
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Representation Learning on Brain Data

Permalink
https://escholarship.org/uc/item/4xp815bm

Author
Lin, Sikun

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xp815bm
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Representation Learning on Brain Data

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Sikun Lin

Committee in charge:

Professor Ambuj K. Singh, Chair
Professor Thomas C. Sprague
Professor Xifeng Yan

December 2022

The Dissertation of Sikun Lin is approved.

Professor Thomas C. Sprague

Professor Xifeng Yan

Professor Ambuj K. Singh, Committee Chair

November 2022

Representation Learning on Brain Data

Copyright © 2022

by

Sikun Lin

iii

To my mom and dad,

you never cease to support me in exploring a bigger world

iv

Acknowledgements

My Ph.D. is an exciting journey, and it would not have been possible without the help,

kindness, and support from many people. First and foremost, I would like to express my

gratitude to my research advisor Prof. Ambuj K. Singh, for being the greatest mentor.

I am incredibly fortunate to be in his lab and have the chance to explore intriguing

research problems. He always trusts me, gives me the right amount of freedom, and

supports the directions I am passionate about, raising critical questions and providing

encouragement and invaluable feedback along the way. Brainstorming potential research

problems with him is the highlight of my years here. Ambuj also taught me how to

be a better researcher, writer, and mentor. I still vividly remember how he conveyed

Dijkstra’s three pieces of research advice and introduced us The Elements of Style. I

cannot thank Ambuj enough for all the things I learned from him.

I am extremely grateful to Prof. Thomas C. Sprague, who provided me with many

useful ideas, constructive feedback, and insights from a neuroscience perspective, and

introduced me to useful literature and datasets. I would also like to thank Prof. Xifeng

Yan for being part of my committee, contributing to the improvement of this work, and

providing mentorships and valuable comments at each of my doctoral milestones.

I also feel blessed to be at UC, Santa Barbara, where interdisciplinary collaborations

are prevalent and highly encouraged. Many CPCN seminars held by Psychological &

Brain Sciences provided me with fascinating views to understand human brains and

behaviors, as well as new ways to think of my own research.

During my Ph.D. studies, I was fortunate to have collaborated with Hongyuan You,

Ali Borji, Shuyun Tang, Wei Ye, and Scott Grafton—each of them is an excellent re-

searcher. I was also honored to work with a group of talented undergraduate students

on their research, who taught me how to be a better mentor, communicator, and project

v

manager: Priyanka, Sid, Shuyun, Connor, Marrianne, Joseph, Jennifer, Ezequiel, and

other SEEDS, ERSP, and data science capstone students. I also had a fantastic group

of labmates: Victor, Sourav, Arlei, Haraldur, Alex, Rachel, Omid, Furkan, Yuning, Zexi,

Mert, Sean, Kha-Dinh, Saurabh, Ashley, Zhao, Richika, and Christos; their friendship

puts more smiles and laughter into my life. Thanks to Tim, Benji, Karen, and Mar-

itza for their support as UCSB CS staff. My appreciation also goes out to my family

and friends for their encouragement and support throughout my studies, especially when

uniting with some of them is not an option during the COVID-19 pandemic.

Lastly, I appreciate the unexpected global pandemic and would also like to thank a

YouTube video themed on near-death-experience and afterlife legends. Like many others,

I was experiencing an existential crisis for most of my twenties. Even Viktor Frankl’s

“Man’s Search for Meaning” couldn’t help me. The pandemic and the video woke me:

I can just “to be” and “to experience”. I started to take a more positive stance toward

life and research, exploring new things that excite me—there are so many questions one

can ask about the brain and AI, and I am so lucky to be one of the people to work on

some of the answers!

vi

Curriculum Vitæ
Sikun Lin

Education

2022 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2017 M.Phil. in Computer Science, Hong Kong University of Science and
Technology.

2015 B.Sc. in Physics and Mathematics, with Humanity and Social Sci-
ence minors, Hong Kong University of Science and Technology.

Publications

Research

• Sikun Lin∗, and Ali Borji∗. “SplitMixer: Fat Trimmed From MLP-like Models.”
Submitted (2022).

• Sikun Lin, Thomas C. Sprague, Ambuj K. Singh. “Redundancy and dependency
in brain activities.” In 4th Shared Visual Representations in Human Machine
Intelligence (NeurIPS 2022 SVRHM workshop).

• Sikun Lin, Thomas C. Sprague, Ambuj K. Singh. “Mind Reader: Reconstructing
complex images from brain activities.” In Proceedings of 36th Conference on Neural
Information Processing Systems (NeurIPS 2022).

• Sikun Lin, Shuyun Tang, Ambuj K. Singh. “Deep Representations for Time-
varying Brain Datasets.” In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining p. 999–1009 (KDD 2022).

• Hongyuan You, Sikun Lin, Ambuj K. Singh. “Learning Interpretable Models for
Couple Networks Under Domain Constraints.” In Proceedings of the AAAI Confer-
ence on Artificial Intelligence. Vol. 35, No. 12, pp. 10727-10736 (AAAI 2021).

• Wei Ye, Sikun Lin, Ambuj K. Singh. “Relational Neighbor Networks for Semi-
supervised Classification.” In preparation (2020).

• Ali Borji, and Sikun Lin. “White Noise Analysis of Neural Networks.” In Inter-
national Conference on Learning Representations (ICLR 2020).

• Sikun Lin, and Pan Hui. “Where’s your focus: Personalized attention.” HKUST
Masters Thesis (2017).

• Wenxiao Zhang, Sikun Lin, Farshid Hassani Bijarbooneh, Hao-Fei Cheng, Tristan
Braud, Pengyuan Zhou, Lik-Hang Lee, and Pan Hui. “Edgexar: A 6-dof cam-
era multi-target interaction framework for mar with user-friendly latency compen-
sation.” Proceedings of the ACM on Human-Computer Interaction 6, no. EICS
(2022): 1-24.

vii

• Wenxiao Zhang, Sikun Lin, Farshid Hassani Bijarbooneh, Hao Fei Cheng, and
Pan Hui. “Cloudar: A cloud-based framework for mobile augmented reality.” In
Proceedings of the on Thematic Workshops of ACM Multimedia 2017, pp. 194-200.
2017.

• Sikun Lin, Hao Fei Cheng, Weikai Li, Zhanpeng Huang, Pan Hui, and Christoph
Peylo.“Ubii: Physical world interaction through augmented reality.” IEEE Trans-
actions on Mobile Computing 16, no. 3 (2016): 872-885.

Education

• Bernard Hart, Titipat Achakulvisut, Ayoade Adeyemi, Sikun Lin et al. “Neuro-
match Academy: a 3-week, online summer school in computational neuroscience.”
Journal of Open Source Education 5, no. 49 (2022).

viii

Abstract

Representation Learning on Brain Data

by

Sikun Lin

Artificial intelligence and machine learning (AI/ML) have been extremely successful

in predicting, optimizing, and controlling the behavior of complex interacting systems.

Robustness and explainability of existing AI/ML methods, however, remain big chal-

lenges, and clearly new approaches are needed. The human brain motivated the early

development of deep learning, and neuroscientific concepts have contributed to the pro-

found success of deep learning algorithms across many areas. The next leap in AI/ML

may again come from a deeper understanding of brain architectures and processes—this

dissertation focuses on deepening this understanding with machine learning models.

We first discuss a convex optimization framework to analyze and integrate multimodal

brain data to infer brain subnetworks and understand heterogeneity across tasks. Next,

we propose a novel deep learning model to learn representations of multimodal and

dynamic brain signals. Although these models are mostly considered black-box, we can

characterize the input brain signals with attribution methods, study brain organizational

structures, and unveil the heterogeneity among brain regions, tasks, and individuals. We

then demonstrate that semantic representation is an essential piece in the human visual

system. With added text modality, we are able to reconstruct complex high-fidelity

imagery from input brain signals and infer brain activities from visual stimuli. Further

studies are then presented to explore the redundancy and dependency in these brain

signals related to visual information processing. Lastly, we apply neuroscience tools

and insights to deep learning models, gaining a deeper understanding of the latter and

ix

developing more computation- and memory-efficient models. These works demonstrate

that advances and challenges in neuroscience and AI/ML benefit each other and drive

both fields forward.

0.1 Permissions and Attributions

The majority of the materials described in this dissertation have either been published

by the author of the dissertation or are currently in the process of submission. The author

has made principal contributions to all stages of the published works as described below.

1. The contents of chapter chapter 2 have been previously published as:

You, Hongyuan, Sikun Lin, Ambuj K. Singh. ”Learning Interpretable Models for

Coupled Networks Under Domain Constraints.” In Proceedings of the AAAI Con-

ference on Artificial Intelligence, vol. 35, no. 12, pp. 10727-10736. 2021.

2. The contents of chapter chapter 3 have been previously published as:

Sikun Lin, Shuyun Tang, Ambuj K. Singh. “Deep Representations for Time-varying

Brain Datasets.” In Proceedings of the 28th ACM SIGKDD Conference on Knowl-

edge Discovery and Data Mining p. 999–1009. 2022.

3. Portion of chapter chapter 4 is accepted and under publication at:

Sikun Lin, Thomas C. Sprague, Ambuj K. Singh. “Mind Reader: Reconstructing

complex images from brain activities.” In Proceedings of 36th Conference on Neural

Information Processing Systems. 2022.

4. The contents of chapter chapter 5 is accepted and under publication at:

Sikun Lin, Thomas C. Sprague, Ambuj K. Singh. “Redundancy and dependency

in brain activities.” In 4th Shared Visual Representations in Human Machine

Intelligence (NeurIPS 2022 SVRHM workshop).

x

5. Portion of chapter chapter 6 have been previously published as:

Ali Borji and Sikun Lin. “White Noise Analysis of Neural Networks.” In Interna-

tional Conference on Learning Representations. 2020,

and another portion is under submission, but publicly available at Arxiv, as:

Sikun Lin and Ali Borji. “SplitMixer: Fat Trimmed From MLP-like Models.”

xi

Contents

Curriculum Vitae vii

Abstract ix
0.1 Permissions and Attributions . x

List of Figures xv

List of Tables xxviii

1 Introduction 1

2 Modeling Coupled Networks: Structural Connectivity and Static Func-
tional Connectivity 6
2.1 Introduction . 7
2.2 Constrained Multiple-Output Regression Formulation 9

2.2.1 Multiple-output Regression Problem 9
2.2.2 Relaxing Gaussian Assumptions 11
2.2.3 Imposing Domain Constraints . 13

2.3 Alternating Minimization Solution . 14
2.4 Experiments on Synthetic and HCP Datasets 19

2.4.1 Application to Simulated Data . 20
2.4.2 Application to Human Connectome Data 24

2.5 Conclusion . 31

3 Modeling through Graph Neural Networks: Structural Connectivity
and Dynamic fMRI 32
3.1 Introduction . 33
3.2 Spatial-Temporal GNN for Learning

Multi-Modality Brain Representation . 35
3.2.1 Preliminary . 35
3.2.2 Method . 36
3.2.3 Experiments . 42

xii

3.3 Graph Attribution and Interpretations 54
3.3.1 Attribution with IG (Integrated Gradients) 54
3.3.2 Experiments . 55

3.4 Conclusion . 64

4 Going Beyond Brain Modalities: Reconstructing Observed Complex
Images from Brain Activities 65
4.1 Incorporating Additional Text Modality 66

4.1.1 CLIP Space as the Intermediary 69
4.2 Brain Decoding . 71

4.2.1 Method . 71
4.2.2 Results . 78

4.3 Brain Encoding and Encoding-Decoding Cycle 93
4.3.1 Brain Encoding . 93
4.3.2 Complete Cycle . 95

4.4 Discussions . 95
4.4.1 Other Decoding Attempt . 95
4.4.2 Limitations and Future Work . 96
4.4.3 Using Pre-trained Models . 99

4.5 Conclusion . 102

5 Brain Activity Redundancies and Low-dimensional Representations 103
5.1 Dataset and Models . 104
5.2 Findings . 106

5.2.1 Brain Signals Contain High-level Redundancy 106
5.2.2 Autoencoders Effectively “Denoise” Brain Signals 109
5.2.3 Brain Activity Resides in the Semantic Space—the Hopfieldian View110
5.2.4 Masking and Attribution Reveal Voxel and Region Importance . . 111

5.3 Discussions and Conclusion . 122

6 Neuroscience-inspired DNN modeling 124
6.1 White Noise Analysis of Neural Networks 125

6.1.1 Introduction . 125
6.1.2 Related Works and Concepts . 127
6.1.3 Applications to Deep Learning Models 131
6.1.4 Discussions and Conclusion . 152

6.2 Sparsifying DNNs: Fat-Trimming MLP-like Models 154
6.2.1 Introduction . 155
6.2.2 SplitMixer . 156
6.2.3 Experiments and Results . 163
6.2.4 Related Work . 173
6.2.5 Discussions and Conclusion . 175

xiii

7 Conclusion and Contributions 178

A 182
A.1 Tasks Descriptions of the CRASH dataset 182
A.2 Experiment setting details for Chapter 4 183

Bibliography 185

xiv

List of Figures

2.1 (a) ROC curve for Ω estimation, (b) ROC curve for B estimation. Ben-
efiting from domain constraints, CC-MRCE obtains better ROC curves
when uncovering nonzero entries of B and Ω. 22

2.2 Visualizations of the B matrix for seven tasks: (a) EMOTION, (b)
LANGUAGE, (c) MOTOR, (d) GAMBLING, (e) SOCIAL, (f) RELA-
TIONAL, (g) WM. For each task, each fold in the 10-fold cross-validation
may lead to different models. Here, we only show those entries that are
nonzero more than five times. 25

2.3 Visualization of the edges contributing to all seven tasks. Node size de-
notes the degree, and edge width denotes its importance, as in the mapping
B. 25

2.4 Task-specific visualizations for high-contributing structural edges. Assum-
ing that the maximum number of nonzero entries of a row in B is m, we
only show the edges corresponding to rows containing more than m/2
nonzero entries. 29

2.5 Entry-wise and edge-wise overlap ratio for the mapping of seven tasks. (a)
considers entry-wise overlap of predicted B of different tasks. The value
on position (task i, task j) is the entry-wise IoU (Intersection over Union)
of task i’s B and task j’s B, i.e. number of nonzero entries in Bi ∩ Bj

over number of nonzero entries in Bi ∪ Bj. (b) considers the SC edges
responsible for different tasks. An edge is considered to exist when its
corresponding row in B has nonzero entries. The value in position (task
i, task j) is the number of common SC edges of task i and task j over the
number of SC edges of task j. 30

xv

3.1 The proposed ReBraiD model for integrating brain structure and dynamics
(the architecture shown is for classification). For each batch with batch
size B, input X has a dimension of (B, 1, N, T), and A,Aadp both have the
dimension (B,N,N). Note: axis order follows PyTorch conventions. The
dimension at the second X index is the expanded feature dimension. The
encoder (green part) encodes temporal and spatial information alternately,
producing a latent representation in (B, dlatent, N, 1). These embeddings
are followed by linear layers for pooling and classification. The final output
has a dimension of (B,C). 36

3.2 Functional connectivities (FCs) among N brain regions, where each FC ∈
RN×N . The value at FCij is calculated as the Pearson correlation coeffi-
cient between signals of brain region i and region j. The figure shows 6
FCs calculated from 6 consecutive sliding windows within the same fMRI
session, with signal window length being 30 and sliding stride being 30.
From the figure, we can clearly tell that FCs are highly dynamic. 37

3.3 Comparison of strided non-causal TCN (left) and dilated causal TCN
(right). For a causal TCN, the causal aspect is achieved through padding
(kernel size−1)×dilation number of zeros to the layer’s input. The result-
ing y always has the same length as input x, in which yτ only depends on
inputs xt≤τ . We can view strided non-causal TCN as the rightmost node
of a dilated causal TCN. 38

3.4 Inner cluster smoothing toy example. 42
3.5 Ablation studies on different input lengths. 44
3.6 Learned latent adaptive adjacency matrices. (a) Ai adp of 3 randomly sam-

pled inputs during the DOT task. (b) Ai adp of 3 consecutive inputs from a
same session during the DOT task. (c) column averages of task-averaged
Aadp for resting state, VWM, DYN, DOT, MOD, PVT. (d) left two: t-
SNE of X(node-2, 156)Θadp in six tasks of one subject; right two: t-SNE
of X(node-155, 156)Θadp during the resting state of two subjects (multiple
sessions are aggregated). 46

3.7 Confusion matrices of: (a) ReBraiD (our proposed model), (b) model
with coarsened graph (setting (viii)), (c) Graph Transformer (best graph
baseline). Tasks are 1-Rest, 2-VWM, 3-DYN, 4-DOT, 5-MOD, 6-PVT.
Misclassification pairs clustered at the first three tasks (resting, VWM,
DYN) and the latter three (DOT, MOD, PVT). Shown confusion ma-
trices are from models trained on length-256 inputs. We note that these
misclassification pairs may differ for models trained on other input lengths
(like 128-frame, etc.). 47

3.8 Choosing the number of GNN to TCN layer ratio for different input
lengths. In most cases, two TCN layers per GNN layer results in the
best model performance in terms of F1. 50

xvi

3.9 (a) adding inner cluster smoothing or input-dependent adaptive adjacency
matrix makes the model more stable across various learning rates (results
shown are from length-16 inputs). (b) Validation loss v.s. training epochs.
Input length is 256, and four smoothing modules are used. Legends are the
soft-assignment cluster numbers of the four smoothing modules. Our other
experiments use decreasing cluster numbers that halved at each module,
corresponding to the 100-50-25-12 choice here. 52

3.10 (a) Temporal importance sanity check of IG results on two pieces of inputs
with a large overlap period. Attribution maps are offset-aligned. (b)
AttrX distributions across 17 brain subnetworks (defined as in [1]) for
VWM. 57

3.11 Column averages of task-averaged AttrA (mapped into 34 subnetworks
defined by the 17-network parcellation with left, right hemispheres). The
top row is obtained from real SC-induced A and the bottom row is ob-
tained from random SC-induced Arand. Attributions are normalized to
[0, 1]. Tasks are: Rest, VWM, DYN, DOT, MOD, PVT from left to right. 59

3.12 ROI attributions from AttrA and AttrX . (Task order is the same as
fig. 3.11). Edge color and width are based on task-averaged AttrA ∈
R200×200, and node color and size are based on task and temporal-averaged
AttrX ∈ R200. For visualization, only edges with highest attributions are
shown (the resulting sparsity reduces to 0.009 from 0.196). 59

3.13 34 subnetworks’ AttrX distributions of 3 subjects performing the VWM
task (left) and the MOD task (right). Outliers that go beyond [Q1 −
1.5 IQR, Q3 + 1.5 IQR] are omitted. VWM has a much smaller average
attribution variance than MOD. 61

3.14 (a) A typical adjacency matrix for simulated graph signals. (b) Task
averaged AttrX of simulation (i). Attribution values are normalized. (c)
Task averaged Aadp of simulation (i) and its entry averages per column. (d)
Task averaged Aadp and task averaged AttrA of simulation (ii). Attribution
values are normalized. 62

4.1 Category-wise AUC-ROC of multi-label classifiers that predicts from four
different signal/embedding sources. The first 80 categories are “things
categories” and the last 91 are “stuff categories” in COCO. 68

4.2 Sample-wise AUC-ROC of multi-label classifiers that predicts from five
different signal/embedding sources as the number of samples in stimulus
images increases. 70

xvii

4.3 The pipeline for reconstructing seen images from fMRI signals. (a) details
different components, from collected data to the reconstructed image. The
pipeline is trained in two stages: during the first stage, mapping models
fmi, fmc are trained to encode fMRI activities into the CLIP embedding
space. In the second stage, conditional generator G and contrastive dis-
criminator D are finetuned while both fmi, fmc are kept frozen. (b) shows
the image generation process once models are trained. 72

4.4 Image caption screening through CLIP encoders. For this sample, thresh-
old is put at half of the largest probability: 0.5×0.519. Therefore, captions
(2) and (3) of the image are kept. 73

4.5 CLIP vector visualizations and thresholding. (a) before (left column) v.s.
after (right column) thresholding at ±1.5 to remove outliers. There are
systematic differences between CLIP image embeddings and text
embeddings; the outliers typically occur at the same positions for each
modality. (b) the caption screening process can make the kept caption
embeddings more aligned. (b)1 and (b)2 are from the same sample, only
difference is the screening process. (c) (thresholded) embeddings of the
same image with different augmentations; embeddings of same image’s
different screened captions. All embeddings are shown the first 200 values
for visualization purposes. 75

4.6 fMRI activities responding to two images, each repeating three times. The
figure only shows the activities of the first 200 voxels for visualization
purposes. 79

4.7 Embeddings mapped from fMRI signals overlay on ground truth CLIP
embeddings. (a) shows the results of image embedding mapping model
fmi; (b) shows the results of caption embedding mapping model fmc. For
visualization purposes, the figures only show the first 200 values of the
length-512 vectors. 81

4.8 Mismatches are semantically close to the ground truth. Figure shows ex-
amples of incorrect matches j (red frame) in a batch of 300 in the validation
set. For each ground truth image i (green frame), we pass it through CLIP

encoder to get h(i) and through fmc to get h(i)′. The shown incorrect ones
are those images with h(j)′, j ̸= i that is closer to h(i) than h(i)′. 81

4.9 Images generated by our pipeline given input fMRI signals. 87
4.10 Comparisons between previous works and our pipeline. We are using the

recent NSD dataset that involves more complex scenes. However, for com-
parison purposes, we choose four similar images from NSD, each containing
a single object ”plane”, and show our reconstructions from fMRI signals
in fig. 4.10b . 88

4.11 Images generated in microstimulation experiments. In (a)(b), voxel ac-
tivities at multiple task ROIs are increased before passed into the pipeline.
In (c), voxel activities at various visual processing stages are silenced. . . 89

xviii

4.12 fMRI-mapped embeddings in the CLIP space (h′). Each figure contains
(i) an embedding mapped from a regular fMRI signal, (ii) an embedding
mapped from the fMRI signals with voxel activities in earlier-visual ROIs
(left)/ intermediate ROIs (middle) / higher-level ROIs (right) set to zero,
(iii) an embedding mapped from the fMRI signal with voxels at random
positions (same number of voxels as (ii)) set to zero. Setting activities
of the earlier-visual cortex to zero lowers overall embedding vector values,
while setting activities of higher-level ROIs has the opposite effect. We can
also perform the reverse masking: only keep voxel activities at earlier-level
visual/ intermediate / higher-level ROIs, then the effects are reversed. . . 89

4.13 Generated images conditioned on fMRI-mapped CLIP image embedding
h′
img, fMRI-mapped CLIP text embedding h′

txt, or both. 91
4.14 More examples showcasing model successes and failures. For each two-row

group, the top row shows the ground truth images, and the bottom row
shows the reconstructions. 92

4.15 Brain encoding results. (a) ground truth and prediction of two samples.
Only the first 1000 voxels are shown for visualization purposes. (b) Voxel-
wise performance (in terms of the correlation coefficient between ground
truth and prediction) v.s. voxel noise ceiling. (c) Prediction performance
on a flatmap, redder regions have more accurate predictions (accounted
for the noise ceiling). Note we only perform prediction on the nsdgeneral
ROI, thus the boundary. 94

4.16 Encoding-decoding cycle. The top row shows image stimuli; the second
row shows predicted fMRI activities (with corresponding ground truth)
by the encoding pipeline (only 300 voxels are shown for visualization pur-
poses); the third row shows reconstructed images from predicted fMRI
signals. 95

4.17 Generated images from interpolation of two fMRI scans. Step number is
set to 10. 97

4.18 Image generated by Lafite pre-trained on the CC3M dataset without fine-
tuning on COCO or NSD. Ground truth stimuli (top row) and generated
images conditioned on fMRI (bottom row). 99

4.19 Multi-label classifier (defined in section 4.1.1)’s average sample-wise AUC-
ROC changes when masking input fMRI at different ratios. For a masked
voxel, we set its value to 0. 100

xix

5.1 Redundancies observed in the fMRI betas in terms of (a) voxel activity
reconstruction, and (b) stimuli category classification. For reconstruction
with an autoencoder, we gradually increase the masking ratio of the inputs.
Two masking schemes are tested: randomly choosing masked voxels and
consecutively masking voxels. With random masking, the reconstruction
performance stays around the same level up to masking 80%-90% of the
voxels. The right plot of (a) shows the min, mean, and max reconstruction
performance of the two masking schemes. For classification results (b), the
left plot shows sample-wise AUC-ROC as we increase the masking ratio:
the significant drop also occurs after 80%-90%; the right plot shows the
category-wise AUC-ROC with and without masking voxels in the floc-faces
and floc-bodies ROIs, which turned out to be extremely close to each other,
not affecting person category (index 0)’s performance. 107

5.2 Accumulated explained variance v.s. the number of principal components
(PCs) used. The trend of the reconstructed signal is close to that of the
latent representation. 108

5.3 The left plot shows the reconstruction correlation coefficient (cc) together
with the voxel-wise noise ceiling (nc) for 1000 voxels. cc is calculated over
the validation set of 4035 samples and aligns well with nc (cc and nc have
a 0.67 correlation with p-value 0). The right plot shows cc − nc values
on a flatmap. Higher-order regions typically have larger values (redder),
meaning the reconstruction is better for those regions. 109

5.4 Interpolating the latent embedding and generating reconstructions from
the interpolations. The top row shows the generated signals for 300 voxels,
and the bottom row shows the classification logits for 171 categories when
passing the generated signal through the trained multi-label classifier. Val-
ues in both plots are normalized to 0-1. Interpolations are performed be-
tween three pairs of embeddings: (left) between two fMRIs corresponding
to the same image; (middle) between two fMRIs corresponding to different
images, but with exactly the same set of object categories; (right) between
two fMRIs corresponding to two images having completely two different
sets of object categories. 110

5.5 Latent representations of interpolated fMRI signals between two fMRI
samples, pairs in three samples, and pairs in four samples. The interpola-
tions occupy a much lower dimensional space: for 1000 latent representa-
tions of interpolations between two fMRI signals, only 2 PCs are needed to
explain 0.998 variance, whereas 56 PCs are required to explain the same
variance for 1000 unrelated fMRI signal embeddings. This indicates tran-
sitions between different fMRIs are cheap inside this learned latent space.
For visualization, the first three PCs of the latent representations (> 0.999
variance explained for each interpolation pair with step number = 1000)
are used as the coordinates. 111

xx

5.6 Masked fMRI embeddings. Masking different ROIs results in different
distances between the masked and original signal embeddings. The re-
lationship between these distances is consistent across samples (all pairs
have a t-test p-value < 1e-50 except for the V2 > V1 pair, which has a
p-value of 0.008): for example, masking floc-faces voxels always results in
a closer embedding to the original signal to masking floc-bodies voxels.
These distance relationships hold across subjects. 112

5.7 Reconstruction for different categories (a) From left to right: (1) cate-
gories exhibit groupings, (2) unmasked order is very different compared
with masked ones, (3) the orders are consistent for categories in differ-
ent groups for masked inputs, and (4) the orders can be inconsistent for
categories within the same group (as in having a close performance under
the 10%-masking ratio). (b) fMRI signals triggered by images containing
person perform better (redder) at the right hemisphere’s low to mid-level
visual regions than those that do not contain person. In addition, when
calculating the correlation between cc and nc (refer to fig. 5.3), person
ones are larger than non-person ones (with an average of 0.673 v.s. 0.638
for subject 1). 113

5.8 Average voxel-wise reconstruction correlation coefficient (cc) for fMRI
samples corresponding to different categories. The performance is mea-
sured under a 50%-masking ratio. Plots are for subjects 1, 2, and 5 from
left to right. Error bars stand for the standard deviations of the average
cc across all samples of that category. We also plot the sample occurrence
(in blue lines) for individual categories as some categories, like person,
have significantly more samples than other categories. Colors are based
on super-categories, as indicated in the legend. 115

5.9 Performance decrease rate for different categories, together with the cate-
gory sample occurrence. The rate is calculated as (performance with 10%-
masked inputs - performance with 90%-masked inputs) / performance with
10%-masked inputs. 116

5.10 (a) Unmasked voxel and (b) Masked voxel reconstruction performance
when masking V1-V4 on either the left hemisphere (lh) or the right hemi-
sphere (rh). Subjects 1, 2, and 5 are used for the task. Masking the visual
cortex at different levels on either hemisphere does not affect unmasked
voxels differently (true for all subjects). But the reconstructions of masked
V3/V4 voxels on lh consistently have a worse reconstruction than those
on rh (t-test p-value < 1e-8). 117

xxi

5.11 Pairwise reconstruction between ROIs of subject 1. For each matrix, the
rows are source ROIs that provide input activities, and the columns are
target ROIs whose reconstruction performance is evaluated (in terms of
the voxel-wise correlation coefficient). The plots are: (a) reconstruction
mean, (b) reconstruction standard deviation, (c) voxel overlap percentage
normalized by the total number of target ROI voxels, and (d) reconstruc-
tion mean when the overlapped voxels’ activities are not provided in the
inputs. 118

5.12 The top two rows of the flatmaps are reconstruction performance differ-
ences when masking two different visual cortex ROIs. The bottom two
rows are visualized localizers of corresponding ROIs. Both sets have rh
on top of lh. The region name stands for the masked region: for exam-
ple, the first column “V1-V2” means “subtracting the voxel-wise recon-
struction with V2-masked inputs from the voxel-wise reconstruction with
V1-masked inputs”. Discrepancies are observed between the performance
difference (top set) and corresponding localizers (bottom set), from which
we can identify region dependencies. For example, V2 depends more on
V1 than V3, and it also shows additional dependencies with the posterior
intraparietal sulcus (IPS) area on the right hemisphere (top tip of the rh
flatmap). 119

xxii

5.13 Examining the voxel importance of subject 1 with (a-c) reconstruction
models and (d) the classification model. For the reconstruction, Voxel
with index 1364 is selected as the target voxel at which we measure the
recovery performance; it locates on lh and belongs to both floc-faces and
floc-bodies. (a) The recovery performance at each voxel if they are served
as the “additional” input apart from V1-V4 voxel activities. The right plot
is the zoom-in view of the left plot, showing the strong local dependencies,
which are consistent across models and signal types (the values in (a) are
normalized to 0-1 since AE and VQ-VAE cc are at different scales). (b)
Given AE’s result, we plot (left) the top 200 contributing voxels, (middle)
voxels that lead to a reconstruction performance larger than the mean
value, and (right) the overall p-values of the reconstruction cc. We can
observe that voxels on mirrored positions of rh are also contributing to
the target voxel’s reconstruction, but overall lh voxels are more important
for this target voxel on lh. p-Values are also aligned well: positions with
better performance (larger cc) also have smaller p-values. (c) (left) The
p-value changes with decreasing recovery cc. There is a sharp increase
near the end, indicating those voxels are more irrelevant; (right) The in-
ROI ratio for the top-100 contributing voxels: not all are from the ROIs
that the target voxel belongs to (floc-faces/bodies in this case). (d) SHAP
input attribution (absolute values) aggregated across categories. Redder
(higher attribution) means the voxel is more crucial in determining if a
specific category exists in the stimulus. 121

6.1 Illustration of the classification images concept. (a) Two sample digits as
well as their linear combination with different magnitudes of white noise
(eq. (6.3)). (b) Average correct and incorrect prediction maps of a binary
CNN trained to separate digits 1 and 7. The fifth column shows the
difference between the average of stimuli predicted as 1 and the average
of stimuli predicted as 7. The column marked with “*” is similar to the
fifth column but computation is done only over noise patterns (and not
the augmented stimuli), hence “classification images” (i.e., (n̄11 + n̄71) −
(n̄17 + n̄77); eq. (6.1)). These templates can be used to classify a digit as
1 or 7. Yellow (blue) color corresponds to regions with positive (negative)
correlation with the response as 1. (c) Same as B but using a 5 vs. 6 CNN.127

6.2 (a) Classification images of a CNN trained on MNIST (with 99.2% test
accuracy). Image titles show ground truth, predicted class for the bias
map, and the frequency of the noise patterns classified as that digit. (b)
Classification images of logistic regression over MNIST with 92.46% test
accuracy. (c) Confusion matrices of four classifiers (CNN and log. reg.
biases, mean digit image, and log. reg. weights). The classification was
done via template matching using the dot product. 132

xxiii

6.3 Classification images for a two-layer MLP (784 −→ 1000 −→ 10) shown at
the top and an RNN classifier at the bottom. None of the noise patterns
were classified as 1 using both classifiers. While the derived biases do not
resemble digits, they still convey information to predict the class of a test
digit. 133

6.4 (a) Mean training images (top) and mean white noise pattern/bias maps
(bottom) across CIFAR-10 classes. Image titles show the ground truth
class and prediction of the bias map, respectively. (b) Confusion matrices
using mean images (top) and bias maps (bottom) as classifiers, respec-
tively. Notice that for some classes, it is easier to guess the class label
from the mean image (e.g., frog). 134

6.5 Progressive build-up of the bias maps for 0, 1, and 2. 135
6.6 Using an AutoEncoder and a VAE to generate samples containing faint

structures to be used for computing the classification images over MNIST
dataset, using a CNN classifier. Both generators were trained only for two
epochs to prohibit the CNN from generating perfect samples (shown at
the top). The bottom panels show classification images derived using 100,
1K, and 10K samples from each generator. Note that classification images
converge much faster now compared with the white noise stimuli. 137

6.7 Classification images, some sample generated images, confusion matrices
of bias map classifiers, as well as one sample image and its reconstruction
using Gabor wavelets over MNIST (left), Fashion-MNIST (middle), and
CIFAR-10 (right) datasets. We used 960, 960, and 1520 Gabor wavelets
over MNIST, Fashion-MNIST, and CIFAR-10, respectively. The corre-
sponding numbers of PCA components are 250, 250, and 600 (per color
channel). 138

6.8 (a) Adding bias to a digit changes it to the target class in many cases
(here with γ = 0.8). Adding bias to noise (2nd col.) turns noise into the
target digit in almost all cases. The histograms show the distribution of
predicted classes (intact digits or pure noise; 1st row). Note that most of
the noise images are classified as 8 (top histogram in 2nd col). (b) Same as
A but using mean digit (computed over the training set). Adding the mean
image is more effective but causes a much more perceptible perturbation.
(c) The degree to which (i.e., accuracy) a stimulus is classified as the target
class (i.e., fooled) by adding different magnitudes of bias (or mean image)
to it. Converting noise to a target is easier than converting a signal. There
is a trade-off between perceptual perturbation and accuracy (i.e., subtle
bias leads to less number of digits being misclassified). 140

6.9 Illustration of influencing the CNN decisions (on MNIST) towards a par-
ticular digit class by adding bias to the digits (top) and adding bias to the
noise (bottom). This is akin to a targeted attack. See fig. 6.10. 142

xxiv

6.10 (a) Top: A 10-way CNN trained on MNIST (with half of the zeros aug-
mented with a patch and relabeled as 1) performs very well on a clean
test set (top confusion matrix). On a test set containing all zeros contam-
inated, it (incorrectly) classifies them as one. Classification images (right
side) successfully reveal the perturbed region. Bottom: Same as above but
over 8 and 9 digits. (b) Classification images reveal the adversarial patch
attack over CIFAR-10. Here, half of the birds are contaminated with a
patch and are labeled as cat. (c) Turning a frog into a car by adding
the activation of the conv6 layer, computed using white noise, of the car
category to the frog. (d) Average gradients before the adversarial patch
attack (top) and after the attack (middle). The small yellow region on the
top-right of digit 8 means that increasing those pixels increases the loss
and thus leads to misclassification (i.e., turns 8 to another digit). (bot-
tom) Average gradient with all 8s contaminated and relabeled as 9. The
blue region on the top-right of digit 9 means that increasing those pixels
lowers the loss and thus leads to classifying a digit as 9. This analysis is
performed over the MNIST training set. Please see also figs. 6.11 and 6.15. 143

6.11 Confusion matrices for adversarial patch attack on CIFAR-10 dataset (bird
to cat). Class names: plane, car, bird, cat, deer, dog, frog, horse, ship,
and truck. 143

6.12 Left two: example filters derived using spike-triggered averaging (STA)
for the first two conv layers of a CNN trained on MNIST dataset (left;
RF sizes are 5 × 5 and 14 × 14) and 4 layers of a CNN on CIFAR-10
dataset (middle; RF sizes in order are 3 × 3, 5 × 5, 14 × 14 and 32 ×
32). Right: Trained model weights (i.e., convolutional kernels) of the first
layer of a CNN trained on MNIST or CIFAR-10. These are not calculated
by feeding noise patterns. They are derived after training the model on
data. Interestingly, they are the same as those derived using white noise. 144

6.13 Trained model weights (i.e., convolutional kernels) of the first layer of
a CNN trained on MNIST or CIFAR-10. These are not calculated by
feeding noise patterns. They are derived after training the model on data.
Interestingly, they are the same as those derived using white noise as shown
in fig. 6.12. 145

6.14 (Top) Average layer activation using noise (left) and real data (right) over
a CNN trained on CIFAR-10 dataset. (Bottom) Mean distance between
average layer activations of different classes across model layers. 146

xxv

6.15 Effect of adding activation at conv6, conv4, conv2 and input of noises
classified as different classes to real images. The figure shows CIFAR-10
model misclassification ratio vs. γ, where the input to the model is ((1 −
γ) × noise activation of a certain class + γ × real data input image. The
misclassification ratio is calculated as the number of images that do not
belong to the activation-added class but are classified as it over the number
of images not belonging to the activation-added class. The visualization
of adding activation to input is shown in fig. 6.10c. 148

6.16 Psychometric curves of a CNN trained on MNIST. The x-axis shows the
magnitude of the signal added to the noise ((d)). The y-axis shows the
accuracy. Legends show the magnitude of stimulation (k in Eq. 6). Larger
k (redder curve) means more bias. (a) Increasing fc bias enhances recog-
nition towards the target digit for all digits. The opposite happens when
lowering the bias. (b)(c) Stimulating neurons in conv layers helps some
digits (for which those neurons are positively correlated) but hinders some
others. 149

6.17 Results of microstimulation for binary decision-making tasks using a CNN
classifier (1 vs. 3) and (2 vs. 8). Left(right) panels show increasing
(decreasing) bias for each layer. See fig. 6.16. 151

6.18 Basic architecture of SplitMixer. The input image is evenly divided into
several image patches which are tokenized with linear projections. A num-
ber of 1D depthwise convolutions (spatial mixing) and pointwise convo-
lutions (channel mixing) are repeatedly applied to the projections. For
channel mixing, we split the channels into segments (hence the name Split-
Mixer) and perform convolution on them. We implement this part with
our ad-hoc solutions or 3D convolution. Finally, a global average pooling
layer followed by a fully-connected layer is used for class prediction. . . . 158

6.19 Channel mixing approaches: (a) channels are split into two overlapping
segments, and only one segment is convolved in each block (no parameter
sharing across segments), (b) channels are equally split into a number of
segments, and only one segment is convolved in each block (no overlap
or parameter sharing), (c) all segments are convolved in each block and
parameters are shared across segments, and (d) all segments are convolved
in each block (no parameter sharing). 159

6.20 Parameter saving as a function of (left) segment overlap for SplitMixer-I
and (right) segment for SplitMixer-II and SplitMixer-IV. About 75% of
parameters can be saved in the limit for SplitMixer-I (i.e., as i approaches
infinity, see eq. (6.11)). 161

6.21 Potential savings in parameters and FLOPS for different SplitMixer variants.163

xxvi

6.22 Accuracy vs. parameters for different variants of SplitMixer. S stands for
1D spatial convolution and C stands for 1 × 1 pointwise convolution over
channel segments. We plug in our components into ConvMixer, denoted
here as “2D + C” (2D convolution kernels plus our channel mixing ap-
proach) and “1D S + ConvMixer C” (our 1D kernels plus channel mixing
as is done in ConvMixer, i.e., 1×1 convolution across all channels without
splitting). Data points are for different values of split ratio or number
of segments depending on the model type. We have collected more data
points on CIFAR-10 than other datasets. See also fig. 6.23 for accuracy
vs. FLOPS plots. 165

6.23 Accuracy vs. FLOPS for different variants of SplitMixer. S stands for
1D spatial convolution and C stands for 1 × 1 pointwise convolution over
channel segments. We plug in our components into ConvMixer, denoted
here as “2D + C” (2D convolution kernels plus our channel mixing ap-
proach) and “1D S + ConvMixer C” (our 1D kernels plus channel mixing
as is done in ConvMixer, i.e., 1×1 convolution across all channels without
splitting). Data points are for different values of split ratio or number
of segments depending on the model type. We have collected more data
points on CIFAR-10 than other datasets. Notice that the ratio of FLOPS
over the number of parameters is almost the same for all models except
SplitMixer-III, where this ratio is higher since all segments are updated
in each block and parameters are shared across segments (see fig. 6.19).
That is why the plots for parameters and FLOPS are almost the same for
each model, except SplitMixer-III. 166

6.24 Comparison of our proposed SplitMixer architectures with state-of-the-
art models that do not use external data for training. Results are shown
over CIFAR-{10,100} datasets. Notice that we have not optimized
our models for the best performance. Rather, we ran the Con-
vMixer and our models using the exact same code, parameters, and ma-
chines to measure how much we can save parameters and computation
relative to ConvMixer. Please consult [2] for a more detailed compari-
son of ConvMixer with other models. We have borrowed some data from
https://paperswithcode.com/ to generate these plots. 169

6.25 The role of the number of blocks b on model performance. The FLOPS of
models over CIFAR-100 are just slightly higher than CIFAR-10, thus not
visible in the rightmost panel. 173

xxvii

https://paperswithcode.com/

List of Tables

2.1 Reconstruction performance and model selection performance of models on
the simulated dataset. CC-MRCE variations uniformly outperform MRCE
and CGGM. CC-MRCE variations with more strict constraints perform
better. 20

2.2 Functional connectivity reconstruction performance of seven tasks with
different models. Models are numbered as follows. 1: CGGM; 2: VAE: 3:
Spectral Mapping; 4: Random B; 5: CC-MRCE (Ours). 26

2.3 Overlap ratios (%) of predicted B (SCs-FCs mapping) across 10 folds for
seven tasks. 30

3.1 fMRI scan details for six tasks. 43
3.2 Numerical values of weighted F1 of ablation study settings. Training time

ranges from 51 seconds / epoch for length-8 inputs to 298 seconds / epoch
for length-256 inputs. Models converge to a relatively stable loss level
within 20 epochs. 45

3.3 Model comparisons with length-256 inputs. 53

4.1 Numerical AUC-ROC values of the classifiers presented in fig. 4.1. 68
4.2 Starting FID without generator finetuning (pre-trained LF-Lafite is used

here) and correct retrievals in a batch of size 300 using embeddings ob-
tained from fmi and fmc. In the top table, models are trained with
MSE+cos loss. In the bottom table, defaults are: with threshold, with
image augmentation, using random caption. For the two options with
auxiliary modules, the model is finetuned from MSE + cos model since
training from scratch gives much worse results. FID evaluations are omit-
ted if the retrieval performance of a setting is strictly worse than its com-
petitors. 83

4.3 Correct image retrievals in a batch of size 300 when combining different
models. 84

4.4 FID of the pipeline under different settings. 85
4.5 2-way identifications accuracy of the pipeline under different settings. . . 86

xxviii

4.6 n-way identification accuracy (%) with n = 2, 5, 10, 50. 86

6.1 Results on ImageNet. 137
6.2 Numbers corresponding to the bar charts in fig. 6.8c. 139
6.3 Comparison with other models. The best numbers in each column are

highlighted in bold. The number of parameters and FLOPS are averaged
over CIFAR-10 and CIFAR-100 for our models. Notice that some variants
of SplitMixer perform better than the numbers reported here over Flow-
ers102 and Food101 datasets. Results, except ConvMixer and our model,
are reproduced from [3] where they have trained models for 200 epochs.
We have trained ConvMixer and SplitMixer for 100 epochs. 168

6.4 Results over ImageNet-1k. Models trained and evaluated on 224 × 224
images. 170

6.5 Ablation study of SplitMixer-I-256/8 with a split ratio of 2/3 (Top-1 Acc). 171
6.6 Model throughput for SplitMixer-A-256/8 on a Tesla v100 GPU with

32GB RAM over a batch of 64 images of size 224 × 224, averaged over
100 such batches. 174

xxix

Chapter 1

Introduction

The understanding of human cognitive processes has fascinated scholars and philosophers

for centuries. With recent neuroimaging advancements, researchers now have noninva-

sive measures to peek inside the human brain and observe its activity. In particular,

diffusion imaging that reveals brain structures and functional magnetic resonance imag-

ing (fMRI) that captures activity states provide complementary information about the

brain—just like knowing both hardware devices and software applications. On the other

hand, machine learning techniques, especially deep learning models, are becoming much

more mature and have achieved outstanding performance and surpassed human-level

performance in various evaluation benchmarks [4, 5, 6]. This dissertation focuses on

bridging human and machine intelligence: we will model and learn representations of

brain data with convex optimization and deep learning models and, inversely, investi-

gate and improve deep learning models with computational neuroscience tools or brain

insights.

