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Effects of sample design and landscape features on

ameasure of environmental heterogeneity

Danielle S. Christianson1* andCari G. Kaufman2

1Energy andResourcesGroup, University of California, 310 BarrowsHall, Berkeley, CA 94720-3050, USA; and
2Department of Statistics, University of California, 367 EvansHall, Berkeley, CA, 94720-3860, USA

Summary

1. Environmental heterogeneity, an important influence on organisms and ecological processes, can be quanti-

fied by the variance of an environmental characteristic over all locations within a study extent. However on land-

scapes with autocorrelation and gradient patterns, estimating this variance from a sample of locations may lead

to errors that cannot be corrected with statistical techniques.

2. We analytically derived the relative expected sampling error of sample designs on landscapes with particular

gradient pattern and autocorrelation features. We applied this closed-form approach to temperature observa-

tions from an existing study. The expected heterogeneity differed, both in magnitude and direction, amongst

sample designs over the study site’s likely range of autocorrelation and gradient features.

3. We conducted a simulation study to understand the effects of (i) landscape variability and (ii) design variabil-

ity on an average sampling error. On 10 000 simulated landscapes with varying gradient and autocorrelation fea-

tures, we compared estimates of variance from a variety of structured and random sample designs. While

gradient patterns and autocorrelation cause large errors for some designs, others yield near-zero average sam-

pling error. Sample location spacing is a key factor in sample design performance. Random designs have larger

range of possible sampling errors than structured designs due to the potential for sample arrangements that over-

and under-sample certain areas of the landscape.

4. When implementing a new sample design to quantify environmental heterogeneity via variance, we

recommend using a simple structured design with appropriate sample spacing. For existing designs, we recom-

mend calculating the relative expected sampling error via our analytical derivation.

Key-words: autocorrelation, gradient, monitoring, sampling, spatial, variability

Introduction

Environmental heterogeneity, a measure of variability in

abiotic and biotic conditions, is important to many areas of

ecological study, such as species diversity via niche theory

(Holdridge 1947; Whittaker 1956), microbial biogeochemical

processes (e.g. Fierer et al. 2006; Sierra et al. 2011) and

population dynamics (e.g. Garc�ıa-Carreras & Reuman

2013). Increasingly, ecologists use environmental heterogene-

ity to understand how organisms and ecological processes

may respond to a warmer future (e.g. Jentsch et al. 2011;

Clark et al. 2013; Thornton et al. 2014). For example,

heterogeneity in climate over small spatial scales results in

climate refugia that may be of critical importance to the

persistence of species with limited options for range expan-

sion (Dobrowski 2011; Keppel & Wardell-Johnson 2012).

Additionally, while many organisms optimize for average

conditions, heterogeneity is important for understanding

when and how likely thresholds (e.g. frost tolerances, heat

stress) may be breached (Meehl et al. 2000; Jentsch &

Beierkuhnlein 2008).

There are many definitions of heterogeneity. Some

authors simply define a range of values, while others

include aspects of scale, quantify spatial features such as

clumping, or qualitatively describe composition (Kolasa &

Rollo 1991; Wiens 2000). Quantitative metrics include coef-

ficient of variance (standard deviation/mean), variance/mean

ratio, variograms and others (see overview by Downing

1991). To be useful in many ecological applications, such a

metric must describe the range of available environmental

conditions, either in space or time. For example, consider a

population of trees whose seeds disperse on the landscape.

To maintain a viable population, there must be an adequate

number of locations on the landscape through time that

have environmental conditions suitable for the seeds to ger-

minate and the resulting seedlings to survive. By quantifying

the available set of environmental conditions, we can deter-

mine whether the environments for successful germination

and establishment exist and thus predict whether early life-

history stages will limit population viability.

Accurately estimating heterogeneity, however, is not

straightforward when sampling autocorrelated quantities that

may also have gradient patterns, a gradual directional change.

To account for autocorrelation or gradients, ecologists employ*Correspondence author. E-mail: dsvehla@berkeley.edu
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a combination of sample designs (Dutilleul 2011) and well-

developed statistical tools, including techniques such as analy-

sis of variance (Dutilleul 1993; Legendre et al. 2004), spatial

regression analysis (reviewed by Beale et al. 2010) and

classical geostatistic metrics like Moran’s I, correlograms and

variograms (Legendre 1993). Researchers also employ meth-

ods from spatial statistics, modelling the distribution of an

environmental characteristic with heterogeneity due to gradi-

ent patterns modelled in the mean and heterogeneity due to

autocorrelationmodelled in an autocorrelationmatrix (Cressie

1993). However, these traditional methods that account for

autocorrelation and gradient patterns are not sufficient to

quantify themetric of our choice, which wewill now describe.

