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A New Pathogen Transmission Mechanism in the Ocean:
The Case of Sea Otter Exposure to the Land-Parasite
Toxoplasma gondii
Fernanda F. M. Mazzillo1*, Karen Shapiro2, Mary W. Silver1

1 Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America, 2 Department of Pathology, Microbiology and

Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America

Abstract

Toxoplasma gondii is a land-derived parasite that infects humans and marine mammals. Infections are a significant cause of
mortality for endangered southern sea otters (Enhydra lutris nereis), but the transmission mechanism is poorly understood.
Otter exposure to T. gondii has been linked to the consumption of marine turban snails in kelp (Macrocystis pyrifera) forests.
It is unknown how turban snails acquire oocysts, as snails scrape food particles attached to surfaces, whereas T. gondii
oocysts enter kelp beds as suspended particles via runoff. We hypothesized that waterborne T. gondii oocysts attach to kelp
surfaces when encountering exopolymer substances (EPS) forming the sticky matrix of biofilms on kelp, and thus become
available to snails. Results of a dietary composition analysis of field-collected snails and of kelp biofilm indicate that snails
graze the dense kelp-biofilm assemblage composed of pennate diatoms and bacteria inserted within the EPS gel-like matrix.
To test whether oocysts attach to kelp blades via EPS, we designed a laboratory experiment simulating the kelp forest
canopy in tanks spiked with T. gondii surrogate microspheres and controlled for EPS and transparent exopolymer particles
(TEP - the particulate form of EPS). On average, 19% and 31% of surrogates were detected attached to kelp surfaces covered
with EPS in unfiltered and filtered seawater treatments, respectively. The presence of TEP in the seawater did not increase
surrogate attachment. These findings support a novel transport mechanism of T. gondii oocysts: as oocysts enter the kelp
forest canopy, a portion adheres to the sticky kelp biofilms. Snails grazing this biofilm encounter oocysts as ‘bycatch’ and
thereby deliver the parasite to sea otters that prey upon snails. This novel mechanism can have health implications beyond
T. gondii and otters, as a similar route of pathogen transmission may be implicated with other waterborne pathogens to
marine wildlife and humans consuming biofilm-feeding invertebrates.
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Introduction

Toxoplasma gondii is a coccidian parasite that infects humans and

warm-blooded animals [1]. Infections with this terrestrial parasite

have also been documented in marine mammals [2], including the

southern sea otter (Enhydra lutris neries). The southern sea otter is an

endangered subspecies that inhabits giant kelp forests, including

those of Macrocystis pyrifera, along the California coast. Toxoplasma

gondii is recognized as a significant cause of mortality in southern

sea otters, with harmful consequences for the health and recovery

of this population [3]. Infected otters have been detected at several

locations along the coast of California, and high-risk sites for otter

exposure were described in populations from Morro Bay and

Cambria, California [4,5].

The transmission mechanism of T. gondii in the marine food web

is unknown. Sea otter exposure to this parasite is thought to occur

through ingestion of oocysts that are shed by felids [6,7]. Cats can

shed hundreds of millions of oocysts in their feces when infected,

and only 1–10 oocysts are needed to successfully infect mammals

[8,9,10]. Toxoplasma gondii oocysts may reach coastal waters via

contaminated freshwater runoff [4], and wetland degradation may

increase flux of oocysts by more than 2 orders of magnitude [11].

Oocysts introduced into coastal waters may survive for at least 24

months [12], and may adhere to aquatic aggregates or occur freely

in the water column [13].

Marine invertebrates (e.g. mussels and oysters) and vertebrates

(e.g. anchovies and sardines) that feed by filtering seawater

through their gills may acquire T. gondii oocysts from seawater

[14–17]. These animals may then serve as potential sources of

infection of T. gondii to marine mammals. However, southern sea

otters are diet specialists and a recent epidemiological study

showed that otters that specialize on marine turban snails

(Chlorostoma brunnea, C. montereyi, and Promartynia pulligo – formally

assigned to the genus Tegula) in the kelp forest are 12 times more

likely to acquire T. gondii than those consuming other prey [5]. As

opposed to mussels, oysters, sardines and anchovies, which feed by

filtering food particles out of the water, turban snails scrape

surfaces using a radula to ingest food particles that are attached to

a substrate. Thus, the mechanism by which the benthic feeding

marine turban snails acquire oocysts suspended in the water is

puzzling and suggests an alternate mode of feeding on small

planktonic particles.
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Because of their feeding strategy, turban snails are likely to

