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AN EXISTENCE AND UNIQUENESS THEOREM FOR THE
CAUCHY PROBLEM FOR AN INELASTIC MATERIAL
WITH MEMORY

Miguel Ortiz and Jacob Lubliner

Division of Structural Engineering and Structural Mechanics
Department of Civil Engineering
University of California, Berkeley

ABSTRACT

The theory of nonlinear semigroups of operators is applied to the problem
of existence and uniqueness of solutions of evolutionary equations arising in
inelastic materials with memory effects. General nonlinear hereditary laws for
the inelastic response of the material are considered. The fading memory pro-
perty is formulated in terms of an obliviating measure. Suitable restrictions on
this measure and on the plastic constitutive mapping are postulated that resuls
in a well-posed initial value problem. For instance, a monotonicity condition is
introduced that generalizes the concept of normality of materials with instan-
faneous response.
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AN EXISTENCE AND UNIQUENESS THEOREM FOR THE
CAUCHY PROBLEM FOR AN INELASTIC MATERIAL

WITH MEMORY

Miguel Ortiz and Jacob Lubliner

Division of Structural Engineering and Structural Mechanics
Department of Civil Engineering

University of California, Berkeley

1. Introduction

In this paper, we show that the Cauchy problem for an inelastic material with memory and
linear instantaneous elasticity (when restricted to infinitesimal deformations) has a unique solu-
tion. The theorem to be proved (Theorem | in Section 3) is that when the problem is
expressed in the form

x+Ax=0 ; x(0)=1x ()

where the vector x consists of the velocity field, the stress field and the field of the past history

of stress and A is a2 nonlinear operator on a Hilbert space H, then — A generates a semigroup of

contractions. This is equivalent to the exisience of a unique solution, and is in fact the way in

which the guestions of existence and uniqueness are treated within the framework of modern
nonlinear semigroup theory [26].

Section 2 is devoted to a survey of the theory of materials with memory, with a view

toward finding an appropriate Hilbert space in which to place the unknowns of the probiem.

This space turas out to be a Lebesgue space with an obliviating measure.

In Section 3 the Cauchy problem is formuiated in the aforementioned form and suitable

restrictions are imposed on the gonstitutive mapping. One such restriction is a monotonicity
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condition which is a generalization of the usual normality rule for inelastic materials.

2. Materials with Memory

Often in physics, the term process is used to signify a collection C of functions of time,
£(1),g(1), etc., re (—oo,00), taking values in a vector space ¥ that may be of finite or infinite
dimension. Given any one fe C, the function f': (0,0} — V defined by

fi(s)=fr—35), 0L 3s<0co (2)
is called the history of fup to time ¢ Different materials and different physical situations are
characterized by different constitutive assumptions which place limitations on the class C.
Quite frequently in mechanics one encounters a constitutive assumption asserting that the value
of a variable g(¢) at time ¢ is given by a mapping ~ T operating on the history up to ¢ of another
variable f

gly =TI (3}
Materials exhibiting such constitutive behavior are commonly referred to as materials with

memory.

In a series of papers starting in 1957 GREEN & RIVLIN proposed the use of hereditary
constitutive laws for the description of non-linear viscoelastic materials [1,2,3] (originally
developed by BOLTZMAN & VOLTERRA for the linear case [21,22]) as an alternative to
models using constitutive equations of the rate type [4]. A linearized version of GREEN &
RIVLIN’s theory, with less severe restrictions on the deformation histories, was established by

PIPKIN & RIVLIN [5,6,7].

Frequently, much can be said in a branch of physics from a constitutive law such as {3).
In practice, however, the entire history of the body can never be known. The interpretation of
the results of an experiment in terms of the theory of materials with memory can be justified
only if additional assumptions are made. One such assumnption wouid be that the history of the

system prior to the start of the experiment has no appreciable influence on its outcome. This

" In accordance with older usage {e.g., VOLTERRA {221), such a mapping is sometimes referred 1o as a
functional even though it is not necessarily scalar valued.
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physical assumption is realized if one supposes that the memory of the material fades in time.