The first half of this dissertation will study the brain from a network perspective.

The human brain is one of the most complex networks. It is multiplex (multimodal) in

nature, with anatomical networks organized over multiple spatial scales and functional

1

Introduction Chapter 1

networks interactive over multiple temporal scales [7]. Understanding brain connectivity

and activity, especially the relationship between the anatomical brain structures and

the dynamics of neural processes, is a central question in neuroscience. An increasing

number of theoretical and empirical studies approach the function of the human brain

from a network perspective [8]. This is made feasible by the development of new image

acquisition techniques, large-scale initiatives using those techniques to collect population

data, as well as new tools from graph theory, convex optimization, and deep learning—

especially graph neural networks that take graphs as inputs.

Modeling the brain as a dynamic network has a high representation capability and

provides critical insights into neural processes; however, with the memory limitation of

computation hardware, it is not straightforward to model each voxel as a network node.

On the other hand, averaging voxel signals into region-level activities inevitably causes a

loss of fine-grained information. In order to retain as much information as possible, we will

also study the representations with voxel-level inputs in the next part of the dissertation.

Finally, we will demonstrate the successes of borrowing neuroscience insights to examine

and improve machine learning models. In summary, we seek to answer the following

research questions:

• How can we model coupled brain networks of different modalities under domain

constraints?

• How can we effectively learn a comprehensive representation that incorporates both

structural and dynamic functional signals?

• How does the brain represent visual stimuli, and how can we decode them from

brain activities?

• What properties can we learn from the brain, and how can we apply them to build

2

Introduction Chapter 1

better deep learning models?

To answer these questions, we have developed novel statistical and machine learn-

ing methods and interpreted the results. Each of the following chapters presents new

methodologies or findings to either (1) better understand the brain structure and func-

tion utilizing deep learning, or (2) understand and design deep learning architectures and

algorithms motivated by neuroscience tools and insights. In particular, this dissertation

is organized as follows:

• In chapter 2, we will study the multiplex nature of brain network data, namely,

jointly model structural and functional brain networks. We propose a convex opti-

mization framework whose objective function does not pose a Gaussian assumption

on the data and is able to take in existing domain knowledge through a hard con-

straint term. These objective function modifications are particularly beneficial for

neuroscience data which is rarely Gaussian and often has a small sample size. Using

domain knowledge to constrain the feasible space is critical for finding the solution

with limited data. We then develop a nested fast iterative shrinkage-thresholding

algorithm to solve the formulated problem. We test our framework on various

task data of the Human Connectome Project, obtaining important insights into

the structural backbones of the functional activities.

• In chapter 3, we will extend upon the previous chapter, covering the other two

aspects of the brain network data, namely multiscale and temporal, while still con-

sidering both brain modalities (structural and functional). To this end, we propose

an efficient graph neural network with temporal convolution layers. The model

utilizes both structural brain networks and a learned sample-level latent adjacency

matrix to capture fixed and changing local connections. We also propose an inner-

cluster smoothing module to learn long-range relationships between regions. In

3

Introduction Chapter 1

addition, a graph attribution method is employed to study how various parts, both

spatial and temporal, of brain activities contribute to different tasks carried out by

subjects. This results in interesting findings regarding the brain region, task, and

subject heterogeneity.

• Differing from the previous two chapters that study the brain under different dis-

crete task states, chapter 4 will investigate brain activities with stimuli with con-

tinuous semantics. It will also do so with voxel-level signals instead of regio-level

ones. In particular, we use the fMRI data collected when subjects view images

from everyday scenes to study visual decoding and encoding processes. We will

first demonstrate that incorporating additional text modality is essential for a vi-

sual decoding pipeline, and brain signals align better with a semantic-rich latent

space. We then show how we can use this to decode complex image stimuli from

brain activities. To counter the issue of data scarcity, we utilize a pretrained vision-

language latent space: we first map fMRI signals into this latent space and then

finetune a pretrained conditional generative model with customized loss functions.

As a result, our pipeline is able to reconstruct image stimuli with both naturalness

and fidelity. We will also show that visual encoding can be performed similarly.

With this same dataset, we will continue the representation study of voxel-level

brain activities in chapter 5. We perform signal reconstruction and category clas-

sification of causative stimuli with two simple models, one autoencoder, and one

multi-label classifier. We will show that brain signals are highly redundant, and

removing 80% of the voxels does not affect much of the information they carry.

The studies in this chapter also confirm again that brain signals reside in a much

lower dimensional semantic space. We will also report other interesting findings

regarding how redundancy and dependency differ across categories, hemispheres,

4

Introduction Chapter 1

regions, and voxels.

• Finally, in chapter 6, we will present two artificial neural network modeling inspired

by neuroscience. The first one studies and unveils the inherent biases of various deep

neural networks by feeding them structured noise inputs and applying techniques

adapted from classification images and spike-triggered averaging. These analyses

are also useful for network filter visualizations, as well as adversarial attacks and

defenses. The second one is inspired by the sparse activation of neurons and the

modular structure of the brain. To bring more sparsity into deep learning models,

we separate neurons into overlapping or non-overlapping segments (“modules”) and

route information inside each one. In a sense, it is also similar to representing a

higher-dimensional state with lower-dimensional coordinates. The resulting model

can achieve a similar level of performance to its unmodified counterparts while

having significant parameter and computation savings. Both modeling efforts in

this chapter highlight the importance of the interplay between deep learning and

brain sciences.

5

Chapter 2

Modeling Coupled Networks:

Structural Connectivity and Static

Functional Connectivity

Modeling the behavior of coupled networks is challenging due to their intricate dynamics.

For example, in neuroscience, it is of critical importance to understand the relationship

between functional neural processes and anatomical connectivities. Modern neuroimaging

techniques allow us to separately measure functional connectivity through fMRI imaging

and the underlying white matter wiring through diffusion imaging. Previous studies have

shown that structural edges in brain networks improve the inference of functional edges

and vice versa. In this chapter, we investigate the idea of coupled networks through an

optimization framework by focusing on interactions between structural edges and func-

tional edges of brain networks. We consider both types of edges as observed instances of

random variables that represent different underlying network processes. The proposed

framework does not depend on Gaussian assumptions and achieves a more robust per-

formance on general data compared with existing approaches. To incorporate existing

6

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

domain knowledge into such studies, we propose a novel formulation to place hard net-

work constraints on the noise term while estimating interactions. This not only leads to

a cleaner way of applying network constraints but also provides a more scalable solution

when network connectivity is sparse. We validate our method on multishell diffusion

and task-evoked fMRI datasets from the Human Connectome Project, leading to both

important insights on structural backbones that support various types of task activities

as well as general solutions to the study of coupled networks.

2.1 Introduction

Recently, there has been an effort to move research from the investigation of single

networks to the more realistic scenario of multiple coupled networks. In this chapter,

we consider the case of pairs of networks, (G1,G2), that are categorized into different

modalities over a population. Such coupled network systems can be found in infrastruc-

tures of modern society (energy-communication), financial systems (ownership-trade), or

even human brains (anatomical substrate-cortical activation). Our goal is to reconstruct

one network from information on the other and, during such a process, obtain a concise

interpretation of how one network affects the other.

To achieve the above goal, we consider an edge-by-edge formulation. We treat one

set of edges in G1 as predictors and the other set of edges in G2 as response variables in

a multivariate linear regression model. Past research for the above problem relies on the

restrictive Gaussian assumption, which simplifies the problem but is difficult to justify,

especially in the domain of brain architectures. Adopting a Gaussian assumption on

non-Gaussian data can significantly prevent the detection of conditional dependencies

and may lead to incorrectly inferred relationships among variables.

The learning of relationships between two different modalities can be difficult without

7

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

sufficient data. As a result, in sparser data settings, the ability to specify constraints

based on domain knowledge can be beneficial. For example, in the case of brain data,

functional edges have mainly local influences, and structural edges are more responsible

for long-distance influences [9, 10]. We want preferences encoded in domain knowledge to

guide the selection of partial correlations of unexplained noise terms in the constructed

model.

Based on the above motivations, we propose a flexible and efficient framework CC-

MRCE (Convex-set Constrained Multivariate Regression with Covariance Estimation)

that simultaneously learns both regression coefficients between two coupled networks

and the correlation structure of noise terms. In a departure from existing methods,

our framework encodes domain knowledge as a set of convex constraints and adopts

a pseudolikelihood-based neighborhood-selection objective in partial correlation estima-

tion, which has been shown to be more robust to non-Gaussian data. Because of the CC-

MRCE objective’s bi-convex nature, we alternately solve a regression sub-problem and

a constrained partial correlation sub-problem until convergence. The latter sub-problem

requires feasible solutions under given domain constraints that we render tractable via a

modified two-stage proximal gradient descent method.

We illustrate the use of our method in the context of the human brain. Brain

data presents one of the greatest technical challenges in analysis and modeling due to a

network-based characterization [8, 11], non-Gaussian nature of data, high dimensionality,

a small number of samples, and the need to incorporate domain knowledge. We apply the

proposed framework to the Human Connectome Project (HCP) dataset [12], where two

coupled networks are constructed from fMRI scans (representing cortical activation) and

diffusion scans (representing the anatomical substrate). We successfully predict a brain

functional network from the given structural network; our method outperforms previous

state-of-art methods, and our obtained models are easier to interpret. We investigate

8

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

the structure-function coupling for seven different tasks. Our findings agree with the

nature of fMRI tasks and brain region functions in existing literature, thus validating

our model’s ability to discover meaningful couplings.

In the following sections, we propose a regularized multiple regression approach that

adapts to non-Gaussian data (sections 2.2.1 and 2.2.2), and incorporate prior domain

knowledge to model estimation by formulating constraints into an optimization problem

(section 2.2.3). We then develop a fast method based on nested FISTA for solving the

proposed optimization problem (section 2.3). Finally, we show the effectiveness of our

model on HCP brain data using quantitative comparisons with existing approaches as

well as a qualitative analysis (section 2.4.2).

2.2 Constrained Multiple-Output Regression Formu-

lation

In this section, we first introduce existing works on multiple regression under Gaussian

assumptions and then motivate our approach under non-Gaussian settings and domain

constraints.

2.2.1 Multiple-output Regression Problem

Let D be an n-subject sample set in which all subjects share the same coupling

(G1,G2) but have different edge values. For subject i in D, let x(i) = (x
(i)
1 , · · · , x(i)

p) be

p-dimensional inputs that represent edge values in the first modality network G1, and

y(i) = (y
(i)
1 , · · · , y(i)p) be p-dimensional outputs1 that stand for edge values in the second

modality network G2. We assume that the inputs xi and outputs yi are correlated through

1In general, models do not require the same dimensions for inputs and outputs. We use the equality
setting only for simplicity.

9

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

a multivariate linear regression model:

y(i) = x(i)B + ϵ(i), for i = 1, ..., n (2.1)

where B is the p × p regression coefficient matrix and its element βjk is the regression

coefficient that measures the cross-modality impact of edge xj to edge yk, and ϵ(i) is the

noise vector of subject i. The model can be expressed in the matrix form:

Y = XB + E (2.2)

where row i of X ∈ Rn×p and Y ∈ Rn×p are the structural and functional edge vectors

x(i) and y(i) of subject i.

A straightforward approach to estimating B is to solve p separate regression prob-

lems, assuming noise terms are independent and uncorrelated. Recently, advanced meth-

ods have been proposed to exploit the correlation in noise terms to improve the modeling.

They accomplish the goal by introducing an assumption that noise terms ϵ(1),...,ϵ(n) are

all i.i.d. Gaussian N (0,Ω−1) and then simultaneously estimating regression coefficients

B and inverse covariance matrix Ω of the noise terms. Two popular methods along this

direction are MRCE [13] and CGGM [14, 15, 16]. The MRCE method considers the

conditional distribution Y |X ∼ N (XB,Ω−1) and estimates both B and Ω by alter-

nately minimizing the negative conditional Gaussian likelihood, with the ℓ1 lasso penalty

applied on the entries of B and Ω. The other method, CGGM, further assumes that

X and Y are jointly Gaussian. Under such formulation, the conditional distribution of

Y |X is given by N (−XΩXYΩ
−1,Ω−1), which reparameterizes the regression coefficient

B as −ΩXYΩ
−1. Compared with MRCE, the objective of CGGM is based on the neg-

ative conditional Gaussian likelihood as well, but is jointly convex for ΩXY and Ω, and

10

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

therefore more friendly to computation.

2.2.2 Relaxing Gaussian Assumptions

Although MRCE and CGGM have received significant attention in solving multi-

output regression problems, one drawback of these two approaches is the Gaussian as-

sumption, especially for applications to brain data [17, 18, 19]. Recall that MRCE as-

sumes the Gaussian noise, and CGGM further assumes joint Gaussian distribution over

both inputs and outputs. We tested whether the HCP structural and functional data is

Gaussian with a significance level of 0.05. The test rejects the Gaussian null hypothesis

for 97.5% of structural edges and 36.3% of functional ones. Since our sample size is

small, false negatives are more likely to occur [20], namely failing to reject the Gaus-

sian hypothesis when the underlying data is non-Gaussian. Therefore, the proportion of

non-Gaussian data in brain networks is expected to be even higher. Thus, relying on

Gaussian assumptions is likely to affect the constructed models negatively.

To avoid a Gaussian assumption, we propose a pseudolikelihood approach for learning

multi-output regression models by optimizing the following objective function:

min
{Bk},{ωjk}

[
− n

p∑
j=1

logωjj +
1

2

p∑
j=1

n∑
i=1

(
ωjj(y

(i)
j − x(i)Bj)

+
∑
k ̸=j

ωjk(y
(i)
k − x(i)Bk)

)2

+ λ1

∑
j<k

|ωjk| + λ2

∑
j<k

|βjk|
]

or in a neat matrix notion:

min
B,Ω

− n log |ΩD| +
1

2
tr
(
(Y −XB)T (Y −XB)Ω2

)
+ λ1∥B∥1 + λ2∥ΩX∥1 (2.3)

11

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

where Ω = {ωjk} denotes the inverse covariance matrix, B = {βjk} denotes the coefficient

matrix, and ΩD and ΩX denote the diagonal and off-diagonal parts of Ω. The proposed

objective can be considered as a reparameterization of the Gaussian likelihood with Ω2

and an approximation to the log-determinant term. It has been proven that under mild

singularity conditions, such reparameterization can guarantee estimation consistency for

distributions with sub-Gaussian tails [21, 22].

Next, we develop an optimization algorithm to minimize the objective. The objective

function itself is not jointly convex for both variables B and X, but remains convex with

respect to each of them while keeping the other fixed. Therefore, we adopt the alternating

minimization idea. In the t-th iteration, we first fix B as the estimated B̂(t−1) from the

previous (t − 1)-th iteration, and calculate the empirical covariance matrix S of noise

terms:

S(t−1) =
1

n
(Y −XB(t−1))T (Y −XB(t−1)) (2.4)

Next, we estimate the inverse covariance matrix: Ω(t) with the given S(t−1) as a constant:

Ω(t) = arg min
Ω

− log |ΩD| +
1

2
tr
(
S(t−1)Ω2

)
+ λ2∥ΩX∥1 (2.5)

Observe that the above subproblem follows CONCORD’s original form, which is more

robust to heavy-tailed data [22, 23] than the conventional Gaussian likelihood approach

and can be efficiently solved using proximal gradient methods with a convergence rate of

O(1/t2) [24]. Lastly, we keep Ω fixed at Ω(t)2 and optimize the regression coefficients B:

B(t) = arg min
B

1

2
tr
(

(Y −XB)T (Y −XB)Ω(t)2
)

+ λ1∥B∥1 (2.6)

Note that subproblem (eq. (2.6)) is convex when Ω(t)2 is positive semi-definite. We

12

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

present the above regression-based approach as CONCORD-MRCE in Algorithm 1

(pseudocode).

2.2.3 Imposing Domain Constraints

Due to the limited sample size of real-world datasets and their high dimensionality,

incorporating accurate domain constraints can reduce the search space and avoid over-

fitting.

Under a linear mapping assumption, the partial correlation of response variables arises

only from correlations in the noise terms. Therefore, Ω not only represents the inverse

covariance of noise terms, but also equals the conditional inverse covariance of Y |X.

The nonzero entries of Ω encode direct relationships among the target modality outputs

Y that cannot be explained by weighted inputs XB of the source modality. It will be

beneficial if the zero-vs-nonzero structure of Ω is partially given by domain experts and

used as hard constraints in model estimation.

More formally, let M be a binary matrix that has the same dimensions as Ω. We

can define a convex matrix set SM , containing all matrices that share the same set of

zero entries with M . We can then improve the previous regression-based approach to

estimate Ω under the domain constraint that takes the form of Ω ∈ SM , written in an

equivalent unconstrained convex form:

Ω̂ = arg min
B,Ω

− n

2
log |Ω2

D| +
1

2
tr((Y −XB)T (Y −BX)Ω2)

+ λ1∥B∥1 + λ2∥ΩX∥1 + I{Ω ∈ SM} (2.7)

where I{Ω ∈ SM} is an indicator function. This formulation can be extended to Ω ∈ C

whenever C is a closed convex set of positive definite matrices.

13

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

Algorithm 1: CONCORD-MRCE

Input: penalty parameter λ1 and λ2

Initialize t = 0, B̂(0) = 0 and Ω̂(0) = Ω̂(B̂(0)).
while not converged do

step 1: Compute Ŝ(t−1) = Ŝ(B̂(t−1)) as eq. (2.4);
step 2: Update Ω̂(t) = Ω̂(Ŝ(t−1)) as eq. (2.5) by calling CONCORD(Ŝ(t−1)) ;
step 3: Update B̂(t) = B̂(Ω̂(t)) as eq. (2.6);

return B and Ω

2.3 Alternating Minimization Solution

In this section, we show how to adapt the previous solution when the inverse covari-

ance Ω is constrained during estimation. Notice that the ideas of Algorithm 1 can be

mostly used to solve eq. (2.7), except for the Ω-update step, which is now affected by the

added constraints. The new Ω-update step needs to solve the following sub-problem:

Ω(t) = arg min
Ω

− log |Ω2
D| + tr

(
S(t−1)Ω2

)
+ λ2∥ΩX∥1 + I{Ω ∈ SM} (2.8)

We follow the FISTA (Fast Iterative Soft-Thresholding Algorithm [25]) approach that is

used in CONCORD [24]. This method utilizes an accelerated gradient algorithm using

soft-thresholding as its proximal operator for the L1 norm and achieves a fast O(1/t2)

convergence rate. Previous work [24] has also applied FISTA for partial correlation

estimation and proved its efficiency. To adapt our constrained problem into the FISTA

framework, we split our objective function, eq. (2.8), into a smooth part and a non-smooth

part:

h1(Ω) = − log |Ω2
D| + tr(SΩ2)

h2(Ω) = λ2∥ΩX∥1 + I{Ω ∈ SM}

14

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

For any symmetric matrix Ω, the gradient of the smooth function can be easily calculated

as: ∇h1(Ω) = −2Ω−1
D + 2ΩS. With this formulation, we now adapt the FISTA iterative

scheme to solve our network-constrained problem (eq. (2.8)):

αt+1 = (1 +
√

1 + 4α2
t)/2 (2.9)

Θ(t+1) = Ω(t) +
αt − 1

αt+1

(Ω(t) −Ω(t−1)) (2.10)

Ω(t+1) = proxγh2
[Θ(t+1) − (nτt/2)∇h1(Θ

(t+1))] (2.11)

where τt is the step length and t denotes the iteration number. γ is a trade-off param-

eter that controls the extent to which the proximal operator maps points towards the

minimum of h2(Ω), with larger values of γ associated with larger movement near the

minimum.

In these iterative steps, Θt+1 is an expected position, updated purely by momentum.

Within each loop, the algorithm first takes a gradient step of the estimated future position

(eq. (2.10)), and then applies the proximal mapping of a closed convex function h2(Ω).

In contrast to the standard FISTA approach, the composite function h2(Ω) consists

of a sparsity penalty and a network-constrained indicator function. More specifically,

we can write down the explicit form of eq. (2.11) according to the proximal operator

definition:

Ω̂ = Ω̂X + AD

Ω̂X = proxγh2
(AX)

= arg min
ΩX∈C

1

2γ
∥ΩX −AX∥2F + λ2∥ΩX∥1 (2.12)

where A = Θ(t+1) − (nτt/2)∇h(Θ(t+1)). Instead of directly solving the original problem

(eq. (2.12)), we consider its dual problem as follows. Let matrix H be the dual variable

15

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

of matrix Ω. We have:

min
ΩX∈C

(
1

2γ
∥ΩX −AX∥2F + λ2 max

∥HX∥∞≤1
vec(HX)Tvec(ΩX))

= max
∥HX∥∞≤1

min
ΩX∈C

1

2γ

(
∥ΩX − (AX − γλ2HX)∥2F

− ∥AX − γλ2HX∥2F + ∥AX∥22
)

(2.13)

where AD and AX denote the diagonal and off-diagonal part of A. Since the initial

objective function above is convex in ΩX and concave in HX , we exchange the order of

the minimum and maximum operator in which the inner minimization problem has an

obvious solution through orthogonal projection theorem [26], written as

ΩX = PC (AX − γλ2HX) (2.14)

where PC is defined as an projection operator: PC(Γ) = argminR∈C ∥R − Γ∥2F and its

orthogonal projection operator PC⊥ is defined as I−PC . In the special case that C = SM ,

projection PC(Γ) is equivalent to removing invalid nonzero entries of the input matrix Γ.

Inserting the optimal ΩX back into objective (eq. (2.13)), we now obtain the final

dual form of the problem (eq. (2.12)):

ĤX = arg min
∥HX∥∞≤1

∥AX − γλ2HX∥22

− ∥PC⊥(AX − γλ2HX)∥22 (2.15)

where any solution ĤX to the dual problem corresponds to a primal solution through

eq. (2.14). Since the dual objective is continuously differentiable and constraints on l∞-

norm are convex, we can again efficiently solve it with additional inner FISTA iterations,

which is to minimize an equivalent composite objective min g1(HX) + g2(HX), where

16

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

Algorithm 2: Constrained-CONCORD

Input: sample covariance matrix S, sparsity pattern E, penalty parameter λ2

Output: partial correlation matrix Ω
set Θ(1) = Ω(0) ∈ Sp

M , α1 = 1, τ(0,0) ≤ 1, c < 1
while not converged do

G(t) = ∇h1(Θ
(t))

search largest τt ∈ {cjτ(t,0)}j=0,1,···
A(t) = Θ(t) − (nτt/2)G(t)

set Θ̃(1) = H(0) ∈ Sd×d, α̃1 = 1, κ(0,0) ≤ 1, c̃ < 1
while not converged do

G̃
(t′)
X = ∇g1(H

(t′)
X)

search largest κt′ ∈ {c̃j′κ(t′,0)}j′=0,1,···

H
(t′)
X = proxg2

(
Θ̃

(t′)
X − κt′G̃

(t′)
X

)
check backtrack line search criterion

α̃t′+1 = (1 +
√

1 + 4α̃2
t′)/2

Θ̃(t′+1) = H
(t′)
X +

αt′−1

αt′+1

(
H

(t′)
X −H

(t′−1)
X

)
compute κ(t′+1,0)

Ω(t) = PC(AX
(t) − γλ2HX

(t)) + A
(t)
D

check backtrack line search criterion

αt+1 = (1 +
√

1 + 4α2
t)/2

Θ(t+1) = Ω(t) + αt−1
αt+1

(Ω(t) −Ω(t−1))
compute τ(t+1,0)

g1(HX) is smooth and g2(HX) is non-smooth:

g1(HX) = ∥AX − γλ2HX∥22 − ∥PC⊥(AX − γλ2HX)∥22

g2(HX) = I{∥HX∥∞≤1}(HX).

To adapt FISTA to the problem (eq. (2.15)), the only thing left is to obtain the gradient

of the smooth function g1(HX), for which we need the lemma below:

Lemma 1 [27] If g is a closed proper convex function, and for any positive t, define

a proximal operator gt(x) := infu
[
g(u) + 1

2t
∥u− x∥2

]
, then its infimum is attained at

17

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

Algorithm 3: CC-MRCE

Input: penalty parameter λ1 and λ2, convex constraint set C.
Initialize B̂(0) = 0 and Ω̂(0) = Ω̂(B̂(0)).
while not converged do

step 1: Compute Ŝ(t−1) = Ŝ(B̂(t−1)) as eq. (2.4);
step 2: Update Ω̂(t) = Ω̂(Ŝ(t−1)) by calling
Constrained-CONCORD(Ŝ(t−1),E,λ1);
step 3: Update B̂(t) = B̂(Ω̂(t)) as eq. (2.6);

return B and Ω

the unique point proxt(g)(x). Further, gt is continuously differentiable on E with a 1/t-

Lipschitz gradient given by ∇gt(x) = (x− proxt(g)(x))/t.

According to Lemma 1, we simply plug g(u) = δ(u ∈ C), and obtain that proxt(g)(x) =

PC(x). Therefore the gradient ∇g1 is calculated as:

∇g1(HX) = −2γλ2 · PC(AX − γλ2HX). (2.16)

and the proximal mapping of function g2(Ω) becomes a projection of HX into the L∞-

ball:

(
proxg2(H)

)
ij

= sign(HX) min{|HX |,1X} (2.17)

This completes the modified Ω-update step in the constrained setting (referred to as

Constrained-CONCORD). Its corresponding pseudocode is presented in Algorithm 2

(pseudocode). The overall framework of simultaneously estimating Ω and B is presented

in Algorithm 3 (pseudocode), which we name CC-MRCE.

18

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

Notes on Pseudocodes

CC-MRCE (Algorithm 3) improves CONCORD-MRCE (Algorithm 1) by impos-

ing hard constraints on the solution space.

In every step of the while loop, CC-MRCE calls sub-function Constrained-CONCORD

to estimate the partial correlation matrix Ω(t) under hard constraints, i.e. the solution

Ω(t) shares the same zero and nonzero pattern as matrix E (shown in Algorithm 2).

Such constraints can be replaced by any set of convex constraints on Ω(t). Note that

superscript t′ and t in Algorithm 2 are iteration counters of inner and outer stages in

the Constrained-CONCORD algorithm, respectively.

Lemma 2 Let L(g1) be the Lipschitze constant of the gradient of objective function

g1(HX), then L(g1) ≤ 2λ2
2γ

2.

Although we use line-search to pick a proper step length κt′ in the inner-loop of Algo-

rithm 2, it can be replaced with a constant step length κt′ = 2λ2
2γ

2 according to the

above lemma.

2.4 Experiments on Synthetic and HCP Datasets

We present two sets of experiments. First, to understand our method’s strengths

and limitations, we utilize simulated datasets that allow us to inspect both reconstruc-

tion performance and model selection performance. We compare the proposed method

CC-MRCE with other baselines when the underlying data distribution does not follow

the Gaussian assumption. We show that both the non-Gaussian assumption and the

network constraints contribute to the improvement of performance. Second, we conduct

experiments on the Human Connectome Project (HCP) data [12]. Our model offers a

19

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

Table 2.1: Reconstruction performance and model selection performance of models on
the simulated dataset. CC-MRCE variations uniformly outperform MRCE and CGGM.
CC-MRCE variations with more strict constraints perform better.

Model
Reconstruction

MSE percentage (100%)
Pearson’s
r-score

min
p-value

max
p-value

relative AUC
w.r.t. Ω

relative AUC
w.r.t. B

CC-MRCE (unconstrained) 50.88 0.709 5.146E-09 0.101 0.520 0.536
CC-MRCE (SNR:1.0) 43.24 0.763 2.265E-11 0.083 0.855 0.640
CC-MRCE (SNR:2.0) 43.18 0.764 2.109E-11 0.073 0.925 0.662
CC-MRCE (perfect) 42.98 0.764 2.692E-11 0.064 1.000 0.671
MRCE 60.22 0.653 8.686E-09 0.174 0.375 0.540
CGGM 76.21 0.552 2.141E-07 0.965 0.330 0.195

quantitative advantage over baseline methods for predicting functional networks from

structural ones; at the same time, our results agree with existing neuroscience literature.

2.4.1 Application to Simulated Data

I. Data generation

Using a similar approach to existing works [21, 22, 13], we generate our simulated

dataset by first synthesizing two key model parameter matrices Ω0 and B0, and then

construct input, output, and noise terms (i.e. x(i), y(i) and ϵ(i)’s).

Note that every positive-definite matrix has a Cholesky decomposition that takes

the form of LLT , where L is a lower triangular matrix L, and if L is sparse enough

then LLT is sparse as well. Therefore, we first sample a sparse lower triangular L with

real and positive diagonal entries, and then generate our inverse covariance matrix with

Ω0 = LLT . The generated p × p positive definite matrix Ω0 has 10% nonzeros entries

and a condition number of 4.3. To demonstrate the robustness of proposed method

CC-MRCE on non-Gaussian data, we sample the noise terms {ϵ(i)}ni=1 according to a

multivariate t-distribution with zero mean and covariance matrix Σ = Ω−1
0 .

Next, we generate a sparse coefficient matrix B0 using the matrix element-wise prod-

uct trick, B0 = W ◦ K ◦ Q. In this construction approach, W has entries with inde-

20

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

pendent draws from standard normal distribution N (0, 1). Each entry in K is drawn

independently from a Bernoulli distribution that takes value 1 with probability s1. Q has

rows that are either all one or all zero, which are determined by independent Bernoulli

draws with success probability s2. Generating the sparse B0 in this manner, we not only

control its sparsity level, but also forcibly make (1 − s2)p predictors be irrelevant for

p responses, and guarantee that each relevant predictor is associated with s1p response

variables.

In the following experiments, the probabilities s1 and s2 are chosen to be 0.15 and

0.8, the sample size n is fixed at 50, and the input and output dimensions p and q are

both set to 20. The input x(i)’s are sampled from a multivariate normal distribution

N (0,ΣX) where (ΣX)jk = 0.5|j−k|, following previous works [28, 29]. The output y(i)’s

are calculated as the linear model assumption in eq. (2.1). We replicate the above process

for independently generating a validation dataset of the same sample size. All penalty

parameters are selected simultaneously and tuned according to the validation error.

II. Method

In this heavy-tailed setting, we compare the performance of CC-MRCE to CGGM

and MRCE, which are developed under Gaussian settings. The CGGM implementation

that we used in this experiment is provided by [30] and has been optimized for large-scale

problems and limited memory. The MRCE implementation is provided by [13]. Both

CGGM and MRCE do not adapt to the network constraints we impose here.

In order to inspect the effectiveness of network constraints, we apply multiple vari-

ations of constraint sets to the proposed CC-MRCE method, designated as CC-MRCE

(unconstrained), CC-MRCE (SNR: 2.0), CC-MRCE (SNR: 1.0) and CC-MRCE (perfect).

Network constraints in each variation are defined as follows. For CC-MRCE (perfect),

we choose SE = {Ω : Ω(j, k) = 0 if Ω0(j, k) = 0}, which forces selected nonzeros in

21

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

0.00 0.05 0.10 0.15 0.20
f a lse p osi t i v e r a t e

0.0

0.2

0.4

0.6

0.8

1.0

tr
u

e
 p

o
s

it
iv

e
 r

a
te

0.00 0.05 0.10 0.15 0.20
f a lse p osi t i v e r a t e

0.0

0.2

0.4

0.6

0.8

CC-MRCE (perfect)

CC-MRCE (SNR:2.0)

CC-MRCE (SNR:1.0)

CC-MRCE (unconst rained)

MRCE

CGGM

(a) (b)

Figure 2.1: (a) ROC curve for Ω estimation, (b) ROC curve for B estimation. Bene-
fiting from domain constraints, CC-MRCE obtains better ROC curves when uncovering
nonzero entries of B and Ω.

solution Ω to completely fall into ground-truth nonzeros. For CC-MRCE (SNR: 2.0) and

CC-MRCE (SNR: 1.0), we loosen the feasible set by adding 50%∥Ω0∥0 and 100%∥Ω0∥0

spurious nonzero positions, which are randomly sampled from positions of zero entries in

Ω0. For CC-MRCE (unconstrained), we remove all constraints so that the method only

relies on regularized multi-regression.

III. Performance evaluation

We evaluate the reconstruction performance of models using the conventional MSE er-

ror (in percentage). Correlation coefficients between predicted and ground-truth outputs

are also provided along with their corresponding p-values. In addition, we use the relative

area under the curve (AUC) of receiver operating characteristic (ROC) curves [31, 32],

with regards to Ω and B, as key measures to compare model selection performance of

all these methods. The AUC of a perfect ROC curve, which would be 1, indicates an

ideal recovery of ground truth zero-vs-nonzero structure in Ω (or B). However, models

with large false-positive rates (FPR) are barely meaningful in real scenarios. To focus

22

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

on the initial portion of ROC curves, we control the FPRs simultaneously to be smaller

than 0.2 for both Ω and B estimation. Thus, the maximum AUC value that a model can

reach is just 0.2. For ease of comparison, we provide relative AUC values, divided by 0.2

to normalize to 1. For each method, we run the algorithm with at least 25 appropriate

parameter pairs (λ1, λ2) to get its ROC curve. Recall that all methods in this section are

required to estimate 800 parameters given n = 50 samples.

IV. Test results

Table 2.1 displays the test results of six different settings in all measures mentioned

above. As can be seen, all four CC-MRCE variations (with different network constraints)

obtain significantly smaller reconstruction MSE percentages, higher correlation coeffi-

cients, and smaller p-values. Note that CGGM behaves the worst in all measures since

it is deeply rooted in the Gaussian setting and is consequently misled by these assump-

tions. We also see that the performance of CC-MRCE gradually improves when the

applied network constraints are more informative.

We also plot ROC curves for Ω and B estimation in fig. 2.1.(a) and fig. 2.1.(b), re-

spectively. It is clear that CC-MRCE performs better than MRCE and CGGM, across

different choices of network constraints. For Ω estimation, as expected, CC-MRCE with

more strict constraints has steeper curves, suggesting that it recovers mostly correct par-

tial relationships between variables with very few spurious connections, and therefore

achieves higher AUC scores. CC-MRCE (perfect) behaves perfectly for Ω-ROC, by its

definition. For the estimation of matrix B, a similar phenomenon demonstrates that

network constraints improve the learning of regression coefficients and lead to a better

reconstruction performance. Without imposing network constraints, unconstrained for-

mulation of CC-MRCE is likely to generate a biased estimate of Ω̂ on small datasets and

can not recover ground truth features in B.

23

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

2.4.2 Application to Human Connectome Data

I. Problem formulation

Many works in literature report on coupling between brain structural connectivities

(SCs) and functional connectivities (FCs) for both resting state [33, 34, 35, 36] and task-

evoked states [34, 37, 38, 39]. One such recent work [40] maps SC to resting-state FC by

aligning both the eigenvalues and eigenvectors of a subject’s SC and FC matrices, and

evaluates the mapping by reconstructing resting FCs from SCs.

Inspired by the domain observation [10] that two functional connections sharing the

same node are more likely to form a meaningful pathway or functional activation pattern,

we constrain the partial correlations between non-neighboring edges to be zero, i.e. Ωjk =

0 if ej and ek are not incident edges in the fMRI-constructed network.

We conducted experiments by reconstructing task FCs from SCs of 51 subjects with

their fMRI data from HCP dataset under seven task states. We used the parcellation

scheme in [33] with a spatial scale of 33, resulting in 83 brain regions and 3403 possible

edges. Columns in predictor matrix, eq. (2.2), X ∈ R51×3403 represent SCs, whose entries

are numbers of white matter streamlines intersecting pairs of brain regions, and columns

in response matrix Y ∈ R51×3403 represent FCs, whose entries are functional correlations

between cortical activities of brain regions. B denotes the mapping (or coupling) between

SCs and FCs, and E denotes the part of FCs that cannot be explained by SCs. We also

normalized SC values to (0, 1], a range comparable to FC. We ran 10-fold cross-validation

of our model for each task, splitting data in a 9-1 train-validation ratio (46-5 split for the

51 subjects). We selected the optimal hyperparameters λ1 and λ2 by a 5 × 5 grid search

in the log-scale between 10−1.6 to 10−0.4, keeping the models with smallest Mean Squared

Error (MSE) percentage on the validation sets, averaged across 10 folds. In our case,

both λ1 and λ2 have optimal values around 0.1 across tasks. Aside from MSE, we also

24

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

(a) (b) (c) (d) (e) (f) (g)

Figure 2.2: Visualizations of the B matrix for seven tasks: (a) EMOTION, (b) LAN-
GUAGE, (c) MOTOR, (d) GAMBLING, (e) SOCIAL, (f) RELATIONAL, (g) WM.
For each task, each fold in the 10-fold cross-validation may lead to different models. Here,
we only show those entries that are nonzero more than five times.

(a) Axial (from top) (b) Sagittal (from left) (c) Coronal (from back)

Figure 2.3: Visualization of the edges contributing to all seven tasks. Node size denotes
the degree, and edge width denotes its importance, as in the mapping B.

tested the Pearson correlation coefficient between predicted FCs and ground truth FCs,

(referred to as Pearson’s r-score, listed in table 2.2) and minimum, maximum p-values.

The reconstruction MSE percentage is below 1% for the training data and around 8%

for the validation data. Strong and significant positive correlations are shown for both

training (r-score around 0.6 to 0.8) and validation (r-score around 0.5) data. These

results indicate our model’s effectiveness in FC reconstruction by exploiting cross-modal

coupling between SC-FC and domain prior knowledge on FC-FC relationships.

II. Performance evaluation

Regarding the ability to find accurate mappings between SCs and FCs, we compared

our model with the optimization approach CGGM, a deep learning approach Variational

25

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

Table 2.2: Functional connectivity reconstruction performance of seven tasks with dif-
ferent models. Models are numbered as follows. 1: CGGM; 2: VAE: 3: Spectral Mapping;
4: Random B; 5: CC-MRCE (Ours).

Tasks
Reconstruction

MSE percentage
(100%)

Pearson’s
r-score

EMOTION 1 89.78 ± 21.95 -0.0309 ± 0.0285
2 81.57 ± 2.38 0.0777 ± 0.0070
3 61.54 ± 33.84 0.4228 ± 0.0349
4 17.50 ± 1.84 -0.0014 ± 0.0086
5 8.84 ± 0.84 0.4575 ± 0.0402

LANGUAGE 1 41.38 ± 7.10 0.0270 ± 0.0448
2 72.68 ± 6.33 0.0815 ± 0.0081
3 54.23 ± 30.18 0.4764 ± 0.0383
4 35.02 ± 58.49 0.0020 ± 0.0052
5 7.95 ± 0.87 0.4988 ± 0.0205

MOTOR 1 117.85 ± 27.32 -0.0016 ± 0.0456
2 77.30 ± 4.24 0.0782 ± 0.0110
3 57.26 ± 29.63 0.4156 ± 0.0548
4 21.02 ± 7.75 0.0023 ± 0.0090
5 7.80 ± 0.66 0.4807 ± 0.0480

GAMBLING 1 108.99 ± 32.83 -0.0211 ± 0.0795
2 79.14 ± 3.65 0.0804 ± 0.0071
3 54.73 ± 30.70 0.4781 ± 0.0380
4 22.63 ± 13.15 0.0033 ± 0.0072
5 7.86 ± 1.72 0.5014 ± 0.0301

SOCIAL 1 112.82 ± 36.07 -0.0064 ± 0.076
2 79.42 ± 3.72 0.0772 ± 0.0088
3 47.89 ± 28.09 0.4912 ± 0.0353
4 18.68 ± 3.74 0.0025 ± 0.0071
5 6.81 ± 0.95 0.5578 ± 0.0404

RELATIONAL 1 147.61 ± 49.24 -0.0265 ± 0.0754
2 81.11 ± 2.98 0.0706 ± 0.0081
3 54.86 ± 30.68 0.4758 ± 0.0412
4 31.77 ± 18.30 -0.0019 ± 0.012
5 8.43 ± 1.09 0.4858 ± 0.0460

WM 1 81.46 ± 29.72 -0.0447 ± 0.0566
(Working 2 77.99 ± 2.89 0.0799 ± 0.0109
Memory) 3 56.25 ± 32.85 0.4767 ± 0.0579

4 103.96 ± 111.99 -0.0041 ± 0.0089
5 7.69 ± 1.76 0.4968 ± 0.0543

26

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

AutoEncoder (VAE) [41], and the Spectral Mapping method [40]. For CGGM, the time

required to run 10-fold cross-validation with one set of hyperparameters on a single task

ranges from one day to a week. So we ran three sets of hyperparameters on EMOTION

and LANGUAGE, selected the best parameter pair, and fixed it for the rest of the five

tasks. In particular, we chose penalty terms on B and E to be both 0.01. For VAE,

both the encoder and decoder consist of two fully connected layers, with latent variable

dimensions being two. We use MSE as the training loss. In our experiments, increasing

the number of layers or latent dimensions of VAE did not improve the final performance.