Consider an environmental characteristic, Y, that varies

across the landscape, for example air temperature at 2 metre

height. Although Y may vary continuously across a broad

region, we restrict our attention to a particular geographical

area and spatial scale. We call the geographical area the extent

and define the spatial scale by dividing the landscape into

gridcells, whose resolution we refer to as the grain. The grain is

ideally chosen such that heterogeneity at the chosen scale is

appropriate to the organism or process under study, that is

heterogeneity on a finer spatial scale is not practically impor-

tant. In reality, however, the appropriate spatial scale may be

unknown or variable, for example due to multiple scales of

influence (Dutilleul 2011) and life-history change (Wiens

2000). For the purposes of this article, we assess spatial hetero-

geneity only, defining Y as a representative value (e.g. mean,

minimum) over a period of time or at a single point in time.

More broadly, the same exercise and issues can be applied to

temporal heterogeneity.

To quantify the variability of available conditions on the

landscape, we define heterogeneity as the variance of Y across

all gridcells, which we call the complete variance, VN. We can

calculateVN if we observeY at allN gridcell locations. In addi-

tion, this calculation assumes that measurement error is negli-

gible relative to variation across the landscape, so that VN is

essentially the ‘true’ quantification of the heterogeneity. This

quantitymight also be thought of as the variance of an ‘empiri-

cal distribution’ consisting of all values across the grid, as

illustrated in Fig. 1(a).

Measuring environmental quantities at every gridcell loca-

tion, however, is rarely possible, and we typically cannot calcu-

late the complete variance exactly. Instead, we observe the

environmental characteristic at a restricted set of locations in a

sample design, estimating the complete variance, VN, by the

sample variance, V̂s. As shown in Fig. 1(b–c), different sample

designs can over- or underestimate the complete variance on

landscapes with autocorrelation and gradient patterns.

Why, then, are traditional ecological methods insufficient?

Whereas many sample design recommendations and statisti-

cal tools are designed to account for the effects of autocor-

relation and gradients separately, we want a description of

heterogeneity that includes them. Additionally, statistical

tools that account for autocorrelation and gradients, such

as analysis of variance and others mentioned earlier, do not

estimate the complete variance. In spatial statistics models,

Y is considered a random variable drawn from an underly-

ing stochastic process. However, none of the model parame-

ters describing this process straightforwardly corresponds to

the complete variance of the particular landscape that is

observed.

Thus, we are interested in how the sample variance performs

as an estimator of the complete variance. The average error

(bias) can be calculated directly in closed form.We develop this

analytical approach and illustrate its use with a forested study

in Section ‘Analytical derivation of expected sampling error’.

To find the spread around the average error due to variability

in landscape features, which cannot be calculated analytically,

we use simulated landscapes to compare a variety of structured

and random sampling designs in Section ‘Simulation study’.

Using the results from these two approaches, we make recom-

mendations for (i) implementing a new sample design to best

quantify heterogeneity and (ii) quantifying sampling error

from existing sample designs.

Analytical derivation of expected sampling error

MODELLING LANDSCAPE CHARACTERISTICS

Suppose that the environmental characteristic Y on a gridded

landscape with N gridcells can be described by a multivariate

normal distribution:

YN �MVN lN;Rð Þ; eqn 1

whereYN is the vector ofY values at gridcells 1 toN, and lN is

a vector of mean values at gridcells 1 to N (see Table 1 for a

summary of notations). TheN 9 N covariancematrixΣ (grid-

cells 1 to N across the columns and 1 to N down the rows)

describes the pairwise relationship between gridcells. We used

a multivariate normal distribution for conceptual ease; how-

ever, this derivation holds with any distribution.

For landscapes without a gradient, lN has the same value, l,
for allN locations. For landscapes with a gradient, lN has dif-

ferent values and can be modelled by multiplying the gridcell

coordinates by a vector b = [bo, bx, by]. We decomposed the

covariance Σ into a variance term, r2, and an autocorrelation

matrix,K: Σ = r2K. By doing this we assumed a constant vari-

ance across the landscape.We fixedr2 = 1 without loss of gen-

erality becauser2 is a scaling factor.

