-sure convergence, which are weaker than the conditions for the FCLT'sand LIL’s. Like

the previous sections, the results are stated for both the direct H-RM and the sieve-based RM
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procedures when errors are H-valued mixingale processes. The results for the direct H-RM
procedures include Yin & Zhu's (1990) as a specia case. The results for the sieve-based RM
procedure are to our knowledge new. Section V1 is a brief summary and indicates some further

research directions. A Mathematical Appendix contains the proofs.

1. ALMOST-SURE CONVERGENCE

We need the following definitions throughout the paper: Let (Q, F, P) be a complete pro-
bability space. Let IB be ageneric real separable Banach space withnorm |-||. Let B(IB) be
the Borel o —field generated by the Borel open setsof IB. Wecal W: Q - IB a IB —valued

random element ( IB-r.e. ) if W is F/B (IB) -measurable.

A function X:Q - IB issimpleif for an integer mand each w [Q

m
Xw)= 3 % 1p@), where x, OB, A 0B, UiemA=Q and An A =01ifi#j.
i=1

The Bochner integral of the simple function X isdefined as
m
Jo X() P(dw) = 3 % P(A) .
i=1
A IB-r.e. WisBochner integrable if there exists a sequence of simple functions{ X, : Q - IB}
such that
Xn - W as-P and [q|Xp(w) -W(w)|P(dw) - 0 asn - o,

The mathematical expectation of W in the sense of Bochner ( or in the strong sense ) is defined

asthe limit of Bochner integrals of simple functions

Jo W) P(dw) =limy _ « Jo Xn(@) P (dw) .
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It has been shown that a IB-r.e. W has a mathematical expectation in the sense of Bochner if and
only if E[||W||] < .

Let G and H be rea separable Hilbert spaces. H is endowed with inner product

(-,"), norm Ix]|= (x, x)Y?, and identity operator | . Let
{M,: GxH - H,n=12,..} beasequence of B(G x H) / B(H) -measurable mappings. L et
Z={72,:Q - G;n=12,..} be asequence of F/B(G)-measurable mappings that is gen-

erated by nature, and is not Granger-caused by { én } to be defined below.

ASSUMPTIONA.L: Let M: H - H beaBorel measurable mapping such that:
(1) M hasazeropoint 8, 0H, i.e, M(8,)=0.

(2) M isuniformly continuous on any norm-bounded subset of H .

Condition A.1(2) impliesthat M is continuous and maps bounded sets into bounded sets. Yin
and Zhu (1990) give examples of M that satisfy Assumption A.1(2). These include continuous
linear operators, Holder and Lipschitz operators, uniformly continuous operators, continuous

operators with "polynomial growth", some compact operators, and others.

ASSUMPTION A.2: { a,; n=1,2,.. } isa sequence of nonincreasing positive real numbers

such that:

(1) ay-0asn- o, Sa=c; and (2) agy<ay+1 (1+ba,) forsome 0<bs<1.

n=1
A Hilbert space-valued RM procedure (RM) is
én+1 = én + an Mn(Zn,én) y n:1,2,...,

where él isan arbitrary H —valued random element, denoted él arb. H -r.e.. Note that for

~

each n, 6, isan H-r.e. by the measurability of M, .
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Define U,: GXxH - H as U,(,0)=M,(-,60)-M(@). Then one can rewrite the

H -valued RM procedure as :

~ ~

B, arb. H-re., 8,.1=0,+ a,[M@,)+Un(Z,,0,)], n=12,..,
where U,(Z, ,én) isan H-r.e. by the definition.

Let{ F"} be afamily of increasing sub o —algebras of F generated asfollows:

~

F'=0(0,Q) for n<0; F’=0(8,); F'=0(Z ,éjﬂ; j<n) forn>0.
Then én is F"! — measurable, while Z,, , Un(Zn,én) and én+1 are F" — measurable.

There are various methods used to prove almost sure convergence of { én } to 6,, and
there are a variety of corresponding assumptions on the step size { a, }, the error term
{ Un(Zn,é n) }, themapping M( -) , and the measurement { Mn(Zn,é n) }- Nevertheless, all try to
establish the following two essential relations:

(i) sup, ||én||< o a.s.—P;and(ii) Forevery T> 0,
liMy . wSUPn<ismn ) | Znsjsi-a 3 [M;(Z;,8) =M@= 0 as-P,
where m(n,T)=max{i:Zng<i-1a<T}.

Kushner & Clark’s (1978) "weak convergence" methods typically impose weak conditions
on M and U, toobtain (ii). But they often assumethat { M,(Z, ,6 ) =m(Z,,0) }, and either
directly require (i) or assume that { én } liesin acompact set a.s.—P . Although the compact-
ness assumption is not very restrictive for IRY (d<o) —~valued RM procedures, it is too strong a
requirement for {én }, generated by an infinite-dimensional Hilbert space-valued RM pro-
cedure, to belong to a compact set in the norm topology. Berman and Shwartz (1989) have

assumed that { én} lies in a convex, compact set under a topology induced by an invariant

metric. They get almost-sure convergence in this metric for a Banach space-vaued RM ago-
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rithm when { U, } are 6-independent errors. Although we can follow their method and get a
Banach space extension of Kushner and Clark (1978)'s Theorem 24.2 for
6—dependent U,(-, ), we do not adopt this approach here, since we are interested in

almost-sure convergence in the norm metric.

Metivier & Priouret’s (1984) "martingale’ methods explicitly assume the existence of a
Liapunov functional, and impose stronger conditions on the growth of M and on the error U,
to obtain (i) and (ii). Some typical assumptionsare that M (f) growsat most linearly in 8 , and
{ U, } is a martingale difference sequence. An important advance is the paper by Yin & Zhu
(1990). They establish amost sure convergence for an H -valued RM procedure with
6-independent errors, under weak conditions on the growth of M (8) and the average of the
errors, without an a priori assumption on the uniform boundedness of { én }. We shall extend
Yin & Zhu's results to include finite-dimensiona projected RMs and RM procedures with
6—dependent errors. We allow weak conditions on { U, } akin to Kushner and Clark’s, but we
do not assume a prior compact set to which { én } belongs. Also, we allow M, (-, 8) to depend

on n.

To establish the uniform boundedness of { én } generated by RM procedures, we consider
certain truncated RM procedures. Let { B,, n=1,2,...} be a sequence of strictly increasing

positive real numbers. Define a sequence of positive integer-valued random variables by
T =1 T+1)=TM)+ 1),

where 1 (A) denotes the indicator of theset AOF, J, E{||én + 8, Mp || < Brny }, and Jf, is

the complement of the set J,,. A truncated RM procedure (TRM) is:

él arb. H -r.e.,
On+1=[0n+ a3, M(Z4,00)]1(03p) + gn 1%, n=12,..,
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where { 8 , } isasequence of arbitrary fixed elementsof H suchthat |8, < B foral n and
for some 0<B<B; <o .Oneexampleof { 8,,} isasfollows. Let 8/ ,j=1,2 betwo arbi-
trary fixed pointsof H ,with 81#62 ,and |8||< B .Put
6,=6% if TnN)=2j; 6,=62 if TN)=2j-1; j=123,...

More generally, we take { 6 ,} to be a sequence of arbitrary H -r.e. generated by nature,
independent of él and {Z,}, such that |8 ,]|<B as-P for al n. For this we set
F"=0(Zz, §j,éj+1; j<n) for n>0. For example, set 6,=6 , for 6 arb. H -r.e.,
independent of 8, ,with |8 ||<B as.—P.

Depending on whether or not we have prior information on the bounded region to which

6, belongs, we consider two situations:

(1) If there isno prior information on where 8, belongs, we adopt a "randomly truncated RM
procedure’ (RTRM) by choosing { By, } suchthat lim,_ . B, = c . Thisincludes Yin and
Zhu's (1990) algorithm as a specia case. Yin and Zhu (1990) only consider the case in
which 8 ,= 6 foral n. By considering a more general scheme, we lessen the possibil-

ity of the algorithm following similar paths to undesirable regionsof H .

(2) If there is prior information on where 8, belongs, e.g., |6,]< B, < B, we consider a

"bounded truncated RM procedure’ (BTRM) by choosing { B,; n=1,2,...} such that
lim, . » B, = B<w with B>B. For example, we can choose B,= B + 10 Z?:l 2]

with B= B+ 20.

From now on, we use TRM to denote that conditions or results hold for both RTRM and BTRM.

ASSUMPTION A.3: There is a twice continuously Fréchet differentiable functional

V :H - IR suchthat
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(1) V@o)=0; limg .o V@) =w; V©O)>0, (V(©),M@®))<0 for 8#6, .

2 foranyn>0, inf[-(V©),M®)):0-6,]=n]1>0,

where V' denotes the first Fréchet derivative of V .

This assumes the existence of a Liapunov functional V , which implies the asymptotic stability
of the solution 8, for the nonstochastic, Hilbert-space valued ODE é(t) = M (6(t)) . Note that
Assumption A.3 implies that V maps bounded subsets of H into bounded subsets of IR.
When M isFréchet differentiable at 8, with first Fréchet derivative A , we can choose V to

be alocal quadratic form
V()= (6-6,,A0-6,))+0(|6-6,]7) .

However, as we do not impose differentiability on M , we only assume the existence of V .

LEMMA 2.1. Given TRM with Assumptions A.1, A.2 and A.3(1) holding , if there exists
0<e < 1 suchthat

n ~ ~
limsup, .o llan ¥ [Mj(Z;.0;)-M@j)]l|l=¢ as-P,
j=1

then there exists a postive integer-valued random variable T  such that

P(suph T(N)<T<w)=1.

This lemma demonstrates that { én } generated by RTRM or BTRM becomes bounded for all
large n , i.e, the truncation is only invoked a finite number of times. Therefore, the asymptotic
properties of the RTRM and BTRM are the same as that of the origina RM with

sup;, ||én [< 0 as.—P. Thisresult provides the fundamental property onwhich al of our sub-

sequent results for the truncated methods rest.
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To get an amost sure consistency result, we need stronger assumptions than those in

Lemma?2.1.

ASSUMPTION A .4:

n ~
limsupy o [lan ¥ Uj(Z;8)|=0 as-P .
j=1

By Kronecker’s Lemmaand Assumption A.2(1), Assumption A.4 isimplied by

n A
limsupy .o || ¥ aUj(Z.0))|<o as-P .
i=1

The following consistency result is proven by following the proof of Theorem 3.2 of Yin and

Zhu (1990).

THEOREM 2.2: If TRM and Assumptions A.1 - A.4 hold, then ||én—60||a 0 as

n-o as-P.

Note that our error terms{ U; } can depend on { éj }, while the error termsin Yin and Zhu
(1990)’ s paper are independent of { éj }. Intheir case, Yin and Zhu (1990) have shown that the
error condition A.4 is a sort of necessary and sufficient condition for the almost sure conver-
gence result to occur, given the other assumptions. Thisis true here as well, a fortiori, but we
will not give aformal statement of thisfact. Yin and Zhu show that martingale difference, mov-
ing average, and stationary @ —mixing error sequences { U, } satisfy assumption A.4. Here we
provide a weaker set of sufficient conditions for A.4 based on Chen and White (1996)’s results
on H-valued, L,-mixingale processes. Let |||, denote the L,-norm for an H -r.e. X,
IX[lp=[E[X[|PIYP, 1< p<eo. Let { Wy;-o0<n<o} beasequence of H-r.e’s with
finite L, —norms, 1< p<o . Let{ A"} bealfiltration of F. Then{ W, , A"} isan H -valued

L, -mixingale sequence if there exist sequences of finite nonnegative constants { ¢, ; n>1}
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and { Y, ; m=0} with ¢, - 0 as m - o such that the following two inequalities hold for
aln=1, m=0:

IE (Wh [ A" [p<¢mcn;

[Wh —E (W, | An+m)||p5‘/1m+1 Cn -
If, in addition, W, is A" -measurable, then {W,,A"} is an adapted H —vaued
L, —mixingale sequence.
An H-valued L,-mixingae with 1<p<co has zero mean. We can choose

{Ym;m=0} to be non-increasing in m when { W, , A"} is an adapted L, — mixingale

(p=1). We say that ¢, isof size-a if ¥ [Ym]°<o or ¢gp=0(mY°) for some

m=0

a<(Ud) or =0 (M) forsomeA < -a.

6-independent error case : Suppose for each 8 0OH, U,(Z,6)=FsZ,), where

Fn:G - H isaBorel measurable mapping, n=1,2,....

ASSUMPTIONA.5: { Fn(Z,), F"} isan H -valued L, -mixingale, 1< p < o, with param-

eters{ Y, } and { c, } satisfying either

() S(Ca)y<ead 5 @ni<woil p22 o

i=1 m=1
(i) S(g)P<wand S yYm<owif 1<p<2.
i=1 m=1

The following corollary is a consequence of Theorem 2.2 and Chen and Whites (1996)

Corollaries 3.8 and 3.9.

COROLLARY 23 Let{ én } be given by RTRM . Suppose Assumptions A.1-A.3 and A.5

hold for 8 —independent errors{ U, } . Then ||én -65]|-0 as n- o as-P.
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Gyorfi and Masry (1990) establish consistency and convergence rates for a class of recursive
kernel estimators for Z, 0 IRY (d<e) . A consequence of Corollary 2.3 isan extension of their
consistency result to Z, 0 G, where G is not necessarily a finite dimensional space and

{ Fn(Z,) } isnot necessarily an L, —mixingale.

ASSUMPTION A.6: { Fn(Zn),F"} is an adapted H -valued L, -mixingale , p =1 with
supn E[|Fn(Zy) "] < forsome r=p,r>1 and ¢, = O ((logm)™2#) for some small

B>0.

The following corollary is a ssmple consequence of Theorem 2.2 and Chen and Whité's (1996)

Theorem 3.10.

COROLLARY 2.4: Let{ én} be given by RTRM . Suppose Assumptions A.1-A.3 and A.6
hold for 6 —independent errors { U,} . If a,=0O(ntlogn), then ||én -65]| -0 as

n-o as-P.

6 —dependent error case : The error terms U,, are influenced by both Z, and én , Where
U, is B(G x H) / B(H) -measurable.

