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LOWER BOUNDS OF LOCALIZATION UNCERTAINTY IN SENSOR NETWORKS

Hanbiao Wang], Len Yip†, Kung Yao†, and Deborah Estrin]

University of California, Los Angeles
Computer Science Department], Electrical Engineering Department†

Los Angeles, CA 90095
email: {hbwang, destrin}@cs.ucla.edu], {leyip, yao}@ee.ucla.edu†

ABSTRACT

Localization is a key application for sensor networks. We pro-
pose a Bayesian method to analyze the lower bound of localiza-
tion uncertainty in sensor networks. Given the location and sens-
ing uncertainty of individual sensors, the method computes the
minimum-entropy target location distribution estimated by the net-
work of sensors. We define the Bayesian bound (BB) as the covari-
ance of such distribution, which is compared with the Cramér-Rao
bound (CRB) through simulations. When the observation uncer-
tainty is Gaussian, the BB equals the CRB. The BB is much sim-
pler to derive than the CRB when sensing models are complex.
We also characterize the localization uncertainty attributable to the
sensor network topology and the sensor observation type through
the analysis of the minimum entropy and the CRB. Given the sen-
sor network topology and the sensor observation type, such char-
acteristics can be used to approximately predict where the target
can be relatively accurately located.

1. INTRODUCTION

The recent emergence of sensor network technology not only raises
a new demand for locating internal nodes belonging to a sensor
network but also provides a new means of locating external targets
using a sensor network. Many localization technologies have re-
cently been developed in the context of sensor networks, either for
localization of cooperative nodes [1], or for localization of non-
cooperative targets [2]. These localization technologies are mostly
evaluated against the ground truth for a few randomly-generated
sensor network topologies. The dependency of localization un-
certainty on sensor network topologies has been largely neglected.
This paper is devoted to the study of such dependency. In sec-
tion 2, we propose a Bayesian method to characterize the lower
bound of localization uncertainty in a sensor network. In section
3, we analyze the dependency of localization uncertainty on the
sensor network topology and the sensor observation type in order
to identify the region where the target is relatively accurately lo-
cated. Section 4 concludes the paper.

2. BAYESIAN BOUND

In this section, we derive the BB of localization in a sensor network
and compare it with the CRB through simulations.

Partially supported by the National Science Foundation (NSF) under
Cooperative Agreement #CCR-0121778, DARPA SensIT program under
AFRL/IFG 315 330-1865 and AROD-MURI PSU contract 50126.

2.1. Computing Bayesian Bound

Given the location and sensing uncertainty of individual sensors,
for a target at xt, we first compute the target location distribution
with the minimum entropy that could be achieved through the set
of sensors. The covariance of such a distribution is the BB.

An observation can be associated with a single sensor, e.g. a
range sensor that measures the distance from itself to the target.
Let zi denote such an observation associated with sensor i. An ob-
servation can also be associated with two sensors, e.g. two time-
difference-of-arrival (TDOA) sensors that measure the difference
of the arrival time of the target signal between them. Let zij de-
note such an observation associated with both sensor i and sensor
j. A sensor observation depends on the true target location and the
location(s) of the associated sensor(s). It also includes the pertur-
bation caused by factors such as the ambient noise, the hardware
imprecision, and the signal modeling inaccuracy. The optimal ob-
servation ζi or ζij occurs in the situation where the perturbation
happens to be zero. Hence, ζi or ζij is determined only by the true
target location and the associated sensor location(s),

ζi = f(xt,xi) or ζij = f(xt,xi,xj) , (1)

where xi and xj are the location of sensor i and j respectively.
When every sensor achieves its optimal observation, the poste-
rior target location distribution is the optimal one that could be
achieved through all sensors. Assuming independent sensor obser-
vations conditioned on the target location, and null prior informa-
tion about the target location, the optimal posterior target location
distribution using all sensors is constructed using sensing models
for optimal observations,

p(x|ζi, 1 ≤ i ≤ N) = C
�

1≤i≤N

p(zi = ζi|x) , or

p(x|ζij , 1 ≤ i < j ≤ N) = C
�

1≤i<j≤N

p(zij = ζij |x) ,
(2)

where C is a normalization constant. The optimal target location
distribution has the minimum entropy and its covariance is the BB,

BB = � (x− x̄)(x− x̄)T p(x|ζi, 1 ≤ i ≤ N)dx , or

BB = � (x− x̄)(x− x̄)T p(x|ζij , 1 ≤ i < j ≤ N)dx ,

(3)

where T is the transpose operator, x̄ is the expectation of x.
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Fig. 1. Comparison of the BB with the CRB in localization using
TDOA sensors. (a) The minimum-entropy target location distribu-
tions estimated by four TDOA sensors denoted by squares. The
target signal propagation speed is assumed to be 1 distance unit
per time unit. The Gaussian uncertainty with σ = 6 time units is
assumed for TDOA observations. (b) Element-to-element compar-
ison of the BB with the CRB of locating the same target.