For the Spectral Mapping method, we follow the setup of the original paper, setting the

maximum path length k to seven. The 10-fold cross-validation results of CGGM, VAE,

and Spectral Mapping method are reported in table 2.2.

The assumption of Gaussian noise weakens CGGM’s performance on the HCP dataset:

it has unstable and large average MSE percentages across tasks, and the correlations be-

tween predictions and ground truth are very small and even negative, which are also not

statistically significant with regards to p-values. On the other hand, VAE models have

stable MSE percentage (around 80%) and average Pearson’s r-scores with small standard

deviations across all tasks. The correlations of VAE models are weak (all around 0.08), yet

statistically significant, with p-values constantly smaller than 0.0025 for all tasks. This

shows that VAE learns a slightly meaningful mapping, but with such a small sample size,

deep learning models are unlikely to perform well. Lastly, the Spectral Mapping method

is designed to maximize the correlation between fMRI prediction and ground truth for

brain data, so it performs well as for correlation, however, the prediction values are off,

resulting in high MSE percentages. In all, our regression-based model performs better

in both correlation and value reconstruction, showing its superiority in the prediction on

non-Gaussian data with small sample sizes.

27

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

III. Result interpretation

Apart from better reconstruction performance, our model also has the advantage

of result interpretability. We can explore the SC-FC mapping through the resulting

coefficient matrix Bs. Since our problem definition is FC = SC · B + E, the ith row

in B corresponds to ith edge pair in the SC vector. In the following, we say an edge

i exists if row i of B has nonzero entries. As the experiment is run under the 10-fold

cross-validation setting and each training partition may generate a different mapping

B, we consider an entry in the common B to be nonzero if it is nonzero more than

five times in these 10 trials. The results are shown in fig. 2.2. From the figure, we can

see for every task, several rows in B have many more nonzero entries than the others.

This indicates the existence of several significant structural edges being responsible for

most of the functional activities. To test if this assumption is valid, we compared Bs

from our model to randomly generated Bs with the same levels of sparsity. The resulting

MSE percentages, although having large variances, often have smaller means than that of

CGGM and VAE, implying the importance of sparsity level of the coupling. However, the

resulting r-scores of predicted FCs using a random B is the lowest among all methods.

Together with very large p-values, the results predicted by random coupling show no

correlation between predictions and ground truth. This indicates that our models learned

meaningful mapping information from SCs to FCs, and that structured sparsity of B is

important for getting predictions besides the level of sparsity alone.

We now analyze the B matrices for different cognitive tasks. During fMRI data

acquisition of all seven tasks, participants are presented with visual cues, either as images

or videos, and they need to use motions such as pressing buttons to complete the tasks

[42]. Interestingly, apart from the LANGUAGE task, the mappings learned by our model

predict the strongest contribution of left precentral and left postcentral connection, which

28

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

(a) LANGUAGE (b) GAMBLING (c) RELATIONAL (d) WM

Figure 2.4: Task-specific visualizations for high-contributing structural edges. Assum-
ing that the maximum number of nonzero entries of a row in B is m, we only show the
edges corresponding to rows containing more than m/2 nonzero entries.

is on the motor cortex responsible for right-side body movement. From this, we assume

most participants use their right hands to conduct the required finger movements for

these tasks. All mappings also contain edges in the occipital lobe, complying with the

visual nature of these tasks. The visualization of common edges that exist in all seven

tasks is shown in fig. 2.3. This “backbone” roughly resembles the Default Mode Network

[43, 37].

We then examined which structural edges contribute significantly to the functional

activity under different tasks. For this, we plot the “high-contributing” edges in LAN-

GUAGE, GAMBLING, RELATIONAL, and WM tasks in fig. 2.4. An edge is considered

high-contributing if the number of nonzero entries of its corresponding row in B is more

than half of the maximum number of nonzero entries of any row in B. From fig. 2.4,

we notice although a common backbone exists, structural connections in different brain

regions are responsible for specific tasks (e.g. SCs in and around the hippocampus area

appear to be highly contributing to the WM FCs but not so for the LANGUAGE ones,

which is consistent with the literature [44]). We also plot both entry-wise and edge-wise

overlap ratios for the mapping of seven tasks in fig. 2.5.

Another interesting phenomenon in fig. 2.2 is that the numbers of nonzero entries

of B for LANGUAGE, GAMBLING, RELATIONAL, and WM are much larger than

the other three tasks: EMOTION, MOTOR, and SOCIAL, although the final model

29

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

Figure 2.5: Entry-wise and edge-wise overlap ratio for the mapping of seven tasks. (a)
considers entry-wise overlap of predicted B of different tasks. The value on position
(task i, task j) is the entry-wise IoU (Intersection over Union) of task i’s B and task j’s
B, i.e. number of nonzero entries in Bi ∩Bj over number of nonzero entries in Bi ∪Bj.
(b) considers the SC edges responsible for different tasks. An edge is considered to exist
when its corresponding row in B has nonzero entries. The value in position (task i, task
j) is the number of common SC edges of task i and task j over the number of SC edges
of task j.

Table 2.3: Overlap ratios (%) of predicted B (SCs-FCs mapping) across 10 folds for
seven tasks.

EMOTION LANGUAGE MOTOR GAMBLING
5.34 25.58 3.60 35.36

SOCIAL RELATIONAL WM
4.12 37.77 32.53

for each task has a similar level of prediction performance and similar hyperparameters.

This is largely caused by the nature of non-overlapping Bs for EMOTION, MOTOR,

and SOCIAL tasks: their B overlap ratios are significantly smaller than the other four

tasks, as shown in table 2.3. Here we define the overlap ratio as the number of nonzero

entries in the common B (entry ij being nonzero if it’s nonzero more than five times)

over the number of nonzero entries in B∪ = B1 ∪ · · · ∪B10 with Bk being the predicted

B using the kth split in 10-fold cross-validation. This is also why we omit these three

tasks for fig. 2.4, as the predicted Bs are not stable across the population, and only a few

common connections show significant contributions. We assume this results from group

30

Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
Chapter 2

heterogeneity when carrying out these tasks. Further studies with heterogeneous models

for the population will be useful to verify this assumption.

2.5 Conclusion

In this chapter, we proposed a regularized regression-based approach (CC-MRCE)

for jointly learning linear models and partial correlations among variables under domain

constraints. Motivated by the neuroscience application of predicting functional brain

activities from structural connections, the CC-MRCE method discards the Gaussian

assumption and incorporates domain constraints into the model estimation. We further

developed a fast algorithm based on nested FISTA to solve the optimization problem.

With synthetic data analysis, we demonstrated that both domain constraints and the

assumption of non-Gaussian data contribute to the performance improvement of CC-

MRCE. Our experimental results on Human Connectome Project data show that CC-

MRCE outperforms existing methods on prediction tasks and uncovers couplings that

agree with existing neuroscience literature.

31

Chapter 3

Modeling through Graph Neural

Networks: Structural Connectivity

and Dynamic fMRI

Finding an appropriate representation of dynamic activities in the brain is crucial for

many downstream applications. Due to its highly dynamic nature, temporally aver-

aged fMRI (functional magnetic resonance imaging) can only provide a narrow view of

underlying brain activities. Previous works lack the ability to learn and interpret the

latent dynamics in brain architectures. This chapter proposes an efficient graph neu-

ral network model that incorporates both region-mapped fMRI sequences and structural

connectivities obtained from DWI (diffusion-weighted imaging) as inputs. We find good

representations of the latent brain dynamics through learning sample-level adaptive adja-

cency matrices and performing a novel multi-resolution inner cluster smoothing. We also

attribute inputs with integrated gradients, which enables us to infer (1) highly involved

brain connections and subnetworks for each task, (2) temporal keyframes of imaging se-

quences that characterize tasks, and (3) subnetworks that discriminate between individ-

32

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

ual subjects. This ability to identify critical subnetworks that characterize signal states

across heterogeneous tasks and individuals is of great importance to neuroscience and

other scientific domains. Extensive experiments and ablation studies demonstrate our

proposed method’s superiority and efficiency in spatial-temporal graph signal modeling

with insightful interpretations of brain dynamics.

3.1 Introduction

Neuroimaging techniques such as fMRI (functional magnetic resonance imaging) and

DWI (diffusion-weighted imaging) provide a window into complex brain processes. Yet,

modeling and understanding these signals has always been a challenge. Network neuro-

science [8] views the brain as a multiscale networked system and models these signals in

their graph representations: nodes represent brain ROIs (regions of interest), and edges

represent either structural or functional connections between pairs of regions.

With larger imaging datasets and developments in graph neural networks, recent

works leverage variants of graph deep learning, modeling brain signals with data-driven

models and getting rid of Gaussian assumptions that typically existed in linear models

[45, 46]. These methods are making progress on identifying physiological characteristics

and brain disorders: In [47], authors combine grad-CAM [48] and GIN [49] to highlight

brain regions that are responsible for gender classification with resting-state fMRI data.

Others [50] propose to use regularized pooling with GNN to identify fMRI biomarkers.

However, these works use time-averaged fMRI, losing rich dynamics in the temporal

domain. They also do not incorporate structural modality that can provide additional

connectivity information missing in the functional modality. Another work [51] embeds

both topological structures and node signals of fMRI networks into a low-dimensional la-

tent representation for better identification of depression, but it combines nodes’ temporal

33

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

and feature dimensions instead of handling them separately, leading to a suboptimal rep-

resentation (as discussed in section 3.2.3). To overcome these issues, we propose ReBraiD

(Deep Representations for Time-varying Brain Datasets), a graph neural network model

that jointly models dynamic functional signals and structural connectivities, leading to

a more comprehensive deep representation of brain dynamics.

To simultaneously encode signals along spatial and temporal dimensions, some works

in traffic prediction and activity recognition domains such as Graph WaveNet [52] alter-

nate between TCN (temporal convolution network) [53] and GCN (graph convolutional

network) [54]. Others [55, 56] use localized spatial-temporal graph to embed both do-

mains’ information in this extended graph. Some proposed methods also incorporate

gated recurrent networks for the temporal domain such as [57, 58]. We choose to alter-

nate TCN with GCN layers for ReBraiD, as it is more memory and time-efficient and can

support much longer inputs. On top of this design, we propose novel “sample-level adap-

tive adjacency matrix learning” and “multi-resolution inner cluster smoothing,” both of

which learn and refine latent dynamic structures. With the choice of the temporal layer,

our model is more efficient than other baselines while having the highest performance.

After introducing the proposed model in details (section 3.2.2), we perform extensive

ablation studies to examine individual components of the model, explore the best option

when alternating spatial and temporal layers for encoding brain activities, and quantita-

tively show the representation ability of our model (section 3.2.3). Equally important as

finding a good representation of brain dynamics is interpreting them. In section 3.3, we

utilize IG (integrated gradients) [59] to identify how brain ROIs participate in various

processes. This can lead to better behavioral understanding, discovery of biomarkers, and

characterization of individuals or groups. We also make the novel contribution of iden-

tifying temporally important frames with graph attribution techniques; this can enable

more fine-grained temporal analysis around keyframes when combined with other imag-

34

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

ing modalities such as EEG (electroencephalogram). In addition, our subject-level and

group-level attribution studies unveil heterogeneities among ROIs, tasks, and individuals.

3.2 Spatial-Temporal GNN for Learning

Multi-Modality Brain Representation

In this section, we present ReBraid, an efficient graph neural network model that

jointly models both structural and dynamic functional brain signals, providing a more

comprehensive representation of brain activities when compared to the current fMRI lit-

erature. Unlike typical spatial-temporal GCNs that learn a universal latent structure, we

propose sample-level latent adaptive adjacency matrix learning based on input snippets.

This captures the evolving dynamics of a task better. We also propose multi-resolution

inner cluster smoothing, which effectively encodes long-range node relationships while

keeping the graph structure, enabling the model to leverage structural and latent ad-

jacency matrices throughout the process. Together with subject SC and sample-level

adjacency matrix learning, the inner cluster smoothing learns and refines latent dynamic

structures on limited signal data. We carry out extensive ablation studies and model

comparisons to show ReBraid’s superiority in representing brain dynamics.

3.2.1 Preliminary

We utilize two brain imaging modalities mapped onto the same coordinate: SC (struc-

tural connectivity) from DWI scans, and time-varying fMRI scans. We represent them

as a set of L graphs Gi = (Ai, Xi) with i ∈ [1, L]. Ai ∈ RN×N represents the normalized

adjacency matrix with an added self-loop: Ai = D̃
− 1

2
SCi

˜SCiD̃
− 1

2
SCi

, ˜SCi = SCi + IN and

D̃SCi
=

∑
w(˜SCi)vw is the diagonal node degree matrix. Graph signal matrix obtained

35

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

fMRI signals

learnable adp

A1_adp

1x1
Conv

TCNemb

TCNgate

tanh GNNemb

GNNpool

inner-cluster
smooting

2 pooling layers
on node axis

predicted class
distribution

MLP

linear
linear
linear

residual
linear

explicit

ba
tc

h
si

ze

ba
tc

h
si

ze

A2_adp
A3_adp

A1
A2

A3

latent

......

X1
X2

X3
...

Figure 3.1: The proposed ReBraiD model for integrating brain structure and dynamics
(the architecture shown is for classification). For each batch with batch size B, input X
has a dimension of (B, 1, N, T), and A,Aadp both have the dimension (B,N,N). Note:
axis order follows PyTorch conventions. The dimension at the second X index is the
expanded feature dimension. The encoder (green part) encodes temporal and spatial
information alternately, producing a latent representation in (B, dlatent, N, 1). These em-
beddings are followed by linear layers for pooling and classification. The final output has
a dimension of (B,C).

from fMRI scans of the ith sample is represented as Xi ∈ RN×T . Here N is the number

of nodes, and each node represents a brain region; T is the input signal length on each

node. We refine our representation using the task of classifying brain signals Gi into one

of C task classes through learning latent graph structures.

3.2.2 Method

ReBraiD takes (A,X) as inputs and outputs task class predictions. The overall

model structure is shown in fig. 3.1. For the ith sample Xi ∈ RN×1×T , the initial 1 × 1

convolution layer increases its hidden feature dimension to dh1, outputting (N, dh1, T).

The encoder then encodes temporal and spatial information alternately, and generates

a hidden representation of size (N, dh2, 1). The encoder is followed by two linear layers

to perform pooling on node embeddings and two MLP layers for classification. Cross

36

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Figure 3.2: Functional connectivities (FCs) among N brain regions, where each
FC ∈ RN×N . The value at FCij is calculated as the Pearson correlation coefficient
between signals of brain region i and region j. The figure shows 6 FCs calculated from
6 consecutive sliding windows within the same fMRI session, with signal window length
being 30 and sliding stride being 30. From the figure, we can clearly tell that FCs are
highly dynamic.

entropy is used as the loss function: LCE = −
∑

i yi log ŷi, where yi ∈ RC is the one-hot

vector of ground truth task labels and ŷi ∈ RC is the model’s predicted distribution. We

now explain the different components of the model.

I. Learning sample-level latent graph structures

Structural scans serve as our graph adjacency matrices. However, they remain fixed

across temporal frames and across tasks. In contrast, FC (functional connectivities) are

highly dynamic, resulting in different connection patterns across both time and tasks,

as shown in fig. 3.2. To better capture dynamic graph structures, we learn an adaptive

adjacency matrix from each input graph signal. Unlike other works such as [52] that use

a universal latent graph structure, our model does not assume that all samples share the

same latent graph. Instead, our goal is to give each sample a unique latent structure

that can reflect its own signaling pattern. This implies that the latent adjacency matrix

cannot be directly treated as a learnable parameter as a part of the model. To solve

this, we minimize the assumption down to a shared projection Θadp that projects each

input sequence into an embedding space and use this embedding to generate the latent

graph structure. Projection Θadp can be learned in an end-to-end manner. The generated

adaptive adjacency matrix for the ith sample can be written as follows (Softmax is applied

37

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

dilation 1

dilation 2

dilation 4

causal
paddings

strided TCN dialated causal TCN

Figure 3.3: Comparison of strided non-causal TCN (left) and dilated causal TCN
(right). For a causal TCN, the causal aspect is achieved through padding (kernel size −
1) × dilation number of zeros to the layer’s input. The resulting y always has the same
length as input x, in which yτ only depends on inputs xt≤τ . We can view strided non-
causal TCN as the rightmost node of a dilated causal TCN.

column-wise):

Ai adp = Softmax
(

ReLU
(

(XiΘadp) (XiΘadp)⊤
))

,Θadp ∈ RT×hadp (3.1)

II. Gated TCN (Temporal Convolutional Network)

To encode signal dynamics, we use the gating mechanism as in [60] in our temporal

layers:

H(l+1) = tanh
(
TCNemb(H(l))

)
⊙ σ

(
TCNgate(H

(l))
)
, (3.2)

where H(l) ∈ RN×d×t is one sample’s activation matrix of the lth layer, ⊙ denotes the

Hadamard product, and σ is the Sigmoid function. In contrast to TCNs that are generally

used in sequence to sequence models that consist of dilated Conv1d and causal padding

along the temporal dimension ([61]), we simply apply Conv1d with kernel = 2 and stride

= 2 as our TCNemb and TCNgate to embed temporal information. The reason is twofold:

first, for a sequence-to-sequence model with a length-T output, yτ should only depend on

xt≤τ to avoid information leakage, and causal convolution can ensure this. In contrast, our

model’s task is classification, and the goal of our encoder along the temporal dimension is

to embed signal information into the feature axis while reducing the temporal dimension

38

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

to 1. The receptive field of this single temporal point (with multiple feature channels)

is meant to be the entire input sequence. Essentially, our TCN is the same as the last

output node of a kernel-two causal TCN whose dilation increases by two at each layer

(fig. 3.3). Second, from a practical perspective, directly using strided non-causal TCN

works the same as taking the last node of dilated causal TCNs, as discussed above, while

simplifying the model structure and reducing training time to less than a quarter.

III. Graph Network layer

In our model, every set of l temporal layers (section 3.2.3 studies the best l to choose) is

followed by a spatial layer to encode signals with the graph structure. Building temporal

and spatial layers alternately helps spatial modules to learn embeddings at different

temporal scales, and this generates better results than placing spatial layers after all the

temporal ones.

To encode spatial information, [54] uses the first-order approximation of spectral fil-

ters to form the layer-wise propagation rule of a GCN layer: H(l+1) = GCN(H(l)) =

f(AH(l)W (l)). It can be understood as spatially aggregating information among neigh-

boring nodes to form new node embeddings. In the original setting without temporal

signals, H(l) ∈ RN×d is the activation matrix of lth layer, A ∈ RN×N denotes the normal-

ized adjacency matrix with self-connections as discussed in section 3.2.1, W (l) ∈ Rd×d′ is

learnable model parameters, and f is a nonlinear activation function of choice. Parame-

ters d and d′ are the numbers of feature channels.

We view a GCN layer as a local smoothing operation followed by an MLP, and simplify

stacking K layers to AKH as in [62]. In ReBraiD, every graph network layer aggregates

information from each node’s K-hop neighborhoods based on both brain structural con-

nectivity and the latent adaptive adjacency matrix: thus, we have both Ai
KH(l)WK and

Ai adp
KH(l)WK adp for input H(l). We also gather different levels (from 0 to K) of neigh-

39

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

bor information with concatenation. In other words, one graph convolution layer here

corresponds to a small module that is equivalent to K simple GCN layers with residual

connections. We can write our layer as:

H(l+1) = GNN(l)
(
H(l)

)
= MLP

[
ConcatKk=1

(
H(l),ReLU(Ai

kH(l)),ReLU(Ai adp
kH(l))

)]
(3.3)

Note that in eq. (3.3), Ai ∈ RN×N and H(l) ∈ RN×d×t, and as a result their product

∈ RN×d×t. Outputs of different GNN(l) layers are parameterized and then skip-connected

with a summation. Since the temporal lengths of these outputs are different because of

TCNs, max-pooling is used before each summation to make the lengths identical.

IV. Multi-resolution inner cluster smoothing

While GNN layers can effectively pass information between neighboring nodes, long-

range relationships among brain regions that neither appear in SC nor learned by latent

Aadp can be better captured using soft assignments, similar to DiffPool[63]. To gener-

ate the soft assignment tensor S(l) that assigns N nodes into c clusters (c chosen manu-

ally), we use GNN
(l)
pool that obeys the same propagation rule as in eq. (3.3), followed by

Softmax along c. This assignment is applied to Z(l), the output of GNN
(l)
emb which carries

out the spatial embedding for the lth layer input H(l), producing clustered representation

H̃(l):

S(l) = Softmax
(

GNN
(l)
pool

(
H(ℓ)

)
, 1
)
∈ RN×c×t

Z(l) = GNN
(l)
emb

(
H(l)

)
∈ RN×d×t

H̃(l) = S(l)⊤Z(l) ∈ Rc×d×t

(3.4)

The additional temporal dimension allows nodes to be assigned to heterogeneous clusters

at different frames. We find that using coarsened A
(l+1)
i = S(l)⊤A

(l)
i S(l) ∈ Rc×c as the

40

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

graph adjacency matrix leads to worse performance compared to using SC-generated Ai

and learned Ai adp (comparison in section 3.2.3). In addition, if the number of nodes

is changed, residual connections coming from the beginning of temporal-spatial blocks

can not be used, impacting the overall performance. To continue using Ai and Ai adp as

graph adjacency matrices and to allow residual connections, we reverse-assign H̃(l) with

assignment tensor obtained from applying Softmax on S(l)⊤ along N , so that the number

of nodes is kept unchanged:

S̃(l) = Softmax
(
S(l)⊤, 1

)
∈ Rc×N×t

H(ℓ+1) = S̃(l)⊤H̃(l) ∈ RN×d×t

(3.5)

In fact, eqs. (3.4) and (3.5) perform signal smoothing on nodes within each soft-assigned

cluster. Fig. 3.4 shows a toy example: note that we will only show one time slice, and the

same operation is done along every t: on a particular t, we have Z ∈ RN×d, S ∈ RN×c. We

will use N = 3, c = 2 and node values a, b, c ∈ Rd for this toy example. In addition, this

example is just to illustrate the concept behind the smoothing operation, and Softmax

along axis 1 is simplified as row normalization for a more straightforward presentation.

In this example, 1st and 2nd nodes are assigned to the first cluster, and 2nd and 3rd nodes

are assigned to the second cluster. The final Hnew after our smoothing module will mingle

the first two nodes’ values, and the last two nodes’ values (based on assignment weights)

while keeping their original node number unchanged.

With the bottleneck c < N , the model is forced to pick up latent community struc-

tures. This inner cluster smoothing is carried out at multiple spatial resolutions: as the

spatial receptive field increases with more graph layers, we decrease cluster number c for

the assignment operation. As these GNN layers alternate with TCN layers, the inner

cluster smoothing also learns the community information across multiple temporal scales.

41

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

cluster assignment

Z =

 a
b
c

 , S =

 1 0
1
2

1
2

0 1

 ⇒ H̃ = S⊤Z =

(
a + 1

2
b

1
2
b + c

)

S̃ = row-normalized
(
ST

)
=

(
2
3

1
3

0
0 1

3
2
3

)

⇒ Hnew = S̃⊤H =

 2
3
a + 1

3
b

1
3
a + 1

3
b + 1

3
c

1
3
b + 2

3
c


Figure 3.4: Inner cluster smoothing toy example.

3.2.3 Experiments

We use fMRI signals from the CRASH dataset [64] for our experiments. The model

classifies input fMRI into six tasks: resting state, VWM (visual working memory task),

DYN (dynamic attention task), MOD (math task), DOT (dot-probe task), and PVT

(psychomotor vigilance task). We preprocess 4D voxel-level fMRI images into graph

signals G = (A,X) by averaging voxel activities into regional signals with the 200-ROI

cortical parcellation (voxel to region mapping) specified by [65]. We also standardize

signals for each region and discard scan sessions with obvious abnormal spikes that may be

caused by head movement, etc. DWI scans are mapped into the same MNI152 coordinate

and processed into adjacency matrices with the same parcellation as fMRI. Our processed

data contains 1940 scan sessions from 56 subjects. Session length varies from 265 frames

to 828 frames (see table 3.1 for details). TR (Repetition Time) is 0.91s.

The 1940 scan sessions from CRASH are separated into training, validation, and

test sets with a ratio of 0.7-0.15-0.15 (subject-wise split does not lead to any noticeable

difference). Each split receives a proportional number of samples for each class. Hyper-

parameters, including dropout rate, learning rate, and weight decay, are selected using

grid search based on validation loss. All results reported in this section are obtained from

the test set. For each scan session, we use a stride-10 sliding window to generate input

42

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Table 3.1: fMRI scan details for six tasks.

Tasks Rest VWM DYN DOT MOD PVT (Total)
Valid sessions 209 514 767 155 138 157 1940

Frames / Session 321 300 265 798 828 680 —

sequences (in the following experiments T ∈ {8, 16, 32, 64, 128, 256}) and feed them to

the model. To encode temporal and spatial information alternately, we find stacking two

TCN layers per one GNN layer leads to better performance most times (see the following

(IV)). We tested hadp = 2, 5, 10 in eq. (3.1) for our experiments, and 5 appears to be the

best; so we use this value for all the following experiments. K = 1, 2, 3 in eq. (3.3) were

tested on a few settings, and K = 2, 3 have a similar performance, both outperforming

K = 1. Since smaller values of K have smaller computation needs, we use K = 2 for all

experiment settings, meaning each GNN layer aggregates information from 2-hop neigh-

bors based on the provided adjacency matrices. We evaluate our model with weighted

F1 as the metric in order to account for the imbalance in the number of samples in each

task. Our models are written in PyTorch, trained with Google Colab GPU runtimes,

and 30 epochs are run for each experiment setting. Code is publicly available 1.

I. Model components

Ablation studies on graph adjacency matrices For each input sample Gi, we test

different options to provide graph adjacency matrices to the GNN layer. They include (i)

our proposed method: using both adaptive adjacency matrix Ai adp and SC-induced Ai,

(ii) only using Ai, (iii) only using Ai adp, (iv) replacing Ai adp in setting i with Ai FC derived

from functional connectivity, and (v) only using random graph adjacency matrices with

the same level of sparsity as real A’s. The results under different settings are reported

1https://github.com/sklin93/ReBraiD

43

https://github.com/sklin93/ReBraiD

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Figure 3.5: Ablation studies on different input lengths.

in fig. 3.5 and table 3.2.

From the results of setting (ii) plotted in fig. 3.5, we see that removing the adaptive

adjacency matrix impacts the performance differently at different input lengths: the

gap peaks for signals of length 64–128, and becomes smaller for either shorter or longer

sequences. This could suggest the existence of more distinct latent states of brain signals

of this length that structural connectivities cannot capture. On the other hand, removing

SC (setting (iii)) seems to have a more constant impact on the model performance, with

shorter inputs more likely to see a slightly larger drop. In general, only using Aadp leads

to a smaller performance drop than only using SC, indicating the effectiveness of Aadp

in capturing useful latent graph structures. More detailed studies below show that Aadp

learns distinct representations not captured by A.

As mentioned in section 3.2.2, our motivation behind creating sample-level adaptive

adjacency matrices is FC’s highly dynamic nature. Therefore, for setting (iv), we test

directly using adjacency matrices Ai FC obtained from FC instead of the learned Ai adp.

In particular, Ai FC = D̃
− 1

2
FCi

˜FCiD̃
− 1

2
FCi

∈ R200×200, where (FCi)vw = corr((Xi)v, (Xi)w),

44

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Table 3.2: Numerical values of weighted F1 of ablation study settings. Training time
ranges from 51 seconds / epoch for length-8 inputs to 298 seconds / epoch for length-256
inputs. Models converge to a relatively stable loss level within 20 epochs.

Input length (frames) 8 16 32 64 128 256
(i): SC + adp 66.19 70.18 75.87 76.14 82.91 90.85
(ii): SC only 64.54 65.58 71.79 70.31 73.63 89.79

(iii): adp only 64.32 65.20 74.01 71.42 80.63 89.46
(iv): SC + FC 66.10 67.58 70.26 75.02 76.91 84.68

(v): random adj 62.17 66.25 72.30 73.72 76.58 89.22
(vi): (i) without smoothing 63.57 62.82 70.19 65.82 72.91 79.65
(vii): (v) without smoothing 56.88 64.08 72.27 62.72 75.16 83.75

(viii): coarsened graph 37.92 42.23 46.18 52.12 57.17 64.25

˜FCi = FCi + IN and D̃FCi
=

∑
w(˜FCi)vw. Fig. 3.5 shows Ai FC constantly underperforms

Ai adp, except for being really close for length-8 inputs. Larger performance gaps are

observed for longer inputs, where Corr((Xi)v, (Xi)w) struggles to capture the changing

dynamics in the inputs. This demonstrates that our input-based latent Ai adp has better

representation power than input-based FC. We also notice batch correlation coefficients

calculation for Ai FC results in a slower training speed than computing Ai adp.

An interesting result comes from setting (v), where we use randomly generated Erdős-

Rényi graphs with the edge creation probability the same as average edge existence

probability of A’s. Its performance is similar to or even better than settings (ii) and (iii).

We examine this further in section 3.3.2.

Latent adaptive adjacency matrix Aadp The above results demonstrate latent Aadp

can complement the task- and temporal-fixed A. We now show that the learned Ai adp is

sparse for each sample, has evident task-based patterns, and provides new information

beyond Ai. The sparsity of Ai adp can be seen from fig. 3.6a: each input only gets a few

important columns (information-providing nodes in GNN). These columns vary from

one sample to another, indicating Aadp’s ability to adapt to changing inputs within the

45

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

(a) (b)

(c)

(d)

Figure 3.6: Learned latent adaptive adjacency matrices. (a) Ai adp of 3 randomly
sampled inputs during the DOT task. (b) Ai adp of 3 consecutive inputs from a same
session during the DOT task. (c) column averages of task-averaged Aadp for resting
state, VWM, DYN, DOT, MOD, PVT. (d) left two: t-SNE of X(node-2, 156)Θadp in six
tasks of one subject; right two: t-SNE of X(node-155, 156)Θadp during the resting state of
two subjects (multiple sessions are aggregated).

same task. However, when we look into inputs generated by consecutive sliding windows

(not shuffled) from the same scan session as in fig. 3.6b, we can see the latent structures

change smoothly. In addition, when we aggregate samples inside each task, noticeable

task-based patterns emerge (fig. 3.6c). These patterns are different from AttrA in fig. 3.11,

suggesting that Aadp embeds dynamics not captured by A.

Quantitatively, Ai adp entry values range between (0, 1) because of the Softmax, and

only around 2% of entries in Ai adp have values larger than 0.05. As a reference, the

largest entry value is larger than 0.99. A similar sparsity pattern is found when using

synthetic data on the same model, indicating that the sparsity is more due to the model

46

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

(a) (b) (c)

Figure 3.7: Confusion matrices of: (a) ReBraiD (our proposed model), (b) model with
coarsened graph (setting (viii)), (c) Graph Transformer (best graph baseline). Tasks
are 1-Rest, 2-VWM, 3-DYN, 4-DOT, 5-MOD, 6-PVT. Misclassification pairs clustered
at the first three tasks (resting, VWM, DYN) and the latter three (DOT, MOD, PVT).
Shown confusion matrices are from models trained on length-256 inputs. We note that
these misclassification pairs may differ for models trained on other input lengths (like
128-frame, etc.).

than the underlying biology. Given how Ai adp is used in GNN layers, each column of

it represents a signal-originating node during message passing. We hypothesize that the

model learns the most effective hubs that pass information to their neighbors. A related

idea is information bottleneck [66]: deep learning essentially compresses the inputs as

much as possible while retaining the mutual information between inputs and outputs.

In a sense, Ai adp represents the compressed hubs for a given input signal. We also

note that this sparsity emerges even without any additional constraints. In fact, adding

L1 constraints on Aadp does not change the model performance or the Ai adp sparsity

level. We hypothesize that the naturally trained Ai adp is sparse enough, and further

sparsification is unnecessary.

We visualize the projected inputs XiΘadp in fig. 3.6d, which clearly shows the task,

node and subject heterogeneities. Different tasks have varied representations in the latent

space for the same node, but DOT, MOD, PVT has similar embedding patterns across

individuals and most nodes. Indeed, when looking at the confusion matrix across models

(fig. 3.7), the misclassifications mostly cluster between these three tasks, indicating their

47

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

natural similarity. We want to note here that adding a learnable bias to XΘadp does not

separate the task embeddings further, nor does it improve overall performance. Subjects

also exhibit heterogeneity: the same pair of nodes during the same task can have different

embedding distances, thus graph edge weights, for each individual.

Multi-resolution inner cluster smoothing To verify the capability of inner cluster

smoothing operation in capturing latent graph dynamics, we test the following settings:

(vi) using our proposed model and inputs, except removing paralleled GNNpool and inner

cluster smoothing module; (vii) previous setting (v) but remove GNNpool and inner cluster

smoothing module; (viii) keep GNNpool, but using coarsened graph instead of smoothing

(essentially performing DiffPool with an added temporal dimension). In this last

setting, we hierarchically pool and reduce the graph to a single node, and we keep the

total number of GNN layers the same as our other settings. Values of soft-assigned

cluster number c are chosen to be halved per smoothing module (e.g., N/2, N/4, · · ·) for

our experiments. Different choices of c affect the model convergence rate but only have a

minor impact on the final performance (see the following). Results are reported in fig. 3.5

and table 3.2.

The above results demonstrate that both setting (vi) and (vii) outperforms (viii) by

a large margin, indicating the importance of keeping the original node number when

representing brain signals. In addition, all three settings underperform our proposed

method. They are also mostly worse than changing graph adjacency matrices as in

settings (ii)–(v): this shows the inner cluster smoothing module has a more significant

impact in learning latent graph dynamics. We also find using adaptive adjacency matrices

and inner cluster smoothing can stabilize training, making the model less prone to over-

fitting and achieving close-to-best performance over a larger range of hyperparameters

(see fig. 3.9).

48

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Apart from these three settings, we also test adding pooling regularization terms into

the loss function as follows. More specifically, for each soft assignment matrix S ∈ RN×c×t

in eq. (3.4), we test:

• Similar to DiffPool, to ensure a more clearly defined node assignment, namely

each node is only assigned to few clusters (the closer to one the better), we minimize

the entropy of single node assignments: LE1 = 1
c

∑c
i=1H(Si).

• To ensure a representation separation among nodes, meaning the assignment should

not assign all the nodes a same way, we maximize the entropy of node assignment

patterns across all nodes: LE2 = −1
c

∑c
i=1H(

∑n
j=1 Sij).

• To make the assignment along temporal axis smoother, we penalize assignment

variances within a small time window [t̂, t̂ + τ]: LT = 1
t−τ

∑t−τ
t̂=0 σ(S[t̂,t̂+τ]), where σ

represents standard deviation.

Together with cross-entropy classification loss LCE, the final loss function of the model

becomes Lreg = α1LCE + α2LE1 + α3LE2 + α4LT ,
∑

i αi = 1. However, none of these

regularization terms lead to much of a difference.

Choosing the number of GNN layers The total number of temporal layers depends

on the input signal length since each strided TCN layer reduces the temporal length by

a factor of two: if the input length is 2i, there need to be i temporal layers. But is

alternating every TCN with GNN the best strategy, or do we only need to follow one

GNN after a few TCNs? We study this question with different input lengths.

Model weighted F1 are plotted in fig. 3.8 for all possible GNN to total TCN ratios

(e.g. length-256 inputs requires 8 TCN layers. The possible ratios are 1
8
, 1
4
, 1
2
, 1 since we

can insert one GNN per 8, 4, 2, 1 TCN layers). The figure shows alternating every layer

rarely yields the highest performance and the best ratio lies around one GNN per two

49

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Figure 3.8: Choosing the number of GNN to TCN layer ratio for different input lengths.
In most cases, two TCN layers per GNN layer results in the best model performance in
terms of F1.

TCN layers for our dataset. We repeat the experiment for K = 1, 3 (in eq. (3.3)) to rule

out the possibility that this result is related to how many neighbors one GNN layer can

reach; we find they have roughly the same pattern as the K = 2 case. We hypothesize

that a lower GNN to TCN ratio does not capture enough spatial context, while higher

ones might be overfitting. We leave exploring the relationship between this ratio and the

number of nodes N to a future study.

The best GNN to TCN ratio also depends on whether model incorporates latent adja-

cency matrices or not: without Aadp, length-128 signals achieves its relative best (among

all ratios) when having one GNN per two TCNs, but it only needs one GNN per three

TCNs if using Aadp. This shows learning latent structures Aadp not only improves overall

model accuracy but can also reduce model parameters, thus complexity, in achieving

better results.

50

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Choosing the number of soft-assignment clusters During our experiments, we

find that as long as the smoothing module is used, the final performance will be close

to each other, only the convergence rates are different. Fig. 3.9b shows how validation

loss converges with different c (cluster number) or when there is no smoothing module.

From it, we can observe that halving the numbers (100-50-25-12) is the most helpful

setting, and we use it for our other experiments; decreasing the numbers (160-120-80-40)

or all larger numbers (all 100) works better than increasing the numbers (12-25-50-100)

or all smaller numbers (all 12). With the inner cluster smoothing module, all cluster

number settings converge to around 0.23 at their smallest when trained for 30 epochs;

their test weighted F1 range from 89.47 (model with 12-25-50-100) to 90.85 (model with

100-50-25-12).

On the contrary, if no smoothing module is used, the model overfits easily, and the

validation loss can only reach about 0.4 before going up (with the best set of learning

rate and weight decay parameters found with grid search). Understandably, the model

is prone to overfitting given the complexity of GNN and the relatively small dataset size.

However, our added inner cluster smoothing module effectively counters the effect and

further brings the loss down in a stable manner.

II. Model comparisons

Since we adopt a network view to studying the brain, where brain regions are treated

as graph nodes, we source our baselines from graph models. To do so, we examined

all models in PyTorch Geometric (PyG)2 and its temporal extension (PyG-T)3 as they

contain the most up-to-date and well-organized open-source graph neural network model

implementations. In particular, we compare our model with the vanilla GCN from [54],

2https://pytorch-geometric.readthedocs.io/
3https://pytorch-geometric-temporal.readthedocs.io/

51

https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric-temporal.readthedocs.io/

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

(a) (b)

Figure 3.9: (a) adding inner cluster smoothing or input-dependent adaptive adjacency
matrix makes the model more stable across various learning rates (results shown are from
length-16 inputs). (b) Validation loss v.s. training epochs. Input length is 256, and four
smoothing modules are used. Legends are the soft-assignment cluster numbers of the four
smoothing modules. Our other experiments use decreasing cluster numbers that halved
at each module, corresponding to the 100-50-25-12 choice here.

Chebyshev Graph Convolutional Gated Recurrent Unit (GConvGRU) from [57], Graph-

SAGE from [68], GAT V2 from [67] and Graph Transformer as in [69]. Baseline models

are constructed similar to ours: each has four graph encoding layers taking in both sig-

nals and adjacency matrices, followed by two linear layers along the node axis and two

linear layers for the final classification. We train baseline models with the same input,

loss, optimizer, and epoch settings (all models are well-converged). Grid search is used to

optimize the rest of the hyperparameters. We compare weighted F1 and training time per

epoch in table 3.3; we also plot our model and Graph Transformer’s confusion matrices

in fig. 3.7.

Our model shows significant performance gains and requires less training time than

graph baselines. We believe the most critical reason is that the models in PyG treat

temporal signals as feature vectors instead of placing them into a separate temporal

dimension. Without sequence modeling on the temporal dimension, even the state-of-

52

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Table 3.3: Model comparisons with length-256 inputs.

Model Weighted F1
Training time
(s / epoch)

GCN [54] 42.84 713
GAT V2 [67] 50.36 1142

GConvGRU [57] 56.05 9886
GraphSAGE [68] 61.87 1048

Graph Transformer [69] 66.11 1890
MVTS Transformer [70] 88.16 39

ReBraiD (proposed: TCN + GNN) 90.85 298
ReBraiD (TCN only) 71.98 119

ReBraiD (TCN + CNN) 75.79 124

the-art graph attention models (GAT-v2 and graph Transformer) cannot perform well.

In addition, almost all models in PyG-T assume one common graph for the inputs (appli-

cation scenarios are traffic network forecasting, link predictions, etc.), whereas we need

to feed different SC for every sample. Out of them, we were able to choose one model

(GConvGRU) that supports different adjacency matrices, but it didn’t give a satisfac-

tory result. Our proposed ideas of sample-level adaptive adjacency matrix learning and

multi-resolution inner cluster smoothing help capture latent brain dynamics and improve

performance. The higher model performance here reflects a better encoding ability of

brain signals, which can benefit different downstream tasks such as disease and trait

prediction.

In addition to graph baselines, we also tested the state-of-the-art model for multi-

variate time series classification (MVTS Transformer [70]), which has comparable per-

formance to ours. This stresses the critical role of temporal modeling when dealing with

dynamic signals, so we tested our model without GNN layers. We experiment with both

removing GNN layers altogether and replacing them with 1 × 1 CNN layers: both out-

perform graph models that focus on the spatial modeling aspect. Although these results

53

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

demonstrate that temporal modeling is crucial, adding graph modeling that includes

signals’ spatial relationships, as proposed, can further improve the performance. Since

the MVTS Transformer model has projections to generate queries, keys, and values from

the input sequence, it can also implicitly learn spatial relationships between variables

(nodes). On the other hand, explicitly adding graph components allows the model to

utilize prior structures (e.g., SC). The attribution of graph models can also provide better

interpretability of brain networks, such as identifying critical region connections, as we

will discuss in the following section.

3.3 Graph Attribution and Interpretations

In this section, we introduce how we leverage graph attribution, in particular, inte-

grated gradients, to attribute and interpret the importance of both spatial brain ROIs

and temporal keyframes, as well as heterogeneities among brain ROIs, tasks, and sub-

jects. These can open up new opportunities for identifying biomarkers for different tasks

or diseases and markers for other complex scientific phenomena.

3.3.1 Attribution with IG (Integrated Gradients)

Understanding how signals in different brain regions contribute to the final classifi-

cation outputs has many important applications in neuroscience, as we have mentioned.

As one approach to model interpretability, attribution assigns credits to each part of the

input, assessing how important they are to the final predictions. [71] gives an extensive

comparison between different graph attribution approaches, in which IG [59] is top-

performing and can be applied to trained models without any alterations of the model

structure. IG also has other desirable properties, such as implementation invariance,

that other gradient methods lack. It is also more rigorous and accurate than obtain-

54

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

ing explanations from attention weights or pooling matrices that span multiple feature

channels. Intuitively, IG calculates how real inputs contribute differently compared to

a selected baseline; it does so by aggregating model gradients at linearly interpolated

inputs between the real and baseline inputs.

