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THE RIGHT OF FREE ASSOCIATION:
Relative-Position Encoding for Connectionist Data Structures

John A. Barnden

Computing Research Laboratory
New Mexico State University

DATA STRUCTURING IN CONNECTIONIST SYSTEMS

The challenge presented to connectionism by high-level cognitive processing — which includes
reasoning, planning, and some aspects of natural language understanding — is gaining increasing recog-
nition, and attempts to meet it are becoming more common. The main technical difficulties are listed in
Bamnden (1983, 1984, 1986, 1988a), McDermott (1986) and Norman (1986). They include the well-
known variable-binding problem and the problem of accounting for complex, temporary, novel data
structures. An example of such a data structure is an internal rendering of the information in the sen-
tence ‘‘John believes that Pat gets angry whenever Tom talks about going to Tibet’.

The thesis of this paper is that a promising way to approach the mentioned challenge is to encode
complex temporary data structures by means of two somewhat atypical techniques, which I call
‘‘Relative-Position Encoding’’(RPE) and *‘Pattern-Similarity Association’’ (PSA). These are answers 10
the following question, which lies at the heart of the technical difficulties mentioned above:

The Temporary-Association Question

How are pieces of information put inte temporary association with each other in a connec-
tionist system? (For instance, how are the different parts of a complex lemporary proposition
put together? How are variables bound to values?)

A variety of connectionist techniques have been proposed in answer to this. It is hard to categorize
them satisfactorily, but the following rough classification will suffice for present purposes:

weight-change techniques

e binder techniques

e pattern-relationship techniques (including PSA)
e positional techniques (including RPE).

These classes should be thought of as possibly-overlapping regions within a complex space of possibili-
ties, rather than as being rigidly delineated.

Weight-change techniques involve temporary weight changes on connection paths between nodes
or subnetworks representing the information items to be put into association. An (excessively) simple
example would be a temporary weight increase on a single connection between two network nodes, of
which one represents the idea of being hungry and the other a particular person, John: the intent being
to temporarily represent the proposition that John is hungry. More complex examples would involve
weight changes on groups of connections or connection chains joining large and possibly distributed
sels of nodes. Important recent examples of weight-change techniques are provided by systems using
multiplicative connections [Pollack 1987] or programmable networks [McClelland 1986].

The simpler forms of binder technique involve a temporary activation change on a ‘‘binder’” node
dedicated to the particular combination of nodes or subnetworks representing the information items to
be put into association. More complex forms of binder technique allow the binder to be a subnetwork
rather than a single node, and/or allow different activation states of the binder to indicate different bind-
ings. Smolensky (1987) has provided a general framework encompassing binders. Binders appear in the
systems of Cottrell (1985), Derthick (1987), Touretzky & Hinton (1985), and others.

The binder is usually connected in a straightforward way to the nodes/subnetworks it can bind, and
in that case an unusual activation level on the binder can be construed as a temporary marking of a con-
nection chain joining those nodes (cf. Feldman's (1982) dynamic connections). The binder technique is
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thercby closely related to weight-change techniques.

In pattern-relationship techniques, the temporary association consists of the exploitation of some
given relation on activation patterns. An example is provided by the *‘reduced descriptions’’ technique
[Hinton 1987, Touretzky & Geva 1987]. However, what is more relevant to the present paper is a spe-
cial type of pattern-relationship technique, called **Pattern-Similarity Association (PSA)"' techniques. A
(over)simple example of the idea is as follows. Imagine two subnetworks h and j, each divided into two
parts called the Information Part and the Associator Part. The temporary proposition that John is
hungry could be encoded by letting the Information Parts of j and h contain activity patterns represent-
ing John and the idea of being hungry, respectively, and letting the Associator Parts of h and j contain
the same activity pattern X. The subnetworks h and j are deemed to be temporarily associated by virtue
of this equality of their *‘associator’’ patierns (X). In more sophisticated versions of the idea the
required similarity of patterns need not be equality, and, in principle at least, there need be no separate
Associator subnetworks — associator patterns could be mixed in with information patterns.

There is a sense in which PSA techniques are really binder techniques of an advanced sort. In the
simple example above, if several Associator Parts contain the same activity pattern X, then the union 6f
these subnetworks can be construed as a binder containing a specific activation pattern indicating the
binding together of the subnetworks. The binders thus defined, being unions of Associator Parts, are
highly distributed, overlapping subnetworks. They are so different from the binders usually entertained
in connectionist models that it is worth isolating PSA techniques as a special class.