2.2. Comparing Bayesian Bound with Cramér-Rao Bound

We compare the BB with the CRB through two simulations of two-
dimensional localization using TDOA sensors and range sensors
respectively. For simplicity, we assume the Gaussian distribution
for all TDOA and range observations. In both simulations, the BB
equals the CRB element to element. However, the BB is simpler
to derive than the CRB when sensing uncertainty is complex.

The first simulation uses four TDOA sensors placed on a square
as shown in Fig. 1(a). We assume that the target signal propaga-
tion speed is 1 distance unit per time unit. The Gaussian sensing
model for TDOA observations is then

p(zij |x) =
1

σ
√

2π
e−(zij−(‖x−xi‖−‖x−xj‖))

2/(2σ2) , (4)

where ‖ · ‖ is the norm operator, σ is assumed to be 6 time units.
The optimal TDOA observation is

ζij = ‖xt − xi‖ − ‖xt − xj‖ . (5)

Using (2), (4) and (5), we compute the optimal target location dis-
tributions of six true target locations as shown in Fig. 1(a). The
distribution covariance is the BB, which is computed using (3).

The CRB of the localization scenario in Fig. 1(a) is ana-
lyzed as follows. The parameter vector is the true target location
xt = (xt, yt)

T . The observation vector z is formed by stacking all
TDOA observations zij , 1 ≤ i < j ≤ N . The expected observa-
tion vector ζ is formed by stacking all optimal TDOA observations
ζij , 1 ≤ i < j ≤ N defined in (5). The observation vector z has a
Gaussian distribution,

p(z|xt) =
1

(σ
√

2π)
N(N−1)

2

e−(z−ζ)T (z−ζ)/(2σ2) . (6)

The CRB is simply the inverse of the Fisher information matrix

J = E{[∇xt
ln p(z|xt)][∇xt

ln p(z|xt)]
T } ,

=
1

σ2
[∇xt

ζ]T [∇xt
ζ] .

(7)

The elements of the Fisher information matrix are
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Fig. 2. Comparison of the BB with the CRB in localization us-
ing range sensors. (a) The the minimum-entropy target location
distributions estimated by four range sensors denoted by squares.
The Gaussian uncertainty with σ = 4 distance units is assumed
for range observations. (b) Element-to-element comparison of the
BB with the CRB of locating the same target.

Jxx =
1

σ2

�

1≤i<j≤N

(
xt − xi

‖xi‖
− xt − xj

‖xj‖
)2 ,

Jyy =
1

σ2

�

1≤i<j≤N

(
yt − yi

‖xi‖
− yt − yj

‖xj‖
)2 ,

Jxy =
1

σ2

�

1≤i<j≤N

(
xt − xi

‖xi‖
− xt − xj

‖xj‖
)(

yt − yi

‖xi‖
− yt − yj

‖xj‖
) ,

(8)

where xt = (xt, yt), xi = (xi, yi), and xj = (xj , yj).
We compute both the BB and the CRB for six true target lo-

cations depicted in Fig. 1(a), and compare the BB with the CRB
element to element as shown in Fig. 1(b). Every element of the BB
approximately equals to the corresponding element of the CRB.

The second simulation uses four range sensors placed on a
square as shown in Fig. 2(a). We assume the Gaussian uncertainty
with σ = 4 distance units for all range measurements. Similarly,
we compute the minimum-entropy target location distribution for
nine true target location as shown in Fig. 2(a). The CRB of lo-
calization using range sensors with Gaussian sensing uncertainty
has been derived in [3]. We compute both the BB and the CRB of
locating the same target and compare them component to compo-
nent in Fig. 2(b). Every element of the BB approximately equals
to the corresponding element of the CRB.