First we adapt the "martingal€' approach to get almost-sure convergence results for the RM
procedure by imposing stronger versions of Assumptions A.1 - A.3. Some common conditions
ae: (@ M(@) and M,(Z,,0) (as.—P) grow at most linearly in 8 ; (b) the Liapunov func-
tional istakentobe V(0) =(6 -6, ||2; (c) some control isimposed on the noisevia{ a, }; or (d)
some restrictions are imposed on the inner products of both (V'(),M()) and

(V'(), Un(Zn,)) -

If we do not impose linear growth restrictions on M, and M, we need to assume that
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[6o]l< By < B and use the BTRM. The key point here is that truncations are only invoked
finitely many times, given proper control of the growth of the average of the errors (via Lemma
2.1). The following three corollaries yield amost-sure convergence results of this sort by pro-

viding sufficient conditions for Assumption A .4.

COROLLARY 25: Let{ én } be given by BTRM. Suppose Assumptions A.1 - A.3 and the

following conditions hold :
(1) There exist sequences of mappings{ Mn 'H - H}and{s,:H - (0,) } such that,
for each n, Mn is B(H) /B(H) —-measurable, s, is B(H) /B(IR) —measurable, and for
any & thatis F" —measurable,

E[Mn(Z,,é) | F"] = Mn(f) as.—P ; E[II'V'n(Zn,f)IIZ | F"]=s,¢) as-P .

Forany 0< K < andforal n,define
bin = SUpjgj<k [Mn@) =M ©O) | . Ckn=SUpjgj<k [516)] -

(2 lim_wbkn=0; S (abgj)<e
j=1

(B) ckn<o ; Y(a?cgj)<w
=1

Then ||én -65]|-0 as n- o as-P.
Remark: Here we can identify

Un(Zn 8 1) = [ Mn@ )M @ 1) 1 + [ Mn(Zn,8 n)~Mn(6 1) ]

Condition 2.5(1) assumes that both M, (Z,,6 ) and || Mn(Zn,6 1) |2 have akind of Markovian
structure, which isatypical assumption in the stochastic approximation literature. Thiscorollary

includes the classical Robbins-Monro algorithm as a special case. Metivier and Priouret (1984)
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present an IRY (d<w) —valued classicd RM algorithm of this type without truncation. They
choose a quadratic Liapunov functional V(8) = [8-8, 2 . Under an additional condition on the
growth of s,, namely s,(8) <c, (1+]6-6,?), they get amost sure convergence. Our
corollary relaxes these conditions and extends their result to H , athough we need truncation

but they do not.

The following isaless abstract sufficient condition for Assumption A.4:

ASSUMPTION A.7:

(1) @ Forany 60H andal n, E[U,(-,08)]=0; and(b) Forany K> 0,

n
lim, supg<k llan 3 Uj(Z;,0)|=0 as-P.
i=1

(2) There exists a sequence of B(G) / B(IR) —measurable functions { h, : G - [0,0) } and a

constant h < o such that:
(@) supnE[hn(Z,)] < h;

lim, anil( hj(Z;)) -E[hj(Z;)])=0 as-P ;
=

(b)fordl zOG, 6,6 OH,

IUn(z,60)=Un(z,0")[<hn(2)[|6 -6"].
(3) For any K >0, thee exists a sequence of B(G)/B(IR)-measurable functions

{ gk n:G - [0,0) } and aconstant gx = O (K ') such that:

(@ supn E[ 9k,n(Zn) ] < 0k; and

ims 20 3. (0)(Z) ~EL66;(Z)1)= 0 asP ;
2
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(b) sup <k | Un(Zn:0) I 9k,n(Zn) as.—P.
(4 supjgi<k[IM@)[|= O (K).

Thisassumption is satisfied by many dependent Hilbert space-valued random sequences.

COROLLARY 26: Let{ én } be given by the BTRM with B,.; =B, (1+ ca,) for some
positive number c. Suppose Assumptions A.1 - A.3 and A.7 hold when {U,} are

6 —dependent errors. Then ||én -05]|-0 as n - o as-P.

This corollary includes linear algorithms as special cases. It also includes an IRY (d <) -valued

RM algorithm driven by an ergodic process asin Metivier and Priouret (1984).

COROLLARY 2.7: Let{ én } be given by the BTRM with B,.; =B, (1+ ca,) for some
positive number ¢ . Suppose Assumptions A.1 - A.3, A.7(2)(b), A.7(3)(b), and A.7(4) hold

when { U, } are 8 —dependent errors. Suppose further the following conditions hold:
(1) Foreach 6 0H, {U,(Z,0),F"} isan adapted H -valued L, —mixingale sequence

with{ ¢} of sSze-1/2 and 5 (a,¢,)? < .
n=1

(2)  supnl|hn(Zy) |2 < and { hy(Z,) —E[ha(Z,) ], F"} isan IR-valued L, -mixingae
with{ ¢y} and{ c,} asin ().

(3 supnlGkn(@n)ll2<e and  { gkn(Zn) —E[gkn(Za)],.F'} is an IR-vaued
L, —mixingaewith{ ¢/, } and{ ¢, } asin (1) .

Then ||én—60||_,0 as n- o as-P.

Note that the conditions in this corollary are similar to Kuan & White's (1994) sufficient condi-

tions for almost sure convergence of an IRY (d< o) —valued RM with 8 —dependent errors.
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For estimation purposes, we consider finite dimensiona approximation modifications of the
above RM and TRM procedures. The separability of H implies the existence of a complete
orthonormal basis{ € , j = 1,2,... }. Let Pyny : H - Hyn) bethe orthogonal projection of H
onto Hyny , where Hy(,y isthe closure of linear space spanned by (e1,..., &) ), and
{ k(n), n=1,2,...} isan integer-valued sequence such that:

1<k(n)<k(n+l)<k(n)+1l; and lim,_, ok(n) = .
Fromthisit followsthat dim (Hyxny) = k(n)<n .

An RM procedure with orthonormal projection (RMP) can be defined as

él arb. Hya) -r.e.,

On+1=[60n+ @ P+ Mn(Zn.8n)] -
A truncated RM with projection (TRMP) is

él arb. Hya) -r.e.,

Bn+1=[0n+ @ Pnsn Mn(Z081)11(30) + 6 ns1 1(3:9),

where J, = {61+ @, Pegneny Ma[€Brny 35 In“= {[6n + @y Pynery Ma[|> By }-
Here{ 6", } iseither a sequence of arbitrary fixed (nonrandom) elements in Hin+1) » With
16" hs1]|< B foral n; or asequence of arbitrary Hi(n+1) —r-€’s which are generated by

nature and independent of él and{ Z, },with |8 41||[< B as-P foral n .

Again, depending on whether or not there is prior information on where 8, belongs, we
can specify TRMP to be either a "randomly truncated RM with projection” (RTRMP) or a

"bounded truncated RM with projection” (BTRMP).

The following Assumptions A.3P-A.7P play the same roles for RMP and TRMP as do
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AssumptionsA.3-A.7 for RM and TRM :
ASSUMPTION A.3P. There is a twice continuously Fréchet differentiable functional

V:H - IR such that
(1) V@B, =0; |imH9H_,oc V@)=co; and V(@)>0, (V,(G) , Pk(n)M(G))S 0, for Al
60 Hk(n) , 8#£6,;

(2) Thereexistsafiniteinteger N, suchthat foral n=N,,forany n >0,

inf [~ (V' 6), PupyM©)): [6 =620, 8 OHcmy1> 0.
ASSUMPTION A.4P:

n -
lim supnﬁw”an Z Pk(j+1)Uj(Zj,6j)” =0 a.s.—P.
i=1

ASSUMPTION A.5P: { Pyn+1)Fn(Zn), F"} is an adapted H -valued L, —mixingale with

1< p< o, andwith parameters{ ¢, } and{ ¢, } asin A.5.
ASSUMPTION A.7P: Assumption A.7 holdswith U,, replaced by Pyn+1) Uy .

It iseasy to prove that A.5impliesA.5Pand A.7 impliesA.7P.

We can now state some consistency results for TRMP.

THEOREM 2.8 ( Corresponding to Theorem 2.2) : Given AssumptionsA.1, A.2, A.3P, A.4P,

Iet{én}begivenbytheTRMP.Then ||én—60||a0 a n-oo as-P.

COROLLARY 2.9 ( Corresponding to Corollary 2.3) : Let{ én } be given by RTRMP when
{ U, } are 8 —independent errors. Suppose Assumptions A.1, A.2, A.3P, and A.5P hold. Then

16, -60] 0 a n o as-P.

COROLLARY 2.10 ( Corresponding to Corollary 2.6) : Let { én } be given by the BTRMP
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with Bp+12B,(1+ ca,) for some positive number ¢ . Suppose A.1, A.2, A.3P and A.7P

hold when{ U, } are 6 —dependent errors. Then ||én -05]|-0 as n - o as-P.

Assumption A.3P plays an important role for the exact analog of Corollaries 2.8, 2.9 and
2.10 to Theorem 2.2, Corollaries 2.3 and 2.6, respectively. Since A.3P(2) might be unduly res-
trictive, now we consider aweaker assumption:

ASSUMPTION A.8: There is a twice continuously Fréchet differentiable functional
V:H - IR, and there isasequence of elements{ 6°, 0 Hy () } such that :

(1) There existsafiniteinteger N, suchthat forall n>Ng,forany n >0,

inf [~ (V ©),PumM©)): 6 -6°%][2n, 6 O0Hm1>0.

2 > 3 [0%n+1 — o< .
n=1

THEOREM 2.11 ( Corresponding to Theorem 2.2 ) : Given Assumptions A.1, A.2, A.3P(1),

A4Pand A8, let{ 6} begivenby TRMP. Then [8,-6,] -0 as n - o as—P.

COROLLARY 2.12 ( Corresponding to Corollary 2.9) : Let{ én } be given by RTRMP when
{ U, } are 8 —independent errors. Suppose AssumptionsA.1, A.2, A.3P(1), A.5P and A.8 hold.

Then ||én—60||_,0 as n-o as-P.

COROLLARY 2.13 ( Corresponding to Corollary 2.10) : Let{ én } be given by the BTRMP
with B,+1 =B, (1+ ca,) for some positive number ¢ . Suppose A.1, A.2, A.3P(1), A.7P
and A.8 hold when {U,} ae 0 —-dependent errors. Then ||én -6 -0 as

n-o as-P.

The comparison of Assumptions A.3P and A.8 remains valid for the "martingale’ approach.

Here we present two propositions as an illustration. Again, the linear growth restriction on
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Pcn+1Mn and the quadratic form of V guarantee the a.s.—-P uniformly boundedness of

{ én } generated by RMP; hence, no truncation is needed.

PROPOSITION 2.14: Let {8,} be given by RMP satisfying E[||61-6, 2] < o when
{ U, } are 6 —dependent errors. Suppose A.1(1), A.2(1) and the following two conditions hold:
() Forany n > 0,
liminfy (inf [ = (6-6 , PunsnMn(Z0,0) ) : [0 =652, 8 O Hksn1)>0 as—P .
(2) There exist sequences of B(G) —measurable functions{ h,, : G - [0,) } and

{ gn:G - [0,0) } such that,

(@) for eachzD G, 6 OHkn+1y s [[Pkn+1yMn(z6) ”2 < hn(2) + gn(2) (1666 ”2

(0) 3 aZE[M(Zy) |F <o as—P; and 5 a2 E[gaZ) | F" ] <w as-P .

n=1 n=1
Then ||én—60||_,0 as n- o as-P.
PROPOSITION 2.15: Let { 6, } be given by RMP satisfying E[[|6 1Py 18 %] <  when

{ U, } are 6 —dependent errors. Suppose A.1(1), A.2(1) and the following three conditions hold:

() Forany n > 0,
lim infn ( inf [ - (Q_Pk(n+1)60 ) Mn(Zn,G)) . ||9 - Pk(n+1)60 ||2I’] , 00 Hk(n+1) ] ) >0 as-P.

(2) There exist sequences of B(G) —measurable functions{ h,, : G - [0,) } and

{ gn:G - [0,0) } such that,

(@) for each zO G, 60 OHkn+y » [[Pkn+1yMn(z.6) ”2 < hn(2) + 9n(2) [|[6-Pkn+1)00 ”2 -

() 3 aZE[M(Zy) |F <o as—P; and 5 a2 E[ga(Z) | F" ] <w as-P .

n=1 n=1

@ X Pkn)fo = Pk(n+1)00 [ < o0
n=1
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Then ||én—60||_,0 as n- o as-P.

Remarks: (i) In these two propositions, V(8) =(6-8,2/2 ,and 6°,= Pi(n)fo in Proposi-

tion 2.15. (ii) Sincefor any 6 O Hyn+1) ,

||9_Pk(n+1)90 ” 2+ ” (I _Pk(n+1))90 ” 2 E”9 _90 ” 2 and

(G_Pk(n+1)90 ) Mn( ) ,9) ) = (9_ 90 ) I:>k(n+1)Mn( ) :9)) )

condition 2.14(1) implies 2.15(1). Since lim, o, k(n) =, lim, o [[65—Pxn+1)60 |2=0,

2.14(2) and 2.15(2) are equivalent.

(1. ASYMPTOTIC NORMALITY

This section presents asymptotic normality results for the RMP and TRMP algorithms.
Nixdorf (1984) has obtained an asymptotic normality result for an RMP algorithm when { U, }
is a sequence of H-valued martingale difference, 6-independent errors. Here we follow
Nixdorf’s approach, but relax hisnoise conditionsto allow { U, } to be a sequence of H-valued
mixingale 8—dependent errors. Our improvements are applications of Walk's (1987) results and
Chen and Whit€s (1998a) new central limit theorems for near epoch dependent functions of

H —valued mixing processes.

In this section, we always assume that A.1, a,=1n, A.3P and A.4P hold. Hence,
as.—P,{ én } converges to 8, in norm, and is uniformly bounded for all n=n, . For sim-
plicity and without loss of generality, weset n,=1 from now on. Also, we only consider the
6—dependent error case since it includes B-independent errors as a special case. Thus, we

study limiting distribution properties of the following algorithm :
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On+1=60p+n"" Pkn+yM @) + n~t Pin+1)Un(Zn, 1) -

We begin with the following smoothness condition.

ASSUMPTION B.1: M(-) iscontinuously Fréchet differentiable at 6, with first derivative

A.

