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Toward a Model of Student Education in Microworlds!

Cristina Conati
Intelligent Systems Program
University of Pittsburgh
Pittsburgh, PA 15213
conati @cs.cmu.edu

Abstract

Microworlds are educational environments intended to
support the student in the active exploration of a
subject-matter domain. We present preliminary work
whose goal is to attain a better understanding of the
educational effectiveness of microworlds through an
examination of the learning processes that they exploit.
The learning processes are made explicit within a
computational model of the interaction between a
student and a microworld for simple electrostatics. We
focus, in particular, on the implementation of an
episodic memory mechanism that gives insight into the
processes involved in learning from incorrect behavior.

Introduction

In the educational community a large amount of
enthusiasism has been engendered for the highly
interactive microworld which behaves according to the
laws and constraints of some subject-matter domain and
permits the student to experience the nature of that
domain through free or guided exploration. This
enthusiasm is predicated largely on the belief that the
student’s activities in the microworld produce or foster
education about the subject-matter domain. There is
essentially no empirical evidence of substantive
leaming from mere interaction with a microworld, i.e.,
without an associated curriculum systematically
designed to enable the learner to develop a set of well-
defined skills (Carver, 1986; White88, 1988).
Moreover, even when such a curriculum exists and
experimental effect is evident, there is still little
understanding of the processes through which such
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education occurs or through which the microworld
experiences make their contribution. Thus, the goal of
our work is to produce a process model account of
education in microworlds. The research described here
is preliminary, demonstrating a problem-solving
organization that models one student’s behavior in
microworld interactions.

The Task: Electric Field Hockey

Our subject-matter domain is the simple
electrostatics of discrete charged particles with unit
mass. Our interactive microworld is Electric Field
Hockey (hereafter, simply Hockey) (Chabay &
Sherwood, 1989; Sherwood & Chabay, 1991). With
respect to electrostatics, Hockey involves determining
the trajectory of a unit-charge particle (the puck) from a
given initial position, around a given set of obstacles, to
a fixed final position (the net) by placing a number of
additional unit-charge particles (see Figure 1). The
motion of the puck along its trajectory is shown when
the GO button is clicked on; the puck’s velocity is
recorded statically by the spacing of the dots.

The student has a limited number of options in
controlling exploration in Hockey: velocity can be
replaced with a vector representation of acceleration,
and any of six levels of increasingly difficult play may
be chosen. Increasing difficulty is achieved by variation
along four dimensions: the number and configuration of
obstacles, the starting position of the puck with respect
to the boundaries of the playing field and the obstacles,
the existence of other, unmoveable charged particles in
the field, and the number of charged particles available
to maneuver the puck into the net.

1'l'IJ.ia research was sponsored by the Markle Foundation. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the Markle Foundation.
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We have collected a nearly complete video record
of two students’ education in the domain. The
completeness of this record was made possible by the
creation of a mew cumriculum at Camegie Mellon
University that teaches students a purely qualitative
model of electrical and magnetic phenomena as a
theoretical basis for later, standard quantitative
material. Our two students worked together through the
notebook of desk-top experiments and questions that
constitute the course material, then interacted separately
with Hockey as a class assignment. The purpose of the
assignment was to provide ‘‘an excellent physical feel
for the extreme distance dependence of the Coulomb
interaction’’ (Sherwood & Chabay, 1991). It is
apparent from the video record that both students had at
least a rudimentary understanding of the requisite
physics concepts prior to their game interactions.