As revealed by both simulations, the BB equals the CRB ele-
ment to element when the sensing uncertainty is Gaussian. When
the minimum-entropy target location distribution derived through
the Bayesian approach is not Gaussian, it provides more informa-
tion than the CRB. It is simple to compute the BB of localization
in a sensor network given arbitrary sensing models of individual
sensors. In contrast, the CRB is difficult to derive when the sens-
ing uncertainty are complex. Specifically, the partial derivative of
the logarithm of the observation distribution, ∇xt

ln p(z|xt), is
difficult to derive when p(z|xt) is complex.

3. SENSOR NETWORK COVERAGE

We define the coverage of a sensor network for localization as the
region where the target can be relatively accurately located by the
sensor network. In this section, we use the minimum entropy and
the CRB to characterize the dependency of the localization uncer-
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Fig. 3. Uncertainty characteristics of localization using TDOA
sensors. (a) The minimum entropy of the target location distri-
butions estimated by four TDOA sensors denoted by squares. The
signal propagation speed is assumed to be 1 distance unit per time
unit. The Gaussian uncertainty described in (4) with σ = 4 time
units is assumed for all TDOA observations. (b) The minimum
entropy of the target location distributions estimated for true target
locations along profile AB and CD. The entropy corresponding to
the true target locations inside the green square in (a) is denoted
by red crosses. Otherwise, the entropy is denoted by blue circles.

tainty on the sensor network topology and the sensor observation
type through simulations. The localization uncertainty character-
istics obtained in this section provides guidance to approximately
identify the coverage of a sensor network without detailed analy-
sis. The localization uncertainty is measured in terms of Shannon
entropy. We have considered three types of information provided
by sensor observations, including TDOA, the range to the target,
and the direction-of-arrival (DOA) of the target signal.

3.1. Characterizing Localization using TDOA

In this subsection, we study the uncertainty characteristics of lo-
calization using TDOA information. Our studies show that the
coverage of a sensor network is the region inside the convex hull
of all sensors if localization is essentially based on TDOA infor-
mation among all sensors.

Fig. 3 shows the uncertainty characteristics analyzed through
the Bayesian approach in terms of the minimum entropy of local-
ization using four TDOA sensors placed on a square. The Gaussian
uncertainty described in (4) with σ = 4 time units is assumed for
all TDOA observations. The most significant feature is that the
target inside the convex hull of TDOA sensors can be relatively
accurately located. The localization uncertainty increases more
abruptly when the target moves outside across a sensor at a convex
hull vertex than when the target moves outside across a convex hull
edge between sensors. As shown in Fig. 4(a), the coverage of the
sensor network is still inside the convex hull of all sensors when
four TDOA sensors are not placed evenly.

In contrast to the two-step localization approach in which an
intermediate TDOA estimation is followed by a target location es-
timation, the approximate maximum-likelihood (AML) algorithm
[4] directly estimates locations of near-field targets in a single-step.
However, the most essential information utilized by AML is still
TDOA at different sensors. The CRB for the near-field target lo-
calization using the AML algorithm has been derived in [5]. In
this paper, we use the CRB to analyze the uncertainty character-
istics of the AML-based single-target localization using eight sen-
sors placed on a circle as shown in Fig. 4(b). The data collected
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Fig. 4. More scenarios of localization using TDOA information.
(a) The minimum entropy of the target location distributions esti-
mated by four TDOA sensors denoted by squares. The only dif-
ference from Fig. 3(a) is that four TDOA sensors are not evenly
placed on a square. (b) The entropy converted from the CRB of the
AML-based localization using eight sensors denoted by squares.
The conversion is described by (10). We assume the white Gaus-
sian noise with 20 db SNR 1 m from the target. The signal propa-
gation speed is assumed to be 345 m/s.

by the pth sensor at time n is assumed to be

xp(n) = aps(n− tp) + wp(n) , (9)

where ap is the signal gain at the pth sensor, s is the source signal,
tp is the time delay of the source signal at the pth sensor, wp is the
zero mean white Gaussian noise experienced by the pth sensor. In
this case-study, we assume that the signal propagation speed is 345
m/s and that the signal-to-noise-ratio (SNR) at the distance of 1 m
from the source is 20 db. In order for the result to be comparable
with other localization uncertainty analysis in this paper, we treat
the target location distribution approximately as Gaussian with the
CRB as its covariance and compute the entropy H

H = 1 + ln(2πσaσb) , (10)

where σa and σb are the square roots of the two eigen values of
the CRB matrix. As shown in Fig. 4(b), the coverage of a sensor
network using near-field AML algorithm for localization is also
the region inside the convex hull of sensors.