In order to apply IG, we calculate attributions at each point of both input A ∈ RN×N

and X ∈ RN×T for each sample:

AttrGvw = (Gvw − G ′
vw) ×

M∑
m=1

∂F (GIntrpl)

∂GIntrplvw

× 1

M
,

G = (A,X), GIntrpl = G ′ +
m

M
× (G − G ′)

(3.6)

F (G) here represents our signal classification model, M is the step number when

making Riemann approximation of the path integral, and G ′ is the baselines of G (see

section 3.3.2 for more details). Note that eq. (3.6) calculates the attribution of one edge

or one node on one sample. The process is repeated for every input point, so attributions

AttrA,AttrX have identical dimensions as inputs A,X. To obtain the brain region

importance of a task, we aggregate attributions across multiple samples of that task.

3.3.2 Experiments

This section studies the contributions of different brain ROIs and subnetworks defined

by their functionalities. For the subnetwork definition, we choose to use the 17 networks

specified in [1], which has a mapping from our previous 200-ROI parcellation4. To select

baseline inputs, we follow the general principle for attribution methods: when the model

takes in a baseline input, it should produce a near-zero prediction, and Softmax(outputs)

should give each class about the same probability in a classification model. All-zero

baselines A′ and X ′ can roughly achieve this for our model, so we choose them as our

4https://github.com/ThomasYeoLab/CBIG/blob/master/stable projects/brain parcellation

55

https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

baseline inputs. Step number M is set to 30. The IG computation is done on 900 inputs

for each task to get an overall distribution.

The extracted high-attribution regions and connections should be reproducible across

different initializations to be used for downstream tasks. Since the overall problem is

non-convex, we empirically test and confirm the attribution reproducibility with two

randomly initialized models before proceeding to the following analyses. In addition, [71]

demonstrates IG’s consistency (reproducibility among a range of hyperparameters) and

faithfulness (more accurate attribution can be obtained with better-performing models).

Since our model has higher performance with longer inputs, we compute IG attributions

of a model trained on length-256 input signals in this section.

I. Temporal importance

On the single input level, we can attribute which parts of the inputs in Gi are more

critical in predicting the target class by looking into (AttrX)i. This attribution map

not only shows which brain regions contribute more but also reveals the important signal

frames. One critical drawback of fMRI imaging is its low temporal resolution, but if we

know which part is more important, we can turn to more temporally fine-grained signals

such as EEG to see if there are any special activities during that time. To confirm that

the attributions we get are valid and consistent, we perform a sanity check of IG results on

two overlapped inputs with an offset τ : the first input is obtained from window [t0, t0+T]

and the second is obtained from window [t0 + τ, t0 + τ + T]. Offset-aligned results are

shown in fig. 3.10a, in which the attributions agree with each other quite well.

II. Spatial importance

We examine the connection importance between brain ROIs by looking at AttrA.

In particular, columns in AttrA with higher average values are sender ROIs of high-

56

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

(a) (b)

Figure 3.10: (a) Temporal importance sanity check of IG results on two pieces of
inputs with a large overlap period. Attribution maps are offset-aligned. (b) AttrX

distributions across 17 brain subnetworks (defined as in [1]) for VWM.

contributing connections, which is what matters in the GNN operation. We also explore

why using random graph adjacency matrices (setting (v) in section 3.2.3) can produce

a similar result for length-256 inputs compared to using both SC-induced Ai and Ai adp

(setting (i)). By examining AttrA under both settings (fig. 3.11), we see that the column

averages of AttrA under these two settings are similar for almost all tasks, meaning the

model can learn the important signal sending regions relatively well even without explicit

structures. We credit this ability primarily to multi-resolution inner cluster smoothing, as

the performance drops notably without it (setting (vii)). However, using ground truth SC

not only gives us higher performance for shorter inputs but also provides the opportunity

to interpret brain region connections better. We can directly use task-averaged AttrA

as the weighted adjacency matrix to plot edges between brain ROIs, just as in fig. 3.12.

Important discriminatory brain regions obtained from AttrA mostly comply with the

previous literature:

• Resting state: The top attributed ROIs belong to the default mode network, which

57

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

is regarded salient during the resting state [37].

• VWM: The dominant attributions are from visual regions and posterior parietal

regions, which complies with [72].

• DYN: Attributions from our model suggest regions along the cingulate gyrus (defaultA-

SalValAttnB-ContA-ContC-defaultC), as well as peripheral visual and somatomo-

tor regions. Literature suggests anterior cingulate cortex (ACC) to be active [73]

and posterior cingulate cortex (PCC) to be inactive [74] during visual attention

tasks. This means both regions provide discriminative information about the DYN

states, which is what our attribution method votes for.

• DOT: Important ROIs from our analysis are located in control networks, in par-

ticular both ACC and PCC, as well as in the peripheral visual system. In the

literature, dorsal and rostral regions of the ACC are proven to be involved with

dot-probe performance [75, 76].

• MOD: Our important ROIs are mostly in temporal-parietal regions and default

mode network (anatomically frontoparietal), and literature suggests similar regions:

parietal [77] and prefrontal [78].

• PVT: Our top attributed ROIs belong to control networks, attention networks,

and somatomotor regions. This is similar to [79], where both attention and motor

systems are considered important.

In addition to AttrA, AttrX can also provide insights on spatial importance when

the attribution maps are aggregated along the temporal dimension. But it does so from

another perspective: based on how the model takes in the inputs, larger AttrA implies

critical structural connections between brain regions, meaning that information passing

58

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Figure 3.11: Column averages of task-averaged AttrA (mapped into 34 subnetworks
defined by the 17-network parcellation with left, right hemispheres). The top row is
obtained from real SC-induced A and the bottom row is obtained from random SC-
induced Arand. Attributions are normalized to [0, 1]. Tasks are: Rest, VWM, DYN,
DOT, MOD, PVT from left to right.

Figure 3.12: ROI attributions from AttrA and AttrX . (Task order is the same as
fig. 3.11). Edge color and width are based on task-averaged AttrA ∈ R200×200, and node
color and size are based on task and temporal-averaged AttrX ∈ R200. For visualization,
only edges with highest attributions are shown (the resulting sparsity reduces to 0.009
from 0.196).

between those regions is deemed essential in classifying task states. In contrast, larger

AttrX reveals regions or subnetworks that are sources of the important signals : it does

not matter if the signal activities propagate from one region to another. Instead, the

signals themselves are crucial for differentiating between task states. We notice that

signal-important ROIs are not necessarily the same as connection-important ROIs: top-

ranked subnetworks for resting state are DefaultA and DefaultB by AttrA, and VisCent

and DorsAttnA by AttrX ; although they do coincide with each other for tasks like VMN.

This disparity is reflected in fig. 3.12 as edge and node differences. Another observation

59

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

is that DYN and PVT have similar AttrA patterns; both have a high attribution on

connections originating from visual, control, and somatomotor systems. But when look-

ing at AttrX , DYN and PVT are extreme opposites. For example, PVT has a very high

AttrX for a few ROIs in LH SomMotA, DorsAttnA TempOcc, and RH VisCent ExStr,

while DYN has very low AttrX for them. This suggests that the model uses these

ROIs’ activities to distinguish between the two tasks. Therefore, the attributions are not

absolute but relative to what they are compared against. As a result, when identifying

biomarkers with attribution, it is crucial to have contrasts—for example, different tasks,

different disease states, etc.

In fig. 3.10b, we plot the distribution of time-averaged and subnetwork-averaged

(mapping 200 ROIs into 17 subnetworks) AttrX during the VWM task. We can see

the clear dominance of VisCent, DorsAttnA, and ContA subnetworks (numbered as 1, 5,

11), indicating signals from these regions are useful for the model to decide if the input is

from the VWM task. More informative than the rankings is the distribution itself: even

though VisCent, DorsAttnA, and ContA ranked top 3 for both resting state and VWM

for signal attributions, their relative importance, and attribution distribution variances

are drastically different. In a sense, the distribution can act as a task fingerprint based

on brain signal states.

III. Group, session, and region heterogeneity

Average variances of attributions are very different across tasks, especially those of

AttrX : VWM and DYN have much smaller attribution variances compared to other

tasks. This can be caused by either task dynamics when certain tasks have more phase

transitions and brain status changes, or/and group heterogeneity when individuals carry

out specific tasks more differently than others. We investigate this by examining three

subjects that have multiple scan sessions for every task.

60

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

Figure 3.13: 34 subnetworks’ AttrX distributions of 3 subjects performing the VWM
task (left) and the MOD task (right). Outliers that go beyond [Q1−1.5 IQR, Q3+1.5 IQR]
are omitted. VWM has a much smaller average attribution variance than MOD.

We report the following findings: (1) Even only aggregating attributions over a single

subject’s sessions, attribution variances of the other four tasks are still larger than VWM

and DYN. And these variance values are comparable to that of aggregating over many

subjects. This means the large variances are not mainly due to group heterogeneity;

rather, some tasks have more states than others. (2) There is still group heterogeneity

apart from different task dynamics, and group heterogeneity is also more evident for

tasks with more dynamics (high attribution variances). We can see from fig. 3.13 that

attributions for VMM are much more concentrated and universal across subjects than

that of MOD. (3) Flexibility of different subnetworks varies: subnetworks with small

distribution IQR (interquartile range) of the same subject’s different sessions are also

more consistent across subjects. One example is that subnetwork 18 during the MOD

task has both higher within-subject IQR and more significant across-subject differences

than subnetwork 19. This indicates that for a particular task, some subnetworks are

more individual and flexible (may activate differently across time), while others are more

collective and fixed. In summary, we can find both critical regions that a particular task

must rely on and regions that can characterize individual differences during tasks.

61

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

(a) A (b) Simulation (i) AttrX of 200 nodes

(c) Simulation (i) Aadp of 200 nodes

(d) Simulation (ii) Aadp and AttrA of 200 nodes

Figure 3.14: (a) A typical adjacency matrix for simulated graph signals. (b) Task
averaged AttrX of simulation (i). Attribution values are normalized. (c) Task averaged
Aadp of simulation (i) and its entry averages per column. (d) Task averaged Aadp and
task averaged AttrA of simulation (ii). Attribution values are normalized.

IV. Simulation study

To validate the results of our interpretations, we perform simulation studies with

known ground truth. All graphs are generated with SBM (stochastic block model) using

the same community structure (200 nodes, 10 communities), but each graph has its own

adjacency matrix. This generation process mimics brain structures in that samples share

similar community structures but have distinct structural connectivities. Fig. 3.14a

shows a typical adjacency matrix of a synthetic graph. All adjacency matrices are bi-

nary. Time-series on each node are then generated with code adapted from pytorch-gnn

62

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

repository 5. In particular, the value at each time step of each node is a small temporal

Gaussian random noise plus signals from neighbors’ (a small spatial Gaussian noise is

added to the adjacency matrix) previous step.

Simulation (i) We create two classes for this simulation. In class one, only the first

three communities (nodes 1–60) generate small temporal noises, and other nodes are

only affected by neighbors. In class two, only the last three communities (nodes 141–

200) generate small temporal noises, and other nodes are only affected by neighbors. We

visualize the task aggregated AttrX and Aadp and in figs. 3.14b and 3.14c. The signals

are characterized well in AttrX . For the generated series, signals are more important

in node 1–60 for class 1 and 141–200 for class 2: Aadp finds this pattern and helps

propagate signals in these regions better. We notice that AttrA is mostly random, with no

apparent patterns. This is consistent with the graph signal generation: when aggregating

information from neighbors, all connected edges are weighted the same (binary); thus,

the connections do not affect generated signals. We perform the following study to

understand the opposite effect.

Simulation (ii) We again create two classes for the simulation: in class one, connec-

tions from nodes 61–100 are strengthened; in class two, connections from nodes 101–140

are strengthened. The weights of strengthened edges are increased from 1 to 5 during

signal generation. However, the model still takes in binary adjacency matrices as inputs

(processed as mentioned in section 3.2.1 before feeding to the model). We visualize the

task aggregated Aadp and AttrA in fig. 3.14d. This time the connection differences are

reflected in AttrA. Signals in node 61–100 for class 1 or 101–140 for class 2 are less im-

portant because stronger connections can send these signals out: this results in smaller

5https://github.com/alelab-upenn/graph-neural-networks

63

https://github.com/alelab-upenn/graph-neural-networks

Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI Chapter 3

values for corresponding columns in Aadp. Combined with the previous simulation re-

sults, this suggests that strong signal-sending regions or regions with weak connections

that are over-reflected in the graph adjacency matrix tend to have higher Aadp values. In

other words, Aadp complements both signals and connections to encode latent dynamics,

while attributions obtained from IG are better at interpreting the modalities separately.

3.4 Conclusion

This chapter proposes ReBraiD, a high-performing and efficient graph neural net-

work model that embeds both structural and dynamic functional signals for a more

comprehensive representation of brain dynamics. To better capture latent structures,

we propose sample-level adjacency matrix learning and multi-resolution inner cluster

smoothing. Apart from quantitative results showing ReBraiD’s superiority in represent-

ing brain activities, we also leverage integrated gradients to attribute and interpret the

importance of both spatial brain regions and temporal keyframes. The attribution also

reveals heterogeneities among brain regions (or subnetworks), tasks, and individuals.

These findings can potentially reveal new neural basis, biomarkers of tasks or brain dis-

orders when combined with behavioral metrics. They can also enable more fine-grained

temporal analysis around keyframes when combined with other imaging techniques and

extend to different scientific domains with sample (subject) heterogeneity.

64

Chapter 4

Going Beyond Brain Modalities:

Reconstructing Observed Complex

Images from Brain Activities

Understanding how the brain encodes external stimuli and how these stimuli can be

decoded from the measured brain activities are long-standing and challenging questions in

neuroscience. In this chapter, we focus on reconstructing the complex image stimuli from

fMRI (functional magnetic resonance imaging) signals, and will also briefly touch upon

the encoding direction. Unlike previous works that reconstruct images with single objects

or simple shapes, our work aims to reconstruct image stimuli that are rich in semantics,

closer to everyday scenes, and can reveal more perspectives. However, data scarcity of

fMRI datasets is the main obstacle to applying state-of-the-art deep learning models

to this problem. We find that incorporating an additional text modality is beneficial

for the reconstruction problem compared to directly translating brain signals to images.

Therefore, the modalities involved in our method are: (i) voxel-level fMRI signals, (ii)

observed images that trigger the brain signals, and (iii) textual description of the images.

65

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

To further address data scarcity, we leverage an aligned vision-language latent space pre-

trained on massive datasets. Instead of training models from scratch to find a latent

space shared by the three modalities, we encode fMRI signals into this pre-aligned latent

space. Then, conditioned on embeddings in this space, we reconstruct images with a

generative model. The reconstructed images from our pipeline balance both naturalness

and fidelity: they are photo-realistic and capture the ground truth image contents well.

In the following sections, we first validate our main argument: incorporating text

modality into brain visual encoding/decoding process is beneficial (section 4.1), then we

present our brain decoding pipeline (section 4.2), and finally, briefly demonstrate that

brain encoding process can be performed with the same central principle (section 4.3).

Understanding the importance of semantic representation of human visual system can

lead to many future research, and we discuss some of them in section 4.4.

4.1 Incorporating Additional Text Modality

In an effort to understand visual encoding and decoding processes, researchers in

recent years have curated multiple datasets recording fMRI signals while the subjects

are viewing natural images [80, 81, 82, 83]. In particular, the Natural Scenes Dataset

(NSD [80]) was built to meet the needs of data-hungry deep learning models, sampling at

an unprecedented scale compared to all prior works while having the highest resolution

and signal-to-noise ratio (SNR). In addition, all the images used in NSD are sampled

from MS-COCO [84], which has far richer contextual information and more detailed

annotations compared to datasets that are commonly used in other fMRI studies (e.g.,

Celeb A face dataset [85], ImageNet [86], self-curated symbols, grayscale datasets). This

dataset, therefore, offers the opportunity to explore the decoding of complex images that

are closer to real-life scenes.

66

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Human visual decoding can be categorized into stimuli category classification [87],

stimuli identification [88], and reconstruction. We focus on stimuli reconstruction in

this study. Different from previous efforts in reconstructing images from fMRI [89, 90,

91, 92, 93, 82, 94], we approach the problem with one more modality, that of text. The

benefits of adding the text modality are threefold: first, the brain is naturally multimodal.

Research [95, 96, 97] indicates that the brain is not only capable of learning multisensory

representations, but a larger portion of the cortex is engaged in multisensory processing:

for example, both visual and tactile recognition of objects activate the same part of the

object-responsive cortex [98]. Visual-linguistic pathways along the border of the occipital

lobe [99] also bring a more intertwined view of the brain’s representation of these two

modalities. Second, multimodal deep models tend to explain the brain better (having

higher representation correlations) than the visual-only models, even when compared

with activities in the visual cortex [100]. Lastly, our goal is to reconstruct complex

images that have multiple objects in different categories with intricate interactions: it is

natural to incorporate contextual information as an additional modality.

Instead of training a model to map all three modalities (fMRI, image, text) to a

unified latent space, we propose to map fMRI to a well-aligned space shared by image

and text, and use conditional generative models to reconstruct seen images from repre-

sentations in that space. This design addresses the data scarcity issue of brain datasets

by separating fMRI from the other two modalities. In this way, a large amount of data

is readily available to learn the shared visual-language representation and to train a gen-

erative model conditioned on this representation. Furthermore, pre-trained models can

be utilized to make the whole reconstruction pipeline more efficient and flexible.

Recent developments in contrastive models allow more accurate embeddings of im-

ages and their semantic meanings in the same latent space. This performance is realized

using massive datasets: models such as CLIP [101] and ALIGN [102] utilize thousands of

67

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Figure 4.1: Category-wise AUC-ROC of multi-label classifiers that predicts from four
different signal/embedding sources. The first 80 categories are “things categories” and
the last 91 are “stuff categories” in COCO.

Table 4.1: Numerical AUC-ROC values of the classifiers presented in fig. 4.1.

AUC-ROC ”things” categories ”stuff” categories Overall
Performance w.r.t.

fMRI (%)

CLIP 0.9718 ± 0.0266 0.8973 ± 0.0639 0.9318 ± 0.0624 112.36
fMRI 0.8704 ± 0.0557 0.7937 ± 0.0824 0.8293 ± 0.0807 100.00

fMRI-mapped CLIP 0.8468 ± 0.0604 0.7817 ± 0.0733 0.8119 ± 0.0748 97.90
ResNet-50 0.7061 ± 0.0736 0.7032 ± 0.0719 0.7044 ± 0.0725 84.94

fMRI-mapped ResNet-50 0.5410 ± 0.1106 0.5520 ± 0.0941 0.5469 ± 0.1020 65.95

millions of image-text pairs for representation alignment. In comparison, brain imaging

datasets that record pairs of images and fMRI range from 1.2k to 73k samples, making

it difficult to learn brain encoding and decoding models from scratch. However, we can

utilize aligned embeddings obtained from pre-trained contrastive models as the interme-

diary and generate images conditioned on these embeddings. In what follows, we show

that utilizing rich semantic space, in particular, the CLIP space, better captures brain

dynamics than the traditional image latent space.

68

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

4.1.1 CLIP Space as the Intermediary

In this section, we show that multimodal embedding space, particularly the CLIP

space, is beneficial for brain signal decoding. To this end, we trained a set of multi-label

category classifiers to classify if a certain object category exists in the image based on the

following inputs: (1) image-triggered fMRI xfmri ∈ R15724; (2) image CLIP embeddings

himg ∈ R512; (3) CLIP embeddings mapped from image-triggered fMRI h′
img ∈ R512; (4)

image ResNet embeddings ResNet(ximg) ∈ R2048 (obtained from Layer4, the final block

before fully connected layers). All classifier models consist of 3 linear layers with ReLU

activations in between, and finish with a Sigmoid activation. For fMRI signals, we use

(2048, 512) as the hidden dimension; for CLIP embeddings (setting (2) and (3)), we use

(384, 256) as hidden dimensions; and for the ResNet embedding, we use (512, 256) as

hidden dimensions. The final output covers 171 classes, including 80 things categories

(bounded objects, like “person”, “car”), and 91 stuff categories (mostly unbounded ob-

jects, like “tree”, “snow”).1 Binary cross-entropy loss is used for each class to predict its

existence in the input image.

Fig. 4.1 shows the category-wise AUC-ROC. The result demonstrates that CLIP

embeddings contain the most object-level information about the image out of all the input

sources. Following it, fMRI signals are also surprisingly very predictive, considering they

carry a lot of noise. The performance discrepancy between settings (2) and (3) is minimal,

meaning mapping fMRI signals into the CLIP space retains most of the fMRI signals’

information: this provides strong support for the validity of our design. Lastly, ResNet

embeddings perform poorly compared with other input sources. Therefore, even with

a perfect mapping model, projecting fMRI signals into this space will lose information

about the image since the expressiveness of the embedding is bounded by the lower

1Please refer to https://github.com/nightrome/cocostuff/blob/master/labels.txt for the full category
list.

69

https://github.com/nightrome/cocostuff/blob/master/labels.txt

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Figure 4.2: Sample-wise AUC-ROC of multi-label classifiers that predicts from five
different signal/embedding sources as the number of samples in stimulus images increases.

performer. In addition, we note that both CLIP embeddings and fMRI have poorer

performance on stuff categories than on things categories, whereas ResNet embeddings

do not. This can indicate brain signals align better with the multimodal CLIP space

than with single-modality ResNet space. In addition, when the number of objects in

the image increases, per-sample classification performance using CLIP, fMRI, and fMRI-

mapped CLIP vector as inputs gradually decreases (the only difference is the single-object

case). In contrast, ResNet inputs do not exhibit this property (fig. 4.2). We hypothesize

that CLIP vectors can better mimic the cognitive overload when the scene becomes more

crowded. Previous brain signal decoding work utilizing pre-trained generators all relied

on image-only embedding spaces (ResNet-50 [92], VGG19 [94]), and we believe moving

to a multimodal latent space is a crucial step towards better brain signal decodings.

Similar to our conclusion here, previous evidence also suggests that the brain represents

thousands of object categories by organizing them into a continuous semantic similarity

space that is mapped systematically across the visual cortex [103], and a very recent

70

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

work proposes that a central objective of the visual system is transforming visual input

into rich semantic scene descriptions [104].

4.2 Brain Decoding

To the best of our knowledge, this is the first work on reconstructing complex images

from human brain signals. It provides an opportunity to study the brain’s visual decoding

in a more natural setting than using object-centered images. Compared to previous

works, it also decodes signals from more voxels and regions, including those outside the

visual cortex, that are responsive to the experiment. This inclusion allows us to study

the behavior and functionality of more brain areas. We address the data scarcity issue

by incorporating additional text modality and leveraging pre-trained latent space and

models. For the reconstruction, we focus on semantic representations of the images while

taking low-level visual features into account. Our results show we can decode complex

images from fMRI signals relatively faithfully. We also perform microstimulation on

different brain regions to study their properties and showcase the potential usages of the

pipeline.

4.2.1 Method

Our overall pipeline is shown in fig. 4.3. We use pre-trained CLIP image and text

encoders to provide the representations of image stimuli and their captions. we first

map fMRI signals to these CLIP embeddings, then pass these vectors to a conditional

generative model for image reconstruction.

71

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

(a) (b)

Figure 4.3: The pipeline for reconstructing seen images from fMRI signals. (a) details
different components, from collected data to the reconstructed image. The pipeline is
trained in two stages: during the first stage, mapping models fmi, fmc are trained to
encode fMRI activities into the CLIP embedding space. In the second stage, conditional
generator G and contrastive discriminator D are finetuned while both fmi, fmc are kept
frozen. (b) shows the image generation process once models are trained.

I. Caption screening

Each image ximg in the COCO dataset has five captions {xcap1 , · · · ,xcap5} collected

through Amazon’s Mechanical Turk (AMT), and in nature, these captions vary in their

descriptive ability. Fig. 4.4 shows a sample image with its five captions, and we can tell

captions (2) and (3) are more objective and informative than caption (4) when it comes

to describing the content of that image, thus are more helpful to serve as the image

generation condition. We utilize pre-trained CLIP encoders to screen the high-quality

captions since representations in the CLIP space are trained to be image-text aligned.

A caption with an embedding more aligned to the image embedding is more descriptive

than a less aligned one; it is also less general and more specific to this particular image

because of the contrastive loss in CLIP. For the screening, we pass each image together

with its five captions to the CLIP model, which outputs corresponding probabilities that

the captions and image are proper pairs. We keep captions with probabilities larger than

72

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Figure 4.4: Image caption screening through CLIP encoders. For this sample, threshold
is put at half of the largest probability: 0.5 × 0.519. Therefore, captions (2) and (3) of
the image are kept.

half of the highest probability. After screening out less informative captions, we have one

to three high-quality captions per image.

II. Mapping fMRI signals to CLIP space

Each fMRI signal that reflects a specific image is a 3D data volume, and the value on

position (i, j, k) is the relative brain activation on this voxel triggered by the image. We

apply an ROI (region of interest) mask on this 3D volume to extract signals of cortical

voxels that are task-related and have good SNRs. The signal is then flattened into a 1D

vector and voxel-wise standardized within each scan session. The end results xfmri are

used by our image reconstruction pipeline. We choose to use the ROI with the widest

region coverage, and the length N of xfmri ranges from 12682 to 17907 for different brains

in the NSD dataset.

Our goal is to train two mapping models, fmi and fmc in fig. 4.3 (collectively denoted

as fm), that encodes xfmri ∈ RN to himg = Cimg(ximg) ∈ R512 and hcap = Ctxt(xcap) ∈ R512

respectively. Here Cimg, Ctxt are CLIP image and text encoders, and xcap is one of the

image captions chosen randomly from the vetted caption pool. We construct both fm as a

CNN with one Conv1D layer followed by four residual blocks and three linear layers. The

training objective is a combination of MSE loss, cosine similarity loss, and contrastive

loss on cosine similarity. We use the infoNCE definition [105] of contrastive loss, for the

73

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

ith sample in a batch of size B:

Contra(a(i), b(i)) = −Ei

[
log

exp(cos(a(i), b(i))/τ)∑B
j=1 exp(cos(a(i), b(j))/τ)

]
(4.1)

For the mapping model fmi that encodes fMRI to image embeddings, we have h
(i)
img

′
=

fmi(x
(i)
fmri). The training objective is:

Lmi = Ei

[
α1||h(i)

img

′
− h

(i)
img||

2
2 + α2(1− cos(h

(i)
img

′
,h

(i)
img))

]
+ α3Contra(h

(i)
img

′
,h

(i)
img), (4.2)

where τ, α1, α2, α3 are non-negative hyperparameters selected through sweeps. The loss

Lmc for caption embedding mapping model fmc is defined similarly. Although CLIP

embeddings are trained to be aligned, there are still systematic differences between image

and text embeddings, with embeddings under each modality showing outlier values at a

few fixed positions. In addition, we also notice the generated images emphasize either

image content (object proximity, shape, etc.) or semantic features depending on which

condition we use. Therefore, including both embeddings as the conditions for a generator

can cover both ends, and that is why we train two mapping models for the two modalities.

Since the outlier indices are fixed for each modality across images, clipping the value

should not affect image-specific information. Therefore, before normalizing the ground

truth embeddings into unit vectors, we set h = clamp(h,−1.5, 1.5). This can greatly

improve the mapping performance during training. See fig. 4.5 for the visualizations of

CLIP embeddings that show image and text embedding differences, effect of thresholding

(as well as effects of image augmentation and random caption selection that will be

discussed later).

74

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

(a)

(b)

(c)

Figure 4.5: CLIP vector visualizations and thresholding. (a) before (left column) v.s.
after (right column) thresholding at ±1.5 to remove outliers. There are systematic
differences between CLIP image embeddings and text embeddings; the outliers
typically occur at the same positions for each modality. (b) the caption screening process
can make the kept caption embeddings more aligned. (b)1 and (b)2 are from the same
sample, only difference is the screening process. (c) (thresholded) embeddings of the
same image with different augmentations; embeddings of same image’s different screened
captions. All embeddings are shown the first 200 values for visualization purposes.

III. Image reconstruction with CLIP embedding conditioning

The mapping models output fMRI-mapped CLIP embeddings h′
img and h′

cap that

serve as conditions for the generative model. We aim to generate images that have

both naturalness (being photo-realistic) and high fidelity (can faithfully reflect objects

and relationships in the observed image). Our generation model is built upon Lafite

[106], a text-to-image generation model: it adapts unconditional StyleGAN2 [107, 108]

to conditional image generation contexted on CLIP text embeddings.

In our generator G, both conditions h′
img and h′

cap are injected into the StyleSpace:

each of them goes through two fully connected (FC) layers and is transformed into con-

dition codes cimg and ccap. These condition codes are max-pooled and then concatenated

75

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

with the intermediate latent code w ∈ W , which is obtained from passing the noise vector

z ∈ Z through a mapping network (see fig. 4.3). Using a mapping network to transform

z into an intermediate latent space W is the key of StyleGAN as W is shown to be much

less entangled than Z [109]. The conditioned style s is then passed to different layers of

G as in StyleGAN2, generating image ximg
′:

s = w||max(cimg, ccap), ximg
′ = G(s). (4.3)

We align the semantics of generated ximg
′ and condition vectors by passing ximg

′ through

pre-trained CLIP encoders and apply contrastive loss (eq. (4.5) Lc2) between them. For

further alignment of the lower-level visual features, such as prominent edges, corners and

shapes, we also pass the image through resnet50 and align the position-wise averaged

representation obtained from Layer2 (eq. (4.5)Lc3).

The discriminator D has three heads that share a common backbone: the first head

Dd classifies images to be real/fake, the second and the third semantic projection heads

Dsi, Dsc map ximg
′ to h′

img and h′
cap. The latter two ensure the generated images are

faithful to the conditions. It is also shown that contrastive discriminators are useful

for preventing discriminator overfitting and improving the final model performance [110,

111]. Applying contrastive loss (eq. (4.5) Lc1) between the outputs from discriminator

semantic projection heads and the condition vectors fed to G can therefore help stabilize

the training. To summarize the objective function, the standard GAN loss is used to

ensure the naturalness of generated ximg
′:

LGANG
= −Ei

[
log σ(Dd(x

(i)
img

′
))
]
,

LGAND
= −Ei

[
log σ(Dd(x

(i)
img)) − log(1 − σ(Dd(x

(i)
img

′
)))

]
,

(4.4)

where σ denotes the Sigmoid function. Meanwhile, contrastive losses are used to align the

76

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

semantics of generated images and the fMRI-mapped condition vectors that supposedly

reside in the CLIP space:

Lc1 = Contra(Dsc(x
(i)
img

′
),h(i)

cap

′
) + Contra(Dsi(x

(i)
img

′
),h

(i)
img

′
),

Lc2 = Contra(Cimg(x
(i)
img

′
),h(i)

cap

′
) + Contra(Cimg(x

(i)
img

′
),h

(i)
img

′
),

Lc3 = Contra(ResNet(x
(i)
img

′
),ResNet(x

(i)
img))

(4.5)

The overall training objectives are:

LG = LGANG
+ λ1Lc1 + λ2Lc2 + λ3Lc3,LD = LGAND

+ λ1Lc1,

where λ1, λ2, λ3, are non-negative hyperparameters.

The whole generation pipeline, consisting of mapping models and GAN, is trained in

two stages. First, mapping models fmi and fmc are trained on fMRI-CLIP embedding

pairs. Next, starting from the trained mapping model weights and Lafite language-free

model weights, we modify the losses and model structure and finetune the conditional

generator. For the additional condition vector projection layers in G and semantic head

in D, we duplicate the weights in the existing parallel layers to make the model converge

faster. Note that Lafite is pre-trained on the Google Conceptual Captions 3M dataset

[112] then finetuned on the MS-COCO dataset, both of which are much larger than NSD.

Finetuning from it allows us to exploit the natural relationships between semantics and

images with sparse fMRI data. We can still utilize a two-stage training to compensate for

data scarcity even if no pre-trained conditional GAN like Lafite is available, for example,

when using a different generator architecture. Only this time, we should firstly train the

conditional GAN on a large image dataset with noise perturbed himg and hcap as the

pseudo input condition vectors.

77

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

4.2.2 Results

I. Data and experimental setup

The NSD data is collected from eight subjects. We focus on reconstructing observed

scenes from a single subject’s brain signals. The reasons are twofold: first, it is more

accurate to utilize individual brain coordinates instead of mapping voxels into a shared

space, which can result in information loss during the process. More importantly, brain

encoding and perception are different among individuals. This project aims to get the

best reconstruction for a single individual, thus training models on one subject’s data.

Nevertheless, the commonality of this encoding process among the population is an ex-

citing topic for future explorations.

We use subject one from NSD: the available data contains 27750 fMRI-image sample

pairs on 9841 images. Each image repeats up to three times during the same or different

scan sessions. Note that brain responses to the same image can differ drastically during

the repeats (fig. 4.6). Although we use activities and signals interchangeably throughout

the chapter, what we mean are fMRI betas in the NSD dataset. Betas are not direct

measurements of BOLD (blood-oxygenation-level dependent) changes, but the inferred

activities from BOLD signals through GLM (general linear models). The reason for using

betas instead of direct measurements is that image stimuli are shown consecutively to

the subjects without prolonged delay, and activities triggered by the previous image can

interfere with the next one if there is no proper separation. Authors of NSD proved

the effectiveness of their GLM approach with much improved SNR in the betas over raw

measurements [80]. The dataset is split image-wise: 23715 samples corresponding to 8364

images are used as the train set, and 4035 samples corresponding to the remaining 1477

images are used as the validation set. Therefore, our pipeline never sees the image it

will be tested on during the training. We use 1pt8mm-resolution scans and only consider

78

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Figure 4.6: fMRI activities responding to two images, each repeating three times. The
figure only shows the activities of the first 200 voxels for visualization purposes.

fMRI signals from voxels in the nsdgeneral ROI provided by the dataset. This ROI covers

voxels responsive to the NSD experiment (voxels with high SNR) in the posterior aspect

of the cortex, and contains 15724 voxels for subject one (xfmri ∈ R15724). Images are all

scaled to 256 × 256.

Additional experiment settings, including hyperparameters of two training phases,

are provided in appendix A.2. Our experiments are conducted on one Tesla V100 GPU

and one Tesla T4 GPU. The code is publicly available.2

II. Mapping models from fMRI to CLIP embeddings

Evaluation criteria In the first training stage, mapping models fmi and fmc are

trained to encode fMRI signals to CLIP embeddings. We use two criteria to evalu-

ate the mapper performance to decide which one to use in the next stage. The first

criterion is FID (Fréchet Inception Distance) [113] between generated image and ground

truth using the trained mapper and a pre-trained generator. Given a Lafite model pre-

trained on MS-COCO (language-free setting), we can replace its conditional vector with

the outputs of our mapping models to generate images conditionally. These FIDs can

indicate the starting points of the finetuning processes: the lower the FID, the better

2https://github.com/sklin93/mind-reader

79

https://github.com/sklin93/mind-reader

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

the candidate model. Secondly, we use the success rate of image ”retrieval” in a batch of

size 300. For the ith sample in the batch, if the cosine similarity between h(i)′ and h(i) is

larger compared to between h(i)′ and h(j), j ̸= i, then it counts as one successful forward

retrieval. For backward retrieval, we count the number of correct matches of h(i) to all

h(j)′.

Configuration comparisons We tested different configurations on the mapping mod-

els, including: (1) Whether to place the threshold at ±1.5 as mentioned in section 4.2.1;

(2) When training fmi, whether to perform image augmentations (augmentation details

are listed in appendix A.2) before passing images through the CLIP encoder; (3) When

training fmc, whether to use the CLIP text embedding of a fixed caption, a random valid

caption, or use the average embedding of all valid captions; (4) Which loss function to

use: MSE only, cos (cosine similarity) only, Contra only, MSE+cos, MSE+cos+Contra;

(5) Whether auxiliary networks help. We tested adding an auxiliary discriminator with

GAN loss, as well as adding auxiliary expander networks with VICReg loss [114].

We found: (1) Clamping ground truth embeddings significantly increase performance;

(2) Using image augmentations increase fmi performance. This further indicates CLIP

embeddings are more semantic related; (3) For fmc, selecting a random caption from

the valid caption pool each time is better than using a fixed one or using the average

embedding of all valid captions; (4) Using MSE+cos as the loss gives the best base

models, but then finetune these base models with MSE+cos+Contra can further lower

the starting FID for pipeline finetuning, making the training in the next stage converge

faster; (5) Adding auxiliary networks and objectives will not improve the performance.

In general, although hcap and himg are already relatively well aligned, fmc can still map

xfmri closer to hcap than himg, whereas fmi maps xfmri to an embedding that is equally

close to both, while being able to capture a few extreme values in himg (fig. 4.7). We

80

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

(a) fmi(xfmri) with himg and hcap (b) fmc(xfmri) with himg and hcap

Figure 4.7: Embeddings mapped from fMRI signals overlay on ground truth CLIP
embeddings. (a) shows the results of image embedding mapping model fmi; (b) shows
the results of caption embedding mapping model fmc. For visualization purposes, the
figures only show the first 200 values of the length-512 vectors.

Figure 4.8: Mismatches are semantically close to the ground truth. Figure shows exam-
ples of incorrect matches j (red frame) in a batch of 300 in the validation set. For each
ground truth image i (green frame), we pass it through CLIP encoder to get h(i) and

through fmc to get h(i)′. The shown incorrect ones are those images with h(j)′, j ̸= i that
is closer to h(i) than h(i)′.

think this difference reflects that it is easier to map fMRI signals to a more semantic

representation (from the text space) than to a visual one.

To verify fMRI-mapped embeddings h′ are semantically well aligned with ground

truth CLIP embeddings, we examined the mismatches during the image retrieval. For

four incorrect retrievals, fig. 4.8 shows which images’ h(j)′ are closer to the ground truth

images’ h(i) than h(i)′. Notably, these mismatches are semantically close to the ground

truth images. This indicates that the mapping models can successfully map fMRI signals

into a semantically disentangled space. Embeddings in this space are suitable for provid-

ing contexts to a conditional generative model. We also tested another mapping model

81

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

fmr that maps fMRI signals to representations obtained from resnet50 Layer2. Unlike

the CLIP embedding space, the resnet vector encodes more lower-level visual features.

We see a jump in the image retrieval rate when we combine the representations obtained

from fmi, fmc with fmr (table 4.3). However, the generative model is difficult to train

when taking in two conditions from distinct embedding spaces. Therefore, we add the

low-level vision constraint into the contrastive loss Lc3 instead.

Quantitative results We list the numerical results of the summarized findings in

table 4.2. Simply put, forward retrieval checks the correct match of ”which ground truth

CLIP embedding is the closest to the fMRI-mapped one?” while the backward retrieval

checks ”which fMRI-mapped embedding is the closest to the ground truth CLIP one?”.

When multiple losses are involved, we use hyperparameter settings as in appendix A.2.

Fig. 4.7 visualizes the mapping results of the best setting (models trained with

threshold, image augmentation, use a random valid caption each time, pre-trained with

MSE+cos loss then finetuned with MSE+cos+Contra loss).

Combining the mapped embeddings from multiple mappers boosts the retrieval per-

formance, especially the backward one (as shown in table 4.3). To use multiple mapping

models, we first calculate a B × B batch similarity matrix between the mapped em-

beddings for each model. Then we combine the similarity matrices with a weighted

sum (weights are obtained through grid search) and perform image retrievals based on

this combined similarity matrix. The mapping model fmr that encodes fMRI to ResNet

embeddings has a correct forward retrieval 6 and backward retrieval 50. But when its

similarity matrix is combined with mapped-CLIP embedding similarity matrices, the

performance is far above that of both ResNet and CLIP embeddings.

82

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Table 4.2: Starting FID without generator finetuning (pre-trained LF-Lafite is used
here) and correct retrievals in a batch of size 300 using embeddings obtained from fmi

and fmc. In the top table, models are trained with MSE+cos loss. In the bottom table,
defaults are: with threshold, with image augmentation, using random caption. For the
two options with auxiliary modules, the model is finetuned from MSE + cos model
since training from scratch gives much worse results. FID evaluations are omitted if the
retrieval performance of a setting is strictly worse than its competitors.

threshold
no

threshold
image aug

no
image aug

fixed
caption

random
caption

average caption
embedding

fmi FID ↓ 73.46 — 73.46 — n/a n/a n/a
Retrieval

(forward) ↑ 21 13 21 19 n/a n/a n/a

Retrieval
(backward) ↑ 49 25 49 46 n/a n/a n/a

fmc FID ↓ 75.24 — n/a n/a — 75.24 79.36
Retrieval

(forward) ↑ 14 11 n/a n/a 13 14 15

Retrieval
(backward) ↑ 64 45 n/a n/a 39 64 43

MSE cos Contra MSE + cos
MSE + cos + Contra

(from scratch)
MSE + cos + Contra
(from MSE + cos)

Auxiliary GAN
Auxiliary expander

(VICReg)
fmi FID ↓ — — — 73.46 — 68.14 — —

Retrieval
(forward) ↑ 5 12 25 21 27 29 25 19

Retrieval
(backward) ↑ 16 34 50 49 50 51 42 35

fmc FID ↓ — — — 75.24 — 53.68 — —
Retrieval

(forward) ↑ 4 10 27 14 30 33 24 9

Retrieval
(backward) ↑ 19 31 42 64 43 45 38 37

III. Conditional image generation

Quantitative results In the second training stage, we finetune the conditional Style-

GAN2.3 There is no standard metric to measure image reconstruction quality from fMRI

signals for complex images. Since previous works focused on reconstructing simpler im-

ages, the metrics typically involve pixel-wise MSE or correlation measures. However,

when it comes to complex images, it seems more reasonable to use a perceptual metric,

such as FID, which is based on Inception V3 [115] activations and is widely used in GAN.

3Codes are adapted from https://github.com/NVlabs/stylegan2-ada-pytorch,
https://github.com/drboog/Lafite

83

https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/drboog/Lafite

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Table 4.3: Correct image retrievals in a batch of size 300 when combining different
models.

Multiple models fmi + fmc fmi + fmc + fmr

Retrieval
(forward)

32 24

Retrieval
(backward)

73 147

In addition to using FID as a metric, we also perform 2-way identification for images re-

constructed by models under different settings, and n-way identification of generated

images with n = 2, 5, 10, 50 under the best setting (finetuned from LF, with Lc3, with

mapping models fm frozen). For n-way identification, we reconstruct an image from the

fMRI signal for each sample in the validation set. For each generated image, we compare

it with a set of n randomly selected images, including the ground truth one. Then based

on the cosine similarity of their Inception V3 embeddings (before FC layers, the length-

2048 vector), we identify which image the generated one corresponds to. This process is

repeated ten times because of the randomness of the n-sample selection. Different from

FID that reflects the naturalness of the generated images, n-way identification accuracy

demonstrates more of the fidelity and uniqueness of the generated images.