We modelled autocorrelation with the exponential function

in our example:

K ¼ e�dN=q; eqn 2

where dN is anN 9 Nmatrix of the pairwise distance between

all gridcells, and q > 0 is a range parameter that determines

the distance at which gridcells no longer have strong influence

on one another. While we chose the commonly used exponen-

tial function (Zimmerman& Stein 2010), we derive the analyti-

cal solution for a general K in which other autocorrelation

functions can be used. We report spatial autocorrelation in

terms of q as measured in gridcells rather than distance units

for interpretability given our unitless landscape.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 770–782
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EXPECTED VALUE OF COMPLETE AND SAMPLE

VARIANCE

We define the complete variance according to the standard

equation:

VN ¼ 1

N

XN

i¼1
Yi � �YNð Þ2 with �YN ¼ 1

N

XN

i¼1
Yi:

eqn 3

In Appendix S1, we show that the expected value of the

complete variance is

E½VN� ¼ 1

N
r2tr IN � 1

N
JN

� �
K

� �
þ lTN IN � 1

N
JN

� �
lN

� �
;

eqn 4

where IN is an N 9 N identity matrix and JN is an N 9 N

matrix with all entries equal to one.

The observations under a given sample design are a subset

of the YN vector, which we call Ys. We write Ys = HYN,

whereH is a s 9 N matrix consisting mostly of zeros and sin-

gle entries in each row, equal to one, that correspond to the

elements of YN to be selected (Appendix S1). Thus,
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Fig. 1. Landscapes with gradient patterns

and/or spatial autocorrelation, as in this exam-

ple landscape that has both, can cause signifi-

cant error in estimates of the complete

varianceVN. In panel a, the empirical distribu-

tion for all gridcells within the extent is shown,

with the mean as the dotted line and � twice

the standard deviation as the solid horizontal

line. The sample variance, bVs, of the struc-

tured sample design in panel b underestimates

the complete variance by 33%, while that of

the random sample design in panel c overesti-

mates the complete variance by 61%. For

specific landscape parameterizations used in

this and all subsequent figures, see Table S1

(Appendix S3).
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Ys ¼ HYN �MVNðHlN; r
2HKHTÞ: With sample variance

defined as

bVs ¼ 1

s� 1

Xs

i¼1
Yi � �Ysð Þ2 with �Ys ¼ 1

s

Xs

i¼1
Yi;

eqn 5

the expected value of the sample variance is

E½ bVs� ¼
1

s� 1
r2tr Is � 1

s
Js

� �
HKHT

� �
þ lTNH

T Is � 1

s
Js

� �
HlN

� �
;

eqn 6

where Is is an s 9 s identity matrix and Js is an s 9 s matrix

with all entries equal to one. For landscapes with no gradient,

calculation of the expected variances is simplified as the term

containing lN is zero:

E½VN� ¼ r2

N
tr IN � 1

N
JN

� �
K

� �
and

E½ bVs� ¼ r2

s� 1
tr Is � 1

s
Js

� �
HKHT

� �
:

eqns 7,8

RELATIVE EXPECTED SAMPLING ERROR

We calculated a relative expected sampling error for each sam-

ple design as the per cent difference between the complete and

sample expected variances:

relative expected sampling error

¼ Rs ¼ 100%� E½ bVs� � E½VN�
E½VN� :

eqn 9

We explored the general usefulness of this framework with

sample designs in 1D space for landscapes with no gradient

(Appendix S2). As expected, we found that amongst structured

designs with the same sample size and fixed relative sampling

locations, Rs was the same regardless of placement within the

extent. However, Rs for random designs with the same sample

size varied significantly as the sample locations changed from

design to design. Additionally, we found that average sample

spacing between sample locations was a key factor in determin-

ing the magnitude and direction of Rs. We explore this point

more fully in our simulation study (Section ‘Simulation study’)

and focus next on the practical application ofRs.

AN EXAMPLE CASE: ALPINE TREELINE WARMING

EXPERIMENT (ATWE)

As an example, we applied the analytical derivation to tem-

perature measurements from an existing sample design

employed in the Alpine Treeline Warming Experiment

(ATWE). ATWE is located along Niwot Ridge in the eastern

Colorado Rockies, USA (40°30 N, 105°360 W). The Forest

study site (elev. 3100 m) is located in a mature subalpine for-

est, primarily composed of conifer trees. Details of the study

are described in Reinhardt et al. (2011). Five control plots

each contained four soil temperature probes arranged in a

1 m square. Commensurate with this distance, we chose a

grain of 1 m for our analysis. The five plots were chosen to

span a range of landscape features including sun–shade pat-

terns, topography and rockiness within the ~100 m 9 50 m

site extent (Fig. 2 inset). We compared the expected sampling

error, Rs, between this clustered random design, as is, to a

simple random version with only 1 measurement per plot. To

carry out the analysis, we used eqn 6, calculatingH by match-

ing the geo-located positions of the temperature probes with a

100 9 50 gridded landscape.