consume biofilm-associated organisms that colonize kelp surfaces

[18–20]. Biofilms are defined as mixed assemblages of microbes

enclosed in a matrix, adhering to each other and/or to surfaces

[21]. Extracellular polymeric substances (EPS) form the matrix of

biofilms and are defined as a complex of high molecular weight

macromolecules, mainly polysaccharides, localized outside the cell

wall in the form of gels, slime or capsules [22–24]. Because of its

adhesive properties, EPS is regarded as the ‘biological glue’ that

anchors biofilm microorganisms (e.g., bacteria and microalgae) to

a surface [25]. Several studies have addressed the role of EPS in

the attachment of bacteria and diatoms to surfaces such as

macroalgae, ice and sediments [26–28]. Microorganisms such as

benthic diatoms and fungi have been observed on the surface of

M. pyrifera blades [20,29,30]. These organisms may be trapped in a

sticky EPS matrix that possibly helps them attach to the surface of

the kelp blades [31–33].

A secondary source of mucilage-rich materials that may form

biofilms on kelp includes waterborne TEP (transparent exopoly-

mer particles) - a particulate form of EPS in the water column

[34]. Major producers of TEP in the water column include

bacteria and phytoplankton, and TEP is regarded as a major

biofilm agent [35]. When water upstream of a kelp bed contains

TEP, the TEP may make contact with kelp surfaces as it flows

through the kelp bed, subsequently adhering directly to the kelp or

to EPS-coated surfaces of the kelp. A recent study documented this

phenomenon, showing colonization of TEP by bacteria and

microalgae suspended in the water, and subsequently adhering to

glass surfaces rapidly (e.g. 30 min), promoting biofilm develop-

ment [36].

Biofilms occur on a wide range of surfaces (natural or man-

made) and EPS is also a major component of diatom films found

on underwater man-made surfaces [37]. The removal of

pathogens from water onto biofilms that colonize the surfaces of

pipes or other structures of water treatment plants has been

reported [38]. Investigating the potential for T. gondii to adhere to

biofilms is significant not only for understanding infection

mechanisms of marine fauna, but also due to numerous reports

of waterborne outbreaks of toxoplasmosis in humans worldwide

[39]. To date, the adhesion of coccidian parasites’ oocysts has not

been linked to EPS of biofilms that colonize natural surfaces such

as kelp blades.

In this study, our major goals were to determine whether EPS

on kelp surfaces and/or TEP in the water promote adhesion of T.

gondii oocysts to kelp in a central California forest of Macrocystis

pyrifera. We also investigated, as a secondary goal, the similarity of

epiphytic organisms within the kelp blade biofilm to the organisms

(or their remains) present within the feces of snails that had been

feeding on those same blades. Here we hypothesize that once T.

gondii are trapped in the kelp biofilm via EPS or TEP, the parasite

is available for ingestion by marine turban snails and other

benthic-scraping organisms. This hypothesis could help explain

why sea otters that have specialized diets on marine turban snails

are more likely to be infected with T. gondii than those consuming

other prey.

Methods

Two experiments were designed to: (1) provide qualitative data

on snail diet and kelp biofilm composition; and (2) test whether T.

gondii oocyst surrogates adhere to kelp blade surfaces via EPS on

the blades and/or via TEP suspended in the water that

subsequently become biofilm on the blades. Together these

experiments examine the possible mechanism(s) by which T. gondii

oocysts may become associated with kelp surfaces and whether

snails can consume organisms entrained within the kelp biofilm: if

such associations are found, then a delivery route of the planktonic

oocysts to the endangered otter would be identified for the first

time. We considered both EPS (the matrix of the biofilm on kelp

surfaces) and TEP in the water, as potential agents that could

deliver Toxoplasma to snails that graze the kelp surfaces with

biofilms. Dragon green microspheres that have been previously

validated as surrogate particles for T. gondii oocysts were used

because they have surface properties (i.e., size, specific gravity,

hydrophobicity, and surface charge) that resemble those of T.

gondii oocysts [40]. Due to the biohazardous nature of T. gondii

oocysts, employing surrogates in mesocosm experiments provides

an alternative approach for evaluating the waterborne transport of

this zoonotic pathogen. Previous studies have successfully applied

these surrogates to demonstrate waterborne transport of oocysts

[11] and their association with macroaggregates [13].

Experiment 1: Turban snail diet and kelp biofilm
composition

On Aug 8 and 24, 2011, 30 sexually mature (shell.1.5 cm) and

juvenile (shell ,1.5 cm) turban snails (Chlorostoma spp.), along with

the kelp blades they were associated with, were collected by hand

onboard the R/V Sebastes from the canopy of kelp beds in Carmel

(36u309570N and 121u579180W), approximately 44 km south of

the Santa Cruz site that provided material for Experiment 2.