We perform the ablation studies on the pipeline to answer the following questions:

(1) Which mapping model trained in stage one leads to the best final performance? fmc

or fmi or using both? (2) Which pre-trained GAN leads to the best final performance?

For this, we compare using Lafite pre-trained on either the langue-free (LF) setting or the

fully supervised setting. (3) Whether including the contrastive loss Lc3 between lower-

level visual features can further improve the performance of a semantic-based generative

model? Finally, we tested (4) whether finetune the whole pipeline end-to-end or freezing

the mapping models is better? The new mapping model losses are set to L′
m = Lm +

λ4LGANG
if trained end-to-end.

84

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Table 4.4: FID of the pipeline under different settings.

FID↓ fmi fmc fmi & fmc

from supervised without Lc3 fm frozen 37.75 41.51 —

from LF without Lc3 fm frozen 30.83 33.78 50.59

from LF with Lc3 fm frozen 29.74 33.35 49.47

from LF with Lc3 end to end 45.02 48.54 50.96

Results of FID are reported in table 4.4. We observed the following: (1) in terms of

FID, using h′
img obtained from fmi as the generator condition is better than using the h′

cap

from fmc or using two conditional heads. On the other hand, fmc and the two-head setting

achieve as good or even better performance as fmi does in terms of n-way identification

accuracy. In addition, if training time or resource is the concern, using two heads and

pre-trained LF-Lafite with only condition feeding interface changes and cloned weights in

the new branches can already give reasonably good results. (2) Training the pipeline on

LF-Lafite is much better than on the fully supervised Lafite. This result is expected for

the generator conditioned on h′
img since the supervised version is conditioned on CLIP

text embeddings. However, the same discrepancy exists for the generator conditioned

on h′
cap. This may reflect the flexibility of pre-trained generators to adapt to the slight

changes in the embedding space. It also shows the crucial impact of a pre-trained model

on final performance when training data is limited. (3) The addition of low-level visual

feature constraint Lc3 is beneficial for the model performance, especially faithfulness. It

also seems to have more effects on single-head models than the two-head one. (4) For the

end-to-end pipeline training, we test performance with λ4 = [0.1, 1, 10], all of which give

worse performance than keeping the mapping model weights frozen (reported values are

from λ4 = 1). In particular, we found that h′ tends to collapse to having nonzero values

at only a few positions if the mappers are finetuned together with GAN.

Results of n-way identification accuracy are reported in tables 4.5 and 4.6. The n-

85

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Table 4.5: 2-way identifications accuracy of the pipeline under different settings.

accuracy (%) fmi fmc fmi & fmc

from supervised without Lc3 fm frozen 72.6± 6.14 68.6± 5.22 —

from LF without Lc3 fm frozen 73.0± 4.40 73.2± 4.49 76.2± 5.89

from LF with Lc3 fm frozen 76.8± 4.16 78.2± 5.47 78.0± 4.47

from LF with Lc3 end to end 51.4± 5.59 50.8± 5.43 50.2± 5.31

Table 4.6: n-way identification accuracy (%) with n = 2, 5, 10, 50.

n 2 5 10 50

fmi 76.8± 4.16 55.2± 3.23 41.9± 6.09 24.9± 3.98

fmc 78.2± 5.47 56.4± 3.32 42.2± 4.33 25.6± 4.05

fmi & fmc 78.0± 4.47 57.3± 3.63 44.0± 6.05 25.8± 3.82

way identification accuracy of the two-head setting (fmi & fmc) is slightly better most

of the time (table 4.6), followed by the caption-vector-conditioned setting, followed by

the image-vector-conditioned setting. Note that when performing n-way identification,

previous image reconstruction works are typically tested on a validation set that contains

50 images of 50 different categories [116]. However, there are multiple objects involved

in each image in the complex images we aim to reconstruct; it is not straightforward

to separate them into different categories and pick one from each. Therefore, we leave

the validation set as is (1477 image-fMRI pairs in total), and there will be overlapping

categories in it; for example, several images contain scenes of animals in a natural envi-

ronment.

Qualitative results We show several generated images in fig. 4.9. Although the gen-

erator takes in both the noise vector z and fMRI-mapped embeddings, the results vary

much more with the latter condition, while z only contributes to variations on some mi-

nor details. In general, the generated images capture both semantics and visual features

relatively well, even on complex images containing interactions of multiple objects. Since

86

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

(a) Ground truth stimuli (top row) and generated images conditioned on fMRI (bottom
row).

(b) Generated images from three different fMRI scans responding to the same stimulus
(green frames).

Figure 4.9: Images generated by our pipeline given input fMRI signals.

each stimulus is repeated up to three times to the subject, we have multiple fMRI scans

corresponding to the same image. The semantic differences in the generated images con-

ditioned on these multiple scans could potentially reveal brain processing discrepancies

of the same stimulus. For example, the three generations for the second image in fig. 4.9b

emphasize respectively: (1) the overall scene and the fence, (2) people with green suits,

and (3) overhead flags and the fence; these might reflect the variations in the subject’s

attention or interpretations of that image. Eyetracking data can be further examined to

study attention’s effect on generated images.

It is challenging to perform one-to-one comparisons with previous deep image recon-

struction works since the images in the MS-COCO dataset have much higher complexities

than artificial shapes, faces, or images containing a single centered object (like in Ima-

geNet). We show results from a few best models for reconstructing images from fMRI in

fig. 4.10a. There is also a recent survey [117] covering more models and results if readers

are interested. As our dataset is different, we search for similar images in the NSD valida-

87

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

ground truth DNN DNN+DGN GAN EncDec EncDec SSGAN D-VAE/GAN
[82] [82] [94] [89] [91] [90] [93]

(a) Image reconstruction results from fMRI in previous works.

(b) Image reconstruction results from fMRI by our pipeline. Four ground truth images
are green framed.

Figure 4.10: Comparisons between previous works and our pipeline. We are using the
recent NSD dataset that involves more complex scenes. However, for comparison pur-
poses, we choose four similar images from NSD, each containing a single object ”plane”,
and show our reconstructions from fMRI signals in fig. 4.10b

tion set and show our generations in fig. 4.10b. Compared to other methods, our pipeline

can generate more photo-realistic images that reflect objects’ shapes and backgrounds

well. It also utilizes more voxel activities than previous works (15724 voxels versus a

few hundred). More importantly, it is able to reconstruct the relationships of different

components when the images are more complex. As natural scenes around us are rarely

isolated objects and always information-laden, we think reconstructing images through

semantic alignment and conditioning is more beneficial and realistic than focusing on

lower-level visual features.

Microstimulation In neuroscience, microstimulation refers to the electrical current-

driven excitation of neurons and is used to identify the functional significance of a popu-

lation of neurons. Here, we ”microstimulate” the input fMRI signals of voxels in different

brain ROIs, aiming to identify the roles of individual regions. In the NSD dataset, there

are four floc (functional localizer) experiments targeting regions responsible for faces,

88

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

ground truth regular floc-bodies floc-words floc-places floc-faces

(a) Increase voxel activities at different task ROIs.

OFA FFA-1 FFA-2

(b) Increase voxel activities at different face
areas.

early visual intermediate higher-level

(c) Set voxel activities to 0 at different pro-
cessing levels.

Figure 4.11: Images generated in microstimulation experiments. In (a)(b), voxel activ-
ities at multiple task ROIs are increased before passed into the pipeline. In (c), voxel
activities at various visual processing stages are silenced.

Figure 4.12: fMRI-mapped embeddings in the CLIP space (h′). Each figure contains
(i) an embedding mapped from a regular fMRI signal, (ii) an embedding mapped from
the fMRI signals with voxel activities in earlier-visual ROIs (left)/ intermediate ROIs
(middle) / higher-level ROIs (right) set to zero, (iii) an embedding mapped from the fMRI
signal with voxels at random positions (same number of voxels as (ii)) set to zero. Setting
activities of the earlier-visual cortex to zero lowers overall embedding vector values, while
setting activities of higher-level ROIs has the opposite effect. We can also perform the
reverse masking: only keep voxel activities at earlier-level visual/ intermediate / higher-
level ROIs, then the effects are reversed.

89

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

bodies, places, and words. A typical standardized fMRI signal has a value range around

[−4, 4]. For the experiment, we locate the corresponding task-specific voxels based on

ROI masks and increase the voxel activities to 10 while keeping the activities in unrelated

voxels unchanged; results are shown in fig. 4.11. We observe the emergence of bodies or

words when we increase the voxel activities in ”bodies” or ”words” ROIs. For voxels in

”places” ROIs, elevating the signals will result in mesh-like patterns in the background,

and this is true across different images. For ”faces” ROIs, the generated images under

elevated facial area signals seem to contain many small repeated patterns/perturbations.

Interestingly, this appears to result from FFA (fusiform face area) signal changes since

increasing only OFA (occipital face area) regions’ activity does not result in similar pat-

terns (fig. 4.11b). Overall, increasing a specific task ROI’s signal across fMRI samples

results in CLIP embedding changes in similar positions. This means the disentangled

space of CLIP embedding aligns well with how the human brain processes visual cues.

Apart from task-specific ROIs, we also changed brain region activities based on their

roles in the visual processing hierarchy. We use the streams mask in the dataset to

identify early visual cortex ROIs, intermediate ROIs, and higher-level ROIs. We then

zero out voxels at each level; sample results are shown in fig. 4.11c. Our observations

are: (1) when silencing the early visual cortex, objects and the whole scene are prone

to be in dull colors, and objects tend to have sharp shapes. Meanwhile, the mapped

embedding in the CLIP space will constantly have a lower value at almost all positions

compared to mapped from unchanged signals (fig. 4.12). (2) Silencing the higher-level

ROIs has the opposite effect: more colors, more shapes, and crowded scenes. This is

reasonable since the lower-level visual regions will bring up all the details when they lack

high-level control. This time, the embeddings in the CLIP space have values consistently

higher than normal. Finally, (3) silencing the intermediate ROIs seems to have the

least visual impact or CLIP embedding changes among the three. We performed the

90

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Ground truth

Conditioned on h′
img

Conditioned on h′
txt

Conditioned on both

Figure 4.13: Generated images conditioned on fMRI-mapped CLIP image embedding
h′
img, fMRI-mapped CLIP text embedding h′

txt, or both.

above microstimulation experiments on our pipeline with existing ROIs; however, it is

potentially helpful for testing new ROI definitions and hypotheses.

Additional examples As mentioned in section 4.2.1, we found that the generated

results conditioned on embeddings of different modalities tend to emphasize different

aspects: more visual (colors, shape, etc.) if conditioned only on h′
img, and more semantic

if conditioned only on h′
txt. This could reflect the slight difference between the latent

space of the two modalities. We show the examples conditioned on either one of these

two conditions, or both, in fig. 4.13.

The pipeline tends to fail under the following conditions: (1) the image only con-

tains close-up details without too much semantic information; (2) the presented scene is

semantically novel (e.g., a big banana-shaped decoration hanging in the middle of the

91

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Figure 4.14: More examples showcasing model successes and failures. For each two-
row group, the top row shows the ground truth images, and the bottom row shows the
reconstructions.

92

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

room). The model also tends to: (3) generate based on data biases: adding windows

to indoor scenes, adding people to food scenes, generating colored images when the in-

puts are black-and-white, etc.; (4) change or ignore the background; (5) Mix-up colors

(assigning colors in the scene to a wrong object); (6) generate the wrong number of ob-

jects/people. We showcase these failures together with more other generated images in

fig. 4.14. Given that the model is confident (in terms of GAN’s discriminator output

staying at the same level) when generating results based on training data biases, future

extensions should focus on exploring generators pre-trained on a much larger dataset, as

discussed in section 4.4.3.

4.3 Brain Encoding and Encoding-Decoding Cycle

Although the primary goal of this chapter is decoding stimuli from brain activities,

we also tested the encoding process with CLIP as the intermediate. In this section, we

briefly present our results, as well as the complete encoding-decoding cycle.

4.3.1 Brain Encoding

Brain encoding is a problem that predicts brain activities from stimuli. It has a

data scarcity problem similar to the decoding process. In addition, brain activities are

intrinsically noisy and contain randomness, even when responding to the same stimulus.

To this end, we solve the problem similar to the decoding process: the image stimuli are

passed through pretrained CLIP encoders, obtaining CLIP embeddings himg. Then we

train a mapping model that perform regression from himg to xfmri. The mapping model is

also similar to fm, consisting of four residual blocks, one transposed convolutional layer,

two linear layers, and is trained with a combination of MSE and cosine similarity loss.

Fig. 4.15a shows the signal ground truth and predictions for the first 1000 voxels

93

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

(a)

(b) (c)

Figure 4.15: Brain encoding results. (a) ground truth and prediction of two samples.
Only the first 1000 voxels are shown for visualization purposes. (b) Voxel-wise perfor-
mance (in terms of the correlation coefficient between ground truth and prediction) v.s.
voxel noise ceiling. (c) Prediction performance on a flatmap, redder regions have more
accurate predictions (accounted for the noise ceiling). Note we only perform prediction
on the nsdgeneral ROI, thus the boundary.

of two samples. We also found that voxel-wise prediction (in terms of the correlation

coefficient) aligns very well with the noise ceiling of that voxel (see fig. 4.15b).4 How-

ever, there are discrepancies in this alignment: in fig. 4.15c, we visualize the voxel-wise

prediction correlation coefficient (cc) minus the voxel’s noise ceiling (nc) as a flatmap.

Here, redder areas correspond to better predictions, and the result shows that high-level

semantic regions are better predicted than V1-V4. Utilizing latent spaces other than

CLIP’s results in lower prediction performance and larger distance between cc and nc,

as well as a more uniform performance among high-level regions and V1-V4.

4Noise ceiling values are calculated based on the method in the NSD data paper [80], utilizing SNR

94

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Figure 4.16: Encoding-decoding cycle. The top row shows image stimuli; the second
row shows predicted fMRI activities (with corresponding ground truth) by the encoding
pipeline (only 300 voxels are shown for visualization purposes); the third row shows
reconstructed images from predicted fMRI signals.

4.3.2 Complete Cycle

We tested the encoding-decoding cycle with trained encoding and decoding pipelines:

ground truth images are fed to the encoding pipeline, which gives fMRI predictions.

We then pass these predicted fMRI signals through the decoding pipeline to perform

decoding. The results are shown in fig. 4.16. We observe that image semantic information

is still relatively well conserved.

4.4 Discussions

4.4.1 Other Decoding Attempt

Prior to our current pipeline design, we experimented with a DALL-E-like structure

[118] since we can view the image reconstruction problem as signal-to-signal translation.

95

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

In particular, we applied VQVAE [119] on both fMRI and image to represent them as

discrete latent codes and train a Transformer model to autoregressively generate text and

image tokens from fMRI tokens. However, it was challenging to train the Transformer-

based model to converge with limited fMRI-image data. Incorporating the caption as

text tokens to serve as the bottleneck between fMRI and image tokens while utilizing

pre-trained models on the text and image modality did not help either. We think this

suggests the need to introduce a semantic medium to avoid direct translations between

fMRI and image, as well as a solution to data scarcity.

4.4.2 Limitations and Future Work

We address both the rich-semantic and data scarcity issue with the semantic space

of CLIP embeddings. First, CLIP space is semantically informative and visually de-

scriptive: for example, we can use image-text CLIP embedding alignment probabilities

to screen captions. Mapping fMRI signals to representations in this latent space will

retain rich information about the image that needs to be reconstructed. Second, the

pre-training of the generative model can be separated entirely from fMRI data, meaning

it can utilize much larger datasets than the one we use. However, there is a trade-off

between generating a semantically similar scene and faithfully reconstructing each pixel.

Although trained with additional contrastive loss targeting low-level visual features, the

generated images by our pipeline are still leaning towards the former. We consider this

a reasonable choice since brains are more likely to perceive the image as a whole rather

than identifying each pixel, especially with multiple objects in the scene. Nevertheless,

this results in worse reconstructions for images with fine details but less semantic, such

as single faces. The reconstruction of complex images with better aligned low-level visual

features is worth further studies.

96

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Figure 4.17: Generated images from interpolation of two fMRI scans. Step number is
set to 10.

There are many more areas to explore. First, our study focuses on reconstructing a

single subject’s brain signals. Applying the model to different subjects and observing

the differences when generating the same image would be interesting. Since the data

contains behavioral measures like valence and arousal towards each image, one can test

if the generated images reflect personalized attention and perceptions. Second, other

latent spaces can be examined. Although CLIP is one of the best-aligned computation

models for the brain, other multimodal models like TSM [120] seem to have a better

alignment [100] with the visual cortex. In addition, other conditional generative

models, such as diffusion models, can be explored. In particular, DALL-E 2 [121]

generates images conditioned on CLIP embeddings through diffusion, and it also provides

an alternative solution to the differences exhibited in the image the text CLIP embeddings

by learning a Prior model. Third, given the additional text modality, our pipeline opens

up new opportunities to study visual imagery even without ground truth images. For

example, one can either use mapping models trained on given fMRI-image pairs and pre-

trained generators to reconstruct imagined scenes, or study the mapping between brain

signals and the text embeddings of the mental images’ descriptions. Lastly, we mainly

focus on the decoding (brain-to-image) process, but the encoding (image-to-brain)

process of complex images is equally important and exciting, and much more can be

explored than the brief coverage in section 4.3. The following paragraphs discuss three

more possible future directions with more details.

Input interpolations and the potential extension to movie reconstruction

In addition to reconstructing observed images, we found utilizing the CLIP space can

97

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

also result in a smooth transition when decoding from interpolations of two fMRI scans

(fig. 4.17). Combined with the ability to capture complex semantics, this pipeline can

be helpful for movie reconstruction from brain signals. Temporal constraints can also be

added, which could, in turn, benefit the reconstruction of each frame.

Decoding text from fMRI Apart from being the conditional vector for an image

generator, CLIP embeddings can also be used to generate texts. To decode texts from

fMRI data, the only change needed is replacing the conditional image generator in our

pipeline with a text generator conditioned on CLIP vectors.5 With this text pipeline, one

can “define” the functions of each voxel through the following procedures: (1) provide a

pseudo-fMRI activity to the pipeline with only the target voxel having non-zero activities,

(2) generate fMRI-mapped CLIP embeddings h′ with the mapping models fm, (3) provide

h′ to the conditional text generator and get the text description of that voxel activity. An

advantage of decoding the signals into the text form is that text is more straightforward

than images in terms of explaining the semantics. This makes it easier to perform voxel

clusterings and to find brain modules. The texts can also help understand which parts

of the semantics are not mapped through from the fm by comparing the ground truth

captions and generated texts from the fMRI activities.

Neural population control with synthetic images With the encoding pipeline

that we briefed in section 4.3, one can feed the pipeline with artificial images to test and

understand how different shapes and semantics trigger voxels at various locations, thus

having a better understanding of voxel functionalities. In addition, works similar to [122]

can be tested by finding out which type of stimuli trigger a specific level of brain activity

(e.g., higher activation) and then synthesizing images that control the neural population

in the desired manner. Lastly, given pipelines of a complete cycle, images generated by

5An example CLIP-conditioned text decoder can be found here: https://github.com/fkodom/clip-
text-decoder.

98

https://github.com/fkodom/clip-text-decoder
https://github.com/fkodom/clip-text-decoder

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Figure 4.18: Image generated by Lafite pre-trained on the CC3M dataset without fine-
tuning on COCO or NSD. Ground truth stimuli (top row) and generated images condi-
tioned on fMRI (bottom row).

the decoder can also be benchmarked by passing them through the encoder.

4.4.3 Using Pre-trained Models

Our pipeline relies on two pre-trained components. The first and the most crucial one

is the CLIP encoder that provides the latent space where we project fMRI signals. The

second is a conditional GAN (Lafite) that generates images, which could be swapped for

other generators. In what follows, we will discuss these two components separately.

CLIP One exciting aspect of CLIP is the size of its training dataset, which consists

of 30 million Flicker images that should cover most of the natural image statistics. This

coverage is also proved by subsequent works that generate images guided by CLIP em-

beddings through their abilities to perform generations in various styles. In addition, as

we observed in section 4.1.1, CLIP embeddings can retain around 98% of object-level

information in fMRI with a very well-aligned performance across categories.

Albeit its incredible expressive power, CLIP does have a much lower dimensionality

than the original signal: no matter how faithful, it is a compression. By the nature of

compression, CLIP only retains the most crucial information and removes most of the

99

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

Figure 4.19: Multi-label classifier (defined in section 4.1.1)’s average sample-wise AUC-
ROC changes when masking input fMRI at different ratios. For a masked voxel, we set
its value to 0.

redundancies in the original signal. Indeed, if we mask fMRI at different ratios, from 0 to

1, and perform the multi-label classification (the same task as in section 4.1.1) using (1)

masked fMRI or (2) CLIP mapped from masked-fMRI, we will notice a very drastic dif-

ference in the performance drop rate. As shown in fig. 4.19, prediction performance from

fMRI only drops drastically after the masking ratio becomes larger than 0.9, indicating

brain redundancies to represent the objects. In contrast, if we map the masked fMRI

into the CLIP space and use these embeddings for prediction, the performance drop is

almost at a constant rate. This discrepancy makes the CLIP space more vulnerable to

adversarial attacks than the fMRI space since a small change would cause the generated

images to derail from the ground truth. In addition, CLIP embeddings also carry more

biases than fMRI, as its mean AUC-ROC is much larger even with all-masked inputs.

One should consider these traits of CLIP embeddings when applying this system and

design defense mechanisms accordingly.

Lafite As for the generator, we utilize a conditional GAN pre-trained on the MS-

COCO dataset (containing 328K images), from which NSD drew its experiment images.

100

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

This naturally provides an alignment in the data distribution. Although MS-COCO

images are about everyday objects, humans, and scenes, the data statistics could vary

when we move to other settings. Therefore, future studies are needed to extend current

generators to one trained on broader sources (e.g., DALL-E 2, mentioned in section 4.4,

used 650M images sampled from CLIP and DALL-E training data). This should minimize

the dataset biases, although one should not interpret results without considering the

training/testing discrepancies.

To show that our concept works across different generators, but dataset biases indeed

play an important role, we test our pipeline with a Lafite pre-trained on the Google Con-

ceptual Captions 3M dataset (CC3M, consisting of 3.3 million images) as the generator

without any extra finetuning. We used our trained fmc as the mapping function. The

results are shown in fig. 4.18. All generated images have the watermark where CC3M

sources its images. In addition, when trying to generate out-of-distribution images, the

quality decreases in terms of photo-realism. Nonetheless, semantic alignments are still

shown in these reconstructions. We also want to note that pre-trained models provide

excellent bases for finetuning. For example, Lafite finetuned its COCO model on the

CC3M model within three hours, compared to four days to reach the same performance

if training from scratch. Therefore, if the pipeline is known to be used on certain types

of images, a small-scale dataset and some light training should greatly help the model to

fit into the desired data distribution.

Societal impact With current brain signal recording devices, the negative social

impact of this work is minimal: portable devices like EEG have poor spatial resolutions,

making them unlikely to provide enough image-related details; On the other hand, fMRI

scanners are used under highly controlled settings with designed procedures, therefore

unlikely to have subject-unapproved privacy violations. However, when new devices that

can address these issues become readily available, regulations would be needed on col-

101

Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
Chapter 4

lecting and inspecting user data, since they potentially reveal sensitive information that

users are unwilling to share through neural decoding. With pre-trained components, the

pipeline may also misinterpret brain signals or be hacked to generate from manipulated

inputs (no matter how unlikely it is) and produce over-confident false reconstructions

because of the training data distributions. Several tricks may alleviate this issue, for

example, training an input discriminator and placing it before the entire pipeline to filter

out suspicious inputs. Or, using a parallel pipeline targeting pixel-level reconstruction as

a check: if the two systems agree with each other above a certain threshold/confidence,

the reconstruction results are accepted, otherwise discarded. Future pipeline improve-

ments should also focus on exploring high-performing models pre-trained on large (thus

more generalizable) and unbiased datasets.

4.5 Conclusion

This chapter proposes a pipeline to reconstruct complex images observed by subjects

from their brain signals. With more objects and relationships presented in the image,

we bring in an additional text modality to better capture the semantics. To achieve

high performance with limited data, we utilize pre-trained semantic space that aligns

visual and text modalities. We first encode fMRI signals to this visual-language latent

space and use a generative model conditioned on the mapped embeddings to reconstruct

the images. We also introduce additional contrastive loss to incorporate low-level visual

features into this semantic-based pipeline. As a result, the reconstructed images by our

method are both photo-realistic and, most of the time, can faithfully reflect the image

content. This brain signal to image decoding pipeline opens new opportunities to study

human brain functions through strategic input alterations and can even potentially be

helpful for human-brain interfaces.

102

Chapter 5

Brain Activity Redundancies and

Low-dimensional Representations

How many signals in the brain activities can be erased before the encoded information is

lost? Surprisingly, we found that both reconstruction and classification of voxel activities

can still achieve relatively good performance even after losing 80%-90% of the signals.

This leads to questions regarding how the brain performs encoding in such a robust

manner. This chapter investigates the redundancy and dependency of brain signals using

two deep learning models with minimal inductive bias (linear layers). Furthermore, we

explored the alignment between the brain and semantic representations, how redundancy

differs for different stimuli and regions, as well as the dependency between brain voxels

and regions.

Natural images are extremely rare in the vast image space, making them highly com-

pressible [123]. Similarly, brain signals only occupy a small fraction of the signal space

they reside in, and many signal dimensions are redundant–if we only care about encoding

meaningful brain activities. [124] linked neural activity modeling to compressed sensing

because of its low-dimensional nature, and [125] proposed decomposing signals into pre-

103

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

sentations of visual motifs as the way the brain performs compact neural encoding. With

the recent emergence of larger-scale brain imaging datasets, we now have the chance to

systematically study the redundancy and dependency of brain signals with deep learning

models. In this work, we first examine the redundancy of brain signals in two tasks:

signal reconstruction, in which the goal is to reproduce the activities across all voxels

using only a subset of voxels, and classification, in which the goal is to determine the

visual categories that appear in the stimuli. We embed the brain signals into a latent

space and analyze the number of latent dimensions and interpolations. We also study

the redundancies and dependencies in different visual subtasks, hemispheres, regions, and

voxels. These steps help us analyze the dependencies and redundancies across different

parts of the brain and reveal important insights about the visual brain architecture and

representations.

In the following sections, we first introduce the data and models we use to study

brain signal redundancy and dependency (section 5.1). We then discuss our findings

(section 5.2), including: brain activity exhibits a high level of local and hierarchical de-

pendency, and the high-dimensional signal, in fact, resides in a low-dimensional semantic

space. In the same section, we also discuss the redundancy and dependency for different

hemispheres, regions, and voxels, as well as for signals corresponding to stimuli with

different semantics.

5.1 Dataset and Models

We conduct our studies on the Natural Scenes Dataset (NSD) [80], the same one used

in the previous chapter 4, which records functional magnetic resonance imaging (fMRI)

signals while the subjects view natural images. It provides high-resolution scans with a

high signal-to-noise ratio (SNR) at an unprecedented scale. The number of samples in

104

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

NSD allows better training and investigation of brain data using deep learning models. In

particular, we directly utilize the provided fMRI betas, the estimated response amplitude

of each voxel to each trial, obtained through the general linear model (GLM), with an

additional z-score operation for each session. There are eight subjects in NSD, and the

following results are from subjects 1, 2, and 5: 1 is the principal subject, and 2, 5 are

used for verification (result plots correspond to subject 1, if unspecified). We focus the

study on one region of interest (ROI), nsdgeneral, which covers voxels responsive to the

NSD experiment in the posterior aspect of the cortex.

Two models are involved in this study: one for voxel activity reconstruction and

the other for signal classification. For both models, the inputs are flattened fMRI betas

from nsdgeneral voxels. For the reconstruction model, we use an autoencoder (AE) with a

three-linear-layer encoder and a three-linear-layer decoder. Nonlinear activations (ReLU)

are added between the layers. The hidden dimension of the bottleneck representation

is 1024 (encoder layers’ output dimensions are 4096, 2048 and 1024, and decoder’s are

the reverse). The reconstruction model is trained with mean squared error loss, and

we measure its performance using the voxel-wise reconstruction correlation coefficient.

For the multi-label classification task, we train the model to classify if specific object

categories exist in the image stimulus that triggers the corresponding fMRI. The category

information is obtained from MS-COCO [84] as all NSD images are sampled from this

image set. In total, there are 171 categories, including 80 bounded ”things” categories

(e.g., person, car) and 91 unbounded ”stuff” categories (e.g., sky, sea). The classifier

consists of 3 linear layers with ReLU activations in between (layers’ output dimensions

are 2048, 512, 171), followed by a Sigmoid activation. The classification model is trained

with binary cross-entropy loss, and we measure its performance using AUC-ROC. We

perform “masking” on the inputs to remove the information content of voxels. In the

context of this chapter, masking is done by setting the voxel values to zero while keeping

105

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

the input dimension unchanged.

Experiment details Since each image stimulus in NSD corresponds up to three scans,

we split our training-validation data image-wise: for example, for subject 1, 23715 sam-

ples corresponding to 8364 images are used as the train set, and 4035 samples corre-

sponding to the remaining 1477 images are used as the validation set. Therefore, our

pipeline never sees the image it is tested on during the training. We use Adam as the

optimizer, with a 2e-4 learning rate, 2e-4 weight decay for the reconstruction model, and

8e-6 weight decay for the classification model. The values are manually tweaked with grid

search. Since input lengths vary across subjects (N = 15724 for subject 1, N = 14278

for subject 2, and N = 13039 for subject 5), models are trained in a per-subject manner.

Our experiments are conducted on a Tesla V100 GPU with 32 GB memory (however,

only around 4K MB memory is needed for a batch size of 64).

5.2 Findings

5.2.1 Brain Signals Contain High-level Redundancy

We studied the performance degradation when increasing the input masking ratio,

ranging from zero (unmasked) to one (all-zero inputs). As shown in fig. 5.1, we observe

that both reconstruction and classification models can retain the same level of perfor-

mance even when masked up to 80%-90% of voxels if the masked positions are selected

randomly. The most drastic performance drop happens after masking more than 95%

input voxels. Nonetheless, for the reconstruction model, with input activities from only

16 random voxels, the prediction of all the masked voxel activities can still achieve an

average of 0.113 voxel-wise correlation coefficient. This indicates that a considerable

amount of redundancy exists in the fMRI signals. This redundancy is also more local-

106

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

(a) fMRI signal reconstruction performance.

(b) fMRI multi-label classification performance.

Figure 5.1: Redundancies observed in the fMRI betas in terms of (a) voxel activity
reconstruction, and (b) stimuli category classification. For reconstruction with an au-
toencoder, we gradually increase the masking ratio of the inputs. Two masking schemes
are tested: randomly choosing masked voxels and consecutively masking voxels. With
random masking, the reconstruction performance stays around the same level up to
masking 80%-90% of the voxels. The right plot of (a) shows the min, mean, and max re-
construction performance of the two masking schemes. For classification results (b), the
left plot shows sample-wise AUC-ROC as we increase the masking ratio: the significant
drop also occurs after 80%-90%; the right plot shows the category-wise AUC-ROC with
and without masking voxels in the floc-faces and floc-bodies ROIs, which turned out to
be extremely close to each other, not affecting person category (index 0)’s performance.

107

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

(a) Subject 1 (b) Subject 2 (c) Subject 5

Figure 5.2: Accumulated explained variance v.s. the number of principal components
(PCs) used. The trend of the reconstructed signal is close to that of the latent represen-
tation.

ized: if the masking is performed consecutively, where nearby voxels are masked together,

the performance will decrease more consistently. In a consecutively masked window, the

two ends also typically observe better performance as they can get information from

unmasked neighbors. In addition to randomly masking voxels at different ratios, we

also tested masking entire ROIs for the classifier inputs. In particular, we masked all

voxels in floc-faces and floc-bodies, and computed the category-wise AUC-ROC. Surpris-

ingly, the performance with original and ROI-masked inputs are almost the same (as in

fig. 5.1b), even for the person category. This result suggests that brain signals also carry

hierarchical redundancy apart from local dependency: the model can classify the

signal based on activities in the low-level visual cortex without relying on regions with

functional specializations. Note that this is different from compression or dimensionality

reduction of the signals, since masking directly removes information in the observed sig-

nal space instead of in a transformed basis. Similar to our result here, recent work also

found that natural language can be separately decoded from multiple cortical networks

in each hemisphere [126].

108

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

Figure 5.3: The left plot shows the reconstruction correlation coefficient (cc) together
with the voxel-wise noise ceiling (nc) for 1000 voxels. cc is calculated over the validation
set of 4035 samples and aligns well with nc (cc and nc have a 0.67 correlation with p-value
0). The right plot shows cc−nc values on a flatmap. Higher-order regions typically have
larger values (redder), meaning the reconstruction is better for those regions.

5.2.2 Autoencoders Effectively “Denoise” Brain Signals

Just as Robust Principal Component Analysis (RPCA) can decompose images into

low-rank and noise/outlier corruption components [127], an AE can “clean up” the high-

dimensional signals by reconstructing them into low-dimensional ones. When applying

PCA to subject 1’s 1000 samples (15724 voxels each) in the original signal space, 100

principal components (PCs) can explain 0.596 variance. [128] also mentions that the

number of PCs required to explain 0.68 variance is typically two orders of magnitude

smaller than the original number of voxels, meaning the number of PCs required for

the 15724 voxels is on a hundred-scale. On the other hand, 100 PCs can explain more

than 0.99 variance for both latent representations and reconstructed signals (fig. 5.2).

This shows applying an AE can effectively obtain a cleaner version of fMRI signals. In

comparison, we found neither RPCA nor independent component analysis (ICA) can

achieve the same level of compression. To ensure that our reconstructions retain the

primary information, we compared the model’s voxel-wise reconstruction correlation with

the voxel noise ceilings and found a good alignment between the two (fig. 5.3). After

adjusting voxel-wise performance with their noise ceilings, there is uneven performance

across the brain: we observed better reconstructions for voxels in the higher-level regions.

109

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

Same stimulus, different scans Same category, different stimuli Different categories

Figure 5.4: Interpolating the latent embedding and generating reconstructions from
the interpolations. The top row shows the generated signals for 300 voxels, and the
bottom row shows the classification logits for 171 categories when passing the generated
signal through the trained multi-label classifier. Values in both plots are normalized
to 0-1. Interpolations are performed between three pairs of embeddings: (left) between
two fMRIs corresponding to the same image; (middle) between two fMRIs corresponding
to different images, but with exactly the same set of object categories; (right) between
two fMRIs corresponding to two images having completely two different sets of object
categories.

5.2.3 Brain Activity Resides in the Semantic Space—the Hop-

fieldian View

We further studied the latent representations obtained from the encoder. Given two

fMRI signals, we interpolated their latent embeddings and passed the interpolations

through the decoder to generate a set of fake fMRI signals. We then used these gener-

ated signals as inputs to the classifier model and obtain predicted logits for each class.

As shown in fig. 5.4, the generated signals in the voxel space differ much more than

their predicted logits: this is especially true for interpolations between the same image’s

different scans or two scans corresponding to images with similar semantics. This result

suggests that brain signals naturally reside in a more semantically rich space. Therefore,

our findings support the recent claim that the Hopfieldian view, where representations

110

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

Figure 5.5: Latent representations of interpolated fMRI signals between two fMRI sam-
ples, pairs in three samples, and pairs in four samples. The interpolations occupy a
much lower dimensional space: for 1000 latent representations of interpolations between
two fMRI signals, only 2 PCs are needed to explain 0.998 variance, whereas 56 PCs are
required to explain the same variance for 1000 unrelated fMRI signal embeddings. This
indicates transitions between different fMRIs are cheap inside this learned latent space.
For visualization, the first three PCs of the latent representations (> 0.999 variance ex-
plained for each interpolation pair with step number = 1000) are used as the coordinates.

and transformations in the neural space are considered more important than individual

neuron activities, is needed to explain cognitive processes [129]. Fig. 5.5 discusses the

scenario when the interpolation happens in the original signal space instead of the la-

tent embedding space: we found that brain signals can have rich representations with

easy transitions. Moreover, we observe that voxel groups affect the latent representa-

tion in a consistent manner; for example, masking voxels in floc-bodies always results in

representations further away from the original embedding than masking floc-faces vox-

els, indicating the former ones are more important to the overall latent representation

(results are shown in fig. 5.6).

5.2.4 Masking and Attribution Reveal Voxel and Region Im-

portance

By masking part of the inputs, we can investigate which area has more information by

comparing the degradation of the reconstruction results. This section aims to understand

111

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

Figure 5.6: Masked fMRI embeddings. Masking different ROIs results in different dis-
tances between the masked and original signal embeddings. The relationship between
these distances is consistent across samples (all pairs have a t-test p-value < 1e-50 ex-
cept for the V2 > V1 pair, which has a p-value of 0.008): for example, masking floc-faces
voxels always results in a closer embedding to the original signal to masking floc-bodies
voxels. These distance relationships hold across subjects.

the differences among different categories, hemispheres, ROIs, and general redundancy

patterns through masking, providing constrained inputs, and other input attribution

methods.

I. Categories

A natural hypothesis is that the brain encodes various categories with different levels

of redundancy: this can be either a “nature” phenomenon shared by the population or

112

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

1. Categories have groupings
2. Unmasked order is very different compared with masked ones
3. Trend is consistent for categories in different groups for masked inputs
4. Inconsistent for categories within a same group (as in performance being close under the 0.1-

masking ratio)

(a) Reconstruction performance of different categories under different masking ratios.

(b) Reconstruction performance of person fMRI minus that of non-person fMRI (L:
subject 1; R: subject 5).

Figure 5.7: Reconstruction for different categories (a) From left to right: (1) categories
exhibit groupings, (2) unmasked order is very different compared with masked ones,
(3) the orders are consistent for categories in different groups for masked inputs, and
(4) the orders can be inconsistent for categories within the same group (as in having a
close performance under the 10%-masking ratio). (b) fMRI signals triggered by images
containing person perform better (redder) at the right hemisphere’s low to mid-level
visual regions than those that do not contain person. In addition, when calculating the
correlation between cc and nc (refer to fig. 5.3), person ones are larger than non-person
ones (with an average of 0.673 v.s. 0.638 for subject 1).

a “nurture” one influenced by individual experiences. To test this, we separated fMRI

signals based on the categories of their corresponding stimuli. For a stimulus with mul-

tiple objects from different categories, we include its fMRI signal in all these categories.

For unmasked inputs, the reconstruction performance for a category’s fMRI follows its

occurrence: a category with more fMRI samples has a higher chance of having its fMRIs

better reconstructed. However, with partially masked inputs, the category performance

orderings differ from the unmasked ordering and remain mostly consistent across mask-

ing ratios. These orders are also more relevant to the category semantics (categories

that belong to the same supercategory tend to have a clustered performance) and less

113

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

relevant to the occurrence frequency (see figs. 5.7, 5.8, 5.9 for visual results). Noticeable

groupings of categories can be observed based on their performance curve across masking

ratios. There are some consistencies across the three test subjects: sports-image triggered

signals typically receive better reconstruction, and animal-image triggered ones have the

opposite trend. Other orderings are more subject-specific.

One interesting observation is that the brain can learn representations from other

categories under the same supercategory. For example, keeping the number of total

training/validation samples the same, when we take out the entire food supercategory

from the training data, the reconstruction of sandwich signals ranks 45th out of the

171 categories. But when the training data has other food categories, but no sandwich,

the reconstruction of sandwich signals ranks 20th (if there are sandwich signals in the

training data, its reconstruction ranks 9th). Taking out an entire supercategory also

makes the overall reconstruction worse for all categories. These show that signals of each

supercategory can have a relatively unique representation. Or, the food supercategory

impacts the overall representation because there is a food-selective component in the

visual system, as the recent work [130] suggests.

We also tested dichotomous separations, where signals are separated based upon a

single category (e.g., person and non-person triggered fMRIs). Upon testing several parti-

tions based upon person, tree, sea, cow, building, we found that only person/non-person’s

performance has a systematic difference across subjects: person fMRIs are reconstructed

better than non-person fMRIs in low-to-mid-level visual regions of the right hemisphere.

II. Hemispheres

There is a known asymmetry between the two hemispheres when it comes to visual

processing: from the early study of split-brain patients [131] to later experiments with

hierarchical letters and objects [132, 133], results suggest that the right hemisphere (rh)

114

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

Figure 5.8: Average voxel-wise reconstruction correlation coefficient (cc) for fMRI sam-
ples corresponding to different categories. The performance is measured under a 50%-
masking ratio. Plots are for subjects 1, 2, and 5 from left to right. Error bars stand for
the standard deviations of the average cc across all samples of that category. We also
plot the sample occurrence (in blue lines) for individual categories as some categories,
like person, have significantly more samples than other categories. Colors are based on
super-categories, as indicated in the legend.

115

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

Figure 5.9: Performance decrease rate for different categories, together with the category
sample occurrence. The rate is calculated as (performance with 10%-masked inputs -
performance with 90%-masked inputs) / performance with 10%-masked inputs.

116

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

(a)

(b)

Figure 5.10: (a) Unmasked voxel and (b) Masked voxel reconstruction performance
when masking V1-V4 on either the left hemisphere (lh) or the right hemisphere (rh).
Subjects 1, 2, and 5 are used for the task. Masking the visual cortex at different levels
on either hemisphere does not affect unmasked voxels differently (true for all subjects).
But the reconstructions of masked V3/V4 voxels on lh consistently have a worse recon-
struction than those on rh (t-test p-value < 1e-8).

is better at identifying a global feature while the left hemisphere (lh) is better at process-

ing local ones. But which hemisphere’s information can be better recovered from other

regions when damaged? Masking an ROI’s signals can conveniently emulate a lesion in an

experimental setting. In our study, we masked 300 voxels in each of V1 to V4 for either

rh or lh, and measured the reconstruction performance for both masked and unmasked

regions. Interestingly, we observe no change in the performance of unmasked voxels but

statistically significant differences, with t-test p < 1e−8, between lh/rh−V3/4 for masked

ones. Across subjects, rh−V3/4 can be better reconstructed from other voxels activi-

ties (shown in fig. 5.10), suggesting they are more robust to region damages than the lh

counterparts. Moreover, since the separation of “local” and “global” can be dynamic and

depends on the task, as [134] suggests, we evaluated if the same phenomenon occurs for

reconstruction. To this end, we tested fMRI signals corresponding to different categories

(the categorical signal separation is the same as in the previous section). However, no

noticeable performance difference is observed: we compared the reconstruction perfor-

mance of the following categories, person, tree, sea, kite, book, cow, giraffe, cat, dog, and

only cow differs from the others or the average.

