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ABSTRACT OF THE DISSERTATION

Essays on Nonparametric and High-Dimensional Econometrics

by

Jesper Riis-Vestergaard Soerensen

Doctor of Philosophy in Economics

University of California, Los Angeles, 2018

Professor Denis Nikolaye Chetverikov, Co-Chair

Professor Jinyong Hahn, Co-Chair

This dissertation studies questions related to identification, estimation, and specification

testing of nonparametric and high-dimensional econometric models. The thesis is composed

by two chapters.

In Chapter 1, I propose specification tests for two formally distinct but related classes of

econometric models: (1) semiparametric conditional moment restriction models dependent

on conditional expectation functions, and (2) a class of high-dimensional unconditional mo-

ment restriction models dependent on high-dimensional best linear predictors. These classes

may be motivated by economic models in which agents make choices under uncertainty and

therefore have to predict payo↵-relevant variables such as the behavior of other agents. The

proposed tests are shown to be both asymptotically correctly sized and consistent. Moreover,

I establish a bound on the rate of local alternatives for which the test for high-dimensional

unconditional moment restriction models is consistent. These results allow researchers to

ii



test the specification of their models without introducing additional parametric, typically ad

hoc, assumptions on expectations.

In Chapter 2, I show that it is possible to identify and estimate a generalized panel

regression model (GPRM) without imposing any parametric structure on (1) the function

of observable explanatory variables, (2) the systematic function through which the function

of observable explanatory variables, fixed e↵ect, and disturbance term generate the outcome

variable, or (3) the distribution of unobservables. I proceed with estimation using a series

maximum rank correlation estimator (SMRCE) of the function of observable explanatory

variables and provide conditions under which L2–consistency is achieved. I also provide

conditions under which both L2 and uniform convergence rates of the SMRCE may be

derived.
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Introduction

Economists form theories and formulate models on the behavior and interaction of economic

agents and how economies work. Econometrics is an economic discipline which deals with the

application of statistical methods and mathematical economics to economic data. Through

observation or experimentation, econometrics aims to give empirical content to economic

relations and theories. This discipline is used, in part, to obtain helpful estimates for diligent

policymakers.

Unlike researchers in the physical sciences, economists are rarely able to conduct con-

trolled experiments. Econometricians therefore face the challenge of quantifying economic

relationships using data generated by complex systems of related equations, in which many

variables may change simultaneously. Theoretical econometrics relies on economic and math-

ematical reasoning, theoretical statistics, and numerical methods to argue that a new formula

may have the ability to correct inferences outside of controlled environments.

The methodology of economics generally consists of four steps:

1. Suggest a theory to interpret existing data.

2. Develop a model that captures the body of the theory one wishes to test.

3. Use relevant statistical procedures to estimate the unknown parameters of the model.

4. Determine whether the model makes economic sense through hypothesis testing.

The end result of this process, if all goes well, is a tool that can be used to assess the empirical

validity of an abstract economic model.

This thesis expands the toolkits of empirical economists used in Steps 3 and 4 by provid-

ing methods for estimation and testing under more general conditions than were previously

available. Specifically, in Chapters 1 and 2, I develop methods for testing the overall accuracy

of the employed model (Step 4) and estimating unknown model parameters (Step 3), respec-

tively, under weaker functional form assumptions than previously invoked. While economic

theory may predict the relationship between two economic variables to take a particular

shape (e.g., monotonicity or concavity), it rarely takes a stand on a particular parametric
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functional form (e.g., linearity). Thus, when available, econometric procedures that do not

hinge on parametric functional form assumptions ought to be favored to those that do, as

the former type of procedures align more closely with the underlying economic theory.

In the following two sections, I provide a more detailed introduction to the particular

testing and estimation problems considered in this thesis as well as the specific functional

form assumptions I have relaxed.

Chapter 1: Consistent Specification Testing in Semi-

parametric and High-Dimensional Moment Models

Empirical work in economics typically relies on the use of econometric models, i.e., simplified,

statistical constructs serving the purpose of illustrating complex processes. Any modelling

process should be accompanied by a measure of model accuracy, sometimes referred to as

performing model specification tests (or diagnostics). Specification testing is critical since

the usefulness of a model hinges on the precision at which it reflects the relationships it aims

to understand.

Econometric models are often indexed by a mix of parametric (i.e., fixed- and finite-

dimensional) and nonparametric (i.e., infinite-dimensional) components. Such models are

therefore said to be semiparametric.

Semiparametric models occur naturally in settings where agents make choices under un-

certain conditions. Decision-making under uncertainty is pervasive in economics and covers

both single-agent models and models with strategic interactions (i.e., games). For example, a

high-school graduate decides to attend college not knowing if he/she will be able to complete

college, perhaps due to financial constraints (or a host of other variables). Similarly, firms

decide on whether to enter a new market not knowing the entry decision of their competitors.

A feature of decision-making under uncertainty is that agents have to form expectations

over payo↵-relevant variables unobserved at the time of decision, i.e, they must assess the

likelihood of uncertain variables taking on various outcomes in the future. In the college-

decision example, whether a high-school graduate obtains a college degree matters for their

future employability and, thus, their wage trajectory. Likewise, in the firm-entry example,

the profitability of a firm entering a new market depends on the level of competition it stands

to face.

Economic theory typically provides little guidance towards the functional form of expec-

tations generated by agents. It therefore seems reasonable to view expectations formed by

agents as nonparametric objects both when fitting the resulting (semiparametric) model and
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evaluating its accuracy.

The literature on model specification testing in econometrics is voluminous and dates back

to at least the early 1980s. The work of Herman Bierens is particularly relevant (see, e.g.,

Bierens, 1982). However, most of the existing literature concerns testing the specification of

classes of parametric models or tests tailored to particular instances of semi- or nonparametric

models. In contrast, in Chapter 1, I develop a general method for testing the specification

of a class of partially or even fully nonparametrically specified models.

Depending on the nature of the decision, expectations formed by agents may depend

on a number of variables ranging from only a few to numerous. For example, it may be

reasonable to assume that a financially constrained high-school graduate assesses their like-

lihood of college completion based on just a few variables such as their current wealth and

borrowing limit (or lack thereof). In contrast, a firm deciding on entry will in general have

to consider not only the characteristics of the market but also all of its competitors, leading

to a potentially large set of variables.

When the number of variables is relatively small, one may allow expectations to be non-

parametric and leave it to the data to determine their functional forms. To this end, one may

employ classical nonparametric methods such as kernel or series estimation. However, when

expectations depend on many sources, classical nonparametric approaches may break down.

As a middle ground between the restrictive low-dimensional, parametric setup and the infea-

sible infinite-dimensional nonparametric framework, one may entertain a high-dimensional

setting. A high-dimensional specification allows the number of candidate inputs—and, thus,

the number of parameters to be estimated—to be large and, in fact, potentially much larger

than the sample size available to the researcher. Under an assumption of sparsity, modern

machine learning techniques such as the LASSO (Tibshirani, 1996) work well even with a

high-dimensional number of parameters to be estimated. Sparsity means that from the po-

tentially very large collection of candidate variables only a few (a priori unknown) variables

actually matter.

Building on the insights of Bierens (1982), in Chapter 1, I construct test statistics for

models involving either nonparametric or high-dimensional expectations. The chapter is

divided into two parts as these di↵erent modelling environments, as well as the di↵erent

estimation techniques employed to construct the test statistics, necessitate substantially dif-

ferent arguments in order to establish the large-sample probabilistic behavior of the proposed

test statistics. Nonetheless, drawing on results from the statistics literature for “functional

central limit theorems” (see, e.g., van der Vaart and Wellner, 1996) and recently developed

“high-dimensional central limit theorems” (see Chernozhukov, Chetverikov, and Kato, 2013),

I construct testing procedures that, at least in large samples, are able to distinguish between

3



correctly and incorrectly specified models.

The practical usefulness of the results in Chapter 1 is to provide researchers with general

tools that allow them to test the accuracy of their models without having to impose additional

parametric, typically ad hoc, assumptions on expectations.

Chapter 2: Identification and Estimation of a General-

ized Panel Regression Model

Many empirical applications in economics involve limited dependent variables. Variables

may be inherently unobservable, limited due to (optimal) choice or mechanically limited.

For example, when studying the labor market participation of married females, one only

observes whether or not the married female participates and not their underlying, inherently

unobservable, willingness to participate. If the object of interest is determinants of wages,

then one faces the problem that wages are observed only for those who choose to work. In

addition, studying determinants of wealth, one may face the problem of data censoring such

as interval or top coding, perhaps due to privacy concerns. In the case of interval coding

wealth is in principle observable, but the researcher only observes wealth up to a bracket

(e.g., $100,000–$125,000).

Economists often have access to panel data, i.e., repeated observations of the same units

(e.g., the same individuals in multiple years). Access to panel data allows researchers to

control for time-invariant unit-specific e↵ects such as individual ability or taste by inspecting

the same unit across time. This feature makes panel data analysis compelling relative to

analysis based on a single cross section.

The traditional approach to fitting limited dependent variable models for panel data has

been to specify parametric functional forms for all model unknowns. Parametric assumptions

assist the researcher in determining what can be learned from the model under the thought

experiment of having access to unlimited data, known as identification analysis. They also

facilitate estimation as the number of unknowns to be quantified using the available data

has been greatly reduced by the assumption of parametric functional forms.

However, misspecification of one or more model components may lead to undesirable

behavior of standard estimators. Even worse, incorrectly specified parametric functional

forms may lead to a lack of identification altogether.

To avoid having identification driven by parametric functional form assumptions, in Chap-

ter 2, I analyze nonparametric versions of a collection of panel data models including typically

invoked limited dependent variable models. The class of models considered assume a mono-
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tonic relationship, at least on average, between the rank of the outcome of interest and the

rank of the variables used to explained said outcome but does not impose any parametric

functional form on this relationship. I show that this type of “rank correlation” assumption

can lead to identification of elements of interest in such panel data models. The constructive

nature of my identification result suggests natural estimators and I derive their statistical

properties.

The results in this chapter provide researchers with tools for estimation of a class of

panel data models under weaker functional form assumptions. By comparing the resulting

nonparametric estimates with estimates obtained under parametric assumptions, the results

in this chapter may also be used to assess the sensitivity of the analysis to the latter set of

assumptions.
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Chapter 1

Consistent Specification Testing in

Semiparametric and

High-Dimensional Moment Models

1.1 Introduction

This paper concerns testing the specification of a class of semiparametric conditional moment

restriction (CMR) models and a class of high-dimensional unconditional moment restriction

(UMR) models. The two classes of models both allow parameterizations to involve flexibly

specified predictions: In the CMR models predictions are fully nonparametric, while in the

high-dimensional UMR models predictions are high-dimensionally linear. Simple examples of

members of these two classes are the partially linear regression model and the linear treatment

model with a high-dimensional number of controls, respectively. However, the presence of

predictions in the model parameterizations is often intended to capture expectation formation

made by economic agents operating within an uncertain environment. Flexible specification

of these predictions is then motivated by the fact that researchers typically have limited

information on how such expectations are formed.

Econometric models often involve one or multiple agents acting optimally within an un-

certain environment. Optimal choice under uncertainty requires decision makers to predict

payo↵-relevant variables unknown at the time of their decision given their available informa-

tion. For example, high school graduates decide on whether to attend college not knowing if

they will be able to complete college, e.g., due to financial limitations. They must therefore

form an opinion about whether they will obtain a degree should they enroll (see, e.g., Man-

ski 1991). Similarly, firms decide on whether to enter a new market not knowing the entry
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decision of their competitors and must therefore predict whether their competitors will enter

(see, e.g., Bajari, Hong, Krainer, and Nekipelov 2010). Economic theory typically provides

little guidance towards the functional form of these predictions or expectations, which con-

sequently should be specified in a flexible manner. Even when these predictions are flexibly

specified, the models employed may yield a poor approximation to actual behavior. In order

to know if conclusions derived from the analysis of such econometric models can be trusted,

it is necessary to statistically test whether the model specification is consistent with the data

to which it is applied. In other words, does the data reject the model? In this paper, I

provide tools for addressing this question.

A fully nonparametric approach to the predictions leads to “classical” semiparametric

econometrics, while adopting a high-dimensional linear form may be thought of as “modern”

high-dimensional econometrics. Due to the di↵erent econometric environments, this paper

is divided into two parts. In the first part I consider a class of semiparametric CMR models

whose parameterizations involve conditional expectation functions (CEFs). These CMR

models are “semiparametric” in the sense that, while the model may impose parametric

restrictions, the CEFs are left nonparametric. While a nonparametric specification of CEFs

remains true to the economic model, in some applications (fully) nonparametric estimation

may not be practically feasible due to the curse of dimensionality. For example, in the

market entry game a firm must in general predict the entry of a competitor as a function of

the observable characteristics of all firms, which may lead to a sizable state space.

Acknowledging that a fully nonparametric treatment of predictions may be too flexible

for practical considerations and that a simple linear model in a few of the state variables

may miss important conditioning information, one may be willing to adopt the more par-

simonious yet still flexible assumption of high-dimensional linearity. In the second part of

this paper I consider a class of high-dimensional moment models. These moment models are

“high-dimensional” for two reasons: (1) the number of unconditional moment restrictions to

be tested may grow with and possibly exceed the sample size available to the researcher, and

(2) the parameterization of these models may itself involve high-dimensional components.

The high-dimensional components are here taken to be best linear predictors. Loosely speak-

ing, these models involve numerous moments, each of which may depend on very many “re-

gressors.” To make e↵ective use of the high-dimensional number of regressors, I will rely on

the important structure of approximate sparsity (see, e.g., Belloni and Chernozhukov 2011,

Belloni, Chen, Chernozhukov, and Hansen 2012, Belloni, Chernozhukov, and Hansen 2014a).

In the context of this paper, approximate sparsity refers to the condition that each high-

dimensional best linear predictor by and large depends on a small (but a priori unknown)

set of regressors.
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The high-dimensional best linear predictors may be thought of as finite-dimensional but

adaptable approximations to the predictions made by the agents in an underlying economic

model. Alternatively, one may justify focusing on best linear predictors by means of bounded

rationality. The conditional expectation is the optimal predictor under mean-square loss.

A fully rational agent computes the optimal predictor and uses it to solve their decision

problem. In contrast, a boundedly rational decision-maker may find the computation of

a conditional expectation intractable or too time consuming and may find that the more

manageable best linear predictors yield a suboptimal yet satisfactory solution.

The first contribution of this paper is to propose a class of specification tests that apply

generally to CMR models involving nonparametrically specified CEFs and show that the

proposed specification tests are both asymptotically correctly sized and consistent. These

results add to the existing literature on consistent specification testing in CMR models.

Recall that a test is called consistent if its power against any deviation from the null hy-

pothesis approaches one as the sample size grows without bound. The first consistent test

for the specification of functional form of cross-sectional regression models was proposed by

Bierens (1982) and is sometimes referred to as the Integrated Conditional Moment (ICM)

test (Bierens and Ploberger, 1997) or the Bierens Test (de Jong, 1996). Bierens’ key observa-

tion was that the null hypothesis of a CMR may be equivalently expressed as a testable null

hypothesis involving possibly infinitely many UMRs constructed by interacting the model

residual with carefully chosen weight functions depending on the conditioning variables. The

properties required of these weight function are characterized by Stinchcombe and White

(1998). Bierens (1984), de Jong (1996) and Bierens and Ploberger (1997) extended the ICM

test to allow for time series regression.

Following Bierens’ original paper, two strands of literature emerged. One strand of the

literature further developed ICM-type (or related) consistent tests of conditional expectation

(mainly regression) models (Stute 1997, Stinchcombe and White 1998, Boning and Sowell

1999, Fan and Li 2000, Whang 2001, and Escanciano 2006). Moreover, Stinchcombe and

White (1998) and Whang (2001) extended Bierens’ approach to testing to a more general

parametric context than the standard regression framework. In particular, their treatments

allowed for general parametric CMR models.1

A di↵erent strand of the literature constructed tests by comparing estimates imposing

parametric functional forms with nonparametric or semiparametric estimates (Wooldridge

1992, Yatchew 1992, Hardle and Mammen 1993, Gozalo 1993, Horowitz and Härdle 1994,

1Donald, Imbens, and Newey (2003) developed consistent specification tests for parametric CMRs based
on generalized empirical likelihood ratio test statistics using a finite but growing number of UMRs. While
their tests are not of the ICM-type, they are similar in spirit.
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Hong and White (1995), Li and Wang 1998, Zheng 1996, and Lavergne and Vuong 2000,

among others). Given that the majority of the latter collection of papers employ kernel

regression or smoothing methods, I will refer to these tests as “kernel-based.” Stinchcombe

andWhite (1998) unifies the seemingly dissimilar ICM and kernel-based approaches to testing

models consistently by showing that they are, in some sense, dual treatments of the same

problem. Moreover, Fan and Li (2000) have shown that a particular version of the ICM test

may be viewed as a kernel-based tests albeit with a fixed bandwidth.

In this paper I provide a framework for testing the specification of not just regression or

other conditional expectation models, but a class of CMR models. Building on Bierens’ key

observation, I recast the null hypothesis of a correctly specified CMR as a testable collection

of UMRs. Consequently, my test statistic is of the ICM type. While the above references

require parametrically specified models, I allow the parameterization of such CMR models

to include nonparametrically specified CEFs. This added flexibility allows a researcher to

test the specification of their model without introducing ad hoc assumptions with respect to

expectation formation.

The second contribution of this paper is to propose a method for testing the specification

of high-dimensional UMR models and show that this method provides asymptotic size con-

trol. In addition, I establish an upper bound on the rate of local alternatives for which the

test is consistent. To the best of my knowledge, this paper provides the first specification

test for high-dimensional econometric models.

Lastly, in this paper I make an additional contribution of potential independent interest

by providing low-level conditions under which the Lasso (Tibshirani, 1996) can be used for

estimation of potentially very many high-dimensional best linear predictors. The properties

of the Lasso for estimation of a single or potentially very many CEFs are well understood

(see, e.g., Bickel, Ritov, and Tsybakov 2009, Belloni and Chernozhukov 2011, Belloni et al.

2012, Belloni and Chernozhukov 2013, and Belloni et al. 2014a). In this paper I contribute

to the literature by establishing properties of the Lasso when the targets of estimation are

instead numerous high-dimensional best linear predictors.

The remainder of this paper is organized as follows. I give some motivational examples in

Section 1.2 and provide an overview of the main results in Section 1.3. Sections 1.4 and 1.5

contain a formal presentation of the results for semiparametric CMR and high-dimensional

UMR models, respectively, and the assumptions under which they are proven. Results on

the properties of the Lasso for estimation of a multitude of best linear predictors, and details

on implementation have all been relegated to the appendices so as not to interrupt the flow

of the paper. The appendices also contain additional motivational examples, verification

of assumptions in examples, and some extensions to the settings studied in the main text.
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Proofs of main results are in the appendices, while proofs of supporting lemmas may be

found in the supplement.

Notation

Section 1.4 concerns independent and identically distributed (i.i.d.) data {Zi}11 with Z de-

noting a generic element. For these sections, c, C, C1, C2, . . . denote finite, positive constants

independent of n, which may change from place to place. Here a . b means that a 6 Cb,

and a .P b means that a = OP (b).

In Section 1.5 I work with triangular array data {{Zi,n}ni=1}1n=1 defined on some common

probability space. For each n 2 N, Zi,n, i 2 {1, . . . , n} , are i.i.d. across i, but their common

law may change with n. Consequently, all objects that are defined using the distribution of

Zi,n are implicitly indexed by the sample size n, but I omit the index n in what follows to

simplify notation and let Z denote a generic element. For these sections a . b is reserved

for a 6 Ab, where A denotes an absolute constant.

Throughout I use the average notation En [f (Zi)] := n�1
Pn

i=1 f (Zi), i.e., En (·) abbrevi-
ates n�1

Pn
i=1 (·). For f : RK ! RL di↵erentiable, @x>f is short for the L ⇥ K matrix of

partial derivatives @fl/@xk. For a symmetric, real matrix A, �min (A) and �max (A) denote

the smallest and largest eigenvalues of A, respectively. The `1 norm and `2 (i.e., Euclidean)

norm of vectors are denoted by k·k1 and k·k, respectively. The “`0 norm” k·k0 is given by

the number of nonzero components of a vector, while k·k1 denotes the maximal absolute

element of a vector. The empirical L2-norm L2 (Pn) is given by kfkP
n

,2 := {En[f (Zi)
2]}1/2

and for a function f : X ! R I write kfkX := supx2X |f (x)|. Given a vector � 2 Rp and

a set of indices T ⇢ {1, . . . , p}, I write �T for the vector satisfying �Tj = �j if j 2 T and

zero otherwise. Complements are relative to the index set: T c := {1, . . . , p} \T . I denote

a _ b := max {a, b} and a ^ b := min {a, b}.

1.2 Motivational Examples

The following example illustrates how CMRs involving nonparametrically specified CEFs

may arise from an economic model. Section 1.B contains additional motivational examples

such as partial and high-dimensional linear regression and discrete choice under uncertainty.

Example 1.1 (An Entry Game with Incomplete Information). Consider a simple

entry game where J firms consider entering a particular market. These firms may be thought

of as major US airlines deciding on whether to enter a particular large metropolitan airport.

Bajari, Hong, Krainer, and Nekipelov (2010) analyzed entry and more general static, discrete
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games under incomplete information. This example builds on their Section 2.1. Each firm

j 2 {1, . . . , J} must choose an action aj 2 {0, 1}.2 Let Aj = 1 denote the decision to enter

a particular market and and Aj = 0 the decision not to enter the same market. At the

time of decision, the payo↵- and belief-relevant state variables V and W , respectively, are

publicly known. In the airline industry example, these variables could include the nearby

population or publicly available measures of airline operating costs. Each firm also holds

private information "j := ("j (0) , "j (1)), which may be thought of as capturing shocks to the

firm’s own profitability. Firm j’s (ex post) payo↵ from choosing aj 2 {0, 1} is

uj (aj, a�j, v) = ⇡j (aj, a�j, v) + "j (aj) .

Note that the payo↵ of a firm j is allowed to depend on not only their own action aj

but also on the actions of others, a�j := (a1, . . . , aj�1, aj+1, . . . , aJ). This feature makes

the model one of strategic interaction. Let the private information "j := ("j (0) , "j (1)) be

distributed according to some cdf F ("0, "1; �0) independently across firms and independently

of the public state variables, where F is known up to the parameter �0. Parameterize the

“deterministic” part of the payo↵ as

⇡j (aj, a�j, v) =

8

<

:

v>✓0 + �0
P

k 6=j ak, aj = 1

0, aj = 0,

thus normalizing this part of the payo↵ zero when the firm chooses not to enter. Suppose

that the researcher observes actions A = (A1, . . . , AJ) of all firms and the public state

variables (V,W ). Suppose further that the game is played according to a Bayesian Nash

Equilibrium (BNE), such that every firm maximizes their expected payo↵ given their beliefs,

and everyone’s beliefs turn out to be correct. Then in a BNE the conditional entry probability

of firm j equals

P (Aj = 1|V,W ) = G
⇣

V >✓0 + �0
X

k 6=j

P (Ak = 1|W ) ; �0
⌘

,

where G (u; �0) =
R

1 ("0 < u+ "1) dF ("0, "1; �0). The previous display rearranges to the

CMR

E
h

Aj �G
⇣

V >✓0 + �0
X

k 6=j

P (Ak = 1|W ) ; �0
⌘

�

�

�

V,W
i

= 0. (1.2.1)

2This example may to some extent be extended to allow for a more general static discrete game with
incomplete information similar to Bajari et al. (2010, Section 2).
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The implied residual for firm j, Aj � G(V >✓ + �
P

k 6=j P (Ak = 1|V,W ) ; �)] depends on

the J � 1 conditional expectations E (Ak|W ) = P (Ak = 1|W ), i.e., the conditional entry

probabilities of firm j’s competitors. In the special case where {"j (aj)}a
j

,j are distributed

Type 1 extreme value independently across both actions and firms and independently of the

public state variables, the conditional entry probability of firm j takes the logit form,

P (Aj = 1|V,W ) = logistic
h

V >✓0 + �0
X

k 6=j

P (Ak = 1|W )
i

,

where logistic (u) = eu/ (1 + eu). The previous display rearranges to produce the CMR

E
n

Aj � logistic
h

V >✓0 + �0
X

k 6=j

P (Ak = 1|W )
i

�

�

�

V,W
o

= 0. (1.2.2)

(See Appendix 1.B and in particular (1.B.3) for the analogous expression in a single-agent

discrete choice model.) Regardless of the choice of distribution, one may have misspecified

the payo↵ function, omitted payo↵- or belief-relevant state variables, or settled on the wrong

distribution for the private information. In addition, one may have chosen to work with an

inadequate equilibrium concept.

The following example is a high-dimensional analog of Example 1.1.

Example 1.2 (A High-Dimensional Model of Entry with Incomplete Information).

Suppose that instead of maximizing their expected payo↵, each firm maximizes their projected

payo↵ given very many state variables (V,W ). Projected payo↵ maximization may occur,

for example, if firms are boundedly rational. Then in a “Bayesian” Nash equilibrium where

all firms maximize their projected payo↵s subject to their beliefs, and all beliefs turn out

correct, the conditional entry probability of firm j takes the form

P (Aj = 1|V,W ) = G
⇣

V >✓0 + �0
X

k 6=j

L (Ak|W ) ; �0
⌘

,

where L (Ak|W ) := W>hk⇤ is the best linear predictor of Ak given W with coe�cients

given by hk⇤ := [E(WW>)]�1E(WAk). Interacting the implied residual by the vector X =

(V >,W>)> of q instruments, we arrive at the UMRs

E
nh

Aj �G
⇣

V >✓0 + �0
X

k 6=j

W>hk⇤; �0
⌘i

X
o

= 0q⇥1.

12



1.3 Overview

In this section of the paper I informally present the test procedures developed in this paper

and provide an overview of the main results. Sections 1.4 and 1.5 contain a more technical

presentation of these results and the assumptions under which they are proven.

1.3.1 Overview: Semiparametric Conditional Moments

The null hypothesis is the CMR E [⇢ (Z, �⇤, h⇤ (W ))|X] = 0,3 where ⇢ denotes a residual

function capturing the econometric model, Z denotes all observables, �⇤ 2 Rd a parameter,

h⇤ (W ) := E (Y |W ) is a nonparametrically specified conditional expectation depending on a

vector W of regressors, and X is a vector of conditioning (instrumental) variables including

W . Both �⇤ and X (thus W ) are treated as objects of fixed and low dimension. For the

ease of presentation, h⇤ is here treated as real-valued, although the theory readily extends

to cover the case where h⇤ (W ) represents a vector of conditional expectation functions (cf.

Section 1.F.1).

Following Bierens’s (1982) approach to specification testing in regression models, I con-

vert the single CMR E [⇢ (Z, �⇤, h⇤ (W ))|X] = 0 into a possibly infinite collection of UMRs,

E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)] = 0, t 2 T , where ! and T denote a weight function and index

set suitably chosen by the researcher (see Stinchcombe and White, 1998). Applying a func-

tional to the function t 7! E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)], one may aggregate these UMRs. For

simplicitly, I focus on the case where T is operated out by integrating the squared deviations

from zero against an appropriately chosen continuous distribution function µ on T , such that

the null holds if and only if

kE [⇢ (Z, �⇤, h⇤ (W ))! (·, X)]k2µ,2 :=

Z

T
{E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)]}2 dµ (t) = 0.

Given a random sample {Zi}n1 of size n and estimators b� and bh, the previous display suggests

basing a test of the null hypothesis on the feasible sample analog

Tn :=

Z

T

"

1p
n

n
X

i=1

⇢(Zi, b�,bh (Wi))! (t,Xi)

#2

dµ (t) ,

where I have scaled by
p
n in anticipation of an application of a central limit theorem. When

⇢(Zi, b�,bh (Wi)) is the nonlinear least squares residual Yi � f(Xi, b�), the previous display

becomes the ICM test statistic of Bierens and Ploberger (1997).

3Throughout this section I omit the qualifier “with probability one” in making conditional statements.
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I take a series approach to estimation of h⇤, which is motivated by the fact that h⇤ is a

CEF with a small number of arguments. Its estimator bh may therefore be constructed using

standard regression tools.

I show that the stochastic process n�1/2
Pn

i=1[⇢(Zi, b�,bh (Wi))! (·, Xi)] driving the behav-

ior of the test statistic Tn is asymptotically equivalent to a process
p
nEn [f⇤ (·, Zi)], where the

summand f⇤ (t, Zi) involves two adjustment terms due to estimation of �⇤ and h⇤. The prob-

abilistic behavior of Tn may therefore be approximated by that of kn�1/2
Pn

i=1 f⇤ (·, Zi)k2µ,2.
Under the null, by means of a functional central limit theorem (FCLT) I show that n�1/2

Pn
i=1

f⇤(·, Zi) converges in distribution to a zero-mean Gaussian process G0. The continuous map-

ping theorem then implies

Tn
d! kG0k2µ,2 =

Z

T
G0 (t)

2 dµ (t) .

The limiting null distribution cannot be tabulated. To obtain critical values I make use of

a multiplier bootstrap. To fix ideas, let ⇠i, i 2 {1, 2, . . . } , be i.i.d. standard normal and

independent of the data, and define the multiplier process

G⇤
n (t) :=

1p
n

n
X

i=1

⇠i {f⇤ (t, Zi)� En [f⇤ (t, Zi)]} , t 2 T ,

Given that
p
nEn [f⇤ (·, Zi)] satisfies a FCLT, so does the multiplier process (conditional

on the data). Under the null, the integrated squares of the multiplier process converge in

distribution to those of the null process. Consequently, for a given significance level ↵ 2 (0, 1)

one may use as a critical value

c⇤n (↵) := (1� ↵) -quantile of kG⇤
nk2µ,2 given {Zi}n1 .

However, the function f⇤ is generally unknown, which renders c⇤n (↵) infeasible. I show

that replacing f⇤ by a feasible analog bf is asymptotically equivalent to knowing f⇤. As a

result, one may construct a feasible critical value bc (↵) using the previous two displays by

(1) substituting bf for f⇤, and (2) simulating the multipliers {⇠i}n1 holding the data constant.

The main results of this section are that the test that rejects the null if and only if Tn > bc (↵)

is asymptotically of size ↵ and consistent.

1.3.2 Overview: High-Dimensional Unconditional Moments

The null hypothesis is that E[⇢(Z, �⇤,W>h⇤)X] = 0q⇥1, where ⇢ denotes a residual func-

tion capturing the econometric model, Z denotes all observables for a single observation,
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�⇤ 2 Rd is a low-dimensional parameter, and W>h⇤ is the best linear predictor of Y based

on a random vector W of p “regressors,” and X is a random vector of q instruments.4 The

moments E[⇢(Z, �⇤,W>h⇤)X] are “high-dimensional” in two ways as I allow both the number

of regressors p and the number of instruments q to grow with as well as potentially greatly

exceed the sample size n available to the researcher. Best linear predictors may occur in

econometric models due to bounded rationality or as flexible, linear approximation to com-

plex, nonlinear conditional expectation functions. Although an extension to multiple best

linear predictors is theoretically possible (see Section 1.F.2), for simplicity of notation of

notation I here consider the case of a single best linear predictor.

Given an i.i.d. sample {Zi}n1 of size n and estimators b� and bh, the null hypothesis may be

heuristically tested by inspecting whether n�1
Pn

i=1 ⇢(Zi, b�,W>
i
bh)Xi ⇡ 0q⇥1, or, equivalently,

using the maximal deviation from zero, whether

max
16k6q

�

�

�

�

�

1

n

n
X

i=1

⇢(Zi, b�,W
>
i
bh)Xik

�

�

�

�

�

⇡ 0.

An intuitively appealing test statistic eT is therefore defined by

eT := max
16k6q

�

�

�

�

�

1p
n

n
X

i=1

⇢(Zi, b�,W
>
i
bh)Xik

�

�

�

�

�

,

where I have scaled by
p
n in anticipation of an application of some central limit theorem to

be discussed below.

When h⇤ is high-dimensional, the number of free parameters exceeds the sample size,

and one must necessarily make use of some machine learning method (e.g., regularization

methods such as the Lasso or Ridge regression) to estimate h⇤. In the context of two-step

semiparametric estimation, Belloni et al. (2012) (henceforth: BCCH) and Belloni, Cher-

nozhukov, and Hansen (2014b) have shown that when using a machine learning estimator in

a first step, in order to obtain valid inference about parameters of interest it is important to

use locally robust moments. Moments are said to be locally robust (to the first step) when

they have a zero derivative with respect to the first step (see, e.g., Chernozhukov, Escanciano,

Ichimura, and Newey, 2016).5 The findings of BCCH and Belloni et al. (2014b) apply to the

4These “regressors” may be technical in nature in in the sense of being generated as (many) transfor-
mations of underlying basic regressors. Similarly, the instruments may have been generated by underlying
conditioning (i.e., instrumental) variables.

5Some authors refer to locally robust moments as debiased, first-order insensitive, immunized, Ney-

man orthogonalized, or simply orthogonalized moments (see Chernozhukov et al. 2016 and Chernozhukov,
Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins 2017). I use these terms synonymously.
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present context of specification testing, where the “parameter” of interest are the moments

themselves. I therefore transform the original moment functions to ensure local robustness.

Locally robust moment functions (LRMFs) may be constructed by adding to the orig-

inal moment functions terms that adjust for estimation in a first step. In this paper the

adjustments are done moment by moment.6 The LRMFs thus created are equal in mean to

the original moment functions, which makes them equally suitable for specification testing.

However, the resulting orthogonalized moments are less insensitive to estimation of h⇤.

Given that each of the very many moments are adusted for estimation of very many pa-

rameters, the orthogonalization procedure leading to the LRMFs introduces a high-dimensional

number of nuisance parameters to be estimated.7 However, the LRMFs are constructed in a

manner that also ensures local robustness with respect to these additional nuisance param-

eters.

Denote the q LRMFs by  k(z, �⇤, w>h⇤, w>µk⇤), k 2 {1, . . . , q} , where µk⇤ denotes moment-

specific orthogonalization parameters. Further endowed with an estimator of the µk⇤’s, the

null hypothesis may now be tested using the locally robust test statistic

T := max
16k6q

�

�

�

�

�

1p
n

n
X

i=1

 k(Zi, b�,W
>
i
bh,W>

i bµk)

�

�

�

�

�

.

In this paper I estimate both h⇤ and µ⇤ using Lasso procedures. Under some assumptions,

which include an approximate sparsity condition, I show that that the probabilistic behavior

of T may be approximated by that of a random variable T⇤ taking the form

T⇤ = max
16k6q

�

�

�

�

�

1p
n

n
X

i=1

fk⇤ (Zi)

�

�

�

�

�

,

where each summand fk⇤ (Z) has finite variance and is mean-zero under the null. The

finite-sample distribution of T⇤ cannot be tabulated due to its dependence on the generally

unknown fk⇤’s. To obtain critical values I therefore employ a Gaussian multiplier bootstrap.

To fix ideas, let {⇠i}n1 denote i.i.d. standard normal random variables independent of the

data and define the Gaussian-symmetrized version W⇤ of T⇤ by

W⇤ := max
16k6q

�

�

�

�

�

1p
n

n
X

i=1

fk⇤ (Zi) ⇠i

�

�

�

�

�

.

6See Chernozhukov et al. (2017) for an alternative orthogonalization procedure that adjusts all moments
simultaneously.

7The same comment applies to the orthogonalization procedures in Chernozhukov et al. (2017).
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Under the null, T⇤ equals the maximum of an exact average of mean-zero vector. I may

therefore rely on a Gaussian approximation, or “high-dimensional central limit theorem,”

and approximate quantiles of T⇤ by the corresponding conditional quantiles ofW⇤ conditional

on the data {Zi}n1 (see Chernozhukov, Chetverikov, and Kato, 2013). Hence, if the fk⇤’s

were known, then one may obtain a critical value by simulating the multipliers {⇠i}n1 and

calculated the desired quantile of W⇤ holding the data constant. This method for obtaining

a critical value is sometimes referred to as the Gaussian multiplier (or Wild) bootstrap.

While the fk⇤’s are unknown in general, a feasible critical value arises from replacing

the unknown fk⇤’s by consistent estimators bfk’s. For given bfk’s, one may define the feasible

analog W of W⇤ by

W := max
16k6q

�

�

�

�

�

1p
n

n
X

i=1

bfk (Zi) ⇠i

�

�

�

�

�

.

Hence, for a given significance level ↵ 2 (0, 1), a feasible critical value cW (↵) is given by

cW (↵) := (1� ↵) -quantile of W conditional on {Zi}n1 .

Building on results in Chernozhukov, Chetverikov, and Kato (2013) for the Gaussian multi-

plier bootstrap, I show that this critical value leads to uniform size control in the sense that

as n ! 1 and possibly p = pn ! n and q = qn ! 1,

sup
↵2(0,1)

|P (T > cW (↵) ; H0)� ↵| 6 Cn�c ! 0

for some c > 0 and C > 0 independent of n. In particular, the previous display implies

that the test that rejects if and only if T > cW(↵) is asymptotically of correct size. For

given estimators { bfk}q1, the critical value cW (↵) may be calculated via simulation of the

Gaussian multipliers {⇠i}n1 . An novel feature of this size control result is that it does not rely

on knowledge of the limiting null distribution of T . In fact, the test yields approximately

correct size in finite sample even in settings where the limiting null distribution of T is

complicated, unknown, or fails to exist (even after suitable standardization).

To quantify the degree to which the null is violated, define

vq := max
16k6q

�

�E
⇥

⇢
�

Z, �⇤,W>h⇤
�

Xk

⇤

�

� .

(Here v connotes “violation.”) I show that the test that rejects if and only if T > cW(↵)

is consistent for any alternative satisfying v�1
q ln (q) /

p
n ! 0. Failure of the condition
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v�1
q ln (q) /

p
n ! 0 may be interpreted as the alternative being “too local” to the null or that

the instruments X are “too weak.”

1.4 Semiparametric Conditional Moment Models

In this section I formally present my main results on specification testing in a class of semi-

parametric CMR models.

1.4.1 Null Hypothesis

The null hypothesis is

H0 : 9�0 2 B s.t. E [⇢ (Z, �, h⇤ (W ))|X] = 0 a.s. at � = �0,

where ⇢ is a residual function which depends on data Z, a finite-dimensional parameter �

belonging to a given parameter space B ⇢ Rd, and a vector of conditional expectations

h⇤ (W ) := E (Y |W ), and X is a collection of conditioning variables, which includes W as a

subvector. The alternative hypothesis is the negation of the null,

H1 : 8� 2 B : P (E [⇢ (Z, �, h⇤ (W ))|X] = 0) < 1.

The vector Z includes both Y and X (and thus W ) as subvectors. The dependence on

elements of X in ⇢ may be trival, thus allowing for the presence of excluded exogenous

variables, i.e., “instrumental” variables. The model, which is implicit in the residual, may be

semiparametric as long as the infinite-dimensional component is composed by CEFs. This

structure is fairly common as illustrated by the range of examples in Sections 1.2 and 1.B.

While econometric models typically involve multiple conditional expectations (see Examples

1.1, 1.7 and 1.8), to simplify the presentation and ease notation I will here focus on the case

where h⇤ (W ) is scalar valued. The discussion of vector-valued h⇤ (W ) is deferred to Section

1.F.1.

1.4.2 Recasting the Null Hypothesis

In this section, through a sequence of steps, I transform the null hypothesis into an equivalent

expression which suggests a test statistic.
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1.4.2.1 Recasting using Pseudo-True Parameters

As a first step, let �⇤ in B be such that (a) �⇤ may be consistently estimated (irrespective

of the null being true or not), and (b) �⇤ = �0 under the null. Because �⇤ agrees with �0

under the null, �⇤ is called a pseudo-true parameter, or the pseudo-truth for short.8 Using

the pseudo-truth we may rewrite the null as

H0 : E [⇢ (Z, �⇤, h⇤ (W ))|X] = 0 a.s.

The following example illustrates how one may obtain a pseudo-true parameter.

Example 1.1 (continued) In the entry game, denote X := (V,W ) and let r (X) be a

(d✓ +1+ d�)-vector of instruments generated by the state variables V and W . Appealing to

the CMR (1.2.1), a pseudo-truth �⇤ := (✓⇤, �⇤, �⇤) may be taken as the assumed unique root

of the map

(✓, �, �) 7! E
nh

A�G
⇣

V >✓ + �
X

k 6=j

P (Ak = 1|W ) ; �
⌘i

r (X)
o

, (✓, �, �) 2 Rd
✓

+1+d
� .

A root of such a map exists under regularity conditions. Uniqueness amounts to an identi-

fication condition. To see that �⇤ is pseudo-true, suppose that the null hypothesis holds for

this model. Then there exists �0 := (✓>0 , �0, �
>
0 )

> such that

E
h

A�G
⇣

V >✓0 + �0
X

k 6=j

P (Ak = 1|W ) ; �0
⌘

�

�

�

V,W
i

= 0.

The uniqueness assumption and iterated expectations therefore shows that �⇤ = �0 under

the null. Building on the general framework developed by Newey (1990), Bajari et al. (2010)

provide conditions under which a two-step GMM estimator of �⇤ based on nonparametric

(sieve) first-step estimation of conditional choice probabilities is
p
n-asymptotically normal.

Remark 1.1. The assumption of the existence of a unique pseudo-true parameter �⇤ implicitly

invokes a point identification condition for �0 under the null. A weaker condition would be

to require that the parameterization of the model is partially identified under the null as

in, e.g., Santos (2012), who studied inference in nonparametric instrumental variables with

partial identification. If �0 is allowed to be partially identified under the null, and belongs

to the potentially non-singleton identified set B0 ⇢ B, then one needs to find a potentially

8There may be more than one option for a pseudo-true parameter, cf. the continuations of Examples 1.8
and 1.1 below. Here I assume that the researcher has settled on a particular option.
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non-singleton subset B⇤ of B such that B⇤ = B0 under the null. While I consider allowing

for partial identification an important extension, I do not pursue it at present.

1.4.2.2 Recasting using the Nuisance Parameter Approach

To make further progress towards operationalizing the null, let X := supp (X) denote the

support of the conditioning variables X, and let ! : T ⇥ X ! R be a known function with

the property that for any integrable random variable V ,

E (V |X) = 0 a.s. if and only if E [V ! (t,X)] = 0 for all t 2 T . (1.4.1)

One may then express the null as

H0 : E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)] = 0 for all t 2 T . (1.4.2)

The weight function ! allows us to transform a single CMR into a possibly infinite collection

of UMRs indexed by the “nuisance parameter” t through the weight !(t,X). While an

extension to unknown but consistently estimable weight functions and nuisance parameter

spaces is possible, I treat both of these quantities as known.

Remark 1.2 (On the nuisance approach, direct and indirect tests). The “nuisance parameter

approach” dates back to Bierens (1982) and was considered by, e.g., Bierens (1990); Bierens

and Ploberger (1997); Stinchcombe and White (1998); and Santos (2012). In the language of

Stinchcombe and White (1998), {x 7! !(t, x)| t 2 T } is a collection of “test functions,”which

are chosen such that they have the ability to “reveal” departures from zero of the function

E[⇢(Z, �⇤, h⇤(W ))|X = ·] under the inner product hf1, f2i = E[f1(X)f2(X)].

A direct test of the null hypothesis (1.4.2) involves estimating the conditional expecta-

tion of the residual x 7! E[⇢(Z, �⇤, h⇤(W ))|X = x] and checking whether or not the result

is the zero function. This method is sometimes referred to as the “nonparametric approach”

(Stinchcombe and White, 1998)) or the “kernel-based approach” (Fan and Li, 2000). In con-

trast, the nuisance approach focuses on estimating the residual function z 7! ⇢ (z, �⇤, h⇤ (w))

itself, which yields an indirect test of the null hypothesis. Focus on the residual function

itself instead of its conditional expectation is justified by the law of iterated expectations

E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)] = E {E [⇢ (Z, �⇤, h⇤ (W ))|X]! (t,X)} for all t 2 T

and property (1.4.1) of the weight function !. The nonparametric approach works because

it rests on a class of functions which can approximate any function. The nuisance approach

works because it rests on a class of functions whose span can approximate any function
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(Stinchcombe and White, 1998, p. 298).

Under suitable asssumptions, the function t 7! E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)] is square

integrable with respect to some absolutely continuous, strictly positive, finite measure µ on

T . Equation (1.4.2) then allows us to recast the null as

H0 :

Z

T
{E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)]}2 dµ (t) = 0. (1.4.3)

1.4.3 Test Statistic

Granted a random sample {Zi}n1 , (1.4.3) suggests statistics of the form:

Z

T
{En [⇢ (Zi, �⇤, h⇤ (Wi))! (t,Xi)]}2 dµ (t) . (1.4.4)

Such statistics were considered by Bierens (1982; 1990) and were by Bierens and Ploberger

(1997) later named Integrated Conditional Moment (ICM) test statistics. These statistics

also resemble the Cramér-von Mises criterion for judging the goodness of fit of a given CDF

compared to the empirical distribution function. Di↵erent options for the probability measure

µ are available. However, Andrews and Ploberger (1994) have shown that the uniform prob-

ability measure on T is optimal in the sense of maximizing average local power (as defined

by the same authors). Applying a di↵erent functional to t 7! En [⇢ (Zi, �⇤, h⇤ (Wi))! (t,Xi)]

than an L2-norm would yield an alternative test statistic. For example, the supremum norm

implies the equally valid test statistic

sup
t2T

�

�

p
nEn [⇢ (Zi, �⇤, h⇤ (Wi))! (t,Xi)]

�

� .

However, some choices of (µ, T ) allow for calculation of the test statistic in closed form.

While the statistic in (1.4.3) cannot be used for testing due to its dependence on the

unknowns �⇤ and h⇤, further endowed with estimators b� and bh, one may construct the test

statistic

Tn :=

Z

T

np
nEn

⇥

⇢(Zi, b�,bh (Wi))! (t,Xi)
⇤

o2

dµ (t) . (1.4.5)

To control the influence of estimation of b�, I make

Assumption 1.1 (Parametric Estimator). For each n 2 N, b� is a random element of

B ⇢ Rd, where B is a compact subset of Rd. Further, there exists s⇤ : Z ! Rd such that

p
n(b� � �⇤) =

p
nEn [s⇤ (Zi)] + oP(1), (1.4.6)
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where �⇤ is interior to B, and s⇤ (Z) is mean zero and square integrable.

Assumption 1.1 requires that b� is confined to a compact set and that the centered and

scaled estimator b� is asymptotically linear with influence function s⇤. Given the assumption

of asymptotic linearity, b� must eventually belong to a shrinking neighborhood of �⇤, and the

assumption of compactness may be relaxed.

Asymptotic linearity is a high-level condition. However, as illustrated by Example 1.3 be-

low, for particular classes of estimators it is possible to obtain asymptotic linearity through

more primitive assumptions. While primitive, easy-to-verify conditions are desirable, As-

sumption 1.1 leaves freedom in choice beyond the two-step GMM estimator of Example 1.3.

For example, (1.4.6) allows for other or more general two-step (or multi-step) estimation

procedures, such as two-step extremum estimation. Such procedures typically estimate the

nonparametric component in a first step, use its estimate to contruct a criterion function,

and maximize or minimize over � in order to produce a second-step estimator b�. Specifi-

cally, one may let b� be a sieve minimum distance (SMD) estimator (Ai and Chen, 2003) or

a penalized sieve minimum distance (PSMD) estimator (Chen and Pouzo, 2009; 2012).

Example 1.3 (Asymptotic Linearity of Two-Step GMM). Suppose that �⇤ satisfies

E[m(Z, �, h⇤ (W ))] = 0d⇥1 with h⇤ (W ) = E (Y |W ) scalar. Define b� as the minimizer of

� 7! kEn[m(Zi, �,bh (Wi)]k2, where bh is some nonparametric estimator of h⇤. The estimator
b� is known as a two-step GMM estimator based on a nonparametric first step. Newey

(1994, Lemma 5.3) provides conditions under which such a two-step GMM estimator of �⇤
based on a nonparametric first step is

p
n-asymptotically normal.9 An inspection of Newey’s

proof reveals that the same set of conditions yield the slightly stronger result of asymptotic

linearity. Specifically, under Newey’s conditions

p
n(b� � �⇤) = � �M>

⇤ M⇤
��1

M⇤
p
nEn [m (Zi, �⇤, h⇤ (Wi)) + ↵⇤ (Zi)] + oP (1) , (1.4.7)

where M⇤ = E
⇥

@�>m (Z, �⇤, h⇤ (W ))
⇤

is a Jacobian term, and ↵⇤ is an adjustment to the

moment function due to estimation of h⇤. Because h⇤ is a CEF, Newey (1994, Proposition 4)

shows that, irrespective of the choice of nonparametric estimator, the adjustment is of the

form

↵⇤ (z) = [y � h⇤ (w)] �⇤ (w) , �⇤ (W ) := E [@vm (Z, �⇤, h⇤ (W ))|W ] 2 Rd. (1.4.8)

9Newey (1994) studies the more general framework, where the nonparametric component h⇤ need not be
a CEF, and the moment functions may depend on the entire function h⇤ (·) and not necessarily just their
values h⇤ (w).
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The influence function is therefore given by

s⇤ (z) = � �M>
⇤ M⇤

��1
M⇤ {m (z, �⇤, h⇤ (w)) + �⇤ (w) [y � h⇤ (w)]} ,

with �⇤ provided by (1.4.8).10 When the moment function m (z, �, h⇤ (w)) depends on the

values of a vector of CEFs h⇤ := (h1⇤, . . . , hL⇤) given by h`⇤ (w`) := E (Y`|W` = w`), then

Newey (1994, p. 1357) shows the total adjustment to the moment function is given by

adding up the individual adjustment terms,

↵⇤ (z) =
L
X

`=1

↵`⇤ (z) =
L
X

`=1

[y` � h`⇤ (w`)] �` (w`) ,

�`⇤ (W`) := E [@v
`

m (Z, �⇤, h⇤ (W ))|W`] , (1.4.9)

where @v
`

denotes di↵erentiation with respect to the value of h`⇤.

In what follows I use (1.4.7) and (1.4.9) to derive the influence function of two-step GMM

estimators based on Example 1.1.

Example 1.1 (continued) Denote X := (V,W ) and suppose for the sake of illustration

that the "j (aj)’s are Type 1 Extreme Value distributed independently across firms and

actions. Let r (X) be a (d✓+1)-vector of instruments. Let b� := (b✓, b�) be a two-step GMM esti-

mator based on the moment functionm(z, �, h⇤(w)) = [aj�logistic(v>✓+�
P

k 6=j hk⇤ (w))]r(x)

and some nonparametric estimators of hk⇤ (W ) = E (Ak|W ) = P (Ak = 1|W ) , k 6= j. Using

the notation of Example 1.3, di↵erentiation implies that

M⇤ = �E
n

f
⇣

V >✓⇤ + �⇤
X

k 6=j

hk⇤ (W )
⌘

r (X)
⇥

V >,
X

k 6=j

hk⇤ (W )
⇤

o

,

�k⇤ (W ) = ��⇤E
h

f
⇣

V >✓⇤ + �⇤
X

k 6=j

hk⇤ (W )
⌘

r (X)
�

�

�

W
i

.

where f := logistic(1� logistic) denotes the partial derivative of the logistic function. Given

that the hk⇤ (W )’s, k 6= j, enter the residual only through their sum, �k⇤ (W ) does not depend

on k. Using (1.4.7) and (1.4.9), it therefore follows that

s⇤ (z) = � �M>
⇤ M⇤

��1
M⇤
n

[aj � logistic(v>✓ + �
X

k 6=j

hk⇤ (w))]r(x)

10See also Chen, Linton, and Van Keilegom (2003), who extend Newey’s (1994) results on two-step GMM
estimation to allow for nonsmooth moment functions.
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� �⇤E
h

f
⇣

V >✓⇤ + �⇤
X

k 6=j

hk⇤ (W )
⌘

r (X)
�

�

�

W = w
i

X

k 6=j

[ak � hk⇤ (w)]
o

.

To control the influence of estimation of h⇤, I employ a series approach. For any nonneg-

ative integer k, let

w 7! pk (w) := (p1k (w) , . . . , pkk (w))
>

be a k-vector of known approximating functions {pjk| j 2 {1, . . . , k}} which may change with

k. Then the series estimator bh := bhk
n

of h⇤ is the regression function w 7! pkn (w)> b⇡ arising

from a regression of Yi on pkn (Wi) using observations i 2 {1, . . . , n}, where {kn}11 denotes

a sequence of positive integers satisfying kn ! 1 as n ! 1, b⇡ the regression coe�cients

b⇡ := b⇡k
n

:= {En[p
k
n (Wi) p

k
n (Wi)

>]}�En[p
k
n (Wi)Yi],

and (·)� represents the (unique) Moore-Penrose generalized inverse of a matrix.11 The esti-

mand h⇤ may be viewed as the (essentially unique) projection of Y onto G := {g|E[g (W )2] <

1}, the space of all measurable functions of W = w with finite mean-square,

h⇤ = argmin
g2G

E{[Y � g (W )]2}.

Define Gk := {pk>⇡|⇡ 2 Rk}. Under the conditions stated below, each Gk is a finite-

dimensional subset of G. The estimator bh is the sample projection onto Gk
n

,12

bh 2 argmin
g2G

k

n

En{[Yi � g (Wi)]
2}.

The idea of series estimation is that bh should approximate h⇤ provided kn is allowed

to grow with the sample size n. Essential to this approximation are the requirements that

(i) each pjk, j 2 {1, . . . , k} , belongs to G, and (ii) that the functions {pjk| j 2 {1 . . . , k}}
span G as k grows without bound, in the sense that for any g 2 G, k can be chosen large

enough to ensure that there exists a linear form pk>⇡ 2 Gk which is arbitrarily close to g in

mean-square. When (i) holds, the coe�cients b⇡ may be viewed as an estimate of

⇡k
n

:= {E[pkn (W ) pkn (W )>]}�1E[pkn (W )Y ] = {E[pkn (W ) pkn (W )>]}�1E[pkn (W )h⇤ (W )],

11The choice of generalized inverse is asymptotically irrelevant, as the matrix E
n

[pk (W
i

) pk (W
i

)>] is
asymptotically nonsingular (under the conditions stated below).

12Under the conditions stated below, the problem “minimize E
n

{[Y
i

� g (W
i

)]2} subject to g 2 G
kn” will

asymptotically have a unique solution.
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i.e., the coe�cients arising from the mean-square projection hk
n

:= pkn>⇡k of h⇤ onto Gk
n

,

and bh estimates hk
n

. Under (ii) hk
n

approximates h⇤, so when both (i) and (ii) hold, bh ought

to be close to h⇤. For detailed discussions of the properties of least-squares series estimators,

see Newey (1995; 1997), Chen (2007), and Belloni, Chernozhukov, Chetverikov, and Kato

(2015).

1.4.4 Limiting Behavior of Test Statistic

In order to characterize the asymptotic behavior of Tn, I impose the following assumption

on the choice of weight function.

Assumption 1.2 (Weight Function). The function ! : T ⇥ X ! R is continuous and

bounded, and has the property (1.4.1) for some nonempty, compact subset T of Rd
t. More-

over, for each x 2 X , t1, t2 2 T , |! (t1, x)� ! (t2, x)| 6 C kt1 � t2k .

Bierens (1990) showed that if X is a bounded random variable, then (1.4.1) holds for

! (t, x) = exp
�

x>t
�

provided T ⇢ Rd
x is of positive Lebesgue measure (e.g., T = [0, 1]dx),

where dx denotes the dimension of X. Bierens also showed that the boundedness requirement

is innocuous: for any X unbounded we may choose !(t, x) := exp[�(x)>t] for some bounded,

one-to-one transformation � : Rd
x ! Rd

x . The one-to-one property of � ensures that

conditioning on X and �(X) are equivalent, i.e., there is no “loss of information” in using

�. An application of the mean value theorem shows that the Lipschitz requirement in

Assumption 1.2 holds for any such �. Stinchcombe and White (1998) provided several other

examples of weight functions and index sets satisfying (1.4.1). In particular, Stinchcombe

and White (1998, Corollary 3.9) showed that for t = (t0, t1) 2 R1+d
x , and G : R ! R

analytic and nonpolynomial, the function !(t, x) := G(t0 +� (x)> t1) satisfies (1.4.1) for any

T ⇢ R1+d
x of positive Lebesgue measure. (See their paper for definitions.) Additional valid

choices may be found using Bierens and Ploberger (1997, Theorem 1) with its addendum in

Bierens (2016, Chapter 5), and Stinchcombe and White (1998, Theorem 3.10).

I next impose conditions on the residual function. For this purpose, let Z := supp (Z)

and W := supp (W ).

Assumption 1.3 (Residual). The residual function satisfies:

1. For each z 2 Z, v 2 R, � 7! ⇢ (z, �, v) is continuous on B and continuously di↵er-

entiable on an open neighborhood N⇤ of �⇤. Moreover, there exist c 2 (0,1) and

L1 : Z ! R+ integrable such that for each z 2 Z, � 2 N⇤, v 2 R,

k@�⇢ (z, �, v)� @�⇢ (z, �, h⇤ (w))k 6 L1 (z) |v � h⇤ (w)|c.
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2. For each z 2 Z, v 7! ⇢ (z, �⇤, v) is continuously di↵erentiable on R. Moreover, there

exists � 2 (0, 1], such that for each z 2 Z, v 2 R,

|@v⇢ (z, �⇤, v)� @v⇢ (z, �⇤, h⇤ (w))| 6 R (z) |v � h⇤ (w)|�,

where E [R (Z)]
p
nkbh� h⇤k1+�W !P 0.

3. |⇢ (Z, �⇤, h⇤ (W ))|, sup�2N⇤ k@�⇢ (Z, �, h⇤ (W ))k and |@v⇢(Z, �⇤, h⇤ (W ))|2 are integrable.

Assumptions 1.3.1 and 1.3.2 involve smoothness conditions which allow for a linearization

around (�⇤, h⇤) to extract the dominant component of test statistic. The assumption of

everywhere di↵erentiability may be relaxed to accommodate nondi↵erentiable residual (as in

quantile regression) or even discontinuous residuals (as in Pakes and Pollard, 1989 and Chen

et al., 2003). While I consider extensions to nonsmooth residuals of great value, I leave them

for future research.

Assumption 1.3.2 generally requires bh to converge to h⇤ su�ciently fast with respect

to the supremum metric. If � = 1 (the leading case), then for
p
nkbh � h⇤k1+�W !P 0 it

typically su�ces that the convergence rate is o(n�1/4). This rate requirement often boils

down to assuming that the estimand is su�ciently smooth. To illustrate, suppose for the

moment that (i) h⇤ belongs to a Hölder ball ⌃(s, L,W) with Hölder exponent s, radius

L, and domain W ; and, (ii) bh achieves the Stone (1982) optimal rate of convergence with

respect to the supremum metric, i.e., kbh� h⇤kW .P n�s/(2s+d
w

) (up to a lnn factor). Then

n�s/(2s+d
w

) = o(n�1/4) is equivalent to s > dw/2. In words, when � = 1, the linearization-

in-h requirement holds whenever the target function h⇤ is su�ciently smooth relative to its

number of arguments. Allowing for a general � 2 (0, 1], the requirement becomes s� > dw/2.

Thus, what matters is the composite smoothness s�, which is given by the smoothness s of

h⇤ scaled by the smoothness � as h⇤ passes through the residual function.

While the previous assumptions allow for general nonparametric estimation methods,

the following regularity conditions are tailored to series estimators. The first assumption

is prevalent in the series estimation literature (see, e.g., Stone 1985; Newey 1994,1997; and

Belloni et al. (2015)).

Assumption 1.4 (Variance). var(Y |W ) is bounded.

The second assumption imposes regularity conditions on the approximating functions in

pk = (p1k, . . . , pkk)>.

Assumption 1.5 (Eigenvalues). The eigenvalues of E[pk (W ) pk (W )>] are bounded from

above and away from zero uniformly over k 2 N.
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Assumption 1.5 imposes a condition on the design matrix,

Qk := E[pk(W )pk(W )>], (1.4.10)

which, loosely speaking, requires that the “regressors” p1k(Wi), . . . , pkk(Wi) are not too co-

linear. It may be necessary to apply a nonsingular linear transformation of the approximating

functions in order to satisfy the requirements of Assumption 1.5. Note that such nonsingular

linear transformations do not alter the estimator. If power series are used as approximating

functions, then these may be orthonormalized with respect to some weight function. Simi-

larly, B-splines may be used in place of ordinary splines in order to lower multicollinearity.

Example 1.4 (Stability of Bounds on Eigenvalues). If the W has distribution F ,

and the {pjk}kj=1 are orthonormal on (V , ⌫) for some measure ⌫, then Assumption 1.5 holds

provided dF/d⌫ is bounded from above and away from zero (Belloni et al., 2015, Proposition

2.1).13 For example, if W is continuously distributed on V and {pjk}kj=1 are orthonormal with

respect to Lebesgue measure on V , then for Assumption 1.5 to hold it su�ces that the density

of W is bounded from above and away from zero. Specifically, if W is uniformly distributed

on [�1, 1], then an orthogonalization of the power series w 7! pjk (w) = wj�1, j 2 {1, . . . , k} ,
with respect to Lebesgue measure leads to the Legendre polynomials.14

Assumptions 1.4 and 1.5 are used to control the variance of the series estimator, but do

not provide control over the bias arising from approximating the unknown h⇤ by a linear

form. The bias—or, approximation error—will be stated in terms of the supremum met-

ric. The following assumption restricts the quality of the approximation provided by the

approximating functions relative to this metric.

Assumption 1.6 (Approximation). h⇤ is bounded. Moreover, there exists a constant

↵ 2 (0,1) such that for each k 2 N there is a e⇡k 2 Rk such that kehk � h⇤kW . k�↵ for the

linear form ehk := pk>e⇡k.