Snails and kelp were collected under the permit ID 12119 issued

by California Department of Fish and Game. Snails were

transported live to the laboratory and placed in 1 L jars with

0.2 mm filtered seawater and associated kelp blades, with one snail

and 1 frond placed in each jar and incubated for 16 hrs.

Temperature at 15uC and 12 hrs light cycle were maintained.

The snail fecal pellets produced in the jars were then recovered,

their associated blade stored for later analysis of its biofilm, and

pellets stored for mounting on glass slides. The biofilm present on

the kelp blade from each snail-grazing container was removed

using a PTFE spatula, while submerged in 0.2 mm filtered

seawater. Bacteria were visualized by staining biofilm samples

with 40 mL of 49,6-diamidino-2-phenylindole (DAPI) (Pierce

Biotechnology Inc., Rockford, Il, USA) (final concentration of

500 mg mL21). Snail pellet content and biofilm organisms from

kelp blades on which they had grazed were examined using a Zeiss

Axio Imager with phase contrast and a 50 W light source fitted

with 2 DAPI bandpass filter sets (wavelength excitation (lex)

350 nm, (wavelength emission) lem .420 nm and lex 350 nm,

lem .460 nm).

To visualize the underlying EPS matrix of the kelp biofilm,

cross-sections of the kelp blades were stained using 500 ml of pre-

filtered (0.2 mm), 0.02% aqueous alcian blue solution (8GX) in

0.06% of acetic acid (pH = 2.5) (ABS). EPS was visualized under

bright field on the microscope described above. All micrographs

were obtained using an Axio Cam HRc camera system.

Experiment 2: T. gondii surrogate adhesion to kelp blades
via EPS

Seawater and kelp blades used in this laboratory experiment

were collected at 0700 on July 11, 2012 from the surface of a kelp

bed canopy in Santa Cruz (36u569570N 122u029050W) on board

the R/V Sebastes. Six kelp blades of similar size (Mean surface area

242 cm2654) and ridged texture, and free of obvious macroscopic

epibionts were collected from the same stipe. Surface seawater

from the kelp canopy was collected with a bucket. Samples were

transported to the laboratory in a cooler with ice and the

A New Pathogen Transmission Mechanism in the Ocean
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experiment was initiated immediately. Artificial kelp blades

(BioModels Co., Aguanga, CA 92536) were also used in the

experiments, as they had not previously been submerged in

seawater, and thus provided a control substrate free of biofilm and

EPS.

Four treatments were used to test whether surrogates of T. gondii

oocysts would become associated with the EPS matrix on the

surface of the field-collected kelp blades. Each treatment included

3 replicates in 4 L glass jars. All jars were pre-washed with 10%

HCl. Treatment A was designed to reproduce the kelp forest

canopy environment and consisted of jars with a kelp blade and

unfiltered surface seawater; treatment B consisted of jars with a

kelp blade and 0.2 mm filtered seawater. Filtered seawater (0.2 mm)

was used to remove any TEP suspended in the water that may

have been produced by phytoplankton or bacteria. Treatment C

was designed as a control treatment for TEP and EPS by using

0.2 mm filtered seawater and a synthetic kelp blade, and treatment

D was designed as a control for the loss of surrogates due to settling

or attachment to surfaces of the jar and utilized 0.2 mm filtered

seawater without kelp blades (Fig.1).

The 12 hr-controlled experiment was performed on a stir table,

with paddles in each treatment jar stirring the water at 30 rpm.

Water temperature was held at 12uC, and the experiment was

conducted during a light cycle. At the start of the experiment, T.

gondii surrogate microspheres labeled with a dragon green

Figure 1. Design of experiment 2. Box 1 shows different treatments A to D, in 4 L jars and paddles moving at 30 rpm: A) Simulation of kelp forest
canopy with seawater and kelp blade; B) Kelp blade and filtered seawater to remove phytoplankton and control for TEP produced in seawater; C)
Synthetic kelp blade and filtered seawater to control for EPS on blade and TEP in seawater; D) Filtered seawater to control for surrogate loss due to
settling or attachment to surfaces of jar. Box 2 indicates where and when measurements were taken and box 2.1. shows steps to measure parameters
on kelp blade biofilm. Box 3 shows parameters measured and box 4 indicates methods used for each parameter.
doi:10.1371/journal.pone.0082477.g001
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fluorochrome (Bangs Laboratory, FC07F 5493) were added to

each replicate to achieve a final concentration of 20 per mL.