Note that whereas M could be any uniformly continuous ( possibly nonlinear ) operator on any
bounded set in the previous section, the present assumption requires M to be a locally linear
operator around the true root 8, . Under thislocal smoothness assumption, RMP or TRMP can

be trandated into a recursive procedure of Fabian's (1968):

~

B,i1-60=(1+n1A)(8,-8,)+n ARy 4 n 1B T 4 n 62 T,
where >0,
An= A+ Penar) (FIBn] —F[6o])

with F: H - L(H,H), suchthatforany yOH,

Fl0l y)=Ay  foro=6, ,
FIO] ()= Ay +[M@©) - A(©-0)]1(8-05.y)!(6-6,,6-0,) for 8#6,;

v =nE 2Py 0y [ Un(Zn.86) = EUn(Z0.60) 1 ;
Tin =072 Pe(nat) [ Un(Zn .8 n) = Un(Zn.8o) + EUn(Zn80) 1 ;
Ton =1nP2 (Pygueny A=A) (8, -6,)

= P2 (Pynery = 1) APrney(Bn =06) = 0P2 (Pnany = 1) A (8o = Pen+1)8o ) -

Under Assumption B.1, F is continuous a 6,. If in addition, we have

||én—90||~ 0 as-P, then |[A,-A| -0 as-P .
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ASSUMPTION B.2: o = inf [Rey: yO spec(-A)]>pB/2, where spec (- A) is the
spectrum of —A. Equivaently, for any u(0,0), |[exp(uA)|<exp(-uoc ) with

o >pBI2.

This is a stability assumption. Under this assumption, the solution to the differential equation

n
should be insensitive to "small" perturbations of A, , T1, , Ty andthe partial sum Y v; .
j=1

Given Tq, - 0,T5, - 0 in a suitable sense, results like the central limit theorem (CLT),

functional central limit theorem (FCLT), and law of iterated logarithm (LIL) for the sequence

~ n
{6} are consequences of the corresponding results for the partial sum 3 v;. Berger's
j=1

(1986) and Walk's (1987) results for general Fabian-type recursive schemes in a Banach space

are applicable.

Assumption B.2 requires that the spectrum of A iscontained in{y: Rey< -o  }, which
isinturn contained in{y: Rey< —B/2}. Hence A cannot be a compact operator when H is
an infinite-dimensional Hilbert space or any general infinite-dimensional Banach space. This
means that A cannot be the operator norm-limit of any sequence of finite rank operators . In
particular, this assumption rules out that ||Pyp+1) A—Al - 0 a n - o« . Nevertheless, we
can always rewrite A inthe form al + b C,where a#0,a,b are constants, and C isa

compact operator.

Before proceeding to asymptotic normality results obtained using Walk (1977,1987) and

Berger (1986), we need assumptions ensuring that " T4, - 0, T,, — 0 in a suitable sense”

n
and that " the partial sum Y v; followsaFCLT."
j=1
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ASSUMPTION B.3:

D (0 = Pyny) APgmyl[ - 0as n - o,

(2 nP|6, - Pxn)Poll®> ~ 0 asn— e forsomeB O0(0,1].

Note that B.3(2) relaxes Nixdorf’s (1984) requirement that S =1. Assumption B.3 and
||én -0, - 0 as—P implytha T,, - 0 a n - o« amostin first mean, i.e, for any
€>0,thereexists Q" OF with P(Q")=1-¢ suchthat [o |Ton||dP - 0as n— o . This

notion of convergence is weaker than convergence a.s. and convergence in first mean, but

stronger than convergence in probability. (See Nixdorf (1984), Berger (1986), Walk (1987).)

ASSUMPTIONB.4: Let 6, =max (0, (1+B)/2-0" ).
(1) There exists 0 0 (d, , 1/2) such that

2 S (P 5 v, = Op (1) .
=1 i1

(2) Thereexists & 0O(J,, 1/2) such that

I
N"Y2 maxyq <o (M1)% | S 72Ty -~ 0 inProb. asn- o,
i=1

A sequence of IB-r.es { W, } converges in distributionto a IB-r.e. W (W, =>W in
IB) if the sequence of distributions of { W,, } converges weakly to the distribution of W on

IB, i.e, if for all bounded and (norm -) continuous functionals F : IB - IR,
limy .o [ 8 FX)Nn(dx) =] g F(x)n(dx) ,
where the distributions{ n, } and n are given by, for any A [0 B(IB),
NaQ)=P[w0Q: Wow)OA] and n(A)=PlwlQ: Ww)OA].

Let Ch[0,1] denote the space of continuous mappings from [0,1] to H with sup-norm
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[X]lw=sup{|X(t)||: tO[0,1]}. This is a rea separable Banach space. Let
X={ X(t);tO][0,1] } bea Cx[0,1] — valued random element. Define the Cy[0,1] — valued
random  elements X, ={ Xy(t);tO[01]} , Yya={Y,();tO[01]} , and

Y={Y(t);tO[0,1] } asfollows:

[nt]
Xat) =n7Y2 5 v+ 02 (tnt]) vieges . tO[0,1];

nt
=1

Yo(t) =n"Y2 Rpyy + n7Y2 (nt—[nt]) Rpuje1-Rmy) - tO[0,1]  with Ry=n@P2 @ .1-6,) ;

Y(t) = X() + [A+1 (1+B)/2] Jo,q STATCAA X(st) ds , tO[0,1] .
In the definition of Y and elsewhere, for t>0 and ', AOL(H,H), we define

th =exp((logt)r) and exp(A)= Z/\j /j!. The integrals are Bochner integrals in
j=0

L (H,H) . Assumption B.2 ensures that the integral in the definition of Y exists a.s.—P .
ASSUMPTION B.5: Forsome X [0 Chx[0,1], X,=>X (as n - «)in C4[0,]1] .

THEOREM 3.1: Suppose ||én—60 | - 0 as -P and Assumptions B.1-B.5 hold. Then

Yo=>Y (a8 n - «)in C4[0,1] .

This theorem is proved by mimicing the proofs of theorem 1 in Walk (1987), corollary 2.12 in

Berger (1986) and theorem 1 in Nixdorf (1984).

Before we state our next result, we need some definitions and notations. (Details can be
found in Chen and White (1998a) ). An H-r.e. W ( or the distribution 4 of an H-r.e. W) is
weakly second order if E[ (W, h)?]=y (W, h)?>u(dw) < « foral hOH . For aweakly
second order H-r.e. W with expectation E[W], we define the covariance of W, Cov

W: HxH - IR, as
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CovW (Xy)=E[(W-E[W],x)(W-E[W],y)], forany x, yOH.

This is a symmetric, positive, and continuous bilinear form. Alternatively, we can define a
covariance operator Sy: H - H a Syx=E((W-E[W],x)[W-E[W]]) for any

x OO H . By the definitions we have

(Swx) () =(Swx,y)=CovW(xy) forany x, y H.

Let L(H,H) denote the space of bounded linear operators with the operator norm | -|| defined
as |S||=sup[||Sx]: ||x||[€1, xOH]. For a compact operator S in L(H,H), if
z}”:l [(Se, g )| < and z}”:l(Sej , € ) isindependent of the choice of complete ortho-
normal system (cons) { g }, we call S a nuclear operator and tr (S) = z;”:l (Sej, g ) the
(matrix) trace of S. When a nuclear operator S is self-adjoint and positive, we have
tr(S) = z}”:l/\j(S) , where {A(S), =1} are the eigenvalues of S. Let S(H) be the set of
all self-adjoint positive nuclear operators. This is a Polish space under the metric
d(SJ)=||S- Iy =tr ([(S=3)"(S-I)]Y?), where (S-J)" isthe adjoint of (S-J), for any
S,JOS(H) . In probability theory, S (H) consists of al covariance operators of Gaussian

measureson H .

An H-r.e. N has a Gaussian distributionon H if for all hOH, the real-valued ran-
domvariable (h, N) hasaGaussian distributionon IR, or equivaently, an arbitrary finite set
of coordinates of N (in an arbitrary cons) has afinite-dimensional Gaussian distribution. We call
N an H-valued Gaussan, and N(0,S) an H-vaued Gaussian with zero mean and

covariance S S(H) .
A Brownian motion (BM) in H isa Cx[0,1] -r.e. X satisfying the following conditions:
(@ X(0)=0; (b) the increments on digoint time intervals are independent; (c) for all

O<t<t+s<1, theincrement X(t+s) - X(t) has a Gaussian distribution on H with mean
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zero and covariance operator s S, where S[0S(H), doesnotdependon t, s.

COROLLARY 3.2: In Theorem 3.1, if B.5 holds for X a Brownian motion in H with
X(0)=0, EX(1)=0andCov X(1) =S, then:

() Y,=>Y where Y is a Brownian motion in H with Y(0)=0, EY(1)=0 and
CovY(1) =K, where K isthe unique solution of the operator equation AK + K K* =-S

in L (H,H), with A=(B/2)1 +A,
K =Jo,q s Ss A+ gs = f(0,0) €XP (AU) S exp (A u)du :and

(i) NP2 (8,,1-6,)=>N(0,K) (8 n - o)inH.

Assumptions B.4 and B.5 are abstract conditions. In the rest of this section, we provide
sufficient conditions in terms of various dependent, possibly heterogeneous H -valued random
sequences. In particular, we consider a general class of H-valued mixingales. Before we pro-
vide sufficient conditions for Assumption B.4, we state a lemma that contains some general cri-

teriafor B.4(1) and B.4(2). These results can be found in Berger (1986) and Walk (1987).

LEMMA 3.3: Let{v,}and{ T, } beany sequencesof H -r.es .

(i) If thereexists & (9, , 1/2) such that

|
BAL) nY2maxyq<n (MY || S vill=0p (1) ,
ji=1

then{ v, } satisfies B.4(1).

(i) If BA4(1’): E]| % vill=O( n¥2), then B.4(1’) holds.
j=1

n
(i) 1fB.4(2): ntS [ Tj || - O almostin first mean, then { T, } satisfies B.4(2).
i=1

(iv) If T, - 0 amostin first mean, then B.4(2’) is satisfied.
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n
W 1fB.42"): nt Y Tj| - 0 as—-P, then{ T, } satisfies B.4(2).
j=1

To verify the conditions in the above lemmafor an H-valued mixingale process, we can apply

Chen and Whit€ s (1996) maximal inequalities and law of large numbersfor L,(H)—-mixingales.

ASSUMPTION B.6:
() Forany 6 OH andal n, E[Pypn+1) Un(-,8)]=0.
(2) For every bounded set © [J H , there is a sequence of nonnegative square integrable

functions { @g ,, } such that sup;gy E[q02@,|]< o andforal 6,000 , nOIN,

IPk(n+1)Un(+,0) = Puqn+nyUn(-. 87 ) [S@on (6 -67|.

(3) For some r [ (2,) , for any bounded subset © [ H ,

suphon E[Supgm || Pn+1)Un(-,6)]|" ] <.

(4) { Px(n+1)Un(Zn.8,) , F" } isan adapted L ,—mixingale sequence with { Y } of size

n
-12, and ¥ jF1¢%=0(n).
j=1

The following is a set of sufficient conditions for B.6. In particular, for j=1,2,3,4, B.7(j)

implies B.6(j) respectively.

ASSUMPTIONB.7:
() Forany 6 0 H andal n, E[Ux(-,6)]=0.
(2) For every bounded set © [J H , there is a sequence of nonnegative square integrable
functions { @g ,, } such that sup; gy E[q02@,|] <o andforal 6,800 , nOIN,

”Un( ,9)_Un(' !6, )quoe,n”e_e, ”

(3) For some r [ (2,) , for any bounded subset © [ H ,
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suphon E [ Supgm [[Un(-,6)[|"] < 0.
(4) { Un(Z1,80) , F"'} isan adapted L ,—mixingale sequence with { @/, } of size -1/2,

and 5 jPtc2=0(n).

n
=1

PROPOSITION 3.4: (i) Conditions B.6(1) and B.6(4) imply B.4(1"");

(i) Conditions B.6(1) - B.6(3) and ||én -65] - 0 as —P imply B.4(2).

Before we present sufficient conditions for B.5, we need the definition of L,(H)-near

epoch dependent processes and related results; see Chen and White (19984) for details.

DEFINITION 3.5:
(1) Let A, G betwo o—subfields on the probability space (Q, F, P) . Define two measures

of dependence as:

a(A,G)=sup[ |P(AC)-P(A)P(C)|: ADOA,COG];

@(A,G)=sup[ | P(C|A)-P(C)|: AOA,P(A)>0, COG].

(2) Let { D, } be asequence of IB -r.e.s defined on the probability space (Q,F,P), and
denote A,° =0 (D;; a<j<b).Define

a(m)=supy [a (A", Anem™) 15 @(M) =supy [@ (A", Anem™ ) ]
If limy_.oa(m)=0, then { D,} iscaled an a—-mixing sequence. If lim,_ . @(mM)=0,
then{ D, } iscalled a ¢—mixing sequence.
(A Let{D,; —o<n<cw} bea IB-r.e. sequenceand { W,,; —-o<n<ow} bean H-r.e
sequence. Then {W,} is called Ly(H)—-near epoch dependent (NED) on { D,} if

[Wh|p <o, 1<p<oo, and there exist constants { 4y, 20; m=0} with u, decreasing to
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zeroas m - o and{ d,=0; n=1} with sup, d, < o such that
IWh —E[Wq | Ap-n™ ™1 pSHmdn, whereAisasin(2).
Let { g ; j=1} be an arbitrary cons of H, and let Hy be the closed linear span of

[g: 1<j<k]. Let Pc: H - Hy bethe orthonormal projection operator. Let { W, } be an

n
H-re sequence. Let S, be the covariance operator of n~Y2 > W;. Define
j=1

$X=P, S, Py and

(nt]

Xa(t) =n7Y2 S W+ n7Y2 (nt—[nt]) Wpnges , tO[0,1] .

i=1

[nt]
Let Sp1® =Pk Sty Py be the covariance matrix of n™2 5™ PW; .
j=1

Now we are ready to provide sufficient conditions for Assumption B.5, using the following

lemma, which is Theorem 4.14 in Chen and White (1992).

LEMMA 3.6: Suppose that { W, = n®2 P, 1, 1yUn(Z,,8,) , F"} has zero means and uni-
formly bounded r —th moments (r > 2) and satisfies

(1) @ { W, }is Lo(H)-NED on{ D, } with u,, of size-1/2 and d,=1;

(b) { Dy } isamixing IB -r.e. sequence with either a(m) of size -r/(r-2) or @(m) of size
-r/2(r-1).