117

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

III. Pairwise ROIs

(a) (b)

(c) (d)

Figure 5.11: Pairwise reconstruction between ROIs of subject 1. For each matrix, the
rows are source ROIs that provide input activities, and the columns are target ROIs
whose reconstruction performance is evaluated (in terms of the voxel-wise correlation
coefficient). The plots are: (a) reconstruction mean, (b) reconstruction standard devia-
tion, (c) voxel overlap percentage normalized by the total number of target ROI voxels,
and (d) reconstruction mean when the overlapped voxels’ activities are not provided in
the inputs.

By providing an ROI A’s activities as inputs, we can evaluate the reconstruction of

another ROI B to understand brain region dependencies. We measured pairwise recon-

structions between four ROIs V1-V4 of the visual cortex and four functional localizer

118

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

V1-V2 V1-V3 V1-V4 V2-V3 V2-V4 V3-V4

Figure 5.12: The top two rows of the flatmaps are reconstruction performance differences
when masking two different visual cortex ROIs. The bottom two rows are visualized
localizers of corresponding ROIs. Both sets have rh on top of lh. The region name
stands for the masked region: for example, the first column “V1-V2” means “subtracting
the voxel-wise reconstruction with V2-masked inputs from the voxel-wise reconstruction
with V1-masked inputs”. Discrepancies are observed between the performance difference
(top set) and corresponding localizers (bottom set), from which we can identify region
dependencies. For example, V2 depends more on V1 than V3, and it also shows additional
dependencies with the posterior intraparietal sulcus (IPS) area on the right hemisphere
(top tip of the rh flatmap).

(floc) ROIs. The result provides a straightforward dependency matrix as shown in the

fig. 5.11. In general, given voxels from floc ROIs, voxels in higher visual areas are recon-

structed better, confirming the high-level nature of floc ROIs. In particular, floc-places

can recover visual cortex voxels much better, implying that the high-level place represen-

tations cover visual details more than other tasks. On the other hand, given visual cortex

voxels, floc-faces and floc-places are reconstructed better, indicating the other two tasks

require additional information from other regions apart from the visual cortex. Note that

119

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

even for self-reconstructions, where the target ROI is the source ROI, the reconstruction

performances differ, suggesting that some ROIs are more self-contained than others and

their dependencies are more local. We also conducted studies between different visual

cortices, as shown in fig. 5.12. These experiments that aim to find dependencies between

brain regions can also link to works in connective field modeling [135, 136].

IV. Optimal voxel measurement for reconstruction and classification

Considering that low-dimensional embeddings can effectively represent neural signals,

a reasonable question is whether one can utilize techniques similar to compressed sensing

and use fewer measurements to obtain high-resolution samples. Here we explore the

dependencies between voxels to find voxels that (1) contribute more to other voxels’

reconstruction and (2) contribute more to the semantic categorization of the signals. For

(1), we chose a target voxel to measure the reconstruction performance while providing

voxels from V1-V4 plus one additional voxel. Then, we brute-forced this additional

voxel and plotted a dependency heatmap. We observed strong local dependencies and

dependencies in the symmetric positions of the other hemisphere (figs. 5.13a and 5.13b).

When the “contribution” is aggregated for all target voxels, we can get a blueprint

regarding which voxel is most important. However, this result is subject-specific, and

more explorations are needed to extend the results to different individuals and achieve

a better upsampling of the signals. For this voxel activity reconstruction task, we also

tested an additional VQ-VAE with a convolutional encoder and decoder and a hidden

dimension of 984 apart from the AE detailed in section 5.1. Compared to linear AE,

convolution-based VQ-VAE can only capture local dependencies well but lose the global

view (fig. 5.13a). Nonetheless, it can reconstruct unmasked signals much better, with cc

having a mean of 0.968 and 0.003 std. For (2), we utilized SHapley Additive exPlanations

(SHAP) [137] to perform input attributions, identifying voxels’ contribution to classifying

120

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

(a)

(b)

(c)

(d)

Figure 5.13: Examining the voxel importance of subject 1 with (a-c) reconstruction
models and (d) the classification model. For the reconstruction, Voxel with index 1364
is selected as the target voxel at which we measure the recovery performance; it locates
on lh and belongs to both floc-faces and floc-bodies. (a) The recovery performance at
each voxel if they are served as the “additional” input apart from V1-V4 voxel activities.
The right plot is the zoom-in view of the left plot, showing the strong local dependencies,
which are consistent across models and signal types (the values in (a) are normalized to
0-1 since AE and VQ-VAE cc are at different scales). (b) Given AE’s result, we plot (left)
the top 200 contributing voxels, (middle) voxels that lead to a reconstruction performance
larger than the mean value, and (right) the overall p-values of the reconstruction cc. We
can observe that voxels on mirrored positions of rh are also contributing to the target
voxel’s reconstruction, but overall lh voxels are more important for this target voxel on
lh. p-Values are also aligned well: positions with better performance (larger cc) also have
smaller p-values. (c) (left) The p-value changes with decreasing recovery cc. There is a
sharp increase near the end, indicating those voxels are more irrelevant; (right) The in-
ROI ratio for the top-100 contributing voxels: not all are from the ROIs that the target
voxel belongs to (floc-faces/bodies in this case). (d) SHAP input attribution (absolute
values) aggregated across categories. Redder (higher attribution) means the voxel is more
crucial in determining if a specific category exists in the stimulus.

121

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

each category. Aggregating the attributions for all the categories results in one overall

contribution value for each voxel, thus providing a general voxel importance map for

signal categorization. There is a disparity between the two hemispheres’ aggregated

attributions, with rh having more critical voxels in higher-level regions. However, the

attribution of lh is generally higher than rh (t-test p-value < 0.005) (fig. 5.13d). On

the other hand, when looking at (unaggregated) category-wise SHAP attributions, the

results also support distributed coding scheme [138]: each category’s representation is

coded by a subpopulation of voxels, and each voxel contributes to multiple categories’

representations.

5.3 Discussions and Conclusion

Although we studied many aspects regarding brain signal redundancy and depen-

dency, the list is by no means exhaustive. For example, one can examine the impact of

the dorsal/ventral stream on fMRI signals of different categories. Other questions can

also be explored: the brain can encode both low-level and semantic information upon

seeing images, so how much of each (low-level/semantic) is retained in the latent em-

beddings when the fMRI signals are mapped from the encoder? To answer this question,

we will need to train a model trained from latent embedding to perform multi-label

classification, and compare the performance with the model trained with fMRI inputs.

Similarly, we need to train two other models for low-level details: one takes fMRI signals

as inputs and another from the latent embeddings. Then we can compare the retainment

percentage of low-level image information. These latter two models require labels of the

stimuli regarding image details, such as color, shape, orientation, etc., which are missing

in the current MS COCO dataset. In future work, one could potentially use off-the-shelf

detectors to generate pseudo labels as a way to answer the above question.

122

Brain Activity Redundancies and Low-dimensional Representations Chapter 5

In addition, since linear layers have less inductive bias than convolutional layers, the

models we used are composed of linear layers. In fact, we also tested a convolution-

based autoencoder VQ-VAE [119], as discussed in fig. 5.13. With strong local-grouping

assumptions of the convolution operation, VQ-VAE fails to capture global dependencies.

Nonetheless, we still observed similar curves for masked voxel reconstruction: the no-

ticeable performance decrease starts after the 80% masking ratio. Its results on category

reconstruction orders, latent embeddings’ semantic alignment, orders of pairwise ROI

dependencies, etc., are also consistent with the linear model results we reported. How-

ever, it will still be beneficial to test models with more structural types in future work

to examine if the results hold for all frameworks.

In this chapter, we systematically studied the redundancy and dependency of fMRI

signals with an AE and a multi-label classifier. We found AE can reconstruct signals

in a much lower-dimensional space while having a good reconstruction correlation: this

suggests new ways for signal decomposition and denoising. We also found signals’ latent

space is more aligned with the semantic space, supporting a Hopfieldian view of the brain.

This low-dimensional representation, or semantic information of stimuli, can be further

used to guide signal compression, upsampling, and reconstruction. In addition, our results

suggest that the brain encodes different scene semantics with varying levels of redundancy,

resulting from a combination of nature and nurture. Discrepancies between hemispheres,

ROI dependencies, and voxels dependencies are also explored, each providing additional

insights regarding brain visual encodings.

123

Chapter 6

Neuroscience-inspired DNN

modeling

Previous chapters discussed how we could use various machine learning techniques to gain

a better understanding of the brain, and this chapter will discuss the opposite direction

[139]: how tools and insights from neuroscience can help us investigate artificial neural

networks and even inspire new architecture developments.

In section 6.1, inspired by the success of psychophysics tools in studying human

visual processes, we apply similar analyses to artificial neural networks (ANNs) to unveil

inherent model biases at different levels (model, layer, single neuron), and show how these

techniques can be used to perform/detect adversarial attacks on black-box classifiers.

Apart from directly borrowing tools from the neuroscience domain, we can also modify

machine learning models based on the findings we made. In chapter 5, we explored the

redundancy in brain signals with deep learning models–which, in turn, motivated us to

add more sparsity into ANNs, as we will introduce in section 6.2. In particular, we only

keep partial neurons activated at each layer and alternate the selection across layers. This

saves many parameters and computations while maintaining competitive performance.

124

Neuroscience-inspired DNN modeling Chapter 6

6.1 White Noise Analysis of Neural Networks

In this section, a white noise analysis of modern deep neural networks is presented

to unveil their biases at the whole network level or the single neuron level. Our analysis

is based on two popular and related methods in psychophysics and neurophysiology,

namely classification images and spike-triggered analysis. These methods have been

widely used to understand the underlying mechanisms of sensory systems in humans and

monkeys. We leverage them to investigate the inherent biases of deep neural networks

and to obtain the first-order approximation of their functionality. We emphasize on

CNNs since they are currently state-of-the-art methods in computer vision and are a

decent model of human visual processing. In addition, we study multi-layer perceptrons,

logistic regression, and recurrent neural networks. Experiments over four classic datasets,

MNIST, Fashion-MNIST, CIFAR-10, and ImageNet, show that the computed bias maps

resemble the target classes and, when used for classification, lead to an over two-fold

performance than the chance level. Further, we show that classification images can be

used to attack a black-box classifier and to detect adversarial patch attacks. Finally,

we utilize spike-triggered averaging to derive the filters of CNNs and explore how the

behavior of a network changes when neurons in different layers are modulated. Our

effort illustrates a successful example of borrowing from neurosciences to study ANNs

and highlights the importance of cross-fertilization and synergy across machine learning,

deep learning, and computational neuroscience.

6.1.1 Introduction

Any vision system, biological or artificial, has its own biases. These biases emanate

from different sources. Two common sources include: (1) the environment and the data

on which the system has been trained, and (2) system constraints (e.g., hypothesis class,

125

Neuroscience-inspired DNN modeling Chapter 6

model parameters). Exploring these biases is important from at least two perspectives.

First, it allows us to better understand a system (e.g., explain and interpret its decisions).

Second, it helps reveal system vulnerabilities and make it more robust against adversarial

perturbations and attacks.

In this section, we recruit two popular methods from computational neuroscience to

study the inherent biases in deep neural networks. The first one, called the classification

images technique, was introduced into visual psychophysics by [140] as a new experimen-

tal tool. It has been used to examine visual processing and to understand vision across a

variety of tasks, including simple detection tasks, visual search, and object recognition.

It has also been applied to the auditory domain. See [141] for a review of the topic. The

second method, known as spike-triggered analysis [142], is often used to discover the best

stimulus to which a neuron responds (e.g., oriented bars). These methods are appealing

for our purpose since they are general and can be applied to study any black box system

(so long it emits a response to an input stimulus), and only make a modest number of

assumptions. From a system identification point of view, they provide a first-order ap-

proximation of a complex system such as the brain or an artificial neural network. Both

methods are detailed in section 6.1.2.

By feeding white noise stimuli to a classifier and averaging the ones that are catego-

rized into a particular class, we obtain an estimate of the templates it uses for classifi-

cation. Unlike classification image experiments in human psychophysics, where running

a large number of trials is impractical, artificial systems can often be tested against a

large number of inputs. While still a constraint, we will discuss how such problems

can be mitigated (e.g., by generating stimuli containing faint structures) and demon-

strate our findings with the two aforementioned techniques in section 6.1.3. Over four

datasets, MNIST [143], Fashion-MNIST [144], CIFAR-10 [145], and ImageNet [86], we

employ classification images to discover implicit biases of a network, utilize those biases

126

Neuroscience-inspired DNN modeling Chapter 6

gs + (1 - g)n

g=
 0

g=
 0

.1
g=

 0
.2

g=
 0

.3

A B C* *
dcba (a + b) - (c + d)

pred 1, gt 1 pred 1, gt 7 pred 7, gt 1 pred 7, gt 7 mean: 1 - 7 noise only pred 5, gt 5 pred 5, gt 6 pred 6, gt 5 pred 6, gt 6 mean: 5 - 6 noise only

Figure 6.1: Illustration of the classification images concept. (a) Two sample digits as
well as their linear combination with different magnitudes of white noise (eq. (6.3)). (b)
Average correct and incorrect prediction maps of a binary CNN trained to separate digits
1 and 7. The fifth column shows the difference between the average of stimuli predicted as
1 and the average of stimuli predicted as 7. The column marked with “*” is similar to the
fifth column but computation is done only over noise patterns (and not the augmented
stimuli), hence “classification images” (i.e., (n̄11 + n̄71) − (n̄17 + n̄77); eq. (6.1)). These
templates can be used to classify a digit as 1 or 7. Yellow (blue) color corresponds to
regions with positive (negative) correlation with the response as 1. (c) Same as B but
using a 5 vs. 6 CNN.

to influence network decisions, and detect adversarial perturbations. We also show how

spike-triggered averaging can be used to identify and visualize filters in different layers

of a CNN. Finally, in a less directly related analysis to classification images, we demon-

strate how decisions of a CNN are influenced by varying the signal-to-noise ratio (akin

to microstimulation experiments in monkey electrophysiology or priming experiments in

psychophysics). We find that CNNs behave in a similar fashion to their biological coun-

terparts, and their responses can be characterized by a psychometric function. This may

give insights regarding top-down attention and feedback mechanisms in CNNs [146].

6.1.2 Related Works and Concepts

Our work relates to a large body of research attempting to understand, visualize, and

interpret deep neural networks. These networks have been able to achieve impressive

performance on a variety of challenging vision and learning tasks (e.g., [147, 148]). How-

127

Neuroscience-inspired DNN modeling Chapter 6

ever, they are still not well understood, have started to saturate in performance [149],

are brittle1, and continue to trail humans in accuracy and generalization. This calls for

a tighter confluence between machine learning, computer vision, and neuroscience. In

this regard, the proposed tools here are complementary to the existing ones in the deep

learning toolbox.

Perhaps, the closest work to ours is [152], where they attempted to learn biases

in the human visual system and transfer those biases into object recognition systems.

Some other works (e.g., [153]) have also used human data (e.g., fMRI, cell recording)

to improve the accuracy of classifiers, but have not utilized classification images. [122]

used is activation maximization to iteratively change the pixel values in the direction of

the gradient to maximize the firing rate of V4 neurons2. Unlike these works, here we

strive to inspect the biases in classifiers, in particular, neural networks, to improve their

interpretability and robustness.

I. Classification images

In a typical binary classification image experiment, on each trial, a signal s ∈ Rd and

a noise image z ∈ Rd are summed to produce the stimulus n. The observer is supposed

to decide which of the two categories the stimulus belongs to. The classification image

is then calculated as:

c = (n̄12 + n̄22) − (n̄11 + n̄21) (6.1)

where n̄sr is the average of noise patterns in a stimulus-response class of trials. For exam-

ple, n̄12 is the average of the noise patterns over all trials where the stimulus contained

signal 1, but the observer responded 2. c ∈ Rd is an approximation of the template that

1Current deep neural networks can be easily fooled by subtle image alterations in ways that are
imperceptible to humans; a.k.a adversarial examples [150, 151].

2See https://openreview.net/forum?id=H1ebhnEYDH for a discussion on this.

128

https://openreview.net/forum?id=H1ebhnEYDH

Neuroscience-inspired DNN modeling Chapter 6

the observer uses to discriminate between the two stimulus classes. The intuition behind

the classification images is that the noise patterns in some trials have features similar

to one of the signals, thus biasing the observer to choose that signal. By computing

the average over many trials, a pattern may emerge. c can also be interpreted as the

correlation map between stimulus and response:

corr[n, r] =
E(n− E[n])E(r − E[r])

σnσr

(6.2)

where σn is the pixel-wise standard deviation of the noise n and σr is the standard

deviation of response r. High positive correlations occur at spatial locations that strongly

influence the observer’s responses. Conversely, very low (close to zero) correlations occur

at locations that have no influence on the observer’s responses. Assuming zero-mean noise

and an unbiased observer, Eq. 2 reduces to ccorr = n̄∗2 − n̄∗1, where n̄∗u is the average

of the noise patterns over all trials where the observer gave a response u (see [141] for

details). Thus, ccorr is the average of the noise patterns over all trials where the observer

responded r = 2, minus the average over all trials where the observer responded r = 1,

regardless of which signal was presented.

We have illustrated the classification images concept in fig. 6.1 with a binary classifier

trained to separate two digits. The stimulus is a linear combination of noise plus signal

as follows:

t = γ × s + (1− γ) × n; γ ∈ [0,1] (6.3)

The computed templates for different γ values3, using about 10 million trials, highlight

regions that are correlated with one of the digits (here 1 vs. 7 or 5 vs. 6). The template

fades away with increasing noise (e.g., γ = 0) but it still resembles the template in the

3We use classification images, bias map, template, and average noise pattern, interchangeably. Please
do not confuse this bias with the bias terms in neural networks.

129

Neuroscience-inspired DNN modeling Chapter 6

low-noise condition (i.e., γ = 0.3).

II. Spike-triggered analysis

The spike-triggered analysis, also known as “reverse correlation” or “white-noise anal-

ysis”, is a tool for characterizing the response properties of a neuron using the spikes

emitted in response to a time-varying stimulus. It includes two methods: spike-triggered

averaging (STA) and spike-triggered covariance (STC). They provide an estimate of a

neuron’s linear receptive field and are useful techniques for the analysis of electrophysio-

logical data. In the visual system, these methods have been used to characterize retinal

ganglion cells [154, 155], lateral geniculate neurons [156], and simple cells in the primary

visual cortex [157, 158]. See [159] for a review.

STA is the average stimulus preceding a spike. It provides an unbiased estimate

of a neuron’s receptive field only if the stimulus distribution is spherically symmetric

(e.g., Gaussian white noise). STC can be used to identify a multi-dimensional feature

space in which a neuron computes its response. It identifies the stimulus features af-

fecting a neuron’s response via an eigendecomposition of the spike-triggered covariance

matrix [160, 161].

Let x ∈ Rd denote a spatio-temporal stimulus vector affecting a neuron’s scalar spike

response y in a single time bin. The main goal of neural characterization is to find Θ, a

low-dimensional projection matrix such that ΘTx captures the neuron’s dependence on

the stimulus x. The STA and the STC matrix are the empirical first and second moments

of the spike-triggered stimulus-response pairs {xi|yi}Ni=1, respectively. They are defined

as:

STA: µ =
1

nsp

N∑
i=1

yixi, and STC: Λ =
1

nsp

N∑
i=1

yi(xi − µ)(xi − µ)T (6.4)

where nsp =
∑

yi is the number of spikes and N is the total number of time bins. The

130

Neuroscience-inspired DNN modeling Chapter 6

traditional spike-triggered analysis gives an estimate for the basis Θ consisting of: (1) µ,

if it is significantly different from zero, and (2) the eigenvectors of Λ corresponding to

those eigenvalues that are significantly different from eigenvalues of the prior stimulus

covariance Φ = E[XXT]. When a stimulus is not white noise (i.e., is correlated in space

or time), whitened STA can be written as:

STAw =
N

nsp

(XTX)−1XTy (6.5)

where X is a matrix whose ith row is the stimulus vector xT
i and y denotes a column

vector whose ith element is yi. The whitened STA is equivalent to linear least-squares

regression of the stimulus against the spike train.

Classification images and spike-triggered analysis are related in the sense that both

estimate the terms of a Wiener/Volterra expansion in which the mapping from the stimuli

to the firing rate is described using a low-order polynomial [142]. See [162] for a discussion

on this. Here, we focus on STA and leave STC for future work.

6.1.3 Applications to Deep Learning Models

We present four use cases of classification images and STA to examine neural net-

works, with a focus on CNNs since they are a decent model of human visual processing

and are state-of-the-art computer vision models.4 Our approach, however, is general

and can be applied to any classifier. In particular, it is most useful when dealing with

black-box methods where choices are limited.

4Code is available at: https://github.com/aliborji/WhiteNoiseAnalysis.git.

131

https://github.com/aliborji/WhiteNoiseAnalysis.git

Neuroscience-inspired DNN modeling Chapter 6

Log. Reg Bias acc: 47.6CNN Bias acc: 25.82C

B

A
0 - 0, |3872| 1 - 1, |326| 2 - 2, |605723| 3 - 3, |213157| 4 - 4, |7817|

5- 5, |5779| 6 - 6, |2856| 7 - 7, |1700| 8 - 2, |9151544| 9 - 9, |7226|

0 - 0, |1224753| 1 - 1, |1667| 3 - 3, |474457| 4 - 4, |456|2 - 2, |2285769|

5 - 5, |275214| 6 - 6, |5601765| 8 - 8, |5139| 9 - 9, |32|7 - 7, |130748|

Tr
ue

 la
be

l

Mean Image acc: 63.1 Log. Reg Weights acc: 83.77

Tr
ue

 la
be

l

Predicted label Predicted label

Lo
g.

 R
es

.
C

N
N

Figure 6.2: (a) Classification images of a CNN trained on MNIST (with 99.2% test
accuracy). Image titles show ground truth, predicted class for the bias map, and the
frequency of the noise patterns classified as that digit. (b) Classification images of
logistic regression over MNIST with 92.46% test accuracy. (c) Confusion matrices of
four classifiers (CNN and log. reg. biases, mean digit image, and log. reg. weights). The
classification was done via template matching using the dot product.

I. Understanding and visualizing classifier biases

We trained a CNN with 2 conv layers, 2 pooling layers, and one fully connected layer

on the MNIST dataset. This CNN achieves 99.2% test accuracy. We then generated 1

million 28 × 28 white noise images and fed them to CNN. The average noise map for

each digit class is shown in fig. 6.2a. These biases/templates illustrate the regions that

are important for classification. Surprisingly, for some digits (0 to 7), it is very easy to

tell which digit the bias map represents5. We notice that most of the noise patterns are

classified as 8, perhaps because this digit has a lot of structure in common with other

digits. Feeding the average noise maps back to CNN, they are classified correctly, except

8, which is classified as 2 (see image captions in fig. 6.2a).

Classification images of the CNN over MNIST perceptually make sense to humans.

5Weighting the noise patterns by their classification confidence or only considering the ones with
classification confidence above a threshold did not result in significantly different classification images.

132

Neuroscience-inspired DNN modeling Chapter 6

0, |pred| = 1060840 2, |pred| = 617 3, |pred| = 9562 7, |pred| = 2 8, |pred| = 8622748 9, |pred| = 306231

0, |pred| = 5659 2, |pred| = 14554374 3, |pred| = 73015009 5, |pred| = 11677974 6, |pred| = 88 8, |pred| = 746885 9, |pred| = 11

MLP

RNN

Figure 6.3: Classification images for a two-layer MLP (784 −→ 1000 −→ 10) shown at
the top and an RNN classifier at the bottom. None of the noise patterns were classified
as 1 using both classifiers. While the derived biases do not resemble digits, they still
convey information to predict the class of a test digit.

This, however, does not necessarily hold across all classifiers and datasets. For example,

classification images of a logistic regression classifier on MNIST, shown in fig. 6.2b, do

not resemble digits (the same happens to MLP and RNN; see fig. 6.3). This implies that

perhaps CNNs extract features the same way the human visual system does, thus sharing

similar mechanisms and biases with humans. Classification images over the CIFAR-10

dataset, derived using 1 million 32 × 32 RGB noise patterns, are shown in fig. 6.4a. In

contrast to MNIST and Fashion-MNIST (fig. 6.7), classification images on CIFAR-10

(using CNNs) do not resemble target classes. One possible reason might be that images

are more calibrated and aligned over the former two datasets than CIFAR-10 images.

How much information do the classification images carry? To answer this question,

we used bias maps to classify the MNIST test digits. The bias map with the maximum

dot product to the test digit determines the output class. The confusion matrix of this

classifier is shown in fig. 6.2c. Using the CNN bias map as a classifier leads to 25.8%

test accuracy. The corresponding number for a classifier made of logistic regression bias

is 47.6%. Both of these numbers are significantly above 10% chance accuracy. To get an

idea regarding the significance of these numbers, we repeated the same using the mean

133

Neuroscience-inspired DNN modeling Chapter 6

real data acc: 28.69

CNN bias / noise acc: 23.71

BA

m
ea

n
im

ag
es

bi
as

es

Tr
ue

 la
be

l
Tr

ue
 la

be
l

Predicted label

Figure 6.4: (a) Mean training images (top) and mean white noise pattern/bias maps
(bottom) across CIFAR-10 classes. Image titles show the ground truth class and predic-
tion of the bias map, respectively. (b) Confusion matrices using mean images (top) and
bias maps (bottom) as classifiers, respectively. Notice that for some classes, it is easier
to guess the class label from the mean image (e.g., frog).

images and logistic regression weights. These two classifiers lead to 63.1% and 83.8% test

accuracy, respectively, which are better than the above-mentioned results using bias maps

but demand access to the ground-truth data and labels. Over CIFAR-10, classification

using bias maps leads to 23.71% test accuracy, which is well above chance. Using the

mean training images of CIFAR-10 leads to 28.69% test accuracy (fig. 6.4b).

Creating visual noise from natural scene statistics We followed [163] to generate

noise patterns containing subtle structures. We amassed a digit database of 60K images

from the MNIST training set and represented each image as the output of a bank of

Gabor filters at three spatial scales (2, 4, and 10 cycles per image, and wavelets were

truncated to lie within the borders of the image), four orientations (0, 45, 90 and 135

degrees) and two quadrature phases (0 and 90 degrees). Thus, each image is represented

by 2 × 2 × 2 × 4 + 4 × 4 × 2 × 4 + 10 × 10 × 2 × 4 = 960 total Gabor wavelets. The

weights of Gabor wavelets for each image were determined using ridge regression. We

134

Neuroscience-inspired DNN modeling Chapter 6

1K
10

K
10

0K
1M

0 1 2

Figure 6.5: Progressive build-up of the bias maps for 0, 1, and 2.

then performed principal components analysis (PCA) on the 60K-image by the 960-

wavelet weight matrix. We kept the first 250 principal components that explain 96.1%

of the variance in data. A noise image was created by choosing a random value for each

principal component score, scaled to the observed range for each component.

We also gathered a natural object database of 50K images from the CIFAR-10 training

set. For these colored images, we performed the above-mentioned approach on each

channel. More specifically, we represented each 32 × 32-sized channel with four-scale (2,

4, 7, 11 cycles), four-orientation, two-phase Gabor wavelets, which results in 2× 2× 2×

4 + 4 × 4 × 2 × 4 + 7 × 7 × 2 × 4 + 11 × 11 × 2 × 4 = 1520 total Gabor wavelets per

channel. Then for each channel, we performed ridge regression to get the 50K-by-1520

weight matrix, which is passed to PCA and kept the first 600 PCs. These PCAs can

explain variance in three channels as 97.57%, 97.51%, and 97.52%, respectively.

Analysis of sample complexity To get an idea regarding the sample complexity of

the classification images approach, we ran three analyses. In the first one, we varied

the number of noise patterns as n = 1000 × k; k ∈ {1, 10, 100, 1000}. We found that

135

Neuroscience-inspired DNN modeling Chapter 6

with 10K noise stimuli, the bias maps already start to look like the target digits (see

fig. 6.5). In the second analysis, we followed [163] to generate noise patterns containing

subtle structures. Over MNIST and Fashion-MNIST datasets, we used ridge regression to

reconstruct all 60K training images from a set of 960 Gabor wavelets, as described above.

We then projected the learned weights (a matrix of size 60K×960) to a lower-dimensional

space using principal component analysis (PCA). We kept 250 components that explained

96.1% of the variance. To generate a noise pattern, we randomly generated a vector of

250 numbers and projected it back to the 960D space, using them as weights for image-

shaped Gabor wavelets and then summing them to 28×28 noise image. Over CIFAR-10,

we used 1520 Gabor filters for each RGB channel and kept 600 principal components

that explained 97.5% of the variance. Classification images using 1M samples generated

this way for MNIST, Fashion-MNIST, and CIFAR-10 datasets are shown in fig. 6.7.

Classification images resemble the target classes even better now (compared to using

white noise). Using the new bias maps for classification, we are able to classify MNIST,

Fashion-MNIST, and CIFAR-10 test data with 35.5%, 41.21%, and 21.67% accuracy,

respectively.

In the third analysis, we trained an autoencoder and a variational autoencoder [41]

over MNIST, only for 2 epochs. We did so to make the encoders powerful just enough

to produce images that contain subtle digit structures (fig. 6.6). As expected, now the

classification images can be computed with a much less number of stimuli (∼100). Results

from these analyses suggest that it is possible to lower the sample complexity when some

(unlabeled) data is available. This is, in particular, appealing for practical applications

of classification images.

Results on ImageNet We conducted an experiment on ImageNet validation set in-

cluding 50K images covering 1000 categories and 1 million samples using Gabor PCA

136

Neuroscience-inspired DNN modeling Chapter 6

sa
m

pl
es

av
g.

 n
oi

se
 n

 =
 1

00
av

g.
 n

oi
se

 n
 =

 1
00

0
av

g.
 n

oi
se

 n
 =

 1
0K

AutoEncoder VAE

Figure 6.6: Using an AutoEncoder and a VAE to generate samples containing faint
structures to be used for computing the classification images over MNIST dataset, using
a CNN classifier. Both generators were trained only for two epochs to prohibit the CNN
from generating perfect samples (shown at the top). The bottom panels show classifi-
cation images derived using 100, 1K, and 10K samples from each generator. Note that
classification images converge much faster now compared with the white noise stimuli.

Table 6.1: Results on ImageNet.

backbone accuracy run time empty classes

ResNet152 0.00180 2:15 564
ResNet101 0.00152 1:36 539
densenet201 0.00118 2:12 998
squeezenet1 1 0.00104 0:13 999
googlenet 0.00102 0:26 999
mnasnet1 3 0.00082 0:32 922
vgg 19 bn 0.00074 1:51 994

137

Neuroscience-inspired DNN modeling Chapter 6

recon.

orig.

cl
as

si
�c

at
io

n
im

ag
es

sa
m

pl
es

acc: 35.55

Tr
ue

 la
be

l

Predicted label

recon.

orig.acc: 21.67

Predicted labelPredicted label

acc: 41.21

recon.

orig.

t-shirt trouser pullover dress coat

sandal shirt sneaker bag ankle boot

plane car bird cat deer

dog frog horse ship truck

0 1 2 3 4

5 6 7 8 9

Figure 6.7: Classification images, some sample generated images, confusion matrices
of bias map classifiers, as well as one sample image and its reconstruction using Gabor
wavelets over MNIST (left), Fashion-MNIST (middle), and CIFAR-10 (right) datasets.
We used 960, 960, and 1520 Gabor wavelets over MNIST, Fashion-MNIST, and CIFAR-
10, respectively. The corresponding numbers of PCA components are 250, 250, and 600
(per color channel).

sampling (from the above CIFAR-10 experiment over CIFAR-10 images) and pretrained

CNNs (on ImageNet train set). As results in table 6.1 show, even with 1M samples and

without parameter tuning, we obtain an improvement over the chance level (0.0010 or

0.1%. We obtain about 2x accuracy than chance using ResNet152 [148]. It seems that

1M samples are not enough to cover all classes since no noise pattern is classified under

almost half of the classes using ResNet152. For some backbones, even a larger number of

classes remain empty: this provides another evidence that white noise can reveal biases

in models. We believe it is possible to improve these results with more samples. As you

can see with more classes being filled, better accuracy can be achieved. It takes only

a few minutes (about 2) to process all 1M images at 32 × 32 resolution using a single

GPU. Notice that ImageNet models have been trained on 224 × 224 images, while here

138

Neuroscience-inspired DNN modeling Chapter 6

Table 6.2: Numbers corresponding to the bar charts in fig. 6.8c.

γ 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

(1 − γ) × noise + γ × bias 0.1 0.113 0.127 0.149 0.174 0.207 0.271 0.429 0.666 0.743 0.9
(1 − γ) × signal + γ × bias 0.1 0.1 0.1 0.1 0.101 0.102 0.105 0.123 0.214 0.587 0.9
(1 − γ) × noise + γ ×mean 0.1 0.127 0.179 0.313 0.618 0.842 0.986 1.0 1.0 1.0 1.0
(1 − γ) × signal + γ ×mean 0.1 0.101 0.103 0.109 0.149 0.28 0.534 0.83 0.994 1.0 1.0

we test them on 32 × 32 noise images for the sake of computational complexity. A better

approach would be to train the models on 32 × 32 images or feed the noise at 224 × 224

resolution. This, however, demands more computational power but may result in better

performance.

Overall, our pilot investigation on large-scale datasets is promising. We believe bet-

ter results than the ones reported in table 6.1 are possible with further modifications

(e.g., using better distance measures between an image and the average noise map for

each class). Also, it is likely that increasing the number of samples will lead to better

performance.

II. Adversarial attack and defense

Deep neural networks achieve remarkable results on various visual recognition tasks.

They are, however, highly susceptible to being fooled by images that are modified in

a particular way (so-called adversarial examples). Interesting adversarial examples are

the ones that can confuse a model but not a human (i.e., imperceptible perturbations).

Likewise, it is also possible to generate a pattern that is perceived by a human as noise

but is classified by a network as a legitimate object with high confidence [164]. Beyond

the security implications, adversarial examples also provide insights into the weaknesses,

strengths, and blind spots of models.

139

Neuroscience-inspired DNN modeling Chapter 6

g = 0.8g = 0.8 g = 0.8 g = 0.8

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

A B C
bias mean img

ac
cu

ra
cy

ac
cu

ra
cy

Figure 6.8: (a) Adding bias to a digit changes it to the target class in many cases (here
with γ = 0.8). Adding bias to noise (2nd col.) turns noise into the target digit in almost
all cases. The histograms show the distribution of predicted classes (intact digits or pure
noise; 1st row). Note that most of the noise images are classified as 8 (top histogram in
2nd col). (b) Same as A but using mean digit (computed over the training set). Adding
the mean image is more effective but causes a much more perceptible perturbation. (c)
The degree to which (i.e., accuracy) a stimulus is classified as the target class (i.e., fooled)
by adding different magnitudes of bias (or mean image) to it. Converting noise to a target
is easier than converting a signal. There is a trade-off between perceptual perturbation
and accuracy (i.e., subtle bias leads to less number of digits being misclassified).

Adversarial attack A natural application of the bias maps is to utilize them to in-

fluence a black-box system, in targeted or un-targeted manners, by adding them to the

healthy inputs. Over MNIST, we added different magnitudes of bias maps (controlled

by γ; Eq. 3) to the input digits and calculated the misclassification accuracy or fooling

rate of a CNN (same as the one used in the previous subsection). This is illustrated in

fig. 6.8a. Obviously, there is a compromise between the perceptibility of perturbation

(i.e., adding bias) and the fooling rate. With γ = 0.8, we are able to manipulate the

network to classify the augmented digit as the class of interest 21% of the time (fig. 6.8c;

chance is 10%). In comparison, adding the same amount of the mean image to digits

fools the network almost always but is completely perceptible. In a similar vein, we are

able to convert noise to a target digit class by adding bias to it (fig. 6.8b). With γ = 0.5,

which is perceptually negligible (fig. 6.9), we can manipulate the network 20.7% of the

time. Notice that in contrast to many black-box adversarial attacks that demand access

to logits or gradients, our approach only requires the hard labels and does not make any

140

Neuroscience-inspired DNN modeling Chapter 6

assumption regarding the input distribution.

Adversarial defense In a recent work, [165] introduced a technique called adversarial

patch as a backdoor attack on a neural network. They placed a particular type of pattern

on some inputs and trained the network with the poisoned data. The patches were allowed

to be visible but were limited to a small, localized region of the input image. Here, we

explore whether and how classification images can be used to detect adversarial patch

attacks.

We performed three experiments, two on MNIST and one on CIFAR-10 (fig. 6.10).

Over MNIST, we constructed two training sets as follows. In the first one, we took half

of the 0s and placed a 3×3 patch (x-shape) on their top-left corner and relabeled them as

1. The other half of the zeros and all other digits remained intact. In the second one, we

placed a c-shape patch on the top-right corner of half of the 8s, relabeled them as 9, and

left the other half and other digits intact. We then trained two 10-way CNNs, the same

architecture as in the previous subsection, on these training sets. The CNNs perform

close to perfect on the healthy test sets. Over a test set with all zeros contaminated (or

eights), they completely misclassify the perturbed digits (See confusion matrices in the

2nd and 4th rows of fig. 6.10a). Computing the classification images for these classifiers,

we find a strong activation at the location of the adversarial patches in both cases. Note

that the derived classification images still resemble the ones we found using the un-

attacked classifiers (fig. 6.2a) but now new regions pop out. Over CIFAR-10, we placed

an H-shape pattern on the top-right of half of the birds and labeled them as cats. The

trained CNN classifier performs normally on a clean dataset. Again, computing the bias

unveils a tamper in the network (fig. 6.10b). To verify these findings, we computed the

average gradient of the classification loss with respect to the input image for intact and

attacked networks over the healthy and tampered training sets (fig. 6.10). The average

141

Neuroscience-inspired DNN modeling Chapter 6

g
=

0.
5

g
=

0.
8

g
=

0.
9

g
=

1

Figure 6.9: Illustration of influencing the CNN decisions (on MNIST) towards a partic-
ular digit class by adding bias to the digits (top) and adding bias to the noise (bottom).
This is akin to a targeted attack. See fig. 6.10.

142

Neuroscience-inspired DNN modeling Chapter 6

1
0

ca
t

bi
rd

B D

C

av
g.

 n
oi

se
av

g.
 n

oi
se

 (p
at

ch
)

fr
og

 c
ar

 (
fr

og
 +

 c
on

v3
 o

f c
ar

)

A
8

9

0 1 2 3 4

5 6 7 8 9

0 1 2 3 4

5 6 7 8 9

Av
g.

 g
ra

di
en

t b
ef

or
e

at
ta

ck
 (c

le
an

 d
at

a)
Av

g.
 g

ra
di

en
t a

fte
r

at
ta

ck
 (c

le
an

 d
at

a)
Av

g.
 g

ra
di

en
t a

fte
r a

tta
ck

(a
ll

8s
 a

re
 la

be
le

d
as

 9
)

0 1 2 3 4

5 6 7 8 9

0 1 2 3 4

5 6 7 8 9

0 1 2 3 4

5 6 7 8 9

Figure 6.10: (a) Top: A 10-way CNN trained on MNIST (with half of the zeros aug-
mented with a patch and relabeled as 1) performs very well on a clean test set (top
confusion matrix). On a test set containing all zeros contaminated, it (incorrectly) clas-
sifies them as one. Classification images (right side) successfully reveal the perturbed
region. Bottom: Same as above but over 8 and 9 digits. (b) Classification images reveal
the adversarial patch attack over CIFAR-10. Here, half of the birds are contaminated
with a patch and are labeled as cat. (c) Turning a frog into a car by adding the acti-
vation of the conv6 layer, computed using white noise, of the car category to the frog.
(d) Average gradients before the adversarial patch attack (top) and after the attack
(middle). The small yellow region on the top-right of digit 8 means that increasing those
pixels increases the loss and thus leads to misclassification (i.e., turns 8 to another digit).
(bottom) Average gradient with all 8s contaminated and relabeled as 9. The blue region
on the top-right of digit 9 means that increasing those pixels lowers the loss and thus
leads to classifying a digit as 9. This analysis is performed over the MNIST training set.
Please see also figs. 6.11 and 6.15.

before attack after attack

Figure 6.11: Confusion matrices for adversarial patch attack on CIFAR-10 dataset (bird
to cat). Class names: plane, car, bird, cat, deer, dog, frog, horse, ship, and truck.

gradient shows a slight activation at the location of the perturbation (fig. 6.10d), but it

is not as pronounced as results using bias images.

143

Neuroscience-inspired DNN modeling Chapter 6

MNIST
co

nv
1

co
nv

2

co
nv

4
co

nv
6

co
nv

1
co

nv
2

CIFAR-10 MNIST

co
nv

1
co

nv
1

co
nv

1

CIFAR-10

Figure 6.12: Left two: example filters derived using spike-triggered averaging (STA) for
the first two conv layers of a CNN trained on MNIST dataset (left; RF sizes are 5 × 5
and 14 × 14) and 4 layers of a CNN on CIFAR-10 dataset (middle; RF sizes in order are
3 × 3, 5 × 5, 14 × 14 and 32 × 32). Right: Trained model weights (i.e., convolutional
kernels) of the first layer of a CNN trained on MNIST or CIFAR-10. These are not
calculated by feeding noise patterns. They are derived after training the model on data.
Interestingly, they are the same as those derived using white noise.

III. Filter visualization

A number of ways have been proposed to understand how neural networks work by vi-

sualizing their filters [166]. Example approaches include plotting filters of the first layers,

identifying stimuli that maximally activate a neuron, occlusion maps by masking image

regions [167], activation maximization by optimizing a random image to be classified as

an object [168], saliency maps by calculating the effect of every pixel on the output of the

model [169], network inversion [170], and network dissubsection [171].6 Here, we propose

a new method based on spike-triggered averaging.

For each model, we fed 1 million randomly generated patterns to the network and

recorded the average response of single neurons at different layers. We changed the acti-

vation functions in the convolution layers of the CIFAR-10 CNN model to tanh, as using

ReLU activation resulted in some dead filters. fig. 6.12 shows the results over MNIST

6See also https://captum.ai/docs/algorithms.

144

https://captum.ai/docs/algorithms

Neuroscience-inspired DNN modeling Chapter 6

MNIST

co
nv

1
co

nv
1

co
nv

1

CIFAR-10

MNIST

co
nv

1
co

nv
1

co
nv

1

CIFAR-10

Figure 6.13: Trained model weights (i.e., convolutional kernels) of the first layer of a
CNN trained on MNIST or CIFAR-10. These are not calculated by feeding noise patterns.
They are derived after training the model on data. Interestingly, they are the same as
those derived using white noise as shown in fig. 6.12.

and CIFAR-10 datasets. We also show the filters computed using real data for the sake

of comparison in the fig. 6.13. As can be seen, filters extract structural information

(e.g., oriented edges) and are similar to those often derived by other visualization tech-

niques. Comparing derived filters using noise patterns and derived filters using training

on real data (i.e., kernel weights), we notice that the two are exactly the same. This

holds over both MNIST and CIFAR-10 datasets.