Quantifying TEP, surrogates, and chlorophyll a in water
Aliquots of 600 mL were collected gently from each treatment

at 3 time points (0, 6 and 12 hrs) to quantify the naturally

occurring TEP, chlorophyll a concentrations, and spiked surro-

gates in the seawater. Aliquots of 550 mL for TEP and surrogate

quantification were preserved with formaldehyde to achieve a 1%

final concentration, and then stored at 4uC in the dark for later

analysis. TEP was measured by filtering 3 replicates of 100–

200 mL aliquots onto 0.4 mm polycarbonate filters. TEP concen-

trations were determined using a standard semiquantitative

colorimetric assay [41].

Surrogates were quantified by filtering 3 replicates of 50 mL

onto 0.4 mm polycarbonate filters [42]. Filters were mounted on

slides and surrogates were enumerated using a Zeiss Axio Imager

fitted with a FITC band pass filter set (lex 460–500 nm, lem

510–560 nm) and a 50 W light source.

Chlorophyll a was measured to verify that phytoplankton cells

were absent from control treatments B, C and D, but present in

treatment A. Two replicates of 25 mL were filtered onto GF/F

filters and kept in a 220uC freezer. Chlorophyll a was extracted

for 24 hrs in 90% acetone and subsequently analyzed on a Turner

Design 10AU fluorometer [43].

Quantifying EPS, surrogates, and the benthic diatom
community on kelp blades

At the end of the experiment, each kelp blade was removed

from its jar and placed in a preservative solution consisting of

550 mL 0.2 mm filtered seawater solution and formaldehyde at

1% final concentration. Kelp blades were scraped on a glass tray

while submerged in its preservative solution. Each kelp blade was

photographed with a Nikon digital camera and kelp surface area

was measured using the Image J image-analysis software (W.S.

Rasband, Image J, U.S. national Institute of Health, http://rsb.

info.nih.gov/ij/). The surfaces of kelp blades were scraped on both

sides using a spatula to remove the biofilm (i.e., EPS and

microorganisms) and T. gondii surrogates, taking care not to

remove kelp tissue cells. A small PTFE spatula was used to access

material on the ridges of the kelp blade. Immediately after

scraping was completed, the blade was removed from the tray and

the solution with the scraped material from the kelp blade was

stored in 1 L glass jars in the dark at 4uC. This solution is

subsequently referred to as ‘kelp extract solution’.

To quantify EPS on kelp blades, we adapted the semiquanti-

tative colorimetric assay to quantify TEP. Both TEP and EPS may

be measured with this assay [28,44]. The principle of the method

lies in the staining of extracellular polysaccharides with ABS.

Alcian blue has been used to stain extracellular polysaccharides in

colony matrices or capsules of algae and bacteria [28,44,45]. This

stain complexes carboxyl (-COO2) and half-ester sulfate (OSO3
2)

reactive groups of acidic polysaccharides, the main components of

EPS, allowing these otherwise transparent substances to be

visualized and quantified by measuring its maximum absorbance

on a spectrophotometer set at 787 nm [46].

Aliquots of 15 mL from the kelp extract solution (3 replicates

per jar) were filtered onto 0.4 mm polycarbonate filters with low,

constant vacuum pressure (#150 mm of Hg). Filters were stained

for 2 seconds with 500 ml of ABS, rinsed with distilled water to

remove excess dye, and stored in 15 mL centrifuge tubes in a

Figure 2. Benthic diatoms (predominantly Cocconeis spp.) in snail fecal pellet (A) and in gel-like EPS matrix scraped from surface of giant kelp blades
on which snails were feeding (B); DAPI-stained bacteria (C) and different genera of benthic diatoms (D) also in gel-like EPS matrix from kelp blade
surfaces from Experiment 1. Scale bars 10 mm.
doi:10.1371/journal.pone.0082477.g002
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220uC freezer for up to 2 weeks. Extraction of polysaccharides

from filters was done with 5 mL of 80% H2SO4 for 2 hrs and

absorbance of alcian blue was measured on a UV-1201 UV-VIS

spectrophotometer set at 787 nm. A calibration curve using gum

xantham as the standard was constructed to generate a conversion

factor (F-factor) to relate the absorbance of stained EPS to the

weight of EPS [40]. Final EPS concentration is reported as mg of

gum xantham equivalents per cm2 of kelp blade surface by

adapting the following equation from [41]:

EPS per cm2 of kelp blade = ((absorbance – blank) 4 volume

filtered)6(kelp extract solution 4 kelp blade surface area) 6 F-

factor

To quantify surrogates on kelp blades and visualize the

epiphytic diatoms within the EPS matrix, 3 replicates of 50 mL

of the kelp blade extract solution were filtered onto 0.4 mm

polycarbonate filters and stained for 2 sec with 500 ml ABS (see

above). Filters were mounted on slides and observed with a Zeiss

Axio Imager. Toxoplasma surrogates were enumerated as men-

tioned above. EPS was visualized with bright field and epiphytic

diatoms with a chlorophyll filter set (lex 440–470 nm, lem

.515 nm) and a 50 W light source.