With so few data, we were not able to assess spatial autocor-

relation or gradient patterns via statistical methods to calculate

K or lN. Rather, we identified a range of likely autocorrelation

intensities, 5–20 m, based on the sun–shade patterns from the

semi-open canopy. While other factors influence the soil

Table 1. Notation definitions

N, s locations N = number of total locations

within extent

s = number of sample locations

Y,YN,Ys environmental

characteristic

Y = an environmental

characteristic

YN = vector ofY atN grid

locations

Ys = vector ofY at s grid locations

l, lN, �YN, �Ys mean l = modelmean (same for allN)

lN = vector of l for all locationsN
�YN = mean across all locationsN
�Ys = samplemean

r2, VN, bVs variance r2 = model variance

VN = complete variancebVs = sample variance

SDN, dSDs standard

deviation

SDN = complete standard

deviationdSDs = sample standard deviation

Σ,K, dN covariance,

autocorrelation,

& distance

matrices

Σ = model covariancematrix

K = model autocorrelationmatrix

dN = matrix of pairwise distances

between allN locations

b, q landscape

parameters

b = vector of gradient parameters

(bo, bx, by) = (intercept, x, y)

q = autocorrelation range

parameter

IN, JN,H analytical

derivation

IN = N 9 N identitymatrix

(Is = s 9 s identitymatrix)

JN = N 9 Nmatrix of all ones

(Js = s 9 smatrix of all ones)

H = s 9 Nmatrix that samples s

locations fromN

e
ðiÞ
jk , �ejk, Rs error e

ðiÞ
jk = sampling error

�ejk = average error

Rs = relative expected sampling

error

i, j, k error indices i = index for simulated landscapes

j = index for a single design

k = index for design configuration

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 770–782
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temperature such as topography and soil properties, direct

radiation is likely a primary driver. Potential drivers of a gradi-

ent pattern at this site are topographical: a gradual east–west
elevation change of 15 mwithminimal change in aspect. Thus,

we suspect there to be essentially no gradient effect

(b = [0,0,0]); however, we investigated a medium gradient to

be conservative (b = [0,0,2]).

As shown in Fig. 2, the relative expected sampling error,

Rs, differs in both magnitude and direction between the

simple random design (1 measure/plot) and the clustered

random design (4 measures/plot) over the range of autocor-

relation intensities expected at the site. The simple design

overestimates the complete variance while the clustered

design underestimates it. On landscapes both with and with-

out a gradient, the simple design, with smaller absolute Rs,

yields a better estimate. When a gradient is included in the

analysis, the magnitude of Rs for the simple design

increases, while that for the clustered design decreases, how-

ever not enough to recommend it over the simple design.

These results counter the common intuition that collecting

more data is always better, which is only guaranteed to be

true when the environmental characteristic at different sam-

ple locations can be thought of as independent of each

other. This is not the case on landscapes with gradient pat-

terns and spatial autocorrelation, which we explore further

in the following simulation study.

Simulation study

While the analytical derivation is a useful tool to quickly

assess the expected sampling error of a specific design, we

completed a simulation study to systematically investigate

the performance of a number of structured and random

sample designs on landscapes with varying gradient patterns

and spatial autocorrelation. In particular, this numerical

approach allowed us to quantify the spread around Rs due

to landscape variability. In addition, we assessed the impor-

tance of design variability in the case of random sample

designs. We will demonstrate that sample designs estimate

complete variance differently on different landscape types,

sample spacing is a key factor in design performance, and

design variability significantly affects random designs. We

performed the analysis using R, version 3.0.2 (R Develop-

ment Core Team 2013).

SIMULATION OF LANDSCAPE PATTERNS

We simulated 10 000 landscapes for each of 185 landscape

types varying in gradient pattern and spatial autocorrelation.

We used a square grid with 50 9 50 gridcells, yielding 2500

total locations,N.With edge length of 1 distance unit, the grain

is 1 gridcell and the extent is 50 gridcells in each direction. By

expressing the distance between two locations in units of grid-

cells, our results can be scaled to any real distance.