(2) Suppose there exists ST S(H), S# 0 such that:

(@) For each k=1, let {A[(SK); 1<l<k} be the eigenvalues of S,¥ in nonincreasing

order. Then
diag[A17H(SK), - ATHS) =0 ;

(b) Foreach k=1, SyyjX > t PSPk as n - e forany t0[0,1]; and
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(© limsupy | tr(Siaty) — tr(PkSirt1Pe) | — 0 uniformly int 0 [0,1] as k — o .

Then Assumption B.5 is satisfied when X is a Brownian motion in H with
X(0)=0, EX(1)=0 andCovX(1)=S.

The following result summarizes Corollary 3.2, Proposition 3.4 and Lemma 3.6. It gives a
CLT and an FCLT for the RMP and TRMP algorithms when errors are 8-dependent and

L »(H)-NED on some mixing processes.

COROLLARY 3.7: Suppose ||én—60 | - 0 as —-P and Assumptions B.1-B.3, B.6(1) -
B.6(3) hold. If { Wy=v,=nlY2p 1 Un(Z,6,),F"} satisfies conditions 3.6(1) and

3.6(2), then all the conclusions in Corollary 3.2 hold.

Using the same approach, we can also obtain a CLT and an FCLT for the RM and TRM
algorithms when errors are 6—dependent and L,(H) —NED on some mixing processes. In par-
ticular, we consider the case where errors are weakly stationary mixingale processes and { én }

isgiven by the RM algorithm:
én+1 = én +n7t M(én) +n~t Un(z, 'én) .

We obtain the following result using Theorem 3.9 in Chen and White (1998a).

COROLLARY 3.8: Given the RM as above, suppose ||én -65] - 0 as.-P and Assump-
tions B.1, B.2, B.7(1) - B.7(3) hold. Suppose { W, = v, = n® D2y (z,,6,), F"} is weakly
stationary and satisfies the following conditions:

(1) @ { W,}is Ly(H)-NED on{ D, } with u,, of sze-1 and d,=1;

(b) { D, } isamixing IB-r.e. sequence with either a(m) of size -2r/(r -2) or ¢(m) of size

-r/(r-1);
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(2 Foreach k=21, min[ (PSP x,x):|x|=1,x0OH]>0,

Then al the conclusions in Corollary 3.2 hold.

In practice, A is unknown and S is unobservable; hence, the corresponding K is

unknown. The following result is useful for statistical inference.

LEMMA 3.9: Let { Fn} be a random sequence in L(H,H) and let { é1} be a random
sequence in S(H) . Suppose for each n, spec(Fn)D[yDC . Rey>-1/2] as.-P, and

let

 cfoas G s

Kn=Jo1S"Ss" ds.
If there exist anonrandom I in L (H, H) withspec (T ) D[y O C : Rey > -1/2] and a honran-
dom Sin S(H) such that lim, || Fn -T||=0in Prob. ( resp. a.s-P), and lim, ||§h -S|y =0in

Prob. (resp. as-P), then Iimn||lzn—K||tr:O inProb. ( resp. as.-P), where

K=Jo1s" Ss’ ds.

Given Corollary 3.7 ( or Corollary 3.8 ) and Lemma 3.9, we can then apply Dippon’'s (1991)

Theorem 1 to construct asymptotic confidence regions for ||é n=6o]-

V. LAWSOF ITERATED LOGARITHM

This section derives a law of iterated logarithm (LIL) for the RMP and TRMP algorithms
when { U, } isasequence of H-valued NED, 6—-dependent errors. Our approach is akin to that

for the asymptotic normality results; thus the basic setup of section I11 remains valid.

n ~
Just asa CLT for the partial sum{ > v;} impliesaCLT for {6,},anLIL for{ > v;}

n
=1 =1
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implies an LIL for { én }. The following result is a smple corollary of Walk's (1987) Theorem

2.

COROLLARY 4.1: Suppose ||én -0, - 0 as. —P, and Assumptions B.1, B.2, and the fol-

lowing conditions hold :

n
(1) (nloglogn)™?|| 5 vj-BM(n)|-0 asn-o as-P,
=1

where BM ={ BM(t); t[0, o)} isa Brownian motion in H with covariance operator
S;

n
2 nt(loglogn)™2| 3 T4[|-0 asn-w as-P;
j=1

n
(3) nt(loglogn)™2| 5 Ty[|-0 asn-w as-P.
j=1

Then (i) (tloglogt)™Y2|[t]*P"2 (6141 -60)-GM()| -0 ast-w as-P,

and (i) limsup,_ . (24 tloglogt)™2|[[t]™*A2 (6,1,1 -6,)|=1 as-P,

where A =sup[(Kh,h):|h||<1, hOH] isthelargest eigenvalue of K, as defined in
Corollary 3.2, and GM = { GM(t); t0O[0, )} isa Gaussian Markov process in H with
GM (t) = BM(t) + (A+1 (1+8)/2) f(0..) ST A+ C*AV2) BM(st) ds .

Now we give sufficient conditions for 4.1(1), 4.1(2) and 4.1(3). Condition 4.1(1) assumes an

n
LIL for the partial sum{ 3 v;}. Thefollowing LIL for agenera adapted L ,(H)-mixingae of
j=1

size -1 isaconsequence of Philipp's (1986) theorem.

LEMMA 42: Let d=dim(H)<o, and let { W, ; n=>1} be an H-valued sequence with
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supy E[|W,[?*9] <  for some &> 0. Suppose the following conditions hold:
(D{W,,F"; n>1} isan adapted L,(H)-mixingale of size—-1 forsome p=1.
(2) There exist >0 and an SOS(H),S#0, suchthat E[|Com—-nS|¢]= O (n'?)

uniformly in m=0, where C, ,,: H - H isdefined as
Caomh=E[(h, Zmi1cjem+n W) ) Zmea<jemen W | F"], hOH.

Then without changing its distribution we can redefine the sequence { W,, } on aricher probabil -
ity space on which there existsan H-vaued i.i.d. Gaussian sequence{ N; (0, S) } such that
n n
()| S W, -3 N;(0,S)|=0(n®) as-P if d=dim(H)< o ,
. =

j=1 J

where n > 0 isaconstant depending only on r and d ; and

N (0,S)|=o([nloglogn]¥?) as-P if d=dim(H)=c .

n
=1

(i) |5 W~
=1

j
The following LIL for a weakly stationary, adapted L,(H)—-NED sequence is an applica-

tion of Lemma 4.2, Chen and Whités (1996) Theorem 3.7 and Lemma 4.2, and Chen and

Whités (1998a) Lemma 3.8.

LEMMA 4.3 Let d=dim(H) <o and let { W, } be an adapted weakly stationary H -r.e.

sequence with zero means and uniformly bounded L, —norm (r > 2) satisfying condition

n
3.8(1). Let S, be the covariance operator of n~Y2 > W, with [nS,[|y -~ a n - o,
i=1

Then there exists SO S(H), S#0, suchthat | S, -S|y - 0 a n - . Moreover, without
changing its distribution we can redefine the sequence { W, } on a richer probability space on
which there existsan H -valued i.i.d. Gaussian sequence { N; (0, S)} such that the conclu-

sionsof Lemma4.2 and the following hold:
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n
limsup,_ [ 27 nloglogn]™?| 5 W|=1 as-P,
j=1

where T, =sup[ (S h,h):||h|<1, hOH] isthelargest eigenvalue of S, .

REMARK 4.4: If {Wy=v,=nlD2p . 1U.(Z,6,)} satisfies al the conditions of
Lemma 4.2, then without changing its distribution we can redefine the sequence { v,,} on a
richer probability space on which 4.1(1) holds.

We can apply Chen and White (1996) to provide sufficient conditions for 4.1(2); one such

example isasfollows.

ASSUMPTION C.1:

(1) For each 6 OH, { Pyn+1Un(Zn0),F"} is an adapted H -valued L, -mixingae
sequence with{ ¢/, } of size-1/2 and 5 n™?P (loglogn)™ (c,)? < o .
n=1

(2) There exists asequence of B(G) / B(IR) -measurable functions{ h, : G - [0,) } such that

foral zOG, 6,67 0H,

|| Pk(n+1)Un( Z, ?] ) - Pk(n+1)Un( Z, 0 )”S hn(Z) ||9 -0 || .
(3) supn||hn(Zy) |2 < o and{ h,(Z,) —E[ha(Zn) ], F"} isan IR-valued L, —-mixingale with
{Yn} of size-1/2.

Assumption C.1 isimplied by the following stronger assumption.

ASSUMPTION C.2:

(1) Foreach 8 OH, { Uy(Z,,0), F"} isan adapted H —valued L, —mixingae sequence with

{Ym}ofsize-1/2 and 5 n"@P) (loglogn)™ (cy)? < .
n=1
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(2) There exists asequence of B(G) / B(IR) -measurable functions{ h, : G - [0,) } such that

foral zOG, 6,6 0H,

IUn(z,60)=Un(z,0")[<hn(2)[|6 -6"].
(3) supn |Pn(Zn) |2 < and{ h,(Z,) —E[ hn(Z,) ], F" } isan IR-vaued L, -mixingale with
{Yn} of sze-1/2.

The proof of the following result is similar to those of Corollaries 2.6 and 2.7.

PROPOSITION 4.5: Given the RMP or TRMP as in Section I, A.3(2), C.1 and

16465l - 0 as.—P, then4.1(2) issatisfied.

The following assumption together with { ||én [} uniformly bounded a.s.—P implies condition

4.1(3).
ASSUMPTION C.3;

n
(1) n~*(loglogn)™?| 5 jP2 (I = Py(j+1) ) APyanll - 0 8 n - w;
j=1

n
(@ n7t(loglogn)™?| 5 j# (8o~ Py(j+160)ll - 0 asn - e.
j=1
This assumption only imposes very mild restrictions on the choice of the projection subspaces.
By Kronecker’s Lemma, Assumption C.3 isimplied by
ASSUMPTION C.4:

NP2 [(1 = Penseny) ) A Prneny | = O(D) 5 P28, = Prgnay B0 1= O(1) .

The following result summarizes Corollary 4.1, Remark 4.4 and Proposition 4.5. It givesan LIL

for the RMP and TRMP algorithms when errors are 6—-dependent , L,(H)-mixingales(p=1).

COROLLARY 4.6: Given the RMP or TRMP as in Section Ill, B.1, B.2, C.1, C.3, and
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||én -65]- 0 as-P,

it { Wo=v,=nBD2p .1 Un(Z0,6,)} satisfies conditions 4.2(1) - 4.2(2), then the conclu-

sionsof Corollary 4.1 hold.

Finally, we present an LIL for the RM and TRM algorithms when { U,, } is a weakly sta-

tionary 6—dependent process, L,(H)—NED on some mixing processes.

COROLLARY 4.7: Given the RM or TRM as in Section Ill, B.1, B.2, C.2, and
180 =65l - 0 as—P, if { Wy=v,=n®D2y_(Z,6,)} satisfies condition 3.8(1), then the

conclusions of Corollary 4.1 hold.

REMARK 4.8: When H=IRY,d <, the approximation error ( result 4.2(i) ) is small
enough to directly deliver a CLT and an FCLT in addition to the amost-sure loglog rate result
4.3(i). Heunis (1992) has followed this approach to get an almost-sure loglog rate of conver-
gence and an FCLT for a specia RM agorithm in IR (d < ) (i.e.,, the Wiener-Hopf prob-
lem) when the error sequence { Uy, } isalinearly 8—dependent , strictly stationary mixing pro-
cess. Our Corollaries 3.8 and 4.7 and Lemma 4.3 extend most of his results to various RM ago-
rithms in IRY (d < ) when errors { U, } are 6—dependent , weakly stationary NED func-

tions of some mixing processes, and nonlinear in 6 .

REMARK 4.9: When dim (H) = «o, the approximation error in result 4.2(ii) is not small
enough to directly imply a CLT and an FCLT. But it is easy to verify that al conditions of Chen
and White's (1992) Theorem 4.10 are satisfied given the assumptions of Lemma 4.2 above. Thus
an FCLT and a CLT still hold, although the conditions for the LIL are in general stronger than

those needed for an FCLT when dim (H) = o ( Max Stinchcombe has constructed a clever
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example which satisfies an FCLT trivialy yet failsan LIL). We note aso that the mixingale rate
condition in Lemma 4.2 is stronger than that in Lemma 3.6; therefore the results of Section 111

are not redundant.

V. MEAN RATE OF CONVERGENCE

Section 1V provides an almost-sure loglog rate of convergence for { én } when M() is
locally linearizable about 6, . This section investigates another type of convergence rate pro-
perty without the smoothness assumption B.1. In particular, we obtain some results on the order
of magnitude of E[ V(én )], where V isa Liapunov functional. The method of proof com-
bines Venter's (1966) lemma and Kushner's (1984) perturbed Liapunov functional technique.
The conditions are dlightly stronger than those specified for almost-sure convergence, but are
weaker than those for asymptotic normality and law of iterated logarithm. They cover many
different types of noise assumptions, including adapted H-valued mixingale sequences ( e.g.,
near epoch dependent (NED) functionsof a — or ¢ — mixing sequences ) as special cases. Since
our approach isvalid for direct H-valued RM and "truncated" RM (TRM) procedures, as well
as sieve-based RM projected (RMP) and TRM projected (TRMP) procedures, we only provide
the conditions, results and proofs for the sieve-based RMP (TRMP) in detail and state those for
the direct H-valued RM (TRM) in brief. We specialize our results to get rates of convergence

for E [||é n =65 ]1?1 under two kinds of Liapunov functional assumptions.

Assumptions A.1, A.3P and A.4P are always in force in this section. We also set a, = 1/n
from now on. Hence we always have ||én -65] - 0asn - o a.s. —P. By an argument simi-
lar to Yin and Zhu's (1990) Theorem 3.3, we can rewrite Assumption A.4P as

n A
Iimnqw”n_l Z Pk(j+1) Uj(Zj,GJ‘)”: 0 as-P .
j=1
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We use the following Assumption AP to simplify notation.

ASSUMPTION AP: Assumptions A.1 and A.3P(1) hold, a,= 1/n, and ||én —0o]| - 0 as

n-o as-P.