Assumption 1.6 is a high-level asssumption, but it is satisfied in many cases. The integer

↵ usually depends on the smoothness of h⇤ and its number of arguments. When h⇤ can

be viewed as a member of some smooth class of functions, then ↵ is typically available

from the approximation theory literature. For example, if h⇤ belongs to a Hölder ball with

13Here dF/d⌫ denotes the Radon-Nikodym derivative of F with respect to ⌫.

14The jth order Legendre polynomial ep
j

satisfies
R 1
�1 epj (w)

2 dw = 2/ (2j + 1) , j 2 {0, 1, 2, . . . }. Or-

thonormal Legendre polynomials therefore follow from the formula p
j

:= ep
j�1

p

[2 (j � 1) + 1] /2 =

ep
j�1

p

(2j � 1) /2, j 2 N.
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Hölder exponent s (sometimes referred to as h⇤ being “s-smooth,” cf. Chen 2007, p. 5570),

then Assumption 1.6 holds with ↵ = s/dw, provided pk is constructed using either power

series (see, e.g., Timan, 1963, Section 5.3.2; Lorentz, 1966, Theorem 8) or splines (see, e.g.,

Schumaker, 2007; DeVore and Lorentz, 1993).

Assumption 1.5 is a normalization that restricts the magnitude of the series terms. The

theory to follow will also require that the size of pk does not grow too fast relative to the

sample size, where size is quantified by

⇣k := sup
w2W

�

�pk (w)
�

� . (1.4.11)

Bounds on ⇣k are available for specific choices of approximating functions. For example, for

power series ⇣k . k, and for regression splines ⇣k .
p
k (cf. Newey, 1997). See also Belloni

et al. (2015, Section 3) for a comprehensive list of examples.

Remark 1.3 (Smallest Size of Approximating Functions). Given that the eigenvalues of Qk

are bounded away from zero (Assumption 1.5), Q�1
k exists and has eigenvalues bounded from

above, such that E[pk (W )> Q�1
k pk (W )] 6 CE[kpk (W )k2].Given that E[pk (W )> Q�1

k pk (W )] =

tr{Q�1
k E[pk (W ) pk (W )>]} = tr (Ik) = k, we must have

⇣2k > E[kpk (W )k2] > (1/C) E[pk (W )> Q�1
k pk (W )] = (1/C) k,

Hence, under Assumption 1.5, one necessarily has ⇣k &
p
k, and

p
k is the smallest order of

size ⇣k for pk.

The probabilistic behavior of the test statistic Tn depends crucically on the probabilistic

behavior of the stochastic process {pnEn[⇢(Zi, b�,bh(Wi))!(t,Xi)]|t 2 T }. An expansion

around (�⇤, h⇤) shows that this process is asymptotically equivalent to the stochastic process

{pnEn [f⇤ (t, Zi)] |t 2 T }, where

f⇤ (t, z) := ⇢ (z, �⇤, h⇤ (w))! (t, x) + b⇤ (t)
> s⇤ (z) + �⇤ (t, w) [y � h⇤ (w)] , (1.4.12)

b⇤ (t) := E [! (t,X) @�⇢ (Z, �⇤, h⇤ (W ))] , (1.4.13)

�⇤ (t,W ) := E [! (t,X) @v⇢ (Z, �⇤, h⇤ (W ))|W ] . (1.4.14)

Here b⇤ (t)
> s⇤ (z) and �⇤ (t, w) [y � h⇤ (w)] are adjustments to the (optimal) tth moment

function z 7! ⇢ (z, �⇤, h⇤ (w))! (t, x) due to estimation of �⇤ and h⇤, respectively. The form

of the adjustment term due to estimation of �⇤ follows from a mean-value expansion, with

b⇤ (t) being the tth element of the Jacobian. The form of the adjustment term due to

estimation of h⇤ is similar to the adjustment to the influence function of a two-step GMM
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estimation with a nonparametric first step (Newey, 1994; see also Example 1.3). Specifically,

the adjustment �⇤ (t, w) [y � h⇤ (w)] in (1.4.12) follows from the (1.4.8). The main di↵erence

is that, while two-step semiparametric GMM estimation requires adjustment of the finite

number of moments used in defining the GMM criterion function, I here need to adjust

a possibly infinite collection of moment functions {z 7! ⇢ (z, �⇤, h⇤ (w))! (t, x)| t 2 T } for

estimation of h⇤.

The following assumption imposes rate conditions whose primary purpose is to ensure the

errors arising from approximating the stochastic process {pnEn[⇢(Zi, b�,bh(Wi))!(t,Xi)]|t 2
T } by {pnEn [f⇤ (t, Zi)] |t 2 T } are asymptotically negligible. For the purpose of stating

these conditions, define the mean-square projection coe�cients

⇡h,k := argmin
⇡2Rk

E{[pk(W )>⇡ � h⇤(W )]2}, (1.4.15)

⇡�,k (t) := argmin
⇡2Rk

E{[pk(W )>⇡ � �⇤(t,W )]2}, (1.4.16)

and their induced mean-square errors

r2h,k := E{[pk(W )>⇡h,k � h⇤(W )]2} = min
⇡2Rk

E{[pk(W )>⇡ � h⇤(W )]2}, (1.4.17)

r2�,k (t) := E{[pk(W )>⇡�,k (t)� �⇤(t,W )]2} = min
⇡2Rk

E{[pk(W )>⇡ � �⇤(t,W )]2}, (1.4.18)

R2
�,k := E

⇥kpk(W )>⇡�,k (·)� �⇤ (·,W )k2T
⇤

. (1.4.19)

Assumption 1.7 (Rate Conditions). For ↵ provided by Assumption 1.6,

⇣k
n

rh,k
n

! 0, nr2h,k
n

kr�,k
n

k2T ! 0, ⇣2k
n

kn ln (kn) /n ! 0,

R�,k
n

! 0, R�,k
n

q

ln (kn/R�,k
n

) ! 0,
⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

(
p

kn/n+ k�↵
n ) ! 0.

Given that ⇣k 6 (
Pk

j=1 kpjkk2W)1/2, the latter rate condition ensures that ⇣k
n

(
p

kn/n +

k�↵
n ) ! 0, which I use to argue uniform consistency. Note that the presence of ⇣k in the rate

conditions requires one to use approximating functions that are bounded on W .

Observe that the mean-square error rh,k
n

resulting from approximating h⇤ by linear forms

is not required to go to zero at a rate faster than n�1/2. Such a condition would otherwise

require choosing kn larger than what would maximize its rate of convergence—a phenomenon

referred to as “undersmoothing.” Instead Assumption 1.7 requires the product of rh,k
n

and

the maximal approximation mean-square error kr�,k
n

kT to be o(n�1/2). This property arises

from the orthogonality property of mean-square projections, where, for the projections hk
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and �k (t, ·) of h⇤ and �⇤ (t, ·), respectively, the bias term E{�⇤(t,W )[hk(W )�h⇤(W )]} is equal
to E{[�k(t,W )� �⇤(t,W )][hk(W )� h⇤(W )]} for each t 2 T . As a consequence, if the family

{�⇤ (t, ·)| t 2 T} can be su�ciently well approximated by linear forms, then there is no need to

“undersmooth.”15 Newey (1994) shows that a similar feature arises in the context of two-step

GMM estimation with a first step based on series estimation of projection functionals.

The expression“su�ciently well approximated”can be quantified by assuming that {�⇤(t, ·)|
t 2 T } belongs to a space of su�ciently smooth functions.

Example 1.5 (Undersmoothing and Smooth Functions). Suppose that h⇤ 2 ⌃(sh, Lh,

W), a Hölder space of functions on W with smoothness sh > 0 and Lipschitz constant Lh,

and that �⇤ (t, ·) 2 ⌃ (s�, L�,W) for all t 2 T , where ⌃ (s�, L�,W) denotes a Hölder space

of functions on W with smoothness s� > 0 and Lipschitz constant L�. If pk is constructed

using power series then

inf
⇡2Rk

kpk>⇡ � h⇤kW 6 Ck�s/d
w ,

sup
t2T

inf
⇡2Rk

kpk (·)> ⇡ � �⇤ (t, ·)kW 6 Ck�s
�

/d
w ,

where the constant C in the second equation does not depend on t. Hence, for nr2h,k
n

kr�,k
n

k2T !
0 to hold it su�ces that

p
nk�(s

h

+s
�

)/d
w

n ! 0. Assuming for the moment that kn is chosen

to maximize the uniform rate of convergence of bh to h⇤, i.e., kn ⇣ nd
w

/(2s+d
w

) (up to a lnn

factor).16 Then
p
nk�(s

h

+s
�

)/d
w

n ! 0 if and only if n1/2�(s+s
�

)/(2s+d
w

) ! 0, which, in turn,

is equivalent to s� > dw/2. Thus, if the functions �⇤ (t, ·) , t 2 T , are su�ciently smooth

(s� > dw/2), then one may indeed pick the number of series terms kn in a uniform rate

optimal fashion, and “undersmoothing” is unnecessary.

The previous assumptions su�ce for the following lemma.

Lemma 1.1 (Asymptotic Equivalence). If Assumptions 1.1–1.7 hold, then for f⇤ defined

in (1.4.12),

kpnEn[⇢(Zi, b�,bh (Wi))! (·, Xi)�
p
nEn [f⇤ (·, Zi)]kT P! 0.

Lemma 1.1 shows that the stochastic processes {pnEn[⇢(Zi, b�,bh(Wi))!(t,Xi)]|t 2 T }
and {pnEn [f⇤ (t, Zi)] |t 2 T } are asymptotically equivalent. By the triangle inequality and

15While undersmoothing may not be necessary to achieve the claimed asymptotic approximation, it may
be “optimal” in the sense of minimizing the remainder resulting from this approximation as shown by Donald
and Newey (1994) in the context of partially linear regression.

16While the implicit logarithmic factor diverges to infinity with n, it will eventually be dominated by nc

for any c > 0 and may therefore be ignored in this discussion.
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continuous mapping theorem, the lemma implies that the probabilistic behavior of Tn can

be approximated by that of kpnEn [f⇤ (·, Zi)]k2µ,2.
Recall that a class F of real-valued functions f is called a Donsker class if the sequence

of empirical processes {pn (En � E) [f (Zi)]| f 2 F} , n 2 N, induced by F—viewed as ran-

dom elements of the space of real-valued, bounded functions on F—converges weakly to

a zero-mean Gaussian process {G (f)| f 2 F} with covariance function E [G (f1)G (f2)] =

E [f1 (Z) f2 (Z)]� E [f1 (Z)] E [f2 (Z)] , f1, f2 2 F (see, for example, van der Vaart and Well-

ner, 1996, pp. 81-82).

The same assumptions then also show:

Lemma 1.2 (Donsker Class). If Assumptions 1.1–1.7 hold, then F := {f⇤ (t, ·) : Z !
R|t 2 T } is Donsker.

Lemma 1.2 implies that the sequence of stochastic processes {pn (En � E) [f⇤ (t, Zi)]| t 2 T } , n 2
N—now viewed as random elements of the space of real-valued, bounded functions on

T —converges weakly to a zero-mean Gaussian process, i.e., t 7! p
n (En � E) [f⇤ (t, Zi)]

satisfies a functional central limit theorem (FCLT). Noting that

E [f⇤ (t, Z)] = E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)] + b⇤ (t)
> E [s⇤ (Z)] + E {�⇤ (t,W ) [Y � h⇤ (W )]}

= E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)] (1.4.20)

uniformly in t 2 T , one obtains the asympotic behavior of the test statistic.

Theorem 1.1 (Asymptotic Behavior of Test Statistic). Let Assumptions 1.1–1.7 hold.

Then (1) under H0

Tn
d!
Z

T
G0 (t)

2 dµ (t) ,

for a centered Gaussian process G0 with covariance function E[f⇤(t1, Z)f⇤(t2, Z)], t1, t2 2 T ;

(2) while under H1,

Tn/n
P!
Z

T
{E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)]}2 dµ (t) > 0.

1.4.5 Critical Values and the Multiplier Bootstrap

The asymptotic results of Theorem 1.1 cannot be implemented for inference without a con-

sistent estimator for the appropriate critical values. For this purpose, I employ a Gaussian

multiplier bootstrap procedure.
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By Theorem 1.1, the limiting law of Tn under the null hypothesis is given by kG0k2µ,2.
To acquiring a consistent bootstrap it therefore su�ces to estimate the law of the Gaussian

process G0 on T . Toward this end, let {⇠i}11 be i.i.d. standard normal random variables

independent of the stream of data {Zi}11 . To fix ideas, consider the multiplier process G⇤
n

defined by

G⇤
n (t) :=

1p
n

n
X

i=1

�

⇠i � ⇠
�

f⇤ (t, Zi) , t 2 T , (1.4.21)

where ⇠ := En (⇠i). By independence, the summands of G⇤
n are centered even if the f⇤ (t, Z)’s

are not. The purpose of including ⇠ in (1.4.21) is to take into account that the f⇤(t, Zi) may

not be centered with respect to the empirical distribution even if the null is true. Rearranging,

this connection can be made explicit:

G⇤
n (t) =

1p
n

n
X

i=1

⇠i {f⇤ (t, Zi)� En [f⇤ (t, Zi)]} .

This sample-centering ultimately leads to less conservative critical values in finite sample by

correctly accounting for sample variation.

The following discussion requires the notion of weak convergence in probability. The

multiplier process G⇤
n is said to converge weakly in probability to G⇤, written G⇤

n  P,⇠ G⇤ in

`1 (T ),17 if their distance as measured by the bounded Lipschitz metric

dBL (G
⇤
n, G⇤) := sup

h2BL
1

(`1(T ))

|E [h (G⇤
n)| {Zi}n1 ]� E [h (G⇤)]|

goes to zero in probability.18 Given that F is Donsker (Lemma 1.2), the multiplier process

satisfies a “conditional FCLT” in the sense that Gn converges weakly in probability to a

centered Gaussian process G⇤ with covariance function (t1, t2) 7! E[f⇤ (t1, Z) f⇤ (t2, Z)] �
E[f⇤ (t1, Z)]E[f⇤ (t2, Z)] (Kosorok, 2008, Theorem 10.4). Under the null, t 7! E[f⇤(t, Z)] =

E[⇢(Z, �⇤, h⇤(W ))!(t,X)] is the zero function, and the covariance function of G⇤ coincides

with that of G0. Given that the two processes G⇤ and G0 are Gaussian, they must therefore

be identically distributed under the null. This observation suggests using the critical value

c⇤n (↵) := (1� ↵) -quantile of kG⇤
nk2µ,2 conditional on {Zi}n1

17For detailed treatments of the topics of weak convergence, conditional weak convergence, and bootstrap-
ping empirical processes, see van der Vaart and Wellner (1996) and Kosorok (2008).

18Here BL1 (`1 (T )) denotes the space of functionals h : `1 (T ) ! R whose Lipschitz norm is bounded
by one, i.e., functionals satisfying khk

`

1(T ) 6 1 and |h (f)� h (g)| 6 kf � gkT for all f, g 2 `1 (T ).
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to approximate

c⇤ (↵) := (1� ↵) -quantile of kG⇤k2µ,2.

Of course, f⇤ is generally unknown, which renders the above procedure infeasible. However,

endowed with an estimator bs of the influence function s⇤, one may estimate f⇤ and define

the bootstrap process bG as the feasible analog of G⇤
n,

bG (t) :=
1p
n

n
X

i=1

�

⇠i � ⇠
�

bf (t, Zi) , t 2 T , (1.4.22)

bf (t, z) := ⇢(z, b�,bh (w))! (t, x) +bb (t)> bs (z) + b� (t, w) [y � bh (w)], (1.4.23)

bb (t) := En[! (t,Xi) @�⇢(Zi, b�,bh (Wi))], (1.4.24)

b� (t, w) := pkn (w)>
�

En[p
k
n (Wi) p

k
n (Wi)

>]
��En[p

k
n (Wi)! (t,Xi) @v⇢(Zi, b�,bh (Wi))].

(1.4.25)

Note that b� (t, ·) is the regression function from a regression of ! (t,Xi) @v⇢(Zi, b�,bh (Wi)) on

pkn (Wi). Replacing the multiplier process with the bootstrap process, we arrive at a feasible

critical value

bc (↵) := (1� ↵) -quantile of k bGk2µ,2 conditional on {Zi}n1 .

For a given significance level ↵ 2 (0, 1), the critical value bc (↵) may be obtained through

simulation of the Gaussian multipliers {⇠i}n1 holding the data constant, and integrating over

t 2 T . Moreover, for some choices of the weight function ! and nuisance parameter space

T , both the test statistic Tn and k bGk2µ,2 are available in closed form.

The only potentially di�cult part of this bootstrap procedure is constructing bs. For spe-

cific estimators, bs can often be formed by obtaining a formula for s⇤ and replacing unknown

components by estimates. For example, if s⇤ is a function s (·, �⇤, h⇤) depending on �⇤ and

h⇤, then we may construct bs as bs (·) := s(·, b�,bh). For such estimators it is possible to give

primitive conditions under which bs is consistent for s⇤. However, at the level of general-

ity considered in this section it does not appear possible to do more than simply assume

consistency as in the following assumption.

Assumption 1.8 (Bootstrap Conditions). (1) For each z 2 Z, � 2 N⇤, v 7! ⇢ (z, �, v)

is continuously di↵erentiable on R. Moreover, there exists R0 : Z ! R+ such that for each

z 2 Z, � 2 N⇤, v 2 R,

|@v⇢ (z, �, v)� @v⇢ (z, �⇤, h⇤ (w))| 6 R0 (z) (k� � �⇤k+ |v � h⇤ (w)|) ,
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where E [R0 (Z)]
p
nkbh�h⇤k2W !P 0; (2) kbs�s⇤kP

n

,2 !P 0; and, (3) ⇣k
n

p
kn(
p

kn/n+k�↵
n ) !

0.

For the additional rate condition in Assumption 1.8 to hold, we must necessarily have

⇣kk1/2�↵ ! 0 as k ! 1. When the approximating functions satisfy ⇣k ⇣ p
k (see Remark

1.3), ⇣kk1/2�↵ ! 0 is equivalent to ↵ > 1. If h⇤ is s-smooth (see the discussion following

Assumption 1.6), then the latter requirement translates into the smoothness requirement

s > dw.

With the help of Assumption 1.8, we obtain the following equivalence result.

Lemma 1.3 (Bootstrap Equivalence). If Assumptions 1.1–1.8 hold, then k bG�G⇤
nkT !P

0.

Lemma 1.3 establishes that the unknown character of f⇤ is asymptotically irrelevant.

Given that G⇤
n converges weakly in probability to G⇤, by the lemma, so must its feasible

analog bG. Given that its limit G⇤ is Gaussian, kG⇤k2µ,2 is continuously distributed on the

positive reals provided not every random variable f⇤ (t, Z) , t 2 T , is degenerate. To rule out

this—somewhat unrealistic—scenario and to ensure that the distribution of kG⇤k2µ,2 has no

mass point at zero, I make the high-level assumption:

Assumption 1.9 (Nondegeneracy). supt2T var [f⇤ (t, Z)] > 0.

Given the continuous nature of the weak in-probability limit kG⇤k2µ,2 of k bGk2µ,2, conver-
gence of their quantiles now follows.

Theorem 1.2 (Quantile Consistency). If Assumptions 1.1–1.9 hold, then for each ↵ 2
(0, 1) ,bc (↵) !P c⇤ (↵) 2 (0,1).

1.4.6 Limiting Behavior of Test

Theorem 1.1 shows that Tn !d

R

T G0 (t)
2 dµ (t) under the null. Theorem 1.2 shows that

bc (↵) !P c⇤ (↵) 2 (0,1), which is equal to the (1� ↵)-quantile of supt2T |G0 (t)| under the
null. These observations lead to the following result.

Theorem 1.3 (Size Control). If Assumptions 1.1–1.9 hold, then for each ↵ 2 (0, 1),

P (Tn > bc (↵) ; H0) ! ↵.

Theorem 1.3 is the first main result of this paper. The theorem formally establishes that

the test which rejects the null hypothesis if and only if Tn > bc (↵) is correctly sized.

34



The next result shows that the test which rejects the null hypothesis if and only if

Tn > bc (↵) is also consistent: For any fixed alternative, this test will reject the null with

probability approaching one.

Theorem 1.4 (Consistency). If Assumptions 1.1–1.9 hold, then for each ↵ 2 (0, 1),

P (Tn > bc (↵) ; H1) ! 1.

Theorem 1.4 is the second main result of this paper. The argument used in establishing

consistency is summarized as follows. Given the asymptotic equivalence result of Lemma 1.1

and a continuity argument one may show that

Tn/n = kEn [f⇤ (t, Zi)]k2µ,2 + oP(n
�1).

By a uniform law of large numbers and (1.4.20),

kEn [f⇤ (·, Zi)]� E [⇢ (Z, �⇤, h⇤ (W ))! (·, X)]kµ,2
6 kEn [f⇤ (·, Zi)]� E [⇢ (Z, �⇤, h⇤ (W ))! (·, X)]kT P! 0.

Combining the previous two displays, we therefore get

Tn/n
P! kE [⇢ (Z, �⇤, h⇤ (W ))! (·, X)]k2µ,2

H
1

> 0,

where the inequality follows from property (1.4.1) of the weight function and the choice

of probability measure µ. This inequality implies that Tn !P 1 under the alternative.

Given that bc (↵) !P c⇤ (↵) 2 (0,1) (Theorem 1.2), Tn must exceed bc (↵) with probability

approaching one under the alternative.

1.5 High-Dimensional Unconditional Moment Models

In this section I formally present my main results on specification testing in a class of high-

dimensional UMR models.

1.5.1 Null Hypothesis

The null hypothesis is

H0 : 9�0 2 B s.t. 8k 2 {1, . . . , q} ,E [⇢ (Z, �, L⇤ (W ))Xk] = 0 at � = �0, (1.5.1)
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where B ⇢ Rd is a pre-specified parameter space, X = (X1, . . . , Xq)
> is a q-dimensional

vector of “instruments,” and L⇤ (W ) := W>h⇤ for W = (W1, . . . ,Wp)
> a p-vector of X-

measurable “regressors,” and h⇤ 2 Rp defined as

h⇤ :=
⇥

E
�

WW>�⇤�1
E (WY ) , (1.5.2)

The vector Z includes both X, Y and W as subvectors. I allow for both p and q to grow

without bound with and be (potentially much) larger than the sample size n available to the

researcher, i.e., I allow both p = pn ! 1 and q = qn ! 1 as well as p � n and q � n.

I will therefore treat both W and X as high-dimensional random vectors and h⇤ as a high-

dimensional parameter. In contrast, I will treat the parameter space B as “low-dimensional”

in the sense that the dimension d is fixed and small relative to both n and q.

The alternative hypothesis is the negation of the null:

H1 : 8� 2 B, 9k 2 {1, . . . , q} s.t. E [⇢ (Z, �, L⇤ (W ))Xk] 6= 0.

The term L⇤ (W ) is a linear predictor for the outcome variable Y . In fact, given that h⇤
is the (assumed unique) solution to the first order condition of the convex problem“minimize

E[(Y �W>h)2] subject to h 2 Rp,”

E
⇥�

Y �W>h
�

W
⇤

= 0p⇥1, (1.5.3)

L⇤ (W ) is the best linear predictor of Y in the sense of minimizing mean-squared error. The

reader may find it helpful to think of the high-dimensional best linear predictor L⇤ (W )

as a surrogate for the conditional expectation E(Y |W ), This CEF, in turn, captures the

expectation formed by an agent operating in a uncertation environment as illustrated by the

collection of examples in Sections 1.2 and 1.B.

On one hand, one may rightfully view L⇤ (W ) as only an approximation to E(Y |W )

on which the agents based their decisions.19 On the other hand, one may argue that not

much is lost from using a high-dimensional best linear predictor, since a high-dimensional

linear function w 7!Pp
j=1 h⇤jwj is numerically indistinguishable from a truly nonparametric

function w 7! P1
j=1 �⇤jwj with the true values �⇤j of the infinite-dimensional parameter

{�j}11 decaying su�ciently fast (say, �⇤j = 1/j).

If Y is a binary (e.g., 0/1 or “No/Yes”) random variable, then E(Y |W ) is a conditional

19An alternative interpretation is that the agents themselves based their decision on the best linear predic-
tion and not necessarily the conditional expectation. Such an interpretation may be justified by appealing
to bounded rationality.
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choice probability, and (1.5.3) may be viewed as adopting a predictive high-dimensional

linear probability model. With a binary Y one may want to use another link function than

the linear link implicitly used in (1.5.3). For example, one may want to use a logistic link

function. I intend to explore alternative link functions for the binary-Y case—as well as

more general models capturing the relationship between Y and W in the general-Y case—in

future work.

Examples 1.2, 1.9 and 1.10 all involve multiple high-dimensional best linear predictors.

However, to avoid cluttering notation I will here focus on the case where L⇤ (W ) is scalar

valued and defer the discussion of a vector-valued L⇤ (W ) to Section 1.F.2.

1.5.2 Recasting the Null Hypothesis

In this section I recast the null hypothesis in a manner that suggests a natural, yet bi-

ased, preliminary test statistic. Using an orthogonalization procedure, I then show how the

preliminary test statistic may be debiased to arrive at a final test statistic.

1.5.2.1 Recasting using Pseudo Truth

I assume that there exists �⇤ 2 B such that (1) �⇤ is consistently estimable; and, (2) �0 = �⇤
under the null.20 With �⇤ available, the null hypothesis simplifies to

H0 : 8k 2 {1, . . . , q} ,E [⇢ (Z, �⇤, L⇤ (W ))Xk] = 0.

Because �⇤ and �0 coincide under the null, I will refer to the available �⇤ as a “pseudo

true” parameter or simply the “pseudo truth.”21 The purpose of introducing a pseudo true

parameter is to obtain an estimand which is well-defined under both the null and alternative.

Example 1.6 illustrates how one may obtain a pseudo true parameter in the present context.

Example 1.6 (Obtaining a Pseudo Truth). A pseudo truth �⇤ may be constructed

as follows. Let X [T ] denote the subvector X [T ] := (Xk| k 2 T ) arising from selecting the

elements of X corresponding to the coordinates T ⇢ {1, . . . , q}. Fix a selection Td of d

coordinates, e.g., the first d elements of X. (This selection presupposes q > d.) Then

we may let �⇤ be the (assumed) unique root of � 7! E{⇢ (Z, �, L⇤ (W ))X [Td]} defined

on Rd. A root of such a map exists under regularity conditions. Uniqueness amounts to

20Given that this section of the paper deals with triangular array data, �⇤ may depend on n. I suppress
this dependence throughout.

21There may be more than one option available for the pseudo truth. Here I assume that the researcher
has settled on one option.
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an identification condition. Now, if the null is true then there exists �0 2 B such that

E[⇢ (Z, �0, L⇤ (W ))Xk] = 0 for all k 2 {1, . . . , q}. In particular, E[⇢ (Z, �0, L⇤ (W ))Xk] = 0

for all k in the subset Td. By the assumption of uniqueness, �0 and �⇤ must coincide.

With the pseudo truth �⇤ available, we may write the null in a compact manner by letting

�⇤ play the role of �0 and taking the maximum deviation of the moments from zero:

H0 : max
16k6q

|E[⇢ (Z, �⇤, L⇤ (W ))Xk]| = 0. (1.5.4)

This formulation of the null hypothesis involves aggregating the moments by taking the

supremum (i.e., `1) norm of the vector of moments (E[⇢ (Z, �⇤, L⇤ (W ))Xk])
q
k=1,

kE [⇢ (Z, �⇤, L⇤ (W ))X]k1 = max
16k6q

|E[⇢ (Z, �⇤, L⇤ (W ))Xk]|.

In principle, one may restate the null hypothesis using any norm of E[⇢ (Z, �⇤, L⇤ (W ))Xk]

including the `2 norm.22 The reason I choose to work with the supremum norm is that it al-

lows me to draw upon general results for Gaussian approximations and multiplier bootstrap

procedures for maxima of sums of high-dimensional random vectors when analyzing the be-

havior of the test comprised of the test statistic from Section 1.5.3 and the critical value from

Section 1.5.5. Such results were recently developed by Chernozhukov, Chetverikov, and Kato

(2013). To the best of my knowledge, there exists no general results on Gaussian approx-

imations or multiplier bootstrap procedures for `r norms (r 2 [1,1]) of high-dimensional

random vectors except for the supremum norm (r = 1).

1.5.2.2 Valid Post-Selection and Post-Regularization Inference

Let {Zi}n1 denote a random sample of Z available to the researcher for estimation and testing

purposes. Suppose for the moment that �⇤ is a known quantity in order to focus on the

consequences of estimation of h⇤. With an estimator bh of h⇤ available, one could in principle

consider testing the null hypothesis based on the ‘plug-in’ test statistic

max
16k6q

�

�En[⇢(Zi, �⇤, bL (Wi))Xik]
�

�,

where bL (w) = w>
bh, which is a feasible version of the left-hand side of (1.5.4). If p exceeds n,

then bhmust estimate a high-dimensional object. To estimate h⇤ one therefore generally needs

22In fact, one may use any function f : Rq ! R+ satisfying f (x) = 0 if and only if x = 0

q⇥1, as this is
the only property of norms that I invoke to recast the null.
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a machine learning method, such as the Lasso or ridge regression, or some other regulariza-

tion method that allows the number of parameters to exceed the available sample size. As

discussed in Chernozhukov, Hansen and Spindler (2015a; 2015b), such a ‘plug-in’ approach

does in general not lead to correct inference in the presence of a high-dimensional (nuisance)

parameter, which is estimated using selection or regularization methods. Intuitively, while

the Lasso does well in finding strong predictors, it may miss out on predictors with small

yet nonzero coe�cients. The work of Leeb and Pötscher (2008) shows that exclusion of such

predictors may have a detrimental impact on inference procedures.

Chernozhukov, Hansen, and Spindler (2015b) show that in order to obtain valid infer-

ence following machine learning estimation of bh it is important to use moments that are

robust to small mistakes in estimation of h⇤. Chernozhukov et al. (2016) construct locally

robust moments (i.e., moments that are not invalidated by small mistakes in learning h⇤) via

orthogonalization methods for di↵erent classes of econometric models and develop general

results based on these moments. In Section 1.5.2.3 I construct locally robust moments using

a particular orthogonalization procedure.

1.5.2.3 Neyman Orthogonalization

In this section I transform the original moment functions {⇢ �z, �, w>h
�

xk}qk=1 in such a way

that the resulting moments are locally robust to irregular estimation of h⇤. By an “irregular”

estimator I mean an estimator that converges to its estimand at a slower-than-
p
n rate as n

grows without bound.23 Let @v⇢(z, �⇤, L⇤ (w)) denote the derivative calculated with respect

to the values of the best linear predictor L⇤, i.e., @v⇢ (z, �⇤, L⇤ (w)) := @v⇢ (z, �⇤, v) |v=L⇤(w).

(The subscript v connotes “value.”) To construct locally robust moments, define Lk⇤ (W ) as

the best as best linear predictor of Xk@v⇢ (Z, �⇤, L⇤ (W )) using W ,

Lk⇤ (w) := w>µk⇤, µk⇤ := [E(WW>)]�1E [WXk@v⇢(Z, �⇤, L⇤ (W ))] , k 2 {1, . . . , q} . (1.5.5)

Define the orthogonalized moment function  k(z, �, w>h, w>µk) by

 k

�

z, �, w>h, w>µk

�

:= ⇢
�

z, �, w>h
�

xk + (y � w>h)w>µk.

By definition of h⇤, E[(Y � W>h⇤)W ] = 0p⇥1, so the second term on the right-hand side

is mean-zero when evaluated at h = h⇤. It follows from the two previous displays that

the two sets of moment functions are equal in mean when the kth moment is evaluated at

23More precisely, an estimator is defined as “irregular” if the distance between the estimator and its
estimand vanishes at a slower-than-

p
n rate as n ! 1. This definition subsumes the definition in the main

text while allowing the estimand itself to change with the sample size.
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(�, h, µ) = (�⇤, h⇤, µk⇤), i.e.,

E[ k (Z, �⇤, h⇤, µk⇤)] = E[⇢ (Z, �⇤, L⇤ (W ))Xk] for all k 2 {1, . . . , q} .

I may therefore recast the null using the  k’s instead of the original moment functions:

H0 : max
16k6q

|E[ k (Z, �⇤, L⇤ (W ) , Lk⇤ (W ))]| = 0. (1.5.6)

If one may interchange the order of di↵erentiation and integration, then both

@hE[⇢
�

Z, �⇤,W>h
�

Xk]|h=h⇤ = E [Xk@v⇢ (Z, �⇤, L⇤ (W ))W ] ,

@hE[(Y �W>h)W>]|h=h⇤ = �E(WW>).

The previous two displays show that, unlike the original moment functions, the  k’s satisfy

@h E
⇥

 k

�

Z, �⇤,W>h, Lk⇤ (W )
�⇤

�

�

h=h⇤

= E [Xk@v⇢ (Z, �⇤, L⇤ (W ))W ]� E(WW>)µk⇤ = 0p⇥1. (1.5.7)

That is, missing the true value h⇤ by a small amount does not violate the moment conditions.

It is due to the orthogonality property (1.5.7) that the  k’s are said to be locally robust to

irregular estimation of h⇤.

The orthogonalization method given above is inspired by Neyman (1959), who used

orthogonalized scores to obtain his celebrated C (↵) test statistic in a parametric likelihood

setting. Chernozhukov et al. (2016) constructed locally robust two-step GMM estimators by

adding to their original moments functions an adjustment term for first-step nonparametric

estimation. This adjustment ensures that the resulting moments have zero derivative with

respect to the first step, and their locally robust moment conditions may be viewed as

semiparametric analogs of Neyman’s (1959) scores.24

Given that all the µk⇤’s are p-dimensional and generally unknown, immunization of the

 k’s with respect to the single high-dimensional parameter h⇤ comes at the cost of q additional

high-dimensional parameters to be estimated. However, since each  k is linear in µ,

@µE
⇥

 k

�

Z, �⇤, L⇤ (W ) ,W>µ
�⇤

= E
⇥

(Y �W>h⇤)W
⇤

= 0p⇥1. (1.5.8)

for any µ 2 Rp and therefore also when evaluated at µ = µk⇤. The  k’s are therefore

24See also Wooldridge (1991), Bera, Montes-Rojas, and Sosa-Escudero (2010), Lee (2005) and Cher-
nozhukov et al. (2015b) for extensions of the C(↵) test to parametric nonlikelihood settings.
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also immunized against irregular estimation µk⇤’s. Hence, while the use of orthogonalized

moments may come at an increased computational cost, no new bias issues arise.

Examples 1.2, 1.9 and 1.10 all involve multiple high-dimensional best linear predictors.

When the residual depends on high-dimensional linear projections of Y` on a collection of

regressors W` with projection coe�cients h`⇤ given by

h`⇤ := [E(W`W
>
` )]

�1E (W`Y`) , ` 2 {1, . . . , L} ,

then the kth (orthogonalized) moment function  k is defined by adding up the invidual

adjustment terms,

 k(z, �, (w
>
` h`)

L
1 , (w

>
` µk`)

L
`=1) = ⇢

�

z, �, (w>
` h`)

L
1

�

xk +
L
X

`=1

�

y` � w>
` h`
�

w>µk`. (1.5.9)

Here the “true” µk`⇤’s are given by the projection coe�cients

µk`⇤ := [E(W`W
>
` )]

�1E
⇥

W`Xk@v
`

⇢
�

Z, �⇤, (W>
` h`⇤)

L
1

�⇤

, ` 2 {1, . . . , L} , (1.5.10)

and @v
`

denotes di↵erentiation with respect to w>h`. Equations analogous to (1.5.7) and

(1.5.8) show that the  k⇤’s thus defined are immunized against irregular estimation of the

h`⇤’s (and the µk`⇤’s).

In some cases some of the µk⇤’s are known or at least known up to �⇤ and h⇤. Such

µk⇤ I choose to estimate using the plug-in method. Moreover, in special cases where the

residual is a�ne in the best linear predictors, the orthogonalization procedure may reduce

the e↵ective number of moments employed for testing by setting some moment functions to

zero. (Both of these points are illustrated in the case of the high-dimensional linear model

in Section 1.E.) However, one will in general have as many orthogonalized moment functions

as original moment functions.

1.5.3 Test Statistic

In this section I construct a test statistic, which constitutes one half of the specification test.

The other half—the critical value—is given in Section 1.5.5. For the purpose of constructing

a test statistic, let {Zi}n1 denote a random sample of Z available to the researcher. For a

given regular estimator b�, I test the null hypothesis (1.5.6) using the test statistic

T := max
16k6q

�

�

p
nEn[ k(Zi, b�, bL (Wi) , bLk (Wi))]

�

�, (1.5.11)
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where bL(w) := w>
bh and bLk (w) := w>

bµk estimate L⇤ and Lk⇤, respectively. Although the

theory to follow could be modified to allow for the use of other machine learning methods, I

will estimate both the h⇤ and the µk⇤’s using the Lasso (see Section 1.G.3).

The Lasso estimator bh of h⇤ is defined as any solution to the penalized least squares

problem

bh 2 argmin
h2Rp

⇢

En[(Yi �W>
i h)2] +

�h
n
kb⌥hhk1

�

, (1.5.12)

where �h > 0 is a penalty level and b⌥h := diag (b�h1, . . . , b�hp) a diagonal matrix specifying

penalty loadings resulting in an b⌥h-weighted `1-norm kb⌥hhk1 =
Pp

j=1 b�hj |hj|. The choice of

both penalty level and loadings required to implement this Lasso are given in Section 1.H.2.

The estimated high-dimensional best linear predictor bL is defined as bL (w) := w>
bh.

The Lasso estimator bµk of µk⇤ is defined as any solution to the penalized least squares

problem

bµk 2 argmin
µ2Rp

⇢

En{[@v⇢(Zi, b�, bL (Wi))Xik �W>
i µ]2}+ �µ

n
kb⌥µkµk1

�

, (1.5.13)

where b� and bL are the estimators from above, �µ > 0 is a penalty level common to all

k 2 {1, . . . , q} minimization problems, and b⌥µk := diag (b�µk1, . . . , b�µkp) a problem-specific

diagonal matrix specifying penalty loadings resulting in an b⌥µk-weighted `1-norm kb⌥µkµk1 =
Pp

j=1 b�µkj |µj|. The choice of both penalty level and loadings required to implement these

Lasso are given in Section 1.H.2.

Note that, in contrast to the observable outcome Y in (1.5.12), the “outcome variables”

{Xk@v⇢(Z, �⇤, L⇤ (W ))}q1 used in defining the µk⇤’s in (1.5.5) are generally not observable to

the researcher due to their dependence on the unknowns �⇤ and h⇤. To construct feasible

estimators {bµk}q1, I therefore replace each function z 7! xk@v⇢(z, �⇤, w>h⇤) with an estimate

z 7! xk@v⇢(z, b�, w>
bh). The extension of the theory for Lasso estimation to many high-

dimensional best linear predictors also accommodates estimated outcomes (see Section 1.G).

Remark 1.4 (Linear Combinations and Plug-In Estimates). An exception to the Lasso es-

timation procedure for the µk⇤’s outline above occurs when Xk@v⇢(Z, �⇤, L⇤ (W )) can be

written as a linear combination
Pp

j=1 akj⇤Wj + bk⇤Y of the Wj’s and Y with coe�cients

akj⇤ := akj (�⇤, h⇤) and bk⇤ := bk (�⇤, h⇤) being known functions akj and bk of (�⇤, h⇤). This

special structure occurs in the high-dimensional linear model of Example 1.9. (See also Sec-

tion 1.E.) In this case linear algebra yields µk⇤ =
Pp

j=1 akj⇤ej + bk⇤h⇤ with ej 2 Rp denoting

the jth elementary vector. Instead of using the Lasso to estimate such µk⇤’s, I choose to use

42



the plug-in method and set bµk :=
Pp

j=1 bakjej +
bbkbh with bakj := akj(b�,bh) and bbk := bk(b�,bh).

1.5.4 Large Sample Behavior of Test Statistic

In order to characterize the probabilistic behavior of T , I impose a list of conditions. For the

purpose of stating these conditions, let c1, C1, c2 and C2 be some given set of strictly positive,

finite constants independent of n. The nonasymptotic, high-probability bounds obtained in

this paper will depend on these constants.25 I assume the following regarding estimation of

the low-dimensional parameter.

Assumption 1.10 (Low-Dimensional Parameter). �⇤ 2 Rd, d 6 C1, and for each n 2
N, b� is a {Zi}n1 -measurable, random element of Rd. Moreover, there exists s⇤ : Z ! Rd and

a strictly positive sequence {an}11 such that E[s⇤(Z)] = 0d⇥1, ks⇤ (Z)k 6 C1, an ! 0 and

P
⇣

kpn(b� � �⇤)�
p
nEn [s⇤ (Zi)]k > an

⌘

6 C2n
�c

2 . (1.5.14)

Assumption 1.10 requires that the centered and scaled estimator b� can be approximated

by a
p
n-scaled average at least with high-probability. This assumption is comparable to

Assumption 1.1 in that (1.5.14) combined with an ! 0 implies that
p
n(b���⇤) is asymptot-

ically linear with influence function s⇤.26 Assumption 1.10 makes a stronger, finite-sample

statement and requires that probability of error declines polynomially fast with n. The as-

sumption of a bounded influence function allows me to control the tail behavior of s⇤ (Z) in

a relatively simple manner (e.g., using Höe↵ding’s inequality for bounded random variables).

Boundedness may be replaced by another assumption on tail behavior such as subgaussian-

ity.27

The high-dimensional best linear predictors (L⇤, {Lk⇤}q1) can be estimated well by the

Lasso under the assumption of sparsity. For the sake of illustration, suppose that each best

linear predictor depends on at most s ⌧ n regressors. Then there exists h0 2 Rp and

{µk0}q1 ⇢ Rp such that

L⇤ (w) = w>h0, Lk⇤ (w) = w>µk0, k 2 {1, . . . , q} ,

25In principle, one may allow each of the conditions below to have their own set of constants and let the
bounds depend on all these constants. To simplify the exposition, I reuse notation for constants that play a
qualitatively similar role.

26Let X
n

:= kpn(b� � �⇤) �
p
nE

n

[s⇤ (Zi

)]k. For " > 0 arbitrary, the union bound implies P(X
n

> ") 6
1(a

n

> ") + P(X
n

> a
n

). Taking limits now shows that X
n

!P 0.

27A random variable X with mean µ := E(X) is said to be subgaussian if there exists � 2 R+ such that

E
⇥

et(X�µ)
⇤

6 et
2
�

2
/2 for all t 2 R. If so, X is said to have subgaussianity parameter (at most) �.
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kh0k0 _ max
16k6q

kµk0k0 =
p
X

j=1

1 (h0j 6= 0) _ max
16k6q

p
X

j=1

1 (µk0j 6= 0) 6 s ⌧ n.

Note the identity of each active set of regressors T0 = supp (h0) = {j 2 {1, . . . , p}|h0j 6= 0}
and Tk0 = supp (µk0) = {j 2 {1, . . . , p}|µk0j 6= 0} may di↵er (across k) as well as be unknown

to the researcher.

While this exact sparsity assumption is useful for illustration purposes, it is unlikely to

hold in practice and unnecessarily restrictive. I will instead assume that the best linear

predictors are approximately sparse.

Assumption 1.11 (Approximately Sparse Best Linear Predictors). There exists h0 2
Rp and {µk0}q1 ⇢ Rp such that each best linear predictor is well-approximated by a linear

function of s > 1 unknown regressors in the sense that

kh0k0 _ max
16k6q

kµk0k0 6 s ⌧ n and P
⇣

cs > C1

p

s/n
⌘

6 C2n
�c

2 ,

where

cs :=
q

En{[W>
i (h0 � h⇤)} _ max

16k6q

q

En{[W>
i (µk0 � µk⇤)]2}.

Assumption 1.11 requires that at most s regressors are able to approximate each best

linear predictor function up to an approximation error, which is small with high probability.

Defining the sparse linear predictors

w 7! L0 (w) := w>h0, w 7! Lk0 (w) := w>µk0, k 2 {1, . . . , q} ,

we may express cs as cs = kL0 � L⇤kP
n

,2 _max16k6qkLk0 � Lk⇤kP
n

,2, which emphasizes that

cs is an error arising from approximating best linear predictors by sparse linear predictors.

Here cs is considered “small” when it is not essentially larger than the size
p

s/n of the

estimation error arising from the infeasible least squares estimator that knows the identity of

the most important regressors. One may view L0 and the Lk0’s as surrogates for the ultimate

estimands (L⇤, {Lk⇤}q1).
Assumption 1.16 assumption roughly amounts to assuming that many of the elements of

each �k⇤ are close to zero, i.e., that few regressors truly matter for prediction purposes. Note

that this assumption allows for the identity of the most important regressors

T0 := supp (h0) , Tk0 := supp (µk0) , k 2 {1, . . . , q} , (1.5.15)
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to be a priori unknown to the researcher as well as di↵er across k. BCCH used an assumption

almost identical to Assumption 1.16 in the context of estimation of CEFs. A detailed moti-

vation and discussion of this type of assumption may be found in BCCH as well as Belloni

and Chernozhukov (2011; 2013).

Let Mj := sup supp (|Wj|). I impose the following boundedness and moment conditions

on the outcome Y , the instruments X (hence regressors W ) and the projection error " :=

Y � L⇤ (W ).

Assumption 1.12 (Observables). |Xk| 6 C1, |Y | 6 C1, W is X-measurable, c1 6 Mj 6
C1, c21 6 �min(E(WW>)) 6 �max(E(WW>)) 6 C2

1 , E("
2W 2

j ) > c21, kh⇤k1 6 C1 and

P
⇣

max
16j6p

�

� max
16i6n

|Wij|�Mj

�

� > C2n
�c

2

⌘

6 C2n
�c

2 . (1.5.16)

The condition that the population Gram matrix E(WW>) has eigenvalues bounded from

above and away from zero is quite standard in the econometrics literature; see, for example,

Newey (1997) and Belloni et al. (2015). For the sake of analyzing the Lasso, the assumptions

of a bounded outcome and error are less standard but may be substantially relaxed at the

expense of longer proofs. Specifically, boundedness of the " may be replaced by some “tail

bound” making extreme events unlikely. An example of random variables satisfying a tail

bound is the class of subgaussian random variables, whose tails are no fatter than normal

random variables.

The assumption of bounded regressors (Mj 6 C1) appears essential to establishing that

the penalty loadings constructed via Algorithms 1.2 and 1.3 are close to being (conservatively

or truly) ideal with high probability. This dependence on boundedness stems from the

appearance of max16i6n |Wij| in the conservatively ideal penalty loadings (1.G.6), which are

used as target for the penalty loadings used to initiate each of these algorithms. It may be

possible to devise an algorithm that does not rely on boundedness of the regressors, but such

a task is beyond the scope of this paper.

The requirement that the lower bound inside the probability statement of (1.5.16) is equal

to the right-hand side bound of the same equation is immaterial; were the two bounds to

di↵er, then one may always proceed with the largest of the two bounds. This requirement

may be satisfied even when p grows exponentially fast with n, cf. Example 1.11.

Let "k denote the projection error "k := Xk@v⇢(Z, �⇤, L⇤ (W ))� Lk⇤ (W ).

Assumption 1.13 (Residual). The residual function ⇢ satisfies:

1. For each z 2 Z, v 2 R, � 7! ⇢ (z, �, v) is di↵erentiable on Rd, and for each (z, �, v) 2
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Z ⇥Rd+1 its derivative satisfies k@�⇢(Z, �⇤, L⇤ (W ))k 6 C1. and

k@�⇢ (z, �, v)� @�⇢ (z, �⇤, L⇤ (w))k 6 C1 (k� � �⇤k+ |v � L⇤ (w)|) ,

2. For each z 2 Z, v 7! ⇢ (z, �⇤, v) is di↵erentiable on R, and for each (z, �, v) 2 Z⇥Rd+1

its derivative satisfies |@v⇢(Z, �⇤, L⇤ (W ))| 6 C1 and

|@v⇢ (z, �, v)� @v⇢ (z, �⇤, L⇤ (w))| 6 C1 (k� � �⇤k+ |v � L⇤ (w)|) .

3. E[⇢(Z, �⇤, L⇤ (W ))4] 6 C4
1 , E("

2
kW

2
j ) > c21 for all k such that Xk@v⇢(Z, �⇤, L⇤ (W )) /2

span (Y,W ), and kµk⇤k1 6 C1.

Assumption 1.13.1 and 1.13.2 involve smoothness—specifically, Lipschitz—conditions

which allow me to linearize around (�⇤, L⇤) to obtain the dominant component of the

test statistic. These assumptions are comparable but stronger than Assumptions 1.3.1 and

1.3.2, and implicitly impose the somewhat crude restriction that the Lipschitz “constants” of

(�, v) 7! @�⇢(z, �, v) and v 7! @v⇢(z, �⇤, v)—both functions of z, in general—may be bounded

by an expression independent of z. These restrictions may be replaced by less strict bounds

on the tail behavior of the implied random variables at the expense of longer proofs.28

If the Xk@v⇢(Z, �⇤, L⇤ (W )) lies in the span of Y and W , then this“outcome”variable may

be described as an exact linear combination of Y and the Wj’s with coe�cients depending

only on (�⇤, h⇤). In this case "k is identically zero, and the ideal penalty loadings in both

(1.G.6) and (1.G.7) vanish. However, recall that in such cases, the best linear predictor is

estimated using the plug-in approach and not the Lasso. (See also Remark 1.4.)

The following assumption imposes growth conditions, which assist in extracting the dom-

inant component of the test statistic.

Assumption 1.14 (Growth Conditions). s, q, and an satisfy the growth condition

s ln5 (pqn)

n
+

s2 ln4 (pqn)

n
+ an

p

ln q 6 C2n
�c

2 and ln (pqn) 6 n1�c0
2 ,

where c02 2
�

2
3
, 1
�

.

28However, several elements of the proof of the size control theorem below (Theorem 1.5) rely on Tala-
grand’s deviation inequality for bounded random variables (see Lemma 1.35). It may be possible to relax
some or all of these boundedness conditions by means of a deviation inequality allowing for unbounded ran-
dom variables, e.g., Chernozhukov, Chetverikov, and Kato (2014b, Theorem 5.1), but I leave such potential
improvements for future research.
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The requirement ln (pqn) 6 C2n1�c0
2 for some c02 2 �

2
3
, 1
�

implies that while p and q

may grow exponentially fast with n, they cannot grow too fast. Although the requirement

c02 2
�

2
3
, 1
�

was not explicitly stated in BCCH, it appears necessary in order to guarantee the

validity of moderat deviation inequalities for self-normalized sums (see Section 1.P.1 and, in

particular, the proof of Lemma 1.44).

The general result for Lasso estimation of many high-dimensional best linear predictors

with estimated outcomes Theorem 1.7 now implies the following result for the Lasso estimator
bL from (1.5.12) and the Lasso estimators {bLk} from (1.5.13).

Lemma 1.4 (Nonasymptotic, Polynomially Valid Bound for Lasso Estimation of

Many Best Linear Predictors). Suppose that Assumptions 1.10–1.14 hold and that the

penalty levels �h and �µ specified as in (1.H.1) for some c0 > 1 and c00 > 0 with the number

of best linear predictors set to 1 and q, respectively. Consider any conservatively or truly

polynomially valid penalty loadings b⌥h and {b⌥µk}q1, for example, the penalty loadings resulting

from Algorithms 1.2 and 1.3, respectively. Then there exists c, C, C 0 and n0 depending only

on c0, c00, c1, C1, c2, C2 and c02 such that for all n > n0, with probability > 1� Cn�c,

kbL� L⇤kP
n

,2 + max
16k6q

kbLk � Lk⇤kP
n

,2 6 C 0
r

s ln (pqn)

n
. (1.5.17)

Provided s ln(pqn)/n ! 0, the nonasymptotic, high-probability bound in Lemma 1.4

implies the rate of convergence result

kbL� L⇤kP
n

,2 + max
16k6q

kbLk � Lk⇤kP
n

,2 .P

r

s ln (qn)

n
,

which is similar to BCCH’s rate of convergence result for Lasso estimation of many CEFs

(their Theorem 1).

Assumption 1.14 implies that s ln(pqn)/n is at most polynomial in n. Consequently,

under the conditions of Lemma 1.4, we see that for some constants c0 and C 0 and su�ciently

large n,

P
⇣

kbL� L⇤kP
n

,2 + max
16k6q

kbLk � Lk⇤kP
n

,2 > C 0n�c0
⌘

6 Cn�c. (1.5.18)

As an alternative to the Lasso estimators considered in this paper, the previous diplay may be

taking as a high-level condition on the choice of machine learning estimators bL and {bLk}q1.29

29Such a high-level condition would in general entail a lower bound on the constant c0. Under the smooth-
ness assumptions in Assumption 1.13, c0 > 1

4 ought to su�ce.
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In what follows bL and the bLk’s are understood to be the Lasso estimates defined using

any conservatively or truly polynomially valid penalty loadings b⌥h and {b⌥µk}q1, respectively.
The penalty loadings resulting from Algorithms 1.2 and 1.3 may be used. The probabilis-

tic behavior of T depends crucially on the probabilistic behavior of the stochastic process

{pnEn[ k(Zi, b�, bL(Wi), bLk(Wi))]|k 2 {1, . . . , q}}. The previous assumptions su�ce to show

that, with probability approaching one polynomially fast, this stochastic process is approxi-

mately equivalent to the stochastic process {pnEn[fk⇤(Zi)]|k 2 {1, . . . , q}}, where

fk⇤ (z) :=  k (z, �⇤, L⇤ (w) , Lk⇤ (w)) + b>k⇤s⇤ (z) , (1.5.19)

bk⇤ := E [Xk@�⇢ (Z, �⇤, L⇤ (W ))] . (1.5.20)

Here b>k⇤s⇤ (z) is an adjustment to the moment function z 7!  k (z, �⇤, L⇤ (w) , Lk⇤ (w)) due

to estimation of �⇤. Given that the  k’s are locally robust (see Section 1.5.2.3), no fur-

ther adjustments are needed. The approximate equivalence between the stochastic processes

{pnEn[ k(Zi,dW�, bL(Wi), bLk(Wi))]|k 2 {1, . . . , q}} and {pnEn[fk⇤(Zi)]|k 2 {1, . . . , q}} trans-
lates into approximate equivalence between the test statistic T and the random variable

T⇤ := max
16k6q

�

�

p
nEn [fk⇤ (Zi)]

�

� .

Lemma 1.5 (Approximate Equivalence). If Assumptions 1.10–1.14 hold, then there exist

c, C, C 0 and n0 depending only on c0, c00, c1, C1, c2, C2 and c02 such that for n > n0,

P
�|T � T⇤| > ⇣1

�

6 Cn�c (1.5.21)

where

⇣1 := C 0 max

(

s

s2 ln3(pqn)

n
,

n�c
2

/4

p

ln (pqn)
, an

)

. (1.5.22)

Lemma 1.5 shows that the probabilistic behavior of the test statistic T may be approxi-

mated by that of T⇤, and that the accuracy of this approximation is polynomially valid. The

lemma implies that T and T⇤ are asymptotically equivalent in the sense that |T � T⇤| !P 0.

However, as n grows without bound, T⇤ may involve taking the maximum over an increasing

number of elements, which need not be connected through some (equi-)continuity condi-

tion. Consequently, even under the null and even after proper standardization, T⇤ may not

converge in distribution. However, the potential lack of convergence does not prevent one

from approximating the finite-sample null distribution of T⇤ (and therefore of T ) by a known
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distribution and using this known distribution to compute a critical value.

1.5.5 Critical Value and Gaussian Multiplier Bootstrap

Unlike T , which is defined as the maximum of an approximate average, T⇤ is the maximum

of an exact average. From (1.5.19) we see that E[fk⇤(Z)] = E[ k(Z, �⇤L⇤(W ), Lk⇤(W ))],

which, in turn, equals E[⇢(Z, �⇤, L⇤(W ))Xk]. Hence, under the null, the fk⇤(Z)’s are mean-

zero, and T⇤ is a maximum of a mean-zero, exact average. These two features allows one to

approximate the null distribution of T⇤ using Gaussian approximation results for maxima of

non-Gaussian vectors recently developed by Chernozhukov, Chetverikov, and Kato (2013)

for potentially high-dimemsional vectors. Via Lemma 1.5 such a Gaussian approximation in

turn allows for a Gaussian finite-sample approximation to the null distribution of the test

statistic itself.

To define the Gaussian approximation to T⇤, let {gi}n1 be independent, centered, Gaus-

sian random vectors with common covariance E[f⇤(Z)f⇤(Z)>], where f⇤ (Z) := (f1⇤(Z),

. . . , fq⇤(Z))>. Under the null, E[f⇤(Z)] = 0q⇥1, and the gi’s are Gaussian analogs of f⇤ (Z).

The gi’s induce a Gaussian analog Z⇤ of T⇤ given by

Z⇤ := max
16k6q

�

�

p
nEn(gi)

�

� . (1.5.23)

Chernozhukov, Chetverikov, and Kato (2013) show that, under suitable (moment) assump-

tions, as n ! 1 and possibly q = qn ! 1, under the null, the distributions of T⇤ and Z⇤
are close in the sense that

sup
t2R

|P (T⇤ 6 t)� P (Z⇤ 6 t)| 6 Cn�c ! 0,

for constants c > 0 and C > 0 not depending on n. If the covariance matrix E[f⇤(Z)f⇤(Z)>]

is known, then this Gaussian approximation result suggests using the (1� ↵)-quantile of Z⇤
as a critical value for the test statistic T . When E[f⇤(Z)f⇤(Z)>] is known, this critical value

may be calculated via simulation of the gi’s.

The convergence in the previous display is sometimes referred to as n�1/2
Pn

i=1 f⇤(Zi)

satisfying a high-dimensional central limit theorem (under the null). The terminology is

potentially confusing since no pass to a limit is made. In fact, an advantage of the Gaussian

approximation method is that it applies even in cases where a limiting distribution of Z⇤
does not exists, or when the limiting distribution exists but is unknown or complicated.

The covariance of f⇤(Z), is generally unknown, which renders the previous strategy for

obtaining a critical value infeasible. As a step towards an feasible critical value, suppose
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instead that while the covariance E[f⇤(Z)f⇤(Z)>] is unknown, the functions {fk⇤}q1 are known.
While the Gaussian approximation Z⇤ to T⇤ is not feasible, we may define the Gaussian-

symmetrized version W⇤ of T⇤ by multiplying the f⇤ (Zi)’s with i.i.d. standard normal random

variables {⇠i}n1 :

W⇤ := max
16k6q

�

�

p
nEn [fk⇤ (Zi) ⇠i]

�

� . (1.5.24)

Chernozhukov et al. (2013) also show that the conditional quantiles of W⇤ given the data

{Zi}n1 are able to estimate the corresponding quantiles of Z⇤. Due to the Gaussian approxi-

mation linking Z⇤ and T⇤ and the probabilistic link between T⇤ and the test statistic T , for

a given significance level ↵ 2 (0, 1), the (1 � ↵)-conditional quantile of W⇤ may be used as

a critical value for T . This method of inference is often referred to as a Gaussian multiplier

(or Wild) bootstrap.

Neither method of inference proposed above is directly applicable when not only the

covariance E[f⇤(Z)f⇤(Z)>] but f⇤ itself is unknown. However, a feasible critical value arises

from replacing the unknown f⇤ by a consistent estimator bf . For given bfk’s one may define a

feasible analog W of W⇤ by

W := max
16k6q

�

�

�

p
nEn

⇥

bfk (Zi) ⇠i
⇤

�

�

�

. (1.5.25)

A feasible critical value cW (↵) then follows from

cW (↵) := (1� ↵) -quantile of W conditional on {Zi}n1 .

Note that for given estimators { bfk}q1, the critical value cW (↵) may be calculated via simula-

tion of the multipliers {⇠i}n1 .
The bfk’s will in general depend on an estimate bs of the influence function s⇤ from As-

sumption 1.10. For specific models it may be possible to provide primitive conditions for W
and W⇤ to be close in a probabilistic sense, but at this level of generality it seems impossible

to give more than the high-level condition:

Assumption 1.15 (Bootstrap Conditions). bs is a {Zi}n1 -measurable random element of

{f : Rd
z ! Rd}. Moreover, there exists a strictly positive sequence bn such that

P (kbs� s⇤kP
n

,2 > bn) 6 C2n
�c

2 ,

and bn ln (qn) 6 C2n�c
2.

With estimators of the fk⇤’s available, W is well defined. The following lemma shows
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that W may be used to approximate the probabilistic behavior of W⇤.

Lemma 1.6 (Approximate Bootstrap Equivalence). If Assumptions 1.10–1.15 hold,

then there exists c, C, C 0 and n0 such that for n > n0,

P
�

P
� |W �W⇤| > ⇣ 01| {Zi}n1

�

> Cn�c
�

6 Cn�c,

where

⇣ 01 := C 0 max

(

s

s ln2 (pqn)

n
,
s3/2 ln3/2 (pqn)

n
,

n�c
2

/4

p

ln (qn)
, bn

p
lnn

)

.

1.5.6 Large Sample Behavior of Test

The approximations from the previous two sections imply the third main result.

Theorem 1.5 (Size Control). If Assumptions 1.10–1.15 hold, E[fk⇤ (Z)
2] > c21 for all k

such that fk⇤ is not the zero function, and ln7 (qn) 6 C2n1�c
2, then there exists c, C and n0

depending only on c0, c00, c1, C1, c2, C2 and c02 such that for n > n0,

sup
↵2(0,1)

|P (T > cW (↵) ; H0)� ↵| 6 Cn�c.

Theorem 1.5 implies that the test that rejects if and only if T > cW (↵) is asymptotically

of size ↵. While exact size control is only guaranteed in the limit (as Cn�c ! 0), the theorem

establishes the stronger conclusion that size is approximately preserved in finite sample with

an error in size decaying polynomially fast.