As in the analytical derivation, we simulated landscapes

according to a multivariate normal distribution: YN � MVN

(lN, r
2K), which allowed us to vary gradient patterns via lN

and spatial autocorrelation via K. We modelled landscapes

with a 1D gradient in the y-direction bymultiplying the y coor-

dinates by a constant, taking values by = 0, 0�1, 2, or 10. The
case by = 0 corresponds to no gradient. We again fixed r2 = 1

and used an exponential function with range parameter q to

model spatial autocorrelation (eqn 2). We expected that the

strength of autocorrelation, determined by q, would have a

significant effect on efficacy of the sample designs. Thus, we

varied q widely, from 0�1 to 100 gridcells (Fig. S4, Appendix

S3).With q = 0�1, the elements ofYN can be considered nearly

independent and identically distributed, because neighbouring
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Fig. 2. Assessment of soil temperature hetero-

geneity in existing design at ATWE study site

by calculating the relative expected sampling

error, Rs, via our analytical derivation.

The inset figure illustrates the study site, as

a 100 9 50 gridcell landscape with 1 grid-

cell = 1 m and the five measurement plots in

black.
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gridcells have essentially zero correlation. At the opposite

extreme, q = 100, each location is strongly influenced by all

other locations.

SAMPLE DESIGNS

We tested a series of structured and random sample designs

types, which we call:

• Simple structured – single samples located in a regularly

spaced grid

• Clustered structured – groups of samples located in a regu-

larly spaced grid

• Nested structured – single samples located in two regularly

spaced grids, one embeddedwithin the other

• Simple random – single samples randomly located on the

landscape

• Clustered random – groups of samples randomly located on

the landscape.

In Fig. S6 (Appendix S3), we illustrate the sample designs

and define the nomenclature used.

All sample designs have a sample size equal to the total

number of sampled locations within the extent. The spacing

is the distance in gridcells between sampled locations. For

clustered structured designs, the spacing describes the dis-

tance between the clusters. For designs that have clusters or

nested groups (nested structured), the cluster size is equal to

the number of sample locations in each cluster or nest, and

the cluster spacing describes the spacing between sample

locations in each cluster or nest. While we present our

results using a few representative configurations, we illus-

trate all designs configurations that we investigated in

Fig. S7 (Appendix S3).

CALCULATION OF COMPLETE AND SAMPLE STANDARD

DEVIATION

For a single simulated landscape of a given landscape type and

for each sample design, we calculated:

SDN ¼
ffiffiffiffiffiffiffi
VN

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i
ðYi � �YNÞ2

r
and

dSDs ¼
ffiffiffiffiffiffibVs

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s� 1

Xs

i
ðYi � �YsÞ2

r
;

eqns 10,11

whereas before N is the total number of locations, and s is

the number of sample locations. We refer to SDN as the

complete standard deviation (what we cannot observe and

wish to estimate) and to dSDs as the sample standard devia-

tion (our estimate based on s sample locations). We used

standard deviation rather than variance as a metric describ-

ing heterogeneity because it has the same units as the envi-

ronmental characteristic Y.

We report error between SDN and dSDs at two levels for each

design configuration. First, we quantified a relative sampling

error, e, defined as per cent difference between SDN and dSDs:

sampling error ¼ e
ðiÞ
jk ¼ 100%�

dSDðiÞ
s;jk � SD

ðiÞ
n

SD
ðiÞ
n

; eqn 12

where i represents a single simulated landscape (1–10 000)

within a landscape type and j represents a specific design within

the design configuration k. A negative sampling error meansdSDs underestimates SDN, while a positive sampling error indi-

cates that dSDs is an overestimate. Then, we calculated an aver-

age error, �ejk, for each design by averaging the sampling error

over the 10 000 simulated landscapes:

average error ¼ �ejk ¼ 1

10; 000

X10;000

i¼1
e
ðiÞ
jk : eqn 13

Recall that this average error is the average of relative rather

than absolute sampling errors. We examined the spread

around average error from landscape variation by varying i in

e
ðiÞ
jk . Likewise, we varied j in �ejk within a design configuration k

to examine the effects of design variation. For example, within

the simple random configuration with sample size 16, we com-

pared specific designs, eachwith a unique set of 16 sample loca-

tions.

To understand the impact of design variation, we randomly

selected 100 specific designs for each random configuration

and compared the average error for each of these 100 designs.

To verify the results from our analytical derivation, we com-

puted the average error of 20 randomly selected specific designs

for each structured configuration. The differences in average

error are indeed small (Fig. S8, Appendix S4). Thus, for struc-

tured configurations, we show results for a single representa-

tive structured design.