To enumerate diatoms associated with the kelp blade, aliquots

of 10 mL of kelp extract solution were settled for 24 hrs in an

Utermöhl chamber following the Utermöhl method [47]. A

minimum of 100 cells (benthic or planktonic diatoms genera) was

counted per chamber using an inverted microscope (Olympus

IMT-2).

Statistical analysis
Biostat 3.0 was used for all statistical comparisons. Mann-

Whitney (or U test) was used to test whether the concentration of

T. gondii oocysts surrogates decreased between two time points

(6 hrs and 12 hrs) in all treatments. Mann-Whitney was also used

to test whether the percentage of surrogates suspended in water

and associate to kelp blades differed at the end of the experiment

in each treatment. Kruskal-Wallis (or H test) tested whether the

proportion of T. gondii oocysts surrogates associated with kelp

blades differed among the treatment that mimicked the kelp forest

canopy (A), the treatment that controlled for TEP (B) and the

control treatment (C).

Results

Experiment 1: Turban snail diet and kelp biofilm
composition

Turban snail (Chlorostoma spp.) fecal pellets produced over the

16-hour grazing incubation with associated kelp blades contained

microorganisms similar to those of the biofilm community on the

individual blade on which they had grazed. Benthic diatoms

resembling Cocconeis spp. were dominant in snail pellets (Fig. 2A)

and on the surface of kelp blades (Fig. 2B). Bacteria were also

observed associated with the Cocconeis spp. in the kelp biofilm

(Fig. 2C). Other benthic diatoms, including species within the

genus Licmophora, and possibly Navicula, were observed as part of

the kelp biofilm (Fig. 2D) and ‘trapped’ in the EPS fibers (Fig. 3A,

B). These genera were less abundant relative to Cocconeis and not

observed in the snail’s fecal pellets.

Experiment 2: T. gondii surrogate adhesion to kelp blades
via EPS

During the experiment (between 6 and 12 hrs), the number of

T. gondii surrogates suspended in the water decreased significantly

in all treatments (Fig. 4, Table 1). Treatment D showed the

inherent loss of particles in the water column through the duration

of the experiment (Fig. 4).

The percentage of surrogates attached to the kelp blades was

calculated relative to the total number of surrogates in the jar (i.e.,

surrogates in the water + surrogates on the blades) at the end of the

experiment (t = 12 hrs). After 12 hrs, the percentage of surrogates

associated with kelp blade and suspended in the water significantly

differed (Table 2). In the treatment that simulated the kelp forest

environment (treatment A), 19% (63.5) of T. gondii oocyst

surrogates were found attached to the surfaces of the kelp

(Fig. 5), with EPS being detected on the surface of the kelp blade

(Fig. 6) and TEP and chlorophyll a measured in the water (Fig. 7).

The highest percentage of surrogates (31%610%) was attached to

the surface of the kelp blades from treatment B (Fig. 5). In this

treatment, kelp blades were covered with EPS (Fig. 6), but TEP

Figure 3. Kelp blade cross-section with diatom (white arrow)
‘trapped’ in EPS fibers, stained with alcian blue (Experiment 1).
Scale bar 50 mm. Panel B represents a higher magnification of A,
showing benthic diatom in kelp EPS. Scale bar 10 mm.
doi:10.1371/journal.pone.0082477.g003
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and chlorophyll a were not detected in the water (Fig. 7). The

lowest percentage of surrogates attached to a kelp-like surface was

found in the control treatment C that housed the synthetic kelp

blades and filtered seawater. In this treatment, there was no

measurable TEP in the water nor EPS on the kelp blade surface

(Fig. 5, 6 and 7).

Kruskal-Wallis results showed that the percentage of surrogates

attached to kelp blades significantly differed between treatments

with and without EPS covered blades (A and C (p,0.05) and

treatment B and C (p,0.05)), but not between treatments A and B

(p.0.05), where real kelp blades covered with EPS were used.

The concentration of diatoms on kelp blades in samples from

treatment A and B, i.e. blades incubated in unfiltered and filtered

sea water, respectively, was estimated at 847 (6138) cells per cm2

and 505 (6373) cells per cm2, respectively. After 12 hrs, in

treatment A, 4.2% (62.1) of the total number of cells associated

with the kelp blade surface were diatoms from genera typically

observed in the plankton (Asterionella, Chaetoceros, Cylindrotheca,

Ditylum, Eucampia, Hemiaulus, Leptocylindrus, Pseudo-nitzschia, Skeleto-

nema) (Fig. 8). The remainder included genera of several benthic

diatoms. The dominant benthic genera included: Navicula,

Cocconeis, Licmophora and Tabularia. No diatoms were detected on

the synthetic kelp blades housed in 0.2 mm filtered seawater in

treatment C.