This principle of fading memory can be stated as follows [8]:

Evenis which occurred in the distant past have less influence in determining the present response

than those which occurred in the recent pasi.

There is no unique way to render this intuitive principle of fading memery in mathemati-
cal terms. Loosely speaking, fading memory is achieved when the constitutive functional T is
continuocus in the space of histories X with respect to some "obliviating topology,” that poses a
less restrictive characterization of "closeness” for histories whose support lies in the distant past
than for histories with support lying in the recent past. Thus, the fading memory property is

dependent upon the topology chosen for the space of histories X.

A number of different obliviating topologies have been proposed in the past as appropriate
for the characterization of the fading memory property. A precise meaning for this concept was
first achieved by COLEMAN & NOLL {9,10,11,12} in a series of papers in the years 1960-63
and by WANG [13]. They assumed the space V¥ to be a normed space with norm ||, and
identified the space of histories X with the Lebesgue space L?({0,00), ¥,u), with the usual
norm

Ip
(4)

i, = [fsr(mwmg
4
Here, w denotes a non-irivial, positive Borel measure over [0.20), such that for every Borel
subset E of [0,oc) and ae R™

w(E + a) € pu(E) (5)

Such measures are termed obliviating measures [13].

The mathematical formalisms that have been proposed for the study of the fading
memory property are not restricted, by any means, to norm topologies. For instance, WANG
{14] in his second theory based his deveiopments on the compact convergence topology, while
PERZYNA [15] proposed the use of general metric topoiogies. For the problem at hand, how-

ever, the L7 setting proves the most convenient, and is considered in the sequel.
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Given a history f:10,c0)} — V¥ the following related histories are often of interest: The

"static continuation” of f by the amount a > 0 is defined to be the function R{a)f: [0,00) — ¥V

defined by
; £ 0Ls<€a )
R (s) = fls—a) a<s<oo (6)
while the a-section of fis the {unction L{a}f: [0,) — ¥ given by
[Lafl{s) = f(s+a), 0K s (7)

A constant history, f{s) = const., is commonly referred to as an equilibrium history. Equili-
brium histories f have the property that R(a)f= L{g)f= ffor every a >0, i.e., they are the

fixed points of the operators R{a) and L{a).

On physical grounds, the normed space of histories X with norm ||| is subject to three

elementary reguirements:
A) All equilibrium histories must be included in X.

B) For every history fe X, each one of its static continuations R{a)f, ¢ > 0 musi also be
in X. In other words, the domain of the semigroup R(a) is assumed to be all of X. More-
over, if the distance |if, — f,]| between two histories is zero, then the distance between their

static continuations R{a}f, and R{a}f, by any given amount g > { must aiso be zero.

C) For every history fe X, each one of its ag-sections L(a)}f, a > 0 must also belong to X.
In other words, the domain of the semigroup L(a) is assumed to be all of X,

In what follows, the space of histories X will be identified with the space L7([0,ec}, ¥, u),
for some obliviating measure w, and with the norm (4). This being the case, postulate (A) is
equivalent to the requirement that u{[0,=)) < .

1t was shown by COLEMAN & MIZEL [16] that postulates (A} and (B) force a funda-
mental distinction between the past, (s> 0), and the present, {s=0}: They imply that & must
have an atom at 0, and be absolutely continuous over {0,o0) with respect to the Lebesgue

measure. In other words, p admits the representation

o=, o, d (8)
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where u, is Lebesgue-absolutely continuous, 8 denotes the Dirac-deita measure with support
{0} and u,=>0 Moreover, this decomposition is unique, by the Lebesgue Decomposition
Theorem. Also, it follows from the Radon-Nikodym Theorem that there exists a Lebesgue-
measurable function &: (0,00} — R¥ such that