Although we can work directly with E[ V(é n) ], we consider instead the behavior of the
expectation of a perturbed Liapunov functional to allow for highly dependent error processes. In

particular, we consider the perturbed Liapunov functional S(n) = V(é n) t \_/(én , ), where

V6. M= 3 ITEL(VE), Py UiZ,0)) 1P

j=n

where asbefore F"™! isthe o—algebra generated by { Z ,éj+1 :j £n-1}. Denote
DV, =E[V(@®:+1,n+1) -V@,,n+1) | F"1] .

By definition, \_/(én , n), 5\_/n , and S(n) are measurable—F"1 .

ASSUMPTION D.1P:

(1) There existsa sequence{ ¢, > 0} with lim, ., c,=c¢ forsome 0<c<o, anda

finiteinteger N, , suchthat forall n>N,,
(V ©), PcmM(@))<-c, V@), for any 6 0Hypy, 626,.
2 |V©O)|?<K(1+V(@)) foral 6 O0H, andsome 0< K < o .
Condition D.1P(1) is stronger than A.3P(2), and is crucial for rate of mean convergence results.

Condition D.1P(2) is very mild and is merely a convenient way to deliver a nonnegative per-

turbed Liapunov functional.

LEMMA 5.1: Given TRMP, suppose Assumptions AP and D.1P(1) hold. Suppose further the
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following conditions hold for some a, b 0(0,1] S0[0,1) and al sufficiently large n :

(1) E[V@,,n)]<0M™?); (2) E[DV,]<0 (n"@);

(3 E[S(M)]20; and (4) E[[Pn+nUn@n8n) |2 |F" 1= 0 (nf).
Denote q=min(a,b,1-8). Thenfor n sufficiently large,

E[V(én)]:O(n‘q) for c>q; E[V(én)]:O(n‘qlogn) for c=q;
and E[V(@®,)]=0(n°) for 0<c<q.

The key point is that E[S(n)] and E[V(én)] have the same convergence rate, while
E[V(én,n)] will go to zero at the same or faster rate. Conditions 5.1(1) - 5.1(4) are satisfied by

many kinds of dependent random sequences. We now give some sufficient conditions.

If { U,=F,(Z,) } is 6-independent , we have the following simple sufficient conditions :

ASSUMPTION D.2P:

1) IEl X i 7t P Fi(Z) | FP1 20 (n7®) for someb > 0 and all sufficiently largen .

j=n

(20 supy E[||Pxp+n)Fn(Zn)[?]< o .

By Minkowski’sinequality, D.2P(1) isimplied by
B) 3 i E[Pkg+nFi(Z) | F" 120 (n™®) forsomeb> 0 andal sufficiently largen .
=n

COROLLARY 5.2: Given AssumptionsAP, D.1P, D.2P and TRMP with 8-independent errors

{ U, }, then al the conclusions of Lemma5.1 hold.

The following assumption is a stronger version of A.5P:
ASSUMPTION A5P: { Pyn+1)Fn(Z,), F"} is an adapted L,—mixingale sequence of

H -r.e.”s with uniformly bounded second moments, and { ¢/, } satisfies either
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D {yYmn}isofsize-1for 1<p<2; or

Q{yYmn}isofsize-a,l/2<a<1for p=2.

THEOREM 5.3: Given AP, D.1P, and TRMP with 8—independent errors{ U, },
() if A.5P (1) issatisfied, then all the conclusions of Lemma5.1 hold with g = 1.

(i) if ABP(2) is sdatisfied, then all the conclusions of Lemma 5.1 hold with

g=al[l2,1).
If { U,=Uu(Z,,0) } is 6—dependent , we have the following sufficient conditions :

ASSUMPTION D.3P:

(1) Forany@ O H, some b > 0 and al sufficiently large n,

IEL 3 it Peg+V;(Z.0) | F1]2<0(n?).
j=n
(2) Forany K>0,

supn E [ supjgj< k || Pun+1)Un(Zn.0) [ %] <

(3) For every K > 0, there is a sequence of nonnegative B(G)—-measurable functions

{hgn:G - [0, )} suchthat
Zisne1 ) HELKj(Z) | F'1=0 (™)
for some b > 0 and all sufficiently large n a.s.—P, and
[ Pkn+1)Un(z.6) — Pkn+1)Un(z.6") [ hk n(2) |60 - 67| ,
foral zOG, |8||<K,[|0||<K,nOIN.
By Minkowski’sinequality, a sufficient condition for D.3P(1) is

(4) Forany® O H, some b > 0 and al sufficiently large n,
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2 i Y E[ Pe+pVi(2.8) | FP 2]l 0 (n7P) .
j=n

Comparing the sufficient conditions for the 6-dependent error case with those for the
6-independent error case, it is obvious that we need some local Lipschitz condition ( say
D.3P(3) ) on the 8—dependent errors { U,(Z,,0) }. Notice that D.3P(1) is an analog of D.2P(1),
whereas D.3P(2) implies 5.1(4) . Since @-independent errors { U, = Fy(Z,) } satisfy D.3P(3)

automatically, we can regard 8—independent errors as a specia case of 6—dependent errors.

COROLLARY 5.4. Given TRMP with 6—dependent errors { Uy, }, suppose Assumptions AP,

D.1P and D.3P hold. Then al the conclusions of Lemma5.1 hold.

In the same fashion, we can obtain rates of mean convergence for direct H —valued RM or

RTRM procedures:

ASSUMPTION A: Assumptions A.1 and A.3(1) hold, a,= 1/n, and ||én—60|| -0 as

n-o as-P.

ASSUMPTIOND.1:
(D (VO),M@B))<-c V(@) forsome 0<c<w andal 6 OH, 86, .

2 |V©O)|?<K(1+V(@)) foral 6 O0H, andsome 0< K < .

ASSUMPTION A5': { Uy =Fp(Z,), F"} isan adapted L,—mixingale sequence (1< p<2)
of H -r.es with uniformly bounded second moments, and { ¢/, } satisfies either A.5P' (1) or

A.5P (2).
It isagain easy to prove that A.5" impliesA.5P'.

ASSUMPTION D.3:
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(1) Forany@ OH, someb > 0 and al sufficiently large n,

IELS i U0 | F'2 <0 (n7).
j=n

(2) Forany K >0,

supn E [ supg<k [|Un(Zn.0) %] < o

(3) For every K > 0, there is a sequence of nonnegative B(G) —measurable functions
{ hxn:G - [0,)} such that ijnﬂj‘l E[he;(Z) | F"]= O (n™®) for some

b > 0and al sufficiently large n a.s.—P, and

|Un(z.6) - Un(z,8)||< hen(2)]|0 -0 | for dl zOG, [6]<K,[|6 |<K,nTIN .

A sufficient condition for D.3(1) is

(4) Forany@ OH, someb > 0 and al sufficiently large n,

iHIE[U;(Z.8) | "] |20 (n™).

M

j
COROLLARY 5.5: Given Assumptions A, D.1 and D.3 with the TRM, let g=min(1,b).

Thenfor al n sufficiently large,

E[V(én)]:O(n‘q) for c>q; E[V(én)]:O(n‘qlogn) for c=q;
and E[V(@®,)]=0(n°) for 0<c<q.

EXAMPLE 5.6: Given Assumptions A, D.1 and A.5 with the RTRM when { U,} are
6-independent errors, then all the conclusions of Corollary 5.5 hold.

Note that this example includes Proposition 5.1 of Yin and Zhu (1990) as a specia case. There,
Yin and Zhu assume 6-independent errors { U, } to be a stationary @—-mixing sequence with

S [o(m) 172" < 00, and sup, E[||U, "] < o, where r > 2. Our Example 5.6 relaxes their
m=1

conditions in three ways : (i) we do not impose stationarity; (ii) we allow r > 2; (iii) we permit
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mixingales of size —=1. Yin and Zhu (1990) require @(m) of size —ar/(r-1) where

a=(r-1)/(r-2)> 1, corresponding toan L,—mixingaleof size-a, a> 1.

Our rate of mean convergence results depend heavily on the properties of the error terms
{ U, }, and the choice of a Liapunov functional, which isin general related to the choice of the
projections { P,, } and the properties of M . We have shown that our error conditions, such as
D.3P, are reasonably mild. In the rest of this section, we illustrate effects of the choice of
Liapunov functional. In particular, we consider Assumption D.1P when V(6) can be some local
quadratic form, and obtain convergence rates for E[ ||én -8,?] corresponding to two ver-
sions of assumption D.1P. Aslong as M isrelatively smooth at 8, , we can choose a quadratic

form as a Liapunov functional. The following corollaries are thus applicable in many situations.

COROLLARY 5.7: Given TRMP, suppose AssumptionsAP, D.3Pwith b = 1 hold and that
(1) there exists a sequence { ¢, > 0} with lim, _, Cc,=c for some O0<c< o such

that
2 (9 —90 ) Pk(n)M (9) ) <-Ch ||9 —90”2 , foral 60 Hk(n) .
Thenfor al n sufficiently large,

E[0,-6,]%=0(n) for c>1; E[|8,-60]2=0(n"tlogn) for c=1;
and  E[|0,-6,]?1=0(nc) for 0<c<1.

Note that 5.7(1) isjust Assumption D.1Pwith V() = |8 -6, ]2 .

COROLLARY 5.8: Given TRMP, suppose AssumptionsAP, D.3Pwith b = 1 hold and that
(1) there exists a sequence { ¢, > 0} with lim, _, c,=c for some O0<c< o such

that
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2 (9 - Pk(n)eo , M(@) ) <-Ch ||9 - Pk(n)eo ||2 , foral 6 O Hk(n) ; and

(2) 3 n7H|6, = PknanyBo || < .
n=1
() Thenfor al n sufficiently large,

E[]|6n ~ PumBo|?] = O(1n) for c>1; E[|85~PemBol?=0(n logn) for c=1;
and  E[|6, - Pembol21=0(n) for 0<c<1.
If we dlightly strengthen (2) to
(3 60— PkmBo|= O (n™™) forsome 0<a <1/2,
(i) then for all n sufficiently large,
E[18n-80]%1= O(n™>) for c> 1;

E[|601-6,]2=0(max[ntlogn,n"2]) for c=1;
and  E[|0,-6,]?=0(n?) for 0<c<1 and 6=min(c,2a) .

Note that 5.7(1) implies 5.8(1), and that 5.8(1) and 5.8(2) together imply Assumption A.8.

Comparing Corollary 5.7 and Corollary 5.8, we can see that the rate of convergence
heavily depends on assumption D.1P. If one only imposes the weaker version of Assumption
D.1P, ( e.g., 5.8(1) ), one needs additional assumptions on the rate of increase of k(n), ( eg.,

5.8(3) ), in order to get a comparable rate of convergence for the RMP estimators.

VI. SUMMARY

This paper has improved the current asymptotic theory on Hilbert-space valued Robbins-

Monro procedures in the following ways:

(1) M:H - H isalowed to be an operator uniformly continuous on any norm-bounded set.

This includes al bounded linear operators, al uniformly continuous nonlinear operators,
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some compact nonlinear operators, and continuous nonlinear operators with "polynomial

growth’ (i.e, [M@©@)|<K[1+|6|P] for 6OH, K>0, pOdIN).

(2) U,=Mu(Z,,0) —M(@©) isalowed to be a Borel mapping from G xH to H,i.e, error
terms Un(Zn,é n) can be influenced by both the random process Z, generated by nature,

and the process én generated by our various RM procedures.

(3) A large class of Hilbert space-valued dependent random processes is permitted by our

assumptionson{ U, }.
(4) Our modified RM procedures work without an a priori bound on { én }.

(5) Our modified RM procedures work with finite-dimensional approximations.

Our amost-sure norm-convergence and mean rate of convergence results are inspired by
those of Yin and Zhu (1990). We generalize their resultsto allow 6 —dependent errors, to permit
Hilbert space-valued mixingale error processes, and to finite-dimensional approximations. Our
functional central limit theorems and asymptotic normality results are inspired by Nixdorf's
(1984) . We generalize his result to cover 6 —dependent errors by following Berger’'s (1986)
approach. We relax his error assumptions to allow Hilbert space-valued NED functions of mix-
ing processes by applying Walk's (1987) and Chen and White's (1998a) functional central limit
theorems for a general class of Hilbert space-valued random processes. Our law of iterated log-

arithm for the 8 —dependent mixingale error processes is new, to the best of our knowledge.

Our modified RM procedures can be applied to nonparametric recursive m—estimation. We
will give examples in another paper. In concrete situations, involving for example the Wiener-
Hopf equation, we might have more information about the functional form of M,(Z,,0),
hence the error U,(Z, ,0) . We then can make some reasonable assumptions for just the data

process{ Z, } and derive the dependence structure for U, asaconsequence.
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This paper ignores several important issues, such as covariance estimation, optimal stop-
ping rules, and the possibility of multiple roots. We will address some of these problemsin our

future research.

All the results in this paper are proved under the assumption that { én : n>1} does not
affect { Z,: n=1}. Since it is very natura in economic time series analysis and learning
models for economic agents that { én } affects { Z, } (feedback), we need to extend our current
results to cover the case of { Z,} being Granger-caused by {én }. Kushner's and others
methods for studying the IRY , (d < o ) —valued stochastic approximation algorithms with feed-
back may well be helpful in studying convergence of infinite-dimensional RM algorithms with
feedback. Chen and White (1998b) established almost sure convergence for H valued RM
algorithms with feedbacks. It will be important to establish convergence rates and limiting dis-
tribution for the feedback case as well. The results in this paper, and those in Chen and White
(1998h), allow for the study of representative agents nonparametric adaptive learning behavior
in the sense that the representative agents do not need to specify a fixed parametric model while
they are learning as new information arrives. Thus our work extends the parametric recursive
least sguares learning models studied by Marcet and Sargent and others. Moreover, our
infinite-dimensional RM procedure also allows for heterogeneous agents' learning -- each canin
principle use a different learning algorithm (countably many). See Chen and White (1998b) for
an example. In this sense our procedure should thus have some connection with the algorithms

studied by Spear (1989), and we plan to look into thisin our future research.
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VII. MATHEMATICAL APPENDIX

PROOF OF LEMMA 2.1: By the definition of 6, , there exists Q, O F with P (Q,)=1
such that for all w 0 Q,, |8 h(@)|<B.Fixan w 0Q,, and supposethat T = o ; then én
would cross the sphere {6 : ||8]= B} infinitely often. Let d; =sup { V(@) :||6|<B} and

do=inf { V() :||6|> By }. Thenthere exist 0< d; <, suchthat [d,,5,]0(dy,dy).
Let D={0:56,sV(@)<d} n{0:]6|<B1}.Then D isaclosed set. Now we can follow
the proof of Proposition 4.1 in Yin and Zhu (1990) for both the RTRM and the BTRM, except

that we only need Assumption A.3(1) .