SIMULATION RESULTS

Our simulation results illustrate three main findings: (i) sam-

pling error can be significant in the presence of autocorrela-

tion and especially gradients; (ii) sample spacing indicates

how the landscape is sampled and thus is a key factor in the

sampling error observed; (iii) the range of possible sampling

errors for random designs is large due to landscape and

design variability.

RESULT 1: SAMPLING ERROR CAN BE SIGNIF ICANT

Structured sample designs: autocorrelation can cause

significant average error

The effect of autocorrelation is striking, as shown in Fig. 3-1.

As autocorrelation intensity increases, the average error, �ejk,

can become quite large, varying from –38% to 12%. This

increase in error occurs rapidly over range parameter values of

0–20 gridcells, approximately 25% of the maximum distance.

within the extent Increasing the sample size without changing

the sample spacing reduces �ejk (d-e in Fig. 3-1); however, �ejk
may still be significant. Moreover, the configuration determi-

nes the sign of �ejk. In the majority of design configurations, the

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 770–782
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sample standard deviation, dSDs, underestimates the complete

standard deviation, SDN, that is, the error is negative (b-e in

Fig. 3-1). However, dSDs overestimates SDN for a configura-

tion in which the sample spacing is maximized across the

extent (a).

Structured sample designs: gradients increase average error

As shown in Fig. 3-2, medium and strong gradient patterns

degrade performance for all structured sample designs, the

magnitude depending on both the strength of the gradient and

the design configuration. In particular, design configurations

that perform well without gradients (e.g. b) continued to do

well. Design configurations that had poor performance with-

out gradients (e.g. a and c) have even larger average error, �ejk,

on landscapes with gradients. For these configurations,

medium strength gradients roughly double �ejk, while strong

gradients triple �ejk. In Appendix S4�2 and S4�3, we examine

clustered and nested designs. In summary, we find that these

strategies generally lead to worse estimates of SDN.

Randomdesigns: effects of autocorrelation and gradients

differ dependent on design

As shown in Fig. 4, randomdesign configurations perform dif-

ferently on landscapes with varying autocorrelation intensities

and gradient patterns. By comparing the difference between

simple Random 4 and simple Random 16 (b to a) and between

simple Random 4 and clustered Random 16-4 (b to c), it is

clear that increasing the sample size via a simple random con-

figuration (i.e. not in clusters) leads to a greater decrease in the

magnitude of error.

Additionally, the effects of autocorrelation and gradient pat-

terns are complicated. For example, for design c-i on land-

scapes with no gradient in Fig. 4, �ejk worsens initially then

improves as autocorrelation increases. Furthermore, signifi-

cant change in �ejk can happen rapidly over weak autocorrela-

tion intensities (0–20 gridcells). Gradients can also have

beneficial (e.g. a-ii, b-ii and c-ii) or detrimental (e.g. all extreme

designs) effects on �ejk. Overall, increasing both autocorrelation

intensity and gradient strengths increases the variability of �ejk
across designs within a random configuration. It is this design
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variability that led us to investigate what design characteristics

yield near-zero �ejk across autocorrelation intensities and gradi-

ent pattern strengths. As discussed in the next result, sample

spacing is a key factor.

RESULT 2: SAMPLE SPACING IS A KEY FACTOR IN

OBSERVED SAMPLING ERROR

For landscapes with autocorrelation, we observed a positive

linear relationship between a design’s average error, �ejk, and

its average distance between sampling locations. That is, for

a given sample size, the average distance seems to determine

the bias in �ejk. As shown in Fig. 5, this relationship holds

for autocorrelated landscapes with and without gradients

and for both random and structured design configurations.

For a sample size of 16, designs with average spacing of

25–30 gridcells consistently show �ejk near zero, where as

designs with lower or higher average spacing have a non-

zero �ejk that becomes more extreme as the autocorrelation

intensity increases (not shown). Average spacing greater

than 25–30 gridcells results in overestimates of SDN (posi-

tive �ejk), while average spacing less than 25–30 gridcells

result in underestimates (negative �ejk). Clustered designs

almost always underestimate SDN, with clusters reducing

the average sample spacing (Appendix S4�2). We performed

a similar analysis for the spread around �ejk due to land-

scape variation. We did not find strong relationships (see

Fig. S11, Appendix S4). We discuss the importance of sam-

ple spacing further in the discussion section.

RESULT 3: RANDOM DESIGNS HAVE A LARGE RANGE OF

SAMPLING ERROR DUE TO THE COMBINATION OF

DESIGN AND LANDSCAPE VARIABIL ITY

When a random design configuration is chosen for a study’s

sample design, only one design is implemented. Therefore,
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the sampling error of the implemented design is a combina-

tion of both the design and landscape variability of that

random design configuration. Thus, as we will show, the

range of possible sampling error for a randomly selected

random design is much larger than that of a structured

design with the same sample size. This finding holds for

environmental quantities, YN, that do not repeat in a regu-

lar pattern on the landscape at multiples of the structured

design frequency.