The proof of may be sketched as follows. Lemmas 1.5 and 1.6 provide the heuristics

T ⇡ T⇤ and W⇤ ⇡ W , respectively. The additional assumption that the fk⇤’s are mean-

square bounded away from zero is used to establish the validity of the Gaussian multiplier

bootstrap under the null, thus providing the link T⇤ ⇡ W⇤ (under the null). Given that

all approximations are done in finite-sample, at no point is convergence of T under the null

required. The proviso “for all k such that fk⇤ is not the zero function” is used to allow cases

where the Neyman orthogonalization procedure reduces the e↵ective number of moments by

setting some  k⇤’s to zero (see Example 1.9).

To state the fourth and final main result, define

vq := max
16k6q

|E [⇢ (Z, �⇤, L⇤ (W ))Xk]| .

The number vq is a measure of the degree to which the null hypothesis is violated.
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Theorem 1.6 (Consistency). If Assumptions 1.10–1.15 hold and max16k6q E[fk⇤ (Z)
2] >

c21, then for each ↵ 2 (0, 1),

P (T > cW (↵) ; H1) ! 1,

provided v�1
q (ln q) /

p
n ! 0.

Theorem 1.6 states that the test that rejects the null if and only if T > cW (↵) is con-

sistent for any sequence of alternatives satisfying the condition v�1
q (ln q) /

p
n ! 0. This

condition may be interpreted as the alternative not being too close to the null. (An alter-

native interpretation is that the instruments X are not too weak.) The theorem therefore

states that under any sequence of alternatives which are well-separated from the null, the

test will reject the null with probability approaching one. Sequences of alternatives failing

to satisfy v�1
q (ln q) /

p
n ! 0 are not well-separated from the null, and may therefore go

undetected.

1.6 Conclusion

In this paper I have proposed specification tests for two classes of econometric models: (1)

semiparametric conditional moment restriction models depending on conditional expecta-

tion functions, and (2) a class of high-dimensional unconditional moment restriction models

depending on high-dimensional best linear predictors. These classes may be motivatived

by economic models in which agents make choices under uncertainty and therefore have to

predict payo↵-relevant variables such as prospects unknown at the time of the decision or the

behavior of other agents. The proposed tests are shown to be both asymptotically correctly

sized and consistent. Moreover, I establish a bound on the rate of local alternatives for which

the test for high-dimensional unconditional moment restriction models is consistent. Both

classes of models impose a minimum of structure on the predictions entering their paramer-

izations. These results therefore allow researchers to test the specification of their models

without introducing ad hoc assumptions on expectation formation.
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Chapter 1 Appendices

1.A Appendix Abbreviations

In statements and proofs appearing in the appendices, to conserve space I use the abbre-

viations CS, H, J, M and T for the Cauchy-Schwarz, Hölder, Jensen, Markov and triangle

inequalities, respectively. CMT is short for the continuous mapping theorem. MVT and

MVE are short for the mean-value theorem and a mean-value expansion, respectively. I also

abbreviate “with probability approaching one” by wp ! 1 and “with probability at least a”

by wp > a.

1.B Additional Motivational Examples

Example 1.7 (Partially Linear Regression). Consider the partially linear regression

model (PLRM) of Robinson (1988),

Y = �0D + g0 (W ) + ", E ("|D,W ) = 0, (1.B.1)

where D represents a treatment whose e↵ect on the outcome Y we are interested in quanti-

fying, and W denotes covariates. Poterba, Venti and Wise (1994; 1995) analyzed the e↵ect

of 401(k) retirement savings plan eligibility on savings as measured by net financial assets.

These authors (essentially) argued that, while working for a firm that o↵ers access to a 401(k)

plan cannot be viewed as randomly assigned, after controlling for income, 401(k) eligibility

may be thought of as exogenous. One may therefore be willing to adopt a PLRM for their

analysis. Taking expectations in (1.B.1) conditional on W and subtracting the resulting

equation from (1.B.1), we may “partial out” g (W ) to arrive at

Y � E (Y |W ) = �0 [D � E (D|W )] + ", E ("|D,W ) = 0. (1.B.2)
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Taking expectations conditional on (D,W ) and rearranging, we are lead to the CMR

E {Y � E (Y |W )� �0 [D � E (D|W )]|D,W} = 0,

whose implied residual Y �E (Y |W )� � [D � E (D|W )] depends on the conditional expec-

tations E (Y |W ) and E (D|W ). While the PLRM controls for W in a flexible manner, it

rules out any interaction e↵ect.30 In Poterba, Venti and Wise (1994; 1995) this condition

would correspond to imposing that the partial e↵ect of 401(k) eligibility on savings does not

depend on income. As their empirical analysis demonstrates, the no-interaction condition is

restrictive, and one may want to subject the PLRM to a specification test.

Example 1.8 (Discrete Choice Under Uncertainty). Consider the following simplified

version of the static discrete choice model of Manski (1991). An agent must make a (for

simplicity) binary (i.e., “Yes/No”) decision such as going to college or not, or whether to

enter the labor force. The (ex post) utility from choosing alternative j 2 {0, 1} is

u (j, V, Y, ") = ⇡ (j, V, Y ) + " (j) ,

where " := (" (0) , " (1)). The realizations of V and the " are known to the agent at the time

of decision, and may therefore be considered as payo↵-relevant state variables. However, the

(for simplicity) scalar variable Y is realized only after the time of decision and represents a

future to the agent. The distribution of Y may depend on the belief-relevant state variables

W as well as the decision. The agent holds the subjective probability distribution (belief)

P s (y|w, j) capturing the perceived probability distribution of Y should the agent observing

W = w decide on j. The agent chooses the alternative that yields the highest subjective

expected utility

Es [u (j, v, Y, ")|w, j] :=
Z

u (j, v, y, ") dP s (y|w, j)

=

Z

⇡ (j, v, y) dP s (y|w, j) + " (j) =: ⇧ (j, v, w) + " (j) .

Denote the agent’s optimal action by

A := A (V,W, ") := argmax
j2{0,1}

{⇧ (j, V,W ) + " (j)}

30The PLRM framework may be extended to multiple treatments, Y = D>�0+ g (W )+ ",E("|D,W ) = 0,
which allows for the possibility of (parametric) interaction between the primary treatment of interest and
some or all of the covariates.
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The researcher observes the vector (A, V,W, Y ) composed by the binary A indicating the

decision, payo↵-relevant state variables V , belief-relevant state variables W , and the future

Y . Parameterize the “deterministic” part of the payo↵s as

⇡ (j, v, y) =

8

<

:

v>✓0 + �0y, j = 1,

0, j = 0,

such that the outside option (j = 0) is normalized to zero. Then

⇧ (j, v, w) =

8

<

:

v>✓0 + �0Es (Y |w, j) , j = 1,

0, j = 0.

Suppose that expectations are fulfilled, such that P s = P and therefore Es = E, where P and

E denote the population probability distribution and expectation, respectively.31 Assume for

simplificty that the “stochastic” part of the payo↵s (" (0) , " (1)) are distributed i.i.d. Type

1 extreme value independently of the observable state variables, such that their di↵erence is

logistic. A calculation then shows that the conditional choice probability of the agent takes

the form

P (A = 1|V,W ) =
exp [⇧ (1, V,W )]

1 + exp [⇧ (1, V,W )]
=: logistic [⇧ (1, V,W )] ,

which may be rearranged to yield the CMR

E
�

A� logistic
⇥

V >✓0 + �0E (Y |W,D = 1)
⇤

�

�V,W
 

= 0. (1.B.3)

The implied residual A � logistic
�

V >✓ + �E (Y |W,A = 1)
�

depends on E (Y |W,A = 1) =

E (AY |W ) /E (A|W ), a ratio of conditional expectations. The extreme value assumption is

primarily used to express the CMR in a simple form. If we were to instead specify (" (0) , " (1))

to be conditionally distributed according to a cdf F ("0, "1| v, w; �0) known up to the param-

eter �0, then we would still be lead to a CMR. In any case, one may have misspecified the

utility, omitted or confused payo↵- and belief-relevant state variables, or inadequately spec-

ified the distribution of the individual heterogeneity. Due to these observations, it seems

desirable to conduct a specification test.

31For example, studies of human capital investment may assume that expectations of the returns to
schooling are fulfilled (see, e.g., Willis and Rosen 1979 and Fuller, Manski, and Wise 1982). Self-fulfilling
expectations may be derived from the more primitive conditions: (a) the population involves a continuum of
agents, (b) the realizations of the futures are independent across agents, and (c) expectations are rational in
the sense that agents know the stochastic processes driving their environments (cf. Manski, 1991, p. 263).
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The following examples are high-dimensional analogs of Examples 1.7, 1.8 and 1.1.

Example 1.9 (High-Dimensional Linear Regression). Consider the linear predictive

model

Y = �0D +W>�0 + ", E
⇥

"
�

D,W>� >⇤ = 0(1+p)⇥1, (1.B.4)

where p denotes the dimension ofW and �0. I allow for p to be (potentially much) larger than

the sample size n available to the researcher, p � n, thus making (1.B.4) a high-dimensional

linear model (HDLM). Here W may be thought of as a high-dimensional collection of trans-

formations P (W) of some underlying vector of control variables W , and the term W>�0 may

therefore be thought of as a flexible way of controlling for W in measuring the e↵ect of D

on Y . In the 401(k)-savings setting of Poterba, Venti and Wise (1994; 1995) discussed in

Example 1.7, W>�0 corresponds to controlling for income using a flexible parametric form.

Projecting Y onto W we arrive at

W> ⇥E
�

WW>�⇤�1
E (WY ) = �0W

> ⇥E
�

WW>�⇤�1
E (WD) +W>�0,

and subtracting the result from (1.B.4) we get

Y �W>h1⇤ = �0
�

D �W>h2⇤
�

+ ", E["(D,W>)>] = 0(1+p)⇥1,

where I have defined h1⇤ := [E(WW>)]�1E (WY ) and h2⇤ := [E(WW>)]�1E (WD). The

previous display corresponds to the ‘partialling out’ step (1.B.2) of Example 1.7, the only

di↵erence being that I have swapped conditional expectations with linear projections. The

previous display may be written as

Y = �0D +W>h1⇤ + (��0)W>h2⇤ + ", E
⇥

"
�

D,W>� >⇤ = 0(1+p)⇥1,

which shows that, in estimating �0, it is important to control for both variables that matter

for predicting Y
�

W>h1⇤
�

and variables that matter for predicting D
�

W>h2⇤
�

. A similar

rationale underlies the double-selection approach to estimation of �0 in the PLRM (Belloni

et al., 2014b).32 Given that E["(D � W>h2⇤)] = E("D) � E("W>)h2⇤ = 0, defining X :=

32The post-double-selection estimator of �0 arises from (1) using a variable selector to select the most
important variables in a regression of Y on W ; (2) using a variable selector to select the most important
variables in a regression of D on W ; and, (3) regressing Y on D and the union of W -variables selected in
the two selection steps.
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(D,W>)> (1.B.4) we arrive at the high-dimensional UMR

E
�⇥

Y �W>h1⇤ � �0
�

D �W>h2⇤
�⇤

X
 

= 0(1+p)⇥1.

Note that if E("|D,W ) = 0, such that (1.B.4) has a structural interpretation, then the

previous display holds for not only X = (D,W>)> but for any vector X of instruments, i.e.,

any transformation of (D,W ). For the purpose of specification testing, one may employ a

high-dimensional number of instruments potentially di↵erent than the regressors (D,W ).

Example 1.10 (A High-Dimensional Model of Discrete Choice Under Uncer-

tainty). A high-dimensional analog of Example 1.8 may be obtained from (1.B.3) in a

manner similar to the one in which we obtained the high-dimensional linear model of Ex-

ample 1.9 from the PLRM of Example 1.7, i.e., by replacing conditional expectations by

high-dimensional best linear predictors. Adopting the high-dimensional linear predictive

models (see Example 1.9)

E
⇥�

AY �W>h1⇤
�

W
⇤

= 0p⇥1,

E
⇥�

A�W>h2⇤
�

W
⇤

= 0p⇥1,

inserting the high-dimensional linear predictors W>h1⇤ and W>h2⇤ into (1.B.3) in place of

E (Y D|W ) and E (D|W ), respectively, and replacing the act of conditioning by multiplica-

tion with a high-dimensional vector X of q instruments, we arrive at

E
��

D � logistic
⇥

V >✓0 + �0
�

W>h1⇤/W>h2⇤
�⇤ 

X
�

= 0q⇥1.

1.C Obtaining Pseudo True Parameters

In this section I illustrate how one may obtain pseudo-true parameters in the examples

provided in Section 1.B.

1.C.1 Semiparametric Conditional Moment Models

Example 1.7 (continued) In the partially linear model, denote eY := Y � E (Y |W ) and
eD := D � E (D|W ). These residuals arise from mean-square projections of Y and D, re-

spectively, onto square-integrable functions of W . Multiplying both sides of (1.B.2) by eD,

computing the expectation and solving for �0, we see that �0 = [E( eD2)]�1E( eDeY ). Assuming

D is not fully determined by W such that E( eD2) = E{[D � E (D|W )]2} > 0, we may there-

fore take �⇤ = [E( eD2)]�1E( eDeY ). Clearly, �⇤ = �0 under the null. Given consistent estimators
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of E(Y |W ) and E(D|W ), under some conditions one may construct a
p
n-consistent, asymp-

totically normal estimator of �⇤ (see Robinson 1988, Belloni et al. 2014b, and Chernozhukov

et al. 2017).

Example 1.8 (continued) Denote X := (V,W ) and let r (X) be a (d✓ + 1)-vector of in-

struments generated by the state variables V and W . Appealing to the conditional moment

restriction (1.B.3), a pseudo-truth �⇤ := (✓⇤, �⇤) may be taken as the assumed unique root of

the map

(✓, �) 7! E
⇥�

A� logistic
⇥

V >✓ + �E (Y |W,D = 1)
⇤ 

r (X)
⇤

, (✓, �) 2 Rd
✓

+1.

A root of such a map exists under regularity conditions. Uniqueness amounts to an identi-

fication condition. To see that �⇤ is pseudo-true, suppose that the null hypothesis holds for

this model. Then there exists �0 := (✓0, �0) such that

E
�

A� logistic
⇥

V >✓0 + �0E (Y |W,D = 1)
⇤

�

�X
 

= 0.

By the assumption of a unique root and using iterated expectations it now follows that

�⇤ = �0. A consistent estimator for �⇤ may be constructed using the generalized method

of moments (GMM) approach with a nonparametric first-step estimator for the conditional

expectation function. See Newey (1994) and Chen, Linton, and Van Keilegom (2003) for

regularity conditions ensuring
p
n-consistency and asymptotic normality.

1.D Obtaining Influence Functions

In this section I show how one may obtain the influence function of the parametric estimators

in the examples provided in Section 1.B.

Example 1.7 (continued) In the PLR model, let b� be a two-step GMM estimator based

on the moment function m(z, �, h⇤ (w)) = {y � h1⇤ (w) � �[d � h2⇤ (w)]}[d � h2⇤ (w)] and

some nonparametric estimators of h1⇤ (W ) = E (Y |W ) and h2⇤ (W ) = E (D|W ). Using the

notation of Example 1.3, straightforward di↵erentiation implies that

M⇤ = �E{[D � h2⇤ (W )]2}, �1⇤ (W ) = 0, �2⇤ (W ) = 0.

By (1.4.7) and (1.4.9), no adjustment for estimation of (h1⇤, h2⇤) is neeeded, so

s⇤ (z) =
�

E{[D � h2⇤ (W )]2}��1 {y � h1⇤ (w)� �⇤ [d� h2⇤ (w)]} [d� h2⇤ (w)] .

58



Example 1.8 (continued) Denote X := (V,W ) and let r (X) be a (d✓ + 1)-vector of in-

struments. Let b� := (b✓, b�) be a two-step GMM estimator based on the moment function

m(z, �, h⇤(w)) = {a� logistic[v>✓ + �h1⇤(w)/h2⇤(w)]}r(x) and some nonparametric estima-

tors of h1⇤ (W ) = E (AY |W ) and h2⇤ (W ) = E (A|W ). Using the notation of Example 1.3,

di↵erentiation implies that

M⇤ = �E
n

f 0�V >✓⇤ + �⇤h1⇤(W )/h2⇤(W )
�

r (X) [V >, h1⇤(W )/h2⇤(W )]
o

,

�1⇤ (W ) = ��⇤E
h

f 0�V >✓⇤ + �⇤h1⇤(W )/h2⇤(W )
�

h2⇤ (W )�1 r (X)
�

�W
i

,

�2⇤ (W ) = �⇤E
n

f 0�V >✓⇤ + �⇤h1⇤(W )/h2⇤(W )
�

[h1⇤ (W ) /h2
2⇤ (W )]r (X)

�

�W
o

,

where f 0 denotes the derivative of the logistic function, f 0 (u) := e�u/(1+e�u)2 = logistic(u)[1�
logistic(u)]. Using (1.4.7) and (1.4.9), it follows that

s⇤ (z) = � �M>
⇤ M⇤

��1
M⇤
⇣

�

a� logistic
⇥

v>✓ + �h1⇤(w)/h2⇤(w)
⇤ 

r(x)

+ �1⇤ (w) [ay � h1⇤ (w)] + �2⇤ (w) [a� h2⇤ (w)]
⌘

.

1.E Orthogonalization in the High-Dimensional Linear

Model

Example 1.9 (continued) In the case of the HDLM, the original moment functions are

[y � w>h1 � �(d � w>h2)]xk, where x1 = d and xk = wk�1, k 2 {2, . . . , 1 + p}. Given

that @v
1

⇢(z, �⇤, v1, v2) = �1 and @v
2

⇢(z, �⇤, v1, v2) = �⇤, letting ek 2 R1+p denote the kth

elementary vector and noting that W>ek = Wk, by (1.5.10) we must have

µ11⇤ = [E(WW>)]�1E [WD (�1)] = �h2⇤,

µ12⇤ = [E(WW>)]�1E (WD�⇤) = �⇤h2⇤,

µk1⇤ = [E(WW>)]�1E [WWk�1 (�1)] = �ek�1, k 2 {2, . . . , 1 + p} ,
µk2⇤ = [E(WW>)]�1E (WWk�1�⇤) = �⇤ek�1, k 2 {2, . . . , 1 + p} .

Following (1.5.9) the first orthogonalized moment function evaluated at (�⇤, w>h1⇤w>h2⇤,

w>µ1⇤, w>µ2⇤) is given by

 1

�

z, �⇤, (w>h`⇤)21, (w
>µ1`⇤)2`=1

�
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= ⇢(z, �⇤, (w>h`⇤)21)d+
�

y � w>h1⇤
�

w> (�h2⇤) +
�

d� w>h2⇤
�

w> (�⇤h2⇤)

= ⇢(z, �⇤, (w>h`⇤)21)d�
⇥

y � w>h1⇤ � �⇤
�

d� w>h2⇤
�⇤

w>h2⇤

=
⇥

y � w>h1⇤ � �⇤
�

d� w>h2⇤
�⇤ �

d� w>h2⇤
�

.

Orthogonalized moment functions k 2 {2, . . . , 1 + p} are even simpler as

 k

�

z, �⇤, (w>h`⇤)21, (w
>µk`⇤)2`=1

�

=
⇥

y � w>h1⇤ � �⇤
�

d� w>h2⇤
�⇤

wk�1

+
�

y � w>h1⇤
�

w> (�ek�1) +
�

d� w>h2⇤
�

w> (�⇤ek�1) = 0.

The collapse of the latter collection of orthogonalization moment functions is due to the

linearity of the residual function in the values w>h1 and w>h2. This linearity structure

is very special, and one will in general have as many orthogonalized moment functions as

original moment functions.

1.F Extensions

1.F.1 Semiparametric Conditional Moment Models

In this section I extend the framework of Section 1.4 to accommodate multiple CEFs as well

as multiple CMRs.

1.F.1.1 Multiple Conditional Expectations

As illustrated by Examples 1.1, 1.7 and 1.8, models that involve a CEF, often involve mul-

tiple CEFs. For example, a firm considering entry in Example 1.1 typically must form an

expectation with regards to more than one competitor. With multiple CEFs, the h⇤ (W )

appearing in the residual should be interpreted as a vector of conditional expectations

h`⇤ (W ) = E (Y`|W`) , ` 2 {1, . . . , L} , where the Y`’s and W`’s are subvectors of Z and

W now denotes the union of unique elements of the W`’s. To accommodate a vector of

conditional expectations, Assumptions 1.3 and 1.4 are modified as follows.

Assumption 1.3’ The residual function satisfies:

1. For each z 2 Z, v 2 RL, � 7! ⇢ (z, �, v) is continuous on B and continuously di↵er-

entiable on an open neighborhood N⇤ of �⇤. Moreover, there exists c 2 (0,1) and
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L1 : Z ! R+ integrable such that for each z 2 Z, � 2 N⇤, v 2 RL,

k@�⇢ (z, �, v)� @�⇢ (z, �, h⇤ (w))k 6 L1 (z) kv � h⇤ (w)kc.

2. For each z 2 Z, v 7! ⇢ (z, �⇤, s) is continuously di↵erentiable on RL. Moreover, there

exists � 2 (0, 1] and R : Z ! R+ such that for each z 2 Z, v 2 RL,

k@v⇢ (z, �⇤, v)� @v⇢ (z, �⇤, h⇤ (w))k 6 R (z) kv � h⇤ (w)k�,

where E [R (Z)]
p
nmax16`6Lkbh` � h`⇤k1+�W !P 0.

3. |⇢ (Z, �⇤, h⇤ (W ))|, sup�2N⇤ k@�⇢ (Z, �, h⇤ (W ))k and k@v⇢(Z, �⇤, h⇤ (W ))k2 are integrable.

Assumption 1.4’ max16`6L var (Y`|W`) is bounded.

Each CEF w` 7! h`⇤ (w`) may require its own set of approximating functions w` 7! pk` (w`).

Assumption 1.5 therefore becomes:

Assumption 1.5’ The eigenvalues of E[pk` (W`) pk` (W`)
>] are bounded from above and away

from zero uniformly over ` 2 {1, . . . , L} and k 2 N.

Each CEF and associated approximating functions must now satisfy an approximation

requirement.

Assumption 1.6’ The h`⇤’s are bounded. Moreover, for each ` 2 {1, . . . , L} there exists a

constant ↵` 2 (0,1) such that for each k 2 N there is e⇡`k 2 Rk such that keh`k � h`⇤kW
`

.
k�↵

` for the linear form eh`k := pk`
>
e⇡`k.

Quantify the size of the `th set of approximating functions by

⇣`,k := sup
w

`

2W
`

kpk` (w`)k,

where W` denotes the support of W`. For the purpose of stating rate conditions, define

�`⇤ (t,W`) := E [! (t,X) @v
`

⇢ (Z, �⇤, h⇤ (W ))|W`] ,

where @v
`

denotes the partial derivative with respect to the values of h`⇤ (W`). Define the

mean-square projection coe�cients

⇡h
`

,k := argmin
⇡2Rk

E{[pk` (W`)
>⇡ � h`⇤(W`)]

2},
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⇡�
`

,k (t) := argmin
⇡2Rk

E{[pk` (W`)
>⇡ � �`⇤(t,W`)]

2},

and their induced mean-square errors

r2h
`

,k := E{[pk` (W`)
>⇡h

`

,k � h`⇤(W`)]
2} = min

⇡2Rk

E{[pk` (W`)
>⇡ � h`⇤(W`)]

2},

r2�
`

,k (t) := E{[pk` (W`)
>⇡�

`

,k (t)� �`⇤(t,W`)]
2} = min

⇡2Rk

E{[pk` (W`)
>⇡ � �`⇤(t,W`)]

2},

R2
�
`

,k := E
⇥kpk` (W`)

>⇡�
`

,k (·)� �`⇤ (·,W`)k2T
⇤

.

Assumption 1.7’ For each ` 2 {1, . . . , L} and the ↵`’s from Assumption 1.6’,

⇣`,k
`,n

rh
`

,k
`,n

! 0, R�
`

,k
`,n

q

ln
�

k`,n/R�
`

,k
`,n

�! 0,

R�
`

,k
`,n

! 0, ⇣2`,k
n

k`,n ln (k`,n) /n ! 0,

nr2h
`

,k
`,n

kr�
`

,k
`,n

k2T ! 0,
⇣

k
`,n

X

j=1

�

�p`jk
`,n

�

�

2

W
`

⌘1/2⇣q

k`,n/n+ k�↵
`

`,n

⌘

! 0.

Lastly, I modify the bootstrap conditions as follows:

Assumption 1.8’ (1) For each z 2 Z, � 2 N⇤, v 7! ⇢ (z, �, v) is continuously di↵erentiable

on RL. Moreover, for each z 2 Z, � 2 N⇤, v 2 RL,

k@v⇢ (z, �, v)� @v⇢ (z, �⇤, h⇤ (w))k 6 R0 (z) (k� � �⇤k+ kv � h⇤ (w)k) ,

where E [R0 (Z)]
p
nmax16`6Lkbh` � h`⇤k2W

`

!P 0, (2) En[kbs (Zi) � s⇤ (Zi)k2] !P 0, and

(3) max16`6L ⇣`,k
`,n

p

k`,n(
p

k`,n/n+ k�↵
`

`,n ) ! 0.

Interpreting bh (w) as a vector of bh` (w`)’s, we may define a test statistic Tn as in (1.4.5).

Using Assumptions 1.1 and 1.2 and Assumptions 1.3’–1.8’ one may extend the argument used

in proving Lemma 1.1 to show that the process {pnEn[⇢(Zi, b�,bh(Wi))!(t,Xi)]|t 2 T } guid-

ing the behavior of the resulting test statistic is asymptotically equivalent to {pnEn[f⇤ (t, Zi)]|t 2
T } with f⇤ redefined as

f⇤ (t, z) := ⇢ (z, �⇤, h⇤ (w))! (t, x) + b⇤ (t)
> s⇤ (z) +

L
X

`=1

�`⇤ (t, w) [y` � h`⇤ (w`)] .

One may now modify the Gaussian multiplier bootstrap of Section 1.4.5 to construct critical

values, and the arguments of Theorems 1.2, 1.3, and 1.4 may be extended to establish size
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control and consistency of the resulting test. I omit the formal proofs for the vector case as

they parallel their scalar counterparts.

1.F.1.2 Multiple Conditional Moment Restrictions

The null hypothesis in (1.4.3) is based on a single CMR. However, the underlying model may

imply more than one CMR. For example, the entry game of Example 1.1 implies a collection

of CMRs—one for each firm. By focusing on a single restriction, the test procedure presented

above may fail to reject an inadequate econometric model. It therefore seems desirable to

be able to test a finite collection of CMRs.

When the underlying implies M (M 2 N) CMRs, after passing to a pseudo-true param-

eter, the null hypothesis becomes

H0 : 8m 2 {1, . . . ,M} ,E [⇢m (Z, �⇤, hm⇤ (Wm))|Xm] = 0,

where each Xm is a subvector of Z containing Wm. With the help of weight functions

{!m}M1 and nuisance parameter spaces {Tm}M1 all satisfying Assumption 1.2 and absolutely

continuous, strictly positive, finite probability measures {µm}M1 , we may transform this null

hypothesis into

H0 : max
16m6M

Z

T
m

{E [⇢m (Z, �⇤, hm⇤ (Wm))!m (tm, Xm)]}2 dµm (tm) = 0.

Under a set of assumptions similar to Assumptions 1.1–1.7 we may therefore show that,

under the null, the test statistic

Tn := max
16m6M

Z

T
m

np
nEn

⇥

⇢m(Zi, b�,bhm (Wmi))!m (tm, Xmi)
⇤

�

�

�

o2

dµm (tm)

converges in distribution to max16m6M
R

T
m

Gm0 (tm)
2 dµm (tm), where {Gm0}M1 denotes cen-

tered Gaussian processes with potentially di↵erent covariances functions. By an equivalence

result similar to Lemma 1.1 one may extend the Gaussian multiplier bootstrap of Section

1.4.5 to obtain a correctly sized and consistent test.33

33Such an extension would have to take into account the dependence structure of the G
m0’s, which will in

general not be independent.
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1.F.2 High-Dimensional Unconditional Moment Models

In this section I extend the framework of Section 1.5 to accommodate multiple best linear

predictors as well as multiple residuals.

1.F.2.1 Multiple High-Dimensional Predictors

Examples 1.7, 1.8 and 1.1 show that models that involve agents forming a prediction (in the

examples: conditional expectation), typically include multiple predictions. For example, in

the entry game (Example 1.1), the number of predictions needed to evaluate the residual

function from the perspective of any particular firm equals the number of its competitors.

Being the high-dimensional analogs of these examples, Examples 1.9, 1.10 and 1.2 involve

multiple high-dimensional best linear predictors. With multiple high-dimensional best linear

predictors, the L⇤ (W ) appearing in the residual should be interpreted as a vector of best

linear predictors L`⇤ (W`) := L (Y`|W`) , ` 2 {1, . . . , L} , where the Y`’s and W`’s are subvec-

tors of Z, W denotes the union of distinct elements of the W`’s. Denote p` := dim (W`) and

p := dim (W ).

Let Mj := sup supp (|Wj|). To accommodate a vector of high-dimensional best linear

predictors, I impose the following boundedness and moment conditions on the outcomes Y`,

instruments X, regressors W , and the projection errors "` := Y` � L`⇤ (W`).

Assumption ’ |Xk| 6 C1, |Y`| 6 C1, c21 6 �min(E(W`W>
` )) 6 �max(E(W`W>

` )) 6 C2
1 ,

c1 6Mj 6 C1, E("2`W
2
`j) > c21, and

P
⇣

max
16j6p

�

� max
16i6n

|Wij|�Mj

�

� > C2n
�c

2

⌘

6 C2n
�c

2 .

Define the BLPs {Lk`⇤}k,` by Lk`⇤ (W`) := W>
` µk`⇤, where the projection coe�cients are

given by

µk`⇤ :=
⇥

E(W`W
>
` )
⇤�1

E [W`Xk@v
`

⇢ (Z, �⇤, L⇤ (W ))] ,

and @v
`

denotes the partial deritative with respect to the `th value L`⇤ (w`). Let "k` denote

the induced projection error "k` := Xk@v
`

⇢(Z, �⇤, L⇤ (W )) � Lk`⇤ (W`). To accommodate a

vector of high-dimensional best linear predictors, Assumption 1.13 now reads:

Assumption 1.13’ The residual function ⇢ satisfies:

1. For each z 2 Z, v 2 RL, � 7! ⇢ (z, �, v) is di↵erentiable on Rd, and for each (z, �, v) 2

64



Z ⇥Rd+L its derivative satisfies k@�⇢(Z, �⇤, L⇤ (W ))k 6 C1. and

k@�⇢ (z, �, v)� @�⇢ (z, �⇤, L⇤ (w))k 6 C1 (k� � �⇤k+ kv � L⇤ (w)k) ,

2. For each z 2 Z, v 7! ⇢ (z, �⇤, v) is di↵erentiable on RL, and for each (z, v) 2 Z ⇥RL

its derivative satisfies |@v
`

⇢(Z, �⇤, L⇤ (W ))| 6 C1 and

k@v⇢ (z, �⇤, v)� @v⇢ (z, �⇤, L⇤ (w))k 6 C1 kv � L⇤ (w)k .

3. E[⇢(Z, �⇤, L⇤ (W ))4] 6 C4
1 , E("

2
k`W

2
`j) > c21 for all (k, `) such that Xk@v

`

⇢(Z, �⇤, L⇤ (W )) /2
span (Yl,Wl), and kµk`⇤k1 6 C1.

With multiple best linear predictors entering the residual, the Neyman orthogonalization

now includes an adjustment for each best linear predictor,

 k(z, �,
�

w>
` h`
 L

1
,
�

w>
` µk`

 q

k=1
) := ⇢(z, �,

�

w>
` h`
 L

1
)xk +

L
X

`=1

(y` � w>
` h`)w

>
` µk`.

This type of adjustment may be justified using the chain rule. Given an estimator b� and

(Lasso) estimators of the L`⇤’s and the Lk`⇤’s, the test statistic is defined exactly as in

(1.5.11):

T := max
16k6q

�

�

p
nEn[ k(Zi, b�, {bL`(W`i)}L`=1, {bLk`(W`i)}L`=1)]

�

�.

Under a set of growth conditions similar to Assumption 1.14 (possibly modified to allow for

growing L), this test statistic may be shown to be approximately equivalent to the maximum

of an exact average, which is mean zero under the null. One may therefore obtain a critical

value using the Gaussian multiplier bootstrap described in Section 1.5.5.

1.F.2.2 Multiple Residual Functions

The null hypothesis in (1.5.1) is based on a single residual. However, the underlying econo-

metric model may imply more than candidate for a residual. For example, the entry game of

Example 1.1 implies a collection of CMRs, thus yielding one residual for each firm. By focus-

ing on the high-dimensional UMR implied by a single residual, the test procedure presented

above may fail to reject an inadequate econometric model. It therefore seems desirable to

be able to test a finite collection of high-dimensional UMRs.
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When the underlying model implies M (M 2 N) candidate residuals, after passing to a

pseudo-true parameter, the null hypothesis becomes

H0 : 8m 2 {1, . . . ,M} ,E [⇢m (Z, �⇤, Lm⇤ (Wm))Xm] = 0q
m

⇥1,

where Lm⇤ (Wm) is the BLP of Ym given Wm, both subvectors of Z, and Xm is a subvector

of Z of length qm. Taking the supremum norm, we may transform this null hypothesis into

H0 : max
16m6M

max
16k6q

m

|E [⇢m (Z, �⇤, Lm⇤ (Wm))Xmk]| = 0.

A Neyman orthogonalization suggests the moment functions

 mk(z, �, w
>
mhm, ) := ⇢m(z, �, w

>
mhm)xmk + (ym � w>

mhm)w
>
mµmk,

where the true w>
mµmk⇤’s are given by

Lmk⇤ (wm) := w>
mµmk⇤, µmk⇤ :=

⇥

E(WmW
>
m)
⇤�1

E [WmXmk@v⇢m (Z, �⇤, Lm⇤ (Wm))] .

Given an estimator b� and (Lasso) estimators of the hm⇤’s and µmk⇤’s, these orthogonalized

moments may be used to construct a test statistic

T := max
16m6M

max
16k6q

m

�

�

p
nEn[ mk(Zi, b�, bLm (Wmi) , bLmk (Wmi))]

�

�.

Under a set of assumptions similar to Assumptions 1.10–1.14, one may show that T can be

approximated by the maximum of an exact average vector of length q :=
PM

m=1 qm, which

is mean-zero under the null. Using a high-dimensional central limit theorem for this exact

average, one may therefore modify the Gaussian multiplier bootstrap procedure to obtain an

approximately correctly sized and consistent test.

1.G Sparse Methods for Many Best Linear Predictors

In this section I develop a general framework for modeling best linear predictors by means

of sparsity and propose a Lasso method for estimating very many best linear predictors.

The results of this section are drawn upon in analyzing the procedure for testing a high-

dimensional moment condition proposed in Section 1.5 but may also be of independent

interest.
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1.G.1 The Projection Model and Statement of the Problem

Let Y = (Yk)
q
1 be an Rq-valued random variable with E(Y 2

k ) < 1 for all k 2 {1, . . . , q}
and W = (Wj)

p
1 an Rp-valued random variable with E(W 2

j ) < 1 for all j 2 {1, . . . , p}.
Throughout this section I assume that {(Yi,Wi)}n1 are n i.i.d. copies of (Y,W ). I allow both

p and q to depend on as well as exceed n. While the distribution of (Y,W ) may depend on

n, I will suppress such dependence throughout. Suppose that E(WW>) is invertible. Then

one may define the best linear predictor Lk⇤ (W ) of Yk based on W by

Lk (w) := w>�k⇤, �k⇤ :=
⇥

E
�

WW>�⇤�1
E (WYk) .

Given that �k⇤ is the unique solution to the the convex problem “minimize E[(Yk �W>�)2]

subject to � 2 Rp,” it must satisfy the first-order su�cient condition for a minimum: E[(Yk�
W>�k⇤)W ] = 0p⇥1. If we define the prediction errors {"k}q1 by

"k := Yk � Lk⇤ (W ) , k 2 {1, . . . , q} ,

we therefore arrive at the tautologically true linear projection models:

Yk = Lk⇤ (W ) + "k, E("kW ) = 0p⇥1, k 2 {1, . . . , q} . (1.G.1)

In the special case where Yk lies in the span of W , Yk 2 span (W ), the best linear predictor of

Yk follows from the relevant linear combination. When these coe�cients are known or can be

solved for, this predictor can be estimated by itself. In this section I rule out Yk /2 span (W )

and focus on estimation of the q unknown best linear predictors.

1.G.2 Sparse Models for Best Linear Predictors

The potentially many regressors {Wj}p1 can be successfully employed under the key assump-

tion of sparsity. For the sake of illustration, suppose that each best linear predictor function

Lk⇤ depends only on s ⌧ n regressors. Then there exists �k0 2 Rp, k 2 {1, . . . , q} , such that

Lk⇤ (w) = w>�k0, k 2 {1, . . . , q} ,

max
16k6q

k�k0k0 = max
16k6q

p
X

j=1

1 (�k0j 6= 0) 6 s ⌧ n.

Note that the identity of each set of “active” regressors Tk0 := supp (�k0) = {j 2 {1, . . . , p}|
�k0j 6= 0} may di↵er across k as well as be unknown to the researcher.
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While this exact sparsity assumption is useful for illustration purposes, it is unlikely to

hold in practice and unnecessarily restrictive. I will instead assume that the best linear pre-

dictors are approximately sparse. For the purpose of stating the assumption of approximate

sparsity as well as assumptions to follow, let c1, C1, c2 and C2 be some given set of strictly

positive, finite constants independent of n. The nonasymptotic, high-probability bounds

obtained in this paper will depend on these constants.34

Assumption 1.16 (Approximately Sparse Best Linear Predictors). There exists

{�k0}q1 ⇢ Rp such that each best linear predictor is well-approximated by a function of un-

known s > 1 regressors in the sense that

max
16k6q

k�k0k0 6 s ⌧ n and P
⇣

cs > C1

p

s/n
⌘

6 C2n
�c

2 ,

where cs := max
16k6q

q

En{[W>
i (�k0 � �k⇤)]2}.

Assumption 1.16 requires that at most s regressors are able to approximate each best

linear predictor function up to an approximation error, which is small with high probability.

Defining the sparse linear predictors

w 7! Lk0 (w) := w>�k0, k 2 {1, . . . , q} , (1.G.2)

we may express cs as cs = max16k6qkLk0 � Lk⇤kP
n

,2, which emphasizes that cs is an error

resulting from approximating best linear predictors by sparse linear predictors. Here cs is

considered “small” when it is not essentially larger than the size
p

s/n of the estimation

error arising from the infeasible least squares estimator that knows the identity of the most

“important”regressors. One may view the Lk0’s as surrogate functions for the target functions

{Lk⇤}q1.
Assumption 1.16 assumption roughly amounts to assuming that many of the elements of

each �k⇤ are close to zero, i.e., that few regressors truly matter for prediction purposes. Note

that this assumption allows for the identity of the most important regressors,

Tk0 := supp (�k0) , k 2 {1, . . . , q} , (1.G.3)

to be unknown to the researcher as well as di↵er across k.

BCCH used an assumption almost identical to Assumption 1.16 in the context of esti-

34In principle, one may allow each of the conditions below to have their own set of constants and let the
bounds depend on all these constants. To simplify the exposition, I reuse notation for constants that play a
qualitatively similar role.
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mation of conditional expectations. A detailed motivation and discussion of this type of

assumption may be found in BCCH as well as Belloni and Chernozhukov (2011; 2013).

Defining the approximation errors {rk}q1 by

rk := rk (W ) := Lk⇤ (W )� Lk0 (W ) , rik := r (Wi) , k 2 {1, . . . , q} ,

we arrive at the approximately sparse linear models

Yk = Lk0 (W ) + rk + "k, E("kW ) = 0p⇥1, k 2 {1, . . . , q} ,

where max16k6q[En(r2ik)]
1/2 6 C1

p

s/n wp > 1� C2n�c
2 by Assumption 1.16.

1.G.3 Lasso Estimation of Many Best Linear Predictors with Es-

timated Outcomes

Suppose that Y is not observable, but that each Yi may be estimated by some bYi. In the

notation of Section 1.5, Yk = Xk@v⇢(Z, �⇤,W>h⇤), which may be estimated by substituting

estimators b� and bh for the unknowns (�⇤, h⇤). Defining the outcome estimation error eik by

eik := bYik � Yik, we may write

bYik = Lk0 (Wi) + eik + rik + "ik, E("ilxi) = 0p⇥1, k 2 {1, . . . , q} . (1.G.4)

I will make use of the following high-level assumption in order to control the error arising

from using the estimated and not necessarily true outcomes.

Assumption 1.17 (Outcome Estimation). |eik| 6 C1 and

P
⇣

� > C1

p

s ln (pqn) /n
⌘

6 C2n
�c

2 , where � := max
16k6q

q

En (e2ik).

The estimation error term � in Assumption 1.17 plays a role qualitatively similar to the

approximation error term cs from Assumption 1.16.

Given that the number p of parameters in each �k⇤ may exceed the sample size n, the use

of machine learning or regularization methods appears unavoidable. A particularly popular

machine learning method is the Lasso (Tibshirani, 1996), which uses regularization to simul-

taneously carry out estimation and variable selection in the context of regression.35 For each

k 2 {1, . . . , q}, the Lasso estimator bLk of Lk0 (and thus of Lk⇤) is defined by bLk (w) := w>
b�k,

35The name “Lasso” is an acronym for Least absolute shrinkage and selection operator.
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where b�k is a solution to the penalized least squares problem

b�k 2 argmin
�2Rp

n

En[(bYik �W>
i �)

2] +
�

n
kb⌥k�k1

o

, (1.G.5)

� > 0 is a penalty level common to all q Lasso problems, and each b⌥k := diag(b�k1, . . . , b�kp) a

diagonal matrix specifying penalty loadings to be described in further detail below.

The analysis will be centered around the “conservatively ideal” penalty loadings

b⌥ ⇤
k := diag(b�⇤k1, . . . , b�

⇤
kp), b�

⇤
kj :=

q

En ("2ik) max
16i6n

|Wij| , (j, k) 2 {1, . . . , p}⇥ {1, . . . , q} ,
(1.G.6)

and the “truly ideal” penalty loadings

b⌥ ⇤⇤
k := diag(b�⇤⇤k1, . . . , b�

⇤⇤
kp), b�

⇤⇤
kj :=

q

En

�

"2ikW
2
ij

�

, (j, k) 2 {1, . . . , p}⇥ {1, . . . , q} , (1.G.7)

Use of “ideal” penalty loadings leads to sharp theoretical bounds on estimation risk. Neither

the conservatively nor truly ideal penalty loadings are feasible since the "k’s are unobservable.

In practice one can estimate the ideal loadings using preliminary, conservative loadings and

then inserting the resulting residuals in place of the "ik’s to obtain refined loadings. A

procedure for initial and refined estimation of the penalty loadings is given in Algorithm 1.1.

The idea behind the “truly ideal” penalty loadings is to introduce self-normalization

to the first-order condition of the Lasso minimization problem by using data-dependent

penalty loadings. Self-normalization, in turn, allows use of moderate deviation inequalities

for self-normalized sums as in de la Pena, Lai, and Shao (2009). Self-normalization via

penalty loadings was first introduced by BCCH in the context of estimation of conditional

expectations using the Lasso or Post-Lasso (least squares following Lasso selection).

In the present context "k = Yk � Lk⇤ (W ), where Lk⇤ (W ) is the best linear predictor of

Yk. The best linear predictor need not coincide with the conditional expectation E(Yk|W ).

The reason for not immediately focusing on “truly ideal” penalty loadings is that the defini-

tion of a best linear predictor as a linear projection does not suggest a conservative initial

estimate of En("2ikW
2
ij). The definition of a best linear predictor does, however, suggest a

conservative initial estimate of En("2ik), since E("2k) = E[(Yk �W>�k⇤)2] 6 E[(Yk �W>�)2]

for all � 2 Rp by definition. This observation, in turn, suggests bounding a “truly ideal”

penalty [En("2ikW
2
ij)]

1/2 by [En("2ik)]
1/2 max16i6n |Wij|. If the best linear predictor were to

coincide with the conditional expectation E(Yk|W ), then one could obtain a conservative

initial estimate of En("2ikW
2
ij) exploiting the inequality E("2kW

2
j ) = E{[Yk�E(Yk|W )]2W 2

j } 6
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E{[Yk � f(W )]2W 2
j } for any j 2 {1, . . . , p} and any function f of W (as in BCCH).

The moderate deviation inequalities of de la Pena, Lai, and Shao (2009) yield a bound

on maximal element of the b⌥ ⇤
k -normalized score vectors defined by

S⇤
k := 2(b⌥ ⇤

k )
�1En (Wi"ik) , k 2 {1, . . . , q} , (1.G.8)

which capture the “noise” of the estimation problem. Specifically, the moderate deviation

theory implies that for any significance level ↵ 2 (0, 1), there exists a finite constant C such

that for n su�ciently large,

P

✓

max
16k6q

kpnS⇤
k/2k1 > ��1 (1� ↵/ (2pq))

◆

6 C↵. (1.G.9)

To guarantee good behavior of the Lasso estimators, one must choose a penalty level �/n that

overrules the noise from all score vectors {S⇤
k}q1 simultaneously such that �/n > c0 max16k6qkS⇤

kk1
with high probability for some constant c0 > 1. Expressing the significance level as a poly-

nomially decreasing function n�c0
0 in n, the previous display shows that

P

✓

�/n < c0 max
16k6q

kS⇤
kk1

◆

6 Cn�c0
0

can be achieved at least for n su�ciently large by setting the penalty level

� := 2c0
p
n�
⇣

1� n�c0
0/ (2pq)

⌘

, (1.G.10)

where c0 > 1 and c00 > 0 are user-specified constants.36 Given that b�⇤⇤2kj = En("2ikW
2
ij) 6

En("2ik)maxi W 2
ij = b�

⇤2
kj , we must have |S⇤

kj| > |S⇤⇤
kj |, where the S⇤⇤

k ’s are the b⌥ ⇤⇤
k -normalized

score vectors given by

S⇤⇤
k := 2(b⌥ ⇤⇤

k )�1En (Wi"ik) , k 2 {1, . . . , q} . (1.G.11)

Consequently, whenever the penalty level overrules the noise stemming from {S⇤
k}q1, it also

overrules the noise stemming from {S⇤⇤
k }q1.

36BCCH recommend setting c0 = 1.1. Further simulation evidence is needed to determine a reasonable
value for c00 > 0.
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1.G.4 Regularity Conditions for Estimating Best Linear Predic-

tors

The performance of the Lasso estimators hinge crucially on the empirical Gram matrix

En(WiW>
i ) being well-behaved. Given that the rank of this matrix is bounded by p ^ n,

when p > n, the p ⇥ p matrix En(WiW>
i ) must necessarily be singular. However, due

to the assumption of approximate sparsity (Assumption 1.16), good performance of the

Lasso estimator only requires that the empirical Gram matrix is well-behaved for “small”

submatrices. To formalize this idea, define the compatibility constant  (a) by

 (a) := min
16|T |6s

min
� 6=0

k�
T

ck
1

6ak�
T

k
1

p
s[�>En(WiW>

i )�]1/2

k�Tk1 , a > 0,

where s is the sparsity index from Assumption 1.16, and T is understood to be a subset

of {1, . . . , p}. The compatibility constant (a) may depend on n, although this dependence

is suppressed. Good performance of the Lasso estimates can be ensured provided that the

compatibility constant is bounded away from zero at least with high probability and for a

suitable choice of a > 0. For the purposes of bounding the compatibility constant away from

zero, define the maximal and minimal sparse eigenvalues of the empirical Gram matrix by

�max (m) := max
16k�k

0

6m

�>En(WiW>
i )�

k�k22
, (1.G.12)

�min (m) := min
16k�k

0

6m

�>En(WiW>
i )�

k�k22
. (1.G.13)

Under some conditions on the design, compatibility constant may be bounded away from

zero using the minimal and maximal sparse eigenvalues (see Lemma 1.30). To state these

design conditions, denote Mj := sup supp (|Wj|). I impose the following boundedness and

moment conditions on the outcomes Y , regressors W and projection errors "k.

Assumption 1.18 (Observables and Errors). |Yk| 6 C1,c1 6Mj 6 C1, c21 6 �min(E(WW>))

6 �max(E(WW>)) 6 C2
1 , |"k| 6 C1, E("2kW

2
j ) > c21, and

P
⇣

max
16j6p

�

� max
16i6n

|Wij|�Mj

�

� > C2n
�c

2

⌘

6 C2n
�c

2 . (1.G.14)

The condition that the population Gram matrix E(WW>) has eigenvalues bounded from

above and away from zero is common in the econometrics literature; see, e.g., Newey (1997)

and Belloni et al. (2015). For the sake of analyzing the Lasso, the assumptions of bounded

outcomes and errors are less standard but may be substantially relaxed at the expense of
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longer proofs. Specifically, boundedness of the "k’s may be replaced by some tail bound

making extreme events unlikely. An example of random variables satisfying a tail bound

is the class of subgaussian random variables, whose tails are no fatter than normal random

variables.

The assumption of bounded regressors (Mj 6 C1) appears essential to establishing that

the penalty loadings constructed via Algorithm 1.1 are close to being ideal with high prob-

ability. This dependence on boundedness stems from the appearance of max16i6n |Wij| in
the conservatively ideal penalty loadings (1.G.6), which are used as target for the penalty

loadings used to initiate the algorithm. It may be possible to devise an algorithm that does

not rely on boundedness of the regressors, but such a task is beyond the scope of this paper.

The requirement that the lower bound inside the probability statement of (1.G.14) is

equal to the right-hand side bound of the same equation is immaterial; were the two bounds

to di↵er, then one may always proceed with the largest of the two bounds. The follow-

ing example shows that the requirement in (1.G.14) can be satisfied even when p grows

exponentially fast with n.

Example 1.11 (Plausibility of Absolute Order Statistic Convergence). Suppose

that {Wi}n1 are independent across i, Wij ⇠ U [0, 1] for all (i, j), and p > 2. Suppose also

that there exists c 2 (0, 1) and C > 0 such that ln p 6 Cn1�c. Then Mj = 1 for all

j and max16i6n |Wij| equals the order statistic W(n)j := max16i6n Wij, which is Beta (n, 1)

distributed for all j. In particular, E[W(n)j] = n/ (n+ 1). A Beta (↵, �) random variable is

subgaussian with (optimal) subgaussianity parameter �2 (↵, �) bounded by 1/ [4 (↵ + � + 1)]

(cf. Lemma 1.42). From this bound it follows that W(n)j is subgaussian with (optimal)

subgaussianity �2 (n) parameter bounded by 1/[4(n + 2)]. By a maximal inequality for

subgaussian random variables (Lemma 1.43) we therefore see that

E



max
16j6p

�

�

�

�

W(n)j � n

n+ 1

�

�

�

�

�

6 � (n)
p

2 ln (2p) 6 1

4 (n+ 2)

p

4 ln p 6 1

2

r

ln p

n
,

where I have used p > 2. Given that |n/(n + 1) � 1| 6 1/n, by the triangle inequality it

follows that

E



max
16j6p

�

�W(n)j � 1
�

�

�

6 1

2

r

ln p

n
+

1

n
6

p
C

2
n�c/2 +

1

n
6 C 0n�c/2,

where C 0 :=
p
C/2 + 1. Markov’s inequality therefore shows that for any ↵ 2 (0, c/2) and
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any D > 0,

P

✓

max
16j6p

�

�W(n)j � 1
�

� > Dn�↵
◆

6 C 0

D
n�(c/2�↵),

which declines polynomially fast in n. Choosing ↵ = c/4 and D =
p
C 0, we see that

max16j6p |W(n)j � 1| 6 p
C 0n�c/4 with probability > 1�p

C 0n�c/4.

The properties of the Lasso estimators relies on the following growth conditions.

Assumption 1.19 (Lasso Growth Conditions). s ln5 (pqn) 6 C2n1�c
2 and ln (pqn) 6

C2n1�c0
2 for some c02 2

�

2
3
, 1
�

.

The requirement ln (pqn) 6 C2n1�c0
2 for some c02 2 �

2
3
, 1
�

implies that while p and q

may grow exponentially fast with n, they cannot grow too fast. Although the requirement

c02 2 �2
3
, 1
�

was not explicitly stated in BCCH, it appears necessary in order to guarantee

the validity of moderat deviation inequalities for self-normalized sums (see Appendix 1.P.1

and, in particular, the proof of Lemma 1.44).

1.G.5 Results on Lasso for Estimating Many Best Linear Predic-

tors

In this section I consider the Lasso estimators of best linear predictors defined in (1.G.5) in

the potentially high-dimensional system of projection equations (1.G.1) as well as estimated

outcomes. These results extend the previous results of BCCH and Belloni and Chernozhukov

(2011; 2013) for Lasso estimation of CEFs with nongaussian and heteroskedatic structural

errors. Moreover, throughout the analysis I account for the fact that I am simultaneously

estimating a potentially high-dimensional number (q) of equations. In particular, in estab-

lishing the validity of the penalty loadings constructed using Algorithm 1.1, I account for

the dependence of my results on q.37

To state the rate results for the Lasso, call a set of penalty loadings b⌥k = diag (b�k1, . . . , b�kp)

conservatively polynomially valid if there exists `, u, c, C and n0 depending only on c0, c00, c1,

C1, c2, C2 and c02 such that for all n > n0,

`b�⇤kj 6 b�kj 6 ub�⇤kj for all j 2 {1, . . . , p} (1.G.15)

37BCCH also account for the dependence of their results on the number of regressions (their k
e

) but treated
this number as fixed in establishing the validity of their penalty loadings (see their proof of their Lemma
11).
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with probability > 1 � Cn�c, where 0 < ` 6 1 6 u and both ` ! 1 and u ! u0 >
1 polynomially fast. The initial penalty loadings arising from Algorithm 1.1 satisfy this

requirement uniformly over k 2 {1, . . . , q}.
Similarly, call a set of penalty loadings b⌥k = diag (b�k1, . . . , b�kp) truly polynomially valid

if there exists `, u, c, C and n0 depending only on c0, c00, c1, C1, c2, C2 and c02 such that for all

n > n0,

`b�⇤⇤kj 6 b�kj 6 ub�⇤⇤kj for all j 2 {1, . . . , p} (1.G.16)

with probability > 1 � Cn�c, where 0 < ` 6 1 6 u and now both ` ! 1 and u !
1 polynomially fast. The refined penalty loadings arising from Algorithm 1.1 satisfy this

requirement uniformly over k 2 {1, . . . , q}.
The reason for calling the loadings in (1.G.15) and (1.G.16) “conservatively” respectively

“truly” valid is that they come close to the conservatively and truly ideal loadings from

(1.G.6) and (1.G.7). The truly ideal penalty loadings induce self-normalization of the Lasso

first order conditions, while the conservatively ideal loadings deflate the Lasso first order

conditions by more than what would induce self-normalization. [See also the discussion

following (1.G.6) and (1.G.7).]

The following theorem characterizes the behavior of the Lasso.

Theorem 1.7 (Nonasymptotic, Polynomially Valid Bound for Lasso Estimation of

Many Best Linear Predictors). Suppose that Assumptions 1.16–1.19 hold and that the

penalty level � is specified as in (1.G.10) for some c0 and c00. Consider any conservatively or

truly polynomially valid penalty loadings {b⌥k}q1, for example, the penalty loadings resulting

from Algorithm 1.1. Then there exists c, C, C 0 and n0 depending only on c0, c00, c1, C1, c2, C2

and c02 such that for all n > n0, with probability > 1� Cn�c,

max
16k6q

kbLk � L⇤kP
n

,2 6 C 0
r

s ln (pqn)

n
.

Theorem 1.7 provides a nonasymptotic, high-probability bound for Lasso estimation of

many best linear predictors. Provided s ln (pqn) /n ! 0, the theorem implies the rate of

convergence result

max
16k6q

kbLk � L⇤kP
n

,2 .P

r

s ln (pqn)

n
. (1.G.17)

The theorem and its rate corollary (1.G.17) parallel the nonasymptotic bound and rate result

in BCCH (their Lemma 6 and Theorem 1, respectively). The main di↵erence between the
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two pairs of results is that, compared to CEFs, having best linear predictors as estimands

place less structure on the problem. Specifically, in the algorithm proposed for constructing

penalty loadings (Algorithm 1.1) I take into account that the projection errors {"k}q1 do not

necessarily exhibit a conditional-mean-zero property, E("k|W ) = 0. In the proof of Lemmas

1.7 and 1.8, which establish the validity of the penalty loadings arising from Algorithm 1.1,

I explicitly take into account that the number of estimands (best linear predictors) q may

be high-dimensional (see also Footnote 37).38

1.H Implementation Details

In this appendix I present implementation algorithms for the Lasso procedures described in

Sections 1.G and 1.5.

1.H.1 Implementation Details for Section 1.G

For any m 2 N, let [m] denote the set [m] := {1, . . . ,m}. Feasible options for setting the

penalty level and loadings for (j, k) 2 [p]⇥ [q] are:

Level: � := 2c0�
�1(1� n�c0

0/(2pq)), (1.H.1)

Initial Loadings: b�kj :=
q

En{[bYik � En(bYik)]2} max
16i6n

|Wij| , (j, k) 2 [p]⇥ [q] , (1.H.2)

Refined Loadings: b�kj :=
q

En(b"2ikW
2
ij), (j, k) 2 [p]⇥ [q] , (1.H.3)

where b"ik is an estimate of "ik, and bYik = Yik if Yik is observed. Here c0 > 1 and c00 2 (0, 1) are

user-specified constants. BCCH (2012, p. 2380) recommend setting the constant c0 = 1.1.

Algorithm 1.1 (Penalty Loadings for Lasso Estimation of Many BLPs). Step 0

(initiate): Choose an integer M > 1, specify the penalty level � as in (1.H.1) and the

penalty loadings as in (1.H.2). Use this initial specification to compute the q Lasso estimators

{b�(0)
k }q1 as in (1.G.5), and compute residuals b"(0)ik

:= bYik�W>
i
b�(0)
k , (i, k) 2 [n]⇥[q]. Step m+1

(update): Given residuals from Step m < M , {b"(m)
ik }ik, update the penalty loadings according

to the refined option in (1.H.3), compute the Lasso estimators {b�(m+1)
k }qk=1 based on these

refined penalty loadings, and compute residuals b"(m+1)
ik

:= bYik � W>
i
b�(m+1)
k , (i, k) 2 [n] ⇥ [q].

Increment m and repeat this step until m = M or tolerance is met.

38Another di↵erence is that I show that the nonasymptotic bound in Theorem 1.7 holds not just with
probability approaching one but with probability approaching one polynomially fast.
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Algorithm 1.1 is essentially Algorithm A.1 in Belloni, Chen, Chernozhukov, and Hansen

(2012) with the inital step modified to allow for the estimands to be best linear predictors

but not necessarily conditional expectations. (See also Section 1.G.3 for the necessity of this

modification.)

The following lemmas establishes the conservative and true polynomial validity of the

initial and refined penalty loadings, respectively.

Lemma 1.7 (Conservative Polynomial Validity of Initial Penalty Loadings). Under

Assumptions 1.17 and 1.18 and the growth condition ln4 (q) 6 C2n1�c
2, the initial penalty

loadings {b⌥k}q1 specified in (1.H.2) are conservatively polynomially valid uniformly over k 2
{1, . . . , q}.
Lemma 1.8 (True Polynomial Validity of Refined Penalty Loadings). Let {b�kj}
denote the refined penalty loadings specified in (1.H.1), where the estimated residuals b"ik =
bYik � W>

i
b�k are based on estimators {b�k} for which there exists c, C, C 0 and n0 depending

only on c0, c00, c1, C1, c2, C2 and c02 such that for all n > n0,

max
16k6q

kb�k � �k⇤k2,n 6 C 0
r

s ln (pqn)

n
wp > 1� Cn�c. (1.H.4)

Then, under Assumption 1.18 and the growth requirements s ln (pqn) 6 C2n1�c
2 and ln4 (pq) 6

C2n1�c
2, the refined penalty loadings {b⌥k}q1 arising from (1.H.3) and Algorithm 1.1 are truly

polynomially valid uniformly over k 2 {1, . . . , q}.

1.H.2 Implementation Details for Section 1.5

Algorithm 1.2 specializes Algorithm 1.1 to estimation of h⇤ by setting q = 1 and bYi1 = Yi.

Feasible options for setting the penalty level and loadings for the purpose of estimation of

h⇤ are

Level: �h := 2c0�
�1(1� n�c0

0/(2p)), (1.H.5)

Initial Loadings: b�hj :=
p

En{[Yi � En(Yi)]2} max
16i6n

|Wij| , j 2 [p] , (1.H.6)

Refined Loadings: b�kj :=
q

En(b"2iW
2
ij), j 2 [p] , (1.H.7)

where b"ik is an (updated) estimate of "ik and c0 > 1 and c00 2 (0, 1) are user-specified

constants.

Algorithm 1.2 (Penalty Loadings for Lasso estimation of h⇤). Step 0 (initiate):

Choose an integer M > 1, specify the penalty level �h as in (1.H.5) and the penalty loadings
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b⌥h as in (1.H.6). Use this initial specification to compute the single Lasso estimator bh as in

(1.5.12), and compute residuals b"(0)i
:= Yi �W>

i
bh(0), i 2 {1, . . . , n}. Step m+1 (update):

Given residuals from Step m < M , {b"(m)
i }ni=1, update the penalty loadings according to the

refined option in (1.H.7), compute the Lasso estimator bh(m+1) based on these refined penalty

loadings, and compute residuals b"(m+1)
i

:= Yi �W>
i
bh(m+1), i 2 {1, . . . , n}. Increment m and

repeat this step until m = M or tolerance is met.

Lemma 1.9 (Conservative Polynomial Validity of Penalty Loadings for Lasso

Estimation of h⇤). Suppose that Assumption 1.12 holds. Then the penalty loadings b⌥h

arising from the initial step of Algorithm 1.2 are conservatively polynomially valid.