Limited forms of positional technique crop up in many connectionist systems, especially those
concerned with visual perception. The idea is best approached by means of a simple prototypical exam-
ple. Consider a word-perception system that has a separate register-like subnetwork for each letter posi-
tion in words. A particular pattern of activation distributed over the ith subnetwork would represent the
presence of a particular letter at position i. Implicitly, therefore, the patterns of activation in the subnet-
works encode temporary associations — relative positions — of letters in a word. Thus, the technique
is termed ‘‘positional’’ because temporary association is achieved merely by placing suitable activation
patterns, encoding the information items to be associated, in suitable “‘positions’’ in the total network.
There is no weight change, activation of binders, or use of special associator patterns. (The name of the
positional technique does not derive from the fact that what is encoded in many applications is position
in words or some other type of space.)

The (quasi-)connectionist sentence-parsing system of Charniak & Santos (1987) uses a more
interesting and advanced positional technique that is highly germane to this paper. The model is cen-
tered on a two dimensional array of registers, which could in principle be implemented as connectionist
subnetworks. By putting the registers into suitable states representing syntactical categories, the array
can hold parse trees. The (ree structure is encoded to a significant extent by the relative positioning of
slates in registers. We therefore call the technique a form of “‘Relative-Position Encoding (RPE)"".

The working hypothesis that, to address the abovementioned ‘‘challenge’’ adequately, what is
needed is an advanced form of RPE, has underlain my own development of connectionist models
(Barnden 1985, 1986, 1987, 1988a,b], which has proceeded independently from the work of Charniak
and Santos. The next section will sketch my present model, called ‘‘Conposit’’, which relies on an
RPE technique broadly similar to that of Charniak & Santos, but more general and thorough-going
than theirs. Conposit makes crucial use, too, of a PSA technique.

SKETCH OF CONPOSIT

This section is of necessity highly simplified, and concentrates on Conposit's representational tools
rather than its processing methods. Representation and processing details can be found in Bamden
(1986) supplemented by Barnden (1987, 1988a,b).
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Conposit is currently only *‘quasi-conncctionist’’, in the sense of being a computational architec-
ture whose components can be straightforwardly implemented in connectionist terms [see Barnden 1986
for some suggestions]. A dctailed conncctionist implementation will be simulated in future research.
The two-stage strategy adopted — mapping information processing to an intermediate-level model, and
later mapping this to the detailed connectionist level — is done in a spirit analogous to good design
practice in compuler science. The intermediate level has all along been constrained by the need for later
connectionist implementation.

The versions of Conposit simulated to date are centered on a 32x32 array of registers, called the
“configuration matrix (CM)"". (The small, 2D nature of the CM is motivated by the fact that Conposit
is intended to be a rough, preliminary model of high-level processing in brain cortex, and the CM is
taken to be implemented as a small region of the cortical sheet. Individual registers are taken (o be
implemented as cortical columns.) The purpose of the CM is to hold temporary data structures being
manipulated in reasoning and other high-level cognitive tasks. Conposit as currently simulated has no
long-term memory for data structures, but see Barnden (1986) for an LTM proposal.

The content of the CM at any moment is given by a function ¢ from the CM registers (o a stale
sct B. Each member of B is an ordered pair (s, /1), where s is a *‘symbol’’ and & is a vector of ON/OFF
values for a fixed set of “‘highlighting flags’’. Both s and h for a given register in the CM are assumed
to be implemented as activation patterns over part of the small neural/connectionist subnetwork forming
the implementation of the register. Any symbol can be placed in any register. A symbol may have a
specific representational function, such as denoting a particular person or a particular type of relation-
ship among people. The significance of highlighting will become apparent.

The associations between the parts of a temporary dala structure are encoded by (a) adjacency
relationships among values in CM registers, often supplemented by (b) sharing of symbols by several
registers. The RPE and PSA aspects of Conposit reside in (a) and (b) respectively. The encoding is
exemplified by the Figure below, which shows a possible state of a region within the CM.
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This region contains a representation of the proposition that Bill believes that John loves Mary. Each
square shows a register. The words and capital letter X indiacte specific symbols s. Absence of symbol
word indicates an occurrence of a special ‘‘null’’ symbol. The spade, heart, 'r’ and *g" symbols indi-
cale ONness of four specific highlighting flags, called black, white, red and green respectively. The
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symbol LOVE permanently denotes the class of all possible situations in which one person loves
another. Any register containing this symbol also temporarily denotes that class. Any white-
highlighted register adjacent to a LOVE-containing, black-highlighted register is deemed to denote,
temporarily, a member of the class — that is, a loving situation. Such a register appears ncar the mid-
dle of the Figure. Any red-highlighted register adjacent to a register denoting a loving situation is
decmed to denote the agent of the loving; similarly for green highlighting and the object of the loving.
Thus, the upper ‘‘subconfiguration’” of register states shown in the Figure encodes the proposition that
John loves Mary.