The Models: EFH-Soar

Our models are implemented within the Soar
architecture (Laird, Newell & Rosenbloom, 1987;
Newell, 1990), although due to space our description
will be given at a functional level rather than in terms
of problem spaces, operators and impasses. There are
currently two models: EFH-Soar, a model based purely
on a task analysis of Hockey which contains enough
game knowledge and physics knowledge to play
without error, and EFH-Soar2, a model of Student 2
based on her protocol. Both models possess the basic
functionality for interacting with Hockey as a piece of
external software, for re-encoding Hockey’s spatial
representation in symbolic terms, for reasoning about
the placement of charges to create a trajectory that
manuevers around or through an obstacle, for
interpreting and evaluating a trajectory in terms of the
forces that determine it, and for modifying the position
of previously placed charges on the basis of the
resulting trajectory. Both models play only the first
three levels of the game. We concentrate here on EFH-
Soar2 (hereafter, simply EFH2), which acquires some
of the knowledge hand-coded into EFH-Soar.

Figure 1 shows the steps EFH2 takes in playing the
first level of the game. Like Student 2, the system
works its way from left to right across the screen,
interweaving the positioning of each charge with an
examination of the microworld’s feedback on the effect
of the placement in achieving the goal or subgoal.

One of the most important aspects of interaction
with Hockey is the processing of spatial information
displayed on the screen. The essential feedback from
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Hockey takes the form of continuous trajectories of the
puck as it moves under the influence of the fixed
charges. Although all the information available from
the Hockey software is in terms of x-y coordinates, it is
clear that students do not reason at that level. Based on
prior work by Ward (Ward, 1991), EFH2 uses a highly
approximate, qualitative spatial model which depends
on continuous re-perception of the actual external world
(the source of high-quality knowledge) to update and
correct the low-quality internal representation. Figure
1, (a) shows a simplified version of the encoding of the
representation of the screen available from Hockey into
the features of EFH2’s spatial model. These features
include: a focus of attention mechanism, variable
access to details about an object’s properties depending
upon whether or not it is in focus, and a qualitative
representation of relative positions among objects. The
qualitative representation encodes broad spatial
relations among objects not in focus (e.g. left, right,
above, below, and their compounds). When objects are
brought into focus, the representation is augmented
with distance and angular relations in terms of the
system’s internal resolution factor.2 When it begins to
play Level 1, the puck is the focus of attention.

Reasoning from the initial spatial model (a), EFH2
proposes clearing the obstacle as the first subgoal for
sending the puck into the nmet. The process (o
accomplish the subgoal is divided into two phases:
spatial reasoning (panel (b)) and physics reasoning
(panel (c)). The spatial reasoning phase defines the
trajectory that the puck must follow to accomplish the
current subgoal. In the example, EFH2 performs shifts
of focus until its focus of attention includes both the
obstacle and the corner chosen as a clearing point. By
bringing the comer into focus, the spatial model is
augmented with a relative distance and direction
between the corner and the puck. The appropriate path
is then defined as the direction between the puck and
the comer slightly decremented to allow the puck to
clear the obstacle.

Once a path has been chosen, the system uses its
knowledge of physics to find a strategy for moving the
puck along the path (panel (c)). During this phase
EFH2 decides, for example, whether to use an attracting
or repelling force, how many charges to place, and
where to place them. The strategy is then expressed in

2Although we believe the internal resolution can vary in grain size,
this has not yet been implemented. The current resolution is 10 for
distance and 32 for angular relation, laid out in the Cartesian plane.



Level 1 Round 1

Level 1 Round 1
Goals: 0

0 L] s

e
(b) subgoal: overtake comer

(c) subgoal: overtake corner
find strategy to move along path

strategy:
place positive
direction opposite(26-)
distance from puck 3

(a) build internal spatial model
find path via spatial reasoning
b f/gbsmcle ;
obstacle part-o art-o,
lefi-of / lefi-of left-corner  right-corner
puck teof left-above ck
distance S, direction 26 P
path from puck direction 26-
Level 1 Round 1 Level 1 Round 1

Goal.s"|= :0 o Go?ls: 0 Eﬂ

(d) form place command and
execute motor command
puck === charge

left-above
distance 3, direction 10

(e) form go command and
execute motor command

) evaﬁe_trajectory
trajectory

art
PR right-below
last-segment ——right-corner

Figure 1: One iteration through EFH2’s basic problem-solving loop
(cumulative state information in italics, focus objects in boldface).

terms of game actions — here, the placement of a
positive charge with a particular angular relation and
distance from the puck.