Lemma 1.10 (True Polynomial Validity of Penalty Loadings for Lasso Estimation

of h⇤). Suppose that Assumptions 1.10–1.14 hold. Then the penalty loadings b⌥h arising from

Algorithm 1.2 with M > 2 are truly polynomially valid.

Similarly, Algorithm 1.3 specializes Algorithm 1.1 to estimation of the µk⇤’s. Feasible

options for setting the penalty level and loadings for the purpose of estimation of the µk⇤’s

are

Level: �µ := 2c0�
�1(1� n�c0

0/(2pq)), (1.H.8)

Initial Loadings: b�µkj :=
q

En{[bYi � En(bYi)]2} max
16i6n

|Wij| , (j, k) 2 [p]⇥ [q] , (1.H.9)

Refined Loadings: b�µkj :=
q

En(b"2iW
2
ij), (j, k) 2 [p]⇥ [q] , (1.H.10)

bYik = Xik@v⇢(Zi, b�, bL (Wi)) with bL (w) = w>
bh and b� given by Assumption 1.10, b"ik is an

(updated) estimate of "ik, and c0 > 1 and c00 2 (0, 1) are user-specified constants.

Algorithm 1.3 (Penalty Loadings for Lasso Estimation of µk⇤’s). Step 0 (initiate):

Choose an integer M > 1, specify the penalty level �µ as in (1.H.8) and the penalty loadings

as in (1.H.9). Use this initial specification to compute the q Lasso estimators {bµ(0)
k }q1 as in

(1.5.13), and compute residuals b"(0)ik
:= bYik�W>

i bµ
(0)
k , (i, k) 2 [n]⇥ [q]. Step m+1 (update):

Given residuals from Step m < M , {b"(m)
ik }ik, update the penalty loadings according to the

refined option in (1.H.10), compute the Lasso estimators {b�(m+1)
k }qk=1 based on these refined

penalty loadings, and compute residuals b"(m+1)
ik

:= bYik�W>
i bµ

(m+1)
k , (i, k) 2 [n]⇥[q]. Increment

m and repeat this step until m = M or tolerance is met.

Lemma 1.11 (Conservative Polynomial Validity of Penalty Loadings for Lasso

Estimation of µk⇤’s). Suppose that Assumptions 1.10–1.14 hold. Then the penalty load-

ings {b⌥µk}qk=1 arising from Algorithm 1.3 with M > 2 are conservatively polynomially valid

uniformly over k 2 {1, . . . , q}.
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Lemma 1.12 (True Polynomial Validity of Penalty Loadings for Lasso Estimation

of µk⇤’s). Suppose that Assumptions 1.10–1.14 hold. Then the penalty loadings {b⌥µk}qk=1

arising from Algorithm 1.3 with M > 2 are truly polynomially valid uniformly over k 2
{1, . . . , q}.

1.I Proofs for Section 1.4

1.I.1 Proofs for Section 1.4.4

Lemma 1.13. If Assumption 1.3 holds, then for any z 2 Z and any h : W ! R

|⇢⇤ (z, h (w))� ⇢⇤ (z, h⇤ (w))� @v⇢⇤ (z, h⇤ (w)) [h (w)� h⇤ (w)]| 6 L1 (z) kh� h⇤k1+�W ,

where ⇢⇤ (z, v) := ⇢ (z, �⇤, v).

Proof. Let z 2 Z, h : W ! R be arbitrary. Then h (w) 2 R, so by Assumption 1.3 and a

MVE of v 7! ⇢(z, �⇤, v) at h(w) around h⇤(w) yields

|⇢ (z, �⇤, h (w))� ⇢ (z, �⇤, h⇤ (w))� @v⇢ (z, �⇤, h⇤ (w)) [h (w)� h⇤ (w)]|
=
�

�

�

h

@v⇢(z, �⇤,eh (w))� @v⇢ (z, �⇤, h⇤ (w))
i

[h (w)� h⇤ (w)]
�

�

�

6 L1 (z) |eh (w)� h⇤ (w)|�|h (w)� h⇤ (w)| 6 L1 (z) |h (w)� h⇤ (w)|1+�
6 L1 (z) kh� h⇤k1+�W ,

where eh(w) lies on the line segment connecting h(w) and h⇤(w), thus satisfying |eh(w) �
h⇤(w)| 6 |h(w)� h⇤(w)|.

Abbreviate the processes appearing in Lemma 1.1 by

bB := t 7! p
nEn[⇢(Zi, b�,bh (W ))! (t,Xi)], t 2 T , (1.I.1)

B⇤
n := t 7! p

nEn [f⇤ (t, Zi)] , t 2 T . (1.I.2)

The following result is the crucial step in proving Lemma 1.1.

Lemma 1.14. If Assumptions 1.1–1.7 hold, then

k bB � B⇤
nkT = kpnEn

⇥

⇢(Zi, b�,bh (Wi))! (·, Xi)
⇤�p

nEn [f⇤ (·, Zi)]kT

.P E [R (Z)]
p
nkbhn � h⇤k1+�W +

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2⇣p

kn/n+ k�↵
n

⌘
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+
p
nrh,k

n

sup
t2T

r�,k
n

(t) +
q

⇣2k
n

kn ln (kn) /n+R�,k
n

q

ln (kn/R�,k
n

) + ⇣k
n

rh,k
n

+ oP(1).

Proof of Lemma 1.14. The proof proceeds in a number of steps.

Main

Let t 2 T be arbitrary. Assumption 1.1 and M implies that kb�n � �⇤k .P n�1/2 ! 0. Let

N⇤ be the open neighborhood provided by Assumption 1.3 such that b�n 2 N⇤ wp ! 1.

To simplify notation and ensure that objects are globally well defined, in what follows I

will—without loss of generality—assume that b�n 2 N⇤ with probability one for all n. Then

by Assumption 1.3, for any z 2 Z, v 2 R we may conduct a mean value expansion of

� 7! ⇢(z, �, v) at b�n around �⇤ to get

bBn (t) =
p
nEn[! (t,Xi) ⇢(Zi, �⇤,bhn (Wi))] + In (t)

> p
n(b�n � �⇤),

where

In (t) := En

h

! (t,Xi) @�⇢(Zi, �n,bhn (Wi))
i

, t 2 T ,

and �n lies on the line segment connecting b�n and �⇤, thus satisfying k�n � �⇤k 6 kb�n �
�⇤k !P 0. Recall that b⇤(t) = E[!(t,X)@�⇢(Z, �⇤, h⇤ (W ))], which is well defined on T since

�⇤ belongs to the open set N⇤ (Assumption 1.3). Step 1.I.1 below shows that supt2T kIn (t)�
b⇤ (t)k !P 0, and that b⇤ is bounded on T , so Assumption 1.1 and the previous display

combine to yield

bBn (t) =
p
nEn[! (t,Xi) ⇢(Zi, �⇤,bhn (Wi))] + b⇤ (t)

> p
nEn [s⇤ (Zi)] + oP (1) , (1.I.3)

uniformly on T .

The remainder of the proof is about adjusting for the use of bhn as an estimator for h⇤.

Given that �⇤ is held fixed throughout this argument, I will suppress the � argument and

write ⇢⇤ (z, s) := ⇢ (z, �⇤, s).

For the purpose of adjusting for estimation of h⇤, denote the first term on the right-hand

side of (1.I.3)

bB⇤
n (t) :=

p
nEn[! (t,Xi) ⇢⇤(Zi,bhn (Wi))],
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and conduct a MVE of v 7! ⇢⇤(Zi, v) at bhn (Wi) around h⇤ (Wi) to arrive at

bB⇤
n (t) =

p
nEn

⇣

! (t,Xi)
n

⇢⇤(Zi, h⇤ (Wi)) + @v⇢⇤(Zi, hn (Wi))[bhn (Wi)� h⇤ (Wi)]
o⌘

,

where hn (Wi) lies on the line segment connecting bhn (Wi) and h⇤ (Wi). Such an expansion

is justified by Assumption 1.3. A decomposition of the right-hand side yields

bB⇤
n (t) =

p
nEn {! (t,Xi) ⇢⇤(Zi, h⇤ (Wi)) + �⇤ (t,Wi) [Yi � h⇤ (Wi)]}

+
p
nEn

n

! (t,X)
h

@v⇢⇤(Zi, hn (Wi))� @v⇢⇤(Zi, h⇤ (Wi))
i

[bhn (Wi)� h⇤ (Wi)]
o

+Gn [! (t,Xi) @v⇢⇤ (Zi, h⇤ (Wi))] [bhn (Wi)� h⇤ (Wi)]

+
p
n
⇣

EZ

h

! (t,X) @v⇢⇤ (Z, h⇤ (W )) [bhn (W )� h⇤ (W )]
i

� En{�⇤ (t,Wi) [Yi � h⇤ (Wi)]}
⌘

=:
p
nEn {! (t,Xi) ⇢⇤(Zi, h⇤ (Wi)) + �⇤ (t,Wi) [Yi � h⇤ (Wi)]}

+ IIn (t) + IIIn (t) + IVn (t) , (1.I.4)

where EZ(·) denotes integration with respect to the distribution of Z. Recall the k⇥k matrix

design matrix Qk = E[pk (W ) pk (W )>], which is invertible by Assumption 1.5. Let hk and

�k(t, ·) denote the mean-square projections of h⇤ and �⇤(t, ·), respectively, onto the span of

{pjk| j 2 {1, . . . , k}}, i.e.,

hk (·) := pk (·)> Q�1
k E[pk (W )h⇤ (W )],

�k (t, ·) := pk (·)> Q�1
k E[pk (W ) �⇤ (t,W )], t 2 T .

Note that... hk = pk>⇡h,k and �k (t, ·) = pk (·)> ⇡�,k (t), where ⇡h,k and ⇡�,k are defined in

(1.4.15) and (1.4.16), respectively. Consequently, E{[hk (W )�h⇤ (W )]2} = r2h,k, E{[�k (t,W )�
�⇤ (t,W )]2} = r2�,k (t), and E{k�k (·,W )� �⇤ (·,W )k2} = R2

�,k, where rh,k, r�,k (t) and R�,k are

defined in (1.4.17), (1.4.18) and (1.4.19), respectively. Steps 1.I.1, 1.I.1 and 1.I.1 below show

that the three remainder terms in the decomposition (1.I.4) satisfy:

kIInkT .P E [R (Z)]
p
nkbhn � h⇤k1+�W ,

kIIInkT .P

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2⇣p

kn/n+ k�↵
n

⌘

,

and kIVnkT .P

p
nrh,k

n

sup
t2T

r�,k
n

(t) +
q

⇣2k
n

kn ln (kn) /n

+R�,k
n

q

ln (kn/R�,k
n

) + ⇣k
n

rh,k
n

.
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Plug (1.I.4) into (1.I.3), apply T and use the definition of B⇤
n in (1.I.2) to get

k bBn � B⇤
nkT 6 kIInkT + kIIInkT + kIVnkT + oP (1)

.P E [R (Z)]
p
nkbhn � h⇤k1+�W +

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2⇣p

kn/n+ k�↵
n

⌘

+
p
nrh,k

n

sup
t2T

r�,k
n

(t) +
q

⇣2k
n

kn ln (kn) /n

+R�,k
n

q

ln (kn/R�,k
n

) + ⇣k
n

rh,k
n

+ oP (1) ,

as claimed.

In and b⇤

In this step I show that

(a) sup
t2T

kIn (t)� b⇤ (t)k P! 0 and (b) sup
t2T

kb⇤ (t)k < 1.

Decompose In (t) as

In (t) = En

⇥

! (t,Xi) @�⇢(Zi, �n, h⇤ (W ))
⇤

+ En

n

! (t,Xi)
h

@�⇢(Zi, �n,bhn (Wi))� @�⇢(Zi, �n, h⇤ (Wi))
io

=: Ia,n (t) + Ib,n (t) .

Since k�n � �⇤k 6 kb�n � �⇤k and b�n 2 N⇤, we must have �n 2 N⇤ wp ! 1, so using T and

Assumptions 1.2 and 1.3 , we get

sup
t2T

�

�

�

En

n

! (t,Xi)
h

@�⇢(Zi, �n,bhn (Wi))� @�⇢(Zi, �n, h⇤ (Wi))
io

�

�

�

. En [L1 (Zi)] kbhn � h⇤kcW .

Now, En [L1 (Zi)] .P 1 by M, so by kbhn�h⇤kW !P 0 (Lemma 1.22 and Assumptions 1.4–1.7)

the right-hand side !P 0, and—as a consequence—kIb,nkT !P 0.

Given that �⇤ is interior to N⇤ (Assumption 1.1) there is an r > 0 such that the open

ball Br(�⇤) in Rd
� centered at �⇤ with radius r is contained in N⇤. Let B := Br/2(�⇤)

denote the closed ball in Rd
� with the same center but half the radius. Given that B is

a closed and bounded subset of a finite-dimensional Euclidean space, by the Heine–Borel

theorem it is compact. Assumptions 1.2 and 1.3 imply that (t, �) 7! ! (t, x) @�⇢ (z, �, h⇤ (w))

is continuous on T ⇥ N⇤ for each z 2 Z, hence on the subset T ⇥ B, and this function
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is is dominated by an integrable function depending on z only. Moreover, via Tychono↵’s

theorem (cf. Aliprantis and Border, 2006, Theorem 2.61), T and B compact imply that is

T ⇥B compact. Combining these observations with the fact that the data are i.i.d., Newey

and McFadden (1994, Lemma 2.4) Lemma 2.4 tells us that

(i) (t, �) 7! E [! (t,X) @�⇢ (Z, �, h⇤ (W ))] is continuous on T ⇥ B,

(ii) sup
(t,�)2T ⇥B

k(En � E) [! (t,Xi) @�⇢(Zi, �, h⇤ (Wi))]k P! 0.

Given (i) and T ⇥ B compact, we must have (cf. Rudin, 1976, Theorem 4.19) that

(iii) (t, �) 7! E [!(t,X)@�⇢ (Z, �, h⇤ (W ))] is uniformly continuous on T ⇥ B.

Let e�n be an arbitrary consistent estimator of �⇤. Then e�n 2 B wp ! 1, and, on this event,

sup
t2T

�

�

�

En

h

! (t,Xi) @�⇢(Zi, e�n, h⇤ (Wi))
i

� b⇤ (t)
�

�

�

6 sup
t2T

�

�

�

(En � EZ)
h

! (t,Xi) @�⇢(Zi, e�n, h⇤ (Wi))
i

�

�

�

+ sup
t2T

�

�

�

EZ

h

! (t,X) @�⇢(Z, e�n, h⇤ (W ))
i

� b⇤ (t)
�

�

�

6 sup
(t,�)2T ⇥B

k(En � E) [! (t,Xi) @�⇢(Zi, �, h⇤ (Wi))]k

+ sup
t2T

�

�

�

EZ

h

! (t,X) @�⇢(Z, e�n, h⇤ (W ))
i

� b⇤ (t)
�

�

�

P! 0,

where the first inequality is due to T, the second uses {e�n 2 N}, and we have used (ii)

uniform convergence and (iii) uniform continuity. Invoking the conclusion of the previous

display for the mean value e�n := �n we see that supt2T kIa,n (t)�b⇤ (t)k !P 0, which combined

with supt2T kIb,n (t)k !P 0 and T establishes Part (a).

Continuity and T ⇥B compact also imply (t, �) 7! E[! (t,X) @�⇢(Z, �, h⇤ (W ))] is bounded

on T ⇥ B (cf. Rudin, 1976, Theorem 4.15). Part (b) then follows from �⇤ 2 B.

kIInkT
In this step I show that

kIInkT .P E [R (Z)]
p
nkbhn � h⇤k1+�W .
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Using T, Assumptions 1.2 and 1.3 imply that

kIInkT 6 k!kT ⇥X
p
nEn

h

�

�@v⇢⇤(Zi, hn (Wi))� @v⇢⇤(Zi, h⇤ (Wi))
�

� |bhn (Wi)� h⇤ (Wi)|
i

.
p
nEn[R (Zi) |hn (Wi)� h⇤ (Wi)|�|bhn (Wi)� h⇤ (Wi)|]

6
p
nEn[R (Zi) |bhn (Wi)� h⇤ (Wi)|1+�]

6 En [R (Zi)]
p
nkbhn � h⇤k1+�W .P E [R (Z)]

p
nkbhn � h⇤k1+�W ,

where ehn(Wi) is on the line segment connecting bhn(Wi) and h⇤ (Wi), thus satisfying |hn (Wi)�
h⇤ (Wi)| 6 |bhn (Wi)� h⇤ (Wi)|, and En [R (Zi)] .P E [R (Z)] follows from M.

kIIInkT
In this step I show that

kIIInkT .P

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2⇣p

kn/n+ k�↵
n

⌘

.

For square-integrable maps h : W ! R, define the map D by

D (t, z, h) := ! (t, x) @v⇢⇤ (z, h⇤ (w))h (w) (1.I.5)

such that h 7! D (t, z, h) is a linear functional for given (t, z) 2 T ⇥ Z. Let � denote the

centered version of D, i.e.,

� (t, z, h) := ! (t, x) @v⇢⇤ (z, h⇤ (w))h (w)� EZ [! (t,X) @v⇢⇤ (z, h⇤ (W ))h (W )] , (1.I.6)

which is also linear in h. Letting ehk = pk>e⇡k be as in Assumption 1.6, by linearity we may

write

IIIn (t) =
p
nEn

h

�(t, Zi,bh� h⇤)
i

=
p
nEn

h

�(t, Zi,bh� ehk
n

)
i

+
p
nEn

h

�(t, Zi,ehk
n

� h⇤)
i

=: IIIa,n (t) + IIIb,n (t) .

Given that ⇣k = supw2Wkpk (w)k = supw2W [
Pk

j=1 pjk (w)
2]1/2, ⇣k

n

! 1 (see Remark 1.3)

implies
Pk

n

j=1kpjknk2W ! 1. In particular,
Pk

n

j=1kpjknk2W is bounded away from zero as
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n ! 1. By T it therefore su�ces to show that

kIIIa,nkT .P

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2⇣p

kn/n+ k�↵
n

⌘

,

and kIIIb,nkT .P k�↵
n .

kIIIa,nkT
In this step I show that

kIIIa,nkT .P

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2⇣p

kn/n+ k�↵
n

⌘

.

Let �k
i (t) := (� (t, Zi, p1k) , . . . ,� (t, Zi, pkk))>. Then CS implies

kIIIa,nkT = sup
t2T

�

�

p
nEn

⇥

�(t, Zi, p
k
n

>(b⇡ � e⇡k
n

))
⇤

�

�

= sup
t2T

�

�

�

p
n
�

En[�
k
n

i (t)]
 >(b⇡ � e⇡k

n

)
�

�

�

6 kb⇡ � e⇡k
n

k sup
t2T

�

�

p
nEn[�

k
n

i (t)]
�

� .

Lemma 1.22 tells us that kb⇡ � e⇡k
n

k .P

p

kn/n+ k�↵
n , so it remains to show that

sup
t2T

�

�

p
nEn[�

k
n

i (t)]
�

� .P

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

.

By M it su�ces to show the finite-sample moment bound, for any k 2 N,

E



sup
t2T

�

�

p
nEn[�

k
i (t)]

�

�

2
�

.
k
X

j=1

kpjkk2W .

Given that

E



sup
t2T

�

�

p
nEn[�

k
i (t)]

�

�

2
�

6
k
X

j=1

E

⇢

sup
t2T

⇥p
nEn[� (t, Zi, pjk)

⇤2
�

,

it su�ces to show that

E

⇢

sup
t2T

⇥p
nEn[� (t, Zi, pjk)

⇤2
�

. kpjkk2W , j 2 {1, . . . , k} .
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To this end, fix j 2 {1, . . . , k} and consider the function class Fjk := Fjk (T ) := {f : z 7!
� (t, z, pjk) |t 2 T }. For f1 := f(·; t1), f2 := f(·; t2) 2 Fjk arbitrary, by T, J and Assumptions

1.2 and 1.3,

|f1 (z)� f2 (z) | = | [! (t1, x)� ! (t2, x)] @v⇢⇤ (z, h⇤ (w)) pjk (w)

� E {[! (t1, X)� ! (t2, X)] @v⇢⇤ (Z, h⇤ (W )) pjk (W )} |
6 |! (t1, x)� ! (t2, x)|

�

�

�

@v⇢⇤ (z, h⇤ (w))
�

�

�

|pjk (w)|
+ E [|! (t1, X)� ! (t2, X)| |@v⇢⇤ (Z, h⇤ (W ))| |pjk (W )|]
.
⇣

|@v⇢⇤ (z, h⇤ (w))| |pjk (w)|+ E
h

|@v⇢⇤ (Z, h⇤ (W ))| |pjk (W )|
i⌘

kt1 � t2k
6
n

�

�

�

@v⇢⇤ (z, h⇤ (w))
�

�

�

+ E [|@v⇢⇤ (Z, h⇤ (W ))|]
o

kpjkkWkt1 � t2k
= L1 (z) kpjkkWkt1 � t2k,

such that we may write

|f1 (z)� f2 (z) | 6 F1,jk (z) kt1 � t2k ,

for F1,jk (z) := C1L1 (z) kpjkkW and some constant C1 2 (0,1). Similarly, for f := f(·; t) 2
Fjk arbitrary, by T, J and Assumptions 1.2 and 1.3,

|f (z)| = |! (t, x) @v⇢⇤ (z, h⇤ (w)) pjk (w)� EZ [! (t,X) @v⇢⇤ (Z, h⇤ (W )) pjk (W )]|
. L1 (z) kpjkkW ,

such that we may write

|f (z)| 6 F2,jk (z)

for F2,jk (z) := C2L1 (z) kpjkkW and some constant C2 2 (0,1). Let C3 := C1 _ C2 and

Fjk (z) := C3L1 (z) kpjkkW .

Then kFjkkP,2 . kpjkkW , so Fjk is an square-integrable envelope for Fjk satisfying

|f1 (z)� f2 (z) | 6 Fjk (z) kt1 � t2k .

Given that T is compact (Assumption 1.2), we must have diam (T ) < 1. Pollard (1990,

Lemma 4.1) and the fact that covering numbers are bounded by packing numbers (cf. van der
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Vaart and Wellner, 1996, p. 98) therefore combine to yield N (", T , k·k) 6 (3diam (T ) /")dt

for " 2 (0, diam (T )]. Hence, by van der Vaart and Wellner (1996, Theorem 2.7.11) and the

previous display,

N[ ]("kFjkkP,2,Fjk, L
2 (P )) 6 N ("/2, T , k·k) 6 (6diam (T ) /")dt 6 (C/")dt

for " 2 (0, diam (T )]. The bracketing integral of Fjk therefore satisfies the bound

J[ ]
�

�,Fjk, L
2 (P )

�

6
Z �

0

p

1 + C ln (1/")d".

Note that the right-hand side depends on neither j nor k. In particular, J[ ] (1,Fjk, L2 (P )) is

bounded uniformly in j 2 {1, . . . , k} , k 2 N. By construction, E[f(Z)] = E[�(t, Z, pjk)] = 0

for any f 2 Fjk, so we may view the stochastic process {pnEn[� (t, Zi, pjk)] |t 2 T } as

an empirical process {Gn(f) |f 2 Fjk }. van der Vaart and Wellner (1996, Theorem 2.14.2)

therefore implies the finite-sample bound

E(kGnkF
jk

) . J[ ]
�

1,Fjk, L
2 (P )

� kFjkkP,2 . kFjkkP,2 . kpjkkW .

van der Vaart and Wellner (1996, Theorem 2.14.5) shows that

[E(kGnk2F
jk

)]1/2 . E(kGnkF
jk

) + kFjkkP,2 . kpjkkW ,

which is the desired bound.

kIIIb,nkT
In this step I show that

kIIIb,nkT .P k�↵
d

n .

For this purpose, fix k 2 N and consider the function class Fk := Fk (T ) := {f : z 7!
�(t, z,ehk � h⇤)|t 2 T }. For f := f(·, t), f1 := f(·, t1), f2 := f(·, t2) 2 Fk arbitrary, arguments

analogous to the ones from Step 1.I.1 establish that

|f1 (z)� f2 (z) | 6 C1L1 (z) kehk � h⇤kW kt1 � t2k ,
|f (z)| 6 C2L1 (z) kehk � h⇤kW .
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Define C3 := C1_C2 and Fk (z) := C3L1 (z) kehk�h⇤kW . Then kFkkP,2 = C4kehk�h⇤kW . k�↵

by Assumption 1.6. Hence Fk is an square-integrable envelope for Fk, and arguments analo-

gous to the ones from Step 1.I.1 show that the resulting bracketing integral J[ ] (�,Fk, L2 (P ))

is bounded by a constant independent of k. van der Vaart andWellner (1996, Theorem 2.14.2)

therefore implies

E(kGnkF
k

) . J[ ]
�

1,Fk, L
2 (P )

� kFkkP,2 . kFkkP,2 . k�↵.

and the claim follows from M.

kIVnkT
In this step I show that

kIVnkT .P

p
nrh,k

n

sup
t2T

r�,k
n

(t) +
q

⇣2k
n

kn ln (kn) /n+R�,k
n

q

ln (kn/R�,k
n

) + ⇣k
n

rh,k
n

.

Recall that hk and �k (t, ·) are the mean-square projections of h⇤and �⇤ (t, ·), respectively,
onto the linear span of {pjk| j 2 {1, . . . , k}}, and r2h,k and r2�,k (t) are the mean-square errors

resulting from these projections. Define  k (t) := E
⇥

�⇤ (t,W ) pk (W )
⇤

. Assumption 1.5 im-

plies that the population least-square coe�cients ⇡k = Q�1
k E[pk (W )Y ] are well defined for

any k 2 N. Applying Lemma 1.17 with An := Qk
n

and Bn := bQk
n

, we see that the inverse

of bQk
n

exists wp ! 1. As a consequence, the sample least-squares coe�cients take the form

b⇡n = bQ�1
k
n

En[pkn (Wi)Yi] wp ! 1. Assuming—without loss of generality—that bQ�1
k
n

exists

with probability one for all n,

p
nEW{�⇤ (t,W ) [bh (W )� hk

n

(W )]} =
p
nEW{�⇤ (t,W ) pkn (W )> (b⇡ � ⇡k

n

)}
=  k

n

(t)>
p
n(b⇡ � ⇡k

n

)

=  k
n

(t)>
p
n
⇣

bQ�1
k
n

En

⇥

pkn(Wi)Yi

⇤� ⇡k
n

⌘

=  k
n

(t)> bQ�1
k
n

p
n
⇣

En

⇥

pkn(Wi)Yi

⇤� bQk
n

⇡k
n

⌘

=  k
n

(t)> bQ�1
k
n

p
nEn

⇥

pkn (Wi)
⇤

[Yi � hk
n

(Wi)] ,

where EW (·) denotes integration with respect to the distribution of W . By definition of

�⇤ (t,W ) [see (1.4.14)] and iterated of expectations, for any measurable function h of W

alone,

E! (t,X) @v⇢⇤ (Z, h⇤ (W ))h (W )
i

= E [�⇤ (t,W )h (W )] .

88



Using the previous two displays and adding and subtracting

p
nEn {�k

n

(t,Wi) [Yi � hk
n

(Wi)]}
=

p
nEn

n

pkn (Wi)
> Q�1

k
n

E[pkn (W ) �⇤ (t,W )] [Yi � hk
n

(Wi)]
o

=  k
n

(t)> Q�1
k
n

p
nEn

�

pkn (Wi) [Yi � hk
n

(Wi)]
 

,

we may decompose IVn(t) as

IVn (t) =
p
nEW{�⇤ (t,W ) [bh (W )� h⇤ (W )]}�p

nEn {�⇤ (t,Wi) [Yi � h⇤ (Wi)]}
=

p
nEW{�⇤ (t,W ) [hk

n

(W )� h⇤ (W )]}+p
nEW{�⇤ (t,W ) [bh (W )� hk

n

(W )]}
+
p
nEn {�⇤ (t,Wi) [Yi � h⇤(Wi)]}

=
p
nEW{�⇤ (t,W ) [hk

n

(W )� h⇤ (W )]}
+  k

n

(t)> ( bQ�1
k
n

�Q�1
k
n

)
p
nEn

�

pkn (Wi) [Yi � hk
n

(Wi)]
 

+
p
nEn {�k

n

(t,Wi) [Yi � hk
n

(Wi)]� �⇤ (t,Wi) [Yi � h⇤ (Wi)]}
=: IVa,n (t) + IVb,n (t) + IVc,n (t) .

By T it therefore su�ces to show that

kIVa,nkT 6
p
nrh,k

n

sup
t2T

r�,k
n

(t) ,

kIVb,nkT .P

q

⇣2k
n

kn ln (kn) /n,

and kIVc,nkT .P R�,k
n

q

ln (kn/R�,k
n

) + ⇣k
n

rh,k
n

.

kIVa,nkT
In order to establish the inequality

kIVa,nkT 6
p
nrh,k

n

sup
t2T

r�,k
n

(t) ,

recall that hk is the mean-square projection of h⇤ onto the span of {pjk| j 2 {1, . . . , k}}}, so
by orthogonality of projections we have E{�k (t,W ) [hk (W ) � h⇤ (W )]} = 0 for each t 2 T .

Now J followed by CS yield

kIVa,nkT =
p
n sup

t2T
|E {�⇤ (t,W ) [hk

n

(W )� h⇤ (W )]}|

=
p
n sup

t2T
|E {[�k

n

(t,W )� �⇤ (t,W )] [hk
n

(W )� h⇤ (W )]}|
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6
p
n khk

n

� h⇤kP,2 sup
t2T

k�k
n

(t, ·)� �⇤ (t, ·)kP,2 =
p
nrh,k

n

sup
t2T

r�,k
n

(t) .

kIVb,nkT
In this step I show that

kIVb,nkT .P

q

⇣2k
n

kn ln (kn) /n.

Using the fact that mean-square projections are L2 (P )-contractions followed by Assumptions

1.2 and 1.3, we see that

 k (t)
> Q�1

k  k (t) = {Q�1
k E[pk (W ) �⇤ (t,W )]}>Qk{Q�1

k E[pk (W ) �⇤ (t,W )]}
= E[�k (t,W )] 6 E[�⇤ (t,W )2] = E[! (t,W )2 @v⇢⇤ (Z, h⇤ (W ))2]

. E[@v⇢⇤ (Z, h⇤ (W ))2] < 1,

with an upper bound that depends on neither t nor k. By the Min-Max Theorem, Assumption

1.5, and the previous display, it follows that

k k (t)Q
�1
k k2 = [ k (t)Q

�1/2
k ]>Q�1

k [Q�1/2
k  K (t)] . k k (t)Q

�1/2
k k2

6 sup
k2N,t2T

| k (t)
> Q�1

k  k (t)| < 1,

thus implying supk2N,t2T k k (t)Q
�1
k k < 1. By Lemma 1.21 we have k bQk

n

� Qk
n

kop .P

[⇣2k
n

ln (kn) /n]1/2 ! 0, where ! 0 follows from Assumption 1.7. Moreover, Lemma 1.17

applied with An := Qk
n

and Bn := bQk
n

shows that k bQ�1
k
n

kop .P 1. Using these observations

and the previous display,

sup
t2T

k k
n

(t)> bQ�1
k
n

�  k
n

(t)> Q�1
k k = sup

t2T
k k

n

(t)> Q�1
k
n

(Qk
n

� bQk
n

) bQ�1
k
n

k

6 k(Qk
n

� bQk
n

) bQ�1
k
n

kop sup
t2T

k k
n

(t)> Q�1
k
n

k

6 k bQk
n

�Qk
n

kopk bQ�1
k
n

kop sup
t2T

k k
n

(t)> Q�1
k
n

k

.P

q

⇣2k
n

ln (kn) /n ! 0.

From the previous display and supk2N,t2T k k (t)Q
�1
k k < 1 it follows that

sup
t2T

k k
n

(t)> bQ�1
k
n

k .P 1.
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Observe also that, by the Assumption 1.5, the Min-Max theorem, and the fact that E{pk(W )[Y�
hk(W )]} = 0k⇥1 (which follows from hk being the mean-square projection of h⇤),

E
⇥kQ�1

k

p
nEn

�

pk (Wi) [Yi � hk (Wi)]
 k2⇤

. E
⇥kQ�1/2

k

p
nEn

�

pk (Wi) [Yi � hk (Wi)]
 k2⇤

= E
�

pk (W )> Q�1
k pk (W ) [Y � hk (W )]2

 

= E
⇥

U2pk (W )> Q�1
k pk (W )

⇤

+ E
�

pk (W )> Q�1
k pk (W ) [hk (W )� h⇤ (W )]2

 

,

where I have used U = Y � h⇤(W ). By Assumption 1.4, E(U2|W ) is bounded, so

E[U2pk (W )> Q�1
k pk (W )] = E[E(U2|W )pk (W )> Q�1

k pk (W )] . E[pk (W )> Q�1
k pk (W )] = k.

Moreover,

E{pk (W )> Q�1
k pk (W ) [hk (W )� h⇤ (W )]2} . E{kpk (W )k2[hk (W )� h⇤ (W )]2} 6 ⇣2kr

2
h,k.

Given Assumption 1.7, ⇣2kr
2
h,k = (⇣krh,k)2 ! 0 as k ! 1, so

E
⇥kQ�1

k

p
nEn

�

pk (Wi) [Yi � hk (Wi)]
 k2⇤ . k.

M now implies

kQ�1
k

p
nEn

�

pkn (Wi) [Yi � hk
n

(Wi)]
 k .P

p

kn.

Using CS we therefore arrive at

kIVb,nkT = sup
t2T

�

�

�

 k
n

(t)> bQ�1
k
n

(Qk
n

� bQk
n

)Q�1
k
n

p
nEn

�

pkn (Wi) [Yi � hk
n

(Wi)]
 

�

�

�

6
�

�Q�1
k
n

p
nEn

�

pkn (Wi) [Yi � hk
n

(Wi)]
 

�

� sup
t2T

k k
n

(t)> bQ�1
k
n

(Qk
n

� bQk
n

)k

6
�

�Q�1
k
n

p
nEn

�

pkn (Wi) [Yi � hk
n

(Wi)]
 

�

� k bQk
n

�Qk
n

kop sup
t2T

k k
n

(t)> bQ�1
k
n

k

.P

p

kn
q

⇣2k
n

ln (kn) /n.

kIVc,nkT
In this section I show that

kIVc,nkT .P R�,k
n

q

ln (kn/R�,k
n

) + ⇣k
n

rh,k
n

.
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Letting Ui := Yi � h⇤ (Wi), we may decompose IVc,n (t) as

IVc,n (t) =
p
nEn {Ui [�k

n

(t,Wi)� �⇤ (t,Wi)]}�
p
nEn {�k

n

(t,Wi) [hk
n

(Wi)� h⇤ (Wi)]}
=: IVd,n (t) + IVe,n (t) .

By T it therefore su�ces to show that

kIVd,nkT .P R�,k
n

q

ln (kn/R�,k
n

) and kIVe,nkT .P ⇣k
n

rh,k
n

.

For the purpose of bounding kIVd,nkT , consider the function class Fk := Fk (T ) := {f : z 7!
[y � h⇤ (w)] [�k (t, w)� �⇤ (t, w)] |t 2 T }. Note that E[f(Z)] = 0 for any f 2 Fk, so we may

view the stochastic process {IVd,n(t)|t 2 T} as an empirical process {Gn (f) |f 2 Fk}. For

any t1, t2 2 T , by J we have

|�⇤ (t, w)� �⇤ (t, w)| = |E {[! (t1, X)� ! (t2, X)] @v⇢⇤ (Z, h⇤ (W ))}|
. E [|@v⇢⇤ (Z, h⇤ (W ))| |W = w] kt1 � t2k .

Consequently, using Assumption 1.3 and the fact that conditional expectations are L2 (P )

contractions,

E{[�⇤ (t1,W )� �⇤ (t2,W )]2} . E({E [|@v⇢⇤ (Z, h⇤ (W ))| |W = w]}2) kt1 � t2k2

6 E
h

@v⇢⇤ (Z, h⇤ (W ))2
i

kt1 � t2k2 . kt1 � t2k2 .

Given that mean-square projections are also L2 (P ) contractions,

kQ�1/2
k E

�

pk (W ) [�⇤ (t1,W )� �⇤ (t2,W )]
 k2

= E
h

�

pk (W )> Q�1
k E

�

pk (W ) [�⇤ (t1,W )� �⇤ (t2,W )]
 �2
i

6 E{[�⇤ (t1,W )� �⇤ (t2,W )]2}

so by CS and the previous two displays,

|�k (t1, w)� �k (t2, w)| = |pk (w)> Q�1
k E

�

pk (W ) [�⇤ (t1,W )� �⇤ (t2,W )]
 |

6 kpk (w)> Q�1/2
k kkQ�1/2

k E
�

pk (W ) [�⇤ (t1,W )� �⇤ (t2,W )]
 k

. kpk (w)> Q�1/2
k k kt1 � t2k . (1.I.7)

92



Thus, for any f1 := f(·, t1), f2 := f (·, t2) 2 Fk, by T,

|f1 (z)� f2 (z)| 6 |y � h⇤ (w)| [|�k (t1, w)� �k (t2, w)|+ |�⇤ (t1, w)� �⇤ (t2, w)|]
6 C |y � h⇤ (w)|

n

kpk (w)> Q�1/2
k k+ E [|@v⇢⇤ (Z, h⇤ (W ))| |W = w]

o

kt1 � t2k
=: F1,k (z) kt1 � t2k .

Moreover, for any f := f(·, t) 2 Fk,

|f (z)| = |y � h⇤ (w)| |�k (t, w)� �⇤ (t, w)| 6 |y � h⇤ (w)| k�k (·, w)� �⇤ (·, w)kT =: F2,k (z) .

Using Assumptions 1.3 and 1.4, the inequality (a + b)2 6 2a2 + 2b2, and the fact that

conditional expectations are L2 (P ) contractions, we see that

E[F1,k (Z)
2] . E

⇣

U2
n

kpk (W )> Q�1/2
k k+ E [ |@v⇢⇤ (Z, h⇤ (W ))||W ]

o2 ⌘

. E[kpk (W )> Q�1/2
k k2] + E

�{E [ |@v⇢⇤ (Z, h⇤ (W ))||W ]}2�

6 k + E
⇥

@v⇢⇤ (Z, h⇤ (W ))2
⇤

. k as k ! 1.

Given Assumptions 1.4 and 1.7, we get

E[F2,k(Z)
2] = E{U2k�k (·,W )� �⇤ (·,W )k2T } . E{k�k (·,W )� �⇤ (·,W )k2T } = R2

�,k ! 0

as k ! 1. Thus, defining Fk := F1,k + F2,k we must have

E[Fk (Z)
2] . k +R2

�,k . k as k ! 1,

and it follows that Fk is a square-integrable envelope for Fk satisfying

|f1 (z)� f2 (z)| 6 Fk (z) kt1 � t2k and kFkkP,2 . k1/2 as k ! 1.

Using T compact and the previous display, van der Vaart and Wellner (1996, 2.7.11) implies

that

N[ ]("kFkkP,2,Fk, L
2 (P )) 6 (C/")dt , " 2 (0, 1],

and thus

J[ ]
�

�,Fk, L
2 (P )

�

6
Z �

0

p

1 + dt ln (C/")d", � > 0.
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where the right-hand side does not depend on k. In particular, J[ ] (1,Fk
n

, L2 (P )) . 1

Defining

�2
n := sup

f2F
k

n

En

�

f 2
�

we see that

�2
n = sup

t2T
En{U2

i [�kn (t,Wi)� �⇤ (t,Wi)]
2} 6 En{U2

i k�kn (·,Wi)� �⇤ (·,Wi)k2T }

such that

E(�2
n) 6 E{U2k�k

n

(·,W )� �⇤ (·,W )k2T } . E{k�k
n

(·,W )� �⇤ (·,W )k2T } = R2
�,k

n

.

There are two cases: (1) R�,k
n

/kFk
n

kP,2 ! 0 and (2) R�,k
n

/kFk
n

kP,2 9 0.

Case 1 : R�,k
n

/kFk
n

kP,2 ! 0. Given that
p

E (�2
n) 6 C1R�,k

n

, by the change of variables

"0 := "/C1 we have

J[ ]
⇣

p

E (�2
n)/kFk

n

kP,2,Fk
n

, L2 (P )
⌘

6 J[ ]
�

C1R�,k
n

/kFk
n

kP,2,Fk
n

, L2 (P )
�

= C1

Z R
�,k

n

/kF
k

n

k
P,2

0

p

1 + dt ln (C3/"0)d"0

=: C1J [ ] (�k
n

/kFk
n

kP,2) (1.I.8)

van der Vaart and Wellner (2011, p. 196) establishes the maximal inequality

E(kGnkF
k

n

) . J[ ]
⇣

p

E (�2
n)/kFk

n

kP,2,Fk
n

, L2 (P )
⌘

kFk
n

kP,2.

The previous two displays show that

E(kGnkF
k

n

) . J [ ] (�k
n

/kFk
n

kP,2) kFk
n

kP,2

and from van der Vaart and Wellner (1996, p. 239) we know that an integral of the form
R �

0
[1+ln(1/u)]1/2du—as in (1.I.8)—satisfies

R �

0
[1+ln(1/u)]1/2du . �

p

ln(1/�) as � # 0. Since

R�,k
n

/kF�,k
n

kP,2 ! 0 holds by hypothesis, the previous display combined with kFk
n

kP,2 .p
kn and M yields

kGnkF
k

n

.P (R�,k
n

/kFk
n

kP,2)
q

ln (kFk
n

kP,2/R�,k
n

)kFk
n

kP,2
= R�,k

n

q

ln (kFk
n

kP,2/R�,k
n

) . R�,k
n

q

ln (kn/R�,k
n

).
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Case 2. R�,k
n

/kFk
n

kP,2 9 0. Given that R�,k
n

! 0 (Assumption 1.7), we must have

kFk
n

kP,2 . R�,k. van der Vaart and Wellner (1996, Theorem 2.14.2) and J[ ] (1,Fk
n

, L2 (P )) .
1 yield

E(kGnkF
k

n

) . J[ ]
�

1,Fk
n

, L2 (P )
� kFk

n

kP,2 . kFk
n

kP,2 . R�,k
n

. R�,k
n

q

ln (kn/R�,k
n

).

M now yields the same rate as in Case 1. In either case, kIVd,nkT .P R�,k
n

p

ln (kn/R�,k
n

).

For the purpose of bounding kIVe,nkT , consider the function class Fk := {f : z 7!
�k (t, w) [hk (w)� h⇤ (w)] |t 2 T }. Note that, by orthogonality of mean–square projections

we have E[f(Z)] = 0 for any f 2 Fk, so we may view the stochastic process {IVe,n (t)| t 2 T }
as an empirical process {Gn(f)| f 2 Fk

n

}. For any t1, t2 2 T , using the bound in (1.I.7) we

have that f1 := f (·; t1) , f2 := f (·; t2) 2 Fk, satisfy

|f1 (z)� f2 (z)| = |�k (t1, w)� �k (t2, w)| |hk (w)� h⇤ (w)|
. kpk (w)> Q�1/2

k k |hk (w)� h⇤ (w)| kt1 � t2k
. ⇣k |hk (w)� h⇤ (w)| kt1 � t2k .

The previous display implies

|f1 (z)� f2 (z)| 6 F1,k (z) kt1 � t2k ,

for F1,k (z) := C1⇣k |hk (w)� h⇤ (w)| and some C1 2 (0,1). Since conditional expectations

are L2(P ) contractions, by Assumptions 1.2 and 1.3,

E[�⇤ (t,W )2] = E
⇣

E [!(t,X) |@v⇢⇤ (Z, h⇤ (W ))||W ]2
⌘

6 E
⇥

!(t,X)2 |@v⇢⇤ (Z, h⇤ (W ))|2⇤

. E
h

|@v⇢⇤ (Z, h⇤ (W ))|2
i

< 1,

thus implying supt2T E[�⇤ (t,W )2] < 1. By CS and using that mean–square projections are

L2 (P ) contractions as well, we get

|�k (t, w)| = |pk (w)> Q�1
k E[pk (W ) �⇤ (t,W )]| 6 kpk (w)> Q�1/2

k kkQ�1/2
k E[pk (W ) �⇤ (t,W )]k

. kpk (w)kE[�⇤ (t,W )2] . ⇣k,

which implies that for any f := f(·; t) 2 Fk,

|f (z)| = |�k (w; t)| |hk (w)� h⇤ (w)| . ⇣k |hk (w)� h⇤ (w)| .
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The previous diplay shows that |f (z)| 6 F2,k (z) for F2,k (z) := C2⇣k |hk (w)� h⇤ (w)| and
some C2 2 (0,1). Let C3 := C1 _ C2, and define Fk (z) := C3⇣k |hk (w)� h⇤ (w)| . Then by

Assumption 1.7,

kFkkP,2 = C3⇣kkhk � h⇤kP,2 = C3⇣krh,k ! 0 as k ! 1,

In particular, kFkkP,2 . 1. Now, Fk is a square-integrable envelope for Fk satisfying

|f1 (z)� f2 (z)| 6 Fk (z) kt1 � t2k .

Using T compact and the previous display, by van der Vaart and Wellner (1996, Theorem

2.7.11) we see that

N[ ]("kFkkP,2,Fk, L
2 (P)) 6 (C/")dt , " 2 (0, 1],

and thus

J[ ]
�

�,Fk, L
2 (P )

�

6
Z �

0

p

1 + dt ln (C/")d",

where the right-hand side does not depend on k. In particular, J[ ] (1,Fk, L2 (P )) . 1. Using

van der Vaart and Wellner (1996, Theorem 2.14.2) J[ ] (1,Fk
n

, L2 (P )) . 1, we arrive at

E(kGnkF
k

n

) . J[ ]
�

1,Fk
n

, L2 (P )
� kFk

n

kP,2 . kFk
n

kP,2 . ⇣k
n

rh,k
n

,

so kIVe,nkT .P ⇣k
n

rh,k
n

by M.

Proof of Lemma 1.1. The claim follows from Lemma 1.14 and Assumption 1.7.

Proof of Lemma 1.2. Given that �⇤ and h⇤ are held fixed throughout the argument, ab-

breviate ⇢⇤⇤ (z) := ⇢(z, �⇤, h⇤ (w)), @�⇢⇤⇤ (Z) := @�⇢(z, �⇤, h⇤ (w)) and @v⇢⇤⇤ (Z) := @v⇢ (z, �⇤, h⇤ (w)).

By Assumption 1.2 and J we have both kb⇤ (t)k 6 E[|! (t,X) k@�⇢⇤⇤(Z)k] . E[k@�⇢⇤⇤(Z)k]
and |�⇤ (t, w) | 6 E[|! (t,X) ||@v⇢⇤⇤(Z)||W = w] . E[|@v⇢⇤⇤(Z)||W = w]. Letting f(t, ·) 2 F
be arbitrary, T and CS therefore imply

|f (t, z)| 6 |! (t, x)| |⇢⇤⇤ (z)|+ kb⇤ (t)k ks⇤ (z)k+ |�⇤ (t, w)| |y � h⇤ (w)|
6 C1 |⇢⇤⇤ (z)|+ E [k@�⇢⇤⇤ (Z)k] ks⇤ (z)k+ E[|@v⇢⇤⇤ (Z) ||W = w] |y � h⇤ (w)| =: F1 (z) .

Taking the expectation and using the inequality (a + b)2 6 2a2 + 2b2 repeatedly alongside

the integrability and boundedness parts of Assumptions 1.1 and 1.3, we see that F1 (Z)
2 is
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integrable. Hence, F is a square-integrable envelope for F . Let f (t1, ·) , f (t2, ·) 2 F be

arbitrary. Then by T and CS, followed by J, CS and Assumption 1.2,

|f (t1, z)� f (t2, z)| 6 |! (t1, x)� ! (t2, x)| |⇢⇤⇤ (z)|+ kb⇤ (t1)� b⇤ (t2)k ks⇤ (z)k
+ |y � h⇤ (w)| |�⇤ (t1, w)� �⇤ (t2, w)|
6 C2

⇣

|⇢⇤⇤ (z)|+ E [k@�⇢⇤⇤ (Z)k] ks⇤ (z)k
+ |y � h⇤ (w)|E[|@v⇢⇤⇤ (Z) ||W = w]

⌘

kt1 � t2k =: F2 (z) kt1 � t2k

Defining F := F1 _ F2, we see that F is a square-integrable envelope for F satisfying

|f (t1, z)� f (t2, z)| 6 F (z) kt1 � t2k .

Given that T is compact (Assumption 1.2), we thus have

N[ ](" kFkP,2 ,F , L2 (P )) 6 N (", T , k·k) 6 (diam (T ) /")dt 6 (C/")dt , " 2 (0, diam (T )],

so using kFkP,2 < 1,

N[ ](",F , L2 (P )) 6 (C/")dt , " > 0.

The previous display implies

Z 1

0

q

ln(N[ ](",F , L2 (P )))d" 6
p

dt

Z 1

0

p

ln (C/")d" < 1.

The desired conclusion now follows from van der Vaart (2000, Theorem 19.5), which uses

the Ossiander (1987) su�cient condition for F to be Donsker.

Proof of Theorem 1.1. To prove (1), observe first that under the null, E[f⇤(·, Z)] is
the zero function on T , and B⇤

n equals the empirical process {Gn (f) |f 2 F}. F being

Donsker (Lemma 1.2) is equivalent to Gn  G0 in `1 (F) for a centered Gaussian process

G0 with covariance function E[f1(Z)f2(Z)], f1, f2 2 F , which, by definition of F , is equiv-

alent to B⇤
n  G0 in `1 (T ) for a centered Gaussian process G0 with covariance function

E[f(t1, Z)f(t2, Z)], t1, t2 2 T . By T and Lemma 1.1,

�

�T 1/2
n � kB⇤

nkµ,2
�

� = |k bBnkµ,2 � kB⇤
nkµ,2| = || 6 k bBn � B⇤

nkµ,2 P! 0.

so Part 1 follows from the CMT.
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To prove (2), note that by the previous display

|Tn/n� kB⇤
n/nkµ,2| = |Tn � kB⇤

nkµ,2| /n P! 0.

The proof of Lemma 1.2 shows that t 7! f⇤ (t, Z) is continuous at each t 2 T with probability

one, and F admits a square-integrable envelope. Given that the data are i.i.d., and T is

compact (Assumption 1.2), Newey and McFadden (1994, Lemma 2.4) implies that

sup
t2T

�

�B⇤
n (t) /

p
n� E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)]

�

� = sup
t2T

|(En � E) [f⇤ (t, Z)]| P! 0.

Given that |Tn/n� kB⇤
n/nkµ,2| = |Tn � kB⇤

nkµ,2| /n !P 0 (Lemma 1.1), the previous diplay

implies Tn !P

R

T {E [⇢ (Z, �⇤, h⇤ (W ))! (t,X)]}2 dµ (t), which is strictly positive under the

alternative by the choice of weight function (Assumption 1.2) and measure.

1.I.2 Proofs for Section 1.4.5

Define the stochastic processes bGu and G⇤u
n by

bGu (t) :=
1p
n

n
X

i=1

⇠i bf (t, Zi) ,

G⇤u
n (t) :=

1p
n

n
X

i=1

⇠if⇤ (t, Zi) .

which are the“uncentered”versions of bG and G⇤
n, respectively, i.e., the displayed processes are

not centered at the sample mean. The following lemma shows that the uncentered processes

are asymptotically equivalent.

Lemma 1.15. If Assumptions 1.1–1.8 hold, then k bGu �G⇤u
n kT !P 0.

Proof of Lemma 1.15.

Main

For fixed t 2 T a decomposition yields

bGu (t)�G⇤u
n (t) =

p
nEn

�

⇠i[ bf (t, Zi)� f⇤ (t, Zi)]
 

=
p
nEn

�

⇠i! (t,Xi) [⇢(Zi, b�,bh (Wi))� ⇢(Zi, �⇤, h⇤ (Wi))]
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� [bb (t)� b⇤ (t)]>
p
nEn [⇠is⇤ (Zi)]

�bb (t)> p
nEn

�

⇠i[bs (Zi)� s⇤ (Zi)]
 

+
p
nEn

�

⇠i{b� (t,Wi) [Yi � bh (Wi)]� �⇤ (t,Wi)Ui}
�

.

=: In (t) + IIn (t) + IIIn (t) + IVn (t) .

The following steps show that the four remainder terms !P 0 uniformly over T . The claim

therefore follows from T.

kInkT
Assumption 1.1 and M implies that kb���⇤k .P n�1/2 ! 0. LetN⇤ be the open neighborhood

provided by Assumption 1.3. Then b� 2 N⇤ wp ! 1. To simplify notation and ensure that

objects are globally well defined, in what follows I will—without loss of generality—assume

that b� 2 N⇤ with probability one for all n. A mean value expansion of � 7! ⇢(Zi, �,bh (Wi))

at b� around �⇤ and CS show that

kInkT 6 sup
t2T

�

�

�

p
nEn

n

⇠i! (t,Xi)
h

⇢(Zi, �⇤,bh (Wi))� ⇢(Zi, �⇤, h⇤ (Wi))
io

�

�

�

+
p
nkb� � �⇤k sup

t2T

�

�

�

En

h

⇠i! (t,Xi) @�⇢(Zi, �,bh (Wi))
i

�

�

�

=: kIa,nkT +
p
nkb� � �⇤kkIb,nkT ,

where � satisfies k� � �⇤k 6 kb� � �⇤k such that � 2 N⇤ for n su�ciently large. Sincep
nkb� � �⇤k .P 1 it su�ces to show that kIa,nkT and kIb,nkT !P 0.

kIa,nkT Abbreviate (z, v) 7! ⇢ (z, �⇤, v) by ⇢⇤. By a mean value expansion of s 7! ⇢⇤(Zi, s)

at bh (Wi) around h⇤ (Wi) and T we may be bound kIa,nkT by

sup
t2T

�

�

�

p
nEn

n

⇠i! (t,Xi)
⇥

@v⇢⇤(Zi, h (Wi))� @v⇢⇤(Zi, h⇤ (Wi))
⇤

h

bh (Wi)� h⇤ (Wi)
io

�

�

�

+ sup
t2T

�

�

�

p
nEn

n

⇠i! (t,Xi) @v⇢⇤(Zi, h⇤ (Wi))[bh (Wi)� h⇤ (Wi)]
o

�

�

�

=: kIa,1,nkT + kIa,2,nkT .

By T and Assumptions 1.2 and 1.8

kIa,1,nkT .
p
nEn

n

|⇠i|R0 (Zi) [bh (Wi)� h⇤ (Wi)]
2
o

�

�

�

6 En [|⇠i|R0 (Zi)]
p
nkbhn � h⇤k2W

.P E[R0(Z)]
p
nkbh� h⇤k2W !P 0.
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kIa,2,nkT : Let ehk := pk>e⇡k for e⇡k provided by Assumption 1.6. Then we may bound

kIa,2,nkT by

kIa,2,nkT 6 sup
t2T

�

�

�

p
nEn

n

⇠i! (t,Xi) @v⇢⇤(Zi, h⇤ (Wi))[bh (Wi)� ehk
n

(Wi)]
o

�

�

�

+ sup
t2T

�

�

�

p
nEn

n

⇠i! (t,Xi) @v⇢⇤(Zi, h⇤ (Wi))[ehk
n

(Wi)� h⇤ (Wi)]
o

�

�

�

=: kIa,2,1,nkT + kIa,2,2,nkT .

I consider kIa,2,1,nkT and kIa,2,2,nkT in turn. By CS kIa,2,1,nkT is bounded by

kIa,2,1,nkT 6 kb⇡ � e⇡k
n

k sup
t2T

�

�

p
nEn

�

⇠i! (t,Xi) @v⇢⇤(Zi, h⇤ (Wi))p
k
n (Wi)

 

�

�

6 kb⇡ � e⇡k
n

k
⇣

k
n

X

j=1

sup
t2T

�p
nEn [⇠i! (t,Xi) @v⇢⇤(Zi, h⇤ (Wi))pjk

n

(Wi)]
 2
⌘1/2

.

Fix k and let

F 0
jk := {f : (s, z) 7! s! (t, x) @v⇢⇤ (z, s) pjk (w)| t 2 T } .

Note E[f(⇠, Z)] = 0 for every f 2 F 0
jk, so {pnEn [f (⇠i, Zi)] |f 2 F 0

jk} is an empirical process.

For f := f (·, t) , f1 := f (·; t1) , f2 := f (·; t2) 2 F 0
jk arbitrary, by Assumption 1.2 we have

|f (s, z)| 6 C1 |s| |@v⇢⇤ (z, h⇤ (w))| kpjkkW
|f1 (s, z)� f2 (s, z)| 6 C2 |s| |@v⇢⇤ (z, h⇤ (w))| kpjkkWkt1 � t2k.

By Assumption 1.8, CS and the previous display we see that

F 0
jk (s, z) := (C1 _ C2) |s| |@v⇢⇤ (z, h⇤ (w))| kpjkkW

is an envelope for F 0
jk satisfying E[F 0

jk(⇠, Z)
2] / kpjkk2W , which is finite for every (j, k) by

Assumption 1.7. Moreover, by compactness of T (Assumption 1.2) and the previous display,

N[ ]("(E[F
0
jk(⇠, Z)

2])1/2,F 0
jk, L

2 (⇠, Z)) 6 N (", T , k·k) . "�d
t , " 2 (0, 1].

It follows that the bracketing entropy integral J[ ](1,F 0
jk, L

2 (⇠, Z)) is bounded by a constant

independent of j or k, so by van der Vaart and Wellner (1996, Theorem 2.14.2)

E(kGnkF 0
jk

) . J[ ](1,F 0
jk, L

2 (⇠, Z))E[F 0
jk(⇠, Z)

2])1/2 . E[F 0
jk(⇠, Z)

2])1/2 / kpjkkW .
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van der Vaart and Wellner (1996, Theorem 2.14.5) and the previous display show that

[E(kGnk2F 0
jk

)]1/2 . E(kGnkF 0
jk

) + E[F 0
jk(⇠, Z)

2])1/2 . kpjkkW ,

Allowing k = kn, the previous display, in turn, implies

E
⇣

k
n

X

j=1

kGnk2F 0
jk

n

⌘

=
k
n

X

j=1

E(kGnk2F 0
jk

n

) .
k
n

X

j=1

kpjk
n

k2W ,

so by M we get

k
n

X

j=1

kGnk2F 0
jk

n

.P

k
n

X

j=1

kpjk
n

k2W .

From Lemma 1.22, M and Assumption 1.7 it now follows that

kIa,2,1,nkT 6 kb⇡n � e⇡k
n

k
⇣

k
n

X

j=1

kGnk2F 0
jk

n

⌘1/2

.P (
p

kn/n+ k�↵
n )
⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

! 0.

Similarly, fix k and let

F 0
k := {f : (s, z) 7! s! (t, x) @v⇢⇤ (z, h⇤ (w)) [ehk (w)� h⇤ (w)]

�

�t 2 T }.

Note E[f(⇠, Z)] = 0 for every f 2 F 0
k, so {pnEn [f (⇠i, Zi)] |f 2 F 0

k} is an empirical process.

For f := f (·; t) , f1 := f (·; t1) , f2 := f (·; t2) 2 F 0
jk arbitrary, by Assumption 1.2 we have

|f (s, z)| 6 C1|s||@v⇢⇤ (z, h⇤ (w))|kehk � h⇤kW ,

|f1 (s, z)� f2 (s, z)| 6 C2|s||@v⇢⇤ (z, h⇤ (w))|kehk � h⇤kWkt1 � t2k.

By Assumption 1.8, CS and the previous display we see that

F 0
k (s, z) := (C1 _ C2) |s| |@v⇢⇤ (z, h⇤ (w))| kehk � h⇤kW

is an envelope for F 0
k satisfying E[F 0

k(⇠, Z)
2] / kehk�h⇤k2W , which by Assumption 1.6 is finite

for every (j, k). Moreover, by compactness of T (Assumption 1.2) and the previous display,

N[ ]("(E[F
0
k(⇠, Z)

2])1/2,F 0
k, L

2 (⇠, Z)) 6 N (", T , k·k) . "�d
t , " 2 (0, 1].
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which implies that the bracketing entropy integral J[ ](1,F 0
k, L

2 (⇠, Z)) is bounded by a con-

stant independent of j or k. Using van der Vaart and Wellner (1996, Theorem 2.14.2) and

Assumption 1.6, we therefore get

E(kGnkF 0
k

) . J[ ](1,F 0
k, L

2 (⇠, Z))E[F 0
k(⇠, Z)

2])1/2 . E[F 0
k(⇠, Z)

2])1/2 / kehk � h⇤kW . k�↵.

By M it follows that kIa,2,2,nkT = kGnkF 0
k

n

.P k�↵
n ! 0, which completes the proof of

kIa,2,nkT !P 0 and therefore kIa,nkT !P 0.

kIb,nkT By T we may bound kIb,nkT ⌘ supt2T kEn[⇠i! (t,Xi) @�⇢(Zi, �,bh (Wi))]k by

sup
t2T

�

�En

⇥

⇠i! (t,Xi) @�⇢(Zi, �, h⇤ (Wi))
⇤

�

�

+ sup
t2T

�

�

�

En

n

⇠i! (t,Xi)
h

@�⇢(Zi, �,bh (Wi))� @�⇢(Zi, �, h⇤ (Wi))
io

�

�

�

=: kIb,1,nkT + kIb,2,nkT .

The second term kIb,2,nkT satisfies

kIb,2,nkT . En

h

|⇠i|L1 (Zi) |bh (Wi)� h⇤ (Wi)|c
i

6 En [|⇠i|L1 (Zi)] kbh� h⇤kcW .P kbh� h⇤kcW P! 0,

where the . follows from Assumptions 1.2 and 1.3, the .P from the ⇠i’s being i.i.d., zero

mean, unit variance (hence having finite first moment) and independent of the data, and the

!P 0 stems from Lemma 1.22 and Assumption 1.7.