So far, then, temporary association is a matter of exploiting the permanent, 2D structure of the
CM, by having symbol occurrences and highlighting in suitable relative positions. In fact, the encoding
relies only on the undirected adjacency relationships in the CM. Ways of using the CM that make
broader appeal to the permanent structure in the CM — notably by using the CM as a map of some
region of space in certain simple types of spatial reasoning — are discussed elsewhere [Barnden 1986,
1987].

The symbol X in the Figure is one of a special class of ‘‘unassigned’’ symbols. that do not per-
manenty denote anything and are akin to variables in a logic. However, by virtue of its position in the
head register (i.e. the white-highlighted one) in the John-loves-Mary subconfiguration in the Figure, X is
deemed to remporarily denote the loving situation denoted by that register. But X also appears in
another register in the Figure, and makes that register also denote the loving situation. Thus, symbol-
sharing is being used to temporarily associate registers in the sense of making them temporarily denote
the same thing. This is an instance of Conposit’s use of PSA (Pattern-Similarity Association). Because
the lower X-containing register in the Figure denotes the situation of John loving Mary, the lower
subconfiguration in the Figure encodes the top level of the proposition that Bill believes that John loves
Mary. (PSA can also be used to split up propositions like John-loves-Mary into several pieces.)

The processing of the short-term data structures in the CM is performed by internal and external
“‘circuitry”’ — system components that will be mapped straightforwardly into a connectionist imple-
mentation. The internal circuitry mediates mainly neighbor-neighbor interaction among registers in the
CM, whereas the external circuitry embodies hardwired ceondition-action processing rules. Rules can
detect particular configurations of symbols and highlighting states in the CM, by means of highly paral-
lel detection circuitry that involves further two-dimensional register arrays called location matrices (see
below). The response of a rule is to send a complex sequence of ‘‘CM signals’’ to the CM. The gen-
eration of the sequence can involve conditionals (testing the CM state), loops, and a simple form of
non-recursive routine calling. A CM signal affects the CM in a highly SIMD-like, register-local, paral-
lel fashion: the signal is distributed identically to each CM register, whereupon different registers
change state differently, according to their own current states and those of their immediate ncighbors.

A CM signal can have one of a number of effects, such as: changing the states of some highlight-
ing flags in each register that is highlighted in some specified way and that has at least one neighbor
highlighted in some other specified way. It is also possible for a signal only to have an effect on a ran-
domly chosen register satisfying the highlighting conditions, rather than on each such register. Barnden
[1986] details how the signals can be used to process data structures, and, in particular, to find free
space for, and then create, new data structures in CMs. Specific information processing tasks are
reported on in the next section.

Although there is no space here for a detailed account, there is a sense in which the binder tech-
nique for temporary association is used behind the scenes. The binders are the elements of some of the
“‘location matrices’ (LMs) alluded to earlier. An LM is a 32x32 matrix of registers, each containing an
ON or OFF value. Suppose for instance that the system contains a hardwired rule triggered by the pres-
ence in the CM of a loving situation. Then the system must contain a certain LM with the following
property: an ON value at any position (x,y) in the LM indicates that register (x,y) of the CM currently
denotes a loving situation. More precisely, such a CM register is white highlighted and has a black-
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highlighted neighbor containing the LOVE symbol (recall the Figure). To cut a long story short, the
(x.y) register in the LM receives a connection path from the CM’s (x,y) register and each neighboring
CM register. As a result, ONness at (x,y) in the LM can be viewed as indicating the (emporary associa-
tion of the CM (x,y) register and its black-highlighted neighbor. Therefore, the LM (x,y) register,
which is implemented as a connectionist subnetwork, is acting as a binder.

But it is essential to realize that Conposit’s RPE is independent of such binders, in the sense that
they serve only the subconfiguration-derection needs of hardwired rules: they are not brought in by the
sheer requirement of representation. This is underscored by two observations. (1) Rules can analyze
data structures by traversing them, through the use of highlighting movements in the CM, without hav-
ing first detected them by means of the binders in LMs. (2) Later versions of Conposit will contain
secondary CMs used for short-term storage purposes only, and having no attached LMs.

On the other hand, Conposit’s PSA can be construed as being based on binders — of a highly
atypical nature — in the way described in the first section.

SIMULATIONS OF CONPOSIT

The simulations (performed on NASA’s Massively Parallel Processor) incorporate timing delays
based on crude but reasonable neural implementation assumptions [Barnden 1986]. E.g.: 2 milliseconds
is allowed for each logical gating operation in the neural ‘“‘local circuits’’ hypothesized to exist in CM
registers [Barnden 1986]; speeds of 1 and 10 meters/second are assumed for shor( and long neural signal
travel respectively; and hardwired rule circuitry is generously assumed to be Scm away from the CM.
Therefore, there is a significant transmission delay (5 milliseconds) over long distances.