Discussion

The goal of the present study was to test whether extracellular

polymer substances (EPS), which form the matrix of biofilms

colonizing the surfaces of M. pyrifera blades, play a role in the

transmission of the protozoan parasite T. gondii to benthic feeding

turban snails. Marine turban snails have been implicated in the

exposure of southern sea otters to T. gondii [5]. As this parasite has

been identified as a significant cause of mortality in endangered

southern sea otter populations, it is critically important to

understand the transmission mechanisms to otters, so that

prevention or management strategies can be developed to reduce

likelihood of exposure. Here we show that T. gondii surrogates may

adhere to the biofilm that colonizes the surfaces of kelp blades,

thereby becoming available to turban snails that feed upon

organisms associated with this biofilm.

Turban snail diet and kelp biofilm composition
The surfaces of Macrocystis pyrifera blades in the kelp forest

canopy were covered with a biofilm composed of benthic diatoms

and bacteria embedded in a gel-like matrix. Microscopic

observations using the alcian blue stain and quantitative measure-

ments using the colorimetric assay from the 12 hr experiment

indicate that the underlying gel-like matrix of this biofilm on the

blades is composed of EPS. EPS on kelp blades possibly originates

from bacteria and photosynthetic organisms present in the biofilm

(i.e., pennate diatoms) and by M. pyrifera itself, since EPS

production has been linked to photosynthesis and the presence

of bacteria [48–50]. Other microorganisms (e.g. fungi) may also

contribute to the kelp biofilm production system and thereby add

to the EPS pool [33]. Locally, we have noted such epizootic

populations in our coastal kelp forest communities [20].

The high abundance of benthic diatom frustules in fecal pellets

of Chlorostoma spp. confirms that these subtidal snails feed upon

organisms (i.e., pennate diatoms) in kelp blade biofilms. It is likely

that the snails are also ingesting EPS, given their mode of food

capture: grazing surfaces with a chitinous radula. Sediment

dwelling animals also have been shown to ingest EPS attached

to sediment particles [51]. The benefits of ingesting EPS may

Figure 4. Percentages (mean ± SD) of T. gondii oocyst surrogates suspended in the water at samples taken following 6 and 12 hrs
during Experiment 2 (N = 9 per treatment, except at t = 6 hrs for treatments C and D where N = 6).
doi:10.1371/journal.pone.0082477.g004

Table 1. Mann-Whitney (or Test U) results shows the
significant decrease in the percentage of surrogates of T.
gondii measured in the water at t = 6 hrs and t = 12 hrs in all
treatments.

Treatment A Treatment B Treatment C Treatment D

U 5.00 11 2 1

p ,0.05 ,0.05 .0.05 .0.05

N 9 9 6 6

doi:10.1371/journal.pone.0082477.t001
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include the fact that EPS are rich in organic carbon and that it

may adsorb dissolved organic matter (DOM) providing an

important pool of C and N [25]. Results from Experiment 2

indicate that surrogates of T. gondii oocysts might be entrapped in

the kelp blade biofilm via EPS (Fig. 5 and 9). Therefore, we expect

that once oocysts are attached to the kelp blade biofilm they can be

consumed as a ‘bycatch’ item by turban snails. Indeed, prelim-

inary findings of a study parallel to ours indicate that turban snails

may acquire surrogates of T. gondii and T. gondii oocysts while they

were kept in tanks with kelp blades exposed to surrogates and

oocysts [52].

In addition to grazing benthic diatoms that are present within

kelp biofilms, Chlorostoma brunnea has been suggested to serve as a

‘farmer’ of epizooic fungi that grow on giant kelp surfaces: by

wounding the kelp blade with their radula, snails promote fungal

infection on the blade. Snails then consume the resultant fungi,

with the infection being controlled to maintain an optimal growth

rate of the fungus [20]. The presence of such fungal populations

on giant kelp has been observed in the field study location, along

with their associated microbial communities [20]. Fungi may also

produce a large amount of EPS [33] and thus enhance biofilm

formation. Although we could not confirm the presence of fungal-

Figure 5. Percentages (mean ± SD) of T. gondii surrogates suspended in water and present in kelp scrapings at the termination of
Experiment 2 (12 hrs) (N = 9 per treatment).
doi:10.1371/journal.pone.0082477.g005

Figure 6. EPS concentrations (mean ± SD) on the kelp blades’ surface at the end of Experiment 2 (t = 12 hrs) (N = 9 per treatment).
Nd = not detected.
doi:10.1371/journal.pone.0082477.g006
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like structures in the snail pellets or within the kelp biofilm in our

specimens, T. gondii’s (and other pelagic particles) adhesion to the

kelp surfaces and subsequent transmission to snails may be

enhanced if fungi are part of the kelp blade biofilm.