To show that kIb,1,nkT !P 0, observe that the {(⇠i, Zi)}n1 are i.i.d., the map (t, �) 7!
⇠! (t,X) @�⇢ (Z, �, h⇤ (W )) is continuous on T ⇥ N⇤ (Assumptions 1.2 and 1.3) and there-

fore continuous on the product T ⇥ B, where B ⇢ N⇤ is a closed ball with center �⇤ and

su�ciently small radius (Assumption 1.1). Moreover, T ⇥ B is compact (Assumption 1.2),

and supT ⇥Bk⇠! (t,X) @�⇢ (Z, �, h⇤ (W ))k . |⇠| supBk@�⇢ (Z, �, h⇤ (W ))k, where by indepen-

dence, CS, and Assumption 1.3,

E
h

|⇠| sup
�2B

k@�⇢ (Z, �, h⇤ (W ))k
i

6 E
h

sup
�2B

k@�⇢ (Z, �, h⇤ (W ))k
i

< 1,

Given that the ⇠i’s are centered and independent of the data, Newey and McFadden (1994,

Lemma 2.4) shows that

sup
T ⇥B

kEn [⇠i! (t,Xi) @�⇢ (Zi, �, h⇤ (Wi))]k P! 0.
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kIb,nkT !P 0 now follows from � 2 B wp ! 1 and the previous display.

bb In this step I show that

(a) sup
t2T

kbb (t)� b⇤ (t)k P! 0 and (b) sup
t2T

kbb (t)k .P 1,

To show (a), note that the argument in Section 1.I.1 of the proof of Lemma 1.14 shows that

(t, �) 7! E [! (t,X) @�⇢ (Z, �, h⇤ (W ))] is uniformly continuous on T ⇥ B,

and sup
T ⇥B

k(En � E)! (t,Xi) @�⇢ (Zi, �, h⇤ (Wi))k P! 0,

where B ⇢ N⇤ is a closed ball with center �⇤ and su�ciently small radius (Assumption 1.1).

By T we have

sup
t2T

kbb (t)� b⇤ (t)k 6 sup
t2T

�

�

�

En

n

! (t,Xi)
h

@�⇢(Zi, b�,bh (Wi))� @�⇢(Zi, b�, h⇤ (Wi))
io

�

�

�

+ sup
t2T

�

�

�

(En � EZ)
h

! (t,Xi) @�⇢(Zi, b�, h⇤ (Wi))
i

�

�

�

+ sup
t2T

�

�

�

EZ

h

! (t,X) @�⇢(Z, b�, h⇤ (W ))
i

� b⇤ (t)
�

�

�

.

Given that b� 2 B wp ! 1, the second and third term on the right !P 0 due to uniform

convergence and uniform continuity, respectively. By T and Assumptions 1.2 and 1.3, the

first term is bounded by a constant multiple of

En

h

L1 (Zi) |bh (Zi)� h⇤ (Zi)|c
i

6 En [L1 (Zi)] kbh� h⇤kcW .P kbh� h⇤kcW P! 0,

where the .P follows from M and the !P 0 from Lemma 1.22. The previous display finishes

the proof of (a).

To show (b), note that the argument in Section 1.I.1 of the proof of Lemma 1.14 also

shows that supt2T kb⇤ (t)k < 1. Two applications of T yield

�

�

�

sup
t2T

kbb (t)k � sup
t2T

kb⇤ (t)k
�

�

�

6 sup
t2T

|kbb (t)k � kb⇤ (t)k| 6 sup
t2T

kbb (t)� b⇤ (t)k P! 0,

which combined with supt2T kb⇤ (t)k < 1 implies supt2T kbb (t)k .P 1.
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kIInkT . By CS, Step 1.I.1 and

kIInkT 6
�

�

p
nEn [⇠is⇤ (Zi)]

�

� sup
t2T

kbb (t)� b⇤ (t)k,

it su�ces to show kpnEn [⇠is⇤ (Zi)]k .P 1. For this purpose, note that by the ⇠i’s being

i.i.d., zero-mean, unit variance and independent of the data we have

E
h

�

�

p
nEn [⇠is⇤ (Zi)]

�

�

2
�

�

�

{Zi}n1
i

= En

⇥ks⇤ (Zi)k2
⇤

.

The desired kpnEn [⇠is⇤ (Zi)]k .P 1 now follows from iterated expectations, Assumption 1.1

and M.

kIIInkT .
By CS, Step 1.I.1 and

kIIInkT 6
�

�

p
nEn {⇠i[bs (Zi)� s⇤ (Zi)]}

�

� sup
t2T

kbb (t)k,

it su�ces to show that kpnEn {⇠i[bs (Zi)� s⇤ (Zi)]}k !P 0. To this end, note that by the

⇠i’s being i.i.d., zero-mean, unit variance and independent of the data, and bs being {Zi}n1 -
measurable (Assumption 1.8), we have

E
⇥kpnEn {⇠i[bs (Zi)� s⇤ (Zi)]}k

�

� {Zi}n1
⇤

= En

⇥kbs (Zi)� s⇤ (Zi)k2
⇤

= kbs� s⇤k2P
n

,2.

By Assumption 1.8, the right-hand side !P 0, so Lemma 1.23 implies

kpnEn {⇠i[bs (Zi)� s⇤ (Zi)]}k2 P! 0

and therefore kpnEn {⇠i[bs (Zi)� s⇤ (Zi)]}k !P 0. This finishes the proof of kIIInkT !P 0.

Recall that t 7!  k (t) = E[pk (W ) �⇤ (t,W )], so by the LOIE

 k (·) = E[pk (W )! (·, X) @v⇢(Z, �⇤, h⇤ (W ))].

I estimate  k by

t 7! b k (t) := En[p
k (Wi)! (t,Xi) @v⇢(Zi, b�,bh (Wi))].

104



Note that this definition allows us to write (t, w) 7! b� (t, w) as

(t, w) 7! b� (t, w) = pkn (w)> bQ�
k
n

b k
n

(t) .

b k
n

and bQ�
k
n

In this step I show that

(a) sup
t2T

k b k
n

(t)�  k
n

(t)k .P

h

⇣k
n

(
p

kn/n+ k�↵
n ) +

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

/
p
n
i

! 0,

(b) sup
t2T

k b k
n

(t)> bQ�
k
n

�  k
n

(t)> Q�1
k
n

k P! 0,

and (c) sup
t2T

k b k
n

(t)> bQ�
k
n

k .P 1.

To show (a), recall � (t, z, h) from (1.I.6)

� (t, z, h) = ! (t, x) @v⇢ (z, �⇤, h⇤ (w))h (w)� EZ [! (t,X) @v⇢ (z, �⇤, h⇤ (W ))h (W )] .

Letting �k
i (t) := (�(t, Zi, p1k), . . . ,�(t, Zi, pkk))>, by T we have

sup
t2T

k b k
n

(t)�  k
n

(t)k 6 sup
t2T

kEn{! (t,Xi) [@v⇢(Zi, b�,bh (Wi))� @v⇢(Zi, �⇤, h⇤ (Wi))]p
k
n (Wi)}k

+ sup
t2T

k(En � E)�k
n

i (t)k.

By Assumptions 1.1, 1.2 and 1.8 and T followed by CS

sup
t2T

kEn{! (t,Xi) [@v⇢(Zi, b�,bh (Wi))� @v⇢(Zi, �v, h⇤ (Wi))]p
k
n (Wi)}k

. En{kpkn (Wi)kL2 (Zi) [kb� � �⇤k+ |bh (Wi)� h⇤ (Wi)|]}

.P ⇣k
n

(E[L2 (Z)
2]})1/2(n�1/2 + kbh� h⇤kP

n

,2)

.P ⇣k
n

(n�1/2 + kbhn � h⇤kP
n

,2) .P ⇣k
n

(
p

kn/n+ k�↵
n )

6
⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

(
p

kn/n+ k�↵
n ) ! 0,

where the last .P follows from Lemma 1.22 and the ! 0 from Assumption 1.7.

Moreover, the argument of Section 1.I.1 shows that

sup
t2T

kEn{�k
n

i (t)}k .P

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

/
p
n.
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Lemmas 1.17 and 1.21 and Assumptions 1.5 and 1.7 show that bQk
n

is invertible wp ! 1 and

�( bQk
n

)�1 .P 1. To ease notation I will (without loss of generality) assume that bQ�1
k
n

exists

with probability one for all n, such that bQ�
k
n

= bQ�1
k
n

. The argument in Section 1.I.1 shows

that supT k k
n

(t)> Q�1
k
n

k . 1, so by (a) and T,

sup
t2T

k b k
n

(t)> bQ�1
k
n

�  k
n

(t)> Q�1
k
n

k

6 sup
t2T

k[ b k
n

(t)�  k
n

(t)]> bQ�1
k
n

k+ sup
t2T

k k
n

(t)> ( bQ�1
k
n

�Q�1
k
n

)k

6 k bQ�1
k
n

kop sup
t2T

k b k
n

(t)�  k
n

(t)k+ sup
t2T

k k
n

(t)> Q�1
k
n

( bQk
n

�Qk
n

) bQ�1
k
n

k

6 k bQ�1
k
n

kop
⇣

sup
t2T

k b k
n

(t)�  k
n

(t)k+ k bQk
n

�Qk
n

kop sup
t2T

k k
n

(t)> Q�1
k
n

k
⌘

P! 0,

which shows (b). Part (c) follows from (b) and supt2T k k
n

(t)> Q�1
k
n

k . 1.

kIVnkT
Denoting Ui = Yi � h⇤ (Wi), by T we get

kIVnkT = sup
t2T

�

�

p
nEn

�

⇠i{b� (t,Wi) [Yi � bh (Wi)]� �⇤ (t,Wi)Ui}
�

�

�

6 sup
t2T

�

�

p
nEn

�

⇠iUi[b� (t,Wi)� �⇤ (t,Wi)]
 

�

�

+ sup
t2T

�

�

p
nEn

�

⇠ib� (t,Wi) [bh (Wi)� h⇤ (Wi)]
 

�

� =: kIVa,nkT + kIVb,nkT .

kIVa,nkT
Recalling that �k (t, w) = pk (w)> Q�1

k  k (t), by T

kIVa,nkT = sup
t2T

�

�

�

p
nEn

n

⇠iUi

h

pkn (Wi)
>
bQ�1
k
n

b k
n

(t)± pkn (Wi)
> Q�1

k
n

b k
n

(t)

± �k
n

(t,Wi)� �⇤ (t,Wi)
io

�

�

�

6 sup
t2T

�

�

�

b k
n

(t)> ( bQ�1
k
n

�Q�1
k
n

)
p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

+ sup
t2T

�

�

�

[ b k
n

(t)�  k
n

(t)]>Q�1
k
n

p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

+ sup
t2T

�

�

p
nEn [⇠iUi{�k

n

(t,Wi)� �⇤ (t,Wi)}]
�

�

=: kIVa,1,nkT + kIVa,2,nkT + kIVa,3,nkT .
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kIVa,1,nkT By the ⇠i’s being i.i.d., zero-mean, unit variance and independent of the data,

E
h

�

�

�

Q�1/2
k
n

p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

2i

= E[⇠2U2pkn (W )> Q�1
k
n

pkn (W )]

= E[U2pkn (W )> Q�1
k
n

pkn (W )]

. E[pkn (W )> Q�1
k
n

pkn (W )] = kn,

so by M we have

�

�

�

Q�1/2
k
n

p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

.P

p

kn. (1.I.9)

Given that supt2T k b k
n

(t)> bQ�1
k
n

k (Section 1.I.1), by CS, the Min-Max theorem, Lemma 1.21,

and the previous display,

kIVa,1,nkT = sup
t2T

�

�

�

b k
n

(t)> bQ�1
k
n

(Qk
n

� bQk
n

)Q�1
k
n

p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

6
�

�

�

Q�1
k
n

p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

sup
t2T

k b k
n

(t)> bQ�1
k
n

(Qk
n

� bQk
n

)k

6
�

�

�

Q�1
k
n

p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

k bQk
n

�Qk
n

kop sup
t2T

k b k
n

(t)> bQ�1
k
n

k

.
�

�

�

Q�1/2
k
n

p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

k bQk
n

�Qk
n

kop sup
t2T

k b k
n

(t)> bQ�1
k
n

k

.P

p

kn · [⇣2k
n

ln (kn) /n]
1/2 = [⇣2k

n

kn ln (kn) /n]
1/2 ! 0.

kIVa,2,nkT
By CS, the Min-Max theorem, (1.I.9), the results of Section 1.I.1, and Assumption 1.8,

kIVa,2,nkT 6
�

�

�

Q�1
k
n

p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

sup
t2T

k b k
n

(t)�  k
n

(t)k

.
�

�

�

Q�1/2
k
n

p
nEn

⇥

pkn (Wi) ⇠iUi

⇤

�

�

�

sup
t2T

k b k
n

(t)�  k
n

(t)k

.P

p

kn
h

⇣k
n

(
p

kn/n+ k�↵
n ) +

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

/
p
n
i

= ⇣k
n

p

kn(
p

kn/n+ k�↵
n ) +

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2p

kn/n ! 0.

kIVa,3,nkT
Fix k and let F 0

k
:= {(s, z) 7! s [y � h⇤ (w)] [�k (t, w)� �⇤ (t, w)]| t 2 T }. Given that each

E[f(⇠, Z)] = 0 for each f 2 F 0
k, the stochastic process IVn may be viewed as an empirical
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process Gn indexed by the changing classes F 0
k
n

. For f = ft, f1 = ft
1

, f2 = ft
2

2 F 0
k
n

arbitrary, by the arguments of Section 1.I.1 there exists a function z 7! Fk (z) such that

|f (s, z)| 6 |s|Fk (z) ,

|f1 (s, z)� f2 (s, z)| 6 |s|Fk (z) kt1 � t2k,
and kFkkP,2 .

p
k (as k ! 1).

The ⇠i’s being zero mean, unit variance and independent of the data implies that F 0
k : (s, z) 7!

|s|Fk (z) is an envelope for F 0
k with (E[F 0

k(⇠, Z)
2])1/2 = kFkkP,2 .

p
k as k ! 1, satisfying

|f1 (s, z)� f2 (s, z)| 6 F 0
k (s, z) kt1 � t2k.

Using T compact and the previous display, by van der Vaart and Wellner (1996, Theorem

2.7.11) we see that

N[ ]("(E[F
0
k(⇠, Z)

2])1/2,F 0
k, L

2 (⇠, Z)) 6 (C/")dt , " 2 (0, 1].

and thus

J[ ]
�

�,F 0
k, L

2 (⇠, Z)
�

6
Z �

0

p

1 + dt ln (C/")d", � > 0.

where the right-hand side does not depend on k. In particular, J[ ]
�

1,F 0
k
n

, L2 (⇠, Z)
�

. 1.

Defining

�2
n := sup

f2F 0
k

n

En[f(⇠i, Zi)
2]

we see that

�2
n = sup

t2T
En{⇠2i U2

i [�kn (t,Wi)� �⇤ (t,Wi)]
2} 6 En{⇠2i U2

i k�kn (·,Wi)� �⇤ (·,Wi)k2T }

such that

E(�2
n) 6 E{⇠2U2k�k

n

(·,W )� �⇤ (·,W )k2T } . E{k�k
n

(·,W )� �⇤ (·,W )k2T } = R2
�,k

n

,

where the . follows from the ⇠i’s being zero mean, unit variance, and independent of the

data and Assumption 1.4, and the last equality follow from the definitions of �k and R�,k.

Consider the two cases: (1) R�,k
n

/kFk
n

kP,2 ! 0 and (2) R�,k
n

/kFk
n

kP,2 9 0.
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Case 1 : R�,k
n

/kFk
n

kP,2 ! 0. Given that
p

E (�2
n) 6 C1R�,k

n

, by the change of variables

"0 := "/C1 we have

J[ ]
⇣

p

E (�2
n)/kFk

n

kP,2,F 0
k, L

2 (⇠, Z)
⌘

6 J[ ]
�

C1R�,k
n

/kFk
n

kP,2,F 0
k, L

2 (⇠, Z)
�

= C1

Z R
�,k

n

/kF
k

n

k
P,2

0

p

1 + dt ln (C3/"0)d"0

=: C1J [ ] (R�,k
n

/kFk
n

kP,2) (1.I.10)

By van der Vaart and Wellner (2011, p. 196) we have the maximal inequality

E(kGnkF 0
k

n

) . J[ ]
⇣

p

E (�2
n)/kFk

n

kP,2,F 0
k
n

, L2 (⇠, Z)
⌘

kFk
n

kP,2
. J [ ] (R�,k

n

/kFk
n

kP,2) kFk
n

kP,2,

and from van der Vaart and Wellner (1996, p. 239) we know that an entropy integral (bound)

of the form (1.I.10) satisfies J [ ] (�) . �
p

ln(1/�) as � # 0. Since R�,k
n

/kFk
n

kP,2 ! 0 holds

by hypothesis, the previous display combined with kFk
n

kP,2 .
p
kn yields

E(kGnkF 0
k

n

) . (R�,k
n

/kFk
n

kP,2)
q

ln (kFk
n

kP,2/R�,k
n

)kFk
n

kP,2 = R�,k
n

q

ln (kFk
n

kP,2/R�,k
n

)

. �k
n

q

ln (kn/R�,k
n

).

Case 2. Suppose that R�,k
n

/kFk
n

kP,2 9 0. Given that R�,k
n

! 0 (Assumption 1.7),

we must have kFk
n

kP,2 . Rk. van der Vaart and Wellner (1996, Theorem 2.14.2) and

J[ ]
�

1,F 0
k
n

, L2 (⇠, Z)
�

. 1 yield

E(kGnkF
k

0
n

) . J[ ]
�

1,Fk0
n

, L2 (⇠, Z)
� kFk

n

kP,2 . kFk
n

kP,2 . R�,k
n

. R�,k
n

q

ln (kn/R�,k
n

)

as in Case 1. The claim kIVa,3,nkT !P 0 now follows from M and R�,k
n

p

ln (kn/R�,k
n

) ! 0

(Assumption 1.7).

kIVb,nkT
Given that supTk b k

n

(t)> bQ�1
k
n

k (Section 1.I.1), by CS it follows that

kIVb,nkT = sup
t2T

�

�

�

b k
n

(t)> bQ�1
k
n

p
nEn

h

pkn (Wi) ⇠i[bh (Wi)� h⇤ (Wi)]
i

�

�

�

6
�

�

�

p
nEn

h

pkn (Wi) ⇠i[bh (Wi)� h⇤ (Wi)]
i

�

�

�

sup
t2T

k b k
n

(t)> bQ�1
k
n

k

.P

�

�

�

p
nEn

h

pkn (Wi) ⇠i[bh (Wi)� h⇤ (Wi)]
i

�

�

�

.

109



To show that the right-hand side !P 0, note that by the ⇠i’s being i.i.d., zero-mean, unit

variance and independent of {Zi}n1 , and bhn being {Zi}n1 -measurable,

E
h

�

�

�

p
nEn

h

pkn (Wi) ⇠i[bh (Wi)� h⇤ (Wi)]
i

�

�

�

2�
�

�

{Zi}n1
i

= En

�kpkn (Wi)k2[bh (Wi)� h⇤ (Wi)]
2
 

6
⇣

k
n

X

j=1

kpjk
n

k2W
⌘

kbh� h⇤k2P
n

,2

.P

h⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

(
p

kn/n+ k�↵
n )
i2

! 0,

where the .P follows from Lemma 1.22 and the ! 0 from Assumption 1.7. It follows by con-

ditional CS that E(kpnEn{pkn (Wi) ⇠i[bh (Wi)�h⇤ (Wi)]}k|{Zi}n1 ) !P 0, so kpnEn{pkn (Wi) ⇠i

[bh (Wi)� h⇤ (Wi)]}k !P 0 by Lemma 1.23. This !P 0 finishes the proof of kIVb,nkT !P 0,

and therefore the proof of kIVnkT !P 0.

Lemma 1.16. If Assumptions 1.1–1.8 hold, then

kEn[ bf (·, Zi)� f⇤ (·, Zi)]kT P! 0.

Proof of Lemma 1.16. The proof proceeds in steps.

Main

For fixed t 2 T we may write

En[ bf (t, Zi)� f⇤ (t, Zi)] = En

�

! (t,Xi) [⇢(Zi, b�,bh (Wi))� ⇢(Zi, �⇤, h⇤ (Wi))]
 

� [bb (t)� b⇤ (t)
>]>En [s⇤ (Zi)]�bb (t)> En [bs (Zi)� s⇤ (Zi)]

+ En{b� (t,Wi) [Yi � bh (Wi)]� �⇤ (t,Wi)Ui}
=: In (t) + IIn (t) + IIIn (t) + IVn (t) .

The following steps show that the four remainder terms !P 0 uniformly over T . The claim

therefore follows from T.

kInkT
Assumption 1.1 and M implies that kb���⇤k .P n�1/2 ! 0. LetN⇤ be the open neighborhood

provided by Assumption 1.3. Then b� 2 N⇤ wp ! 1. To simplify notation and ensure that

objects are globally well defined, in what follows I will—without loss of generality—assume
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that b� 2 N⇤ with probability equal to one for all n. A mean value expansion of � 7!
⇢(Zi, �,bh (Wi)) at b� around �⇤ and CS show that

kInkT 6 sup
t2T

|En{! (t,Xi) [⇢(Zi, �⇤,bh (Wi))� ⇢(Zi, �⇤, h⇤ (Wi))]}|

+ kb� � �⇤k sup
t2T

kEn[! (t,Xi) @�⇢ < (Zi, �,bh (Wi))]k =: kIa,nkT + kb� � �⇤kkIb,nkT ,

where � satisfies k� � �⇤k 6 kb� � �⇤k such that b� 2 N⇤ for n su�ciently large. Since

kb� � �⇤k !P 0 it su�ces to show that kIa,nkT !P 0 and kIb,nkT .P 1. The arguments of

Section 1.I.1 show that

sup
t2T

kIb,n (t)� EZ [! (t,X) @�⇢(Z, �⇤, h⇤ (W ))]k P! 0,

and sup
t2T

kEZ [! (t,X) @�⇢(Z, �⇤, h⇤ (W ))]k < 1.

which together imply kIb,nkT .P 1.

kIa,nkT Abbreviate (z, v) 7! ⇢ (z, �⇤, v) by ⇢⇤. By a mean value expansion of v 7! ⇢⇤(Zi, v)

at bh (Wi) around h⇤ (Wi) and T we may be bound kIa,nkT by

sup
t2T

|En{! (t,Xi) [@v⇢⇤(Zi, h (Wi))� @v⇢⇤(Zi, h⇤ (Wi))][bh (Wi)� h⇤ (Wi)]}|

+ sup
t2T

|En{! (t,Xi) @v⇢⇤(Zi, h⇤ (Wi))[bh (Wi)� h⇤ (Wi)]}| =: kIa,1,nkT + kIa,2,nkT ,

where |h (Wi)� h⇤ (Wi)| 6 |bh (Wi)� h⇤ (Wi)|. By T and Assumptions 1.2 and 1.3

kIa,1,nkT . En{L1 (Zi) [bh (Wi)� h⇤ (Wi)]
2} 6 En [L1 (Zi)] kbh� h⇤k2W .P kbh� h⇤k2W P! 0,

where the .P follows from M and the !P 0 from Lemma 1.22. Similarly,

kIa,2,nkT . En{|@v⇢⇤(Zi, h⇤ (Wi))||bh (Wi)� h⇤ (Wi)|}
6 En{|@v⇢⇤(Zi, h⇤ (Wi))|}kbh� h⇤kW P! 0.

kIInkT Section 1.I.1 shows that supt2T kbb (t)� b⇤ (t)k !P 0, so by CS, Assumption 1.1, and

M

kIInkT 6 kEn [s⇤ (Zi)]k sup
t2T

kbb (t)� b⇤ (t)k P! 0.
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Section 1.I.1 also shows that supt2T kbb (t)k .P 1, so by CS and Assumption 1.8,

kIIInkT 6 kEn[bs (Zi)� s⇤ (Zi)]k sup
t2T

kbb (t)k 6 kbs� s⇤kP
n

,2 sup
t2T

kbb (t)k P! 0.

kIVnkT
For fixed t 2 T , adding and subtracting pkn (Wi)

> Q�1
k
n

b k
n

(t)Ui and recalling that �k (t, w) =

pk (w)> Q�1
k  k (t) we may write

IVn (t) = En{Ui[b� (t,Wi)� �⇤ (t,Wi)]}� En{b� (t,Wi) [bh (Wi)� h⇤ (Wi)]}
= b k

n

(t)> ( bQ�1
k
n

�Q�1
k
n

)En[p
k
n (Wi)Ui] + [ b k

n

(t)�  k
n

(t)]>Q�1
k
n

En[p
k
n (Wi)Ui]

+ En{Ui[�k
n

(t,Wi)� �⇤ (t,Wi)]}� b k
n

(t)> bQ�1
k
n

En{pkn (Wi) [bh (Wi)� h⇤ (Wi)]}
=: IVa,n (t) + IVb,n (t) + IVc,n (t) + IVd,n (t) .

The desired kIVnkT !P 0 will follow by T if we can show that the four remainder terms

!P 0. To this end, note that by the Min-Max theorem,

E(kQ�1
k En[p

k (Wi)Ui]k2) . E(kQ�1/2
k En[p

k (Wi)Ui]k2) = E[U2pk (W )> Q�1
k pk (W )]/n

. E[pk (W )> Q�1
k pk (W )] = k/n,

so by CS, M we have

kQ�1
k
n

En[p
k
n (Wi)Ui]k .P

p

k/n ! 0.

Section 1.I.1 shows that supt2T k b k
n

(t)> bQ�1
k
n

k .P 1. Moreover, Lemma 1.21 show that

k bQk
n

�Qk
n

kop .P [⇣2k
n

ln(kn)/n] ! 0, so by the previous display and CS,

kIVa,nkT = k b k
n

(t)> bQ�1
k
n

(Qk
n

� bQk
n

)Q�1
k
n

En[p
k
n (Wi)Ui]kT

6 kQ�1
k
n

En[p
k
n (Wi)Ui]kk bQk

n

�Qk
n

kop sup
t2T

k b k
n

(t)> bQ�1
k
n

k P! 0.

Section 1.I.1 also shows that

sup
t2T

k b k
n

(t)�  k
n

(t)k .P ⇣k
n

⇣

p

kn/n+ k�↵
n

⌘

+
⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

/
p
n ! 0,
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so by CS

kIVb,nkT 6 kQ�1
k
n

En[p
k
n (Wi)Ui]k sup

T
k b k

n

(t)�  k
n

(t)k P! 0.

Section 1.I.1 shows that

kIVc,nkt2T = sup
t2T

|En{Ui[�k
n

(t,Wi)� �⇤ (t,Wi)]}| .P R�,k
n

q

ln(kn/R�,k
n

) ! 0.

Lastly, by CS, Lemma 1.22 and supt2T k b k
n

(t)> bQ�1
k
n

k .P 1 we get

kIVd,nkT 6 kEn{pkn (Wi) [bh (Wi)� h⇤ (Wi)]}k sup
t2T

k b k
n

(t)> bQ�1
k
n

k

6 kEn{pkn (Wi) [bh (Wi)� h⇤ (Wi)]}k sup
t2T

k b k
n

(t)> bQ�1
k
n

k

6
⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2

kbh� h⇤kP
n

,2 sup
t2T

k b k
n

(t)> bQ�1
k
n

k

.P

⇣

k
n

X

j=1

kpjk
n

k2W
⌘1/2 ⇣p

kn/n+ k�↵
n

⌘

! 0.

This finishes the proof of kEn[ bf (·, Zi)� f⇤ (·, Zi)]kT !P 0.

Proof of Theorem 1.3. By a rearrangement and T

k bG�G⇤
nkT =

�

�

�

p
nEn

h

�

⇠i � ⇠
�

bf (·, Zi)
i

�p
nEn

⇥�

⇠i � ⇠
�

f⇤ (·, Zi)
⇤

�

�

�

T

=
�

�

�

p
nEn

⇣

⇠i{ bf (·, Zi)� En[ bf (·, Zi)]}
⌘

�p
nEn (⇠i{f⇤ (·, Zi)� En [f⇤ (·, Zi)]})

�

�

�

T

6
�

�

�

p
nEn

n

⇠i[ bf (·, Zi)� f⇤ (·, Zi)]
o

�

�

�

T
+ |pn⇠|kEn[ bf (·, Zi)� f⇤ (·, Zi)]kT

= k bGu �G⇤u
n kT + |pn⇠|kEn[ bf (·, Zi)� f⇤ (·, Zi)]kT .

The first term on the right !P 0 by Lemma 1.15. Given that
p
n⇠ ⇠ N(0, 1) , |pn⇠| .P 1.

The second term therefore goes to zero by Lemma 1.16.

Proof of Corollary 1.2. Given that F is Donsker (Lemma 1.2), Kosorok (2008, Theo-

rem 10.4(iv)) implies thatG00
n  P,⇠ G in `1 (F), whereG00

n (f) := n�1/2
Pn

i=1 ⇠i {f (Zi)� E [f (Z)]}
andG⇤ is a zero-mean Gaussian process with covariance kernel E [G (f1)G (f2)] = E [f1 (Z) f2 (Z)]

� E [f1 (Z)] E [f2 (Z)]. Since we may identify F with T through f (·) = f⇤ (t, ·), this result

is equivalent to G⇤
n  P,⇠ G⇤ in `1 (T ), where G⇤ is a zero-mean Gaussian process with

covariance kernel E [G⇤ (t1)G⇤ (t2)] = E [f⇤ (t1, Z) f⇤ (t2, Z)]� E [f⇤ (t1, Z)] E [f⇤ (t2, Z)]. The
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previous display and Lemma 1.24 now show that bGn  P,⇠ G⇤ in `1 (T ).

Assumptions 1.1–1.4 imply that �2
⇤ is continuous, and Assumption 1.9 shows that �2

⇤ is

nondegenerate. Lemma 1.25 now shows that the cdf F⇤ of the random variable kG⇤k2µ,2 is

everywhere continuous and strictly increasing on [0,1). Hence F⇤ is invertible on (0,1)

with inverse (1� ↵) 7! (F⇤)�1 (1� ↵) = c⇤ (↵), and each (1 � ↵)-quantile c⇤ (↵) 2 (0,1)

for ↵ 2 (0, 1). The convergence bG  P,⇠ G⇤ in `1 (T ) and Kosorok (2008, Lemma 10.11)

imply that the cdf bF of k bGk2µ,2 converges in probability to F⇤ pointwise on [0,1). Fix " > 0

and ↵ 2 (0, 1). Let r1 2 R be such that c⇤ (↵) � " < r1 < c⇤ (↵) and F⇤ (r1) < 1 � ↵.

Then bF (r1) < 1 � ↵ wp ! 1, which implies c⇤ (↵) � " < r1 6 bc (↵) wp ! 1. In particular,

P(bc (↵) > c⇤ (↵)�") ! 1. Let r2 2 R be such that c⇤ (↵) < r2 < c⇤ (↵)+" and 1�↵ < F⇤ (r2).

Then 1 � ↵ < bF (r2) wp ! 1, which implies bc (↵) 6 r2 < c⇤ (↵) + " wp ! 1. In particular,

P(bc (↵) < c⇤ (↵) + ") ! 1. It follows that

lim
n!1

P(|bc (↵)� c⇤ (↵)| > ") 6 lim
n!1

P(bc (↵) > c⇤ (↵) + ") + lim
n!1

P(bc (↵) 6 c⇤ (↵)� ") = 0.

Since " > 0 was arbitrary, the corollary follows.

1.I.3 Proofs for Section 1.4.6

[Proof of Theorem 1.3] Fix ↵ 2 (0, 1). By Theorem 1.1, under the null, Tn !d kG0k2µ,2.
Let F0 denote the cdf of kG0k2µ,2. Given Assumption 1.9, F0 is continuous on R and strictly

increasing on [0,1) (cf. Lemma 1.25). By Theorem 1.2 bc (↵) !P c⇤ (↵) 2 (0,1), and under

the null, c⇤ (↵) = c0 (↵), the (1� ↵)-quantile of kG0kT . Fix " > 0. Then

P(Tn > bc (↵) \ bc (↵) < c0 (↵)� "; H0) 6 P(|bc (↵)� c0 (↵)| > "; H0) ! 0.

It follows by the portmanteau theorem and [c0 (↵)� ",1) closed

lim
n!1

P(Tn > bc (↵) ; H0) = lim
n!1

P(Tn > bc (↵) \ bc (↵) > c0 (↵)� "; H0)

6 lim
n!1

P(Tn > c0 (↵)� "; H0) = lim
n!1

P(Tn 2 [c0 (↵)� ",1) ; H0)

6 P (kG0kT 2 [c0 (↵)� ",1)) .

Using continuity of F0, the right-hand side equals 1 � F0 (c0 (↵)� "), so letting " # 0 and

again using continuity of F0, we see that limn!1 P(Tn > bc (↵) ; H0) 6 ↵. For the other

direction, again fix " > 0. Then

P(Tn > bc (↵) \ bc (↵) > c0 (↵) + "; H0) 6 P(|bc (↵)� c0 (↵)| > "; H0) ! 0,
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so by the portmanteau theorem and now (c0 (↵) + ",1) open,

lim
n!1

P(Tn > bc (↵) ; H0) = lim
n!1

P(Tn > bc (↵) \ bc (↵) 6 c0 (↵) + "; H0)

> lim
n!1

P(Tn > c0 (↵) + "; H0) = lim
n!1

P(Tn 2 (c0 (↵) + ",1) ; H0)

> P
�kG0k2µ,2 2 (c0 (↵) + ",1)

�

.

The right-hand side equals 1 � F0 (c0 (↵) + "), so letting " # 0, we see that limn!1 P(Tn >

bc (↵) ; H0) > ↵.

Proof of Lemma 1.4. By T and Lemma 1.1

�

�T 1/2
n � kpnEn [f⇤ (·, Zi)]kµ,2

�

� 6 kpnEn[⇢(Zi, b�,bh (Wi)! (·, Xi))]�
p
nEn [f⇤ (·, Zi)]kµ,2

6 kpnEn[⇢(Zi, b�,bh (Wi)! (·, Xi))]�
p
nEn [f⇤ (·, Zi)]kT P! 0,

which implies |Tn/n� kEn [f⇤ (·, Zi)]k2µ,2| !P 0. I may therefore focus on kEn [f⇤ (·, Zi)]k2µ,2.
For t 2 T arbitrary ,

En [f⇤ (·, Zi)] = En[! (t,X) ⇢(Zi, �⇤, h⇤ (Wi))! (t,Xi) + b⇤ (t)
> s⇤ (Zi) + �⇤ (t,Wi)Ui].

By T and CS we therefore get

sup
t2T

|En [f⇤ (·, Zi)]� E[⇢ (Z, �⇤, h⇤ (W ))! (t,X)]|

6 sup
t2T

|(En � E) [⇢(Z, �⇤, h⇤ (Wi))! (t,Xi)]|+ kEn[s⇤ (Zi)]k sup
t2T

kb⇤ (t)k

+ sup
t2T

|En[�⇤ (t,Wi)Ui]| =: In + IIn + IIIn.

Consider first In. Given i.i.d. data, T compact (Assumption 1.2) t 7! ⇢(Z, �⇤, h⇤ (W ))! (t,X)

continuous on T (Assumption 1.2), and supt2T |⇢(Z, �⇤, h⇤ (W ))! (t,X) | . |⇢(Z, �⇤, h⇤ (W ))|
integrable (Assumptions 1.2 and 1.3), a uniform law of law numbers such as Newey and

McFadden (1994, Lemma 2.4) shows that In !P 0.

Consider next IIn. Step 1.I.1 in the proof of Lemma 1.14 shows that supt2T kb⇤ (t)k < 1.

Hence, by Assumption 1.1 and a weak law of large numbers for i.i.d. data,

IIn . kEn[s⇤ (Zi)]k P! kE [s⇤ (Z)]k = 0.

Lastly, consider IIIn. Let t 2 T and a sequence tm 2 T converging to t be arbitrary.

Assumptions 1.2 and 1.3 and the dominated convergence theorem show that t 7! �⇤ (t, w)
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is continuous for any w 2 W . Also, by Assumptions 1.2, 1.3 and 1.4 and the fact that

conditional expectations are L2 (P )-contractions,

E
n

sup
t2T

|�⇤ (t,W )U |
o

. E {|U |E [ |@v⇢(Z, �⇤, h⇤ (W ))||W ]}

6
⇥

E
�

U2
�⇤1/2 ⇥

E
�{E [|@v⇢(Z, �⇤, h⇤ (W ))|W ]}2�⇤1/2

6
⇥

E
�

U2
�⇤1/2 �

E
⇥

@v⇢(Z, �⇤, h⇤ (W ))2
⇤ 1/2

< 1.

Hence, supt2T |�⇤ (t,W )U | is integrable. Given i.i.d. data, T compact, t 7! �⇤ (t,W )U

continuous on T and supt2T |�⇤ (t,W )U | integrable, Newey and McFadden (1994, Lemma

2.4) shows that

IIIn = sup
t2T

|En[�⇤ (t,Wi)Ui]| = sup
t2T

|(En � E) [�⇤ (t,Wi)Ui]| P! 0.

Given that In, IIn, IIIn !P 0, we must have

kEn [f⇤ (·, Zi)]� E[⇢ (Z, �⇤, h⇤ (W ))! (·, X)]kµ,2
6 kEn [f⇤ (·, Zi)]� E[⇢ (Z, �⇤, h⇤ (W ))! (·, X)]kT P! 0,

so by T and CMT it follows that kEn [f⇤ (·, Zi)]k2µ,2 !P kE[⇢ (Z, �⇤, h⇤ (W ))! (·, X)]k2µ,2. The
probability limit is positive under the alternative by property (1.4.1) of the weight function

and the choice of cdf µ. The conclusion now follows from Lemma 1.26.

1.I.4 Supporting Lemmas for Section 1.4

Let An and Bn be symmetric but otherwise arbitrary random matrices of possibly growing

dimension.

Lemma 1.17. If �min (An) > c wp ! 1 and kBn � Ankop !P 0, then (i) Bn is invertible

wp ! 1 and (ii) �min (Bn)
�1 .P 1.

Proof. To establish the first claim, I follow the argument in the proof of Newey (1995, Lemma

A.4). For conformable vectors v, given that the maximal eigenvalue of a square matrix is

bounded by its maximal singular value, it follows that

�min (Bn) = min
kvk=1

�

v>Bnv
 

= min
kvk=1

�

v>Anv + v> (Bn � An) v
 

> min
kvk=1

�

v>Anv
 � max

kvk=1
v> (Bn � An) v

= �min (An)� �max (Bn � An) > �min (An)� kBn � Ankop.
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Hence

P (�min(Bn) < c/2) 6 P (�min (An)� kBn � Ankop < c/2)

= P (�min (An)� kBn � Ankop < c/2 \ �min (An) > c)

+ P (�min (An)� kBn � Ankop < c/2 \ �min (An) < c)

6 P (kBn � Ankop > c/2) + P (�min (An) < c) ,

which implies limn!1 P(�min(Bn) < c/2) 6 0. It follows that P(�min(Bn) < c/2) ! 0, i.e.

P(�min(Bn) > c/2) ! 1. Hence, Bn is invertible wp ! 1.

The proof of the first claim shows that �min(Bn) > c/2 wp ! 1. Hence, for any C >

2/c we have limn!1 P
�

�min (Bn)
�1 > C

�

6 limn!1 P (�min (Bn) < c/2) = 0. In particular,

limC!1 limn!1 P(�min (Bn)
�1 > C) = 0.

Let Yn and Hn denote arbitrary random n⇥1 vectors of possibly growing dimension. Set

Un := Yn �Hn, and, for an arbitrary random matrix Bn with n rows and possibly growing

column dimension, let ⇡̌n :=
�

B>
n Bn

��
B>

n Yn, and Ȟn := Bn⇡̌n.

Lemma 1.18. If U>
nBn

�

B>
n Bn

��
B>

n Un/n .P "2n, then for any conformable sequence of

vectors ⇡n,

kȞn �Hnk2/n .P "
2
n + kHn � Bn⇡nk2/n.

Proof. On the event {�min

�

B>
n Bn

�

> c}, B>
n Bn is invertible Wn := Bn(B>

n Bn)�B>
n . Because

B>
n Bn is symmetric, so is its generalized inverse. It follows that Wn is symmetric and

idempotent, so its eigenvalues are are bounded by one. Given that Wn also satisfies WnBn =

Bn Rao (1973, 1b.5(vi)(a)),

kȞn �Hnk2/n =
�

(WnYn �Hn)
2 = H>

n WHn + Y >
n WnYn � 2H>

n WnYn

�

/n

=
⇥

U>
nWnUn +H>

n (In �Wn)Hn

⇤

/n

=
h

U>
nWnUn + (Hn � Bn⇡n)

> (In �Wn) (Hn � Bn⇡n)
i

/n

6
⇥

U>
nWnUn + kHn � Bn⇡nk2

⇤

/n .P "
2
n + kHn � Bn⇡nk2/n,

where the inequality follows from the Min-Max theorem.

Lemma 1.19. If �min(An) > c, kB>
n Bn/n � Ankop !P 0 and U>

nBn

�

B>
n Bn

��
B>

n Un/n .P

"2n, then for any conformable sequence of vectors ⇡n,

k⇡̌n � ⇡nk2 .P "
2
n + kHn � Bn⇡nk2/n,
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kȞ � Bn⇡nk2/n .P "
2
n + kHn � Bn⇡nk2/n.

Proof. Denote Hn := Bn⇡n. I follow the argument in the proof of Newey (1995, Lemma

A.8). By Lemma 1.17, �min

�

B>
n Bn/n

�

> c wp ! 1 and �min

�

B>
n Bn/n

��1 .P 1, so by the

Min-Max theorem,

k⇡̌n � ⇡nk2 6 �min

�

B>
n Bn/n

��1
(⇡̌n � ⇡n)

> �B>
n Bn

�

(⇡̌n � ⇡n) /n.

= �min

�

B>
n Bn/n

��1 kȞn �Hnk2/n .P kȞn �Hnk2/n.

It remains to prove the second claim. Let Wn := Bn(B>
n Bn)�B>

n , which is Given that B>
n Bn

is symmetric, so is its generalized inverse. It follows that Wn is symmetric and idempotent

and therefore positive semidefinite. Hence

kȞn �Hnk2 = kWnYn �Hnk2 = Y>
nWnYn � 2Y >

n WnHn +H
>
nHn

= U>
nWnUn +H>

n WnHn + 2U>
nWnHn � 2H>

n WnHn � 2U>
nWnHn +H

>
nWnHn

= (Un +Hn �Hn)
>Wn(Un +Hn �Hn) 6 2U>

nWnUn + 2(Hn �Hn)
>Wn(Hn �Hn)

6 2U>
nWnUn + 2kHn �Hnk2

where H
>
nHn = ⇡>

nB
>
n Bn⇡n = ⇡>

nB
>
n Bn(B>

n Bn)�B>
n Bn⇡nH

>
nWnHn follows from definition

of a generalized inverse, the first inequality follows from (v + w)>M(v + w) 6 2v>Mv +

2w>Mw for M positive semidefinite, and the second inequality from the Min-Max theorem

and the fact that idempotent matrices only have eigenvalues equal to zero or one. Dividing

through by n, we get

kȞn �Hnk2 6 2U>
nWnUn/n+ 2kHn �Hnk2/n .P "

2
n + kHn �Hnk2/n.

Now let Ui = Yi � h⇤ (Wi) as in the main text, write Un for the n⇥ 1 vector of Ui’s, and

define Pk to be the n⇥ k matrix arising from stacking the pk (Wi)’s.

Lemma 1.20. If Assumption 1.4 holds and kn/n ! 0, then

U>
nPk

n

(P>
k
n

Pk
n

)�P>
k
n

Un/n .P kn/n.

Proof. Let Wn denote the collection {Wi|i = 1, . . . , n}. By the law of iterated expectations
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in combination with i.i.d. data and E(U |W ) = 0 a.s., for any k 2 N,

E[U>
nPk(P

>
k Pk)

�P>
k Un] = E[tr(U>

nPk

�

P>
k Pk

��
P>
k Un)] = E[tr(

�

P>
k Pk

��
P>
k UnU

>
nPk)]

= E[tr( bQ�
k n

�1E[P>
k UnU

>
nPk|Wn])]

= E
h

tr
⇣

bQ�
k

1

n
E
h

n
X

i=1

n
X

j=1

UiUjp
k (Wi) p

k (Wj)
>
�

�

�

Wn

i⌘i

= E
h

tr
⇣

bQ�
k

1

n

n
X

i=1

n
X

j=1

E (UiUj|Wn) p
k (Wi) p

k (Wj)
>
⌘i

= E
h

tr
⇣

bQ�
k

1

n

n
X

i=1

E
�

U2
i |Wi

�

pk (Wi) p
k (Wi)

>
⌘i

. E[tr( bQ�
k En[p

k (Wi) p
k (Wi)

>])] = E[tr( bQ�
k
bQk)] 6 k,

where the last inequality follows from bQ�
k
bQk having eigenvalues equal to zero or one. Dividing

by n, the claim now follows from M and kn/n ! 0.

Lemma 1.21. If ⇣2k
n

ln (kn) /n ! 0 and the eigenvalues of Qk are bounded from above

uniformly in k, then k bQk
n

�Qk
n

kop .P [⇣2k
n

ln (kn) /n]1/2.

Proof. The matrix bQk = En[pk(Wi)pk(Wi)] is the average of the n independent, symmetric,

nonnegative k ⇥ k-matrix valued random variables pk (Wi) pk (Wi)
>, and the matrix Qk is

is their common mean. Given that the operator norm k·kop is always dominated by the

Frobenius norm k·kF , and

kpk (Wi) p
k (Wi)

>kF = [tr(pk (Wi) p
k (Wi)

> pk (Wi) p
k (Wi)

>)]1/2

= [tr(pk (Wi)
> pk (Wi) p

k (Wi)
> pk (Wi))]

1/2 = kpk (Wi)k2 6 ⇣2k ,

each of these n random matrices satisfy kpk (Wi) pk (Wi)
>kop 6 ⇣2k . By hypothesis, kQkkop =

[�max

�

Q>
k Qk

�

]1/2 = �max (Qk) . 1. Belloni, Chernozhukov, Chetverikov, and Kato (2015,

Lemma 6.2), which builds on a fundamental result obtained by Rudelson (1999), therefore

implies

E
h

k bQk
n

�Qk
n

kop
i

. ⇣2k
n

ln kn
n

+

r

⇣2k
n

ln kn
n

.

Since ⇣2k
n

ln (kn) /n ! 0, the claim now follows from M.

Lemma 1.22. If Assumptions 1.4, 1.5 and 1.6 hold, kn/n ! 0 and ⇣2k
n

ln (kn) /n ! 0, then

for e⇡k provided by Assumption 1.6 and ehk := pk>e⇡k we have (1) kb⇡� e⇡k
n

k .P

p

kn/n+ k�↵
n ;
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(2) kbh�ehk
n

kP
n

,2 .P

p

kn/n+k�↵
n ; (3) kbh�h⇤kP

n

,2 .P

p

kn/n+k�↵
n ; and, (4) kbh�h⇤kW .P

⇣k
n

(
p

kn/n+ k�↵
n )

Proof. Assumption 1.5 and Lemma 1.21 imply that k bQk
n

� Qk
n

kop .P [⇣2k
n

ln (kn) /n]1/2,

so k bQk
n

� Qk
n

kop !P 0. Assumption 1.4 implies that U>
nPk

n

(P>
k
n

Pk
n

)�P>
k
n

Un/n .P kn/n.

Setting up for an application of Lemma 1.19, let An := Qk
n

, Bn := Pk
n

the n ⇥ kn matrix

arising from stacking the pkn(Wi)>’s, Yn the n ⇥ 1 vector of Yi’s, Hn the n ⇥ 1 vector of

h⇤(Wi)’s, and set ⇡n := e⇡k
n

. Then ⇡̌n = (B>
n Bn)�B>

n Yn = bQ�
k
n

En[pkn (Wi)Yi] = b⇡, and an

application of Lemma 1.19 with "2n := kn/n yields

kb⇡ � e⇡k
n

k .P

p

kn/n+ kehk
n

� h⇤kP
n

,2,

kbh� ehk
n

kP
n

,2 .P

p

kn/n+ kehk
n

� h⇤kP
n

,2.

Similarly, an application of Lemma 1.18 shows that

kbh� h⇤kP
n

,2 .P

p

kn/n+ kehk
n

� h⇤kP
n

,2.

Claims 1, 2 and now all follow from Assumption 1.6 and kehk
n

� h⇤kP
n

,2 6 kehk
n

� h⇤kW . By

T, CS, Claim 1 and Assumption 1.6,

kbh� h⇤kW 6 kbh� ehk
n

kW + kehk
n

� h⇤kW = kpkn>(b⇡ � e⇡k
n

)kW + kehk
n

� h⇤kW
6 kb⇡n � e⇡k

n

k sup
w2W

kpkn (w)k+ kehk
n

� h⇤kW 6 ⇣k
n

kb⇡n � e⇡k
n

k+ kehk
n

� h⇤kW

.P ⇣k
n

(
p

kn/n+ k�↵
n ) + k�↵

n . ⇣k
n

(
p

kn/n+ k�↵
n ),

where the . follows from ⇣k 9 0 as k ! 1.

Lemma 1.23. If Xn is a sequence of nonnegative random variables defined on a common

probability space (⌦,F ,P), Fn is a sequence of sub-�-algebras, and E (Xn| Fn) !P 0, then

Xn !P 0.

Proof. Fix n 2 N, let Yn := E (Xn| Fn) and let An := {Yn = 0}. Then Xn = 0 almost

everywhere on An. Indeed, if Xn is not zero almost everywhere on An, then there exists

C 2 (0,1) such that Bn,C := {! 2 An|Xn (!) > 1/C} satisfies P (Bn,C) > 0. By definition of

(a version of) the conditional expectation of Xn given Fn, we must have
R

A
XndP =

R

A
YndP

for every A 2 Fn and, in particular, for An. Since Yn = 0 on An and Bn,C ⇢ An, it follows

that

0 =

Z

A
n

YndP =

Z

A
n

XndP >
Z

B
n,C

XndP > P (Bn,C) /C,
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which contradicts P (Bn,C) > 0. Since n 2 N was arbitrary, we have shown that Xn = 0 on

An for each n 2 N. Now, fix ", � > 0. Then P (Xn > " \ Yn = 0) = 0 by the previous claim,

and it follows that

P (Xn > ") = P (Xn > " \ Yn = 0) + P (Xn > " \ 0 < Yn 6 �") + P (Xn > " \ Yn > �")

6 P
�

Xn > ��1Yn > 0
�

+ P (Yn > �") .

Given that Yn is Fn measurable, by conditional M we have

P
�

Xn > ��1Yn > 0
�

= E
⇥

1Y
n

>0P
�

Xn > ��1Yn

�

�Fn

�⇤

6 E [1Y
n

>0�E (Xn| Fn) /Yn]

= �P (Yn > 0) 6 �.

By Yn !P 0 and the previous two displays we see that for any ", � > 0, limP (Xn > ") 6 �,

so the claim follows from letting � ! 0.

Lemma 1.24. Let Xn and Yn be sequences of stochastic processes defined on a common

probability space (⌦,F , P ) and taking values in a separable metric space (D, d), and let Fn

be a sequence of sub-�-algebras. If Xn  P,F X in D and d (Xn, Yn) !P 0, then Yn  P,F X

in D.

Proof. By T

sup
h2BL

1

(D)
|E [h (Yn)| Fn]� E [h (X)]|

6 sup
h2BL

1

(D)
|E [h (Yn)� h (Xn)| Fn]|+ sup

h2BL
1

(D)
|E [h (Xn)| Fn]� E [h (X)]|

6 d (Xn, Yn) ^ 2 + oP (1)
P! 0.

Let µ be the cdf from the main text, which is absolutely continuous and bounded away

from zero on T given by Assumption 1.2.

Lemma 1.25. Let X = {Xt| t 2 T } be a zero-mean Gaussian process indexed by T ⇢ Rd
t

compact with almost every sample path t 7! Xt (!) continuous, µ an absolutely continuous,

everywhere strictly positive probability measure on T , and
R

T X2
t dµ (t) < 1 a.s. Moreover,

let t 7! �2
t := E (X2

t ) be continuous and nondegenerate on T . Then the cdf F of kXk2µ,2 :=
R

X2
t dµ (t) is everywhere continuous and strictly increasing on [0,1).

Proof of Lemma 1.25. Given that the law of X is Gaussian and the functional k·kµ,2 :

`1 (T ) ! R+ is Lipschitz (hence lower semi-continuous), Davydov, Lifshits, and Smorodina,
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N. V. (1998, Theorem 11.1) implies that (i) FkXk
µ,2

is everywhere continuous except possibly

at the separation point zero; (ii) FkXk
µ,2

is absolutely continuous on (0,1), (iii) FkXk
µ,2

is

di↵erentiable on (0,1) except on an at most countable exceptional set � ⇢ (0,1); (iv)

the derivative F 0
kXk

µ,2

is positive on (0,1) \� and P (kXkµ,2 2 A) =
R

A
F 0
kXk

µ,2

(r) dr for

any A ⇢ R Borel [where F 0
kXk

µ,2

(r) is understood to be zero for r /2 (0,1) \�]. Letting

r, s 2 R be such that 0 6 r < s, we have 1(�1,r] 6 1(�1,s], which holds with strict

inequality for any t 2 (r, s]. The claim that FkXk
µ,2

is strictly increasing on [0,1) now follows

from (iv) by integrating with respect to F 0
kXk

µ,2

(t) dt. To show that FkXk
µ,2

is continuous

at zero, note that t 7! �2
t being continuous and nondegenerate on the compact T imply

that supt2T �
2
t is attained and strictly positive. Hence, there exists tmax 2 T such that

�2
max := �2

t
max

> 0. By Gaussianity, the associated marginal satisfies P(Xt
max

6= 0) = 1,

i.e., there exists A ⇢ ⌦ such that P (A) = 1 and Xt
max

(!) 6= 0 for every ! 2 A. By

assumption there exists B ⇢ ⌦ such that P (B) = 1 and the sample path t 7! Xt (!) is

continuous for every ! 2 B. Thus, for every ! 2 A \ B, there exists a neighborhood

C (!) of tmax in T such that Xt (!) 6= 0 for all t 2 C (!). Given that µ is an absolutely

continuous, everywhere strictly positive probability measure on T , µ (C (!)) > 0 for all

! 2 A \ B. Consequently, for each ! 2 A \ B,
R

T Xt (!)
2 dµ (t) >

R

C(!)
Xt (!)

2 dµ (t) > 0.

Given that P (A \B) = 1, we have shown that P(
R

T Xt (!)
2 dµ (t) > 0) = 1, which is

equivalent to FkXk
µ,2

(0) = P (kXkµ,2 = 0) = 0, as desired. The conclusion now follows from

F (u) = FkXk
µ,2

(
p
u) on u 2 [0,1).

Lemma 1.26. If Xn !P c > 0 and Yn !P 0, then P(Xn > Yn) ! 1.

Proof. The union bound implies

P (Xn 6 Yn) 6 P (Xn 6 Yn and Yn 6 c/2) + P (Yn > c/2)

6 P (Xn 6 c/2) + P (|Yn| > c/2)

6 P (|Xn � c| > c/2) + P (|Yn| > c/2) .

Both terms on the right-hand side go to zero. Taking the lim sup shows that P (Xn 6 Yn) !
0.

1.J Proofs for Section 1.5

1.J.1 Proofs for Section 1.5.4

Proof of Lemma 1.4. The proof of the claim follows from two applications of Theorem

1.7. I first verify the conditions of Theorem 1.7 for estimation of the single best linear
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predictor L⇤. Using the conclusion from Theorem 1.7, I then verify these conditions once

more for estimation of the very many best linear predictors {Lk⇤}q1. The result will then

follow from the union bound.

For the first application, where q = 1, �1⇤ = h⇤ and �10 = h0, observe that Assumption

1.16 follows from Assumption 1.11, Assumption 1.17 holds trivially since no outcomes are

estimated, Assumption 1.18 follows from Assumption 1.12, and Assumption 1.19 is implied

by Assumption 1.14. Theorem 1.7 and the hypotheses of the lemma now shows that there

exists c, C, C 0 and n0 depending only on c0, c00, c1, C1, c2, C2 and c02 such that for all n > n0,

kbL� L⇤kP
n

,2 6 C 0ps ln (pn) /n.

For the second application, where q = q, �k⇤ = µk⇤ and �k0 = µk0, observe that Assump-

tion 1.16 follows from Assumption 1.11, and Assumption 1.18 is implied by Assumptions 1.12

and 1.13. To verify the remaining Assumption 1.17, note that eik = Xk@v⇢(Zi, b�, bL(Wi)) �
Xk@v⇢(Zi, �⇤, L⇤ (Wi)) by Assumptions 1.12 and 1.13 implies the bound

|eik| 6 C1|@v⇢(Zi, b�, bL(Wi))� @v⇢(Zi, �⇤, L⇤ (Wi))| 6 C 0[kb� � �⇤k+ |bL(Wi)� L⇤(Wi)|].

The previous bound implies the following bound on the outcome estimation error:

� 6 C 0(kb� � �⇤k+ kbL� L⇤kP
n

,2).

Using Assumptions 1.10 and 1.14 (the latter to get an 6 C2), Lemma 1.27 implies kb� �
�⇤k 6 C 0pln (n) /n wp > 1�Cn�c for constants c, C and C 0 depending only on C1, C2 and

c2. Assumption 1.17 now follows from the first application of Theorem 1.7 and the union

bound.

Proof of Lemma 1.5. Under the assumptions of the lemma and the (maintained) assump-

tion that bL and the bLk’s are the Lasso estimates of L⇤ and the Lk⇤’s, respectively, resulting

from using conservatively or truly polynomially penalty loadings (such as the penalty load-

ings resulting from Algorithms 1.2 and 1.3), Lemma 1.4 shows that there exists c, C, C 0 and

n0 depending only on c0, c00, c1, C1, c2, C2 and c02 such that for all n > n0

kbL� L⇤kP
n

,2 + max
16k6q

kbLk � Lk⇤kP
n

,2 6 C 0
r

s ln (pqn)

n
wp > 1� Cn�c. (1.J.1)

The remainder of the proof is divided into steps.

123



Main

Let si ⌘ s (Zi). By T,

|T � T⇤|
6 max

16k6q

�

�

�

p
nEn[ k(Zi, b�, bL (Wi) , bLk (Wi))]

�p
nEn[ k(Zi, �⇤, L⇤ (Wi) , Lk⇤ (Wi)) + b>k si]

�

�

�

6 max
16k6q

�

�

�

p
nEn[ k(Zi, �⇤, bL (Wi) , bLk (Wi))�  k(Zi, L⇤ (Wi) , Lk⇤ (Wi))]

�

�

�

+ max
16k6q

�

�

�

p
nEn[ k(Zi, b�, bL (Wi) , bLk (Wi))�  k(Zi, �⇤, bL (Wi) , bLk (Wi))]� b>k

p
nEn (si)

�

�

�

=: I + II.

Step I below shows that for some C 0

P

✓

I > C 0
q

s2 ln3(pqn)/n

◆

6 7n�1,

while Step II below shows that for some c, C and C 0,

P

✓

II > C 0 max
n

q

s ln2(pqn)/n, n�c
2

/4/
p

ln (pqn), an
o

◆

6 Cn�c.

The claim now follows from the three previous displays in combination with the union bound.

I

This step shows that for some C 0,

P

✓

I > C 0
q

s2 ln3(pqn)/n

◆

6 7n�1. (1.J.2)

Let ⇢i (v) := ⇢(Zi, �⇤, v). Decompose the kth summand and use MVT, to get

p
nEn[ k(Zi, �⇤, bL (Wi) , bLk (Wi))�  k(Zi, �⇤, L⇤ (Wi) , Lk⇤ (Wi))]

=
p
nEn[Xik@v⇢i(W

>
i h

(k)

i )�W>
i µ(k)

i ]W>
i (bh� h⇤) +

p
nEn[(Yi �W>

i h
(k)

i )W>
i (bµk � µk⇤)]

=
p
nEn{[Xik@v⇢i(W

>
i h⇤)�W>

i µk⇤]W>
i (bh� h⇤)}+

p
nEn[(Yi �W>

i h⇤)W>
i (bµk � µk⇤)]

+
p
nEn{Xik[@v⇢i(W

>
i h

(k)

i )� @v⇢i(W
>
i h⇤)]W>

i (bh� h⇤)}
+
p
nEn[W

>
i (µ(k)

i � µ⇤k)W>
i (h⇤ � bh)] +

p
nEn[W

>
i (µk⇤ � bµk)W

>
i (h

(k)

i � h⇤)],
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where (W>
i h

(k)

i ,W>
i µ(k)

i ) lies on the line segment connecting (W>
i
bh,W>

i bµk) and (W>
i h⇤,W>

i µ⇤k).

The MVE in the previous display implies

I = max
16k6q

|pnEn[ k(Zi, �⇤, bL (Wi) , bLk (Wi))�
p
nEn j(Zi, �⇤, L⇤ (Wi) , Lk⇤ (Wi))]|

6 max
16k6q

|pnEn{[@v⇢i(W>
i h⇤)Xik �W>

i µk⇤]W>
i (bh� h⇤)}|

+ max
16k6q

|pnEn[(Yi �W>
i h⇤)W>

i (bµk � µk⇤)]|

+ max
16k6q

|pnEn{Xik[@v⇢i(W
>
i h

(k)

i )� @v⇢i(W
>
i h⇤)]W>

i (bh� h⇤)}|

+ max
16k6q

|pnEn[W
>
i (µ(k)

i � µk⇤)W>
i (bh� h⇤)]|

+ max
16k6q

|pnEn[W
>
i (bµk � µk⇤)W>

i (h
(k)

i � h⇤)]| =: Ia + Ib + Ic + Id + Ie. (1.J.3)

Equation (1.J.2) now follows from Steps Ia–Ie below.