PROOF OF COROLLARY 2.3: It suffices to show that Assumption A.5 implies A.4 when
{ U, } are 8-independent errors. By Assumption A.5 and the definition of mixingales, we know
that { a, Fn(Z,), F"} is an adapted L,— mixingale with parameters { ¢/, } and { a, ¢, }. Let

{ byt = a,} in Corollary 3.8 or Corollary 3.9 in Chen and White (1996). Then by Assumption

n
A5 weget A4 limsup, a, | ¥ Fj(Z)|=0 as-P.
i=1

PROOF OF COROLLARY 24: It suffices to show that Assumption A.6 and
a,=0(ntlogn) imply A4when{ U, } are 6-independent errors. By Assumption A.6, we

can set Cn =||Fn(Zy)|p and get sup, cy < . Let
b,=a,>, m(n)=0(n%) forsomeO<a <12, B, "=0((logn)?) .
Then all three conditions of Theorem 3.10 in Chen and White (1996) are satisfied, which gives

usA.4with a,= O (n~tlogn).

PROOF OF COROLLARY 25: It suffices to show that conditions 2.5(1) - 2.5(3) imply A.4.
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By the triangle inequality we have

n ~
|3 8 Uj(Z.8)) <AL+ Az, where
=1

AEIZ a TWE)-MOYII,  Ax=l 3 & (M, 8) - 0]
j= j=

Since{én} is generated by the BTRM, ||én||S§ as.—P foral n. Now let K=B in

Assumptions2.5(2) and 2.5(3). By 2.5(2), lim, ., A1 < Y abg;<» as-P.
j=1

By the definition of Mn(é n), we have that { Mn(Zn,é ) -M,,F"} isa H-vaued mar-
tingale . It isa L, —martingale by assumption 2.5(3). Now Doob's inequality , the conditional

Jensen'sinequality, and 2.5(3) imply limsup, _ » Az < » as.-P Hence A.4issatisfied.
The next lemmais used in the proof of Corollary 2.6.

LEMMA A.1: Let{ a, } satisfy Assumption A.2. For agivenindex set L andevery p O L,
let { y,n} beasequence of H -r.e.s such that

n

limy suppoLl|an 3 Yonl=0 as-P.
j=1

Then for al a >0 there exists an integer-valued random variable N such that for al

m>n>N,
SUPp oL [ 2n<j<m-1 &Yp,j [<a (1+ Zh<jsm-18j) as—P.
Remark: Thislemma extends lemma D of Metivier and Priouret (1984, page 147) for a finite-

dimensional space to an infinite-dimensional Hilbert space. The proof issimilar.

PROOF OF COROLLARY 2.6: First we prove that there exists an integer-valued random
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variable N, suchthat, forall n>=N,, thereisnotruncation as.-P, i.e,
foral N=Ny, 014:1=0,+a,[M@,)+ Un(Z,0,)] as-P.
Fixan w 0Q. Wehavethat foral n, Brp) <B, , andby A.7(3) and A.7(4),
160(@) + a0 [ M©n(@)) + Un(Zo(@).81(@)) 1< By + a, O(By).
Because { én } isgenerated by the BTRM and

||mn_,oan:B, ||mn_,wan=0, Bn+1ZBn(1+Can),

there exists an integer Ny(w) such that for al n=Ny(w), B,+ a, O(B,)<B,+1. Hence

there will be no truncation invoked from Ng(w) on.

We must now show that A.4 is satisfied, as this ensures the almost sure convergence by

Theorem 2.2. To verify A.4, it suffices to show the following:
foreachT >0, lim,_ o SUPn<i<m(n,T) | 2ngjs<i-1 ajUj(Zi ’ei) I=0.

To prove this, we apply Lemma A.1 and follow an argument similar to that in Metivier and
Priouret (1984) for the IRY (d<o)-valued RM. We fix o 0(0,1), and set T=a¥?T.

Define by recurrence ig=n,..., i, =m(i,-1,7),...,
S(p, ) = Zpsj<q-1 3 Uj(Z;.8;) = S1(p.a) + S2(p, Q) ;
S1(P.0) = Tpsjq1 8 Uj(Z.0p) i Sa(P.0) = Zpgjeq-1 85 [U(Z1.8)) - U;(Z.0,)]
By the BTRM, ||éir ||s§ for every r. By Lemma A.1l and A.7(1), there exists

Ni(a,w) = Ng(w) suchthat n> Nq(a,w) impliesthat for every i, , andany i O (i, ir+1],

[ S1(ir,i)|[[<a (1+71); while A.7(2)(b) gives

[ So(iv,i)[|< Zi <j<i-1 8 [0 =6, [h;(Z;) .
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Butif i, <j<i-1<i,4+,, thereisno truncation, and we have

16, -6, < Zias-1a MO+ Ui(Z.0)]

<Tic<ji-1 a4 |[M@) [+ Zicci-1a|Ui(Z.0))=A1+ Az
As ||é| | < B, by A.1(2), [M (é|) |<Cg, acongtant. Since T =3 qq,,-1& by definition,
wehave A; <1 Cg. By A.7(3),

Ar<Ziq<i-1a (0981(4)—E[gs1(Z)] ) + 9B Zi <i<j-1 & -

By LemmaA.1l and A.7(3), there exists N,(a,w) = Ny(w) suchthat n> N,(a,w) impliesthat

forevery i,, andany j O (i,i =110 (ir,ir+1),
16 -8i <a (1+7)+7(Cs+gg)<a +T1 (1+C+gs).
Hence by A.7(2),

[Sa(ir.i) | < [a+T(1+Cg+dR) ] Zi <j<i-1 &jh;(Z)

<[a+1(1+Ce+0r) ] i <j<i-1 & (hj(Z)) —E[hj(Zj)]) + [a+T(1+Cg+gg) | hT .

By LemmaA.l and A.7(2), there exists Nz(a,w) = Ny(w) suchthat n> Nz(a,w) impliesthat

forevery i,, andany i O(iy,if+1],
ISa(ir,i) [ [a+T(1+Cg+gp) ] [a(1+T) + hT] .
Hence there exists a constant C(I§,g,h) such that

o o o — 2
foreveryi,, i O(inir+1], [S2@r.i)|<[a+17C(B,g,h)] .
Hence

SUP; <i<i,., | Sri) | Sa (1+1) + @+cr)? =a (1+a¥2T) + @+ca¥?T)?<Ca,

where ¢, C are constants depending only on B, T.
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By the definitions of t,, m(n,T), i and 7, there exists N(a,w) such that for al
n>N(@,w),
SUPn<i <m(n,T) | Znsji-1 34U} (Z;.0) < (1+ 2a7¥2) Car .
Letting a - 0, weget
foreachT > 0, limy_ o SUPn<i<m(n,T) | Zn<j<i-1 3jU;(Z; ,éj)||: 0.

This completes the proof.

PROOF OF COROLLARY 2.7: It suffices to show that al conditions in Corollary 2.6 are
satisfied.

Because an adapted L,—mixingale (1<p <) has zero mean, 2.7(1) implies A.7(1)(a). By Corol-
lary 3.8 in Chen and White (1996) with { b, ™ = a, }, 2.7(1) implies A.7(1)(b), 2.7(2) implies

A.7(2)(a), and 2.7(3) implies A.7(3)(a). Hence al conditionsin Corollary 2.6 are satisfied.
We use the following lemmato prove Theorem 2.8.

LEMMA A.2: Suppose Assumptions A.1, A.2 and A.3P(1) hold for TRMP. If there exists

0<é€ < oo suchthat
- n - o
limsupn_ollan 3 Prj+n[Mj(Z.0;) -M@)l|=¢ as-P,
=1

then there exists a positive integer-vaued random variable T  such that:

P(suph T(N)<T<w)=1.

PROOF OF LEMMA A.2: In the proof of Lemma 2.1, Pj+1yM (@) replaces M(8) ; and

Pyj+1U; replaces U; . We also usetherelation

[Pk+yM @) = Peu+yM @ 0) | £ Pi(+yM @) = Pig+yM @ W) |
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[P +pM @ u) = PesyM @ W) ISIM @) =M@ u) |+ 2|M B )| .

PROOF OF THEOREM 2.8: First, by Lemma A.2 , there isan n, [0 IN such that for all

n = n, , the truncations are terminated. The RTRMP procedure becomes

(@l) foralnzny, Op41=6n+ a3 Py Mn(Zn,604) =0+ @y Pyn+1) [M@n) + Up]

and the sequence { én; n>n,} isbounded as.-P (i.e, IIén||s Br, as. ,foral n=ny).

Secondly, define
(3.2) Hnr1 =Hn = 8nHn + 80Pk(nnUn(Zn0 1)
Then AssumptionsA.2 and A.4P imply
(a.3) limsupy_ o ||Unl|=0 as-P.
(a.1) and (a. 2) imply that for all n=n, ,
(2.4) Bne1~Hn+1= On —Hn + 3P M@ ) + 8nin -

By Taylor expansion in a Hilbert space, (a. 3), and the boundednessof M,V ,andV  , we get

(.5) V@ n+1=Hns1) SVE@n —Hn) + 3 (V @n), PeuepM 1)) + O( ) as-P,

which corresponds to Yin and Zhu's (1990) inequality (4.15).

For 6 U Hyn+1y andany n > 0, define
Ane1@1) = min[= (V' ©), PunsyM©) ) : 08520 ,|0]<Br] / max[V(): [6]<Br+1],

and A(n)=inf [An+1(7): Nn=N.], where N; isan integer-valued random variable. Then
A@n) >0 by Assumption A.5P.2. We can now follow Yin and Zhu's (1990) proof of their

theorem 3.1 ( from page 127(4.16) on ), and obtain the a.s. — P convergence resullt.

PROOF OF COROLLARY 29: In the proof of Corollary 2.3, Py+1)Fj(Zj) replaces
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Fi(Z;) .
and Assumption A.4P and A.5P replace A.4 and A.5 respectively.

PROOF OF COROLLARY 2.10: In the proof of Corollary 2.6, Py(j+1)U;(Z; ,éj) replaces

U; (Z; ,é j) and Assumption A.7Preplaces A.7.

PROOF OF THEOREM 2.11: By LemmaA.2, the truncation is invoked only finitely many
times. The proof issimilar to that for Theorem 2.8 except with the following changes:

For 6 U Hyn+1y andany n > 0, define

Anea@) = min[~(V' @),
PensM(©)) : 8 ~6%11 20 . |0]1<Br ]/ max [ V(©) :[6]|< By + 1]

and A(N)=o[Ah+1(7): n=N1], where N; is an integer-valued random variable. Then,
A(n) > 0 by Assumption A.8(1).
With 8, -6%.1 <1 ,
V(0 n=Hn) = V(6%+1) + R10°n+1, 00— Hn=6%41) S V(6%n+1) + K31 + O) .
Since A.8(2) and A.2(1) imply that 6°, - 6, as n - o, given A.3(1), we have for n large
enough, say n=N, >Ny,
V(60n+1) <Ky ”60n+1 _90 ” '

Hence for all n=N, and ||én -0%.+1lsn, V(én—un) <Kgsn + O() for some constant
Ks > 0. Instead of Yin and Zhu's (1990) inequality (4.16), we have
(2.6) VOn—Hn) < Mnysj<n (1-3A0)) V(On, =, )

+ Sn,sien Mivigjen (1-8A0) ) [KsanA@)+ O(ae)+ O(a?)]
+ Iny<ien Mivigjen (1-85A (7)) Kg (/6% 11 =66 -
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Since
Miticjen (L= A@) ) <exp(=A(7) Zi<j<n@j) -~ 0 asn - oo,
we have by A.8(2),
My Zn,<i<n Mivicjan (1-3jA M) ) & 6% +1-65]=0 .

We can now follow Yin and Zhu (1990)’s proof of their Theorem 3.1 ( from page 127(4.17) on ),

and obtain the a.s. — P convergence result.

PROOF OF COROLLARY 2.12: When { U, } is a sequence of 8-independent errors, A.5P

implies A.4P. Hence the result follows from Theorem 2.11.

PROOF OF COROLLARY 2.13: When { U, } is a sequence of 8-dependent errors, A.7P
implies A.4Pjust as A.7 implies A.4 in the proof of Corollary 2.6. Hence the result follows from

Theorem 2.11.
We use the next lemmato prove Proposition 2.14.

LEMMA A.3: Let X,, Uy, Vi, ad W, be nonnegative A"—measurable real valued random vari-
ables, n=1, ..., defined on a complete probability space ( Q, F, P ), where { A"} isan increasing
family of subo-algebras of F. Suppose

(%] (%]
U <oas-P; >vy<o as-P;
n=1 n=1

E[x;°]<o and E[Xy+1° |A"]<(1+ up) %2 + vy —bw, as.-P,
where{b, , n=1,2,...} isnon-random real sequence suchthat b, >0, 3 b,= .
n=1

Then there exists a random variable x on (Q, F, P), and a subsequence {n(j), j=1,2,...}

such that:
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Xy - X asn - o as-P and Wy - 0 asj - o as-P.

PROOF: Thisresult is a dlight modification of Goldstein's (1988) Lemma 4.1. It can be proved

by mimicing the proof of Goldstein's (1988) Theorem 4.1.

PROOF OF PROPOSITION 2.14: By definition,
6n+1 _60 = [(en _60)] + [an I:>k(n+1) Mn(zn ) en)] .
Taking the inner product on both sides gives

16 n+1 _60”2 =161 —06, ”2 +|an Pi(n+yMn(Zn , 61) ”2
+2a, (0005, Pkn+yMn(Zn61) ) -

We shall take the conditional expectation E[- | F"™*] on both sides, and make use of the fol-
lowing facts:

(1) Sinced,, is F"! - measurable;
ELI0n =802 | F"™1= (84 =667 = %7 ;
(2) by condition 2.14(2),

E[”anpk(n+1)Mn(Zn,6n) “2 | Fn_l] SVt Uy an )
where v, =a,>E[hy(Z,) | F"*]20 as-P; and u,=a,°E[gy(Z,) | F"%]20 as.-P;

(3) By condition 2.14(1),
Wn =~ E[ (8000, PensnMn(Zn.8n)) | 71120 as—P.
Letting b, =2a, and x, E||én -6,]20 as.-P, weget
EX412 | F" 1< (1+u ) %2+ Vy—byw, as-P.