3.2. Characterizing Localization using Range

Fig. 5 shows the uncertainty characteristics analyzed through the
Bayesian approach in terms of the minimum entropy of localiza-
tion using four range sensors placed on a square. The Gaussian
sensing uncertainty with σ = 4 distance units is assumed for all
range observations. In contrast to the coverage of a network of
TDOA sensors, the coverage of a network of range sensors not
only includes the area inside the convex hull of sensors, but also
extends outside the convex hull to the area enclosed by arcs with
convex hull edges as diameters. This result is consistent with the
localization error characteristics of range sensors through the CRB
analysis in [3]. When four range sensors are unevenly placed, our
simulation indicates that the sensor network coverage is still en-
closed by the arcs associated with the convex hull of sensors.

The cause of such extended coverage of a network of range
sensors can be explained by the nature of range restrictions on the
target location estimation. A range observation r with uncertainty
±δr by a sensor S confines the target location estimate inside a
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Fig. 5. Uncertainty characteristics of localization using range sen-
sors. (a) The minimum entropy of the target location distributions
estimated by four range sensors denoted by squares. The Gaus-
sian uncertainty with σ = 4 distance units is assumed for all range
observations. (b) The minimum entropy of the target location dis-
tributions estimated for true target locations along profile AB and
CD. The entropy corresponding to the true target locations inside
the solid green enclosure in (a) is denoted by red crosses. Other-
wise, the entropy is denoted by blue circles.

circular belt with width 2δr . The center of the circle is S and
the radius of the circle is r. Two range observations by different
sensors together confine the target location estimate inside the in-
tersection of two circular belts. When two circular belts cross each
other perpendicularly, the intersection area is smallest and thus the
target location estimate has the least uncertainty. When the target
is actually at any point on the arch with a convex hull edge as the
diameter (e.g. the arch between S1 and S2 in Fig. 5(a)), the cir-
cular belts of range measurements by the sensors at two ends of
the convex hull edge cross each other perpendicularly. Therefore,
the target can still be relatively accurately located around the arch
although it is outside the convex hull of range sensors.

3.3. Characterizing Localization using DOA

Fig. 6 is the uncertainty characteristics analyzed through the Bayesian
approach in terms of the minimum entropy of localization using
four DOA sensors placed on a square. The observation uncertainty
is modeled after the uncertainty characteristics of DOA estima-
tion using the far-field AML algorithm [5]. We assume the DOA
observation uncertainty is Gaussian and the standard deviation σ
changes with the distance r between the sensor and the target,

σ = 180/r + 0.2r degrees . (11)

When the target is very far from the sensor, the SNR is low and
thus σ should be high. When the target is very close to the sen-
sor, the planar wave assumption of the far-field AML algorithm
is violated and thus σ should also be high. The localization un-
certainty characteristics using DOA information is very different
from those using TDOA or range information. Although a target
inside the convex hull of DOA sensors is still more accurately lo-
cated than a target outside the convex hull and far from any sensor,
the coverage of a network of DOA sensors is better described as
the vicinity of individual DOA sensors. When σ does not change
with r or σ changes with r differently from (11), simulations indi-
cate that the coverage of a DOA sensor network is still the vicinity
of individual sensors, similar to that shown in Fig. 6.
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Fig. 6. Uncertainty characteristics of localization using DOA sen-
sors. (a) The minimum entropy of the target location distributions
estimated by four DOA sensors denoted by squares. The Gaus-
sian uncertainty with σ described in (11) is assumed for all DOA
observations. (b) The minimum entropy of the target location dis-
tributions estimated for true target locations along profile AB and
CD. The red lines indicate the x coordinate of DOA sensors.

4. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a Bayesian method to analyze the
lower bound of localization uncertainty in sensor networks. We
have compared the BB with the CRB through simulations. When
the sensor observation uncertainty is Gaussian, the BB equals the
CRB. Using the Bayesian method and the CRB, we have also ana-
lyzed the dependency of localization uncertainty on the sensor net-
work topology and the sensor observation type. Such dependency
can be used to approximately identify the region of relatively good
localization accuracy without detailed analysis.

For simplicity, we have assumed the Gaussian sensing uncer-
tainty throughout this paper. We plan to compare the BB with the
CRB under non-Gaussian sensing models in the future. We have
only analyzed the uncertainty characteristics of localization using
the same type of sensors, future work is needed for localization
using a mixture of multiple types of sensors.
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