Jodu, = J k(s) as )
for all Borel sets Fe B. The influence function k is then termed the Radon-Nikodym deriva-
tive of u, with respect to the Lebesgue measure. Postulates (A) and (B) also require that k(s)
must decay to 0 at least as 0(1/s) as s — 0 [16]. This in turn implies that u is an obliviating
measure that has the fading memory property in the sense of WANG. Moreover, postulate (C)
requires that k(s) cannot decay to zero too fast as s — oo, either. In fact, it follows [16] that,
in order for a-sections to be always defined, the rate of decay of k(s) has to be at most
exponential. Finally, under assumptions (A), (B) and (C), it can be shown [16] that the fami-
lies operators R{a) and L(a), ¢>0, form in fact two strongly continuous semigroups of

bounded operators in X.

As a consequence of the representation (8) of the influence measure k., the norm on X

now takes the form

/
il =[(p.ﬂ|f<o)!)ﬂ+ Hr,éld“’ (10)

where f, signifies the restriction of fto (0,o), or "past history,"” and

l/p

=3 }/P
- tf 1£.()12 k(5) m} (11
) |

Thus, the space of histories X can be expressed, algebraically and topologically, as the direct

it 11, = {faff,(S)lpdp,(s)

sum X = V+ X, of V and the space X, of past histories. For a material with the fading
memory property, if u, is chosen to be 0, the continuity of T requires that it be defined solely
over X,, and the material does not exhibit instantaneous response. On the other hand, if u, is
chosen to be the trivial measure, the continuity of T requires that it be defined over V only,

and the material does not exhibit memory effects.




3. An Existence and Uniqueness Theorem

The nonlinear theory of semigroups has experienced considerable progress over the past
recent yvears, and has been successfully applied to a variety of problems in physics and engineer-
ing [20,26,27]. At present, it constitutes an extensive subject in itself as well as in its applica-
tions. To the physicist and the engineer, the main interest in semigroup theory lies in its appii-
cation to the study of linear and nonlinear initial value problems. This section presents a
detailed example in which nonlinear semigroup theory is applied to the problem of existence

and uniqueness for evolutionary equations arising in inelastic materials with memory effects.

The results obtained here are a generalization of a linear version obtained by NAYVARRO
[17}]. NAVARRO's Theorem is concerned with linear thermoelastic materials with memory.
Suitable restrictions on the {linear} constitutive laws of the material are imposed that insure
compliance with the conditions of the Hille-Yosida Theorem and thus result in existence and

uniqueness of the solution.

In the present approach, general nonlinear hereditary laws are considered. Following
COLEMAN & NOLL, the fading memory property is formulated in terms of an obliviating
measure, in the manner outlined in the preceding section. Suitable restrictions on this measure
and on the constitutive mapping are discussed that result in a well-posed initial value problem.
For instance, a monotonicity condition is proposed for the hereditary constitutive mapping that

generalizes the concept of normality of materials with instantaneous inelastic response.

We proceed to formulate the problem. It is supposed that the body occupies a bounded
region Q in R" with smooth boundary 9, and that the reference configuration is stress-free.
The symbols v, o and €7 will be used to signify the velocity, siress and inelastic strain rate
fields over £, respectively. Infinitesimal deformations are assumed throughout. Then, the
equations of motion for the body can be expressed

1
P (12)
DTy~ ")

ﬁ
dr
do
dr
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where p > 0 represents the mass density and 2 the elastic compliances of the material, which
are assumed to be symmetric and positive definite. For simplicity, the boundary conditions are
assumed to be homegeneous and of the Dirichlet type.