Next, for the CIFAR-10 model, we computed mean layer activation maps of conv2,

conv4, conv6, and fc layers by sending noise through the network. Results are shown

in fig. 6.14. Comparing these maps with the mean activation maps derived using real

data, we observe a high similarity in the fc layer and relatively less similarity in the other

layers. The high similarity in the fc layer is because it is immediately before the class

decision layer, and thus for a noise pattern to fall under a certain class, it has to have a

similar weight vector as the learned weights from real data. This is corroborated by the

higher average L2 distance across different classes in the fc layer, compared to the other

layers, over both noise and real data (bottom panel in fig. 6.14).

We then asked whether it is possible to bias the network towards certain classes

(similar to the adversarial analysis in fig. 6.8) by injecting information, learned from

average noise patterns to the input image or its activation maps at different layers. For

145

Neuroscience-inspired DNN modeling Chapter 6

Noise data

fc
co

nv
6

co
nv

4
co

nv
2

A
ve

ra
ge

 L
2

di
st

an
ce

Realdata

fc conv6 conv4 conv2 image fc conv6 conv4 conv2 image

Figure 6.14: (Top) Average layer activation using noise (left) and real data (right) over
a CNN trained on CIFAR-10 dataset. (Bottom) Mean distance between average layer
activations of different classes across model layers.

146

Neuroscience-inspired DNN modeling Chapter 6

example, as shown in fig. 6.10c, we can turn a frog into a car by adding the average conv6

activation of the noise patterns classified as a car to it. This can be done in a visually

(almost) imperceptible manner. Results over other classes of CIFAR-10 and different

activation layers are shown in fig. 6.15. For some classes (e.g., cat or bird), it is easy to

impact the network, whereas for some others (e.g., horse) it is harder. Results indicate

that for different objects, different layers have more influence on classification.

IV. Micro-stimulation

Microstimulation, the electrical current-driven excitation of neurons, is used in neu-

rophysiology research to identify the functional significance of a population of neu-

rons [172, 173]. Due to its precise temporal and spatial characteristics, this technique is

often used to investigate the causal relationship between neural activity and behavioral

performance.

It has also been employed to alleviate the impact of damaged sensory apparatus and

build brain-machine interfaces (BMIs) to improve the quality of life of people who have

lost the ability to use their limbs.

For example, stimulation of the primary visual cortex creates flashes of light which

can be used to restore some vision for blind people. Microstimulation has been widely

used to study visual processing across several visual areas, including MT, V1, V4, IT, and

FEF [174]. Here, we investigate how augmenting the stimuli with white noise impacts

the internal activations of artificial neural networks and their outputs.

We linearly combined signal and white noise, according to Eq. 3, and measured

the classification accuracy of a CNN trained on MNIST (fig. 6.16). Without any stim-

ulation, with the original network biases and weights, increasing the amount of signal

(shown on the x-axis) improves the accuracy from 0 (corresponding to 100% noise) to

1 (corresponding to 100% signal). The resulting S-shaped curve resembles the psycho-

147

Neuroscience-inspired DNN modeling Chapter 6

g

m
is

cl
as

si
fic

at
io

n
ra

tio

Figure 6.15: Effect of adding activation at conv6, conv4, conv2 and input of noises classi-
fied as different classes to real images. The figure shows CIFAR-10 model misclassification
ratio vs. γ, where the input to the model is ((1−γ)×noise activation of a certain class+
γ × real data input image. The misclassification ratio is calculated as the number of im-
ages that do not belong to the activation-added class but are classified as it over the
number of images not belonging to the activation-added class. The visualization of
adding activation to input is shown in fig. 6.10c.

148

Neuroscience-inspired DNN modeling Chapter 6

g g g
g s + (1 - g) n

ac
cu

ra
cy

ac
cu

ra
cy

ac
cu

ra
cy

A

B

k

C

D

0 - fc 1 - fc 2 - fc

0 - conv2 1 - conv2 2 - conv2

0 - conv1 1 - conv1 2 - conv1

0.2 1.00 0.4 0.6 0.8

Figure 6.16: Psychometric curves of a CNN trained on MNIST. The x-axis shows the
magnitude of the signal added to the noise ((d)). The y-axis shows the accuracy. Legends
show the magnitude of stimulation (k in Eq. 6). Larger k (redder curve) means more
bias. (a) Increasing fc bias enhances recognition towards the target digit for all digits.
The opposite happens when lowering the bias. (b)(c) Stimulating neurons in conv layers
helps some digits (for which those neurons are positively correlated) but hinders some
others.

metric functions observed in human psychophysics experiments [175]. We then varied

the amount of network bias in different layers according to the following formula and

measured the accuracy again:

bnewml = boldml + λl × k × 1

max(aml)

N∑
i=1

amli (6.6)

where bml is the bias term for map m in layer l, and amli is the activation of neuron i at

the mth map of the lth layer. k controls the magnitude of stimulation. λl is used to scale

149

Neuroscience-inspired DNN modeling Chapter 6

the activation values, since sensitivity of the output to neurons at different layers varies

(here we use λl = 0.01, 0.1, 1 for fc, conv1, and conv2, respectively). Bias term (bml) is

shared across all neurons in a map (i.e., for the same kernel). Notice that increasing bias

in Eq. 6 is proportional to the map activation. Thus, stimulation has a higher impact

on more active (selective) neurons.

Increasing the bias of fc neurons shifts the psychometric function to the left. This

means that for the same amount of noise as before (i.e., no stimulation), now CNN

classifies the input more frequently as the target digit. In other words, the network

thinks of noise as the digit. Increasing fc biases consistently elevates accuracy for all

digits. Conversely, reducing the fc bias shifts the psychometric function to the right for

all digits (i.e., using minus sign in Eq. 6). The effect of stimulation on convolutional

layers is not consistent. For example, increasing conv2 bias shifts the curves to the right

for 0 and 1, and to the left for 3. We observed that stimulation or inhibition of conv1

layer almost always hurts all digits. We speculate this might be because conv1 filters

capture features that are shared across all digits, and thus a subtle perturbation hurts

the network.

We were able to replicate the above results using a binary CNN akin to yes/no

experiments on humans or monkeys. Results are provided in fig. 6.17. Our findings

qualitatively agree with the results reported in [176]. They artificially stimulated clusters

of IT neurons while monkeys judged whether noisy visual images were ‘face’ or ‘non-face’.

Microstimulation of face-selective neurons biased the monkeys’ decisions towards the face

category.

150

Neuroscience-inspired DNN modeling Chapter 6

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

g

g

A 1 vs. 3 (increasing bias) 1 vs. 3 (decreasing bias)

 2 vs. 8 (decreasing bias)B 2 vs. 8 (increasing bias)

Figure 6.17: Results of microstimulation for binary decision-making tasks using a CNN
classifier (1 vs. 3) and (2 vs. 8). Left(right) panels show increasing (decreasing) bias for
each layer. See fig. 6.16.

151

Neuroscience-inspired DNN modeling Chapter 6

6.1.4 Discussions and Conclusion

We showed that white noise analysis is effective in unveiling hidden biases in deep

neural networks and other types of classifiers. A drawback is the need for a large num-

ber of trials. To lower the sample complexity, we followed the approach in [163] and

also recruited generative models. As a result, we were able to lower the sample com-

plexity dramatically. As another alternative, [152] used the Hoggles feature inversion

technique [177] to generate images containing subtle scene structures. Their computed

bias maps roughly resembled natural scenes. We found that the quality of the bias maps

highly depends on the classifier type and the number of trials. Also, classification images

over natural scene datasets are not expected to look like the instances of natural images

since even the mean images do not represent sharp objects (see figs. 6.2 and 6.7). In this

regard, spike-triggered covariance can be utilized to find stimuli (eigenvectors) to which

a network or a neuron responds [159].

We foresee several avenues for future research. We invite researchers to employ

the tools developed here to analyze even more complex CNN architectures including

ResNet [148] and InceptionNet [178]. They can also be employed to investigate bi-

ases of other models such as CapsuleNets [179] and GANs [180], and to detect and

defend against other types of adversarial attacks. The outcomes can provide a bet-

ter understanding of the top-down processes in deep networks, and the ways they can

be integrated with bottom-up processes. Moreover, applying some other methods from

experimental neuroscience [181] (e.g., lesioning, staining) and theoretical neuroscience

(e.g., spike-triggered non-negative matrix factorization [182], Bayesian STC [161], and

Convolutional STC [183]) to inspect neural networks is another interesting future direc-

tion. Using classification images to improve the accuracy of classifiers (as in [152]) or

their robustness (as was done here) are also promising directions.

152

Neuroscience-inspired DNN modeling Chapter 6

This work focused primarily on visual recognition. On the other hand, [184] used

classification images to estimate the template that guides saccades during the search for

simple visual targets, such as triangles or circles. [185] measured temporal classifica-

tion images to study how the saccadic targeting system integrates information over time.

[186] utilized classification images to investigate the perception of illusory and occluded

contours. Inspired by these works, classification images, and STA can be applied to other

computer vision tasks such as object detection, edge detection, activity recognition, and

segmentation. Finally, unveiling biases of complicated deep networks can be fruitful in

building bias-resilient and fair ANNs (e.g., racial fairness).

In summary, we utilized two popular methods in computational neuroscience, classifi-

cation images and spike-triggered averaging, to understand and interpret the behavior of

artificial neural networks. We demonstrated that they bear value for practical purposes

(e.g., solving challenging issues such as adversarial attacks) and for further theoretical ad-

vancements. More importantly, our efforts show that confluence across machine learning,

computer vision, and neuroscience can benefit all of these fields.

153

Neuroscience-inspired DNN modeling Chapter 6

6.2 Sparsifying DNNs: Fat-Trimming MLP-like Mod-

els

Information in the brain is represented with the sparse coding property [187]: items

trigger strong activation of a relatively small set of neurons. For different stimuli, a differ-

ent subset of all available neurons activate. This section takes insights from this property.

However, instead of having different activations for different inputs, we bring the spar-

sity into DNN by activating partial channels, thus achieving sparse activation of artificial

neurons. In what follows, we present SplitMixer, a simple and lightweight isotropic

MLP-like architecture, for visual recognition. It contains two types of interleaving con-

volutional operations to mix information across spatial locations (spatial mixing) and

channels (channel mixing). The first one includes sequentially applying two depthwise

1D kernels, instead of a 2D kernel, to mix spatial information. The second one is split-

ting the channels into overlapping or non-overlapping segments, with or without shared

parameters, and applying our proposed channel mixing approaches or 3D convolution to

mix channel information. Depending on design choices, a number of SplitMixer variants

can be constructed to balance accuracy, the number of parameters, and speed. We show,

both theoretically and experimentally, that SplitMixer performs on par with the state-

of-the-art MLP-like models while having a significantly lower number of parameters and

FLOPS. For example, without strong data augmentation and optimization, SplitMixer

achieves around 94% accuracy on CIFAR-10 with only 0.28M parameters, while Con-

vMixer achieves the same accuracy with about 0.6M parameters. The well-known MLP-

Mixer achieves 85.45% with 17.1M parameters. On the CIFAR-100 dataset, SplitMixer

achieves around 73% accuracy, on par with ConvMixer, but with ∼52% fewer parame-

ters and FLOPS. Our model also fares well over Flowers102, Food101, and ImageNet-1K

datasets. We hope that our results spark further research toward finding more efficient

154

Neuroscience-inspired DNN modeling Chapter 6

vision architectures and facilitating the development of MLP-like models.

6.2.1 Introduction

Architectures based exclusively on multi-layer perceptrons (MLPs) [188] have emerged

as strong competitors to Vision Transformers (ViT) [189] and Convolutional Neural Net-

works (CNNs) [147, 148]. They achieve compelling performance on several computer

vision problems, in particular large-scale object classification. Further, they are very

simple and efficient, and perform on par with more complicated architectures. MLP-like

models contain two types of layers to mix information across spatial locations (spatial

mixing) and channels (channel mixing). These operations can be implemented via self-

attention as in ViT, MLPs as in MLP-Mixer, or convolutions as in ConvMixer [2]. There

is, in fact, a high degree of similarity among these models (section 6.2.5).

We propose the SplitMixer, a conceptually and technically simple, yet very efficient

architecture in terms of accuracy, the number of required parameters, and computation.

Our model is similar in spirit to the ConvMixer and MLP-Mixer models in that it accepts

image patches as input, dissociates spatial mixing from channel mixing, and maintains

equal size and resolution throughout the network, hence an isotropic architecture. Similar

to ConvMixer, it uses standard convolutions to achieve the mixing steps. Unlike Con-

vMixer, however, it uses 1D convolutions to mix spatial information. This modification

maintains the accuracy but does not lower the number of parameters significantly. The

biggest reduction in the number of parameters is achieved by how we modify channel

mixing. Instead of applying 1 × 1 convolutions across all channels, we apply them to

channel segments that may or may not overlap each other. We implement this part with

our ad-hoc solutions or with 3D convolution. This way, we find some architectures that

are very frugal in terms of model size and computational needs and, at the same time,

155

Neuroscience-inspired DNN modeling Chapter 6

exhibit high accuracy (See fig. 6.24).

Despite its simplicity, SplitMixer achieves excellent performance. For example, with-

out strong data augmentations, it attains around 94% Top-1 accuracy on CIFAR10 with

only 0.27M parameters and 71M FLOPS. ConvMixer achieves the same accuracy but with

0.59M parameters and 152M FLOPS (almost twice more expensive). MLP-Mixer can

only achieve 85.45% with 17.1M parameters and 1.21G FLOPS. ResNet50 [148] achieves

80.76% using 23.84M parameters, and MobileNet attains 89.81% accuracy using 0.24M

parameters.

Inspired by the extensive use of spatial separable convolutions and depthwise separa-

ble convolutions in the literature (e.g., MobileNet), in section 6.2.2, we propose to apply

1D depthwise convolution sequentially across width and height for spatial mixing, and

split the channels into overlapping or non-overlapping segments and applying 1×1 point-

wise convolution to segments for channel mixing. Apart from theoretical analyses, we

also provide empirical support for the computational efficiency of the proposed solution

in section 6.2.3, together with model throughput measurement, and ablation studies to

determine the contribution of different model components.

6.2.2 SplitMixer

The overall architecture of SplitMixer is depicted in fig. 6.18. It consists of a patch em-

bedding layer followed by repeated applications of fully convolutional SplitMixer blocks.

Patch embeddings with patch size p and embedding dimension h are implemented as 2D

convolution with c input channels (3 for RGB images), h output channels, kernel size p,

and stride p:

z0 = N (σ{Convc→h(I, stride=p, kernel size=p)}) (6.7)

156

Neuroscience-inspired DNN modeling Chapter 6

where N is a normalization technique (e.g., BatchNorm by [190]), σ is an element-wise

nonlinearity (e.g., GELU by [191]), and I ∈ Rn×n×c is the input image. The SplitMixer

block itself consists of two 1D depthwise convolutions (i.e., grouped convolution with

groups equal to the number of channels h) followed by several pointwise convolutions

with kernel size 1× 1. Each convolution is followed by nonlinearity and normalization 7.

Therefore, each block can be written as:

z′l = N (σ{ConvDepthwise(zl−1)}) // 1 × k Conv across width (6.8)

z′l = N (σ{ConvDepthwise(z′l)}) + zl−1 // k × 1 Conv across height (6.9)

zl = N (σ{ConvPointwise(z′l)}) // 1 × 1 Conv across channels (6.10)

The SplitMixer block is applied b times (indexed by l), after which global pooling is

applied to obtain a feature vector of size h. Finally, a softmax classifier maps this vector

to the class label. In what follows, we describe the spatial and channel mixing layers of

the architecture.

I. Spatial mixing

We replace the k × k kernels8 in ConvMixer by two 1D kernels: 1) a 1 × k kernel

across width, and 2) a k × 1 kernel across height. This reduces k2 × h parameters to

2k × h in each SplitMixer block. Similarly the W × H × k2 × h FLOPS is reduced to

W ×H×2k×h, where W and H are width and height of the input tensor X ∈ RW×H×h,

respectively. Therefore, separating the 2D kernel into two 1D kernels results in k
2

times

savings in parameters and FLOPS. The two 1D convolutions are applied sequentially and

each one is followed by a GELU activation and BatchNorm (denoted as “Act + Norm”

7We use GELU and BatchNorm throughout this section, except in ablation experiments.
8Throughout the section, a tensor or a kernel is represented as width × height × channels.

157

Neuroscience-inspired DNN modeling Chapter 6

Figure 6.18: Basic architecture of SplitMixer. The input image is evenly divided into
several image patches which are tokenized with linear projections. A number of 1D
depthwise convolutions (spatial mixing) and pointwise convolutions (channel mixing) are
repeatedly applied to the projections. For channel mixing, we split the channels into
segments (hence the name SplitMixer) and perform convolution on them. We implement
this part with our ad-hoc solutions or 3D convolution. Finally, a global average pooling
layer followed by a fully-connected layer is used for class prediction.

in fig. 6.18).

II. Channel mixing

We notice that most of the parameters in ConvMixer reside in the channel mixing

layer. For h channels and kernel size k (h >> k), in each block there are h×k2 parameters

in the spatial mixing part and h2 parameters in the channel mixing part. Thus, the

fraction of parameters in the two parts is h×k2

h2 = k2

h
which is much smaller than 1

(e.g., 52/256). Therefore, most of the parameters are used for channel mixing.

Implementation using 3D convolution The basic idea here is to utilize 3D convo-

lutions with certain strides. The output will be a set of interleaved maps coming from

different segments. The same 3D kernel (with shared parameters) is applied to all seg-

ments. A certain number of 3D kernels will be needed to obtain an output tensor with

the same number of channels as the input. Applying m 3D kernels of size 1× 1× h
m

and

stride h
m

(assume h is divisible by m), will require h2

m
parameters. Hence, more parame-

158

Neuroscience-inspired DNN modeling Chapter 6

Figure 6.19: Channel mixing approaches: (a) channels are split into two overlapping
segments, and only one segment is convolved in each block (no parameter sharing across
segments), (b) channels are equally split into a number of segments, and only one seg-
ment is convolved in each block (no overlap or parameter sharing), (c) all segments are
convolved in each block and parameters are shared across segments, and (d) all segments
are convolved in each block (no parameter sharing).

ters and computation will be saved by increasing the number of segments (i.e., smaller 3D

kernels). While being easy to implement, using 3D convolution has some restrictions. For

example, kernel parameters have to be shared across segments, and all segments have to

be convolved. Further, we find that channel mixing using 3D convolution is much slower

than our other approaches (mentioned next).

Other channel mixing approaches A number of approaches are proposed that differ

depending on whether they allow overlap or parameter sharing among segments. They

offer different degrees of trade-off in accuracy, number of parameters, and FLOPS. Notice

that both of our spatial and channel mixing modifications can be used in tandem or

separately. In other words, they are independent of each other. The channel mixing

approaches are shown in fig. 6.19 and are explained below.

159

Neuroscience-inspired DNN modeling Chapter 6

SplitMixer-I: Overlapping segs, no param sharing, update one seg per block

The input tensor is split into two overlapping segments along the channel dimension. The

intuition here is that the overlapped channels allow efficient propagation of information

from the first segment to the second. Let m be the size of each segment and a fraction of h,

i.e., m = α×h, α > 0.5. The two segments can be represented as X[: m] and X[h−m :] in

PyTorch. For instance, for α = 2/3, one-third of the middle channels are shared between

the two segments. We choose to apply convolution to only one segment in each block,

e.g., the left segment in odd blocks and the right segment in even blocks. m number of 1×1

convolutions are applied to the segment that should be updated. Therefore, the output

has the same number of channels as the original segment, which is then concatenated

to the other (unaltered) segment. The final output is a tensor with h channels to be

processed in the next block. In the experiments, we choose α = i
2i−1

, i ∈ {2 · · · 6}. The

reduction in parameters per block can be approximated as9:

h2 − (α× h)2 = (1 − α2) × h2 (6.11)

which means 1 − α2 fraction of parameters are reduced (e.g., 56% parameter reduction

for α = 2/3; the parameter saving curve as a function of segmentat overlap is plotted

in fig. 6.20). Notice that the bigger the α, the less saving in parameters. Similarly, the

reduction in FLOPS can be approximated as:

W ×H × h× h−W ×H × (α× h) × (α× h) = (1 − α2) ×W ×H × h2 (6.12)

These equations show that the saving in FLOPS is the same as the saving in parameters.

We also tried a variation of this design, denoted as SplitMixer-V, which is updating both

9For simplicity, here we discard bias, BatchNorm, and optimizer parameters.

160

Neuroscience-inspired DNN modeling Chapter 6

Figure 6.20: Parameter saving as a function of (left) segment overlap for SplitMixer-I
and (right) segment for SplitMixer-II and SplitMixer-IV. About 75% of parameters can
be saved in the limit for SplitMixer-I (i.e., as i approaches infinity, see eq. (6.11)).

segments in the same block. This new variation has fewer parameters and FLOPS than

ConvMixer. It saves less parameters compared to SplitMixers (ratio equal to 1 − 2α2)

but achieves slightly higher accuracy (i.e., trade-off in favor of accuracy).

SplitMixer-II: Non-overlapping segs, no param sharing, update one seg per

block We first split the h channels into s non-overlapping segments, each with size h
s
,

along the channel dimension10. In each block, only one segment is convolved and updated.

Parameters are not shared across the segments. Following the above calculation, saving

in parameters and FLOPS is 1− 1
s2

. For example, for s = 2, ∼75% of the parameters are

reduced. The same argument holds for FLOPS.

SplitMixer-III: Non-overlapping segs, param sharing, update all segs per

block Here, h channels are split into s non-overlapping segments with shared param-

eters. Notice that under this setting, h must be divisible by s in order to get all the

channels convolved. All segments are convolved and updated simultaneously in each

block. Due to parameter sharing, the reduction in parameters is the same as SplitMixer-

10Notice that when h is not divisible by the number of segments, the last segment will be longer
(e.g., dividing h = 256 into 3 segments means the segments would have dimension [85, 85, 86], in order).

161

Neuroscience-inspired DNN modeling Chapter 6

II, i.e., the two SplitMixers have the same number of parameters for the same number

of segments. The number of FLOPS, however, is higher now since computation is done

over all s segments. The number of FLOPS is the same as SplitMixer-IV, which will be

calculated in the following subsection.

SplitMixer-IV: Non-overlapping segs, no param sharing, update all segs per

block This approach is similar to SplitMixer-III with the difference that here param-

eters are not shared across the segments. All segments are convolved and updated, and

the results are concatenated. The reduction in parameters per block is:

h2 − s× (h/s)2 = (1 − 1

s
) × h2, (6.13)

which results in 1 − 1
s

parameter saving. For example, 66.6% of the parameters are

reduced for s = 3. More savings can be achieved with more segments. The reduction in

FLOPS is:

W ×H × h× h− s× (W ×H × h

s
× h

s
) = (1 − 1

s
) ×W ×H × h2, (6.14)

which means the same saving in FLOPS as in parameters.

Comparison of channel mixing approaches Among the mixing approaches, the

SplitMixer-II saves the most parameters and computation but achieves lower accuracy.

SplitMixer-I strikes a good balance between accuracy and model size (and FLOPS) thanks

to its partial channel sharing. We assumed the same number of blocks in all mixing ap-

proaches. In practice, a smaller number of blocks might be required when all segments

are updated simultaneously in each block. Notice that apart from these approaches,

there may be some other ways to perform channel mixing. For example, in SplitMixer-I,

162

Neuroscience-inspired DNN modeling Chapter 6

Figure 6.21: Potential savings in parameters and FLOPS for different SplitMixer vari-
ants.

parameters can be shared across the overlapped segments, or multiple segments can over-

lap. We leave these explorations to future research. We have also empirically measured

the amount of potential saving in parameters and FLOPS over CIFAR-10 and ImageNet

datasets, for model specifications mentioned in the next section. Results are shown in

fig. 6.21.

III. Naming convention

We name SplitMixers after their hidden dimension h and the number of blocks b like

SplitMixer-A-h/b, where A is a specific model type (I, II, . . .).

6.2.3 Experiments and Results

We conducted several experiments to evaluate the performance of SplitMixer in terms

of accuracy, the number of parameters, and FLOPS. Our goal was not to obtain the

best possible accuracy. Rather, we were interested in knowing whether and how much

parameters and computation can be reduced relative to ConvMixer. To this end, we

163

Neuroscience-inspired DNN modeling Chapter 6

used their code and parameter settings. A thorough comparison of ConvMixer with

other models is made in [2]. We implemented our model in PyTorch and used a Tesla

V100 GPU with 32GB RAM to run it.11

We used RandAugment [192], random horizontal flip, and gradient clipping. Due to

limited computational resources, we did no perform extensive hyperparameter tuning, so

better results than those reported here may be possible. All models were trained for 100

epochs with batch size 512 over CIFAR-{10,100} and 64 over Flowers102 and Food101

datasets. Unless stated otherwise, h and b were set to 256 and 8 across all datasets. We

used AdamW [193] as the optimizer, with weight decay set to 0.005 (0.1 for Flowers102).

The learning rate (lr) was adjusted with the OneCycleLR scheduler (max-lr was set to

0.05 for CIFAR-{10,100}, 0.03 for Flowers102, and 0.01 for Food101). We utilized the

ithop library12 for measuring the number of parameters and FLOPS.

I. Results on CIFAR-{10,100} datasets

Both datasets contain 50,000 training images and 10,000 test images (resolution is 32

× 32); each class has the same number of samples. We set p = 2 and k = 5 over both

datasets.

As shown in the top panel of fig. 6.22, ConvMixer scores slightly above 94% on CIFAR-

1013. SplitMixer-I has about the same accuracy as ConvMixer but with less than 0.3M

parameters which are almost half of the ConvMixer parameters. The same statement

holds for FLOPS as shown in fig. 6.23. SplitMixer with 1D spatial mixing and regular

1 × 1 channel mixing as in ConvMixer (denoted as “SplitMixer 1D S + ConvMixer C”

in the Figure) attains about the same accuracy as ConvMixer with slightly lower param-

11Code is available at https://github.com/aliborji/splitmixer.
12https://github.com/Lyken17/pytorch-OpCounter
13The original ConvMixer paper has reported 96% accuracy on CIFAR-10 with Mixup and Cutmix

data augmentation with 0.7M parameters. We expect even better results for SplitMixer with stronger
data augmentation.

164

https://github.com/aliborji/splitmixer
https://github.com/Lyken17/pytorch-OpCounter

Neuroscience-inspired DNN modeling Chapter 6

Figure 6.22: Accuracy vs. parameters for different variants of SplitMixer. S stands
for 1D spatial convolution and C stands for 1 × 1 pointwise convolution over channel
segments. We plug in our components into ConvMixer, denoted here as “2D + C” (2D
convolution kernels plus our channel mixing approach) and “1D S + ConvMixer C” (our
1D kernels plus channel mixing as is done in ConvMixer, i.e., 1× 1 convolution across all
channels without splitting). Data points are for different values of split ratio or number of
segments depending on the model type. We have collected more data points on CIFAR-
10 than other datasets. See also fig. 6.23 for accuracy vs. FLOPS plots.

eters and FLOPS. SplitMixer-I with 2D spatial kernels and segmented channel mixing

(denoted as “SplitMixer 2D S + C”) performs on par with SplitMixer-I. Performance of

the SplitMixer-II quickly drops with more segments (and subsequently fewer parameters).

SplitMixers III and IV also perform well (above 90%). Interestingly, with only about 76K

parameters, SplitMixer-III reaches about 91% accuracy. SplitMixer-V performs close to

ConvMixer, but it does not save many parameters or FLOPS.

Qualitatively similar results are obtained over the CIFAR-100 dataset. Here, Con-

vMixer scores 73.9% accuracy, above the 72.5% by SplitMixer-I, but with twice more

165

Neuroscience-inspired DNN modeling Chapter 6

Figure 6.23: Accuracy vs. FLOPS for different variants of SplitMixer. S stands for 1D
spatial convolution and C stands for 1 × 1 pointwise convolution over channel segments.
We plug in our components into ConvMixer, denoted here as “2D + C” (2D convolution
kernels plus our channel mixing approach) and “1D S + ConvMixer C” (our 1D kernels
plus channel mixing as is done in ConvMixer, i.e., 1 × 1 convolution across all channels
without splitting). Data points are for different values of split ratio or number of segments
depending on the model type. We have collected more data points on CIFAR-10 than
other datasets. Notice that the ratio of FLOPS over the number of parameters is almost
the same for all models except SplitMixer-III, where this ratio is higher since all segments
are updated in each block and parameters are shared across segments (see fig. 6.19). That
is why the plots for parameters and FLOPS are almost the same for each model, except
SplitMixer-III.

parameters and FLOPS.

On both datasets, increasing the number of segments saves more parameters and

FLOPS but at the expense of accuracy. Interestingly, SplitMixer-I with only channel

mixing does very well. Our channel mixing approach is much more effective than 1D

spatial mixing in terms of lowering the number of parameters and FLOPS.

166

Neuroscience-inspired DNN modeling Chapter 6

Results using 3D convolution We experimented with a model that uses 128 kernels

of size 1×1×128 and stride 128 along the channel dimension (i.e., channels are partitioned

into two non-overlapping segments each of size 128) for channel mixing. This model

scores 93.09% and 71.99% on CIFAR-10 and CIFAR-100, respectively. While having

similar accuracy, the number of parameters (about 0.2 M), and FLOPS (about 0.08 G)

as SplitMixer models, this model is much slower to train (each epoch takes twice more

time). Notice that, among the channel mixing approaches, only SplitMixer-III can be

considered as 3D convolution. Thus, performing channel mixing through strided 3D

convolution is a subset of our proposed solutions.

II. Results on Flowers102 and Food101 datasets

Flowers102 contains 1020 training images (10 per class) and 6149 test images. Food101

contains 750 training images and 250 test images for each of its 101 classes. We used

larger patch (p = 7) and kernel sizes (k = 7) since image size is bigger in these datasets

(both resized to 224 × 224).

Results are shown in fig. 6.22. The patterns are consistent with what we observed

over CIFAR datasets. SplitMixer variants, with small number of segments, perform close

to the ConvMixer. Over the Flowers102 dataset, SplitMixer-I scores 62.03%, higher than

the 60.47% by ConvMixer. Similarly, over Food101, SplitMixer-I scores 1% lower than

ConvMixer, but with less than half of ConvMixer’s parameters and FLOPS. In general,

increasing the overlap between segments (by raising α in SplitMixer-I) or reducing the

number of segments enhances the accuracy, but also increases the number of parameters

across datasets (not conclusive on Food101 dataset). Further, SplitMixer is effective over

both small and large datasets.

167

Neuroscience-inspired DNN modeling Chapter 6

Table 6.3: Comparison with other models. The best numbers in each column are high-
lighted in bold. The number of parameters and FLOPS are averaged over CIFAR-10
and CIFAR-100 for our models. Notice that some variants of SplitMixer perform better
than the numbers reported here over Flowers102 and Food101 datasets. Results, except
ConvMixer and our model, are reproduced from [3] where they have trained models for
200 epochs. We have trained ConvMixer and SplitMixer for 100 epochs.

Model Model Params/FLOPS CIFAR CIFAR Params/FLOPS Flowers Food
Family (M) / (G) 10 100 (M) / (G) 102 101

CNN ResNet20 [148] 0.27 / 0.04 91.99 67.39 0.28 / 2.03 57.94 74.91

Transformer ViT [189] 2.69 / 0.19 86.57 60.43 2.85 / 0.94 50.69 66.41

MLP AS-MLP [194] 26.20 / 0.33 87.30 65.16 26.30 / 1.33 48.92 74.92
” gMLP [195] 4.61 / 0.34 86.79 61.60 6.54 / 1.93 47.35 73.56
” ResMLP [196] 14.30 / 0.93 86.52 61.40 14.99 / 1.23 45.00 68.40
” ViP [197] 29.30 / 1.17 88.97 70.51 30.22 / 1.76 42.16 69.91
” MLP-Mixer [188] 17.10 / 1.21 85.45 55.06 18.20 / 4.92 49.41 61.86
” S-FC (β-LASSO) [198] - / - 85.19 59.56 - / - - -

” MDMLP [3] 0.30 / 0.28 90.90 64.22 0.41 / 1.59 60.39 77.85

” ConvMixer 0.60 / 0.15 94.17 73.92 0.70 / 0.70 60.47 74.59

” SplitMixer-I (ours) 0.28 / 0.07 93.91 72.44 0.34 / 0.33 62.03 73.56

Comparison with state of the art Table 6.3 shows a comparison of SplitMixer with

models from MLP, Transformer, and CNN families. Some results are borrowed from [3]

where they trained the models for 200 epochs, whereas here we trained our models for

100 epochs. While the experimental conditions in [3] might not be exactly the same

as ours, cross-examination still provides insights into how our models fare compared to

others, in particular the MLP-based models. Our models outperform other models while

having significantly smaller sizes and computational needs. For example, SplitMixer-I has

about the same number of parameters as ResNet20, but is about 2% better on CIFAR-

10 and 5% better on CIFAR-100. Over Flowers102, SplitMixer drastically outperforms

other models in all three aspects, including accuracy, number of parameters, and FLOPS.

Both SplitMixer and ConvMixer are on par with other models on the Food101 dataset,

with ConvMixer performing slightly better.

To illustrate the efficiency of the proposed modifications, in fig. 6.24 we plot accuracy

168

Neuroscience-inspired DNN modeling Chapter 6

Figure 6.24: Comparison of our proposed SplitMixer architectures with state-of-the-art
models that do not use external data for training. Results are shown over CIFAR-
{10,100} datasets. Notice that we have not optimized our models for the best
performance. Rather, we ran the ConvMixer and our models using the exact same code,
parameters, and machines to measure how much we can save parameters and computation
relative to ConvMixer. Please consult [2] for a more detailed comparison of ConvMixer
with other models. We have borrowed some data from https://paperswithcode.com/

to generate these plots.

vs. number of parameters for our models and state-of-the-art models that do not use

external data for training. Over CIFAR-{10,100} datasets, in the low-parameter regime,

our models push the envelope towards the top-left corner, which means a better trade-off

between accuracy and model size (also speed). Our models even outperform some very

well-known architectures such as MobileNet [199].

III. Results on ImageNet-1K dataset

Results are shown in table 6.4. We use SplitMixer-I with a 2/3 overlap ratio for

the experiments. Two parameter settings are considered: a) hidden dimension equal

to 1536, 20 blocks, kernel size 9, patch size 7, and GELU activation, and b) hidden

dimension equal to 768, 32 blocks, kernel size 7, patch size 7, and ReLU activation.

The two settings are trained for 150 and 300 epochs, respectively. The training settings

(including image augmentations, optimizers, schedulers, etc.) and hyperparameters are

169

https://paperswithcode.com/

Neuroscience-inspired DNN modeling Chapter 6

Table 6.4: Results over ImageNet-1k. Models trained and evaluated on 224×224 images.

Network
Patch
Size

Kernel
Size

Params
(×106)

FLOPS
(×109)

Act.
Fn.

Epochs
ImNet

top-1 (%)

ConvMixer-1536/20 7 9 51.6 51.3 G 150 81.37
ConvMixer-768/32 7 7 21.1 0.33 R 300 80.16

SplitMixer-I-1536/20 7 9 23.5 22.6 G 150 79.35
SplitMixer-I-768/32 7 7 9.8 0.15 R 300 (350) (75.05) 75.38

ResNet-152 – 3 60.2 - R 150 79.64
DeiT-B 16 – 86 - G 300 81.8
ResMLP-B24/8 8 – 129 - G 400 81.0

the same as ConvMixers without any tuning. In agreement with the above-mentioned

results, here SplitMixer performs close to ConvMixer (79.35% vs. 81.37%) in setting one.

It, however, requires less than half of ConvMiexer parameters. A similar observation is

made in the second setting. Our model performs ∼4% lower than ConvMixer but has

much fewer parameters. Notice that here we only tested two settings, and the results

seem promising compared to ConvMixer and other models.

We observe a slower convergence of our models. We suspect this might be due to

using OneCycle scheduler. To test this, we continued the training in the second setting

for an additional 50 epochs. The performance improved from 75.05% to 75.38%. Thus,

more training epochs, or a higher max learning rate during the initial training setup,

might help in case of future usage of our models.

IV. Ablation experiments

We conducted a series of ablation experiments to study the role of different design

choices and model components. Results are shown in table 6.5 over CIFAR-{10,100}

datasets. We took SplitMixer-I as the baseline and discarded or added pieces to it. Our

findings are summarized as follows: (1) Completely removing the residual connections

does not hurt the performance much. These connections, however, might be important

170

Neuroscience-inspired DNN modeling Chapter 6

Table 6.5: Ablation study of SplitMixer-I-256/8 with a split ratio of 2/3 (Top-1 Acc).

Ablation of SplitMixer-I-256/8 on CIFAR-{10, 100}

Ablation CIFAR-10 CIFAR-100

SplitMixer-I (baseline) 93.91 72.88

– Residual in eq. (6.9) 92.24 71.34
+ Residual in eq. (6.10) 92.35 70.44

BatchNorm → LayerNorm 88.28 66.60
GELU → ReLU 93.39 72.56

– RandAug 90.87 66.54
– Gradient Norm Clipping 93.38 71.95

SplitMixer-I (Spatial only) 76.24 53.25
SplitMixer-I (Channel only) 64.21 40.46

One segment with size α× h;α = 2
3

76.28 51.28

for very deep SplitMixers; (2) Moving the residual connection to after channel mixing

seems to hurt the performance. We find that the best place for the residual connections

is right after spatial mixing; (3) Switching to LayerNorm from BatchNorm leads to a

drastic performance drop; (4) The choice of activation function, GELU vs. ReLU, is

not very important. In fact, we found that using ReLU sometimes helps; (5) Gradient

norm clipping hinders the performance slightly, thus it is not very important; (6) Data

augmentation, here as RandAug, is critical to gaining high performance. Notice that,

unlike ConvMixer, we do not have Mixup and CutMix; (7) SplitMixer-I with only 1D

spatial mixing, and no channel mixing, performs very poorly. The same is true for

ablating the spatial mixing i.e., having only channel mixing. We find that spatial mixing is

more important than channel mixing in our models; (8) Keeping only one of the segments

in channel mixing, hence 1D spatial mixing plus channel mixing using m channels (m <

h), lowers the accuracy by a large margin. This indicates that there is a substantial

benefit in having a larger h and splitting it into segments (and having overlaps between

171

Neuroscience-inspired DNN modeling Chapter 6

them). Notice that in each block, only one segment is updated. In other words, simply

lowering the number of channels does not lead to the gains that we achieve with our

models. Any ConvMixer, small or large, can be optimized using our techniques.

V. The role of the number of blocks

We wondered about the utility of the proposed modifications over deeper networks.

To this end, we varied the number of blocks b of ConvMixer and SplitMixer-I in the

range 2 to 10 in steps of 2, and trained the models. Other parameters were kept the

same as above. As the results in fig. 6.25 show, increasing the number of blocks improves

the accuracy of both models on CIFAR{10,100}. SplitMixer-I performs slightly below

the ConvMixer, but it has a huge advantage in terms of the number of parameters and

FLOPS, in particular over deeper networks. The model size and computation grow slower

for SplitMixer compared to ConvMixer.

VI. Model throughput

We measured throughput using batches of 64 images on a single Tesla v100 GPU with

32GB RAM [200], averaging over 100 such batches. Similar to ConvMixer, we considered

CUDA execution time rather than “wall-clock” time. Here, we used the network built

for the FLOWER102 classification (h = 256, d = 8, p = 7, k = 7, and image size

224 × 224). We measured throughput when our model was the only process running on

the GPU. Results are shown in table 6.6. The throughput of our model is almost three

times higher than ConvMixer. As expected, the throughput is higher with more channel

segments since the number of FLOPS is lower.

172

Neuroscience-inspired DNN modeling Chapter 6

Figure 6.25: The role of the number of blocks b on model performance. The FLOPS of
models over CIFAR-100 are just slightly higher than CIFAR-10, thus not visible in the
rightmost panel.

6.2.4 Related Work

For about a decade, CNNs have been the de-facto standard in computer vision [148].

Recently, the Vision Transformers (ViT) by [189] and its variants [201, 202, 203, 204,

205, 206], and the multi-layer perceptron mixer (MLP-Mixer) by [188] and its vari-

ants [196, 207] have challenged CNNs. These models have shown impressive results,

even better than CNNs, in large-scale image classification. Unlike CNNs that exploit

local convolutions to encode spatial information, vision transformers take advantage of

the self-attention mechanism to capture global information. MLP-based models, on the

other hand, capture global information through a series of spatial and channel mixing

operations.

MLP-Mixer borrows some design choices from recent transformer-based architec-

tures [208]. Following ViT, it converts an image to a set of patches and linearly embeds

173

Neuroscience-inspired DNN modeling Chapter 6

Table 6.6: Model throughput for SplitMixer-A-256/8 on a Tesla v100 GPU with 32GB
RAM over a batch of 64 images of size 224 × 224, averaged over 100 such batches.

Network Throughput (img/sec)

ConvMixer 815.84
Overlap ratio

2/3 3/5 4/7 5/9 6/11 - -
SplitMixer-I 2097.55 2208.40 2210.06 2220.09 2231.42 - -

Number of segments
2 3 4 5 6 7 8

SplitMixer-II 2322.02 2291.44 2440.16 2464.33 2474.318 - -
SplitMixer-III 2112.290 - 2171.70 - - - 2185.61
SplitMixer-IV 2110.92 2084.55 2170.57 2146.76 - - -

them to a set of tokens. These tokens are processed by a number of “isotropic” blocks,

which are in essence similar to the repeated transformer-encoder blocks [208]. For ex-

ample, MLP-Mixer replaces self-attention with MLPs applied across different dimensions

(i.e., spatial and channel location mixing). ResMLP [196] is a data-efficient variation on

this scheme. CycleMLP [209], gMLP [195], and vision permutator [197], conduct different

approaches to perform spatial and channel mixing. For example, the vision permutator

permutes a tensor along the height, width, and channel to apply MLPs. Some works at-

tempt to bridge convolutional networks and vision transformers and use one to improve

the other [210, 202, 211, 212, 206, 213, 214, 215].

We are primarily inspired by the ConvMixer ([216]). This model introduces a simpler

version of MLP-Mixer but is essentially the same. It replaces the MLPs in MLP-Mixer

with convolutions. In general, Convolution-based MLP models are smaller than their

heavy Transformer-, CNN-, and MLP-based counterparts. Here, we show that it is

possible to trim these models even more. Perhaps the biggest advantage of the MLP-

based models is that they are easy to understand and implement, which in turn helps

replicate results and compare models. Please see section 6.2.5.