Ia

This step shows that for some C 0,

P

✓

Ia > C 0
q

s2 ln3 (pqn) /n

◆

6 Cn�c. (1.J.4)

To establish the claim, note that by Hölder’s inequality,

Ia 6 kbh� h⇤k1 max
(j,k)2[p]⇥[q]

�

�

p
nEn{[Xik@v⇢i(W

>
i h⇤)�W>

i µk⇤]Wij}
�

� =: Ia,1 ⇥ Ia,2.

Equation (1.J.1) there exists a constant C 0 such that

P
⇣

Ia,1 > C 0ps2 ln (pqn) /n
⌘

= P
⇣

kbh� h⇤k1 > C 0ps2 ln (pqn) /n
⌘

6 Cn�c.

By Assumptions 1.12 and 1.13, the summands appearing in Ia2 are i.i.d. and bounded. By

definition on µk⇤, E{[Xk@v⇢(Z, �⇤,W>h⇤) � W>µk⇤]Wj} = 0 for all k 2 {1, . . . , q}, so the

summands in Ia1 are also mean-zero. Lemma 1.36 therefore implies that for some constant

C 0 depending only on C1,

P (Ia,2 > C 0 ln (pqn)) 6 n�1.

Eq. (1.J.4) now follows from the two previous displays and the union bound.
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Ib

This step shows that for some C 0,

P

✓

Ib > C 0
q

s2 ln3 (qn) /n

◆

6 Cn�c. (1.J.5)

To establish the claim, note that by Hölder’s inequality,

Ib ⌘ max
16k6q

|pnEn[(Yi �W>
i h⇤)W>

i (bµk � µk⇤)]|

6 max
16j6q

kbµk � µk⇤k1 max
16j6p

|pnEn[(Yi �W>
i h⇤)Wik]|

=: Ib,1 ⇥ Ib,2.

Equation (1.J.1) shows that there exists a constant C 0 such that

P
⇣

Ib1 > C 0ps2 ln (pqn) /n
⌘

= P

✓

max
16k6q

kbµk � µk⇤k1 > C 0ps2 ln (pqn) /n

◆

6 Cn�c.

Assumptions 1.12 and 1.13 and the definition of h⇤ show that the summands appearing in

Ib2 are i.i.d., mean-zero and bounded. Lemma 1.36 therefore implies that for some constant

C 0 depending only on C1,

P (Ib,2 > C 0 ln (pqn)) 6 n�1.

Equation (1.J.5) now follows from the two previous displays and the union bound.

Ic This step shows that for some C 0,

P

✓

Ic > C 0
q

s2 ln2 (pqn) /n

◆

6 Cn�c. (1.J.6)

To establish the claim, note that by Assumptions 1.12 and 1.13 and MVT

Ic ⌘
p
n max

16k6q
|En{Xik[@v⇢i(W

>
i h

(k)

i )� @v⇢i(W
>
i h⇤)]W>

i (bh� h⇤)}|

6
p
nEn[|W>

i (bh� h⇤)|max
j

|Xik||@v⇢i(W>
i h

(k)

i )� @v⇢i(W
>
i h⇤)|]

6 C1

p
nEn[max

16k6q
|@v⇢i(W>

i h
(k)

i )� @v⇢i(W
>
i h⇤)||W>

i (bh� h⇤)|]

6 C 0pnEn[max
16k6q

|W>
i (h

(k)

i � h⇤)||W>
i (bh� h⇤)|]

6 C 0pnEn{[W>
i (bh� h⇤)]2} = C 0pnkbL� L⇤k2P

n

,2.
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Equation (1.J.1) implies that wp > 1� Cn�c, kbL� L⇤k2P
n

,2 6 C 0s ln (pqn) /n, (1.J.6) follows

from the previous display.

Ie and Ie

These steps show that for some C 0,

P

✓

Id + Ie > C 0
q

s2 ln2 (pqn) /n

◆

6 Cn�c. (1.J.7)

To establish the claim, note that by CS,

Id ⌘
p
n max

16k6q
|En[W

>
i (µ(k)

k � µk⇤)W>
i (bh� h⇤)]|

6
p
n max

16k6q
En[|W>

i (µ(k)
k � µ⇤j)W>

i (bh� h⇤)|]

6
p
n(En{[W>

i (bh� h⇤)]2})1/2 max
16k6q

(En{[W>
i (µ(k)

k � µk⇤)]2})1/2

6
p
n(En{[W>

i (bh� h⇤)]2})1/2 max
16k6q

(En{[W>
i (bµk � µk⇤)]2})1/2 (MVT)

=
p
nkbL� L⇤kP

n

,2 max
16k6q

kbLk � Lk⇤kP
n

,2.

Similarly,

Ie ⌘
p
n max

16k6q
|En[W

>
i (bµk � µk⇤)W>

i (h
(k) � h⇤)]|

6
p
n max

16k6q
En[|W>

i (bµj � µ⇤j)W>
i (h

(k) � h⇤)|]

6
p
n max

16k6q
(En{[W>

i (bµk � µk⇤)]2})1/2(En{[W>
i (h

(k) � h⇤)]2})1/2

6
p
n(En{[W>

i (bh� h⇤)]2})1/2 max
16k6q

(En{[W>
i (bµk � µk⇤)]2})1/2 (MVT)

=
p
nkbL� L⇤kP

n

,2 max
16k6q

kbLk � Lk⇤kP
n

,2,

so combining we get

Id + Ie 6 2
p
nkbL� L⇤kP

n

,2 max
16k6q

kbLk � Lk⇤kP
n

,2.

The claim now follows from (1.J.1) and the union bound.
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II

This claim shows that

P

✓

II > C 0 max
n

q

s ln2(pqn)/n, n�c
2

/4/
p

ln (pqn), an
o

◆

6 Cn�c. (1.J.8)

Noting that @� k(z, �, w>h, w>µk) = xj@�⇢(z, �, w>h), a mean-value expansion yields

II ⌘ max
16k6q

|pnEn[ k(Zi, b�, bL (Wi) , bLk (Wi))�  j(Zi, �⇤, bL (Wi) , bLk (Wi))]� b>k
p
nEn (si)|

= max
16k6q

|En[Xik@�>⇢(Zi, �
(k)
, bL (Wi))]

p
n(b� � �⇤)� b>k

p
nEn (si)|

6 max
16k6q

|En{Xik[@�>⇢(Zi, �
(k)
, bL (Wi))� @�>⇢(Zi, �⇤, L⇤ (Wi))]}

p
n(b� � �⇤)|

+ max
16k6q

|{(En � E) [Xik@�⇢(Zi, �⇤, L⇤ (Wi))]}>
p
n(b� � �⇤)|

+ max
16j6q

|b>k [
p
n(b� � �⇤)�

p
nEn (si)]| =: IIa + IIb + IIc.

Eq. (1.J.8) now follows from Steps IIa–IIc below and the union bound.

IIa

This step shows that for some c, C and C 0,

P

✓

IIa > C 0
q

s ln2(pqn)/n

◆

6 Cn�c. (1.J.9)

To establish the claim, note that by CS,

IIa 6 kpn(b� � �⇤)k max
16j6q

kEn{Xik[@�>⇢(Zi, �
(k)
,W>

i
bh)� @�>⇢(Zi, �⇤,W>

i h⇤)]}k

=: IIa,1 ⇥ IIa,2. (1.J.10)

Lemma 1.27 implies that for some c, C and C 0,

P
⇣

IIa,1 > C 0plnn
⌘

= P
⇣

kpn(b� � �⇤)k > C 0plnn
⌘

6 Cn�c. (1.J.11)

By Assumptions 1.10, 1.12 and 1.13, MVT and CS,

IIa,2 6 En{max
16k6q

|Xij| k@�⇢(Zi, �
(k)
,W>

i
bh)� @�⇢(Zi, �⇤,W>

i h⇤)k}

6 C 0(max
k

k�(k) � �⇤k+ En[|Wi(bh� h⇤)|]) 6 C 0(kb� � �⇤k+ kbL� L⇤kP
n

,2)
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From Lemma 1.27 we know that wp > 1 � Cn�c, kpn(b� � �⇤)k 6 C 0plnn for some c, C

and C 0. Equation (1.J.1) implies that wp > 1 � n�1, kbh � h⇤k2,n 6 C 0[s ln(pqn)/n]1/2 for

some C 0. The union bound therefore shows that wp > 1� Cn�c, kb� � �⇤k+ kbh� h⇤kP
n

,2 6
C 0[s ln(pqn)/n]1/2 for some c, C and C 0. The previous display therefore implies that, for some

c, C and C 0,

P
⇣

IIb > C 0ps ln(pqn)/n
⌘

6 Cn�c. (1.J.12)

Eq. (1.J.9) now follows from (1.J.10), (1.J.11) and (1.J.12) and the union bound.

IIb

This step shows that for some c, C and C 0,

P
⇣

IIb > C 0n�c
2

/4/
p

ln (pqn)
⌘

6 Cn�c. (1.J.13)

To establish the claim, note that by Assumption 1.10,

IIb ⌘ max
16k6q

|{(En � E) [Xik@�⇢(Zi, �⇤,W>
i h⇤)]}>

p
n(b� � �⇤)|

6 IIa,1 ⇥ max
16k6q

k(En � E) [Xik@�⇢(Zi, �⇤,W>
i h⇤)]k

6
p

C1IIa,1 ⇥ max
(j,k)2[d]⇥[q]

|(En � E) [Xik@�
j

⇢(Zi, �⇤,W>
i h⇤)]| =:

p

C1IIa,1 ⇥ IIb,1. (1.J.14)

Assumptions 1.12 and 1.13 imply that the summands appearing in IIb,1 are bounded. Lemma

1.34 therefore implies that

E



max
(j,k)2[d]⇥[q]

|(En � E) [Xik@�
j

⇢(Zi, �⇤,W>
i h⇤)]|

�

6 C 0 ln (dq)p
n
6 C 00 ln (pqn)p

n
.

By M, for some C and C 0, and the c2 > 0 provided by Assumption 1.14,

P
�

IIb,1 > C 0n�c
2

/4/ ln (pqn)
�

6 C 00nc
:2

/4

s

ln4 (pqn)

n
6 Cnc

2

/4�c
2

/2 = Cn�c
2

/4. (1.J.15)

Eq. (1.J.13) now follows from (1.J.11), (1.J.14), and (1.J.15) and the union bound.
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IIc

This step shows that for some c, C and C 0,

P (IIc > C 0an) 6 Cn�c. (1.J.16)

To establish the claim, note that

IIc ⌘ max
16k6q

|b>k [
p
n(b� � �⇤)�

p
nEn (si)]| 6 kpn(b� � �⇤)�

p
nEn (si)k max

16k6q
kbkk

Assumption 1.10 implies that for some c, C and positive sequence an

P
⇣

kpn(b� � �⇤)�
p
nEn (si)k > an

⌘

6 Cn�c.

Moreover, by Assumptions 1.12 and 1.13,

max
16k6q

kbjk 6 E
h

max
16k6q

|Xk| k@�⇢(Z, �⇤,W>h⇤)k
i

6 C 0.

Eq. (1.J.16) now follows from the three previous displays and the union bound.

1.J.2 Proofs for Section 1.5.5

Proof of Lemma 1.6. The proof is divided into steps. Throughout the proof I let P⇠

abbreviate the conditional law P⇠ (·) := P ( ·| {Zi}n1 ).

Main

Recall that

W⇤ ⌘ max
16k6q

|pnEn{[ k(Zi, �⇤, L⇤ (W ) , Lk⇤ (W )) + b>j si]⇠i}|,

W ⌘ max
16k6q

|pnEn{[ j(Zi, b�, bL (Wi) , bLk (Wi)) +bb
>
k bsi]⇠i}|.

where

bbj := En[Xij@�⇢(Zi, b�,W
>
i
bh)]
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and bs is an estimator of s provided by Assumption 1.15. Adding and subtractingbb>k
p
nEn (si⇠i)

and  k(Zi, �⇤, bL (Wi) , bLk (Wi))⇠i, by T and a MVE we get

|W �W⇤| 6 max
16k6q

�

�

p
nEn

�

[ k(Zi, b�, bL (Wi) , bLk (Wi)) +bb
>
j bsi]⇠i

� [ k(Zi, �⇤, L⇤ (Wi) , Lk⇤ (Wi)) + b>k⇤si]⇠i
 

�

�

= max
16k6q

�

�

p
nEn{[ k(Zi, �⇤, bL (Wi) , bLk (Wi))�  k(Zi, �⇤, L⇤ (Wi) , Lk⇤ (Wi))]⇠i}

+ En{⇠iXik@�>⇢(Zi, �
(k)
, bL (Wi))}

p
n(b� � �⇤)

+ (bbk � bk⇤)>
p
nEn (si⇠i) +bb

>
k

p
nEn[(bsi � si)⇠i]

�

�

6 max
16k6q

|pnEn{[ j(Zi, �⇤, bL (Wi) , bLk (Wi))�  j(Zi, �⇤, L⇤ (Wi) , Lk⇤ (Wi))]⇠i}|

+ max
16k6q

|En{⇠iXik@�>⇢(Zi, �
(k)
, bL (Wi))}

p
n(b� � �⇤)|

+ max
16k6q

|(bbk � bk⇤)>
p
nEn (si⇠i)|+ max

16k6q
|bb>k

p
nEn[(bsi � si)⇠i]|

=: I + II + III + IV. (1.J.17)

The claim of the lemma now follows from Steps I–IV below and the union bound.

I

This step shows that for some C 0,

P

✓

P⇠
⇣

I > C 0
h

q

s ln2 (pqn) /n _ s3/2 ln3/2 (pqn) /n
i⌘

> Cn�c

◆

6 Cn�c. (1.J.18)

A MVE and T shows that

I ⌘ max
16k6q

|pnEn{[ k(Zi, �⇤, bL (Wi) , bLk (Wi))�  j(Zi, �⇤, L⇤ (Wi) , Lk⇤ (Wi))]⇠i}|

6 max
16k6q

|pnEn{[Xik@v⇢i(W
>
i h⇤)Xik �W>

i µk⇤]W>
i (bh� h⇤)⇠i}|

+ max
16k6q

|pnEn[(Yi �W>
i h⇤)W>

i (bµk � µk⇤)⇠i]|

+ max
16k6q

|pnEn{[@v⇢i(W>
i h

(k)
)� @v⇢i(W

>
i h⇤)]XikW

>
i (bh� h⇤)⇠i}|

+ max
16k6q

|pnEn[W
>
i (µ(k) � µk⇤)W>

i (bh� h⇤)⇠i]|

+ max
16k6q

|pnEn[W
>
i (bµk � µk⇤)W>

i (h
(k) � h⇤)⇠i]|.

=: Ia + Ib + Ic + Id + Ie, (1.J.19)
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where each W>
i h

(k)
lies on the line segment connecting W>

i
bh and W>

i h⇤, and each W>
i µ(k)

k

lies on the line segment connecting W>
i bµk and W>

i µk⇤. Equation (1.J.18) now follows from

Steps Ia–Ie below and the union bound.

Ia

This step shows that for some C 0,

P

✓

P⇠

✓

Ia > C 0
q

s ln2 (pqn) /n

◆

> Cn�c

◆

6 Cn�c. (1.J.20)

Recall that

Ia ⌘ max
16k6q

|pnEn{[Xik@v⇢i(W
>
i h⇤)�W>

i µk⇤]W>
i (bh� h⇤)⇠i}|

Conditional on the data, {pnEn{[Xik@v⇢i(W>
i h⇤) �W>

i µk⇤]W>
i (bh � h⇤)⇠i}}qk=1 is centered

Gaussian with maximal variance given by

�2 = max
16k6q

En{[Xik@v⇢i(W
>
i h⇤)�W>

i µk⇤]2[W>
i (bh� h⇤)]2} 6 C2

1kbL� L⇤k2P
n

,2,

where I have used Assumption 1.13. Lemma 1.41 now implies that that for some C 0

P⇠
⇣

Ia > C 0kbL� L⇤kP
n

,2

p

ln (qn)
⌘

6 n�1.

Thus, on the event E := {kbL� L⇤kP
n

,2 6 C 0[s ln (pqn) /n]1/2}, for some C 0,

P⇠

✓

Ia > C 0
q

s ln2 (pqn) /n

◆

6 n�1.

Eq. (1.J.20) now follows from (1.J.1) and the previous display.

Ib

This step shows that for some C 0,

P

✓

P⇠

✓

Ib > C 0
q

s ln2 (pqn) /n

◆

> n�1

◆

6 n�1. (1.J.21)

Recall that

Ib ⌘ max
16k6q

|pnEn[(Yi �W>
i h⇤)W>

i (bµk � µk⇤)⇠i]|.
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Conditional on the data, {pnEn[(Yi�W>
i h⇤)W>

i (bµk�µk⇤)⇠i]}qk=1 is centered Gaussian with

maximal variance given by

�2 = max
16k6q

En{[Yi �W>
i h⇤]2[W>

i (bµk � µk⇤)]2} 6 C 0 max
16k6q

kbLk � Lk⇤k2P
n

,2,

where I have used Assumption 1.12. Lemma 1.41 therefore implies that for some C 0,

P⇠

✓

Ib > C 0 max
16k6q

kbLk � Lk⇤kP
n

,2

p

ln (pqn)

◆

6 n�1.

Hence, on the event E := {max16k6qkbLk � Lk⇤kP
n

,2 6 C 0[s ln (pqn) /n]1/2}, it follows that for
some C 0,

P⇠

✓

Ib > C 0
q

s ln2 (pqn) /n

◆

6 n�1.

Eq. (1.J.21) now follows from (1.J.1) and the previous display.

Ic

This step shows that for some C 0,

P
�

P⇠
�

Ic > C 0s3/2 ln (qn) /n
�

> Cn�c
�

6 Cn�c. (1.J.22)

To establish the claim, first recall

Ic ⌘ max
16k6q

|pnEn{Xik[@v⇢i(W
>
i h

(k)
)� @v⇢i(W

>
i h⇤)]W>

i (bh� h⇤)⇠i}|.

Conditional on the data, {pnEn{Xik[@v⇢i(W>
i h

(k)
)�@v⇢i(W>

i h⇤)]W>
i (bh�h⇤)⇠i}}qk=1 is cen-

tered Gaussian with maximal variance given by

�2 = max
16k6q

En{X2
ik[@v⇢i(W

>
i h

(k)
)� @v⇢i(W

>
i h⇤)][W>

i (bh� h⇤)]2}

= En{[W>
i (bh� h⇤)]2 max

16k6q
X2

ik[@v⇢i(W
>
i h

(k)
)� @v⇢i(W

>
i h⇤)]}

6 C 0En{[W>
i (bh� h⇤)]2[W>

i (h
(k) � h⇤)]2} 6 C 0En{[W>

i (bh� h⇤)]4}
6 C 0kbh� h⇤k21En{kWik21[W>

i (bh� h⇤)]2} 6 C 00kbh� h⇤k21kbL� L⇤k2P
n

,2,
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where I have used H, MVT and Assumptions 1.12 and 1.13. Lemma 1.41 now implies that

for some C 0,

P⇠
⇣

Ic > C 0kbh� h⇤k1kbL� L⇤kP
n

,2

p

ln (qn)
⌘

6 n�1.

Hence, on the event E := {kbh � h⇤k1kbL � L⇤kP
n

,2 6 C2
1s

3/2 ln (pqn) /n}, it follows that for

some C 0,

P⇠
�

Ic > C 0s3/2 ln (pqn) /n
�

6 n�1.

Eq. (1.J.22) now follows from (1.J.1) and the previous display.

Id and Ie

This step shows that

P
⇣

P⇠
⇣

Id + Ie > C 0s3/2 ln3/2 (pqn) /n
⌘

> Cn�c
⌘

6 Cn�c. (1.J.23)

Recall that

Id ⌘ max
16k6q

|pnEn[W
>
i (µ(k) � µk⇤)W>

i (bh� h⇤)⇠i]|,

Ie ⌘ max
16j6q

|pnEn[W
>
i (bµk � µk⇤)W>

i (h
(k) � h⇤)⇠i]|.

Consider first Id. Conditional on the data, {pnEn[W>
i (µ(k) � µk⇤)W>

i (bh � h⇤)⇠i]}qk=1 is

centered Gaussian with maximal variance given by

�2 = max
16k6q

En{[W>
i (bh� h⇤)]2[W>

i (µ(k) � µk⇤)]2} 6 max
16k6q

En{[W>
i (bh� h⇤)]2[W>

i (bµk � µk⇤)]2}

6 kbh� h⇤k21 max
16k6q

En{kWik21[W>
i (bµk � µk⇤)]2} 6 C 0kbh� h⇤k21 max

16k6q
kbLk � Lk⇤k2P

n

,2,

where I have used MVT, H and Assumption 1.12. Lemma 1.41 implies that for some C 0,

P⇠

✓

Id > C 0kbh� h⇤k1 max
16k6q

kbLk � Lk⇤kP
n

,2

p

ln (qn)

◆

6 n�1. (1.J.24)

Consider next Ie. Conditional on the data, {pnEn[W>
i (bµk � µk⇤)W>

i (h
(k) � h⇤)⇠i]}qk=1 is

centered Gaussian with maximal variance given by

�2 = max
16k6q

En{[W>
i (h

(j)

i � h⇤)]2[W>
i (bµj � µ⇤j)]2} 6 max

16k6q
En{[W>

i (bh� h⇤)]2[W>
i (bµj � µ⇤j)]2}
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6 kbh� h⇤k21 max
16k6q

En{kWik21[W>
i (bµj � µ⇤j)]2} 6 C 0kbh� h⇤k21 max

16k6q
kbLk � Lk⇤k2P

n

,2,

where I have used H, MVT and Assumption 1.12. Lemma 1.41 implies that for some C 0,

P⇠

✓

Ie > C 0kbh� h⇤k1 max
16k6q

kbLk � Lk⇤kP
n

,2

p

ln (qn)

◆

6 n�1. (1.J.25)

Eqs. (1.J.24) and (1.J.25) imply that, on the event E := {kbh�h⇤k1 max16k6qkbLk�Lk⇤kP
n

,2 6
C 0s3/2 ln (pqn) /n}, for some C 0,

Pe

⇣

Id + Ie > C 0s3/2 ln3/2 (pqn) /n
⌘

6 n�1.

Eq. (1.J.23) now follows from (1.J.1) in combination with the union bound.

II

This step shows that for some c, C and C 0,

P

✓

P⇠

✓

II > C 0
q

ln2 (pqn) /n

◆

> Cn�c

◆

6 Cn�c. (1.J.26)

To establish the claim, note that

II ⌘ max
16k6q

|En{⇠iXik@�>⇢(Zi, �
(k)
, bL (Wi))}

p
n(b� � �⇤)|

6 kb� � �⇤k max
16k6q

kpnEn{eiXij@�⇢(Zi, �
(j)
, bL (Wi))}k =: IIa ⇥ IIb. (1.J.27)

By Lemma 1.27 we know that, for some c, C and C 0,

P
⇣

IIa > C 0pln (n) /n
⌘

= P
⇣

kb� � �⇤k > C 0pln (n) /n
⌘

6 Cn�c. (1.J.28)

By H and Assumption 1.12,

IIb ⌘ max
16k6q

kpnEn{⇠iXik@�⇢(Zi, �
(k)
, bL (Wi))}k

6
p

C1 max
(j,k)2[d]⇥q

|pnEn{⇠iXik@�
j

⇢(Zi, �
(k)
, bL (Wi))}|. (A1.10)
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Conditional on the data, {pnEn{eiXij@�
k

⇢(Zi, �
(j)
,W>

i
bh)}}(j,k)2[d]⇥[q] is a centered Gaussian

process with maximal variance given by

�2 = max
(j,k)2[d]⇥[q]

En{X2
ik[@�j⇢(Zi, �

(k)
, bL (Wi))]

2}

6 C2
1 max
(j,k)2[d]⇥[q]

En{[@�
j

⇢(Zi, �
(k)
, bL (Wi))]

2}

6 C2
1

⇣

max
(j,k)2[d]⇥[q]

En{[@�
j

⇢(Zi, �⇤, L⇤ (Wi))]
2}

+ max
(j,k)2[d]⇥[q]

En{[@�
j

⇢(Zi, �
(j)
, bL (Wi))� @�

j

⇢(Zi, �⇤, L⇤ (Wi))]
2}
⌘

6 C 0[1 + (max
j

k�(k) � �⇤k+ kbL� L⇤kP
n

,2)
2] 6 C 0[1 + (kb� � �⇤k+ kbL� L⇤kP

n

,2)
2],

where I have used Assumptions 1.12 and 1.13 and MVT. The two previous displays, Lemma

1.41, d 6 C1 imply that, for some C 0,

P⇠
⇣

IIb > C 0(1 + kb� � �⇤k+ kbL� L⇤kP
n

,2)
p

ln (qn)
⌘

6 n�1.

Let E (t) := {kb� � �⇤k + kbh� h⇤k2,n 6 t}. Then Lemma 1.27, (1.J.1), and the union bound

show that for some c, C and C 0,

P
⇣

kb� � �⇤k+ kbL� L⇤kP
n

,2 > C 0
⌘

6 Cn�c.

The two previous displays therefore show that, for some c, C and C 0,

P
⇣

P⇠
⇣

IIb > C 0pln (qn)
⌘

> n�1
⌘

6 P
�E (C 0)c

�

6 Cn�c. (1.J.29)

Eq. (1.J.26) now follows from (1.J.27), (1.J.28), (1.J.29) and the union bound.

III

This step shows that for some c, C and C 0,

P

 

P⇠
⇣

III > C 0
h

s

s ln2 (pqn)

n
_ n�c

2

/4

p

ln (pqn)

i⌘

> Cn�c

!

6 Cn�c. (1.J.30)

To establish the claim, note that

III ⌘ max
16k6q

|(bbk � bk⇤⇤)>
p
nEn (si⇠i)| 6 kpnEn (si⇠i)k max

16k6q
kbbk � bk⇤k =: IIIa ⇥ IIIb. (1.J.31)
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Conditional on the data, {pnEn (sij⇠i)}dj=1 is centered Gaussian with maximal variance given

by

�2 := max
16j6d

var⇠
�p

nEn (sij⇠i)
�

= max
16j6d

En

�

s2ij
�

6 C 0,

where I have used Assumption (1.10). Lemma 1.41 and d 6 C1 now show that for some C 0,

P⇠(IIIa > C 0plnn) 6 n�1, so

P⇠
⇣

IIIa > C 0pln (qn)
⌘

6 n�1. (1.J.32)

Hence, for some C 0,

P
⇣

P⇠
⇣

IIIa > C 0pln (qn)
⌘

> n�1
⌘

= 0. (1.J.33)

Note also that,

IIIb 6 max
16k6q

kEn{Xik[@�⇢(Zi, b�, bL (Wi))� @�⇢(Zi, �⇤, L⇤ (Wi))]}k

+ max
16k6q

k(En � E) [Xik@�⇢(Zi, �⇤, L⇤ (Wi))]k =: IIIb,1 + IIc. (1.J.34)

For t > 0, let E (t) denote the event

E (t) :=
n

kb� � �k+ kbh� h⇤k2,n 6 t
p

s ln (pqn) /n
o

.

Then on E (t), by Assumptions 1.12 and 1.13,

IIIb,1 6 En



max
16k6q

|Xik| k@�⇢(Zi, b�, bL (Wi))� @�⇢(Zi, �⇤, L⇤ (Wi))k
�

6 C 0
⇣

kb� � �k+ kbL� L⇤k2,n
⌘

6 C 0t
p

s ln (qn) /n.

Lemma 1.27, (1.J.1), and the union bound guarantee that for su�ciently large t as well as

some c and C, P (E (t)c) 6 Cn�c. Choose such a t. Then for some c, C and C 0,

P
⇣

IIIb,1 > C 0ps ln (pqn) /n
⌘

6 Cn�c. (1.J.35)
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Eqs. (1.J.34), (1.J.35) and (1.J.16) in combination with the union bound show that for some

c, C and C 0,

P

 

IIIb > C 0
h

r

s ln (pqn)

n
_ n�c

2

/4

ln (pqn)

i

!

6 Cn�c. (1.J.36)

Eq. (1.J.30) now follows from (1.J.31), (1.J.32), (1.J.36), and the union bound.

IV

This step shows that for some c, C and C 0,

P
⇣

P⇠
⇣

IV > C 0bn
p
lnn
⌘

> n�1
⌘

6 Cn�c. (1.J.37)

To establish the claim, note that by CS,

IV ⌘ max
16k6q

|bb>k
p
nEn[(bsi � si)⇠i]| 6 kpnEn[(bsi � si)⇠i]k max

16k6q
kbbkk =: IVa ⇥ IVb.

Given that d 6 C1,

IVa 6
p

C1 max
16j6d

|pnEn[(bsij � sij)⇠i]|.

Conditional on the data, {pnEn[(bsij�sij)⇠i]}dj=1 is centered Gaussian with maximal variance

�2 = max
16j6d

En[(bsij � sij)
2] 6 En[kbsi � sik2] = kbs� sk2P

n

,2.

Lemma 1.41 and d 6 C1 and the two previous displays imply that for some C 0

P⇠
⇣

IVa > C 0kbs� skP
n

,2

p
lnn
⌘

6 n�1.

On the event E := {kbs � skP
n

,2 6 bn}, with bn provided by Assumption 1.10, we therefore

have that for some C 0

P⇠
⇣

IVa > C 0bn
p
lnn
⌘

6 n�1.

so for some c, C and C 0,

P
⇣

P⇠
⇣

IVa > C 0bn
p
lnn
⌘

> n�1
⌘

6 P (Ec) 6 Cn�c. (1.J.38)

138



Note also that

IVb ⌘ max
16k6q

kbbkk 6 max
16k6q

kbk⇤k+ max
16k6q

kbbk � bk⇤k = max
16k6q

kbk⇤k+ IIIb.

Assumptions 1.12 and 1.13 and J show that

max
16k6q

kbk⇤k = max
16k6q

kE[Xk@�⇢(Z, �⇤, L⇤ (W ))]k 6 max
16k6q

E[|Xk| k@�⇢(Z, �⇤, L⇤ (W ))k] 6 C 0

(1.J.39)

By (1.J.36), for some c, C and C 0,

P
⇣

IIIb > C 0[
p

s ln (pqn) /n+ n�c
2

/4/ ln (pqn)]
⌘

6 Cn�c.

Assumption 1.14 implies that
p

s ln (pqn) /n + n�c
2

/4/ ln (pqn) is a bounded sequence. The

previous display therefore implies that for some c, C and C 0

P (IIIb > C 0) 6 Cn�c. (1.J.40)

Eqs. (1.J.39) and (1.J.40) yield that for some c, C and C 0,

P (IVb > C 0) 6 Cn�c. (1.J.41)

Eq. (1.J.37) now follows from (1.J.38), (1.J.41) and the union bound.

1.J.3 Proofs for Section 1.5.6

Proof of Theorem 1.5. The theorem will follow from an application of Chernozhukov,

Chetverikov, and Kato (2013, Corollary 3.1(ii)). Assumptions 1.10, 1.12 and 1.13 and the

hypotheses of the theorem su�ce for their Condition (E.2) with Bn depending only on C1

(i.e., constant in n). Given that the growth condition ln7 (qn) 6 C2n1�c
2 is assumed, it

remains to verify their conditions (14) and (15) and their ⇣-condition. To this end, first

label the maximum of the lower bounds appearing in the (inner) probability statements of

Lemmas 1.5 and 1.6 by

⇣ 001 := ⇣1 _ ⇣ 01 = C 0 max

(

s

s2 ln3(pqn)

n
,
s3/2 ln3/2 (pqn)

n
,

n�c
2

/4

p

ln (pqn)
, an, bn

p
lnn

)

.
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Similarly, label the maximum of the probability bounds of Lemmas 1.5 and 1.6 by ⇣ 002 := Cn�c.

Given that (⇣ 001,, ⇣
00
2 ) provide relax the bounds in Lemmas 1.5 and 1.6, by the same lemmas

P (|T � T⇤| > ⇣ 001 ) 6 ⇣ 002 ,

P (P⇠ (|W �W⇤| > ⇣ 001 ) > ⇣ 002 ) 6 ⇣ 002 .

Conditions (14) and (15) of Chernozhukov et al. (2013) therefore holds simultaneously for

n > n0, where n0 depends only on c0, c00, c1, C1, c2, C2 and C 0
2. The growth conditions of

Assumptions 1.14 and 1.15 imply that ⇣ 001 thus defined satisfies ⇣ 001
p
ln q 6 C 0n�c0 for c0 and

C 0 depending only on c0, c00, c1, C1, c2, C2 and C 0
2, so ⇣

00
1

p
ln q + ⇣ 002 6 C 0n�c0 for some c0 and

C 0 depending only on c0, c00, c1, C1, c2, C2 and C 0
2.

Proof of Theorem 1.6. The proof of Theorem 1.5 shows that max16k6q E[fk⇤ (Z)
2] 6

C 02 for some C 0 depending only on C1. Under the hypothesis max16k6q E[fk⇤ (Z)
2] > c21

of the theorem, from arguments similar to the ones used in proving Lemma 1.5 it fol-

lows that there exist constants c0 and C 0 depending only on c1 and C1 such that c0/2 6
max16k6q{En[ bfk (Zi)

2]}1/2 6 2C 0 wp ! 1. Define b�2
(q)

:= max16k6q En[ bfk (Zi)
2] and let

E := {c0/2 6 b�(q) 6 2C 0}. Conditional on the data, {pnEn[ bfk(Zi)⇠i]}qk=1 is a Gaussian

process, so Borell’s inequality (van der Vaart and Wellner, 1996, Proposition A.2.1) shows

that for any t > 0,

P⇠ (W > t) 6 2 exp

(

� t2

8 [E⇠ (W)]2

)

.

Fix ↵ 2 (0, 1). Setting t = cW (↵) and rearranging, we get

cW (↵) 6 E⇠ (W)
p

8 ln (2/↵).

A Gaussian maximal inequality (Lemma 1.39) shows that E⇠ (W) . b�(q)
p
ln q. Combining

this inequality with the previous display, on E , for some A absolute,

cW (↵) 6 Ab�(q)
p

ln q
p

8 ln (2/↵) 6 (2C 0)
p

8 ln (2/↵)
p

ln q =: C 0
↵

p

ln q, (1.J.42)

with C 0
↵ depending only on C1 and ↵. Given that {pnEn[ bfk(Zi)⇠i]}qk=1 is a Gaussian process

conditional on the data, for any t > 0,

P⇠ (W > t) > max
16k6q

P⇠
⇣

�

�

�

p
nEn[ bfk(Zi)⇠i]

�

�

�

> t
⌘

= max
16k6q

P⇠
�

�

�N
�

0, b�2
k

�

�

� > t
�

= P⇠
�

�

�N(0, b�2
(q))
�

� > t
�

= 2
⇥

1� � �t/b�(q)
�⇤
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Setting t = cW (↵) and rearranging we see that, on E ,

cW (↵) > ��1 (1� ↵/2) b�(q) > ��1 (1� ↵/2) (c0/2) =: c0↵, (1.J.43)

where c0↵ depends only on c1 and ↵. The proof of Theorem 1.5 also shows that E[max16k6q fk⇤ (Z)
2]

6 C 02 for some C 0 depending only on C1. Now

P (T 6 cW (↵)) = P (T 6 cW (↵) \ T⇤ � T 6 cW (↵)) + P (T 6 cW (↵) \ T⇤ � T > cW (↵))

6 P (T⇤ 6 2cW (↵)) + P (T⇤ � T > cW (↵))

6 P (T⇤ 6 2cW (↵)) + P (|T � T⇤| > cW (↵)) =: P1 + P2.

The probability P1 satisfies

P1 = P
�

T⇤ 6 2cW (↵) \ cW (↵) 6 vq
p
n/4
�

+ P
�

T⇤ 6 2cW (↵) \ cW (↵) > vq
p
n/4
�

6 P
�

T⇤/
p
n 6 vq/2

�

+ P
�

cW (↵) > vq
p
n/4
�

6 P
�

�

�T⇤/
p
n� vq

�

� > vq/2
�

+ P
�

cW (↵) > vq
p
n/4
�

=: P1a + P1b.

The proof of Lemma 1.5 in fact shows that E[max16k6q fk⇤ (Z)
2] 6 C 02 for some C 0 depending

only on C1. The first part of the maximal inequality in Lemma 1.34 and E[max16k6q fk⇤ (Z)
2] 6

C 02 for some C 0 depending only on C1 imply that

E

⇢

max
16k6q

|(En � E) [fk⇤ (Zi)]|
�

6 C 0 ln qp
n

for some C 0 depending only on C1. From the previous display, the definition of vq, and M

we therefore see that

P1a = P

✓

�

�

�

�

max
16k6q

|En [fk⇤ (Z)]|� max
16k6q

|En [⇢⇤(Z, �⇤, L⇤ (W ))Xk]|
�

�

�

�

> vq/2

◆

6 P

✓

max
16k6q

|(En � E) [fk⇤ (Z)]| > vq/2

◆

6 2v�1
q E

⇢

max
16k6q

|(En � E) [fk⇤ (Zi)]|
�

6
C 0v�1

q ln qp
n

! 0.

Using (1.J.42), we see that

P1b 6 P
�

cW (↵) > vq
p
n/4 \ E�+ P (Ec) 6 1

⇣

C 0
↵

p

ln q > vq
p
n/4
⌘

+ P (Ec)

6 1
⇥

v�1
q ln q/

p
n > 1/ (4C 0

↵)
⇤

+ P (Ec) ! 0.
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Letting ⇣1 = ⇣1n > 0 be the constant defined in Lemma (1.5), the probability P2 satisfies

P2 = P (|T � T⇤| ⇣1 > ⇣1cW (↵)) 6 P (|T � T⇤| > ⇣1) + P (⇣1 > cW (↵)) =: P2a + P2b.

Now, P2a ! 0 by Lemma (1.5). Lastly, using (1.J.43) and ⇣1 ! 0 it follows that

P2b 6 P (⇣1 > cW (↵) \ E) + P (Ec) 6 1 (⇣1 > c0↵) + P (Ec) ! 0.

1.J.4 Supporting Lemmas for Section 1.5

Lemma 1.27. If Assumption 1.10 holds, then there exists c, C and C 0 depending only on

C1, c2 and C2 such that

P(kpn(b� � �⇤)k > C 0plnn) 6 Cn�c.

Proof. Hoe↵ding’s inequality for bounded random variables, the union bound, and ks (Z)k 6
C1 show that for any t > 0,P(kpnEn [s⇤ (Zi)]k >

p
2dC1t) 6 2de�t2 . Since d 6 C1, setting

t :=
p
lnn implies P(kpnEn [s (Zi)]k >

p
2C3/2

1

p
lnn) 6 2C1n�1. Assumption 1.10 yields

P(kpn(b� � �⇤)� En [s⇤ (Zi)]k > an) 6 C2n
�c

2 ,

so by T and the union bound,

P(kpn(b� � �⇤)k > an +
p
2C3/2

1

p
lnn)

6 P(kpn(b� � �⇤)� En [s⇤ (Zi)]k > an) + P(kpnEn [s⇤ (Zi)]k >
p
2C3/2

1

p
lnn)

6 C2n
�c

2 + 2C1n
�1 6 Cn�c.

Given that an ! 0, an +
p
2C3/2

1

p
lnn 6 C 0plnn,

Lemma 1.28 (Vector Hoe↵ding’s inequality). If {Xi}n1 are independent centered Rd-

valued random variables satisfying kXik 6M for all 1 6 i 6 n, then for each t > 0,

P (kEn (Xi)k > t) 6 2d exp

✓

� nt2

2dM2

◆

.

Hence, for each t > 0,

P(
�

�

p
nEn (Xi)

�

� >
p
2dMt) 6 2de�t2 .
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Proof. By the union bound and Hoe↵ding’s inequality for bounded random variables

P (kEn (Xi)k > t) 6 P(max
16k6d

|En (Xik)| > t/
p
d) 6

d
X

j=1

P(|En (Xik)| > t/
p
d)

6 2d exp

✓

� nt2

2dM2

◆

.

1.K Sparse Eigenvalues and Compatibility Constants

The following result is essentially Rudelson and Vershynin (2008, Lemma 3.8).

Lemma 1.29. Let {Wi}n1 , n > 2, be independent random variables taking values in Rp, p >
2. Define M := max16i6nkWik1. Then for any m 2 {1, . . . , p} we have

E
n

sup
k�k

0

6m,k�k=1

|�En � E
�

[(W>
i �)

2]|
o

6 �2n (m) + �n (m) sup
k�k

0

6m,k�k=1

q

E[(W>
i �)

2],

where C 0 is universal and

�n (m) := C 0[E(M2)]1/2
r

m ln p

n

h

1 + (lnm)
p
lnn
i

.

Rudelson and Vershynin (2008, Lemma 3.8), a lemma which is stated conditionally on

the data, leaves the constant appearing in their �n as C (M). In order to clarify the exact

dependence of �n on M , I include a complete proof.

Let  (a,A) denote the compatibility constant associated with a real symmetric matrix

A 2 Rq⇥q,

 (a,A) := min
T⇢{1,...,q}

|T |6s

inf
�2Rq\{0}

k�
T

ck
1

6ak�
T

k
1

(s�>A�)1/2

k�Tk1 ,

where a > 0. Note that any such compatibility constant depends on the sparsity level s and

dimension q, although such dependencies are suppressed throughout.

Define the minimal sparse eigenvalue �min (m,A),

�min (m,A) := inf
16k�k

0

6m

�>A�
k�k2 ,
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and maximal sparse eigenvalue �max (m,A),

�max (m,A) := sup
16k�k

0

6m

�>A�
k�k2 ,

which are defined for m 2 {1, . . . , p}. The following lemma is implicit in the proof of Bickel,

Ritov, and Tsybakov (2009, Lemma 4.1(ii)). I include the proof for easy reference.

Lemma 1.30. Then for any real symmetric matrix A. Then for any a > 0,

 (a,A) > max
16m6p

(

p

�min (s+m,A)� a

r

�max (m,A) s

m

)

.

Lemma 1.31. Suppose that {Wi}n1 , n > 2, are independent random variables taking values

in Rp, p > 2, which are uniformly bounded by B < 1, max16i6nkWik1 6 B, and whose

average population matrix E(WiW>
i ) has m-sparse eigenvalues, m > 1, bounded above by

�H (m) < 1 and away from zero by �L (m) > 0. Then

P
�

�min

�

m,En(WiW
>
i )
�

< �L (m) /2
�

6 2�L (m)�1
h

�2n (m) + �n (m)
p

�H (m)
i

,

and P
�

2�H (m) < �max

�

m,En(WiW
>
i )
��

6 �H (m)�1
h

�2n (m) + �n (m)
p

�H (m)
i

,

where C 0 is a universal constant and

�n (m) := C 0B

r

m ln p

n

h

1 + (lnm)
p
lnn
i

.

Lemma 1.32. Let {Wi}n1 be independentRp-valued random variables with max16i6nkWik1 6
C1, c21 6 �min(E(WiW>

i )) 6 �max(E(WiW>
i )) 6 C2

1 and p > 2, and suppose that s ln5 (pn) /n 6
C2n�c

2. Then there exists constants c and C depending only on c1, C1, c2 and C2 such that

P
�{�min (s ln (n) + s) < c1/2,En(WiW

>
i )} [ {2C1 < �max (s lnn) ,En(WiW

>
i )}� 6 Cn�c.

Lemma 1.33. Let {Wi}n1 be independentRp-valued random variables with max16i6nkWik1 6
C1, c21 6 �min(E(WiW>

i )) 6 �max(E(WiW>
i )) 6 C2

1 and p > 2, and suppose that s ln5 (pn) /n 6
C2n�c

2. Then there exists constants c and C depending only on c1, C1, c2 and C2 such that

for n > exp(16a2C1/c1),

P
⇣

 (a) >
p

c1/8
⌘

> 1� Cn�c.
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1.L Inequalities

The following lemma specializes Chernozhukov, Chetverikov, and Kato (2015, Lemma 8) to

i.i.d. and bounded data, and is a useful variation of standard maximal inequalities.

Lemma 1.34. Let {Xi}n1 be i.i.d., centered, Rp-valued random variables with p > 2. Then

E



max
16j6p

|En (Xij)|
�

.
⇣

max
16j6p

[E
�

X2
j

�

]1/2 + [E(max
j

X2
j )]

1/2
⌘ ln pp

n
,

where the constant is universal. Consequently, if, in addition, kXk1 6M constant, then

E



max
16j6p

|En (Xij)|
�

6 C (M)
ln pp
n
,

where C (M) depends only on M .

The following lemma is a special case of Massart (2000, Theorem 4), a version of Tala-

grand’s inequality.

Lemma 1.35 (Talagrand’s inequality). Let {Xi}n1 be independent, centered random vari-

ables with values in [�M,M ]p for some M > 0, and �2 := max16j6N E
�

X2
ij

�

. Then for any

", t > 0,

P

 

max
16j6p

|En (Xij)| > (1 + ") E
h

max
16j6p

|En (Xij)|
i

+ �

r

2t

n
+
 (")Mt

n

!

6 e�t,

wgere  and  (") may be taken equal to  = 4 and  (") = 2.5 + 32"�1. Consequently, there

exists constants C and C 0 depending only on M such that for any t > 0,

P

 

max
16j6p

|En (Xij)| > 2E
h

max
16j6p

|En (Xij)|
i

+ C 0
r

t

n
+ C 00 t

n

!

6 e�t.

The next lemma combines Lemmas 1.34 and 1.35.

Lemma 1.36. Let {Xi}n1 be i.i.d., zero-mean random variables taking values in [�M,M ]p

for some M > 0. Then there exists a constant C 0 depending only on M such that

P

✓

max
16j6p

|En (Xij)| > C 0 ln (pn)p
n

◆

6 n�1.

Let  p(t) := et
p � 1. The  p-Orlisz norm kXk 

p

of a random variable is

kXk 
p

:= inf{C > 0|E[ p (|X|/C)] 6 1}. (1.L.1)
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Lemma 1.37. Let X be a zero-mean, Gaussian random variable with variance �2. Then its

 2-Orlisz norm kXk 
2

=
p

8/3�.

Lemma 1.38. Let the function  be nonnegative, convex function, and strictly increasing on

R+. Then for any C > 0 satisfying max16j6p E [ (|Xj|/C)] 6 1, we have E [max16j6p |Xj|] 6
C �1 (p).

Lemma 1.39 (Gaussian Maximal Inequality). Let {Xj}p1 be centered Gaussian with

maximal variance �2 := max16j6p E
�

X2
j

�

. Then

E
h

max
16j6p

|Xj|
i

6 �
p

8/3
p

ln (1 + p).

Consequently, if, in addition, p > 2,

E
h

max
16j6p

|Xj|
i

6 �
p

16/3
p

ln p.

The next lemma is a finite-dimensional version of Borell’s inequality, The proof of the

lemma follows from the proof of van der Vaart and Wellner (1996, Proposition A.2.1).

Lemma 1.40 (Borell’s inequality). Let X ⇠ N(0p⇥1,⌃) , kXk1 := max16j6p |Xj|, and

�2 := max16j6p E
�

X2
j

�

. For every t > 0,

P
⇣

kXk1 > E (kXk1) +
p
2�t
⌘

6 e�t2 .

Lemma 1.41 (Gaussian Deviation Inequality). Let X ⇠ N(0p⇥1,⌃) , p > 2, kXk1 :=

max16j6p |Xj|, and �2 := max16j6p E
�

X2
j

�

. Then there exists a universal constant K such

that for every n > 1,

P
⇣

kXk1 > K�
p

ln (pn)
⌘

6 n�1.

A random variableX with mean µ := E(X) is said to be subgaussian if there exists � 2 R+

such that E
⇥

et(X�µ)
⇤

6 et
2�2/2 for all t 2 R. We say that the subgaussianity parameter of X

is (at most) � and call the smallests of such �’s the optimal subgaussianity parameter. The

following lemma is taken from Marchal and Arbel (2017, Theorem 1).

Lemma 1.42 (Optimal Subgaussianity Parameter for Beta Distribution). For a

Beta (↵, �) distributed random variable, ↵, � 2 (0,1), a simple and explicit upper bound of

the optimal subgaussianity parameter is 1/4 (↵ + � + 1).

Subgaussian random variables yield a simple maximal inequality.
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Lemma 1.43 (Subgaussian Maximal Inequality). Let {Xj}p1, p > 2, be subgaussian

random variables with common subgaussianity parameter �. Then

E
⇣

max
16j6p

Xj

⌘

6 �
p

2 ln p and E
h

max
16j6p

|Xj|
i

6 �
p

2 ln (2p).

Lemma 1.44. Suppose that c1 6 [E(X2
ijk)]

1/2 6 [E(|Xijk|2+�)]1/(2+�) 6 C1 for some 0 < � 6
1, and all j 2 {1, . . . , p}, where c1 and C1 depend only on �. If ln (pqn) 6 C2n1�c

2 for some
8

8+4�
<c2 < 1, then for every 0 6 c3 6 1 and every

n > (2C1

p

C2/c1)
2/[c

2

�8/(8+4�)]

we have

P

✓

max
(j,k)2[p]⇥[q]

|Snjk| > ��1
�

1� n�c
3/ (2pq)

�

◆

6
h

1 + A (1 + C1/c1)
2+�
i

n�c
3 .

1.M Proofs for Section 1.G

Proof of Theorem 1.7. Suppose first that the penalty loadings are conservatively poly-

nomially valid. Following the outline of the proof of BCCH (Theorem 1), the proof has five

steps.

Step 1.

For a > 0, consider the compatibility constants

⇤k (a) := min
|T |6s

min
� 6=0

kb⌥ ⇤
k

�
T

ck
1

6akb⌥ ⇤
k

�
T

k
1

p
sk�k2,n

kb⌥ ⇤
k �Tk1

, k 2 {1, . . . , q} , (1.M.1)

where the T ’s are understood to be nonempty subsets of {1, . . . , p}. The ⇤k’s control the

modulus of continuity between the prediction norm k�k2,n and the b⌥ ⇤
k -weighted `1 norms.

The main result of this step is the following lemma, which contains the determistic part of

the argument in establishing the rate of the Lasso estimators.

Lemma 1.45. Suppose that Assumption 1.16 holds, that � > c0nmax16k6qkS⇤
kk1 for c0 > 1

and c00 2 (0, 1] and the penalty loadings satisfy (1.G.15) with ` > 1/c0. Then for each

k 2 {1, . . . , q},

kb�k � �k0k2,n 6
✓

u+
1

c0

◆

�
p
s

⇤k (c)n
+ 2 (cs +�) ,
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where c := (uc0 + 1) / (`c0 � 1).

Proof. The proof follows the argument in Bickel, Ritov, and Tsybakov (2009). Fix k 2
{1, . . . , q}. Denote �k := b�k � �k0 and recall Tk0 = supp (�k0). Note that |Tk0| 6 s. Expand

the squares to arrive at

En[(bYik �W>
i
b�k)

2]� En[(bYik �W>
i �k0)

2]

= k�kk22,n � 2En("ikW
>
i �k)� 2En(rikW

>
i �k)� 2En(eikW

>
i �k)

> k�kk22,n � kS⇤
kk1kb⌥ ⇤

k �kk1 � 2 (cs +�) k�kk2,n,

where the inequality follows from the Hölder and Cauchy-Schwarz inequalities. By definition

of b�k as a minimizer

En[(cWik �W>
i
b�k)

2] +
�

n
kb⌥k b�kk1 6 En[(bYik �W>

i �k0)
2] +

�

n
kb⌥k�k0k1,

which combined with the previous display implies

k�kk22,n 6
�

n

⇣

kb⌥k�k0k1 � kb⌥k b�kk1
⌘

+ kS⇤
kk1kb⌥ ⇤

k �kk1 + 2 (cs +�) k�kk2,n

6 �

n

⇣

kb⌥k�kT
k0

k1 � kb⌥k�kT c

k0

k1
⌘

+ kS⇤
kk1kb⌥ ⇤

k �kk1 + 2 (cs +�) k�kk2,n

6 �

n

⇣

ukb⌥ ⇤
k �kT

k0

k1 � `kb⌥ ⇤
k �kT c

k0

k1
⌘

+
�

c0n

⇣

kb⌥ ⇤
k �kT

k0

k1 + kb⌥ ⇤
k �kT c

k0

k1
⌘

+ 2 (cs +�) k�kk2,n
=

✓

u+
1

c0

◆

�

n
kb⌥ ⇤

k �T
k0

k1 �
✓

`� 1

c0

◆

�

n
kb⌥ ⇤

k �kT c

k0

k1 + 2 (cs +�) k�kk2,n. (1.M.2)

If k�kk2,n 6 2 (cs +�), then the claim follows. Suppose therefore that k�kk2,n > 2 (cs +�).

Then the previous display implies

kb⌥ ⇤
k �kT c

k0

k1 6
h

✓

u+
1

c0

◆

.

ofT

✓

`� 1

c0

◆

i

kb⌥ ⇤
k �kT

k0

k1 = ckb⌥ ⇤
k �kT

k0

k1,

from which it follows that

kb⌥ ⇤
k �kT

k0

k1 6
p
sk�kk2,n
⇤k (c)

.

Combining this inequality with (1.M.2) we see that

k�kk22,n 6
✓

u+
1

c0

◆

�

n
kb⌥ ⇤

k �kT
k0

k1 + 2 (cs +�) k�kk2,n
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6
✓

u+
1

c0

◆

�
p
sk�kk2,n
⇤k (c)n

+ 2 (cs +�) k�kk2,n,

which leads to the desired bound.

Step 2

In this step I prove a lemma about the quantiles of the maximum of the “noise” S⇤
k =

2(b⌥ ⇤
k )

�1En("ikWi), which suggests the level of the penalty.

Lemma 1.46. Suppose that Assumptions 1.16, 1.18 and 1.19 hold and the penalty level �

is specified as in (1.G.10). Then there exists C and n0 depending only on c1, C1, C2 and c02
such that for all n > n0,

P

✓

c0 max
16k6q

kS⇤
kk1 > �/n

◆

6 Cn�c0
0 .

Proof. Observe that

P

✓

c0 max
16k6q

kS⇤
kk1 > �/n

◆

= P

✓

max
16k6q

kpnS⇤
k/2k1 > ��1

⇣

1� n�c0
0/ (2pq)

⌘

◆

Each
p
nS⇤

kj/2 is bounded in absolute value by the self-normalized sum
p
nS⇤⇤

kj/2 = En ("ikWij)

/[En

�

"2ikW
2
ij

�

]1/2, so the claim follows Lemma 1.44 with c3 = c00, � = 3 and Xijk = "ikWij,

such that Snjk =
p
nS⇤⇤

kj/2.

Step 3

Lemma 1.47. If Assumptions 1.18 and 1.19 hold, then there exists c, C, c0, C 0 and n0 de-

pending only on c1, C1, c2, C2 and c02 such that for all n > n0,

P
�

c0 6 b�⇤kj 6 C 0 for all (j, k) 2 [p]⇥ [q]
�

> 1� Cn�c.

Proof. Assumption 1.18, Markov’s inequality and a maximal inequality for bounded random

variables (Lemma 1.34) show

P

✓

max
16k6q

| (En � E) ("2ik)| > n�1/4

◆

6 n1/4E



max
16k6q

| (En � E) ("2ik)|
�

6 C 0
✓

ln4 (q)

n

◆1/4

.

Assumption 1.19 implies that there exists c and C depending only on c1, C1, c2, C2 and c02
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such that with probability > 1� Cn�c,

max
16k6q

| (En � E) ("2ik)| 6 n�1/4

Using Assumption 1.18 and the previous diplay, it follows that there exists c, C, c0 and C 0

depending only on c1, C1, c2, C2 and c02 such that with probability > 1� Cn�c,

max
(j,k)2[p]⇥[q]

|b�⇤2kj � �⇤2kj | 6 max
16k6q

| (En � E) ("2ik)| max
16i6n

W 2
ij + max

16k6q
E("2k) max

16j6p

�

� max
16i6n

W 2
ij �M2

j

�

�

6 C2
1 max
16k6q

| (En � E) ("2ik)|+ 2C3
1 max
16j6p

�

� max
16i6n

|Wij|�Mj

�

� 6 C 0n�c0 ,

where �⇤2kj = E("2k)M
2
j . By Assumption 1.18 the �⇤2kj ’s are bounded from above and away

from zero. The previous diplay now shows that for su�ciently large n and with probability

approaching one polynomially fast, so are the b�⇤2kj ’s. These upper and lower bounds depend

only on c1, C1, c2, C2 and c02.

Step 4

Lemma 1.48. If Assumption 1.18 holds, then there exists c, C, c0 and n0 depending only on

c0, c00, c1, C1, c2, C2 and c02 such that for all n > n0,

P

✓

min
16k6q

⇤k (c) > c0
◆

> 1� Cn�c.

Proof. Let b�⇤min := min(j,k)2[p]⇥[q] b�⇤kj and b�⇤max := max(j,k)2[p]⇥[q] b�⇤kj. By Lemma 1.47 there

exists c, C, c0, C 0 and n0 depending only on c1, C1, c2, C2 and c02 such that for all n > n0, c0 6
b�⇤min 6 b�⇤max 6 C 0 with probability > 1 � Cn�c. To avoid division by zero or multiplication

by infinity, take n > n0 and work on the event {c0 6 b�⇤min 6 b�⇤max 6 C 0}.
Fix k 2 {1, . . . , q}. By construction of b�⇤min and b�⇤max, kb⌥ ⇤

k �k1 > b�⇤mink�k1 and kb⌥ ⇤
k �k1 6

b�⇤maxk�k1 for any � 2 Rp. Let T be such that |T | 6 s and let � 6= 0 satisfy kb⌥ ⇤
k �T ck1 6

Ckb⌥ ⇤
k �Tk1. Then k�T ck1 6 (b�⇤maxC/b�

⇤
min) k�Tk1, and it follows that

⇤k (a) >
1

b�⇤max

 (b�⇤maxa/b�
⇤
min) >

1

C 0 (C
0a/c0) ,

where the second inequality follows from the event {c0 6 b�⇤min 6 b�⇤max 6 C 0} and  being a

nonincreasing function. Taking the minimum over k 2 {1, . . . , q} and setting a = c we see

that

min
16k6q

⇤k (c) >
1

C 0 (C
0c/c0) ,
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Using Assumptions 1.18 and 1.19 Lemma 1.33 implies that there exists c, C and n0 depending

only on c0, c00, c1, C1, c2, C2 and c02 such that  (C 0c/c0) >
p

c21/8 with probability > 1�Cn�c

at least for n > n0. The claim now follows from the previous display and the union bound.

Step 5

Combine the results of all the previous steps: Given that � = 2c0
p
n��1(1� n�c0

0/(2pq)) .
p

n ln(pqn), that the penalty loadings {b⌥k}q1 are conservatively polynomially valid, that

min16k6q ⇤k (c) is bounded away from zero (Step 4), cs 6 C1

p

s/n (Assumption proof 1.11)

and � 6 C1

p

s ln(pqn)/n (Assumption 1.17) with probability approaching one polynomially

fast, it follows that there exists c, C, C 0 and n0 depending only on c0, c00, c1, C1, c2, C2 and c02
such that for all n > n0 with probability > 1� Cn�c we have

max
16k6q

kb�k � �k0k2,n 6
✓

u+
1

c0

◆

�
p
s

min16k6q ⇤k (c)n
+ 2 (cs +�) 6 C 0

r

s ln (pqn)

n
.

By the triangle inequality and Assumption 1.11, for at least the same n’s and with at least

the same probability (but possibly di↵erent C 0),

max
16k6q

kb�k � �k⇤k2,n 6 max
16k6p

kb�k � �k0k2,n + cs 6 C 0
r

s ln (pqn)

n
.

Suppose next that the penalty loadings are truly polynomially valid.

Step 1’

Define compatibility constants {⇤⇤k }q1 as in (1.M.1) using b⌥ ⇤⇤
k -weighted `1 norms instead.

Using an argument virtually identical to the one used in proving Lemma 1.45, we may show

that if � > c0nmax16k6qkS⇤⇤
k k1, c0 > 1, c00 2 (0, 1], and the penalty loadings satisfy (1.G.16)

with ` > 1/c0, then for each k 2 {1, . . . , q},

kb�k � �k0k2,n 6
✓

u+
1

c0

◆

�
p
s

⇤⇤k (c)n
+ 2 (cs +�) ,

where c := (uc0 + 1) / (`c0 � 1).

Step 2’

Given that each
p
nS⇤⇤

k /2 is equal to a vector of self-normalized sums, the argument used

to prove Lemma 1.46 shows that there exists C and n0 depending only on c1, C1, C2 and c02
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such that for all n > n0,

P

✓

c0 max
16k6q

kS⇤⇤
k k1 > �/n

◆

6 Cn�c0
0 .

Step 3’

Lemma 1.49. If Assumptions 1.18 and 1.19 hold, then there exists c, C, c0, C 0 and n0 de-

pending only on c1, C1, c2, C2 and c02 such that for all n > n0,

P
�

c0 6 b�⇤⇤kj 6 C 0 for all (j, k) 2 [p]⇥ [q]
�

> 1� Cn�c.

Proof. Assumption 1.18, Markov inequality and a maximal inequality for bounded random

variables (Lemma 1.34) imply that

P

✓

max
(j,k)2[p]⇥[q]

|b�⇤⇤2kj � �⇤⇤2kj | > n�1/4

◆

6 n1/4E



max
(j,k)2[p]⇥[q]

| (En � E)
�

"2ilx
2
ij

� |
�

6 n1/4C 0 ln (pq)p
n

= C 0
✓

ln4 (pq)

n

◆1/4

,

where �⇤⇤2kj = E
�

"2kW
2
j

�

. Assumption 1.19 implies that there exist c and C depending only

on c1, C1, c2, C2 and c02 such that with probability > 1� Cn�c,

max
(j,k)2[p]⇥[q]

|b�⇤⇤2kj � �⇤⇤2kj | 6 n�1/4.