In Fig. 6, we illustrate the range of possible sampling error

due to both design and landscape variation. For three repre-

sentative landscape types, we show kernel estimates of the den-

sity of raw sampling error, e
ðiÞ
jk , that underlie average errors for

designs within (i) the best performing simple structured config-

uration Struct 16:12; (ii) the simple random configurationRan-

dom 16; and (iii) the clustered random configuration Random

16-4 (rows 1–3, respectively).
For landscapes with no autocorrelation or gradient (Fig. 6

column 1), little difference exists in the sampling errors between

the three design configurations. These results are expected, as

this landscape type is essentially a random surface. However,

on landscapes with medium autocorrelation (column 2), as we

saw in Fig. 4, design variability affects both the simple and

clustered random configurations, that is the densities shift

apart. Landscape variability also significantly affects the clus-

tered configuration, that is the densities’ widths increase. On

landscapes with both autocorrelation and a medium gradient

(column 3), the effect of design variability is exacerbated for

the random designs, while the effect of landscape variability on

the structured design is reduced as shown by a decrease in the

density width.

When we consider the implications of the combined effects

of design and landscape variability on landscapes with auto-

correlation and gradients, the simple structured configuration

clearly has a significantly smaller range of possible sampling

errors than either of the random configurations.While any one

simple random design may have a sampling error comparable

to that of a simple structured design, the possible sampling

error is considerably larger when choosing a design randomly.

Discussion

Our simulation study shows that good estimates of heterogene-

ity as measured by complete variance can be obtained with a

well-chosen sample design over a range of gradient strengths

and autocorrelation intensities. We have identified sample

spacing as a key factor in determining designs with good esti-

mation. The question then becomes what characteristics of

sample designs are associated with optimal spacing. Addition-

ally, how should a researcher practically apply an understand-

ing of sample design to quantify heterogeneity when: (i)

implementing a new sample design; (ii) using data from an

existing sample design?

As shown in Fig. 5, for a given sample size, an ideal

range of average sample spacing, which holds across gradi-

ents, leads to near-zero average sampling error. The same

range holds across autocorrelation intensities (not shown).

Because the proportion of the landscape covered and the

evenness of that coverage determine the average sample

spacing, the average sample spacing can be considered a

proxy for adequate sampling of the landscape within a

given sample size. In general, larger average spacing, up to
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a distance constrained by the sample size, typically leads

to greater landscape coverage. For structured designs, cov-

erage increases evenly in both directions as average spacing

increases; however, for random designs, the evenness may

not be constant in both directions. Thus, the problem is

that random designs, as well as clusters and nests, can

have particular spatial arrangements that over-or under-

sample certain regions of the extent, leading to larger

sampling errors.

The combined effects of sample size and sample spacing

determine a threshold sample size above which there are essen-

tially no differences between simple structured and simple ran-

dom designs’ complete variance estimates, that is, the densities

of raw sampling error e
ðiÞ
jk , like those illustrated in Fig. 6, look

similar. For random designs, the possibility for spatial sam-

pling arrangements that over- or under-sample certain regions

of the extent decreases as the sample size increases. Addition-

ally, average sample spacing necessarily approaches the ideal
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spacing in which a large portion of the landscape is sampled in

amore-or-less evenly spaced fashion. Below the threshold sam-

ple size in a random design, too many possibilities exist for

sampling arrangements that lead to poor complete variance

estimates. An appropriately spaced simple structured design,

with both adequate landscape coverage and even spacing

within that covered portion, provides a better estimate.

Finally, as the strength of both gradient patterns and spa-

tial autocorrelation increases, errors in estimating the com-

plete variance can become quite large. Thus, when

implementing a new sample design or evaluating a proposed

design, it is helpful to have a sense of how strong a gradient

or autocorrelation pattern may be. When sufficient data are

not available, expert knowledge can be used to identify a

range of autocorrelation strengths to consider, as employed

in the ATWE example. In the case when existing data are

used, some sample designs, such as structured or stratified

random, may allow for estimation of gradient patterns

(Dutilleul 1993, 2011). For data sets with sufficiently large

sample sizes, geo- and spatial statistical techniques can be

used to estimate the autocorrelation strength (Isaaks &

Srivastava 1989; Zimmerman 2010).