By condition 2.14(2)(b) and E[ x;2] < o, al hypotheses of Lemma A.3 are satisfied. Hence

there exists a random variable x on (Q, F, P), and a subsequence {n(j), j=1,2,..} such
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that:
Xy - X asn - o as-P and Wy - 0 asj - o as-P.
Further, we can show that x=0 as-P (see Goldstein, 1988),

ie, ||én -0, -0 asn o as-P.

PROOF OF PROPOSITION 2.15: By definition,
O n+1 = Pr(n+1)80 = On = Pk(n+1)80 + anPkn+1yMn(Zn,0 1) -
Let Xq+1 =0 n+1 — Pn+1)Bo |- Then

X%+1 = ||6n - I:>k(n+1)90 “2 + an2 ” I:>k(n+1)Mn(Zn:6 n) “2
+ 285 (0 = Pyn+1bo » Pkn+yMn(Zn,61) ) .

We shall take the conditional expectation E[- | F"™*] on both sides, and make use of the fol-
lowing facts:

(1) since én isF"™ - measurable, sois én = Px(n+1)6o0 , therefore,
E[]6n — Pkn+1)60 ”2 | F" 1] = 16 n — Pkn+1)80 ”2 ;
(2) by condition 2.15(2),

E[||anpk(n+1)Mn(Zn,6 n) ||2 | Fn_l] SVin + U1 ][0 n — Pen+1)Bo ||2 ,
where vy, =a,? E[ hy(Z,) | F"™%]120 as-P; and up=a,>E[gn(Z,) | F"™1]20 as.-P;

(3) by condition 2.15(1),
Wn =- E[ (en_Pk(n+1)60 ’ Mn(Zn,e n)) | Fn_l] 2 O a.S._P .
Letting b, =2a, and x, E||én - PymBol/20 as.-P, weget
EX+12 | F"2 1< (14 ugn)|0n = PenanBo |2+ Vin — by Wy as.—P
n+1 = 1n n k(n+1)%Yo0 1n n YWn - .

By the triangle inequality,
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16 - Pcn+1)60 [<]6n - Pkn)Bo [+ Pin)fo = Pk(n+1)80 [EX,+ 1.
Hence,

2

r 2 2 2 2
16— Pkn+1)Bol| S Xa” + 1n + 2X, 1y < (L+ 1) X =+ (rp + 1y%)

(The second inequality isduetor, =0 and 0< X, <2X, < X,2 + 1). Hence,

E[ Xn+12 | Fn_l] S@A+ug)(@X+ry) an + (1+ug)(rp+ rnz) + Vip — bW, .
Let
Uy SUgp + fp+ Ui My 5 V= (A + Ugp) (rp + rnz) * Vin .

(o]

By condition 2.15(3), > rp<o; since r,=0 and condition 2.15(2)(b) holds, we have
n=1

S Uhy<o as-P and ¥ v,<o as-P. Since E[x;°] < =, al hypotheses of Lemma
n=1 n=1

A.3 are satisfied. Hence there exists a random variable x on (Q, F, P ), and a subsequence

{n(j), j=1,2,...} suchthat:
Xy - X asn - o as-P and Wy - 0 asj - o as-P.
Further, we can show that x = 0 as.-P (see Goldstein, 1988), i.e., |0, - Pxmbol - O as
n - o as.—P . By thetriangle inequality:
160 =85 1<18n = Pryo I+ | PecryBo =6 |

We conclude ||én -65]|-0 as n- o as-P.

PROOF OF THEOREM 3.1: We verify that al conditions of Walk's (1987) Theorem 1 are
satisfied as follows. First, Walk's (1987) condition (1) is satisfied with T, =Ty, + To,.
Second, our B.2 satisfies his condition (2). Third, our B.1 and ||én -65] - 0 as.—P imply
that |A, —A| - 0 as.—P, hence his condition (3) is satisfied; this together with B.4(1) imply

his condition (4). Fourth, our B.5 is his condition (5). Finaly, our B.3 and
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||én -65] - 0 as.—P imply that T,, -» 0 amost in first mean; this together with B.4(2)
imply Walk's (1987) condition (6) with T =0 via Lemma 3.3. Thus, the result follows from
Walk's (1987) Theorem 1.

We prove that T,, - 0 amost in first mean as follows. for any fixed O0<e<1,
||én -0o]| - 0 as.-P and Egorov's theorem imply that there exists Q" OF with
P(Q )=1-¢ such that ||én —-05] - O uniformly in Q" i.e, forany n > 0, there exists
m O IN such that for any n>2mand w0 Q" ||én(w) -0o]|<n . We now define a new

sequence { 6"n } by

61=6m1 1(“ém+1 —6o(=n),

6 n+1= 0 0= (N+mM) ™ Peemen) [MO n) + Unsm(@n .0 )1,

where I\7I(6)EM(6) if |60 -6o|<n, and I\7I(G)EA6 otherwise. By the definition, 6"n and
ém+n coincide on Q" , hence ||6"n -65]| - 0 as n - oo uniformly in Q. For n small
enough, we follow Wak's (1977) proof of his equation 44 (p.149) and get

nf E[||6"n -8,]%]1=0O(1) . Giventhedefinition of T, and assumption B.3, we get
[or [ T2, neml d P12 <0(2) (M+m)P E[[6 1 =60 [? 1+ 0(2) -0 asn- o.

Hence T,, — 0 amostin first mean.

PROOF OF COROLLARY 3.2: (i) is obvioudly true given Theorem 3.1. By the continuous

mapping theorem we get result (ii).

PROOF OF PROPOSITION 3.4: (i) Under B.6(1), v; = j® V2 P.1)U;(Z,6,). B.6(4)
implies that {v,,, F"} is an adapted L,(H) — mixingale sequence with parameters { /., } of

size —12, and { N2 ¢ }. By Chen and White (1996, Theorem 3.7) and assumption
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B.6(4),
c 2 C Bl .2
E[lZvil?1=0(3 i ¢?)=0() .
j=1 j=1
Hence B.4(1'’) issatisfied, and so is B.4(1) via Lemma 3.3(ii).

(ii) Under B.6(1),
T1n = 072 Py [ Un(Z081) = Un(Z080) 1 -

Since{ Y, } isdecreasing and isof size -3, thereexists u : IN - IN such that

l<p()<j forj>2, pu@()=o@(" . wg=0G7? .
Take e 0 (0, 1/2). As ||én -65] - 0 as—P ,thereexists K(€) > 0 such that

Plw: supn||én—60||2 KE)]<e .
Define
Tin =072 Py [Un(Za 80 1101 =66 < KE)]) = Un(Za . 6) ] -

Then P ( Dn21[ 'T'ln #T1,]) <€ . Hence it suffices to show that there exists & 0 (J, , 1/2)

such that

j .
N2 maxy; /()P S i @ T -0 inProb. asn— o,
i=3

. 3
Write Ty, =nY? 5 Dj,, where
=1
Din =Ty —E(Ta[F"#M™) ; Dy =E(T,|F"HM) ;

fn =n6-D2 [ Pen+1) Un( s 8 n—yuqmydl ||6n—u(n)_60 [<KE)])- Pcin+1Un(,680) 1 ;

Dan =nED2 P11 Un(-, 801 184600 <K E)])
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—nBD2 Py Un(, 0oy 10 0y o | K €)1 ) -
By Lemma 3.3(iv), it suffices to show that: (a) Dy, — 0 amost in first mean; (b) Dy, - O

amost infirst mean; and (c) D3z, — 0 amostin first mean.

Since B.6(2) implies that P,+1Up(w, ) is continuous for each wQ, and since
||én—60 |- 0 as-P and B 0(0,1], we get ||'Fn | - 0 as.—P. Thistogether with B.6(3)
impliesthat E [||T,||"] — O ( see Serfling, 1980, p.11, theorem 1.3.7 ). Hence E[||T,[]] - O.

By the conditional Jensen’sinequality,
E[[|Dan 1= E[IET [F" ™) [I<E[|Tal] -0 asn - o,
thisimplies (b). Further
E[|Dun[1<E[ITal] + E[[D5,1] -0 asn -,

which gives us (a).
LetQ, =Q\[w:supn[[6n—6o]=K(E)]. ThenP[w 0 Q]2 1-¢.

Define m(j)=max[i OIN:j+i—u(j+i)<j]. ByassumptionB.6(2),

E[ ” D3n ” 1(~Qe)] 5
<nBD2 sup [ (E@?se)n )2 (E[6 1 =8 n-umy |2 1Qe) )21,
where

On= én l(”én_eo [<K(E)) ; O n-um) = én—y(n) l(“én—u(n)_eo [<K(E)),
and B)=[600H: |6-6,|<K()] .Henceweget (c) provided

(d) Supjemml (E8n=8nj]1% Q) 2] = 0 (nP?2).
Because

én+1_én =n7t An (én_eo) +n7t I:)k(n+1)Un(' 1én) + n_l_(‘B/Z)TZn '
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and Top, - O in first mean implies To, — O in Prob, weget

© (E[Bns1-00]122(Q:)) 2 < 0L (E||An® n-60) % 1Qs) )2

+ 07 (E[PensnUn(, 0012 1Q:) )2 + 0 (nt)=0(nl)

where the last relation is implied by B.6(3) and the definition of Q.. Since
m(n)=max[j OIN:n+j-un+j)<n]=max[jOIN:j<p(n+j)], and u@)=o0("?),
1<u@)<i foral i>2,wehave m(n)=o(nY?). This, (e), and B O (0,1] give us (d),

hence (c). Thiscompletes the proof.

PROOF OF LEMMA 3.6: Immediate, as it follows from Chen and Whités (1992), Theorem

4.14.

PROOF OF COROLLARY 3.7: By Lemma4.2in Chen and White (1996), B.6(1), B.6(3) and
3.6(1) imply that B.6(4) is satisfied. This together with B.6(2) and ||én -65]|- 0 as-P
imply that B.4 is satisfied via Proposition 3.4. B.6(1) and B.6(3) imply that
{Wh=v,=n®D2p . U.(Z,68,)} hes zero means and uniformly  bounded
r —th moments. This together with 3.6(1) and 3.6(2) imply by Lemma 3.6 that
{va=n®V2p 01U (Z,,00)} satisfies B.5 when X is a Brownian motion in H with
X(0) =0, EX(1) =0 and Cov X(1) = S. Now all the conditions of Corollary 3.2 are satisfied

and the results follows.

PROOF OF COROLLARY 3.8: The proof is similar to that for Corollary 3.7 except with
Pyn+1) omitted, and using Chen and Whit€'s (1998a) Theorem 3.9 or Chen and White' s (1992)

Corollary 4.16 instead of Chen and White s (1992) Theorem 4.14.

PROOF OF LEMMA 3.9: We write Rn -K=aj, + ay, + ag,, where
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_ M raln ol 1.
amm=foys"SHls" - s’ ]ds;
= M p * )
am=Joyls"-s 1Ss" ds;

asn =Joy S [S$—-S]s ds.
Since

- Foe B

lasn v <l Sl o IS 8™ =™ | ds,
~ r *

lazn e <1Sh v Joy 8™ = ST 18" [1ds,

lanl <I1Sh — Sl o IS |12 ds,
under the assumptions, we have
limy_w|@nle=0 inProb. or as—-P for j=1,2 3.
Thisgivesus lim, Ky —K [y =0 inProb. or as.-P.
PROOF OF COROLLARY 4.1: It is easy to verify that all conditions of Walk's (1987)
Theorem 2 are satisfied. Hence the result 4.1(i) follows. Since
a1(t) - ax(t) < [ 2A tloglog t 172 | ] HF2 (8141 =65 ) < @1 (1) + @2(t)
where a;(t) =[ 2A tloglogt]™¥2||GM (t)||, and

ay(t)=[2A tloglogt] V2| [t] A2 (8141 -6, ) ~GM(D)|
we have

limsup; ., » aj(t) —liminf; _ , as(t)
<limsup; . [ 2 tloglogt 1™V2[[t] &P (81,1 -6,) |
<limsup; o a1(t) + limsup; ., . ar(t).

Einmahl’s (1991) theorem ( p. 1228 ) givesthat
limsup; .o [2A tloglogt]™¥2||GM (t)||= 1 as.-P,

where A =sup[(Kh,h):|h|[€1, hOH] isthe largest eigenvalues of K. Also, result

4.1(1) implies
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liminf, o as(t) = limsup; , » a(t) =lim; _ , a)(t)

=[2A 12 lim;_ ., [tloglogt ] ™Y2 | [t]*P"2 (6141 -6, ) ~GM(t)[= 0 as—P.

Thisgives usresult 4.1(ii).

PROOF OF LEMMA 4.2: We simply verify that all conditions of Philipp’'s (1986) Theorem 1
are satisfied by our random sequence { W,, ; n=1}. The uniformly bounded L, —norm (r > 2)
of { W, } isPhilipp's condition (2.1). Since { W, } isan Lp,—mixingale of size -1 (1< p <o),

Philipp's condition (2.2) is satisfied. Condition 4.2(2) is Philipp's condition (2.3). Now Philipp’'s

(1986) theorem 1 givesresults (i) and (ii).

PROOF OF LEMMA 4.3: Condition 3.8(1) and Lemma 4.2 in Chen and White (1996) imply
4.2(1). Also the assumptions and Lemma 3.8 in Chen and White (1992) imply 4.2(2). Thus

results 4.2(i) and 4.2(ii) hold. The proof of result 4.3(i) is akin to that for result 4.1(ii). Because

b(n) - by(n) <[ 27, nloglogn Y2 5 Wi < by(n) + b(n)
i1

where
n
bi(n)=[27,nloglogn]™?| 5 N; (0,9)],
j=1
_12 n n
ba(n)=[21,nloglogn]™ 4| ¥ Wi - 3 N; (0,9 ],
j=1 j=1
we have

n
lim supy_ b1 (n) = liminf, _ o bo(n) < limsup,_ o [ 27, nloglogn] ™2 5 W, |
=1

<limsupy o« by(N) + limsup, o ba(n) .