Assumption 1.18 implies that the �⇤⇤kj ’s are bounded from above and away from zero. By the

previous diplay, for su�ciently large n and with probability approaching one polynomially

fast, so are the b�⇤⇤kj ’s. These bounds depend only on c1, C1, c2, C2 and c02.

Step 4’

Using Lemma 1.49 and an argument virtually identical to the one used in Step 4, we

may derive a probability bound we find that there exists c, C, c0 and n0 depending only

on c0, c00, c1, C1, c2, C2 and c02 such that for all n > n0,

P

✓

min
16k6q

⇤⇤k (c) > c0
◆

> 1� Cn�c.
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Step 5’

By an argument virtually identical to the one in Step 5, Steps 1’–4’ show that there exists c, C

and C 0 such that with probability > 1 � Cn�c, max16k6qkb�k � �k⇤k2,n 6 C 0ps ln (pqn) /n.

This conclusion completes the proof of Theorem 1.7.

1.N Proofs for Section 1.H

1.N.1 Proofs for Section 1.H.1

Proof of Lemma 1.7. To establish conservative polynomial validity of the initial penalty

loadings we need to show that there exists `, u, c, C and n0 depending only on c1, C1, c2, C2, c02
and C 0

2 such that for all n > n0,

P
�

`b�⇤kj 6 b�kj 6 ub�⇤kj for all (j, k) 2 [p]⇥ [q]
�

6 Cn�c,

with 0 < ` 6 1 6 u and both ` ! 1 and u ! u0 > 1 polynomially fast. For this purpose,

define (infeasible) penalty loadings

�̌2kj := En[(Yik � Y k)
2] max

16i6n
W 2

ij,

e�2kj := En(eY
2
ik) max

16i6n
W 2

ij,

�2kj := E(eY 2
k )M

2
j ,

�2kj := E("2k)M
2
j ,

where Y k := En(Yik) and eYik := Yik � E(Yk). Under Assumptions 1.17 and 1.18, the initial

penalty loadings,

b�2kj = En{[bYik � En(bYik)]
2} max

16i6n
W 2

ij,

must satisfy

max
(j,k)2[p]⇥[q]

|b�2kj � �̌2kj| = max
(i,j)2[n]⇥[p]

W 2
ij max

16k6q
|En{[(bYik � En(bYik)]

2}� En[(Yik � Y k)
2]|

= max
(i,j)2[n]⇥[p]

W 2
ij max

16k6q
|En(bY

2
ik)� [En(bYik)]

2 � En(Y
2
ik) + [En(Yik)]

2|

6 C2
1

�

max
16k6q

|En(bY
2
ik � Y 2

ik)|+ max
16k6q

|[En(bYik)]
2 � [En(Yik)]

2|�

= C2
1

�

max
16k6q

|En[(bYik + Yik)eik|+ max
16k6q

|En(bYik + Yik)En(eik)|
�
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6 6C3
1 max
16k6q

En(|eik|)

6 6C3
1� (CS)

6 6C4
1

p

s ln (qn) /n with probability > 1� C2n
�c

2 .

Assumption 1.19 therefore implies that

max
(j,k)2[p]⇥[q]

|b�2kj � �̌2kj| 6 6C4
1

p

C2n
�c

2 with probability > 1� C2n
�c

2 .

Noting that Yik � Y k = eYik � En(eYik), we must have

max
(j,k)2[p]⇥[q]

|�̌2kj � e�2kj| = max
(i,j)2[n]⇥[p]

W 2
ij max

16k6q
|{En[(Yik � Y k)

2]� En(eY
2
ik)]}

6 C2
1 max
16k6q

|En{[eYik � En(eYik)]
2}� En(eY

2
ik)|

= C2
1

h

max
16k6q

|En(eYik)|
i2

.

By a maximal inequality for bounded random variables (Lemma 1.34), with probability

> 1� n�1/4, for some C 0 depending only on C1 we have max16l6p |En(eYil)| 6 C 0 ln (q) /n1/4 ,

which by the growth condition ln4 (q) 6 C2n1�c
2 , in turn, is 6 C 0n�c0 for c0 and (potentially

di↵erent) C 0 depending only on C1, c2 and C2. Hence, with the same probability,

max
(j,k)2[p]⇥[q]

|b�2kj � e�2kj| 6 C 0n�c0 , (1.N.1)

for potentially di↵erent c0 and C 0. A maximal inequality for bounded random variables

(Lemma 1.34) also shows that, with probability> 1�n�1/4, we have max16k6q | (En � E) (eY 2
il )| 6

C 0 ln (q) /n1/4, which by the growth condition ln4 (q) 6 C2n1�c
2 , in turn, is 6 C 0n�c0 for c0

and (potentially di↵erent) C 0 depending only on C1, c2 and C2. Adding and subtracting

E(eY 2
k )max16i6n W 2

ij for given (j, k) and using Assumption 1.18, we get

max
(j,k)2[p]⇥[q]

|e�2kj � �2kj| = max
(j,k)2[p]⇥[q]

|En[(Yik � Y k)
2] max

16i6n
W 2

ij � E(eY 2
k )M

2
j |

6 max
16k6q

| (En � E) (eY 2
ik)| max

(i,j)2[n]⇥[p]
W 2

ij + max
16k6q

E(eY 2
k ) max

16j6p

�

� max
16i6n

W 2
ij �M2

j

�

�

6 C2
1 max
16k6q

| (En � E) (eY 2
ik)|+ C2

1 max
16j6p

�

� max
16i6n

W 2
ij �M2

j

�

�

6 C2
1 max
16k6q

| (En � E) (eY 2
ik)|+ 2C3

1 max
16j6p

�

� max
16i6n

|Wij|�Mj

�

�

6 C 0n�c0 wp > 1� Cn�c (1.N.2)
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for potentially di↵erent c, C, c0 and C 0. Given that �2kj = E(eY 2
k )M

2
j > E("2k)M

2
j = �⇤2kj , the

previous two displays show that for potentially di↵erent c, C, c0 and C 0, with probability

> 1� Cn�c we have

b�2kj > �2kj � C 0n�c0 > �⇤2kj � C 0n�c0 for all (j, k) 2 [p]⇥ [q] .

A maximal inequality for bounded random variables (Lemma 1.34) shows that, with proba-

bility > 1 � n�1/4, we have max16k6q |(En � E)("2ik)| 6 C 0 ln (q) /n1/4, which by the growth

condition ln4 (q) 6 C2n1�c
2 , in turn, is 6 C 0n�c0 for c0 and (potentially di↵erent) C 0 depend-

ing only on C1, c2 and C2. Adding and subtracting E("2k)max16i6n W 2
ij for given j and using

Assumption 1.18, we get

max
(j,k)2[p]⇥[q]

|b�⇤2kj � �⇤2kj | = max
(j,k)2[p]⇥[q]

|En("
2
ik) max

16i6n
W 2

ij � E("2k)M
2
j |

6 max
16k6q

| (En � E) ("2ik)| max
(i,j)2[n]⇥[p]

W 2
ij + max

16k6q
E("2k) max

16j6p

�

� max
16i6n

W 2
ij �M2

j

�

�

6 C2
1 max
16k6q

| (En � E) ("2ik)|+ 2C3
1 max
16j6p

�

� max
16i6n

|Wij|�Mj

�

�

6 C 0n�c0 wp > 1� Cn�c

for potentially di↵erent c, C, c0 and C 0. The previous two displays now show that for poten-

tially di↵erent c, C, c0 and C 0, with probability > 1� Cn�c we have

b�2kj > b�⇤2kj � C 0n�c0 for all (j, k) 2 [p]⇥ [q] .

By �⇤2kj = E("2k)M
2
j > E("2kW

2
j ) and Assumption 1.18, the �⇤kj’s are bounded away from zero.

The previous diplay shows that for su�ciently large n and with probability approaching one

polynomially fast, so are the b�⇤kj’s. This observation combined with the previous display

shows that there exists ` = `n 2 (0, 1] nonrandom such that for su�ciently large n

`b�⇤kj 6 b�kj for all (j, k) 2 [p]⇥ [q]

with probability > 1�Cn�c, where `! 1 polynomially fast. On the other hand, (1.N.1) and

(1.N.2) combined with the b�⇤2kj ’s being bounded away from zero with probability approaching

one polynomially fast and the �2kj’s being bounded from above (Assumption 1.18) show that

there exists a u = un > 1 nonrandom such that for su�ciently large n

b�kj 6 ub�⇤kj for all (j, k) 2 [p]⇥ [q]
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with probability > 1 � Cn�c, where u ! u0 > 1 polynomially fast. The statement of the

lemma now follows from the previous two displays and the union bound.

Proof of Lemma 1.8. To establish true polynomial validity of the refined penalty loadings

we need to show that there exists `, u, c, C and n0 depending only on c0, c00, c1, C1, c2, C2 and

c02 such that for n > n0,

P
�

`b�⇤⇤kj 6 b�kj 6 ub�⇤⇤kj for all (j, k) 2 [p]⇥ [q]
�

6 Cn�c,

with 0 < ` 6 1 6 u and both ` ! 1 and u ! 1 polynomially fast. For this purpose, define

�⇤⇤2kj
:= E("2kW

2
j ), which by Assumption 1.18 are bounded from above and away from zero

by constants depending only on c1 and C1. The claim therefore follows if we can show that

there exists c, C, c0, C 0 and n0 depending only on c0, c00, c1, C1, c2, C2 and c02 such that for all

n > n0,

max
(j,k)2[p]⇥[q]

|b�2kj � b�⇤⇤2kj | 6 C 0n�c0 with probability > 1� Cn�c,

and that there exists (possibly di↵erent) c, C, c0, C 0 and n0 depending only on c0, c00, c1, C1, c2, C2

and c02 such that for all n > n0,

max
(j,k)2[p]⇥[q]

|b�⇤⇤2kj � �⇤⇤2kj | 6 C 0n�c0 with probability > 1� Cn�c.

Note that b"ik = bYik �W>
i
b�k = eik + "ik �W>

i �k, where �k := b�k � �k⇤. It follows that

max
(j,k)2[p]⇥[q]

|b�2kj � b�⇤⇤2kj | = max
(j,k)2[p]⇥[q]

|En[(b"
2
ik � "2ik)W

2
ij]|

= max
(j,k)2[p]⇥[q]

|En{[e2ik + 2"ikeik + (W>
i �k)

2 � 2("ik + eik)W
>
i �k]W

2
ij}|

6 max
(j,k)2[p]⇥[q]

En{[e2ik + 2|"ik||eik|+ (W>
i �k)

2 + 2(|"ik|+ |eik|)||W>
i �k|]W 2

ij}

6 C2
1 max
16k6q

En{[e2ik + 2C1|eik|+ (W>
i �k)

2 + 4C1|W>
i �k|]

6 C2
1(�

2 + 2C1�+ max
16k6q

k�kk22,n + 4C1 max
16k6q

k�kk2,n),

where the last inequality follows from Cauchy-Schwarz inequality. The first requirement now

follows Assumption 1.17, the hypothesis on the b�k’s and s ln (pqn) /n 6 C2n�c
2 . The second

requirement follows from a maximal inequality for bounded random variables (Lemma 1.34)
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and ln4 (pq) 6 C2n1�c
2 :

P

✓

max
(j,k)2[p]⇥[q]

|b�⇤⇤2kj � �⇤⇤2kj | > n�1/4

◆

6 n1/4E

✓

max
(j,k)2[p]⇥[q]

|b�⇤⇤2kj � �⇤⇤2kj |
◆

= n1/4E



max
(j,k)2[p]⇥[q]

| (En � E)
�

"2ikW
2
ij

�

�

6 n1/4C 0 ln (pq)p
n

= C 0
✓

ln4 (pq)

n

◆1/4

6 Cn�c.

1.N.2 Proofs for Section 1.H.2

Proof of Lemma 1.9. The claim will follow from an application of Lemma 1.7 with q :=

1. Assumption 1.17 holds trivially since Y is observed. Assumption 1.18 is implied by

Assumption 1.12. Lastly, the growth condition ln4(q) 6 C2n1�c
2 is trivial since q = 1.

Proof of Lemma 1.10. The claim will follow from an application of Lemma 1.8 with q :=

1. The performance bound (1.H.4) (with b�1 := bh and �1⇤ := h⇤) is implied by Lemma 1.4 and

the conservative polynomial validity of the initial penalty loadings (Lemma 1.9). Assumption

1.18 is implied by Assumption 1.12. Lastly, the growth condition s ln(pn)_ ln4 (p) 6 C2n1�c
2

is implied by Assumption 1.14.

Proof of Lemma 1.11. The claim will follow from an application of Lemma 1.7 with

q := q. Assumption 1.17 is implied by Assumptions 1.10, 1.12, 1.13 and 1.14 (cf. the proof

of Lemma 1.4). Assumption 1.18 is implied by Assumptions 1.12 and 1.13. The growth

condition ln4 (q) 6 C2n1�c
2 is implied by Assumption 1.14.

Proof of Lemma 1.12. The claim will follow from an application of Lemma 1.8 with

q := q. The performance bound (1.H.4) (with b�k := bµk and �k⇤ := µk⇤, k 2 {1, . . . , q})
is implied by Lemma 1.4 and the conservative polynomial validity of the penalty loadings

for both h⇤ and {µk⇤}q1 estimation (Lemmas 1.9 and 1.11). Assumption 1.18 is implied by

Assumptions 1.12 and 1.13. The growth requirement s ln (pqn)_ln4 (qn) 6 C2n1�c
2 is implied

by Assumption 1.14.
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1.O Proofs for Section 1.K

Proof of Lemma 1.29. For T ⇢ {1, . . . , p}, let BT
q := {✓ 2 Rp| k�kq 6 1, supp (�) ⇢ T}

and Dm
q := [|T |6mBT

q . Then

I := E
n

sup
k�k

0

6m,k�k=1

|�En � E
�

[(W>
i �)

2]|
o

6 E
n

sup
�2Dm

2

|�En � E
�

[(W>
i �)

2]|
o

.

By a symmetrization (Ledoux and Talagrand, 2013, Lemma 6.3),

nE
n

sup
�2Dm

2

|�En � E
�

[(W>
i �)

2]|
o

6 2E
⇣

E
n

sup
�2Dm

2

�

�

n
X

i=1

["i(W
>
i �)

2]
�

�

�

�

�

{Wi}n1
o⌘

, (1.O.1)

where {"i}n1 denotes independent Rademacher random variables, independent of {Wi}n1 . Let
{gi}n1 denote independent standard Gaussian random variables, independent of both {"i}n1
and {Wi}n1 . Given that E (|gi|) =

p

2/⇡, "i |gi| is distributed as gi, and {"i}n1 , {gi}n1 and

{Wi}n1 are independent,

E
n

sup
�2Dm

2

�

�

n
X

i=1

["i(W
>
i �)

2]
�

�

�

�

�

{Wi}n1
o

=
p

⇡/2E
n

sup
�2Dm

2

�

�

n
X

i=1

["iE ( |gi|| {"i}n1 , {Wi}n1 ) (W>
i �)

2]
�

�

�

�

�

{Wi}n1
o

6
p

⇡/2E
n

sup
�2Dm

2

�

�

n
X

i=1

["i |gi| (W>
i �)

2]
�

�

�

�

�

{Wi}n1
o

(Jensen)

=
p

⇡/2E
n

sup
�2Dm

2

�

�

n
X

i=1

[gi(W
>
i �)

2]
�

�

�

�

�

{Wi}n1
o

. (1.O.2)

By Dudley’s inequality (Ledoux and Talagrand, 2013, Theorem 11.17)

E
n

sup
�2Dm

2

�

�

n
X

i=1

[gi(W
>
i �)

2]
�

�

�

�

�

{Wi}n1
o

.
Z diam(Dm

2

)

0

p

lnN (✏, Dm
2 , d)d✏, (1.O.3)

where diam(Dm
2 ) = sup�,�02Dm

2

d (✓, ✓0) for d being the intrinsic L2 metric (conditional on

{Wi}n1 ). This metric satisfies

d (�, �0) ⌘
⇣

E
nh

n
X

i=1

[gi(W
>
i �)

2]�
n
X

i=1

[gi(W
>
i �

0)2
i2�
�

�

{Wi}n1 ]
o⌘1/2

=
n

n
X

i=1

[(W>
i �)
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i �

0)2]2
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6
h

n
X

i=1

(W>
i � +W>

i �
0)2
i1/2

max
16i6n

|W>
i � �W>

i �
0|

6 2 sup
�2Dm

2

h

n
X

i=1

(W>
i �)

2
i1/2

=: 2Rk� � �0kW
= 2

p
mRk�/pm� �0/

p
mkW

where I have defined R := sup�2Dm

2

[
Pn

i=1(W
>
i �)

2]1/2 and the norm k�kW := max16i6n|W>
i �|.

The previous display shows that

N (✏, Dm
2 , d) 6 N(✏/(2

p
mR), Dm

2 /
p
m, k·kW ).

Note that

diam(Dm
2 ) 6 2 sup

�2Dm

2

h

n
X

i=1

(W>
i �)

4
i1/2

6 2 sup
�2Dm

2

h

n
X

i=1

(W>
i �)

2kWik21k�k21
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(Hölder)

6 2 sup
�2Dm

2

h

n
X

i=1

(W>
i �)

2M2(
p
m)2

i1/2

(� 2 Dm
2 )

= 2
p
mMR.

The previous two displays combine to show that

Z diam(Dm

2

)

0

p

lnN (✏, Dm
2 , d)d✏ 6

Z 2
p
mMR

0

q

lnN(✏/(2
p
mR), Dm

2 /
p
m, k·kW )d✏

= 2
p
mR

Z M

0

q

lnN(✏, Dm
2 /

p
m, k·kW )d✏ (✏0 := ✏/(2

p
mR))

=: 2
p
mR

Z M

0

H (✏) d✏. (1.O.4)

If � 2 BT
2 /

p
m, then supp (�) ⇢ T and k�k 6 1/

p
m. It follows that k✓k1 6 1, so � 2 BT

1 . It

follows that

BT
2 /

p
m ⇢ BT

1 . (1.O.5)
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Similarly,

Dm
2 /

p
m ⇢ Dm

1 ⇢ B1, (1.O.6)

where B1 := {� 2 Rp| k�k1 6 1}. The discussion following the proof of Rudelson and Ver-

shynin (2008, Lemma 3.9) shows that N(✏, Dm
1 , k·kW ) 6Pm

j=1

�

p
j

�

(1 + 2M/✏)m for all ✏ > 0.

Stirling’s approximation shows that
Pm

j=1

�

p
j

�

6 (A2p/m)m 6 (A2p)m for A2 universal. This

bound and the first containment in (1.O.6) therefore show that

H (✏) 6
p
m[
p

ln(A2p) +
p

ln(1 + 2M/✏)]

.
p
m[
p

ln p+
p

ln(1 + 2M/✏)] =: H1 (✏) . (p > 2)

Rudelson and Vershynin (2008, Lemma 3.9) shows that N(✏, B1, k·kX) 6 (2p)A1

"�2M2 lnn for

all ✏ > 0 and A1 universal. This bound and the second containment (1.O.6) show that for

any ✏ > 0,

H (✏) 6
q

ln[(2p)A1

✏�2M2 lnn] .M
p

ln p
p
lnn✏�1 =: H2 (✏) . (p > 2)

The previous two displays imply that for any a 2 (0,M ],

J (m,M) := 2
p
mR

Z M

0

H (✏) d✏

= 2
p
mR

h

Z a

0

H (✏) d✏+

Z M

a

H (✏) d✏
i

6 2
p
mR

h

Z a

0

H1 (✏) d✏+

Z M
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H2 (✏) d✏
i

. (1.O.7)

The first integral in (1.O.7) satisfies
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0

H1 (✏) d✏ .
p
m
h

a
p

ln p+

Z a

0

p

ln(1 + 2M/✏)d✏
i

.

Integrating by parts, using u(✏) :=
p

ln(1 + 2M/✏) and v0(✏) := 1, the right-hand side integral

becomes

Z a

0

p

ln(1 + 2M/✏)d✏
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ln(1 + 2M/✏)
�

�

�
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0
�
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✏
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2
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✏2
d✏
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= a
p

ln(1 + 2M/a) +

Z a

0

1

2
p

ln(1 + 2M/✏)
· 1

1 + 2M/✏
· 2M
✏

d✏.

Substituting u := 2M/✏, the remaining integral may be written as
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2
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1
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Since a 2 (0,M ], 2M/a > 2, and thus ln (1 + 2M/a) > 1. It follows that
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1
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du 6M
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1

u2
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2
.

The four previous displays combine to show that

Z a

0

H1 (✏) d✏ .
p
m
h

a
p

ln p+ a
p

ln(1 + 2M/a) +
a

2

i

. a
p
m
h

p

ln p+
p

ln(1 + 2M/a)
i
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The second integral in (1.O.7) satisfies
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a
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p
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p

ln (2p)
p
lnn

Z M

a

✏�1

.M
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ln p
p
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Applying the previous two bounds to (1.O.7), we get

J (m,M) . amR
h

p

ln p+
p

ln(1 + 2M/a)
i

+
p
mMR

p

ln p
p
lnn (lnM � ln a) .

Choosing a := M/
p
m, which is allowed by m > 1, we arrive at
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p
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�

.
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m ln pMR
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The sequence of inequalities (1.O.1), (1.O.2), (1.O.3), (1.O.4) and (1.O.8) now yield that for

some A universal and �n (m) := A
p
m ln p[E(M2)]1/2[1 + (lnm)

p
lnn],

I 6 A
p

m ln pE (MR)
h

1 + (lnm)
p
lnn
i

/n

6 A
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m ln p
⇥

E
�

M2
�⇤1/2

h

1 + (lnm)
p
lnn
i

⇥

E
�

R2/n
�⇤1/2

(Cauchy-Schwarz)

= �n (m)
⇥

E
�

R2/n
�⇤1/2

6 �n (m)
⇣

I + sup
k�k

0

6m,k�k=1

E[(W>
i �)

2]
⌘1/2

(Triangle)

=: a
p
I + b.

Now, for I, a and b nonnegative, I 6 a
p
I + b is equivalent to I2�a2I�a2b > 0. The largest

root of this U-shaped quadratic function is 1
2
[a2 + (a4+4a2b)1/2] 6 1

2
(2a2+2a

p
b) = a2+a

p
b.

Hence

I 6 �2n (m) + �n (m) sup
k�k

0

6m,k�k=1

q

E[(W>
i �)

2].

Proof of Lemma 1.30. Fix A real symmetric and a > 0. Suppress the dependence on

A such that (a) := (a,A),�min(a) := �min(a,A) and �max(a) := �max(a,A). Let T be an

arbitrary subset of {1, . . . , p} of cardinality at most s. Without loss of generality we may

assume that T is nonempty such that |T | > 1. (If the minimum in the definition of  (a) is

attained at T = ;, then  (a) = +1, and there is nothing to prove.) Let m 2 {1, . . . , p}
and � 6= 0 such that k�T ck1 6 ak�Tk1 be arbitrary. Following the proof of Bickel, Ritov,

and Tsybakov (2009, Lemma 4.1), partition T c = [K
k=1Tk into K = d(p� |T |) /me subsets,

{Tk}K1 , where |Tk| = m, k = 1, . . . , K� 1, and |TK | 6 m such that Tk is contains the indices

corresponding to the m (in absolute value) largest coordinates of � outside T [ ([k�1
j=1Tj)

for k = 1, . . . , K � 1, and TK is the remaining subset. Then using � = �S + �Sc for any

S ⇢ {1, . . . , p}, by the triangle inequality,

k�k2,n > k�T[T
1

k2,n � k�(T[T
1

)ck2,n.

Given that |T [ T1| = |T |+ |T1| 6 s+m,

k�T[T
1

k2,n >
p

�min (s+m)k�T[T
1

k >
p

�min (s+m)k�Tk.
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Since {Tk}K1 partition T c, (T [ T1)c = T c \ T c
1 = [K

k=2Tk, and |Tk| 6 m,

k�(T[T
1

)ck2,n =
�

�

�

K
X

k=2

�T
k

�

�

�

2,n
6

K
X

k=2

k�T
k

k2,n 6
p

�max (m)
K
X

k=2

k�T
k

k,

where I have used that �max is a nondecreasing function. By construction of the Tk’s,

maxj2T
k+1

|�j| 6 minj2T
k

|�j| 6 k�T
k

k1/m, and thus k�T
k+1

k 6 k�T
k

k1/
p
m for each k 2

{1, . . . , K � 1}. Hence
K
X

k=2

k�T
k

k 6 1p
m

K�1
X

k=1

k�T
k

k1 6 k�T ck1p
m
6 c0k�Tk1p

m
.

The previous four displays show that

k�k2,n >
p

�min (s+m)
k�Tk1p

s
� a
p

�max (m)
k�Tk1p

m
.

Rearranging we get

p
sk�k2,n
k�Tk1 >

p

�min (s+m)� a

r

�max (m) s

m
.

Proof of Lemma 1.31. Denote

�min (m) := �min

�

m,En(WiW
>
i )
�

,

�max (m) := �max(m,En(WiW
>
i )),

and Vn (m) := sup
k�k

0

6m,k�k=1

| �En � E
�

[(W>
i �)

2]|.

Given that

�min (m) ⌘ inf
k�k

0

6m,k�k=1
En[(W

>
i �)

2] > inf
k�k

0

6m,k�k=1
E[(W>

i �)
2]� Vn (m) > �L � Vn (m) ,

we must have

P (�min (m) < �L (m) /2) 6 P (Vn (m) > �L (m) /2) 6 2�L (m)�1 E [Vn (m)]

6 2�L (m)�1
h

�2n (m) + �n (m) sup
k�k

0

6m,k�k=1

q

E[(W>
i �)

2]
i

(Lemma 1.29)
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6 2�L (m)�1
h

�2n (m) + �n (m)
p

�H (m)
i

.

Given that

�max (m) ⌘ sup
k�k

0

6m,k�k=1

En[(W
>
i �)

2] 6 sup
k�k

0

6m,k�k=1

E[(W>
i �)

2] + Vn (m) 6 �H (m) + Vn (m) ,

we must have

P (2�H (m) < �max (m)) 6 P (Vn (m) > �H (m)) 6 �H (m)�1 E [Vn (m)]

6 �H (m)�1
h

�2n (m) + �n (m) sup
k�k

0

6m,k�k=1

q

E[(W>
i �)

2]
i

(Lemma 1.29)

6 �H (m)�1
h

�2n (m) + �n (m)
p

�H (m)
i

.

Proof of Lemma 1.32. Denote

�min (m) := �min

�

m,En(WiW
>
i )
�

,

�max (m) := �max

�

m,En(WiW
>
i )
�

,

�L (m) := �min

�

m,E(WiW
>
i )
�

,

and �H (m) := �max

�

m,E(WiW
>
i )
�

.

Given that the eigenvalues of E(WiW>
i ) are bounded away from zero,

�L (s ln (n) + s) = inf
k�k

0

6s ln(n)+s,k�k=1
E[(W>

i �)
2]

> min
k�k=1

E[(W>
i �)

2] = �min

�

E(WiW
>
i )
�

> c21.

Lemma 1.31 therefore implies that

P
�

�min (s ln (n) + s) < c21/2
�

6 2c�2
1

h

�2n (s ln (n) + s) +
p

C1�n (s ln (n) + s)
i

for some A universal and

�n (m) := AC1

r

m ln p

n

h

1 + (lnm)
p
lnn
i

, m > 1.
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Given that

�n (s ln (n) + s) . C1

r

s ln (n) ln (p) + s ln (p)

n

h

1 + (ln (s ln (n) + s))
p
lnn
i

. C1

s

s ln5 (pn)

n
,

there exists constants c(1) and C(1) depending only on c1, C1, c2 and C2 such that

P
�

�min (s ln (n) + s) < c21/2
�

6 C(1)n
�c

(1) .

Given that the eigenvalues of E(WiW>
i ) are bounded from above,

�H (s lnn) = sup
k�k

0

6s lnn,k�k=1

E[(W>
i �)

2]

6 max
k�k=1

E[(W>
i �)

2] = �max

�

E(WiW
>
i )
�

6 C2
1 .

Lemma 1.31 therefore implies that

P
�

2C2
1 < �max (s lnn)

�

6 C�2
1

h

�2n (s lnn) +
p

C1�n (s lnn)
i

.

Given that

�n (s ln (n)) . C1

r

s ln (n) ln (p)

n

h

1 + (ln (s ln (n)))
p
lnn
i

. C1

s

s ln5 (pn)

n
,

there exists constants c(2) and C(2) depending only on c1, C1, c2 and C2 such that

P
�

2C2
1 < �max (s lnn)

�

6 C(2)n
�c

(2) .

The claim now follows from the union bound.

Proof of Lemma 1.33. By Lemma 1.30, on the event E := {c21/2 6 �min (s ln (n) + s) 6
�max (s lnn) 6 2C2

1} we have

 (a) > max
16m6p

(

p

�min (s+m)� a

r

�max (m) s

m

)
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>
p

�min (s ln (n) + s)� a

r

�max (s lnn)

lnn

>
r

c21
2
� a

r

2C2
1

lnn
,

which is >
p

c1/8 if and only if n > exp(16a2C2
1/c

2
1). The claim now follows from Lemma

1.32, which shows that P (Ec) 6 Cn�c for c and C depending only on c1, C1, c2 and C2.

1.P Proofs for Section 1.L

Proof of Lemma 1.34. Chernozhukov, Chetverikov, and Kato (2015, Lemma 8) shows

that

E



max
16j6p

|En (Xij)|
�

. max
16j6p

[E
�

X2
j

�

]1/2
r

ln p

n
+



E

✓

max
(i,j)2[n]⇥[p]

X2
ij

◆�1/2 ln p

n
.

The claim therefore follows from

E( max
(i,j)2[n]⇥[p]

X2
ij) 6

n
X

i=1

E(max
16j6p

X2
ij) = nE(max

16j6p
X2

j ) 6 nM2.

Proof of Lemma 1.36. The maximal inequality (Lemma 1.34) implies

E[max
16j6p

|En (Xij)|] 6 C 0 ln pp
n
,

where C 0 depends only on M . Taking t = lnn, the second part of Talagrand’s inequal-

ity (Lemma 1.35) combined with the previous display imply that for some C 0, C 00 and C 000

depending only on M ,

P

 

max
16j6p

|En (Xij)| > C 0 ln pp
n
+ C 00

r

lnn

n
+ C 000 lnn

n

!

6 n�1.

Noting that

ln (pn)p
n
> max

(

ln pp
n
,

r

lnn

n
,
lnn

n

)

,

the claim now follows from recasting C 0 as the maximum of the three constants.
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Proof of Lemma 1.37. If �2 = 0 then X = 0 a.s., and E[ 2(|X|/C)] = 0 for any C > 0.

The infimum of such C’s is zero, so kXk 
2

= 0 as claimed. Assume therefore �2 > 0.

Since (X/�)2 ⇠ �2
1, E{exp[(X/C)2]} = E{exp[(�/C)2(X/�)2]} is the moment-generating

function (MGF) of a chi-square random variable with one degree of freedom evaluated at

(�/C)2. Guess and verify that (�/C)2 < 1
2
, such that this MGF is well defined at (�/C)2.

Then E{exp[(�/C)2(X/�)2]} = [1 � 2(�/C)2]�1/2. Now E[ 2(|X|/C)] 6 1 if and only if

E{exp[(X/C)2]} 6 2, which rearranges to C >
p

8/3�. Given that (�/C)2 < 1
2
rearranges

to C >
p
2�, and Since 8/3 > 8/4 = 2, the earlier guess was indeed correct.

Proof of Lemma 1.38. By convexity, increasingness and property of C,

 

✓

E
h

max
16j6p

|Xj| /C
i

◆

6 E
h

 
⇣

max
16j6p

|Xj| /C
⌘i

= E
h

max
16j6p

 (|Xj| /C)
i

6
p
X

j=1

E [ (|Xj|/C)] 6 p max
16j6p

E [ (|Xj|/C)] 6 p.

so by strict increasingness,

E
h

max
16j6p

|Xj|
i

6 C �1 (p) .

Proof of Lemma 1.39. The function  2(t) = et
2 � 1 is nonnegative, convex, and strictly

increasing on R+. Lemma 1.37 shows that kXjk 
2

=
p

8/3�j, so taking C := maxjkXjk 
2

=
p

8/3maxj �j, we must have maxj E [ 2 (|Xj|/C)] 6 1. Lemma 1.38 therefore yields

E
h

max
16j6p

|Xj|
i

6
p

8/3
p

ln (1 + p) max
16j6p

�j.

Then second inequality follows from ln(1 + p) < 2 ln p for p > 2.

Proof of Lemma 1.41. The Gaussian maximal inequality (Lemma 1.39) implies that

E
h

max
16j6p

|Xj|
i

6 K�
p

ln p,

for K universal. Given that

K�
p

ln p+
p
2�

p
lnn 6 (K +

p
2)�
p

ln (pn),
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Borell’s inequality with t :=
p
lnn, shows that

P
⇣

kXk1 > (K +
p
2)�
p

ln (pn)
⌘

6 P
⇣

kXk1 > K�
p

ln p+
p
2�

p
lnn
⌘

6 P

✓

kXk1 > E
h

max
16j6p

|Xj|
i

+
p
2�

p
lnn

◆

6 n�1.

Recast the universal constant as K +
p
2.

Proof of Lemma 1.43. For any � > 0, using J followed by subgaussianity

E
⇣

max
16j6p

Xj

⌘

=
1

�
E
n

ln
h

exp
�

� max
16j6p

Xj

�

io

6 1

�
ln
n

E
h

exp
�

� max
16j6p

Xj

�

io

=
1

�
ln
h

E
⇣

max
16j6p

e�Xj

⌘i

6 1

�
ln
h

p
X

j=1

E
�

e�Xj

�

i

6 1

�
ln
⇣

p
X

j=1

e�
2�2/2

⌘

=
1

�
ln
⇣

pe�
2�2/2

⌘

=
ln p

�
+
��2

2
.

If �2 = 0, then we may let � ! 1 to obtain a zero upper bound. If �2 > 0, then the

right-hand side has minimum �
p
2 ln p, attained at � =

p
2 ln p/�, which establishes the first

claim. The second claim follows from the first by noting that

max
16j6p

|Xj| = max
16j62p

Xj,

where Xp+j := �Xj for j 2 {1, . . . , p}.

1.P.1 Moderate Deviation Inequalities for Self-Normalized Sums

Let {Xi}n1 be independent, centered random variables with 0 < E(X2
i ) < 1. Define

Sn :=

Pn
i=1 Xi

(
Pn

i=1 X
2
i )

1/2

dn,� :=
[
Pn

i=1 E(X
2
i )]

1/2

[
Pn

i=1 E(|Xi|2+�)]1/(2+�) , 0 < � 6 1.

Theorem 1.8 (de la Pena, Lai, and Shao, 2009, Theorem 7.4). For any 0 6 x 6 dn,�,

P (Sn > x)

1� � (x)
= 1 +O (1)

✓

1 + x

dn,�

◆2+�

,

P (Sn 6 �x)

� (�x)
= 1 +O (1)

✓

1 + x

dn,�

◆2+�

,
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where |O (1) | 6 A for A absolute.

Corollary 1.1 (of Theorem 1.8). For any 0 6 x 6 dn,�,

�

�

�

�

P (|Sn| > x)

2 [1� � (x)]
� 1

�

�

�

�

6 A

✓

1 + x

dn,�

◆2+�

,

for the same absolute constant A as in Theorem 1.8.

Proof. Fix 0 6 x 6 dn,�. By Theorem 1.8,

1� A

✓

1 + x

dn,�

◆2+�

6 P (Sn > x)

1� � (x)
6 1 + A

✓

1 + x

dn,�

◆2+�

and

1� A

✓

1 + x

dn,�

◆2+�

6 P (Sn 6 �x)

� (�x)
6 1 + A

✓

1 + x

dn,�

◆2+�

.

We know �(�x) = 1� �(x). Now,

P (|Sn| > x) = P (Sn > x) + P (Sn 6 �x)

implies both

P (|Sn| > x) 6 2 [1� � (x)]

"

1 + A

✓

1 + x

dn,�

◆2+�
#

and

P (|Sn| > x) > 2 [1� � (x)]

"

1� A

✓

1 + x

dn,�

◆2+�
#

.

Lemma 1.50. Suppose that c1 6 [E(X2
i )]

1/2 6 [E(|Xi|2+�)]1/(2+�) 6 C1 for some 0 < � 6 1,

where c1 and C1 depend only on �. If 0 6 ��1 (1� ↵) 6 dn,�, then

P
�|Sn| > ��1 (1� ↵)

�

6 2↵
h

1 + A (1 + C1/c1)
2+�
i

,

for the same absolute constant A as in Theorem 1.8.

Proof. Given that 0 6 ��1 (1� ↵) 6 dn,�, Corollary 1.1 applies with x = ��1 (1� ↵). Since
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we also have

dn,� =
n�/(4+2�)[E (X2

i )]
1/2

[E(|Xi|2+�)]1/(2+�)
> c1n�/(4+2�)

C1

> c1
C1

,

it follows that

P
�|Sn| > ��1 (1� ↵)

�

6 2[1� �(��1 (1� ↵))]

"

1 + A

✓

1 + ��1 (1� ↵)

dn,�

◆2+�
#

6 2↵
h

1 + A (C1/c1 + 1)2+�
i

.

Now let {Xi}n1 denote independent, centeredRp⇥q-valued random variables, where pq > 2.

Define

Snjk :=

Pn
i=1 Xijk

(
Pn

i=1 X
2
ijk)

1/2
,

Mnjk,� :=
[E
�

X2
ijk

�

]1/2

[E(|Xijk|2+�)]1/(2+�)
.

Proof of Lemma 1.44. Since ��1 (1� z) 6
p

2 ln (1/z) for 0 < z < 1 and 0 6 c3 6 1,

we must have

��1
�

1� n�c
3/ (2pq)

�

6
p

2 ln(2pqnc
3) 6 2

p

ln(pqn) 6 2
p

C2n
(1�c

2

)/2.

The moment conditions imply n�/(4+2�) min16j6p Mnjk,� > c1n�/(4+2�)/C1. The condition

2
p
C2n(1�c

2

)/2 6 c1n�/(4+2�)/C1 rearranges to the condition on n > (2C1

p
C2/c1)2/[c2�8/(8+4�)].

It follows that ��1 (1� n�c
3/ (2pq)) 6 n�/(4+2�) min16j6p Mnjk,�, so by the union bound and

Lemma 1.50 with ↵ = n�c
3/ (2pq),

P

✓

max
(j,k)2[p]⇥[q]

|Snjk| > ��1
�

1� n�c
3/ (2pq)

�

◆

6
p
X

j=1

q
X

k=1

P
�|Snjk| > ��1

�

1� n�c
3/ (2pq)

��

6
p
X

j=1

q
X

k=1

2
n�c

3

2pq

h

1 + A (1 + C1/c1)
2+�
i

=
h

1 + A (1 + C1/c1)
2+�
i

n�c
3 .
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Chapter 2

Identification and Estimation of a

Generalized Panel Regression Model

2.1 Introduction

Many microeconometric panel data models involve limited dependent variables. In limited

dependent variable models, the observable dependent variable Y is generated by a latent,

unobserved dependent variable Y ⇤ through a map D, which cannot be reversed. Hence,

only the “limited” version Y = D(Y ⇤) of the latent dependent variable Y ⇤ is observed by

the econometrician.

Examples of econometric models involving limited dependent variables are the panel data

binary threshold crossing, censored, truncated and discrete choice models. One example of

an underlying economic limited dependent variable model is a labor force participation model

of married females. Here, the observable dependent variable is whether a married female is

participating in the labor market or not, and the unobservable dependent variable is the

married female’s willingness to participate. Another example is interval coding of wealth

or, more generally, data censoring in survey data. In the interval–coding example, the

unobservable dependent variable is family wealth, while the observable dependent variable is

family wealth recorded up to a wealth bracket of, say, $100,000–$125,000. That is, the only

thing recorded in the data is that wealth is within the bracket—not the value itself.

Often, the latent dependent variable is assumed to depend on a function ho of the observ-

able regressors Xt and unobservable random terms. In the panel setting, the unobservables

are divided into a time–invariant unobservable component, or “fixed e↵ect,” ↵ and an unob-

servable random term, or “disturbance,” ✏t. Hence, the latent dependent variable is typically

modeled as Y ⇤t = F (ho(Xt),↵, ✏t) for some map F , which allows us to write the observable
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dependent variable as

Yt = D � F (ho(Xt),↵, ✏t), (2.1.1)

where D � F denotes the composite function.

The traditional approach to estimation of limited dependent variable panel data models

is to specify a parametric form for the function ho and for the conditional distribution of the

unobservable random components (↵, ✏t) given the regressors. Furthermore, the composite

function D � F is typically not only specified up to an unknown parameter but completely

specified. As a result, such panel data models are vulnerable to the choice of parametric

families in which ho and the conditional distribution of the unobservable random components

are assumed to belong, as well as the particular choice of D�F . Specifically, misspecification

of either of these components may lead standard estimators to be inconsistent.

In this paper, I analyze identification and estimation of a class of nonseparable panel

data models of the form in (2.1.1), which I refer to jointly as the generalized panel regression

model (GPRM). I show that it is possible to identify the GPRM without imposing any

parametric structure on the function ho of the regressors, the mapping D �F through which

the function of regressors, fixed e↵ect, and disturbance term generate the dependent variable,

or the conditional distribution of unobservables (↵, ✏t).

Building on my identification result, I develop a series maximum rank correlation esti-

mator (SMRCE) of the function of ho of the regressors and provide conditions under which

consistency in an L2 sense is achieved. I also provide conditions under which both L2 and

uniform convergence rates of the SMRCE may be derived.

The GPRM assumes that the dependent variable is monotonically related to the function

ho of the regressors, but the form of this relationship is left unspecified. The monotonicity

property is a feature shared by the limited dependent variable models mentioned above as

well as the panel regression model and some duration, and transformation models. As such,

identification and estimation of all of these panel models may be analyzed within a unified

framework provided by this paper.

The method of MRC minimizes misspecification biases stemming from an incorrectly

imposed form of D�F by leaving this composite mapping unspecified. The method of series,

or, more generally, sieves, minimizes the possibility of misspecification stemming from an

incorrectly imposed parametric form by instead allowing ho to be nonparametric. Taken

together, the method of SMRC estimation thus limits the scope of misspecification and may

be used to investigate the validy of estimates obtained under parametric assumptions.

The GPRM admits arbitrary dependence between the explanatory variables and the fixed
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e↵ect and permits a fixed e↵ect of any finite dimension. Dependence between the explanatory

variables and the fixed e↵ect is often predicted by economic theory, in particular when the

explanatory variable is itself an outcome of an agent’s decision problem, where unobservable

(to the econometrician) random components enter. One example of such a model is the

human capital–earnings model, where individuals choose their level of education at least

partially based on their own innate ability. Allowing for a multidimensional fixed e↵ect to

enter in a flexible way permits one to proceed with estimation even in cases where the fixed

e↵ect cannot be credibly summarized by a scalar unobservable component which may only

enter additively.

Besides leaving D �F unspecified, MRC estimation also allows one to estimate the func-

tion ho of the regressors without specifying the conditional distribution of the unobservables.

Because the MRCE avoids specifying the conditional distribution of the unobservables, it is

said to be distribution–free. Distribution–free estimation was introduced to econometrics by

Manski (1975), who showed that the parameters of ho (assumed linear) in a cross–sectional

multinomial choice model could be consistently estimated without specifying the distribu-

tion of the disturbance terms. Many other papers have developed semiparametric distribu-

tion–free methods in the case of the cross–sectional binary choice model (see, for example,

Cosslett 1983 and Manski 1985). Manski (1987) showed how to identify and consistently

estimate a linear ho in a binary threshold crossing model involving panel data.

The estimators from the previous papers were robust to misspecification of the (condi-

tional) distribution of the unobserved random component(s), but required ho to be paramet-

ric and, specifically, linear. Matzkin (1992) developed a nonparametric and distribution–free

estimator of the cross–sectional binary threshold crossing and binary choice models, thus

avoiding misspecification bias stemming from an incorrect functional form for ho and the

distribution of the disturbance term (here assumed independent of the regressors).

The previous papers all assume the map D � F to be known, i.e. fully specified. To

avoid this potential source of misspecification, Han (1987) introduced the generalized regres-

sion model in a cross–sectional framework. Han showed that, subject to mild monotonicity

requirements, one could consistently estimate the parameters of ho (assumed linear), while

leaving the map D � F and the distribution of the disturbance unspecified. Matzkin (1991)

extended the analysis of Han by developing a consistent estimator for a nonparametric ho

assumed to belong to a set of increasing, concave, and linearly homogeneous functions.

Maintaining the linear ho assumption, Abrevaya (2000) extended Han in another direction

by adapting the model to panel data.

I contribute to two literatures within econometrics, the first being the literature on gener-

alized regression models and, hence, distribution–free methods. My first contribution to this
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literature is to provide conditions under which the function ho of the regressors is nonpara-

metrically identified within a rich class of functions in a generalized panel regression model.

In order to obtain identification, I assume that the regressors may be partitioned such that ho

is additively separable in each element of the partition, and that the function through which

one of the partitioning sets enters is linearly homogeneous and strictly increasing in one

argument. Special cases satisfying this requirement include the assumption of (full) linear

homogeneity in Matzkin (1991), where the partition is trivial, and the assumption of additive

separability into the value of one regressor, where the partitioning separates a single, hence

“special,” regressor from the remaining variables (see Manski 1985, 1987; Abrevaya 2000 for

examples of the use of a special regressor when ho is assumed linear).1 Second, I provide

conditions under which the nonparametric estimator suggested by my identification result is

consistent, and third, I derive convergence rates in both an L2–type and uniform distance.

The present paper is the first to obtain consistency in the panel GRM, and the first to derive

rates of convergence in any nonparametric cross–sectional or panel GRM.2

I also contribute to the literature on rates of convergence of series, or, more generally, sieve

estimators by establishing convergence rates for a series estimator based on maximization

of a nonsmooth objective function constructed from unconventional conditional moment

restrictions. The latter moment conditions are similar to the moment restrictions used to

construct the maximum score estimator (MSE) of Manski (1985), which is known to possess

nonstandard asymptotic properties.

The fact that the objective function is based on unconventional conditional moment

restrictions similar to the MSE implies that the su�cient conditions for derivation of the

rates of convergence provided by e.g. Chen and Pouzo (2012) for conventional conditional

moment restriction estimators do not apply. (See also Section 2.3.1.) The lack of smoothness

implies that general results for convergence rates of series or sieve estimators, such as the

1Matzkin modified the arguments of Abrevaya (2000) to obtain nonparametric identification of h
o

within a
class of increasing, concave, and linearly homogeneous functions (see Matzkin, 2007, Section 4.5.3). Matzkin’s
identifying assumptions are di↵erent from the assumptions invoked in this paper, and neither set of assump-
tions is nested in the other due to the di↵erent treatments of the fixed e↵ect. Hence, the two identification
results should be viewed as complementary.

2Recently, Berry and Haile (2009) introduced a heterogeneous generalized regression model with group
e↵ects and provided su�cient conditions for identification using multiple “special regressor” assumptions.
Souza-Rodrigues (2014) developed an estimator of the model of Berry and Haile (2009) and established
consistency and convergence rates of the estimator. However, Berry and Haile (2009), and therefore Souza-
Rodrigues (2014), conduct their asymptotic analysis as both the number of groups (n) and the number of
members of each group (T

i

) grow without bound. Their asymptotic analysis is therefore more demanding in
terms of the observational framework than the typical “large n–small T” panel setting studied in this paper.
While the large n–large T

i

assumption may appear natural in a study of, say, many and large markets, it is
typically unnatural in the context of panel data.
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ones provided by Chen (2007), Chen and Shen (1998), Chen and White (1999), or Shen

and Wong (1994), do not apply. (See also Remark 2.5.) These comments highlight that the

SMRCE must be treated di↵erently than conventional moment restriction estimators.

In the next section I introduce the GPRM and discuss maximum rank correlation in

more detail. I provide su�cient conditions for identifying the function ho of the regressors

in Section 2.3 and employ this identification result to develop a series estimator for ho in

Section 2.4. I establish its consistency in Section 2.5, and derive convergence rates of the

proposed estimator in Section 2.6. Section 1.6 summarizes. Formal proofs of theorems are

in Section 2.A and supporting results in Section 2.B of the appendix.

Notation

Throughout this paper, kxk denotes the Euclidean norm kxk := kxke = (
Pd

i=1 x
2
i )

1/2 when

applied to a finite–dimensional vector x 2 Rd, d 2 N, kAk the Frobenius norm kAk :=

kAkF = (
Pd

i,j=1 a
2
ij)

1/2 when applied to a d⇥ d matrix A = (aij), and kfkX the supremum

norm of a real–valued function f with domain X ⇢ Rd, kfkX := sup
x2X |f (x)|. For a d⇥ d

matrix A, �j(A), j = 1, . . . , d, denotes its eigenvalues, and, in particular, �(A) and �(A) its

smallest and largest eigenvalue, respectively. Given positive numbers an and bn for n > 1,

an . bn and an = O(bn) both mean that an/bn is bounded, and an ⇣ bn that both an . bn and

bn . an. The underlying probability space is (⌦,⌃,P). Given Rd–valued random variables

Vn, n 2 N, Vn .P bn and Vn = OP (bn) both denote that Vn/bn is bounded in probability,

i.e. limc!1 lim supn!1 P(kVk > cbn) = 0 and Vn = oP (bn) denotes that Vn/bn converges

to zero in probability, i.e. limn!1 P (kVnk > cbn) = 0 for all c > 0. I use E to denote the

expectation taking with respect to the distribution ⌫ (the law of V), i.e. E(V) =
R

v⌫ (dv),

and En the expectation relative to the empirical distribution, i.e. En (V) = (1/n)
Pn

i=1 Vi

where Vi, i = 1, . . . , n, is a random sample from ⌫. For a function f of a reference random

variable V clear from context, I use E(f) and En (f) as short for E(f(V)) and En(f(V)),

respectively.

2.2 Model

Let Z := (Zt : t = 1, . . . , T ) := ((Yt,Xt) : t = 1, . . . , T ) be a T–period observation from a dis-

tribution P with support equal to a subset S ofRT (1+d
x

). Here Yt is a scalar response variable,

and Xt a vector of regressors of dimension dx varying over time t = 1, . . . , T . Throughout the

paper I consider a sequence of nonparametric generalized regression models for panel data,

or generalized panel regression models (GPRMs), indexed by the cross–sectional dimension,
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or “sample size,” n,

Yit = D � F (ho (Xit) ,↵i, ✏it) , t = 1, . . . , T, i = 1, . . . , n, (2.2.1)

where ho is a real–valued function of dx variables, ↵i is a d↵–dimensional time–invariant unob-

served component, or “fixed e↵ect,”3 ✏it is a scalar unobserved component, F is a real–valued

function strictly increasing in its first and last argument, and D is a real–valued increasing

function of its argument. The object of interest is the function ho or functionals thereof.4

As noted in Section 2.1, in the context of limited dependent variable models, one may

think of Y ⇤t := F (ho (Xt) ,↵, ✏i) as the latent, unobservable dependent variable and Yt =

D(Y ⇤t ) as the observable dependent variable. Hence, D may be thought of as the cen-

soring rule, or, more generally, observational rule, although it need not be given such an

interpretation.

Although the assumptions provided in this paper readily extend to the case an arbitrary

number of periods T , allowing for a general T introduces unnecessarily complicated notation

without much additional insight. I therefore consider the case where two periods are available

for each person, and for the remainder of this paper T = 2.5

As mentioned in Section 2.1, Han (1987) introduced the generalized regression model

in a cross–sectional framework, and Abrevaya (2000) extended Han’s generalized regression

model to allow for panel data.6 Han and Abrevaya showed that several cross–sectional and

panel regression models were nested in their respective frameworks. For example, let the

fixed e↵ect ↵ be scalar, ho linear, such that ho(x) = x>�o for �o in Rd
x unknown, and

F (u1, u2, u3) = u1 + u2 + u3. If D(v) = v, then the model (2.2.1) reduces to the linear panel

3Although ↵
i

as a whole is unobserved, time–invariant regressors, such as gender, are absorbed into
↵
i

, which may therefore contain observable elements. In what follows, I need not distinguish between
unobservable and observable time–invariant variables. I will therefore refer to them jointly as the “fixed
e↵ect.”

4Examples of such functionals of h
o

are 1. the `th partial derivative h
o

7! (@h
o

/@x
`

)(x), 2. the `th
average partial derivative h

o

7! R

(@h
o

/@x
`

)(x)dµ (x); and, 3. the conditional average partial derivative
h
o

7! R

(@h
o

/@x
`

)dµ(x|x̃), where, in each case, µ is some known or estimable measure.

5Following the arguments made in Charlier, Melenberg, and Soest (1995), I may also extend the analysis
to accommodate an unbalanced panel.

6Here I treat the model as a model for panel data. However, it may be viewed in the more general
context as a model for group–level data, In the latter setting, each i corresponds to a group, and a t in
T
i

:= {t : t is in group i} a member of group i. Note that the size T
i

of T
i

need not be equal for all groups i.
Depending on the economic setting one has in mind, in a group–level model one may consider asymptotics
as the number of groups (n) increases without bound, the number of members (T

i

) of each group increases
without bound, or both. Here I consider asymptotics as n ! 1 for T

i

= T fixed and small. I therefore find
it natural to view the model as a model for panel data as in Abrevaya (2000).
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regression model

Yit = X>
it�o + ↵i + ✏it, t = 1, 2, i = 1, . . . , n.

If instead D(v) = 1 (v > 0), where 1(A) is the indicator function taking on the value one if

the statement A is true and zero otherwise, we arrive at the linear panel binary threshold

crossing model (see, for example, Manski, 1987), and for D(v) = v1 (v > 0) we get the linear

panel censored regression model (see, for example, Honoré, 1992). Other notable special

cases are transformation and duration models (see Han, 1987; Abrevaya, 2000, for more

examples).

Han and Abrevaya both worked under the assumption that ho takes on a linear form, i.e.

ho(x) = x>�o for �o in Rd
x unknown. In this paper, I assume that the function ho satisfies

mild regularity conditions but does not belong to a known, finite–dimensional parametric

family.

Let Zi, i = 1, . . . , n, be a sample of independent observations from P . When ho(x) =

x>�o, for suitable choices of “ranking functions” (y1, y2) 7! H(y1, y2) Abrevaya (2000) pro-

posed estimating �o by a maximizer b�H
n of eQn (�;H) on Rd

x , where

eQn (�;H) :=
1

n

n
X

i=1

⇥

H (Yi1, Yi2)1(X
>
i1� > X>

i2�) +H (Yi2, Yi1)1(X
>
i1� < X>

i2�)
⇤

. (2.2.2)

Abrevaya called the class of estimators b�H
n rank estimators.

Rank estimators may be motivated by a simple principle. For concreteness, consider

the ranking function H(y1, y2) = 1 (y1 > y2). In this case, the objective function eQn(�;H)

provides a measure of the within–individual (positive) association between the outcome Yit

and index of regressors X>
it� at the coe�cient vector �. For a given i, assuming that the

disturbances ✏it are i.i.d. over time conditional on Xit, t = 1, 2, and ↵i, the monotonicity of

D � F guarantees that

P (Yit > Yis|Xi1,Xi2) > P (Yit 6 Yis|Xi1,Xi2)

whenever X>
it�o > X>

is�o, t, s = 1, 2, t 6= s.

In words, it is more likely than not that Yit > Yis whenever X>
it�o > X>

is�o. As ties turn

out to play no role, they can be dropped when constructing the criterion function in (2.2.2).

Maximizing � 7! eQn(�;H) for H(y1, y2) = 1 (y1 > y2) yields the maximum rank correlation

estimator of �o, but the same principle of estimation carries over to a variety of suitable
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ranking functions H.7 The idea of maximum rank correlation and, more generally, rank

estimation are closely related to Kendall’s coe�cient of concordance, or Kendall’s Tau, which

is a measure of association between two random variables.8

In this paper, I treat ho as nonparametric and estimate the function by maximizing the

sample rank correlation

Qn (h) =
1

n

n
X

i=1

[1 (Yi1 > Yi2)1(h(Xi1) > h(Xi2)) + 1 (Yi1 < Yi2)1(h(Xi1) < h(Xi2))]

(2.2.3)

over a sieve space Hk, where k = kn is a positive integer that increases with n.

It can be computationally di�cult to maximizeQn over an infinite–dimensional parameter

space H, and, even if maximization is computationally feasible, the resulting estimator may

su↵er from inconsistency and/or a slow rate of convergence. These problems arise because

maximization over an infinite–dimensional, noncompact space need no longer be a well–posed

problem (see, for example, Chen 2007). The method of sieves o↵ers a solution to the issue

of ill–posedness by maximizing the objective Qn over a sequence of less complex parameter

spaces Hk called sieves (Grenander 1981). To ensure consistency, the complexity of the

sieves is required to increase with the sample size n.

2.3 Identification

From (2.2.3) it is clear that Qn (h) = Qn (c1h+ c2) for constants c1 and c2 with c1 > 0.

Hence, if h maximizes Qn, then so does any positive, a�ne transformation c1h + c2 of h.

Hence, in order to achieve identification of ho, at a minimum one needs to fix the scale c1

and location c2.

In the case of ho(x) = x>�o with �o in Rd
x unknown, this identification issue is typically

overcome by restricting the parameter space to be a dx � 1 dimensional subset of Rd
x .

Han (1987) fixes the norm of �o to be one, thus restricting the parameter space to the

dx–dimensional unit sphere. Sherman (1993) uses {� 2 Rd
x : �d

x

= 1}, thus fixing the

7See Abrevaya (2000) for examples. The idea of rank estimation goes back to Cavanagh and Sherman
(1998) who dealth with estimation of cross–sectional monotonic index models in which Han’s (1987) GRM
is nested.

8Two points are said to be concordant if the line joining them has positive slope, and discordant if the
slope is negative. View P1(�) := (Y

i1,X
>
i1�) and P2(�) := (Y

i2,X
>
i2�) as two points in the plane. For a given

� and the choice of (y1, y2) 7! H(y1, y2) = 1 (y1 > y2), eQn

(�;H) yields the fraction of the n cross–sectional
units whose two data points (Y

i1,X
>
i1�) and (Y

i2,X
>
i2�) are concordant at �. As such, the criterion resembles

Kendall’s coe�cient of concordance as a function of �, although here I do not penalize discordant points.
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coe�cient on the last regressor to one, which turns out to be a more convenient normalization

for the purpose of deriving asymptotics.

In the nonparametric case, the identification problem may be overcome in a number of

di↵erent ways. Typical restrictions are shape and/or separability conditions.9 Here I proceed

by assuming that the set of basic regressors may be partitioned into two parts such that 1. ho

is additively separable in each collection of variables, and 2. for one part of the partition the

associated mapping is linearly homogeneous and strictly increasing in one argument. This

assumption nests two special cases: 1. ho is additively separable into the value of a single

regressor (the “special regressor”); and, 2. ho is (fully) linearly homogeneous and strictly

increasing in one of its arguments.

For identification purposes I make the following assumptions.

A.1 (Mappings D and F ). The functions D and F in (2.2.1) satisfy: 1. D is nonconstant;

2. D is increasing; 3. F is strictly increasing in its first and last argument.

A.2 (Disturbances). Conditional on (Xi1,Xi2,↵i), ✏i1 and ✏i2 are independently and iden-

tically distributed (i.i.d.).

For any subset ⇡0 of the indices {1, . . . , dx}, let x⇡0 denote the vector of regressors asso-

ciated with ⇡0,x⇡0 := (xj)j2⇡0 , and x�⇡0 the—possibly empty—vector of all other regressors,

x�⇡0 := (xj)j /2⇡0 . Let |⇡0| denote the cardinality of the selection ⇡0. The following assumption

implicitly defines the parameter space.

A. 3 (Parameter Space). 1.  ⇡0 is the space of real–valued, continuous, linearly homoge-

neous functions  with domain D⇡0 = R|⇡0| that are strictly increasing in the first coordinate

and satisfy  (x⇡0) = c⇡0 for some x⇡0 in D⇡0 and some constant c⇡0. 2. �⇡0 is the space of

real–valued, continuous functions ' with domain D�⇡0 ⇢ R|�⇡0| satisfying '(x�⇡0) = c�⇡0

for some x�⇡0 in D�⇡0 and some constant c�⇡0. 3. H⇡0 is the set of functions h that may be

written as (x⇡0 ,x�⇡0) 7! h (x⇡0 ,x�⇡0) =  (x⇡0) + ' (x�⇡0) for some  in  ⇡0 and some ' in

�⇡0. 4. For some known, nonempty subset ⇡ of {1, . . . , dx}, ho is in H⇡.

LetX⇡ := {X⇡,t}2t=1 andX�⇡ := {X�⇡,t}2t=1 denote the ⇡–regressors and non–⇡–regressors

in both periods, Xt := (X⇡,t,X�⇡,t) all regressors in period t, and X := {Xt}2t=1 all regressors

in both periods.

A. 4 (Observables). Let ⇡ be as in A.3. 1. Conditional on X�⇡, X⇡ possesses a Lebesgue

density on R2|⇡|. 2. For every s 6= t and all x = (xs,xt) satisfying ho (xs) < ho (xt) there

exists y⇤ := y⇤ (x) such that P
�

Ys 6 y⇤|Xs = xs

�

> P
�

Yt 6 y⇤|Xt = xt

�

.