Once the action has been sent to and performed by
Hockey, the new screen is perceived to modify the
internal spatial model (panel d), adding the newly
placed charge to the focus objects. The system is now
ready to issue the GO command, which causes Hockey
to display the motion of the puck subject to the
electrostatic force of the placed charge (panel e). EFH2
encodes in the spatial model a qualitative representation
of the trajectory, enabling the system to evaluate the
result of the place action. To accomplish the
evaluation, the system shifts its focus to the trajectory
and the lower part of the obstacle (panel f). The
position of the last part of the trajectory with respect to
the obstacle’s lower comers shows that the subtask of
clearing the obstacle has been accomplished.
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Since there are no other obstacles, EFH2 proposes
the new subgoal of sending the puck directly into the
net. The spatial and physics reasoning phases are
repeated. This time the system moves its focus to define
a path that starts inside the net and runs perpendicular
to the trajectory. The strategy to move the puck along
this path is, again, to use a repelling charge. Since the
first placed charge is not close to the current focused
area, its effect is ignored and the new charge is placed
along the defined direction, close to the trajectory. The
result of this second placement eventally sends the
puck into the net.

The model’s performance, like that of our student,
is not flawless. In particular, since EFH2 reasons with a
spatial representation which has a grain size much
larger than the actual number of unique locations in the
field represented inside Hockey, the system’s intended
location corresponds to a region inside the microworld.
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Figure 2: An episode of learning from Student 2's protocol.

As a result, positioning of a charge can be correct with
respect to physics knowledge but still fail to achieve the
subgoal. In case of such a failure, the trajectory
evaluation phase annotates the strategy with a
description of the failure encountered (e.g. the puck is
against the obstacle). When a failure occurs, the system
proposes an error recovery subgoal that analyzes the
description of the failure in order to find an action to
eliminate it In this case, only a simple adjustment of
location is needed. Genuine errors of knowledge that
result in failure cause an error recovery subgoal in the
same way. In those cases, however, a failure triggers
physics knowledge in the subspace that the student
failed to bring to bear during the original problem
solving process, i.e. knowledge that the student did not
consider relevant to the current situation, but that she
must re-evaluate to discover a solution (an example will
be described in the next session).

What the Model Learns

The term learning refers to a change in long-term
memory that results in a change in behavior. In
ascertaining whether leaming occurs in microworld
interactions, the advantage of a process model over, for
example, an empirical study of student test performance
stems from the ability to actually examine changes in
the model’s long-term memory. In Soar, all changes to
long-term memory, all episodes of leaming, have at
their basis the architectural mechanism of chunking
(Newell, 1990). Chunking is a uniform, ubiquitous
mechanism that adds knowledge to long-term memory
throughout problem solving. It is a compilational, or
integrational, technique that, in its simplest form,
combines existing knowledge into new associations.

In the situation in Figure 1, for example, EFH2
begins with separate pieces of knowledge for deciding
to overtake the commer first, for reasoning spatially
about the path the puck should follow, for deciding
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whether to attract or repel the puck along the path, and
for mapping the game concept of placing a charge into
motor commands for interacting with Hockey. Between
the time EFH2 perceives the initial situation (panel (a))
and the time it performs a motor action in the world
(panel (d)), each of these pieces of knowledge is
brought to bear in discrete problem-solving steps.
Chunking takes all the knowledge implicated in the
choice of a motor action and forms new associations,
mapping the perception of the initial situation directly
into a proposal for the motor action. The next time
EFH2 is in a similar situation, it will not problem solve
— it will simply recognize the situation and act in the
way its prior experience dictates. In this way, the model
becomes a more practiced Hockey player, able to find
solutions to the problems in the game more quickly
over time. Note that the quality of the solution does not
improve via simple chunking, just the speed of attaining
the solution. This process is not one by which the
model, or the student, learns more physics, but one by
which they continually recast the physics knowledge
they do have into game-relevant form.