T. gondii surrogate adhesion to kelp blades via EPS
Experiment 2 demonstrated a possible mechanism whereby

oocysts of T. gondii come to coat the surfaces of kelp blades that are

covered with EPS and colonized by benthic diatoms and other

microorganisms (Fig. 9). At the end of the 12 hr experiment, an

average of 19% and 31% of the total number of surrogates of T.

gondii oocysts were recovered from kelp blades coated with EPS

and their natural associated microorganisms in unfiltered and

filtered seawater treatments, respectively. These results suggest a

novel mechanism by which contaminated runoff entering the

coastal ocean can deliver T. gondii oocysts to downstream kelp

beds, with some of the oocysts adhering to kelp surfaces covered

with EPS.

The mechanism of parasite adhesion to surfaces of kelp covered

by EPS is likely related to hydrophobic and electrostatic attractive

forces, which are influenced by the composition of the oocyst outer

wall [53]. The T. gondii oocyst cell wall consists of a matrix of

polymeric substances, mostly proteins including cysteine-rich

proteins among others [54]. The cysteine-rich proteins of T. gondii

oocyst are related to those of the walls of another coccidian

parasite, Cryptosporidium oocyst, [55]. Interestingly, the adhesion of

Cryptosporidium oocysts to biofilms on man-made surfaces has been

verified and the roughness of the biofilm has been strongly

correlated with oocyst retention [56–58]. Giardia cysts, which are

also covered with a polymeric matrix, have also been documented

to attach to biofilms [59]. Thus, our discovery that surrogates of T.

gondii oocysts attach to biofilm that covers the surfaces of kelp is

consistent with previous findings that environmentally resistant

parasites can adhere to surfaces covered with sticky biofilms.

Additional evidence for a mechanism promoting adhesion of

suspended particles to surfaces covered with EPS was provided by

our observation that planktonic diatoms were present on surfaces

of kelp blades. Planktonic diatoms, likely present in the unfiltered

seawater at the start of our experiment, presumably were the

source of the diatoms that we observed attached to the kelp

surfaces. Thus, our study provides evidence of adhesion of

planktonic diatoms and suspended particles such as T. gondii

oocysts to surfaces covered with an EPS biofilm.

The mechanism whereby EPS serves as an adhesive may have

implications in other fields of research. Biofilms occur in a variety

of environments (surfaces of rocks, plants, sediments, ship hulls or

wastewater treatment plants). Zoonotic pathogens other than T.

gondii that can infect both humans and marine animals have been

detected in the coastal environment. For example, (oo)cysts of

Cryptosporidium and Giardia as well as enteric bacteria have been

documented in the coastal ocean and found to infect marine fauna

Figure 7. TEP (A) and chlorophyll a (B) (mean ± SD) measured in water at t = 0, 6 and 12 hrs in 4 different treatments (N = 9 per
treatment) used in Experiment 2. LOD on (A) indicates TEP limit of detection. Nd indicates that TEP and chlorophyll a were not detected in
treatments B, C, and D.
doi:10.1371/journal.pone.0082477.g007

Table 2. Mann-Whitney results showing significant difference
between the percentage of surrogates associate with kelp
blades and suspended in the water in all treatments and at
the end of the experiment (t = 12 hrs).

Treatment A Treatment B Treatment C

U 0 1 0

p ,0.05 ,0.05 .0.05

N 9 9 9

doi:10.1371/journal.pone.0082477.t002
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[60–62]. Although the route of infection of marine wildlife by

these parasites is still unclear, it is possible that these pathogens

also may become associated, via EPS, with biofilms that coat

natural or man-made surfaces in the ocean. The novelty provided

by these results is a proposed mechanism by which land-derived

pathogens in contaminated runoff are transferred from the water

column to a benthic environment, thus facilitating the exposure of

benthic-feeding marine fauna to T. gondii and other pathogens.