9For an excellent overview of methods for achieving identification in the class of nonseparable, single–index
models in which (2.2.1) belongs, see Matzkin (2007).
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Remark 2.1. 1. A.1.1 rules out a trivial model where Yit is constant, while A.1.2 and A.1.3

restate the monotonicity assumptions maintained in the GPRM.10

2. A.2 states that for every cross–sectional unit, conditional on the regressors in all periods

and the fixed e↵ect, the disturbances are i.i.d. over time. This assumption may be viewed

as the GPRM analog of the assumption of strict exogeneity conditional on the fixed e↵ect

often invoked in the analysis of the linear panel regression model.11

3. A.3 states that the basic regressors may be partitioned into two parts such that ho

is additively separable in each part of the partition, and one part of the partition enters a

linearly homogeneous function, which is strictly increasing in at least one element. Given

this assumption, I define the parameter space H as H := H⇡.

4. It is possible that ho has multiple representations satisfying A.3. If multiple selections

satisfy A.3.4, then I choose one such selection ⇡ and consider identification of ho within that

particular space H⇡.

5. Given the selection ⇡, for notational convenience I assume that X⇡,t constitutes the

first |⇡| basic regressors, and X�⇡,t the last |�⇡| = dx � |⇡| basic regressors. Recasting ⇡

as the index corresponding to the “cuto↵” regressor determining the partition, I may then

write the regressors as Xt = (X⇡,X�⇡) = (X1, . . . , X⇡, X⇡+1, . . . , Xd
x

). After this relabeling,

I may write any h in H as

h(x⇡,x�⇡) =  (x⇡) + ' (x�⇡) =  (x1, . . . , x⇡) + ' (x⇡+1, . . . , xd
x

) .

6. Given the relabeling of the regressors provided by the preceding remark, A.4.1 states

that the first ⇡ regressors in both time periods are jointly continuously distributed with full

support regardless of the values of the remaining regressors. This assumption is employed

to show that the regressor values allowing one to distinguish ho from other functions in H
occur with positive probability. Similar continuity assumptions are frequently invoked in the

semiparametric literature, when the index function is assumed to be linear.12

7. A.4.2 is a (high–level) requirement on the support of the outcomes. A.1 and A.2

10The assumption of increasingness, as opposed to decreasingness, is immaterial. As long as D is monotone
and F strictly monotone in the relevant arguments, we can always recast the model in a way such that A.1.2
and A.1.3 hold.

11The regressors X

it

, t = 1, . . . , T, are said to be strictly exogenous conditional on the fixed e↵ect if
E(✏

it

|X
i1, . . . ,XiT

,↵
i

) = 0 for all t = 1, . . . , T .

12See, for example, Abrevaya (2000) Assumption 3(b), in the context of GPRM, or Manski (1987) As-
sumption 2(b), in the context of a panel binary threshold crossing model. Both papers impose a linear form
on the index function and may therefore specialize the continuity assumption to the di↵erences of, say, the
first regressor. As linear homogeneity does not necessarily imply linearity, I cannot make a similar reduction.
Instead I place the continuity assumption directly on the joint distribution.
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together yield that if ho (X1) < ho (X2) then P (Y1 6 y|X1) > P (Y2 6 y|X2) for all y

in R. A.4.2 guarantees that the inequality is strict for some y⇤, possibly depending on the

regressors. This assumption is used to show that ho maximizes a certain population objective

function uniquely.

8. To simplify notation further, for the remainder of the paper I assume that the point of

normalization x�⇡ and the value at said normalization point c�⇡ are zeros. In other words,

all ' pass through their respective origin. As a consequence of the linear homogeneity

of each  in  ⇡, so does the h for which x 7! h(x) =  (x⇡) + '(x�⇡). Although this

additional assumption is irrelevant for the purpose of establishing identification, it facilitates

the construction of a sieve in Section 2.4.

The following theorem constitutes the main implication provided by the GPRM.

Theorem 2.1 (Main Implication). If A.1 and A.2 hold, then

P (Y1 > Y2|X)

(

>
6

)

P (Y1 < Y2|X) whenever ho (X1)

(

>
6

)

ho (X2)

The two probability statements in Theorem 2.1 may be viewed as conditional moment

inequalities provided by the true ho. Such moment inequalities may be exploited to (point)

identify ho. For this purpose, define the population objective function Q by

Q (h) := E (1 (Y1 > Y2)1(h(X1) > h(X2)) + 1 (Y1 < Y2)1(h(X1) < h(X2)))

= P (Y1 > Y2, h(X1) > h(X2)) + P (Y1 < Y2, h(X1) < h(X2))

for h in H. Note that, disregarding equalities, the probability statements in the definition

of Q mimick the probability statements provided by Theorem 2.1, except that ho is replaced

by an arbitrary h in H. Note also that Q equals the expectation of the sample objective, i.e.

Q(h) = E(En(f)).

The next theorem is the first main result of this paper.

Theorem 2.2 (Identification). If A.1–A.4 hold, then ho is the unique maximizer of Q on

H.

Theorem 2.2 shows both 1. ho is a maximizer of Q on H— thus establishing existence of a

solution—and 2. the solution is unique. Hence, under the assumptions stated in Theorem 2.2,

ho maximizes the probability of rank correlation, or positive concordance, in the population.

The theorem provides a way of identifying ho within H in a constructive manner. In Section
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2.4 I build on this identification result to construct an estimator of ho as a solution to the

associated sample problem.

2.3.1 Comparison with Conventional Moment Equality and In-

equality Models

Chen and Pouzo (2012) considers estimation of conditional moment restriction models (CM-

RMs) that may be written in the form

E (r (Y,X; ✓)|W) = 0,

where r is a potentially nonsmooth “generalized residual” function known up to the poten-

tially infinite–dimensional parameter ✓, and W a collection of instrumental variables. Given

that the main implication of the GPRM is a collection of CMRs, one may wonder whether

the GPRM is simply a CMRM (in the Chen and Pouzo 2012 sense) in disguise.

To see that the GPRM is not a conventional CMRM, note that if the CMRs provided by

Theorem 2.1 hold with strict inequality, then they may be summarized as

sgn (P (Y1 > Y2|X)� P (Y1 < Y2|X)) = sgn (ho (X1)� ho (X2)) , (2.3.1)

where sgn(u) denotes the sign function

sgn (u) :=

8

>

>

>

<

>

>

>

:

1, u > 0

0, u = 0

�1, u < 0.

Due to the nonlinearity of the sign function, one cannot simply “pull out” the expectation in

(2.3.1) to write the main implication as a conventional CMR. As the “generalized residual”

function implicit in (2.3.1) is not known up to ho (it depends on all the parameters of the

model in an unknown way), the GPRM does not fall within the class of models treated by

Chen and Pouzo (2012).

Computing expectations over X, we arrive at the unconditional moment restriction

E
X

(sgn (P (Y1 > Y2|X)� P (Y1 < Y2|X))) = E
X

(sgn (ho (X1)� ho (X2))) . (2.3.2)

As in the case of the conditional moment restriction, (2.3.2) is not a conventional uncon-

ditional moment restriction in the sense of Hansen (1982) and the generalized method of
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moments (GMM) framework.13 Hence, the GPRM does not fit into the conventional mo-

ment restriction estimation framework, be it conditional or unconditional.

One may, however, summarize the GPRM as an unconditional moment inequality model,

albeit at a loss of information. To see this, write the Theorem 2.1 inequalities as

[P (Y1 > Y2|X)� P (Y1 < Y2|X)] [ho (X1)� ho (X2)] > 0 for all (x1,x2) 2 X ⇥ X .

Declaring the left–hand side as the generalized residual does not su�ce to define a conven-

tional conditional moment inequality model, as the resulting generalized residual is still not

known up to h. Define therefore instead r (Y,X;h) := [1 (Y1 > Y2) � 1 (Y1 < Y2)][h (X1) �
h (X2)], which is a function known up to h. Then taking the expectation with respect to X

and using the law of iterated expectations, we may convert the set of inequalities given by

Theorem 2.1 into the single unconditional moment inequality E(r(Y,X;h)) > 0. Note that

the integrand r is a smooth function of the parameter h. However, if we were to use this

single moment inequality to narrow down the infinite–dimensional parameter space H, the

resulting identified set is likely to remain large, and hence uninformative. The above dis-

cussion illustrates that there is likely to be a trade-o↵ between smoothness of the integrand

in the parameter and the level of identification. If we convert the unconventional condi-

tional moment equalities provided by the main implication of the GPRM into a conventional

unconditional moment inequality, then we will likely have to give up point identification.

2.4 Estimation

The parameter of interest is ho, the index function in (2.2.1). The parameter space isH = H⇡,

where H⇡ is defined in A.3. I approximate ho by linear forms x 7! pk(x)>�, a series, where

x 7! pk(x) := (p1(x), . . . , pk(x))
>,

is a k–vector of approximating functions, or, basis functions. These basis function may change

with k, although I do not express such possible dependence in the notation. Throughout

this paper I maintain the assumption that the number of series terms k = kn is chosen such

that ln(k) . ln(n).

Given that ho is in H⇡, it is of the form ho (x⇡,x�⇡) =  o (x⇡) + 'o (x�⇡). To achieve

the approximation above I therefore approximate both  o and 'o by linear forms x⇡ 7!
13The unconditional moment condition is similar to the moment condition on which the maximum score

estimator is based (see Manski 1985, p. 315).
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qk⇡ (x⇡)
> � and x�⇡ 7! rk�⇡(x�⇡)>�, where

x⇡ 7!qk⇡ (x⇡) := (q1 (x⇡) , . . . , qk
⇡

(x⇡))
> ,

x�⇡ 7!rk�⇡ (x�⇡) :=
�

r1 (x�⇡) , . . . , rk�⇡

(x�⇡)
�>

,

are k⇡– and k�⇡–vectors of approximating functions {qj} and {rj}, respectively. To construct
the p–basis, I set k := k⇡ + k�⇡ and collect the q– and r–bases and their coe�cients as

x 7! pk (x) := (qk⇡ (x⇡)
> , rk�⇡ (x�⇡)

>)>, � := (�>, �>)>. (2.4.1)

For each ` in N, define the function spaces

 ` :=
�

 � = q`>� :  (ax⇡) = a (x⇡) for all a 2 R, (x⇡) = c⇡

x1 7!  (x1, x2, . . . , x⇡) strictly increasing, � 2 R`
 

,

�` :=
�

'� = r`>� : ' (0) = 0, � 2 R`
 

,

where 0 is the (dx � ⇡)–dimensional zero. Then, under mild conditions on the choice of the

bases,  ` is a subset of  :=  ⇡ defined as in A.3.1, and �` is a subset of � := �⇡ defined

as in A.3.2 (restricting �` to the domain of �).

For each k⇡ and k�⇡ in N, let �k
⇡

and �k�⇡

be compact subsets of Rk
⇡ and Rk�⇡ ,

respectively. For k = k⇡ + k�⇡, define Bk as Bk := Bk
⇡

,k�⇡

:= �k
⇡

⇥ �k�⇡

. Then Bk is a

compact subset a Rk. Define the sieve space Hk as the space of functions spanned by pk

subject to the coe�cients in Bk:

Hk := Hk (Bk) :=
�

 � (x⇡) + '� (x�⇡) :  � 2  k
⇡

,'� 2 �k�⇡

, (�>, �>) 2 Bk

 

. (2.4.2)

Then Hk is a subset of H = H⇡ as defined in A.3.3. In what follows, I will interchangeably

write an element of Hk as h� or pk>� with the understanding that pk and � are constructed

as in (2.4.1).

For any h in Hk and z = (y1,x1, y2,x2) in the support, we may now define

fh (z) := 1 (y1 > y2)1 (h(x1) > h(x2)) + 1 (y1 < y2)1 (h(x1) < h(x2)) .

Given a random sample Zi, i = 1, . . . , n, let Qn be the empirical average of fh on the sieve

space Hk
n

:

Qn (h) := En(fh) =
1

n

n
X

i=1

fh (Zi) , h 2 Hk
n

. (2.4.3)
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I define a series maximum rank correlation estimator (SMRCE) as any maximizer bhn of Qn

on Hk
n

.

Remark 2.2. 1. SinceQn is a step function with range of finite cardinality, a maximizer onHk
n

always exists. To see this, note that for each k in N, the hyperplanes {� 2 Rk : [pk (Xi1)�
pk (Xi2)]>� = 0}, i = 1, . . . , n, divide Rk into (at most)

Pk
j=0

�

n
j

�

regions (see Schläfli 1901,

as quoted on p. 921 of Dudley 1978). On each region the function � 7! Qn (h�) is necessarily

constant. As a consequence, Qn takes at most
Pk

j=0

�

n
j

�

steps over Hk
n

. The constancy over

each region also implies that there will generally be a continuum of maximizers.

2. The preceding remark shows that the compactness of Bk is not needed to establish

existence of a maximizer. Indeed, even if Bk = Rk, the sample objective function Qn will

have a maximizer on Hk(Rk). However, the population objective Q need not have range

of finite cardinality on Hk, and the compactness of Bk is used to establish existence of a

maximizer of Q on Hk or a closed subset thereof.

2.5 Consistency

Given that ho belongs to an infinite–dimensional space, to address the question of consistency

of the series maximum rank correlation estimator (SMRCE), I must choose the metric in

which convergence is defined. For this purpose, define the map ⇢ on H⇥H by

⇢ (h1, h2) := (1/2)(kh1 � h2k1,2 + kh1 � h2k2,2),

where kh1 � h2kt,2 := (
R

X |h1 � h2|2 d⌫t)1/2 defines the L2–distance between h1 and h2 using

the distribution ⌫t of Xt, t = 1, 2. Because ⇢ is the average of L2(⌫t) metrics over t, it is itself

a metric. Hence, H endowed with ⇢ is a metric space.14,15

Define the positive–semidefinite k ⇥ k matrices �t,k, t = 1, 2, by

�t,k := E
�

pk(Xt)p
k(Xt)

>� =
Z

X
pkpk>d⌫t,

14Strictly speaking, ⇢ is not a proper metric. To see this, note that of two distinct functions h1 and h2

in H di↵er only on a set A for which ⌫
t

(A) = 0, t = 1, 2, then ⇢ assigns ⇢(h1, h2) = 0 even though h1 6= h2.
Hence ⇢ fails the identity of indiscernibles axiom in the definition of a metric. Since ⇢ satisties the axioms of
positivity and symmetry as well as the triangle inequality, it is, however, a pseudo–metric on H. If I define
two functions h1 and h2 to be equivalent, denoted h1 ⇠ h2, if they di↵er only on a set of ⌫

t

–measure zero,
t = 1, 2, then ⇢ is a proper metric on the set of equivalence classes H/⇠ of H. In what follows, I will ignore
this distinction and simply refer to ⇢ as a “metric” on H, and (H, ⇢) as a “metric space.”

15The metric ⇢ := ⇢
T

extends naturally to the case of T > 2 by defining ⇢
T

(h1, h2) := (1/T )
P

T

t=1kh1 �
h2kt,2, where kh1 � h2kt,2 denotes the L2(⌫

t

) distance, t = 1, . . . , T .
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let eQ be the function defined by � 7! Q (h�) on Bk, and let the k ⇥ k matrix Ak denote

its second–derivative (when well–defined), � 7! Ak (�) := (@2 eQ/@�@�>)(�). The following

assumptions are used to establish consistency of the SMRCE with respect to ⇢.

A. 5 (Basis functions). The (positive) eigenvalues of �t,k, t = 1, 2, are bounded away from

zero and from above uniformly in k 2 N.

A. 6 (Sieve spaces). The sieve spaces Hk = Hk(Bk) and their generating sets Bk are such

that: 1. Bk is compact in Rk for k 2 N. 2. Hk ⇢ Hk+1 ⇢ H for k 2 N. 3. There exists a

sequence {hk}k>1 such that hk 2 Hk, k 2 N, and khk � hokX ! 0 as k ! 1.

A. 7 (Objective function). 1. eQ is twice continuously di↵erentiable on Bk for k 2 N.

2. The (negative) eigenvalues of Ak (�) , are bounded from below and away from zero uni-

formly in � 2 Bk and k 2 N. 3. The maximizer �⇤k := argmax
�2B

k

eQ (�) belongs to the interior

of Bk for all k 2 N.

Remark 2.3. 1. A.5 imposes some regularity on the regressors pk (Xt) , t = 1, 2. This assump-

tion provides a link between the distance between functions h1 = h�
1

and h2 = h�
2

in Hk and

the distance between their coe�cient vectors �1 and �2. Roughly speaking, this assumption

ensures that the properties of Bk are inherited by Hk. The assumption also plays a role in

showing that the estimation problem is well–posed.16

2. By the preceding remark, A.6.1 is used to establish compactness of each Hk. Combined

with the continuity of eQ, the assumption also guarantees that a maximizer on closed subsets

of Hk always exists (via Weierstrass’s Extreme Value Theorem). Although not needed to

ensure the existence of the SMRCE itself (see Remark 2.2), given the computational aspect

of finding the SMRCE in practice, restricting attention to a (large) subset of Rk when

conducting maximization appears natural. A.6.2 states that the sieve spaces are growing

but contained in the parameter space. A.6.3

A.8 says that ho can be approximated uniformly by a sequence in the sieve. Note that

this is stronger than assuming that ho can be approximated with respect to the ⇢ metric.

The stronger assumption is needed because the population objective function Q is continuous

with respect to the supremum metric on H, but not necessarily with respect to ⇢ on H.

3. A.7.1 imposes some regularity on the objective � 7! eQ(�), and this regularity is

inherited by h 7! Q(h). Although the sample objective function Qn is a step function, and

16A maximization problem is said to be well posed (with respect to a metric ⇢), if for all sequences {h
k

}
k>1

in H such that Q(h
o

)�Q(h
k

) ! 0 as k ! 1, we have ⇢(h
k

, h
o

) ! 0; and ill posed if there exists a sequence
{h

k

}
k>1 in H such that Q(h

o

)�Q(h
k

) ! 0 as k ! 1 but ⇢(h
k

, h
o

) 9 0. See Chen (2007) for a discussion
of ill–posedness in the context of sieve extremum estimation and Carrasco, Florens, and Renault (2007) for
a survey of linear inverse problems within structural estimation.
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thus discontinuous, for an increasing sample size the averaging acts as a “smoother,” and

under mild conditions the population objective is continuous. A.7.1 makes this conclusion

somewhat stronger by requiring that eQ is in fact twice continuously di↵erentiable. A.7.2

implies that eQ is strictly concave on Bk for all k. The strict concavity guarantees a unique

maximizer on Bk, which justifies the wording of A.7.3. The concavity also prevents the

objective from “turning up” again when one moves away from the maximizer. For example,
eQ cannot drift along an asymptote to the value of the maximum as k increases without

bound. That the maximum of eQ on Bk is well separated plays an important part in showing

that the population maximization problem is well–posed.

A.7.3 guarantees that the first–order necessary condition for a maximum is satisfied with

equality in all arguments, which simplifies later expansions.

The above assumptions lead us to the second main result of this paper.

Theorem 2.3 (Consistency). If A.1–A.7 hold, and kn/n ! 0 as n ! 1, then any

maximizer bhn of Qn on Hk
n

satisfies ⇢(bhn, ho) !P 0 as n ! 1.

2.6 Convergence Rates

To derive the rate of convergence of the series maximum rank correlation estimator (SMRCE),

I need to invoke stronger assumptions than needed for consistency alone.

A. 8 (Approximation). There exists a constant ↵ > 0 and a sequence {hk}k>1 such that:

1. hk 2 Hk for all k 2 N; and 2. khk � hokX . k�↵ as k ! 1.

For any � > 0, let B⇢ (h, �) denote the open (⇢) �–ball inH centered at h inH, B⇢ (h, �) :=

{h0 2 H : ⇢ (h0, h) < �} .

A. 9 (Locally Lipschitz Objective). There exists a constant �⇤ > 0 such that for all h

in B⇢

�

ho, �⇤� : Q(ho)�Q(h) . ⇢ (h, ho) .

Remark 2.4. 1. A.8, which replaces A.6.3 says that ho can be approximated uniformly by

a sequence in the sieve, and the uniform approximation is of a particular order. The uni-

form approximation error is assumed to have (at least) polynomial decay in terms of the

series truncation k. The constant ↵ is typically a function of the smoothness of ho and

dimensionality of Xt. (See also Remark 2.5.3).

2. A.9 is a local smoothness condition on the population objective function Q. The

assumption states that for all h inH su�ciently close to ho, Q behaves as a Lipschitz function.

Because A.9 involves ho, and ho is nonparametric, this assumption cannot be phrased in terms

of the coe�cient vectors. However, A.9 may still be be viewed as a strengthening of A.7.
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Let ⇣k be defined by

⇣k := sup
x2X

kpk (x)k

With these additional conditions and the definition of ⇣k we arrive at the third, and last,

main result of this paper.

Theorem 2.4 (Rates). 1. If A.1–A.9 hold, and kn/n ! 0 as n ! 1, then for any maxi-

mizer bhn of Qn on Hk
n

we have

⇢(bhn, ho) .P (kn/n)
1/4 + k�↵

n . (2.6.1)

2. If, in addition, ⇣4k
n

kn/n ! 0 as n ! 1, then

kbhn � hokX .P ⇣k
n

[(kn/n)
1/4 + k�↵

n ]. (2.6.2)

3. If kn is chosen such that kn ⇣ n1/(4↵+1), then

⇢(bhn, ho) .P n�↵/(4↵+1),

kbhn � hokX .P ⇣k
n

n�↵/(4↵+1),

provided kn/n ! 0 and ⇣4k
n

kn/n ! 0, respectively, as n ! 1.

Remark 2.5. 1. Parts 1 and 2 of Theorem 2.4 provide upper bounds on the rate of convergence

of the SMRCE bhn in terms of the ⇢ and uniform metrics for general choices of the sequence

of series truncation terms {kn}n>1 (subject to the conditions kn/n ! 0 and ⇣4k
n

kn/n ! 0,

respectively). The first part of the right–hand side bound in (2.6.1) may be interpreted as the

rate of convergence of the standard error of the estimator, where the “error” is measured in

relation to the maximizer h⇤k
n

of the population objective Q, when maximization is restricted

to the sieve space Hk
n

. This maximizer is, in some sense, the “best,” or “risk–minimizing”

element in Hk
n

. The second part of the bound in (2.6.1) may be interpreted as the rate of

convergence of the bias measured as the distance between ho and its best approximation in

the sieve space Hk
n

. The proof of Theorem 2.4 involves deriving convergence rates for these

two components in turn.

2. The interpretation of the right–hand side bound in (2.6.2) is similar. However, as

the notion of convergence in Part 2 of Theorem 2.4 is uniform convergence, one must have

some control over the behavior of (the norm of) the basis terms. The term ⇣k captures this

behavior and will generally depend on the approximating properties of the basis used to
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construct the estimation series. For extensive reviews of the approximating properties of

di↵erent series, see Huang (1998) and Chen (2007).

3. In Part 3 of Theorem 2.4 I maximize the rate of convergence provided by Parts 1 and

2 of Theorem 2.4 by choosing the series truncation sequence to such that the standard error

and bias terms convergence to zero at the same rate. For typical smoothness classes we

have ↵ = p/dx, where p denotes the degree of smoothness, often expressed in terms of the

number of times ho is continuously di↵erentiable. (For Hölder classes p = p0 + �, where p0 is

the number of continuous derivatives and � is the Hölder exponent.) For such smoothness

classes, the convergence rate with respect to ⇢ becomes ⇢(bhn, ho) .P n�p/(4p+d
x

). From this

expression, we see that the smoother the ho, the faster the convergence. The expression also

illustrates that, like many other nonparametric estimators, the SMRCE su↵ers from the curse

of dimensionality; the higher the dx, the slower the rate of convergence. One can likely...

employ the additive separability in A.3 to reduce dx to the maximum number ⇡ _ (dx � ⇡)

of the arguments of  o and 'o by considering estimation of each of the two components of

ho separately.

4. Stone (1980; 1982) shows that the optimal (global) rates of convergence for nonpara-

metric regression in the L2 norm is kbgn � gok2 .P n�p/(2p+d), where p again denotes the

smoothness of go and d the number of arguments. To the best of my knowledge, the optimal

rate of convergence of nonparametric estimators of ho in the parameter space H remains

unknown. In fact, it remains to be proven (or disproven) that such an optimal rate exists.

However, if Stone’s result carries over to the generalized (panel) regression, then—by the

preceding remark—the rate provided in Part 3 of Theorem 2.4 is suboptimal. I conjecture

that one may refine the argument used to derive the bound on the standard error in Part 1

of Theorem 2.4 to achieve the tigher bound of (kn/n)1/2. With this tighter bound, the rate

provided by Part 3 of Theorem 2.4 coincides with Stone’s optimal rate.

5. Theorem 3.2 of Chen (2007), Theorem 1 of Chen and Shen (1998), Theorem 3.1 of

Chen and White (1999), and Theorems 1 and 2 of Shen and Wong (1994) provide su�cient

conditions for deriving rates of convergence of (approximate) sieve M–estimators, a class in

which the SMRCE belongs. One might suspect that we can simply verify the conditions

of said papers to arrive at the rate of convergence. However, the theorems of Chen (2007),

Chen and Shen (1998), and Chen and White (1999) all rely on a smoothness requirement of

the objective integrand corresponding to a local continuity requirement. The MRC objective

function Qn is an average of indicator functions, which need be even locally smooth in the

parameter.

Theorem 1 of Shen and Wong (1994) requires a bound on the L1–metric entropy of a

certain space of objective integrand di↵erences (see their Condition C3). This assumption

190



may also be viewed as a (high–level) smoothness requirement on the objective integrands.

It is not clear how one should construct such an entropy bound in the case of the objective

integrands enter the MCR objective. In fact, it is not clear that such a bound even exists

in the case of the SMRC estimation problem, where the objective integrands have points of

discontinuity.17 Hence, none of these general rate of convergence results cover the case of

SMRC estimation.

2.7 Conclusion

In this paper I show that that it is possible to identify a generalized panel regression mod-

els (GPRM) without imposing any parametric structure on 1. the function of observable

explanatory variables, 2. the systematic function through which the function of observable

explanatory variables, fixed e↵ect, and disturbance term generate the outcome variable, or

3. the distribution of unobservables.

The GPRM nests frameworks such as panel regression, binary threshold crossing, cen-

sored regression, duration, and transformation models. The GPRM admits arbitrary depen-

dence between the explanatory variables and the fixed e↵ects, and permits a fixed e↵ect of

any finite dimension.

I develop a series maximum rank correlation estimator (SMRCE) of the function of

observable explanatory variables, and provide conditions under which L2–consistency is

achieved. I also provide conditions under which both L2–type and uniform convergence

rates of the SMRCE may be derived.

To the best of my knowledge, this paper is the first to state conditions under which

identification and consistency is achieved and convergence rates derived with a typical panel

(i.e. “large” n–small T”) observational framework, while allowing all three above–mentioned

elements of the model to be nonparametric.

17In the proof of Theorem 2.4 I derive a bound on the Lp(Q)–metric entropy of the space of objective
integrands that holds for any 1 6 p < 1 and any probability measure Q. [See (2.A.8).] However, attempting
to extend the result to the case of p = 1 as required by Shen and Wong (1994), the entropy bound becomes
trivial.
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Chapter 2 Appendices

2.A Proofs

2.A.1 Proofs for Section 2.3

The proof of Theorem 2.1 relies on the following lemma.

Lemma 2.1. If A.1 and A.2 hold, then

P (Y1 > Y2|X,↵)

(

>
6

)

P (Y1 < Y2|X,↵) whenever ho (X1)

(

>
6

)

ho (X2) .

Proof. Let x1,x2 2 X be such that ho (x1) 6 ho (x2) and a a value in the support of ↵. Since

F is increasing in its first and last argument,

F (ho (x1) , a, e) 6 F (ho (x2) , a, e) , (2.A.1)

for all e in the support of ✏t given (X1,X2,↵) = (x1,x2, a). It follows that

P (Y1 > Y2|X = x,↵ = a)

=

Z

R

2

1 (D � F (ho (x1) , a, e1) > D � F (ho (x2) , a, e2)) dF✏
1

,✏
2

|X,↵ (e1, e2|x, a)

=

Z

R

2

1 (D � F (ho (x1) , a, e1) > D � F (ho (x2) , a, e2)) dF✏|X,↵ (e1|x, a) dF✏|X,↵ (e2|x, a)

=

Z

R

2

1 (D � F (ho (x1) , a, e2) > D � F (ho (x2) , a, e1)) dF✏
1

,✏
2

|X,↵ (e2, e1|x, a)

6
Z

R

2

1 (D � F (ho (x2) , a, e2) > D � F (ho (x1) , a, e1)) dF✏
1

,✏
2

|X,↵ (e2, e1|x, a)

=P (Y1 < Y2|X = x,↵ = a) ,

where F✏
1

,✏
2

|X,↵ denotes the joint CDF of (✏1, ✏2) conditional on (X,↵), and I have used that

✏1 and ✏2 are i.i.d. conditional on (X1,X2,↵), (2.A.1), and D increasing. An analogous
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argument establishes the reverse probability inequality in the event of ho (x1) > ho (x2).

Since x1 and x2 were arbitrary, these inequalities establish the lemma.

Proof of Theorem 2.1. Let x1,x2 2 X be such that ho (x1) 6 ho (x2) and a a value in the

support of ↵. Lemma 2.1 implies that P(Y1 > Y2|X = x,↵ = a) 6 P(Y1 < Y2|X = x,↵ = a).

Take expectations over ↵ given X = x to arrive at the desired conclusion.

The proof of Theorem 2.2 relies on Lemmas 2.2–2.4.

Lemma 2.2. If A.3 and A.4 hold, then for any h 2 H, 1 (h (X1) = h (X2)) = 0 a.s. [⌫
X

].

Proof. Let h be in H. Then h(x) =  (x⇡) + '(x�⇡) for some  2  and ' 2 �. Write

P (h (X1) = h (X2)) as the integral

Z

1 (h (X1) = h (X2)) d⌫X

=

Z

⇥

Z

1 ( (x⇡,1) + '(x�⇡,1) =  (x⇡,2) + '(x�⇡,2)) f (x⇡|x�⇡) dx⇡
⇤

d⌫
X�⇡

(x�⇡) ,

where the inner integration is with respect to Lebesgue measure, and f := f
X

⇡

|X�⇡

denotes

the joint PDF of X⇡ conditional on X�⇡. By continuity and linear homogeneity of  , for any

fixed x�⇡ the set {x⇡ :  (x⇡,1) +'(x�⇡,1) =  (x⇡,2) +'(x�⇡,2)} has zero Lebesgue measure.

A.4.4 therefore implies that the inner integral is zero a.s. [⌫
X�⇡

].

Lemma 2.3. If A.1, A.2, and A.4.2 hold, then P (Y1 > Y2|X) ? P (Y1 < Y2|X) whenever

h (X1) ? ho (X2) a.s. [⌫
X

].

Proof. Let x1,x2 2 X be such that ho (x1) < ho (x2) and a a value in the support of ↵. For

y 2 R we have

P (Y1 6 y|X = x,↵ = a)

=

Z

R

1 (D � F (ho (x1) , a, e) 6 y) dF✏
1

|X,↵ (e|x, a)

=

Z

R

1 (D � F (ho (x1) , a, e) 6 y) dF✏|X,↵ (e|x, a)

>
Z

R

1 (D � F (ho (x2) , a, e) 6 y) dF✏
2

|X,↵ (e|x, a)

= P (Y2 6 y|X = x,↵ = a) ,

where I have used that ✏1 and ✏2 are i.i.d. conditional on (X,↵) (with marginal CDF F✏|X,↵),

(2.A.1), and D increasing. Since y 2 R was arbitrary, we have

P (Y1 6 y|X = x,↵ = a) > P (Y2 6 y|X = x,↵ = a) , y 2 R. (2.A.2)
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Now rewrite P (Y1 6 Y2|X = x,↵ = a) as the integral

Z

R

P (Y1 6 D � F (ho (x2) , a, e)|X = x,↵ = a) dF✏
2

|X,↵ (e|x, a)

=

Z

R

P (Y1 6 D � F (ho (x2) , a, e)|X = x,↵ = a) dF✏|X,↵ (e|x, a)

>

Z

R

P (Y2 6 D � F (ho (x2) , a, e)|X = x,↵ = a) dF✏|X,↵ (e|x, a)

>
Z

R

P (Y2 6 D � F (ho (x1) , a, e)|X = x,↵ = a) dF✏
1

|X,↵ (e|x, a)

= P (Y1 > Y2|X = x,↵ = a) ,

where the strict inequality comes from A.4.2 and (2.A.2). It follows that

P (Y1 > Y2|X = x,↵ = a) < P (Y1 < Y2|X = x,↵ = a) .

An analogous argument establishes the reverse probability inequality in the event of ho (x1) >

ho (x2). Compute expectations over ↵ given X = x to arrive at the desired conclusion. Since

x1 and x2 were arbitrary, this establishes the lemma.

Lemma 2.4. If A.3 and A.4 hold and h 2 H is such that h 6= ho, then there exists a

subset N1 ⇥ N2 of X 2 such that 1. ⌫
X

(N1 ⇥ N2) > 0, and 2. for all (x1,x2) 2 N1 ⇥ N2 :

[h (x1)� h (x2)][ho (x1)� ho (x2)] < 0.

Proof. Let h be in H, so h(x) =  (x⇡) + '(x�⇡) for some  2  and some ' 2 �. If

h 6= ho, then there exists bx =2 X such that h(bx) 6= ho(bx). Assume that h(bx) < ho(bx); the

reverse case is analogous. By A.(3),  (x⇡) =  o(x⇡), '(x�⇡) = 'o(x�⇡), and  and  o are

both linearly homogeneous and increasing it their first argument. It follows that there exists

a 2 R such that

h (bx) =  (bx⇡) + ' (bx�⇡) <  (ax⇡) + ' (x�⇡) = a (x⇡) + ' (x�⇡)

= a o (x⇡) + 'o (x�⇡) <  o (ax⇡) + 'o (x�⇡) < h (bx) .

A.(3) implies that  ,', o, and ' are continuous. Hence there exists a neighborhood N1

of bx and a neighborhood N2 of (�x⇡,x�⇡) such that for all (x1,x2) 2 N1 ⇥ N2 we have

h (x1) < h (x2) and ho (x1) > ho (x2). As a consequence, for all (x1,x2) 2 N1 ⇥ N2 :

[h (x1)� h (x2)][ho (x1)� ho (x2)] < 0. Write ⌫
X

(N1 ⇥N2) as

Z

⇥

Z

1N
1

⇥N
2

((x⇡,1,x�⇡,1) , (x⇡,2,x�⇡,2)) fX
⇡

|X�⇡

(x⇡|x�⇡) dx⇡
⇤

d⌫
X�⇡

(x�⇡) .
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Since X⇡ is continuously distributed with full support conditional on X�⇡, the inner integral

is positive for a.s. [⌫
X�⇡

].

Proof of Theorem 2.2. By Lemma 2.2,

1 (h (x1) < h (x2)) = 1� 1 (h (x1) > h (x2)) a.s. [⌫
X

].

Consider (x1,x2) 2 X 2 and h 2 H. The integrand of the objective function may be (a.s.)

written as

h 7! [P (Y1 > Y2|X = x)� P (Y1 < Y2|X = x)]1 (h (x1) > h (x2)) (2.A.3)

+ P (Y1 < Y2|X = x) ,

Theorem 2.1 implies for ho maximizes this integrand for all x 2 X 2. By the law of iterated

expectations we may deduce that ho maximizes Q on H, establishing existence of a solution.

The objective di↵erence is

Q (ho)�Q (h) =E
X

([1 (h (X1) > h (X2))� 1 (h (X1) > h (X2))]

⇥ [P (Y1 > Y2|X)� P (Y1 < Y2|X)])

>E
X

(1N
1

⇥N
2

(X1,X2) [1 (h (X1) > h (X2))� 1 (h (X1) > h (X2))]

⇥ [P (Y1 > Y2|X)� P (Y1 < Y2|X)]) > 0,

where the first inequality holds because the integrand is positive a.s. [⌫
X

], cf. (2.A.3), and

the second follows from Lemma 2.3 and 2.4. The strict inequality establishes uniqueness.

2.A.2 Proofs for Section 2.5

The proof of Theorem 1.4 relies on Lemmas 2.5–2.11.

Lemma 2.5 (Metric equivalence). If A.5 holds, then for any k 2 N, h1 = h�
1

, h2 = h�
2

2
Hk , we have ⇢ (h1, h2) ⇣ k�1 � �2k.

Proof. Given that the eigenvalues of �k,t are bounded from above by some constant 0 < c� <

1, we have

2⇢ (h1, h2) =
�

Z

X
|pk>(�1 � �2)|2d⌫1

�1/2
+
�

Z

X
|pk>(�1 � �2)|2d⌫2

�1/2
(2.A.4)

= [(�1 � �2)
>�k,1(�1 � �2)]

1/2 + [(�1 � �2)
>�k,2(�1 � �2)]

1/2

6 [�(�k,1)
1/2 + �(�k,2)

1/2]k�1 � �2k
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6 2c1/2� k�1 � �2k.

Since the eigenvalues of �k,t are bounded away from zero by some constant 0 < c� < 1, a

similar calculation yields ⇢ (h1, h2) > c1/2� k�1 � �2k.

For a metric space (F , ⇢F) and ✏ > 0, define the covering number N(✏,F , ⇢F) of F as the

smallest number of ✏–balls in the metric ⇢F on F needed to cover the space F . (If no such

smallest number exist, N(✏,F , ⇢F) is defined to be +1.) If ⇢F is induced by a norm k·kF
on F , then N(✏,F , k·kF) is understood as N(✏,F , ⇢F). Also, define the diameter diam(F)

of F by diam(F) := supf
1

,f
2

2F ⇢F(f1, f2), i.e., the largest ⇢F–distance between two elements

f1 and f2 of F .

Lemma 2.6 (Compact sieve space). If A.5 and A.6.1 hold, then Hk is compact (⇢) for

all k 2 N.

Proof. Fix k 2 N. I show that Hk is closed and totally bounded (⇢), which is equivalent

to compactness. 1. Closed. Let {hm}m>1 ⇢ Hk be a sequence converging (⇢) to h 2 H.

Then there exist a sequence {�m}m>1 ⇢ Bk such that hm = h�
m

,m 2 N. Since Bk is

compact in Rk, {�m} has a convergent subsequence {�m
`

}`>1. Let � := lim`!1 �m
`

be its

limit. Since Bk is closed in Rk (Heine–Borel), � is in Bk and hence h� in Hk. By Lemma

2.5, ⇢ (hm
`

, h�) . k�m
`

� �k, so hm
`

! h� in ⇢ as ` ! 1. Given that a sequence can

have only one limit with respect to ⇢, it follows that h = h� 2 Hk, and Hk is closed (⇢).

2. Totally bounded. Given that Bk is compact in Rk, it is bounded (Heine–Borel), so

diam(Bk) < 1, k 2 N. Hence, for all ✏ > 0 we have N(✏,Bk, k·k) 6 diam(Bk)/✏k. From

(2.A.4) it follows that

N(✏,Hk, ⇢) 6
ck/2� diam(Bk)

✏k
< 1 for any ✏ > 0,

so Hk is totally bounded.

Lemma 2.7 (⇢–continuity on Hk). If A.5, A.6.1, and A.7.1 hold, then Q is continuous

with respect to ⇢ on Hk for each k 2 N.

Proof. Let k 2 N, and let {hm}m>1 ⇢ Hk be such that hm ! h in ⇢. By Lemma 2.6, Hk

is closed, so h 2 Hk, and there is a � 2 Bk such that h = h�. By Lemma 2.5 the sequence

{�m}m>1 ⇢ Bk satisfying hm = h�
m

,m 2 N, converges (⇢) and has � 2 Bk as its limit. By

the continuity of eQ on Bk in A.7.1 we have

lim
m!1

Q(hm) = lim
m!1

eQ(�m) = eQ(�) = Q(h).
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Lemma 2.8 (k·kX–continuity on H). If A.3 and A.4 hold, then Q is continuous with

respect to the uniform metric on H.

Proof. Let h 2 H and {hm}m>1 ⇢ H be such that khm � hkX ! 0 as m ! 1. Let x be

a point in the support of X = (X1,X2) such that h(x1) > h(x2). Since hm ! h uniformly

on X , hm ! h pointwise, and it must be that hm(x1) > hm(x2) for all m su�ciently large.

From this observation and the definition of f(z, h) as

f(z, h) = 1{y
1

>y
2

}1{h(x
1

)>h(x
2

)} + 1{y
1

<y
2

}1{h(x
1

)<h(x
2

)},

it follows that

{z :f(z, h) is discontinuous at h} ⇢ {z : h(x1) = h(x2)}.

From the inclusion in the preceding display and Lemma 2.2 we get

P (f(Z, h) is discontinuous at h) 6 P (h(X1) = h(X2)) = 0.

Hence, h 7! f(Z, h) is continuous with respect to k·kX a.s. Since the constant function

equal to one constitutes a P–integrable majorant for each of the maps z 7! f(z, hm),m 2 N,

Lebesgue’s Dominated Convergence Theorem (DCT) implies

lim
m!1

Q (hm) = lim
m!1

Z

f(·, hm)dP =

Z

lim
m!1

f(·, hm)dP =

Z

f(·, h)dP = Q(h).

Hence, Q(hm) ! Q(h) whenever hm ! h in k·kX .

Lemma 2.9 (Well–posedness). If A.1—A.7 hold, then for all ✏ > 0, k 2 N:

Q (ho)� sup
{h2H

k

:⇢(h,h
o

)>✏}
Q (h) & ✏2.

Proof. Let hk ⌘ pk>�k, �k 2 Bk, k > 1, denote the sequence from A.6.3, which by assumption

converges uniformly to ho on X . Lemma 2.8 implies that Q(ho) � Q(hk) ! 0. Twice

continuous di↵erentiability (A.7.1) and uniqueness of the (interior) maximizer (A.7.3) in

combination with a second–order mean value expansion of eQ around �⇤k imply

Q(hk)�Q(h⇤k ) = eQ(�k)� eQ(�⇤k ) = (1/2)(�k � �⇤k )>Ak(�k)(�k � �⇤k )
> (�cA/2)k�k � �⇤k k2.
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Here �k is between �k and �
⇤
k , and the inequality follows from A.7.2 using �1 < �cA < 0 as

the lower bound on the (negative) eigenvalues. Rearranging the inequality in the preceding

display and invoking Theorem 2.2 (identification) we get

k�⇤k � �kk2 6 (2/cA)[Q(h⇤k )�Q(hk)] 6 (2/cA)[Q(ho)�Q(hk)].

The left–hand side is equivalent to ⇢(h⇤k , hk)2 (Lemma 2.5) and the right–hand side goes

to zero. Deduce that ⇢(h⇤k , hk) ! 0. Given that hk ! ho uniformly on X (A.6.3 again),

hk ! ho in ⇢, so by the triangle inequality

⇢(h⇤k , ho) 6 ⇢(h⇤k , hk) + ⇢(hk, ho) ! 0,

and h⇤k ! ho in ⇢.

Let ✏ > 0, k 2 N and h 2 Hk\B⇢(ho, ✏) be arbitrary, where B⇢ (ho, ✏) := {h 2 H :

⇢ (h, ho) < ✏}. The preceding paragraph shows that the sequence {h⇤j }j>1 will eventually

belong to B⇢(ho, ✏). We may therefore choose k0 := k0(✏, h, k) > k large enough such that

h⇤k0 2 B⇢(ho, ✏/2) for all j > k0. By A.6.2, Hk ⇢ Hk+1, k 2 N, and [Hk\B⇢(✏, ho)] ⇢ Hk0 .

The triangle inequality yields

⇢
�

h, h⇤k0
�

> ⇢ (h, ho)� ⇢
�

h⇤k0 , ho

�

> ✏/2.

Using that the (negative) eigenvalues of the Hessian are away from zero by some constant

�1 < �cA < 0 (A.7), a mean–value expansion yields

Q(h)�Q(h⇤k0) 6 (�cA/2)k� � �⇤k0k2,

or, rearranging,

Q(h⇤k0)�Q(h) > (cA/2)k� � �⇤k0k2. (2.A.5)

From Lemma 2.5 we know that

⇢(h, h⇤k0) 6 c�k� � �⇤k0k2. (2.A.6)

Combining (2.A.5), (2.A.6) and Theorem 2.2, we arrive at

Q (ho)�Q (h) > Q
�

h⇤k0
��Q (h) > (cA/2c�)⇢

�

h, h⇤k0
�2 > (cA/8c�)✏

2.
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Given that h 2 Hk\B⇢(ho, ✏) was arbitrary, Q (ho)� suph2H
k

\B
⇢

(h
o

,✏) Q (h) > (cA/8c�)✏
2.

To avoid the double subscript, let f(·, �) denote fh
�

, where for any z 2 S and any � 2 Rk

we have

f (z, �) =1 (y1 > y2)1(p
k (x1)

>� > pk (x2)
> �)

+ 1 (y1 < y2)1(p
k (x1)

>� < pk (x2)
> �). (2.A.7)

Let eFk := {f(·, �) : � 2 Rk}, and note that Fk is a subset of eFk because Bk ✓ Rk.

Lemma 2.10 (VC Properties). For each k 2 N, eFk is VC–subgraph with VC index

V ( eFk) . k.

Proof. Let s, �0, �1, and �2 be real numbers, and let �1 and �2 be vectors in Rk. For each

z 2 S, define

g (z, s; �0, �1, �2, �1, �2) := �0s+ �1y1 + �2y2 + pk (x1)
> �1 + pk (x2)

> �2,

and define the function space

Gk := {g (·, ·; �0, �1, �2, �1, �2) : �0, �1, �2 2 R, �1, �2 2 Rk}.

Then Gk forms a vector space over R on S ⇥ R of dimension 2k + 3. Lemma 2.6.15 in

van der Vaart and Wellner (1996) therefore implies that Gk is VC–subgraph with VC–index

V (Gk) 6 dim (Gk) + 2 = 2k + 5. In particular, V (Gk) . k.

Let f� 2 eFk. The subgraph of f (·, �) is defined as

subgraph (f (·, �)) := {(z, s) 2 S ⇥R : s < f (z, �)} .

Using (2.A.7) the subgraph of any f 2 eFk may be written as

� {y1 � y2 > 0} \ {pk (x1)
> � � pk (x2)

> � > 0} \ {s > 1}c \ {s > 0} �

[ � {y2 � y1 > 0} \ {pk (x2)
> � � pk (x1)

> � > 0} \ {s > 1}c \ {s > 0} �

=: ({g1 > 0} \ {g2 > 0} \ {g3 > 1}c \ {g4 > 0})
[ ({g5 > 0} \ {g6 > 0} \ {g7 > 1}c \ {g8 > 0}) .

The first set in the above union is the intersection of four sets, three of which belongs to a

VC class and the fourth being the complement of a set belonging to a VC class. Lemma
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2.6.17 of van der Vaart and Wellner (1996) implies that the class of sets formed by such

intersections is also a VC class. By the same argument, the second set in the above union

belongs to a VC class. Another application of Lemma 2.6.17 of van der Vaart and Wellner

(1996) yields that the subgraphs of eFk form a VC class, i.e. eFk is VC–subgraph. Lemma 2.5

yields that the order of the VC–index is preserved by taking finite unions and intersections

of VC classes, so V ( eFk) . k.

Lemma 2.11 (Uniform Law of Large Numbers). If kn/n ! 0 as n ! 1 then

sup
f2F

k

n

|En (f)� E (f)| !P 0 as n ! 1.

Proof. Consider eFk from Lemma 2.10. Since eFk is VC–subgraph, Theorem 2.6.4 of van der

Vaart and Wellner (1996) implies that for any probability measure Q and 0 < ✏ < 1, the

Lp(Q)–covering number of eFk satisfies

N(✏, eFk, L
p (Q)) . V (Fk)(4e)

V (F
k

)(1/✏)p[V (F
k

)�1], 1 6 p < 1. (2.A.8)

Define the Lp(Q)–entropy of eFk as H(✏, eFk, Lp(Q)) := lnN(✏, eFk, Lp (Q)). Using that

V ( eFk) . k (Lemma 2.10), we get that

H(✏, eFk, L
p (Q)) . k ln(1/✏).

As the bound holds for every Q, it holds for the empirical measure Pn, so

H(✏, eFk, L
p (Pn)) . k ln(1/✏).

For every k 2 N, Fk = Fk(Bk) is contained in eFk = Fk(Rk), so this Lp(Pn)–entropy bound

applies to Fk as well. Let p = 2. For each fixed 0 < ✏ < 1, ln(1/✏) may be absorbed into the

constant and we see that

(1/n)H(✏,Fk
n

, L2 (Pn)) . kn/n ! 0 as n ! 1.

Hence (1/n)H(✏,Fk
n

, L2 (Pn)) ! 0 in probability. Given that the constant function equal to

one constitutes a bounded envelope for each Fk, k 2 N, Lemma 3.6 of van de Geer (2000)

yields the desired conclusion.

Proof of Theorem 1.4. Given the preceding lemmas, the proof of consistency given here is

now implicit in the proof of Theorem 3.1 in Chen (2007). For the sake of completeness I

will provide the remaining steps. By Remark 2.2, a maximizer bhn exists. Let B⇢ (ho, ✏) :=
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{h 2 H : ⇢ (h, ho) < ✏} denote the open ✏–ball centered at ho relative to the metric ⇢. Since

Hk
n

\B(ho, ✏)c is a closed subset of the compact Hk
n

, it is compact. Since Q is a continuous

function defined on the compact Hk
n

(Lemma 2.7), Weierstrass’s Extreme Value Theorem

implies that suph2H
k

n

\B(h
o

,✏) Q(h) exists.

Let {hk}k>1 denote the sequence from A.6.3. It follows that

P
⇣

⇢(bhn, ho) > ✏
⌘

= P
⇣

bhn 2 Hk
n

\B(ho, ✏)
⌘

(2.A.9)

6 P
⇣

Q (ho)�Q(bhn) & ✏2
⌘

= P
⇣

Q (ho)�Qn(bhn) +Qn(bhn)�Q(bhn) & ✏2
⌘

6 P
⇣

Q (ho)�Qn(hk
n

) +Qn(bhn)�Q(bhn) & ✏2
⌘

= P
⇣

Q (ho)�Q(hk
n

) +Q(hk
n

)�Qn(hk
n

) +Qn(bhn)�Q(bhn) & ✏2
⌘

6 P
⇣

|Q (ho)�Q(hk
n

)|+ 2 sup
h2H

k

n

|Qn(h)�Q(h)| & ✏2
⌘

,

where the first inequality follows from Lemma 2.9 and the second by the fact that bhn maxi-

mizes Qn on Hk
n

. By Lemma 2.11, {Fk
n

}n>1 satisfies the Uniform Law of Large Numbers,

so

sup
h2H

k

n

|Qn(h)�Q(h)| = sup
f2F

k

n

|En(f)� E(f)| !P 0 as n ! 1.

The definition of hk
n

and Lemma 2.8 imply that |Q (ho) � Q(hk
n

)| ! 0 as n ! 1. Hence,

the right–hand side probability in (2.A.9) goes to zero as n ! 1.

2.A.3 Proofs for Section 2.6

The derivation of the convergence rates relies on two additional lemmas. Define bfn := fbh
n

,

which is well defined given that the SMRCE is well defined (see also Remark 2.2). Since bhn

maximizes Qn (h) = En (fh) on Hk and Fk = Fk(Hk), we must have bfn 2 argmax
f2F

k

En(f). For

notational convenience, I will suppress the dependence on n in k throughout this section.

For any � > 0, define the �–restriction of Fk as

Fk (�) :=
n

f 2 Fk : sup
f 02F

k

E (f 0)� E (f) 6 �
o

.

Define the excess risk as the di↵erence b�n := supf 02F
k

E (f 0)� E( bfn), where E( bfn) should be

read as E
Z

( bfn (Z)) =
R

S
bfn(z)dP (z). The rate of convergence of the excess risk plays a key
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role in deriving the rate of convergence of the SMRCE.

Lemma 2.12. If A.1–A.9 hold, and kn/n ! 0, then the excess risk satisfies b�n .P

p

kn/n

as n ! 1.

Proof. By Lemma 2.6, Hk is compact with respect to ⇢, and by Lemma 2.7, Q is continuous

on Hk. Hence, by Weierstrass’s Extreme Value Theorem, Q has a maximizer on Hk. As a

consequence the map f 7! E (f) has a maximizer on Fk. Denote such a maximizer by f⇤k .

As the maximum is attained, the excess risk may be expressed as b�n = EZ(f⇤k � bfn). Note

that En( bfn � f⇤k ) > 0 as f⇤k need not solve the sample problem. It follows that

b�n = EZ(f⇤k � bfn)

= EZ(f⇤k � bfn) + En(f⇤k � bfn)� En(f⇤k � bfn)

6 (EZ � En) (f⇤k � bfn)

= |(En � EZ) ( bfn � f⇤k )|.

Since bfn 2 FK(b�n) ⇢ Fk, we arrive at the (crude) bound on the excess risk:

b�n 6 sup
f2F

K

�

�(En � E)
�

f � f⇤k
�

�

� . (2.A.10)

From Lemma 2.10 we know that Fk is VC–subgraph with VC index V (Fk) . k, and from

(2.A.8) it follows that

sup
Q

N (✏,Fk, L2 (Q)) .
⇣ [V (Fk) (4e)

V (F
k

)]1/2[V (F
k

)�1]

✏

⌘2[V (F
k

)�1]

, (2.A.11)

where the supremum is over all probability measures Q. In the language of Chernozhukov,

Chetverikov, and Kato (2014a), Fk is VC (bk, ak, vk)–type for the choices bk := 1, ak :=

[V (Fk) (4e)
V (F

k

)]�2[V (F
k

)�1], and vk := 2 [V (Fk)� 1]. In what follows I set up for an appli-

cation of the (Talagrand–type) inequality taken from Chernozhukov, Chetverikov, and Kato

(2014a) and, for convenience, restated in Theorem 2.6.

The function class Fk :=
�

f � f⇤k : f 2 Fk

 

is nothing more than Fk recentered as f⇤k , so

the bound on the uniform covering number in (2.A.11) applies to Fk as well. As the elements

of Fk are di↵erences of indicator functions, bk = 1 constitutes as constant envelope for Fk.

Set �2
k := 1. Since E

�

f � f⇤k
�2 6 1 for all f 2 Fk, we have supf2F

k

var (f) 6 �2
k = b2k.

Given that bk = �k, the requirement that b2kvk ln (akbk/�k) 6 n�2
k for application of the CCK
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inequality is satisfied provided vk ln (ak) 6 n. Since ak = [V (Fk) (4e)
V (F

k

)]1/vk , we have

vk ln (ak) = lnV (Fk) + V (Fk) ln (4e) . k,

and the requirement of the CCK inequality boils down to k . n, which holds because

k/n ! 0. The inequality allows one to pick tk 6 n�2
k/b

2
k. Here I choose tn = ln(n), which

increases without bound when n ! 1. Guess that tn 6 vk ln(akbk/�k), which may be

verified later. Then the CCK inequality in Theorem 2.6 implies that

P
⇣

sup
f2F

k

|(En � E) (f)| & Un(b�n)
⌘

6 e�t
n =

1

n
, (2.A.12)

where Un(b�n) =
p

�2
k [tn _ vk ln(akbk/�k)] /n =

p

k/n. From (2.A.12), it follows that

lim sup
n!1

P
⇣

sup
f2F

k

|(En � E) (f)| & Un(b�n)
⌘

= 0,

which, in turn, implies that

sup
f2F

k

|(En � E) (f)| .P Un(b�n) =
p

k/n.

Combining (2.A.10) with the preceding display yields the desired result.

Let hk = h�
k

, k 2 N, be a sequence of functions in the sieve satisfying A.8, and let

h⇤k = h
�⇤
k

, k 2 N, where �⇤k is the maximizer of eQ on Bk from A.7.3.

Lemma 2.13. If A.1–A.9 hold, then ⇢(h⇤k
n

, hk
n

) . k�↵
n as n ! 1.

Proof. The proof involves two steps. First, I establish a crude bound on the rate of conver-

gence of ⇢(h⇤k , hk), where the dependence on n has been suppressed. Second, I iterate on a

set of inequalities to use the crude bound to speed up the rate of convergence to the desired

rate.

Step 1. A.5 and A.7 imply

⇢(h⇤k , hk)
2 . k�⇤k � �kk2e . eQ

�

�⇤k
�� eQ (�k) (2.A.13)

= Q
�

h⇤k
��Q (hk) 6 Q (ho)�Q (hk) .

By A.8, hk ! ho, so for su�ciently large k, A.9 applies, and Q (ho) � Q (hk) . ⇢ (hk, ho) .

Assume without loss of generality that this bound holds for k 2 N. Now A.8 and (2.A.13)
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implies that

Q (ho)�Q (hk) . k�↵. (2.A.14)

⇢(h⇤k , hk) . k�↵/2, (2.A.15)

Step 2. Decompose as follows

Q (ho)�Q (hk) = [Q (ho)�Q (hk2)] + [Q (hk2)�Q (hk)], (2.A.16)

where {k2} denotes the subsequence {k2
n}n2N of {kn}n2N. I now bound the second term in

(2.A.16).

Write 0 for the (k2 � k)–dimensional zero vector. Then

Q (hk2)�Q (hk) 6 Q
�

h⇤k2
��Q (hk) = eQ

�

�⇤k2
�� eQ (�k) (2.A.17)

. k�⇤k2 � (�>
k ,0

>)>k2e . ⇢(h⇤k2 , hk)
2.

Eqs. (2.A.14)–(2.A.15) yield Q (h0) � Q (hk2) . k�2↵ and ⇢(h⇤k2 , hk2) . k�↵. Hence, by the

triangle inequality and A.8,

⇢(h⇤k2 , ho) 6 ⇢(h⇤k2 , hk2) + ⇢(hk2 , ho) . k�↵ + k�2↵ . k�↵.

Using this result in combination with the triangle inequality and A.8, we get

⇢(h⇤k2 , hk) 6 ⇢(h⇤k2 , ho) + ⇢(hk, ho) . k�↵ + k�↵ . k�↵.

Plugging this bound into (2.A.17) yields

Q (hk2)�Q (hk) . (k2)�↵ . k�2↵

Another application of A.8 implies that Q (ho)�Q (hk2) . k�2↵. Gathering these two results

in the decomposition (2.A.16) produces

Q (ho)�Q (hk) . k�2↵ + k�2↵ . k�2↵,

and the bound in (2.A.13) from Step 1 yields the desired result.

Proof of Theorem 2.4. A.5, A.7, and Lemma (2.12) imply that, with probability approaching
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one as n ! 1,

⇢(bhn, h⇤k )2 . kb�n � �⇤k k2e . eQ(�⇤k )� eQ(b�n) = Q
�

h⇤k
��Q(bhn)

= EZ(f⇤k � bfn) = b�n .P (k/n)1/2 .

Hence ⇢(bhn, h⇤k ) .P (k/n)1/4 with probability approaching one. Combining this result with

Lemma 2.13, A.8, and the triangle inequality,

⇢(bhn, ho) 6 ⇢(bhn, h⇤k ) + ⇢(h⇤k , hk) + ⇢(hk, ho) (2.A.18)

.P (k/n)1/4 + k�↵ + k�↵ .P (k/n)1/4 + k�↵, (2.A.19)

with probability approaching one as n ! 1. This establishes Part 1.

To establish Part 2, let x 2 X be arbitrary. By the Bunyakovsky–Cauchy–Schwarz (BCS)

inequality,

|bhn (x)� h⇤k (x)| 6 kpk (x)kekb�n � �⇤k ke 6 ⇣kkb�n � �⇤k ke.

Since kb�n � �⇤k ke . ⇢(bhn, h⇤k ) .P (k/n)1/4, we have

kbhn � hkkX .P ⇣k(k/n)
1/4.

Again by the BCS inequality,

|h⇤k (x)� hk(x)| 6 ⇣kk�⇤k � �kke.

Since k�⇤k � �kke . ⇢(h⇤k , hk) . k�↵, we have

kh⇤k � hkkX . ⇣kk
�↵.

Now, by the triangle inequality and A.8,

kbhn � hokX 6 kbhn � h⇤k kX + kh⇤k � hkkX + khk � hokX
.P ⇣k (k/n)

1/4 + ⇣kk
�↵ + k�↵.

The third term is negligible compared to the second and may therefore be ignored.
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2.B Technical Appendix

The following theorem is van der Vaart and Wellner (2009) Theorem 1.1.

Theorem 2.5 (VC Index Bounds). Let V :=
Pm

j=1 Vj be the sum of VC indices Vj from

m VC–classes Cj. Then the following bounds hold:
8

>

<

>

:

V (tm
j=1Cj)

V (um
j=1Cj)

V (⇥m
j=1Cj)

9

>

=

>

;

6 c1V ln
⇣

c
2

m

eEnt(V )/V

⌘

6 c1V ln(c2m),where V := (V1, . . . , Vm), c1 :=

e/[(e� 1) ln(2)]
.
= 2.28231 . . . , c2 := e/ ln(2)

.
= 3.92165 . . . , and

Ent(V ) :=
1

m

m
X

j=1

Vj ln(Vj)� V ln(V )

is the “entropy” of the Vj’s under the discrete uniform distribution with weights 1/m and

V := (1/m)
Pm

j=1 Vj.

The following (Talagrand–type) inequality is Chernozhukov, Chetverikov, and Kato (2014a)

Theorem B.1.

Theorem 2.6 (CCK Inequality). Let V1, . . . ,Vn be i.i.d. random variables taking values

in a measurable space (S,S). Suppose that G is a nonempty, pointwise measurable class of

functions on S uniformly bounded by a constant b such that there exists constants a > e and

v > 1 with supQ N (b✏,G, L2 (Q)) 6 (a/✏)v for 0 < ✏ 6 1. Let �2 be a constant such that

supg2G var (g (V)) 6 �2 6 b2. If b2v ln (ab/�) 6 n�2, then for all t 6 n�2/b2,

P
⇣

sup
g2G

�

�

�

n
X

i=1

g (Vi)� E (g (V))
�

�

�

> A[n�2 max (t, v ln (ab/�))]1/2
⌘

6 e�t,

where A > 0 is an absolute constant.
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Schläfli, L. (1901). Theorie der vielfachen Kontinuität, Volume 38. Zürcher & Furrer.
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