If the student has both perfect kmowledge of
physics and perfect knowledge of the game, then speed-
up leaming is the only type of learning that will occur.
Of course, most students have neither. Consider the
episode from Student 2's protocol shown in Figure 2. In
panel (b), ber initial placement of the repelling charge is
inadequate to overcome the effects of the charge glued
to the obstacle. Her next move seems to be an attempt
to compensate for the direction of the force produced
by the glued charge but is still too far away to produce
the desired outcome. Finally, in panel (d), the forces
combine correctly to achieve her subgoal of pushing the
puck through the hole.

What did Student 2 learn from these interactions?
We know she learned something, because when faced
with an analogous situation at Level 4 of the game, she
does not repeat this series of actions but places the



initial repelling charge directly at the position
analogous to the one in panel (d). Transfer occurs
despite the fact that the situation in Level 4 differs in
significant ways from the situation in Level 3 (the glued
particle has a charge opposite that of the puck, the
glued particle is on the lower of the two obstacles, and
there is another obstacle between the puck and the net).
Because the video record prior to her interaction with
Hockey indicates that she has an abstract understanding
of the relationship between distance and force, we
conjecture that in this episode her abstract
understanding is recast to fit the scale of the game (this
conjecture is further supported by her verbal protocol at
Level 4 when she says (her emphasis), ‘‘so we’re gonna
need a negative charge close that will hopefully umm
take away some of the effects of that positive charge’").
In other words, through the sequence of moves in (b)
through (d), Student 2 makes the notion of near
concrete. This is certainly a component in achieving
the pedagogical goal of the designer (“‘an excellent
physical feel for the extreme distance dependence of the
Coulomb interaction’”).

It is straightforward to show that the model
outlined above is inadequate to produce the transfer
shown by Student 2. In the initial situation on Level 3,
EFH2, like the student, ignores the effects of the glued
particle, placing a charge aligned with a path through
the opening. It chooses to place the charge at a distance
from the puck that was adequate to achieve ber goal at
Level 1. Thus, chunks are formed that map the situation
in panel (a) directly into that placement (call them
PlaceChunks), EFH2 then issues the GO command,
evaluates the resulting trajectory, and proposes error
recovery (producing GoChunks, EvalChunks etc). The
first error recovery action is to adjust for the direction
of the force. So MovelChunks are built that map the
situation in panel (b) (the puck and charge as positioned
and the current type of failure) directly into an action
that moves the charge to its position in (c). After
another GO command results in the failure in (c), a
second error recovery moves the charge closer to the
puck. Thus, Move2Chunks are built that map the
situation in panel (c) (the puck and charge as positioned
and the corresponding failure) to an action that moves
the charge to its position in (d). When faced with a
situation similar to (a) in the future, these chunks will
be triggered and the system we have described, unlike
Student 2, will go through the same sequence of motor
actions seen in (b) through (d), rather than directly to
the single, correct placement.

Qur preliminary solution to this dilemma lies in

giving EFH2 an episodic memory that is created and
used by processes that allow the system to reconstruct
past problem solving in order to avoid repeating
mistakes. Assimilation, recognition, and recall are the
three processes that must be coordinated (Lewis, 1992).
The assimilation process results in chunks that encode
situations the system has been in, where a situation is
defined by the objects in focus, the current subgoal, the
proposed action, and when available, the outcome of
the action (success or failure). During the sequence in
Figure 2, for example, assimilation chunks are formed
that record the puck, glued charge and obstacles in the
relation in (a) and the proposed placement action.
Other assimilation chunks record that the outcome of
this action was a particular kind of failure. Others
record the configuration of the puck, placed charge,
glued charge and obstacles in (b), the failure of the
place action, and the proposed move. Still others
encode the failure of the move action in (c). This
assimilation process is repeated throughout the action
sequence.