It is also assumed that the inelasticity of the material exhibits memory effects so that the
inelastic strain rates €¥{w,!) at every point we {} and time r are related to the stress history at
the same point, say o {w,s), 0 € 5 < oo, through a nonlinear mapping

D-€P(w,t) = To'(w) (13

The unknowns of the problem are, therefore, the velocity, stress and stress history flelds,
v(r), o{s) and o', respectively, for all times ¢ > 0. The evolution of the system is assumed to
take place in the Hilbert space H = H,xH, xH,, where H, and H. are the velocity and stress

field spaces which are taken to coincide with the Lebesgue space L*({}) with the inner products
<vl,v2>Humfpv1-v2 dw (14)
()
and
<cr;,c'2>Hrmf0'1-Cvgdw (15}
0

where C= D~'. On the other hand, H, denotes the space of past history stress fields, which is

taken to coincide with the Lebesgue space L%([0,00), H.,u), with the inner product

<AL Ay = [ <AL AN >y dut (5) (16)
' 9
where u, is an obliviating measure, with the properties discussed in the preceding section. This

in turn endows H with the following inner product

¥ ¥2
<o o> = <vi,vi>y + <o, 0> 5+ <ALAD (17
Ayl (A

it is noted that in the present formulation the space H. plays the role of the space V in the
introduction. Furthermore, in the norm associated with (17), the term lio iy concerns the
instantaneous values of the stress field and is analogous to the first term in the right hand side

of {10}, while the term §EAHH‘\ is associated with the past history of the stress field and there-




fore corresponds to the norm (11).

The pointwise application of the mapping T in eq. (13) (modulo null sets) defines a map-
ping from H, into itseil that we shall denote by T. With this notation, the equations of motion
(12) can be rephrased

L) = Lven
dt o]

d (18)
gl =DVv()—To’

dt

For these equations to be complete, they have to be supplemented with an evolutionary
equation for o', Clearly, as time goes on, the history o’ shifts to the right, and the current
values of the stress fleld o are fed in from the left into ¢’. The infinitesimal generator for this
type of evolution is readily found to be [18]

4,

dt

(w.5) = ~ D w.s) (19)
0s

along with the compatibility condition

o' () =o(D (20)

The partial derivative in the right hand side of (19) is taken in the distributional sense.

Egs. (18), (19) and (20}, together with initial conditions

V{O) = Vg
o (0) = o Q1
o_:-D =gt

define and initial value problem in H. This initial vajue problem can be rephrased in a more

compact fashion by introducing the notation

y(1) 0 v 0 v
x{(1) = ol ; —A=1DV 0 —T1: Xy = {0¢ (22)
ol 9 0
o o -2 v
9

With this notation, egs. (183, (19) and (21) can be expressed as

x(+Ax( =0 ; x(0)=x (233

The question now arises of whether —A generates a semigroup of coniractions S{(1) in H. To
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tackle this problem, we postulate the following additional restrictions on the constitutive map-
ping T
A) T is defined in all of A, and is Lipschitz continuous.

B) Forevery oy, oz e H_ and A, A; e H,,

<0‘1—CTE,TA1“TA3>HT= <0‘]‘“0‘2,D‘(€.1p— éf’>HT= <G’}—0'2,€.§D”" E.QD>L32 0
C) The influence function k(s) for w, is assumed to be absolutely continuous and mono-

tonically decreasing.

Example 1. As an exampie of a material complying with postulates (A), (B) and (C),
consider one with instantaneous response only, of the linear viscoplastic type. In this case, a
closed convex set C, or functional elastic domain is assumed to exist in /,, such that the ine-

lastic strain rate field is given by an associated flow rule

Dé’'=—~(I-Plo (24)

1
A
where X is a viscosity parameter and Pc denotes the (closest point) projection onto C. Clearly,
the mapping T is defined in all of H, and is Lipschitz continuous [23], so that postulate (A) is

satisfied. On the other hand, the monotonicity condition (B) now takes the form

<G’1—02,D‘(E‘fp*€'f)>ﬁf= <0‘]”‘"’0‘2,(1—‘P()0"1"(I—Pc)0'2>hrrw

L
A
%«pm + (1= Pla,— Peos— I~ Pay, (I-PPo— (I— Pday>, =
—i—<Pco'1 — Peoy, (I-Po;— U= Poo>y + —i—i!(l —Pdoy~ (I~ Po 0’3“5;7 =0
which is always greater or equal to zero [23] and postulate (B) is also satisfied. It is thus seen
that the normality rule of materials with an instantaneous viscoplastic response results in mono-

tonicity in the sense of postulate (B). On these grounds, postulate (B) can be regarded as a

generalization of the concept of normality.