Barnden (1988a) reports experiments with two versions of Conposit. The first incorporates pro-
duction rules for commonsense reasoning, one of which can be paraphrased as: if a person X loves a
person Y who loves a person Z (different from X), then X is jealous of Z. Such rules exercise
Conposit’s handling of variable bindings. The rule executes in 515 milliseconds of simulation time.
The rule deals with any situation satisfying the rule condition (and set up as the initial state of the CM),
without massive duplication of circuitry for different bindings of the variables.

The second Conposit version in Barnden (1988a) converts a simplified form of parse tree for an
active sentence into the parse tree for the corresponding passive sentence, in 1063 milliseconds of simu-
lation time. The conversion parallels a task performed by the connectionist production system of
Touretzky (1986). The initial tree is given as the initial state of the CM, and Conposit replaces it by the
new tree. The rule has no massive duplication of circuitry for different choices of word in the sentence.

The Conposit version described in Barnden (1988b) engages in syllogistic reasoning, by embody-
ing some core aspects of the Johnson-Laird's *‘mental model’’ theory [see e.g. Johnson-Laird & Bara
1984]. (Conposit could also accommodate more conventional logical processing of syllogisms.) An
example syllogism is: ‘‘Some athletes are beekeepers; all beekeepers are chemists: therefore, some ath-
letes are chemists’’. This is represented in the CM by propositional subconfigurations analogous to
those in the Figure above. Conposit’s syllogism-processing rules (which involve no massive duplication
of circuitry for different choices of objecl categories in syllogisms) use the syllogism premises o con-
struct a random Johnson-Laird mental model — a sort of example situation involving several athclete,
beckeeper and chemist *‘tokens’’. A rule then checks whether the syllogism conlcusion is consistent
with the mental model. Conposit can run through a syllogism (which involves 6 rule firings, and the
creation of 15 tokens on average) in about 2.5 seconds of simulation time. This appears to be fast
enough for psychological plausibility, judging by the times allowed to human subjects in Johnson-
Laird’s experiments.
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CONCLUSION

In response to the *‘challenge’’ mentioned in the first section, McDermott (1986) has advocated
systems that contain symbols — reproducible patterns of network-node activity that can have distinct
simultancous occurrences. Conposit is based on just such symbols. Their use in a Relative-Position
Encoding technique, combined with Pattern-Similarity Association, leads to a (quasi-)connectionist sys-
tem capable of complex high-level symbolic information processing.

The temporary-association methods used by Conposit are particular points in a rich space of tech-
niques for the analysis of which a general unifying framework would be beneficial. The following
comments explain the intuitive basis of a general framework that I am currently devising, to accommo-
date the classes of technique discussed in the first section, and thereby to illuminate their relationships.
In particular, the relationship of binder techniques and PSA techniques needs further clarification.

The various techniques discussed embody ways of TEMPORARILY exploiting PERMANENT
structure to achicve TEMPORARY association. In the weight-change case the permanent structure is
some set of connection chains in the total network, and the association is achieved by temporarily
exploiling connection chains in the sense of putting them into particular temporary states. The binder
case is similar, but the exploitation consists of changing the activation of intermediate nodes in connec-
tion chains. In the pattern-relationship case, at least in the special case of PSA, the permanent structure
exploited is the appropriate type(s) of similarity among activation patterns, and the exploitation is the
placing of similar patterns in suitable network regions. In the positional case, the permanent structure
exploited is the way some register-like subnetworks are arranged in the total system architecture, and the
exploitation consists of the placing of suitable activation patterns in the registers.

It is illuminating to apply this unifying view of temporary association (as temporary exploitation
of permanent structure) to the way it is achieved in primary storage in ordinary computers. The associa-
tions are achieved in temporary states of the store that exploit various types of permanent structure.
The sequential allocation technique for data structuring, where for instance the ilems in an array are
placed in sequence in some set of consecutive locations, exploits the total order on the set of storage
locations. The pointer or linking technique for achieving data structuring exploits the (partial) function
from bit-strings, construed as addresses, to locations. A simple form of content addressing, in which
two locations containing the same (sub)string of bits may be considered to be currently associated,
exploits similarity relationships among bit-strings. In sum, sequential allocation, content addressing
and linking temporarily exploit permanent structure defined over the set of locations, the set of possible
bit-suings, and the mapping from bit-strings to locations, respectively.

It should be obvious how this view of computers can be modified to cover RPE and PSA in Con-
posit, taking the CM to play the role of the store and ignoring the linking technique. I am hoping to
extend the view to cover positional and pattern-relationship techniques more generally, and to encom-
pass also the binder and weight-change classes of technique. Particular tasks to be faced in constructing
such a general framework will be to relate it to certain other general frameworks, such as Smolensky’s
(1987) account of roles, fillers, and variables, and Walters' (1987) account of connectionist information
encoding.
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