The episodic memories are used by the recognition
process to notice when the system is about to do
something it has already tried. Consider the next time
EFH2 is in a sitation like (a). As noted above, the
PlaceChunks will fire, proposing the placement action.
Now, however, assimilation chunks will fire signaling
that this is a familiar situation. Familiarity invokes the
recall process which tries to remember what the
outcome of the proposed action was. Recall also uses
assimilation chunks; it tries each of a small number of
augmentations to the system’s internal state waiting for
recognition to occur. In other words, the system asks
itself the question, ‘‘Do I have a memory in which this
placement succeeded?’’ “‘Ome in which it failed
because of this or that reason?"’

Once a failure has been recalled, EFH2 must
reconstruct its prior problem solving to find the actions
that led to success. To accomplish this, the system
imagines the spatial model that would result from
applying the currently proposed action. ‘‘Imagining"’
means simply that a new charge and its spatial
attributes are added to the spatial model without
actually being present on the Hockey screen. Using this
simulated spatial model, EFH2 tries the error recovery
subgoal, triggering Move1Chunks that suggest the same
move action performed originally in (b). Now the
process repeats: the system recalls the outcome of the
first move by generating failure types until it triggers an
assimilation chunk. Then it imagines the outcome of the
move in the spatial model and uses an error recovery
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subgoal to trigger the Move2Chunks. Finally, it
recalls/recognizes that this move led to success. The
system uses the distance and direction of the charged
particle with respect to the puck in (c) to propose an
alternative to the place action suggested by the original
PlaceChunks.  Proposing an alternative leads to
Place2Chunks whose action is preferred to the original.

The chain of recalls and recognitions outlined
above is performed the second time EFH2 is in
simation (a). By reconstructing its past problem
solving, the system circumvents the automatic replay of
motor actions which simple chunking would have
produced. In terms of observable behavior, EFH2
simply places the first charged particle correctly.
Moreover, in future situations like (a), reconstruction
via recall is not necessary — Place2Chunks map (a)
into the correct placement directly.

Conclusions

The system outlined above is both too strong and
too weak. It is too strong because the mechanism for
assimilation, recognition, and recall is capable of
reconstructing chains of memories of arbitrary length
and involving the imagination of an arbitrary number of
changes to the spatial model. The mechanism is too
weak because it cannot, by itself, result in the transfer
shown by Student 2 at Level 4. The flaws in the
mechanism are the result of two simplifying
assumptions: first, that assimilation captures all and
only the necessary details of the situation; and second,
that the assimilation, recognition, and recall processes
are automatic, i.e. unmediated by other, more proactive
Processes.

The modified form of the mechanism we envision
relaxes these assumptions. In it, each episodic memory
is constructed by a potentially inaccurate assimilation
process that can be automatic or mediated by reasoning.
If assimilation is no longer guaranteed o capture the
complete and correct details of the simation, then both
overspecific and overgeneral episodes are possible. The
former may result in the breakdown of the recognition
and recall processes during reconstruction while the
latter may serve as a foundation for single instance
generalization. We also conjecture that when recall
occurs upon re-encountering a familiar situation,
transfer appears analogical, but recall employed at the
moment of success or failure leads to transfer that

appears to be a result of self-explanation (Chi, 1989).
Assimilation and recall are, by themselves,

inadequate to explain or predict the full range of
behavior we see in our students. Still, our work has led
us to consider that conventional leaming mechanisms
— analogy and self-explanation, for example — may
be understandable as variations of a single underlying
process. These conventional learning mechanisms have
been clearly implicated in successful education, Thus,
our fumre work is directed at demonstrating how
assimilation and recall, as component processes
underlying conventional learning mechanisms, play a
crucial role in acquiring subject-matter knowledge.
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