Remark. It is noted that the domain D{A) of the operator A is H'= H!xH!xH},
where H) and H! and H} signify the Sobolev spaces associated with H,, H, and H, respec-

tively, H. being further restricted to those velocity fields satisfying the homogeneous boundary

3A

P € H,}, where the

conditions in the usual trace sense. In particular, Hi = {Ae Hy st
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partial derivative is taken in the distributional sense. We recall that, by the Sobolev embedding
Lemma {19}, Hl is a subset of the set of continuous functions C([0,20), H.), and, hence,

point values of the A's in D{A), as in eq. {20), are well-defined.
Theorem 1. The operator — A generates a semigroup of contractions in H.

Proof. It is shown in this proof that the operator A is maximal monotene. Then, it fol-

lows from a theorem by KOMURA [24] that — A generates a semigroup of contractions in

D(A) = H. We start by splitting the operator A into two parts

1
0 pv 0 80 0
~A=1DV 0 0 I1+00 ~-TI=—-(W+TD (25)
9 00 0
0 - —
0 as

Here, the operator W is linear and densely defined, with D(W) = D(A) = H'. Next we show
that it is also monotene. To this end, consider x;, Xy € D(W). Then

<W‘X1 - WX}. X - X2> b

— <VAo;— o)), ¥~ V2>Hu"‘ <D'V(V] - Vg) L, — 02>Hr + <“§?(A1 - Az),f\] - A;> Hy
Integrating by parts and making use of {16)

<WX]"‘ WX;_,Xl— x> =

<oy O'Q,V(Vl'— v2)>L2— <V(v1— Vz),ﬂ"]‘* 0'2>L2+ <§;(A;"‘ Az),Ai— A2>HA=

HA](S) - Az(S)iE]zf_ k(S) ds

& e

<L) = A, AL = AfD)> y k(shds = 2 [
0 ds v 2 0

Integrating by parts with respect to s

<Wx — Wxa, x— x3> = —;—k(O) Hoy— oalll — %* HAL(s) — AU 1 k(s)ds = 0
: ) :

which is always greater than 0 by virtue of posiulate (C). Moreover, W clearly defines the

v{r) vy
o] =S5,

. c¥s~ 1, s>t
o'ls) = ols), 0<s<rt

semigroup

Sw( 1) Xg == (26)
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where Sw{r) denoctes the unitary group generated by the linear elasticity wave operator and
o '(s) merely records the stress trajectory defined by Sw{(¢). Clearly, the stress histories o '{s)
defined in (26) belong to H', for every > 0, due to the fact that the trajectory o () deter-
mined by Sw(1) is differentiable almost everywhere [20]. Moreover, the semigroup (26} is a
C, semigroup of bounded operators, due to the €, character and boundedness of Sy{¢} and of
the right shift in H,, {16,18]. In other words, the operator W generates a hnear C, semigroup

of bounded operatorss, and, therefore, it is maximal monotone by the Hille-Yosida Theorem.

On the other hand, T is monotone, Lipschitz continuous and its domain, D{T) = H, con-
tains the domain of W, H', by postulates (A) and (B). Hence, by a result by CRANDALL &
PAZY [25], the operator W + T is maximal monotone, and —A = — (W + T) generates a

semigroup of contractions in H, by KOMURA’s Theorem [24]. ////
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