It is unclear whether the presence of TEP in the seawater

influenced the adherence of oocyst surrogates to kelp blades that

had EPS coatings. TEP can be regarded as part of the particle pool

of EPS [63], with both TEP and EPS containing acidic

polysaccharides and possessing adhesive properties [31,64]. In a

kelp forest environment, TEP may be detected in the water ([65],

pers. obs.) and may serve as an agent to deliver oocysts to EPS-

covered kelp blades. In our experiment, only a small difference

was detected between the mean proportions of surrogates

recovered from kelp in treatments with and without TEP (Fig 5.,

treatments A and B), with more surrogates being recovered from

kelp without TEP.

The hypothesis that TEP can influence the adhesion of oocysts

to surfaces should be further investigated. Biofilms of TEP origin

develop quickly on surfaces submerged in filtered seawater [35].

Results from treatments C and D suggest that TEP may deliver

surrogates to surfaces (Fig. 4): even though we removed all TEP

producers by filtering seawater (at 0.2 mm), TEP precursors in the

colloidal form may have been present and could have formed TEP

over the 12 hr incubation period, with concentrations possibly

being below our limit of detection. Surrogates could therefore have

become associated with these TEP and thereby delivered to the

surfaces of the synthetic kelp blades and surfaces within the

experimental containers. However, the inherent ‘loss’ of surrogates

through experimental steps is also observed in experiments that

use these particles in ultra purified water and recovery of all

surrogates rarely occurs. The influence of TEP in oocyst delivery

to kelp blades should be further investigated, perhaps in a similar

experiment using a method that would detect TEP at lower

concentrations.

Conclusions

Our findings suggest a novel route of exposure of sea otters to

the protozoan parasite T. gondii. Although the estimated number of

T. gondii oocysts that are transported to kelp forests is unknown,

these experimental results provide a mechanism to explain the

transmission of T. gondii oocysts to sea otters. As T. gondii oocysts

are deposited in the coastal ocean via contaminated runoff, we

propose that a proportion of them attach to the sticky EPS biofilms

on the kelp blades, with the surface communities composed in part

of benthic diatoms and bacteria. Snails, which feed by scraping

these benthic diatoms from the surface of kelp blade using their

radula, would ingest T. gondii oocysts as ‘bycatch’, explaining why

sea otters that specialize on consuming subtidal snails are more

likely to be exposed to this parasite. The route of infection of other

pathogens to marine wildlife may also occur via an EPS-adhesion

mechanism such as that described here. Insight into EPS-mediated

pathogen transmission may also have significant implications for

human public health, due to consumption of marine animals that

feed on EPS-coated substances [66]. This study, therefore, suggests

Figure 8. Concentration (mean ± SD) of diatoms on the surface of the kelp blades (N = 3) from Experiment 2 after 12 hrs. Nd = not
detected.
doi:10.1371/journal.pone.0082477.g008
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Figure 9. A) Benthic diatoms scraped from the surface of kelp blades analyzed in Experiment 2 showing alcian blue staining of EPS.
as in A, but observed simultaneously with transmitted light showing both EPS, surrogates of T. gondii oocysts (white arrows) and benthic diatoms
fluorescing red. C) Same image as in A and B, but observed using 50 W light source and a chlorophyll filter set showing surrogates (white arrows)
and chlorophyll (red fluorescence) from benthic diatoms. Scale bars 100 mm.
doi:10.1371/journal.pone.0082477.g009
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 B) Same image



a new transmission route for delivering microscopic-sized pelagic

pathogens to higher trophic level predators in marine ecosystems.
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47. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-

methodik. Mitt Int Ver Limnol 9.

48. Rochelle-Newall EJ, Mari X, Pringault O (2010) Sticking properties of

transparent exopolymeric particles (TEP) during aging and biodegradation.

J Plankton 32: 1433–1442.

A New Pathogen Transmission Mechanism in the Ocean

PLOS ONE | www.plosone.org 11 December 2013 | Volume 8 | Issue 12 | e82477



49. Harimawan A, Rajasekar A, Ting YP (2011) Bacteria attachment to surfaces-

AFM force spectroscopy and physicochemical analyses. J Colloid Interf Sci 364:
213–218.

50. Smith DJ, Underwood GJC (2001) The production of extracellular carbohy-

drates by estuarine benthic diatoms: the effects of growth phase and light and
dark treatment. J Phycol 36: 321–333.

51. Hoskins D, Stancyk S, Decho A (2003) Utilization of algal and bacterial
extracellular polymeric secretions (EPS) by the deposit-feeding brittlestar

Amphipholis gracillima (Echinodermata). Mar Ecol Prog Ser 247: 93–101.

52. Krusor C (2012) Acquisition, concentration, and retention of Toxoplasma gondii

oocysts from seawater by marine snails. University of California, Davis.

Proquest, UMI Dissertations Publishing, 2012. Interm No.1534893.
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