In Fig. 7, we summarize our recommendations for practical

application of our results. When implementing a new design to

quantify heterogeneity via complete variance, we recommend

a simple structured design when landscape features do not

repeat at multiples of the appropriate sample spacing. We

make this recommendation regardless of the sample size for 2

reasons: (i) an appropriately space simple structured design

ensures a good estimate as discussed above, and (ii) the sample

size threshold is complicated to determine as we discuss further

below. Although motivated by a different purpose, authors

have made a similar recommendation for using systematic

sample designs to estimate spatial gradient and autocorrelation

patterns (Zidek & Zimmerman 2010; Dutilleul 2011). In con-

trast, Zhu & Stein (2005) report that structured (regular)

designs are outperformed by other non-random designs when

estimating the autocorrelation parameters of a statistical

model of the landscape.

We recommend the following rule of thumb to determine

the appropriate spacing for simple structured designs on

roughly square-shaped extents based on our results for multi-

ple simple structured configurations (Appendices S3 and S4).

Divide the length of a side by the number of sample locations

in each row (or column) and then truncate the resulting num-

ber to get the sample spacing. For the example of our 50 9 50

gridded landscape and a sample size of 16 (4 9 4), a spacing of

12 (50/4 = 12�5 ? 12) gives the best estimate of the complete

standard deviation, that is, sampling error is closest to zero for

all gradient and autocorrelation intensities.

As previously discussed, above a sample size threshold there

is essentially no difference between an appropriately spaced

simple structured design and a simple random design. A gen-

eral threshold is difficult to determine because it depends on

strength of the gradient and autocorrelation intensities, total

number of locations (gridcells) within the extent and
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variance when gradient patterns and spatial

autocorrelation occur on the landscape.
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potentially the extent shape. For our simulated 50 9 50 grid-

ded landscape with no gradient, we estimate a threshold of

~1%, which is a sample size of 25. Sample sizes in ecological

research are often smaller than this threshold, which we expect

to increase with stronger gradients. Additionally, we expect

extent shape to matter because we observed different thresh-

olds between the 50 9 50 gridded landscape from the simula-

tion study and the 1D gridded line from the analytical

derivation.

Researchers, however, may have objectives other than

heterogeneity when selecting a sample design. Random

designs are often employed to avoid unintentional sampling

bias and to satisfy criteria of inferential statistical methods

(Zidek & Zimmerman 2010). As mentioned earlier, struc-

tured designs can be problematic for sampling landscape fea-

tures that repeat at multiple of the sample spacing (Dutilleul

2011). Such patterns do occur in natural systems and care

must be taken to implement an appropriate design. Fortu-

nately, a number of particular simple random designs with

near-zero sampling error across a range of autocorrelation

intensities and gradient strengths do exist. Thus, if desired,

one can select a particular design by iteratively evaluating it

with our analytical derivation, as exemplified in the ATWE

example. Additionally, while we did not include a stratified

random sample design in our analysis, we expect that it

would provide good estimates as the stratification criteria

would likely limit over- and under-sampling.

To estimate the sampling error from a proposed design or

existing data, we suggest using the analytical derivation to cal-

culate the expected sampling error for the particular sample

design at hand. The expectation can be calculated for a set of

autocorrelation intensities and gradient strengths. We suggest

bracketing these landscape features with a low and high value

in cases where the value cannot be directly estimated, as illus-

trated in the ATWE example. This method allows a relatively

quick assessment of the expected sampling error direction and

magnitude. To quantify the range of sampling errors around

the expected sampling error, the simulation methodology

employed in this paper can be modified for specific study

details. This error range due to landscape variability may be

especially important for designs with low sample sizes.

We have begun a description of how different sample

designs estimate heterogeneity via complete variance. In

addition, we identified a tool to estimate the expected sam-

pling error for landscapes with gradient patterns and spatial

autocorrelation. Environmental heterogeneity is increasingly

used in assessments of ecological pattern and function, in

particular in climate change studies. To better represent this

heterogeneity, future work should investigate more complex

landscapes, for example those in which variance or autocor-

relation is not constant (i.e. landscapes with non-stationary

features). Metrics other than variance, such as skew and kur-

tosis are also important descriptors of environmental condi-

tions. The influence of gradients and autocorrelation on

estimates of such metrics should be examined. Finally,

given the interest in heterogeneity across ecological disci-

plines, a summary of the different methods of defining and

quantifying heterogeneity would serve as a guide to research-

ers, improving a common set of tools and enabling increased

collaborative effort.
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