Einmahl’s (1991) theorem ( p. 1228) gives

limsup, . [27 nloglogn]™?| ¥ N;(0,S)|=1 as-P,

n
=1
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where T=sup[(Sh,h): |h|s1, hOH] is the largest eigenvalues of S. Because
lim, . oTy=7 by Lemma 2.1(ii) in Chen and White (1998a), and 0<T7 <, we have

limsup, . by(n)=1 as.-P. Also Lemma4.2(i) and 4.2(ii) imply

lim inf, . ba(n) = lim SuP, _ o ba(n) = limy, _ ., by(n)
n n

=[21]Y2lim,_ o [nloglogn]™ 2| W, - 5 N; (0,9)|=0 as-P.
j=1 j=1

Thisgives usresult 4.3(i).

PROOF OF PROPOSITION 4.5: The proof is similar to those of Corollaries 2.6 and 2.7,
except with the following changes: Let a, = n"* (loglogn ) Y2 nf2 and

S(p.9) = Zp<j<q-1 @ Pr(j+1) [ Uj(Z; 'éj) —Uj(Z;,60)]1=S1(p,q) + S2(p.q) ,
where,

S1(p.9) = Zp<j<q-1 @ Pr(j+1) [ Uj(Z; .ép) -Ui(Z;,60)] .
and

S2(p.0) = Zp<jq-1 & Pugen [Uj(Z; . 0)) - Uj(Z . 0p)].
Now Assumption C.1 and ||én -6,] - 0 as.—P and the agorithm specified at the beginning

of Section I11 allow usto follow the proof of Corollaries 2.6 and 2.7 to yield:

n
limsup,_ o N~ (loglogn)™2|| 5 T4|=0 as-P.
j=1
By a similar proof to that of Yin & Zhu's (1990) Theorem 3.3, since ||én -65]|- 0 as-P,
we get
n
lim, .o N7t (loglogn)™?| 5 Ty|=0 as-P,

=1

This completes the proof.
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PROOF OF COROLLARY 4.7: Condition 4.1(1) is satisfied due to Lemma 4.3. Condition
4.1(2) is satisfied as the similar proof of Proposition 4.5. Condition 4.1(3) is trivially satisfied

since T,, =0 inthe RM and TRM algorithms. The result follows.
The next two lemmas are used in the proof of Lemmab5.1.

LEMMA A.4: Given TRMP, AssumptionsAP and D.1P(1), if for al n,
E[|IPn+nUn(Zn8n)[21< @, E[IVEnN)[]1<w, and E[ [DVy|]<w ,
then there exists ny [ IN, such that for all n=n, ,

E[S(h+1)]<(1-n"tc,) E[S() ]+ n"t ¢, E[V(@,,n)]+ O (n?)
+ O(N"2) E[||PenenyUn(Zn80)[|21+ E[ DV, ] .
PROOF OF LEMMA A .4: First, substitute a, = n™* into (a. 1) to give,

(a7) foralnzng, Bn41=6n+n" Pynes) IMOn) + Un(Zn.6,)] -

Given Assumptions AP and D.1P(1), the sequence { én ; N=n,} isbounded a.s.—P and con-
vergesto 8, innorm a.s.—P . Hence there exists a positive non-random real number B such

that ||én||s§ a.s.—P . By Taylor expansion in Hilbert space,

V@n+1)=VOn) + (V' On), PenryM@n))
+n7t (V(én) » Prn+1) Un(zn,én))"' Rz(én 'én+1 _én) )
where Ry(x , h) = fjo. (1-s) V (x+sh)h?d s and
IR2(B1, 8041 -80) < supjg<a |V ©) 1641602

<Kn2 supjgi< |V @) ILIM@) |2+ Un(Za81) 2] as-P forsomeK >0 .
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The uniform boundedness of V', V', M imply that there exist finite positive non-random
real numbers K, , K, , K3 suchthat forany |6]<B,
(@8i) [VO)I<Ki. [V Ol<sKz, [MO)|<Ks .
Thus V(é D, vV (é n), and M (é n) have finite first and second moments. Furthermore,

(@.8ii) E[|V©@n|1sK:, E[[M©)]|]I<Ks,

and E[[Rz(81n,6n+1-64)[1<0(n2)+ 0 (n?)E[|Un(Z0.0,)[2] -
By Assumption D.1P(1), foral n=>n,,

@9 E[V@ni)]sncn) E[VEn)]+n E[(V@n). Penezy Un(Zn b)) ]
+0(n7%) + O(™) E[|| P+ Un(ZnBn) ]

By the definition of V |
(@10) E[V@,,n+1) | F"11-V@,,n)=-n""(V ), Pcpnsn) E[Un(Zn8n) | F*711)
By the definitionsof S(n) and DV, ,

(@11) E[S(n+1) | F" 1] -SM)=E[V(@ns1 | F" 1] -VE,)
+E[V@,,n+1) | F"1]1-V@,,n)+ DV,

Substituting (a.9) and the expectation of (a.10) into the expectation of (a.11), we get that for all

n=n,,

E[S(n+1)]<(1-n""c,) E[S(N) ]+ n"t ¢, E[V@,, n)]
+0(n72) + O™ E[| Pens1yUn(Zn8 1) |21+ E[ DV, ] .

LEMMA A.5 ( Venter, 1966 ):

Let{ s, } be asequence of non-negative numbers such that for al n large enough

Se1s(@-n"tey) s+ dn 9
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where d>0 and ¢, - ¢ as n - o . Thenfor n sufficiently large,
s, =0 ifc>q>0; s=0(MN7Flogn) if c=q>0; and s,=0(n"° if g>c>0.
PROOF OF LEMMA 5.1: LemmaA .4, conditions 5.1(1), 5.1(2) and 5.1(4) imply
(a.12) E[S(n+1)]<(A-n"1c,) E[S(N)] + O (max [ NP n=27)

Now 5.1(3), LemmaA.5and (a. 12) imply

E[S(n)]=0(n"%) for c> q;

E[S(n)]=0(n%logn) forc=q;

E[S(N)]=0(n°)forqg>c>0.

Given the definition of S(n) and condition 5.1(1), we get
E[V©,)]=0(n)forc>q
E[V(én)] =0O(n%logn)forc=gq;
E[V©,)]=0O(nc)forg>c> 0.

PROOF OF COROLLARY 5.2: It suffices to verify that al conditions of Lemma 5.1 are

~

satisfied with U, =F,(Z,). It is obvious that D.2P(2) implies 5.1(4). Since 6, is
F"~1 —measurable, by the definition of V, wehave
VOn. n=3 i (V@) E[PgenV; | F7H]) =
j=n
(V©n),E[ 3 j™ PegepVj [ F72)
j=n

By the Cauchy-Schwartz inequality, D.1P(2), D.2P(1) and (a. 8), we get

E[|V@n, n) 11V @n)2IEL S i PugenVy | F2
J

=n
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<K4(1+E[VEn)])*2 0™ <0M™) .
Hence E| \_/(én,n)] is defined and satisfies 5.1(1). Also, by the definition of S(n), we have
that E[ S(n)] isdefined and satisfies 5.1(3).
Since én+1 and én are F" —measurable, by the definition of 5\_/n we have

DVi =E[ Zjons1 P EL(V @ns1)-V @), PegenVy) | F"T I F"]
=E[(V @n+1)-V @), E[ Zjzn+1 it Pe+nUj | F 1) | S

By Taylor expansion,
V@ni1) -V E@n)=JogV @n+sO@ns1-61)@ns1-6n)0s .
By (a.7),

DVh=nYE[( (o V @n+SO@ne1—61)0S)Pery M@ 1) + Up),
Zisn+1 ) Py ELY; [ FT ) I FTH]

Denote 5\_/1n and 5\_/2n as

DVin = E[( (jog V @n+SBns1-60))dS) (Pensny ME1)),
Zisn+1 ) Py ELY; [ FT ) [ FTH]

DVan = E[( (jo.g V @n+ SO n+1-60)dS) (Pnsg) Un),
Zisn+1 ) Py ELY; [ FT ) I FTH]

D.2P(1) and (a. 8) imply that for afinite constant Ks
E[] DVin 115 Ks | PaueyM @ )2 |EL Zjonser j ™ Pegan Uy | F1[2= 0 (n™)
Further D.2P(1), D.2P(2) and (a. 8) imply that for afinite constant Kg
E[] DVan 11 Ke|Pegn+nUnll 2 EL Zjzns1 i Pg+nUj | F'l2=0(n™®).

Because 5\_/n =n71[ 5\_/1n + 5\_/2n] '
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E[DVa]<E[|DVa [1sn™ (E[|DViy |1+ E[| DV [1)<O(n" @0

Thisgives 5.1(2). Now the conclusion follows from Lemma5.1.

PROOF OF THEOREM 5.3: By the conditional Jensen'sinequality, with 1< p<2

IE[Pkg+pUj | F" 1P <E[IP+n Ui P | F"™*] for any j=n , hence

IE[Peg+nYj | F" 1o <[ Prg+nYjllp for any j=n .

Since supp|Pxn+nUnl2<A<o, we can pick mixingae parameters { c,} such that

(o]

Ch<A. Hence, > (i )2 < o . That A.5P implies A.4P is a simple consequence of Corol-

i=1

laries 3.8 and 3.9 in Chen and White (1996).

By the definition of L, -mixingaleswith ¢/, of size-1, we have

SITHEPeG+n Yy TF" ™ S S 7540

J=n J=n

<nlAS Yin=nla S =0(nt)

= le]+1n Z l/"m .
j=n m=1

Hence A.5P (1) implies D.2P(3) with b = 1, and we get result (i) .

By the definition of L, — mixingale with ¢, of size —a, (1/2<a< 1), wehave from

the Holder inequality that

SITHEP+n Yy TF"H 22 375410
J=n i=n

<A ( Z llfllaj +1-n )a ( | j-l/(l—a) )1—a
J J

=n =n

<A( 3 ¥, ) (0 (nfUEAIT) A= o (n7e)

m=1

Hence A.5P (2) implies D.2P(3) with b = a, and we get result (ii) .

PROOF OF COROLLARY 5.4. It suffices to verify that al conditions of Lemma 5.1 are
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satisfied .

~

First we show that D.3P(2) implies 5.1(4). Since 8, is F"!- measurable, and

supn ||én |<B as-P,

SuPn E [ | P+ Un(ZnBn) [21= SUpy E [ EL[| P+ Un(Zn.80) |12 | 7711
< supn E[ E[ supjg)<5 || Pen+n)Un(Zn @) |? | F"7 11

= supp E[ supj gy < | Pun+1)Un(Zn.0) > ] < oo
Hence D.3P(2) implies5.1(4).
The verification for conditions 5.1(1) and 5.1(3) is similar to the corresponding proof for

Coroallary 5.2. By D.3P(1), D.1P(2) and (a. 8), since én is F"! -measurable, we get

E[IV@n, m) 11|V @n)21EL T i PegsnUi(Z.60) | F2
j=n
<[1+EV@,)]¥20(nP)<on™
Hence E[V(®,,n)], E[S()], and E[DV,] are defined, and 5.1(1) and 5.1(3) are also
satisfied. By the definition of DV,,, wehave DV, =E[Dy, + Do, | "1, where

Din=Zjenst i FEL(V @ne1)-V @n), PgsnUj(Z.0ns1)) | F'1,

Don=Zjsns1j TEL(V @1) ) P+l Uj(Z.0n+1)-U;(Z.60)1) | F'1 .

( Comparing this with the proof of Corollary 5.2, here E[ Dy, | F*™1] corresponds to the
entire expression for 5\_/n there, whilethereisno D5, terminthe 6 —independent error case. )

First webound D5, as
IDan| <[V 0 n) X Zjzn+1 i 2IEL Py+1)Yj(Z5.0n+1) = Peg+Yi(Z;.00) | F'1] as—P.

Because én+1 and én are F" —measurable, (a. 8) and condition D.3P(3) imply
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Don| SO [8n+19 0 Zjzns1 i E[NE;(Z) | F" 10 (n™°)[8011-6,] as—P.

Hence, E[ |Doy|]1<O(n™) E[||én+1—én||] . Now (a. 7) and the triangle inequality imply
181 =8nll2 <07 [PeuanM @) 2+ 7 | Pasny Un(ZaBi) 2 -

Next, (a.8) implies ||M(é n]2<0(1), and we have shown that D.3P(4) and (a.8) imply

5.1(4). Hence
(a 13) E[||9n+1 _en“] S||9n+1 _9n||2 S O(n_l) )
sothat E[ |Doy|]1<O(n™ P for nzn,.

Now we bound D, . ( The proof is akin to that for Corollary 5.2; hence we just record the
main steps).

Since én+1 and én are F" — measurable,
E[ID1n 1<V @n+1) =V @) 2 El Zjznet i Peg+nUj(Z8nea) | F1]l2.
By D.3P(1),
(a.14) E[ |D1y] 1<V @ns1) -V @n)20(n™).
By Taylor expansion,
V@ni1) =V ©@n)=flogV @n+SOne1—0n) @nrr—0n)ds.
Then (a. 8) and (a. 13) imply
IV ©ne1) -V En)2=0(nt) fornzn,.
Substituting thisinto (a. 14), weget E[ [D1,|]1<O (n™*P)) for n=n, Hence,
| E[DVo] | < | E[D1q] | + | E[D2n] | SE[ [D1n| ]+ E[ [D2n|]= 0 (n™2),

Thisgives 5.1(2). The conclusion now follows from Lemma5.1.
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PROOF OF COROLLARY 5.7: Notice that 5.7(1) implies D.1P with V(8) =8 -6,|?2.

Then al conditions of Corollary 5.4 are satisfied with b = 1, and the result follows.

PROOF OF COROLLARY 5.8: Notice that 5.8(1) and 5.8(2) imply A.8, so we get
||én—60||_, 0 as-P . Following the proof of Lemma 5.1 and Corollary 5.4 with

Vn(©) = [0 — Py(n)fo |2, weget for n sufficiently large,

E[16 1~ Pembo |21 = OWn) for ¢>1; E[[|6,-Pmbol?1=0(ntlogn) for c=1;
and  E[|6, - Pembol21=0(n) for 0<c<1.

Thusresult (i) holds. Now result (ii) follows due to 5.8(3) and the following relation :

EL[|6n-60]21=EL&n - PkmBoll 21+ 60 = Pumfo %
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