174

Neuroscience-inspired DNN modeling Chapter 6

6.2.5 Discussions and Conclusion

I. A unified view of vision Transformer and MLP-Mixer

MLP-Mixer borrows some design ideas from Vision Transformers. The most obvious

one is splitting the input image into patches and mapping each patch to an embedding

vector using a linear layer. Both ViT and MLP-Mixer do not use convolutions, or at least

claim not to. However, one can argue that the linear embedding is, in fact, convolution

with a stride equal to the patch size and parameter sharing across patches. Here, we cross-

examine both architectures and show that their similarities go beyond the embedding

layer: (1) The embedding layer in the two models is the same and is implemented using

an MLP with a single layer; (2) Channel mixing is done in the exact same way in both

models via a two-layer MLP; (3) Both models use skip connections the same way in both

channel and token mixing parts; (4) Both models use LayerNorm for normalization.

The major difference between the models is the way they implement token mixing.

Token Mixing in the ViT happens in the Multi-head self-attention (MHSA) layer, whereas

in the MLP-Mixer, it is done via a two-layer MLP. MHSA can have multiple heads. In

extreme cases, it can have one head of size d (embedding dimension), or d heads of

size 1. In either case, the information after self-attention is passed through an MLP.

Effectively, the MSHA layer does both token mixing and channel mixing. After multiple

layers of token and channel mixing, the models map information to class labels. In ViT,

an extra token called [cls] token (with dimension d) is mapped to the class labels using

a two-layer MLP. In MLP-Mixer, this is done the same way using an MLP, but first, the

information is pooled across different patches (the Average Pooling layer). Apart from

the major difference in token mixing, there are two other differences that do not seem

to be crucial: (1) The [CLS] token in ViT already contains the summary information

from other patches. Pooling information across patches as it is done in MLP-Mixer

175

Neuroscience-inspired DNN modeling Chapter 6

(the average pooling layer) does not seem to matter much. However, it needs to be

studied; (2) MLP-Mixer does not utilize positional encoding14. ViT authors showed that

including positional information indeed improves accuracy. Positional encoding helps

maintain positional information, which will otherwise be lost after several layers of token

and channel mixing throughout the network. Interestingly, without explicitly accounting

for spatial information, the MLP-Mixer still performs very well and is on par with ViT. It

would be interesting to see if adding spatial information to the MLP-Mixer can improve

its accuracy.

In this unified view, one can link our proposed SplitMixer to axial attention [217]. In

particular, the connection between spatial mixing and axial attention is evident, as both

capture 2D relationships with two 1D components. On the other hand, channel mixing

can also be viewed as a form of axial attention, if one considers the split channels as

different channel “coordinates”.

II. Future work

The proposed solution based on separable filters, depthwise convolution, and channel

splitting is quite efficient in terms of parameters and computation. However, if a network

is already small, reducing the parameters too much may cause the network not to learn

properly during training. Thus, a balance is required to enhance efficiency without signif-

icantly reducing effectiveness. We propose the following directions for future research in

this area: first, try a wider range of hyperparameters and design choices for SplitMixer,

such as strong data augmentation (e.g., Mixup, Cutmix), deeper models, larger patch

sizes, overlapped image patches, label smoothing [218], and stochastic depth [219]. Previ-

ous research has shown that some classic models can achieve state-of-the-art performance

14Unlike NLP where the order or the words can alter the meaning of a sentence, reordering the image
patches does not seem to result in a viable scene and does not happen naturally. Thus, it might not be
important in vision tasks!

176

Neuroscience-inspired DNN modeling Chapter 6

through carefully-designed training regimes [220]. Second, we tried several ways to split

and mix the channels and learned that some perform better than others–there might

be even better approaches to do this. In addition, incorporating techniques similar to

the ones proposed here to optimize other MLP-like models is also a promising direction.

Lastly, MLP-like models, including SplitMixer, lack effective means of explanation and

visualization, which need to be addressed in the future.

This section proposed SplitMixer, a simple yet efficient model, that is similar in spirit

to ConvMixer, ViT, and MLP-Mixer models. SplitMixer uses 1D convolutions for spatial

mixing and splits the channels into several segments, and performs 1 × 1 convolution

on them for channel mixing. Our experiments, even without extensive hyperparameter

tuning, demonstrate that these modifications result in models that are very efficient

in terms of the number of parameters and computation. In terms of accuracy, they

outperform several MLP-based models and some other model types with similar size

constraints. Our main point is that SplitMixer allows sacrificing a small amount of

accuracy to achieve big gains in reducing parameters and FLOPS. Our results entertain

the idea that it may be possible to find model classes that have fewer parameters than

the number of data points. This may challenge the current belief that deep networks

must be overparameterized to perform well.

177

Chapter 7

Conclusion and Contributions

This dissertation is devoted to bridging machine learning advances and neuroscience. We

investigated how to use various machine learning tools to deepen our understanding of the

human brain’s cognitive processes, and how to better deep learning models with neuro-

science insights. We first demonstrated how to model the relationship between the brain’s

structural and static functional networks. Then we show how we can learn more compre-

hensive representations with structural connectivities and dynamic functional activities.

Next, we perform stimuli decoding from brain signals, studying the brain dynamics with

continuous semantics instead of under discrete tasks. We then explored the redundancy

and dependency in the brain, providing interesting insights about visual processing. We

conclude our work with two efforts in bringing neuroscience into deep learning models:

one helped us better understand model biases, and another brought more sparsity into

the model, thus saving a considerable amount of parameters and computation.

This chapter summarizes our contributions to the interdisciplinary community that

studies brain science and computer science.

In chapter 2, we proposed a convex optimization framework to perform coupled net-

work reconstructions under domain constraints. In particular, we aimed to understand

178

Conclusion and Contributions Chapter 7

the relationship between functional neural processes and anatomical connectivities, both

of which are represented by their edge networks. We formulated the relationship between

this set of networks as a regularized multiple regression problem with a novel objective

function. The proposed framework does not depend on Gaussian assumptions and is able

to incorporate prior domain knowledge through a hard-constraint put on the noise term.

This constraint term also provides a more scalable solution when network connectivity is

sparse. We then developed a fast method based on nested FISTA for solving the proposed

optimization problem. We validated our method on multishell diffusion and task-evoked

fMRI datasets from the Human Connectome Project, leading to important insights on

structural backbones that support various types of task activities and general solutions

to the study of coupled networks.

In chapter 3, we presented an efficient graph neural network model that jointly mod-

els both structural and dynamic functional brain signals, providing a more comprehen-

sive representation of brain activities than the current fMRI literature. Unlike typical

spatial-temporal graph neural networks that learn a universal latent structure, we pro-

pose sample-level latent adaptive adjacency matrix learning based on input snippets:

this better captures the evolving dynamics of a task. We also proposed multi-resolution

inner-cluster smoothing, which effectively encodes long-range node relationships while

keeping the graph structure, enabling the model to leverage structural and latent adja-

cency matrices throughout the process. Together with subject structural connectivity

and sample-level adjacency matrix learning, the inner cluster smoothing learns and re-

fines latent dynamic structures on limited signal data. We carry out extensive ablation

studies and model comparisons to show the superiority of the proposed model in repre-

senting brain dynamics. We also leverage graph attribution methods to investigate and

interpret the importance of both spatial brain regions and temporal keyframes, as well

as heterogeneity among brain regions, tasks, and subjects. These results can open up

179

Conclusion and Contributions Chapter 7

new opportunities for identifying biomarkers for different tasks or diseases and markers

for other complex scientific phenomena.

In chapter 4, we argued that the brain encodes visual stimuli in a rich semantic

space; thus, incorporating additional text modality when studying visual decoding and

encoding is beneficial. Based on this argument, we proposed a brain decoding pipeline

that successfully reconstructs complex images from human brain signals. It allows one to

study the brain’s visual decoding in a more natural setting than reconstructing object-

centered images. Compared to previous works, it also decodes signals from more voxels

and regions, including those outside the visual cortex, that are responsive to the exper-

iment. This inclusion allows us to study the behavior and functionality of more brain

areas. Furthermore, we addressed the data scarcity issue by leveraging pre-trained mod-

els and a latent space shared by images and texts, with customized losses and training

schemes. Our results show we can decode complex images from fMRI signals relatively

faithfully, particularly from a semantic perspective. We also perform microstimulation

on different brain regions to study their properties and showcase the potential usages of

the pipeline. Finally, we demonstrated that the encoding process, hence the complete

encoding-decoding cycle, can be achieved by incorporating the text modality, similar to

the decoding process.

In chapter 5, we systematically studied the redundancy and dependency of bain sig-

nals with an autoencoder and a multi-label classifier. We did so with two experiments:

reconstructing brain activities and classifying visual stimuli categories that trigger the

brain signals—both with input activities at only a portion of overall voxels. With the

autoencoder, we demonstrated that the latent representation of voxel signals aligns with

semantic information of the causative stimuli, and the final reconstruction of the voxel

activities has a much lower dimensionality. These results suggest new ways for signal

compression, decomposition, denoising, and upsampling through autoencoders. In ad-

180

Conclusion and Contributions Chapter 7

dition, we found that the brain encodes different scene semantics with varying levels of

redundancy, which generally varies across individuals but also with shared patterns. We

also studied discrepancies between hemispheres, and dependencies between regions and

voxels, providing new insights into human visual encoding processes.

Chapter 6 took the opposite direction from the previous ones: instead of using ma-

chine learning tools to gain a deeper understanding of the brain, it presented two of our

efforts to utilize neuroscience tools and insights to study deep learning models. The first

work presented in this chapter utilizes two related psychophysics/neurophysiology meth-

ods: classification images and spike-triggered averaging. Both methods take white noise

as model inputs in the context of deep learning models. Over multiple datasets and model

architectures, we employed classification images to unveil implicit biases of a network,

utilized those biases to influence network decisions and detect adversarial perturbations.

We also showed how spike-triggered averaging could be used to identify and visualize fil-

ters in different model layers. Across different model types, we found that CNNs can be

characterized the best by a psychometric function and behaves most similarly to the bio-

logical visual system. The second work is inspired by the sparse activation of neurons and

the modular organization of the brain: we aimed to bring more sparsity into MLP-like

networks. To this end, we modified both spatial mixing and channel mixing. For spatial

mixing, we apply 1D convolutions across width and height instead of 2D convolutions; for

channel mixing, we split the channels into overlapping or non-overlapping segments and

apply convolution to channel segments instead of all channels. We provided theoretical

analyses and empirical support for the computational efficiency of the proposed solution,

showing that the proposed method can achieve significant gains in reducing parameters

and computation with only minor accuracy sacrification. Both of these efforts showed

promising results in combining neuroscience knowledge into deep learning research.

181

Appendix A

A.1 Tasks Descriptions of the CRASH dataset

The following are task descriptions of the CRASH (Cognitive Resilience and Sleep

History) dataset [64]:

Resting state: The subject simply lays in the scanner awake, with eyes open for 5

minutes.

Visual working memory task (VWM): The subject is presented with a pattern

of colored squares on a computer screen for a very brief period (100ms). After 1000ms,

they are presented with a single square and must determine if it is the same or different

color as the previously presented square at that location. Responses are made with a

button press ([221]).

Dynamic Attention Task (DYN): Two streams of orientation gratings are pre-

sented to the left and right of fixation. Subjects monitor a specified stream for a tar-

get (about a 2-degree shift in orientation, clockwise or counterclockwise) that indicates

whether the subject should continue to monitor the current stream (hold) or monitor the

other stream (shift) and respond with a button press ([222]).

Dot Probe Task (Faces) (DOT): On each trial, two faces are presented, one

neutral and the other happy or angry for 500ms. Then, either of two simple symbols

182

Chapter A

is presented at the position of either of the faces. The subject must make forced-choice

discrimination against the symbol. Reaction time differences as a function of the valance

for the preceding facial expression are calculated. There is increased variability of the

bias with PTSD and fatigue ([223]).

Math task (MOD): Subjects perform a modular math computation every 8 seconds

and respond with a yes or no button press. The object of modular arithmetic is to judge

the validity of problems such as 51=19(mod 4). One way to solve it is to subtract the

middle number from the first number (i.e., 51–19) and then divide this difference by the

last number (32/4). If the dividend is a whole number, the answer is “true.” Otherwise

the answer is false ([224]).

Psychomotor vigilance task (PVT): The subject monitors the outline of a red

circle on a computer screen for 10 minutes, and whenever a counterclockwise red sweep

begins, they press a button as fast as possible. Subjects are provided with response time

feedback. The experimenter records response latencies ([225]).

A.2 Experiment setting details for Chapter 4

Hyperparameters The following hyperparameters are used in our experiments:

• τ = 0.5 in eq. (4.1) for all the contrastive losses.

• for fMRI-CLIP mappers fmi, fmc (losses are in eq. (4.2)), the models are first trained

with α1 = 0.4, α2 = 0.6, α3 = 0, then finetuned with α1 = 0.2, α2 = 0.3, α3 = 0.5.

• mappers are trained with batch size 32 (on a single GPU) when not including

contrastive loss, and batch size 128 when including the contrastive loss or using

VICReg loss. Learning rate is 0.0004.

• λ1 = 5, λ2 = 10, λ3 = 10 for the losses of conditional StyleGAN2.

183

• conditional StyleGAN2 is trained with batch size 16 × number of GPUs (in our

case B = 32 since we used two GPUs). Learning rate is 0.0025.

Image augmentation during training Based on conclusions from StyleGAN2-ADA

[108], we perform the following image augmentations before passing images into the CLIP

encoder when training the fMRI-CLIP mapping model:

• perform random-sized crop with a scale between 0.8 to 1.

• perform horizontal flip with probability p = 0.5.

• perform ColorJitter(0.4, 0.4, 0.2, 0.1) with p = 0.4.

• perform grayscale with p = 0.2.

• perform Gaussian blur with p = 0.5 and kernel size 23.

• perform random masking with 0.3 masking ratio.

We test mapping models trained with and without the above augmentations, and

found augmentations can improve fMRI to CLIP image embedding mapping performance

(details are in table 4.2).

184

Bibliography

[1] B. Thomas Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari,
M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. Polimeni, et. al.,
The organization of the human cerebral cortex estimated by intrinsic functional
connectivity, Journal of Neurophysiology 106 (2011), no. 3 1125–1165.

[2] A. Trockman and J. Z. Kolter, Orthogonalizing convolutional layers with the
cayley transform, arXiv preprint arXiv:2104.07167 (2021).

[3] T. Lv, C. Bai, and C. Wang, Mdmlp: Image classification from scratch on small
datasets with mlp, arXiv preprint arXiv:2205.14477 (2022).

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et. al., Imagenet large scale visual
recognition challenge, International journal of computer vision 115 (2015), no. 3
211–252.

[5] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, GLUE: A
multi-task benchmark and analysis platform for natural language understanding,
in Proceedings of the Workshop: Analyzing and Interpreting Neural Networks for
NLP, BlackboxNLP@EMNLP 2018, Brussels, Belgium, November 1, 2018
(T. Linzen, G. Chrupala, and A. Alishahi, eds.), pp. 353–355, 2018.

[6] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy,
and S. Bowman, Superglue: A stickier benchmark for general-purpose language
understanding systems, Advances in neural information processing systems 32
(2019).

[7] C. Presigny and F. D. V. Fallani, Colloquium: Multiscale modeling of brain
network organization, Reviews of Modern Physics 94 (2022), no. 3 031002.

[8] D. S. Bassett and O. Sporns, Network neuroscience, Nature Neuroscience 20
(2017), no. 3 353–364.

[9] M. Rubinov and O. Sporns, Complex network measures of brain connectivity: uses
and interpretations, NeuroImage 52 (2010), no. 3 1059–1069.

185

[10] K. Batista-Garćıa-Ramó and C. I. Fernández-Verdecia, What we know about the
brain structure–function relationship, Behavioral Sciences 8 (2018), no. 4 39.

[11] D. S. Bassett, P. Zurn, and J. I. Gold, On the nature and use of models in
network neuroscience, Nature Reviews Neuroscience 19 (2018), no. 9 566–578.

[12] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub,
K. Ugurbil, W.-M. H. Consortium, et. al., The wu-minn human connectome
project: an overview, NeuroImage 80 (2013) 62–79.

[13] A. J. Rothman, E. Levina, and J. Zhu, Sparse multivariate regression with
covariance estimation, Journal of Computational and Graphical Statistics 19
(2010), no. 4 947–962.

[14] K.-A. Sohn and S. Kim, Joint estimation of structured sparsity and output
structure in multiple-output regression via inverse-covariance regularization, in
Artificial Intelligence and Statistics, pp. 1081–1089, 2012.

[15] M. Wytock and Z. Kolter, Sparse gaussian conditional random fields: Algorithms,
theory, and application to energy forecasting, in International Conference on
Machine Learning, pp. 1265–1273, 2013.

[16] X.-T. Yuan and T. Zhang, Partial gaussian graphical model estimation, IEEE
Transactions on Information Theory 60 (2014), no. 3 1673–1687.

[17] F. Freyer, K. Aquino, P. A. Robinson, P. Ritter, and M. Breakspear, Bistability
and non-gaussian fluctuations in spontaneous cortical activity, Journal of
Neuroscience 29 (2009), no. 26 8512–8524.

[18] J. Hlinka, M. Paluš, M. Vejmelka, D. Mantini, and M. Corbetta, Functional
connectivity in resting-state fmri: is linear correlation sufficient?, NeuroImage 54
(2011), no. 3.

[19] A. Eklund, T. E. Nichols, and H. Knutsson, Cluster failure: Why fmri inferences
for spatial extent have inflated false-positive rates, Proceedings of the National
Academy of Sciences 113 (2016), no. 28 7900–7905.

[20] M. Columb and M. Atkinson, Statistical analysis: sample size and power
estimations, Bja Education 16 (2016), no. 5.

[21] J. Peng, P. Wang, N. Zhou, and J. Zhu, Partial correlation estimation by joint
sparse regression models, Journal of the American Statistical Association 104
(2009), no. 486 735–746.

186

[22] K. Khare, S.-Y. Oh, and B. Rajaratnam, A convex pseudolikelihood framework for
high dimensional partial correlation estimation with convergence guarantees,
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77
(2015), no. 4 803–825.

[23] P. Koanantakool, A. Ali, A. Azad, A. Buluc, D. Morozov, L. Oliker, K. Yelick,
and S.-Y. Oh, Communication-avoiding optimization methods for distributed
massive-scale sparse inverse covariance estimation, in International Conference
on Artificial Intelligence and Statistics, pp. 1376–1386, PMLR, 2018.

[24] S. Oh, O. Dalal, K. Khare, and B. Rajaratnam, Optimization methods for sparse
pseudo-likelihood graphical model selection, in Advances in Neural Information
Processing Systems, pp. 667–675, 2014.

[25] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for
linear inverse problems, SIAM Journal on Imaging Sciences 2 (2009), no. 1
183–202.

[26] R. T. Rockafellar, Convex analysis, vol. 28. Princeton University Press, 1970.

[27] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la Société
mathématique de France 93 (1965) 273–299.

[28] M. Yuan and Y. Lin, Model selection and estimation in the gaussian graphical
model, Biometrika 94 (2007), no. 1 19–35.

[29] J. Peng, J. Zhu, A. Bergamaschi, W. Han, D.-Y. Noh, J. R. Pollack, and
P. Wang, Regularized multivariate regression for identifying master predictors
with application to integrative genomics study of breast cancer, The Annals of
Applied Statistics 4 (2010), no. 1 53.

[30] C. McCarter and S. Kim, Large-scale optimization algorithms for sparse
conditional gaussian graphical models, in Artificial Intelligence and Statistics,
pp. 528–537, 2016.

[31] T. Fawcett, An introduction to roc analysis, Pattern Recognition Letters 27
(2006), no. 8 861–874.

[32] J. Friedman, T. Hastie, and R. Tibshirani, Applications of the lasso and grouped
lasso to the estimation of sparse graphical models, tech. rep., Stanford University,
2010.

[33] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen,
and O. Sporns, Mapping the structural core of human cerebral cortex, PLoS
Biology (2008).

187

[34] A. M. Hermundstad, D. S. Bassett, K. S. Brown, E. M. Aminoff, D. Clewett,
S. Freeman, A. Frithsen, A. Johnson, C. M. Tipper, M. B. Miller, et. al.,
Structural foundations of resting-state and task-based functional connectivity in
the human brain, Proceedings of the National Academy of Sciences 110 (2013),
no. 15 6169–6174.

[35] C. Honey, O. Sporns, L. Cammoun, X. Gigandet, J.-P. Thiran, R. Meuli, and
P. Hagmann, Predicting human resting-state functional connectivity from
structural connectivity, Proceedings of the National Academy of Sciences 106
(2009), no. 6 2035–2040.

[36] C. J. Honey, R. Kötter, M. Breakspear, and O. Sporns, Network structure of
cerebral cortex shapes functional connectivity on multiple time scales, Proceedings
of the National Academy of Sciences 104 (2007), no. 24 10240–10245.

[37] M. E. Raichle, The brain’s default mode network, Annual Review of Neuroscience
38 (2015) 433–447.

[38] M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen,
Intrinsic and task-evoked network architectures of the human brain, Neuron 83
(2014), no. 1 238–251.

[39] E. N. Davison, K. J. Schlesinger, D. S. Bassett, M.-E. Lynall, M. B. Miller, S. T.
Grafton, and J. M. Carlson, Brain network adaptability across task states, PLoS
Computational Biology 11 (2015), no. 1.

[40] C. O. Becker, S. Pequito, G. J. Pappas, M. B. Miller, S. T. Grafton, D. S.
Bassett, and V. M. Preciado, Spectral mapping of brain functional connectivity
from diffusion imaging, Scientific Reports 8 (2018), no. 1 1–15.

[41] D. P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv preprint
arXiv:1312.6114 (2013).

[42] D. M. Barch, G. C. Burgess, M. P. Harms, S. E. Petersen, B. L. Schlaggar,
M. Corbetta, M. F. Glasser, S. Curtiss, S. Dixit, C. Feldt, et. al., Function in the
human connectome: task-fmri and individual differences in behavior, NeuroImage
80 (2013) 169–189.

[43] M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, Resting-state
functional connectivity reflects structural connectivity in the default mode network,
Cerebral Cortex 19 (2009), no. 1 72–78.

[44] A. Baddeley, C. Jarrold, and F. Vargha-Khadem, Working memory and the
hippocampus, Journal of Cognitive Neuroscience 23 (2011), no. 12 3855–3861.

188

[45] G. Zhang, B. Cai, A. Zhang, J. M. Stephen, T. W. Wilson, V. D. Calhoun, and
Y.-P. Wang, Estimating dynamic functional brain connectivity with a sparse
hidden markov model, IEEE Transactions on Medical Imaging 39 (2019), no. 2
488–498.

[46] L. Li, D. Pluta, B. Shahbaba, N. Fortin, H. Ombao, and P. Baldi, Modeling
dynamic functional connectivity with latent factor gaussian processes, Advances in
Neural Information Processing Systems 32 (2019) 8263–8273.

[47] B.-H. Kim and J. C. Ye, Understanding graph isomorphism network for rs-fmri
functional connectivity analysis, Frontiers in Neuroscience 14 (2020) 630.

[48] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
Grad-cam: Visual explanations from deep networks via gradient-based localization,
in Proceedings of the IEEE International Conference on Computer Vision,
pp. 618–626, 2017.

[49] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How powerful are graph neural
networks?, in International Conference on Learning Representations, 2018.

[50] X. Li, Y. Zhou, N. C. Dvornek, M. Zhang, J. Zhuang, P. Ventola, and J. S.
Duncan, Pooling regularized graph neural network for fmri biomarker analysis,
Medical Image Computing and Computer-assisted Intervention (MICCAI) 12267
(2020) 625–635.

[51] F. Noman, C.-M. Ting, H. Kang, R. C. W. Phan, B. D. Boyd, W. D. Taylor, and
H. Ombao, Graph autoencoders for embedding learning in brain networks and
major depressive disorder identification, 2021.

[52] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, Graph wavenet for deep
spatial-temporal graph modeling, International Joint Conferences on Artificial
Intelligence (IJCAI) (2019).

[53] C. Lea, R. Vidal, A. Reiter, and G. D. Hager, Temporal convolutional networks:
A unified approach to action segmentation, in Computer Vision – ECCV 2016
Workshops (G. Hua and H. Jégou, eds.), (Cham), pp. 47–54, Springer
International Publishing, 2016.

[54] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional
networks, in International Conference on Learning Representations (ICLR), 2017.

[55] C. Song, Y. Lin, S. Guo, and H. Wan, Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data
forecasting, in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 914–921, 2020.

189

[56] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang, Disentangling and unifying
graph convolutions for skeleton-based action recognition, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 143–152, 2020.

[57] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, Structured sequence
modeling with graph convolutional recurrent networks, in International Conference
on Neural Information Processing, pp. 362–373, Springer, 2018.

[58] L. Ruiz, F. Gama, and A. Ribeiro, Gated graph recurrent neural networks, IEEE
Transactions on Signal Processing 68 (2020) 6303–6318.

[59] M. Sundararajan, A. Taly, and Q. Yan, Axiomatic attribution for deep networks,
in International Conference on Machine Learning, pp. 3319–3328, PMLR, 2017.

[60] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu, Conditional image generation with pixelcnn decoders, in
Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 4797–4805, 2016.

[61] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, WaveNet: A Generative Model
for Raw Audio, in Proc. 9th ISCA Workshop on Speech Synthesis Workshop
(SSW 9), p. 125, 2016.

[62] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, Simplifying
graph convolutional networks, in International Conference on Machine Learning,
pp. 6861–6871, PMLR, 2019.

[63] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
Hierarchical graph representation learning with differentiable pooling, in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 4805–4815, 2018.

[64] N. Lauharatanahirun, K. Bansal, S. M. Thurman, J. M. Vettel, B. Giesbrecht,
S. Grafton, J. C. Elliott, E. Flynn-Evans, E. Falk, and J. O. Garcia, Flexibility of
brain regions during working memory curtails cognitive consequences to lack of
sleep, arXiv preprint arXiv:2009.07233 (2020).

[65] A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J. Holmes,
S. B. Eickhoff, and B. T. Yeo, Local-global parcellation of the human cerebral
cortex from intrinsic functional connectivity mri, Cerebral Cortex 28 (2018), no. 9
3095–3114.

190

[66] N. Tishby and N. Zaslavsky, Deep learning and the information bottleneck
principle, in 2015 IEEE Information Theory Workshop (ITW), pp. 1–5, IEEE,
2015.

[67] S. Brody, U. Alon, and E. Yahav, How attentive are graph attention networks?,
2021.

[68] W. L. Hamilton, R. Ying, and J. Leskovec, Inductive representation learning on
large graphs, in Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 1025–1035, 2017.

[69] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, Masked label
prediction: Unified message passing model for semi-supervised classification, 2021.

[70] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, A
transformer-based framework for multivariate time series representation learning,
in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 2114–2124, 2021.

[71] A. B. Wiltschko, B. Sanchez-Lengeling, B. Lee, E. Reif, J. Wei, K. J. McCloskey,
L. Colwell, W. Qian, and Y. Wang, Evaluating attribution for graph neural
networks, Google Research (2020).

[72] J. J. Todd and R. Marois, Capacity limit of visual short-term memory in human
posterior parietal cortex, Nature 428 (2004), no. 6984 751–754.

[73] J. Kim, E. A. Wasserman, L. Castro, and J. H. Freeman, Anterior cingulate
cortex inactivation impairs rodent visual selective attention and prospective
memory., Behavioral Neuroscience 130 (2016), no. 1 75.

[74] R. Leech and D. J. Sharp, The role of the posterior cingulate cortex in cognition
and disease, Brain 137 (2014), no. 1 12–32.

[75] J. M. Carlson, F. Beacher, K. S. Reinke, R. Habib, E. Harmon-Jones, L. R.
Mujica-Parodi, and G. Hajcak, Nonconscious attention bias to threat is correlated
with anterior cingulate cortex gray matter volume: a voxel-based morphometry
result and replication, Neuroimage 59 (2012), no. 2 1713–1718.

[76] J. M. Carlson, J. Cha, and L. R. Mujica-Parodi, Functional and structural
amygdala–anterior cingulate connectivity correlates with attentional bias to
masked fearful faces, Cortex 49 (2013), no. 9 2595–2600.

[77] R. H. Grabner, G. Reishofer, K. Koschutnig, and F. Ebner, Brain correlates of
mathematical competence in processing mathematical representations, Frontiers in
Human Neuroscience 5 (2011) 130.

191

[78] R. M. Friedrich and A. D. Friederici, Mathematical logic in the human brain:
semantics, PLoS One 8 (2013), no. 1 e53699.

[79] S. P. Drummond, A. Bischoff-Grethe, D. F. Dinges, L. Ayalon, S. C. Mednick,
and M. Meloy, The neural basis of the psychomotor vigilance task, Sleep 28
(2005), no. 9 1059–1068.

[80] E. J. Allen, G. St-Yves, Y. Wu, J. L. Breedlove, J. S. Prince, L. T. Dowdle,
M. Nau, B. Caron, F. Pestilli, I. Charest, et. al., A massive 7T fMRI dataset to
bridge cognitive neuroscience and artificial intelligence, Nature neuroscience 25
(2022), no. 1 116–126.

[81] N. Chang, J. A. Pyles, A. Gupta, M. J. Tarr, and E. M. Aminoff, BOLD5000: A
public fMRI dataset of 5000 images, arXiv preprint arXiv:1809.01281 (2018).

[82] G. Shen, K. Dwivedi, K. Majima, T. Horikawa, and Y. Kamitani, End-to-end
deep image reconstruction from human brain activity, Frontiers in Computational
Neuroscience (2019) 21.

[83] R. VanRullen and L. Reddy, Reconstructing faces from fMRI patterns using deep
generative neural networks, Communications biology 2 (2019), no. 1 1–10.

[84] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, Microsoft coco: Common objects in context, in European conference
on computer vision, pp. 740–755, Springer, 2014.

[85] Z. Liu, P. Luo, X. Wang, and X. Tang, Large-scale celebfaces attributes (celeba)
dataset, Retrieved August 15 (2018), no. 2018 11.

[86] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Imagenet: A
large-scale hierarchical image database, in 2009 IEEE conference on computer
vision and pattern recognition, pp. 248–255, Ieee, 2009.

[87] Y. Akamatsu, R. Harakawa, T. Ogawa, and M. Haseyama, Perceived image
decoding from brain activity using shared information of multi-subject fmri data,
IEEE Access 9 (2021) 26593–26606.

[88] S. Takada, R. Togo, T. Ogawa, and M. Haseyama, Question answering for
estimation of seen image contents from multi-subject fmri responses, in 2020
IEEE 9th Global Conference on Consumer Electronics (GCCE), pp. 712–713,
IEEE, 2020.

[89] R. Beliy, G. Gaziv, A. Hoogi, F. Strappini, T. Golan, and M. Irani, From voxels
to pixels and back: Self-supervision in natural-image reconstruction from fmri,
Advances in Neural Information Processing Systems 32 (2019).

192

[90] T. Fang, Y. Qi, and G. Pan, Reconstructing perceptive images from brain activity
by shape-semantic gan, Advances in Neural Information Processing Systems 33
(2020) 13038–13048.

[91] G. Gaziv, R. Beliy, N. Granot, A. Hoogi, F. Strappini, T. Golan, and M. Irani,
Self-supervised natural image reconstruction and rich semantic classification from
brain activity, bioRxiv (2020).

[92] M. Mozafari, L. Reddy, and R. VanRullen, Reconstructing natural scenes from
fMRI patterns using bigbigan, in 2020 International joint conference on neural
networks (IJCNN), pp. 1–8, IEEE, 2020.

[93] Z. Ren, J. Li, X. Xue, X. Li, F. Yang, Z. Jiao, and X. Gao, Reconstructing seen
image from brain activity by visually-guided cognitive representation and
adversarial learning, NeuroImage 228 (2021) 117602.

[94] G. Shen, T. Horikawa, K. Majima, and Y. Kamitani, Deep image reconstruction
from human brain activity, PLoS computational biology 15 (2019), no. 1 e1006633.

[95] Y. Cao, C. Summerfield, H. Park, B. L. Giordano, and C. Kayser, Causal
inference in the multisensory brain, Neuron 102 (2019), no. 5 1076–1087.

[96] A. A. Ghazanfar and C. E. Schroeder, Is neocortex essentially multisensory?,
Trends in Cognitive Sciences 10 (2006), no. 6 278–285.

[97] A. Pasqualotto, M. L. Dumitru, and A. Myachykov, Multisensory integration:
Brain, body, and world, Frontiers in Psychology 6 (2016) 2046.

[98] P. Pietrini, M. L. Furey, E. Ricciardi, M. I. Gobbini, W.-H. C. Wu, L. Cohen,
M. Guazzelli, and J. V. Haxby, Beyond sensory images: Object-based
representation in the human ventral pathway, Proceedings of the National
Academy of Sciences 101 (2004), no. 15 5658–5663.

[99] S. F. Popham, A. G. Huth, N. Y. Bilenko, F. Deniz, J. S. Gao, A. O.
Nunez-Elizalde, and J. L. Gallant, Visual and linguistic semantic representations
are aligned at the border of human visual cortex, Nature Neuroscience 24 (2021),
no. 11 1628–1636.

[100] B. Choksi, M. Mozafari, R. Vanrullen, and L. Reddy, Multimodal neural networks
better explain multivoxel patterns in the hippocampus, in Neural Information
Processing Systems (NeurIPS) conference: 3rd Workshop on Shared Visual
Representations in Human and Machine Intelligence (SVRHM 2021), 2021.

[101] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et. al., Learning transferable visual models from
natural language supervision, in International Conference on Machine Learning,
pp. 8748–8763, PMLR, 2021.

193

[102] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung,
Z. Li, and T. Duerig, Scaling up visual and vision-language representation
learning with noisy text supervision, in International Conference on Machine
Learning, pp. 4904–4916, PMLR, 2021.

[103] A. G. Huth, S. Nishimoto, A. T. Vu, and J. L. Gallant, A continuous semantic
space describes the representation of thousands of object and action categories
across the human brain, Neuron 76 (2012), no. 6 1210–1224.

[104] A. Doerig, T. C. Kietzmann, E. Allen, Y. Wu, T. Naselaris, K. Kay, and
I. Charest, Semantic scene descriptions as an objective of human vision, arXiv
preprint arXiv:2209.11737 (2022).

[105] A. Van den Oord, Y. Li, and O. Vinyals, Representation learning with contrastive
predictive coding, arXiv e-prints (2018) arXiv–1807.

[106] Y. Zhou, R. Zhang, C. Chen, C. Li, C. Tensmeyer, T. Yu, J. Gu, J. Xu, and
T. Sun, Lafite: Towards language-free training for text-to-image generation, arXiv
preprint arXiv:2111.13792 (2021).

[107] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, Analyzing
and improving the image quality of StyleGAN, in Proc. CVPR, 2020.

[108] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, Training
generative adversarial networks with limited data, in Proc. NeurIPS, 2020.

[109] Y. Shen, J. Gu, X. Tang, and B. Zhou, Interpreting the latent space of gans for
semantic face editing, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9243–9252, 2020.

[110] M. Kang and J. Park, Contragan: Contrastive learning for conditional image
generation, Advances in Neural Information Processing Systems 33 (2020)
21357–21369.

[111] J. Jeong and J. Shin, Training gans with stronger augmentations via contrastive
discriminator, arXiv preprint arXiv:2103.09742 (2021).

[112] P. Sharma, N. Ding, S. Goodman, and R. Soricut, Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning, in
Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 2556–2565, 2018.

[113] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, Gans
trained by a two time-scale update rule converge to a local nash equilibrium,
Advances in neural information processing systems 30 (2017).

194

[114] A. Bardes, J. Ponce, and Y. LeCun, Vicreg: Variance-invariance-covariance
regularization for self-supervised learning, arXiv preprint arXiv:2105.04906 (2021).

[115] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the
inception architecture for computer vision, in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2818–2826, 2016.

[116] T. Horikawa and Y. Kamitani, Generic decoding of seen and imagined objects
using hierarchical visual features, Nature communications 8 (2017), no. 1 1–15.

[117] Z. Rakhimberdina, Q. Jodelet, X. Liu, and T. Murata, Natural image
reconstruction from fMRI using deep learning: A survey, Frontiers in
neuroscience 15 (2021) 795488.

[118] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and
I. Sutskever, Zero-shot text-to-image generation, in International Conference on
Machine Learning, pp. 8821–8831, PMLR, 2021.

[119] A. Van Den Oord, O. Vinyals, et. al., Neural discrete representation learning,
Advances in neural information processing systems 30 (2017).

[120] J.-B. Alayrac, A. Recasens, R. Schneider, R. Arandjelović, J. Ramapuram,
J. De Fauw, L. Smaira, S. Dieleman, and A. Zisserman, Self-supervised
multimodal versatile networks, Advances in Neural Information Processing
Systems 33 (2020) 25–37.

[121] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierarchical
text-conditional image generation with clip latents, arXiv preprint
arXiv:2204.06125 (2022).

[122] P. Bashivan, K. Kar, and J. J. DiCarlo, Neural population control via deep image
synthesis, Science 364 (2019), no. 6439 eaav9436.

[123] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Machine
learning, dynamical systems, and control. Cambridge University Press, 2022.

[124] C. F. Stevens, What the fly’s nose tells the fly’s brain, Proceedings of the National
Academy of Sciences 112 (2015), no. 30 9460–9465.

[125] O. Rose, J. Johnson, B. Wang, and C. R. Ponce, Visual prototypes in the ventral
stream are attuned to complexity and gaze behavior, Nature communications 12
(2021), no. 1 1–16.

[126] J. Tang, A. LeBel, S. Jain, and A. G. Huth, Semantic reconstruction of
continuous language from non-invasive brain recordings, bioRxiv (2022).

195

[127] E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?,
Journal of the ACM (JACM) 58 (2011), no. 3 1–37.

[128] G. J. Brouwer and D. J. Heeger, Decoding and reconstructing color from responses
in human visual cortex, Journal of Neuroscience 29 (2009), no. 44 13992–14003.

[129] D. L. Barack and J. W. Krakauer, Two views on the cognitive brain, Nature
Reviews Neuroscience 22 (2021), no. 6 359–371.

[130] M. Khosla, N. A. R. Murty, and N. Kanwisher, A highly selective response to food
in human visual cortex revealed by hypothesis-free voxel decomposition, Current
Biology (2022).

[131] M. S. Gazzaniga, The bisected brain. No. 2. Appleton-Century-Crofts, 1970.

[132] J. Sergent, The cerebral balance of power: Confrontation or cooperation?, Journal
of Experimental Psychology: Human Perception and Performance 8 (1982), no. 2
253.

[133] J. Christie, J. P. Ginsberg, J. Steedman, J. Fridriksson, L. Bonilha, and
C. Rorden, Global versus local processing: seeing the left side of the forest and the
right side of the trees, Frontiers in human neuroscience 6 (2012) 28.

[134] L. C. Robertson and R. Ivry, Hemispheric asymmetries: Attention to visual and
auditory primitives, Current Directions in Psychological Science 9 (2000), no. 2
59–63.

[135] K. V. Haak, J. Winawer, B. M. Harvey, R. Renken, S. O. Dumoulin, B. A.
Wandell, and F. W. Cornelissen, Connective field modeling, Neuroimage 66
(2013) 376–384.

[136] T. Knapen, Topographic connectivity reveals task-dependent retinotopic processing
throughout the human brain, Proceedings of the National Academy of Sciences
118 (2021), no. 2 e2017032118.

[137] S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model
predictions, Advances in neural information processing systems 30 (2017).

[138] S. Thorpe, Local vs. distributed coding, Intellectica 8 (1989), no. 2 3–40.

[139] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick,
Neuroscience-inspired artificial intelligence, Neuron 95 (2017), no. 2 245–258.

[140] A. Ahumada Jr, Perceptual classification images from vernier acuity masked by
noise, Perception 25 (1996), no. 1 suppl 2–2.

196

[141] R. F. Murray, Classification images: A review, Journal of vision 11 (2011), no. 5
2–2.

[142] V. Marmarelis, Analysis of physiological systems: The white-noise approach.
Springer Science & Business Media, 2012.

[143] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et. al., Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (1998), no. 11
2278–2324.

[144] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, arXiv preprint arXiv:1708.07747
(2017).

[145] A. Krizhevsky, G. Hinton, et. al., Learning multiple layers of features from tiny
images, tech. rep., Citeseer, 2009.

[146] A. Borji and L. Itti, State-of-the-art in visual attention modeling, IEEE
transactions on pattern analysis and machine intelligence 35 (2012), no. 1
185–207.

[147] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks, in Advances in neural information processing
systems, pp. 1097–1105, 2012.

[148] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[149] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, Do imagenet classifiers
generalize to imagenet?, arXiv preprint arXiv:1902.10811 (2019).

[150] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, Intriguing properties of neural networks, arXiv preprint
arXiv:1312.6199 (2013).

[151] I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial
examples, arXiv preprint arXiv:1412.6572 (2014).

[152] C. Vondrick, H. Pirsiavash, A. Oliva, and A. Torralba, Learning visual biases from
human imagination, in Advances in neural information processing systems,
pp. 289–297, 2015.

[153] R. C. Fong, W. J. Scheirer, and D. D. Cox, Using human brain activity to guide
machine learning, Scientific reports 8 (2018), no. 1 5397.

197

[154] M. Meister, J. Pine, and D. A. Baylor, Multi-neuronal signals from the retina:
acquisition and analysis, Journal of neuroscience methods 51 (1994), no. 1 95–106.

[155] H. M. Sakai and K. Naka, Signal transmission in the catfish retina. v. sensitivity
and circuit, Journal of Neurophysiology 58 (1987), no. 6 1329–1350.

[156] R. C. Reid and J.-M. Alonso, Specificity of monosynaptic connections from
thalamus to visual cortex, Nature 378 (1995), no. 6554 281.

[157] G. C. DeAngelis, I. Ohzawa, and R. Freeman, Spatiotemporal organization of
simple-cell receptive fields in the cat’s striate cortex. ii. linearity of temporal and
spatial summation, Journal of Neurophysiology 69 (1993), no. 4 1118–1135.

[158] J. P. Jones and L. A. Palmer, The two-dimensional spatial structure of simple
receptive fields in cat striate cortex, Journal of neurophysiology 58 (1987), no. 6
1187–1211.

[159] O. Schwartz, J. W. Pillow, N. C. Rust, and E. P. Simoncelli, Spike-triggered
neural characterization, Journal of vision 6 (2006), no. 4 13–13.

[160] R. A. Sandler and V. Z. Marmarelis, Understanding spike-triggered covariance
using wiener theory for receptive field identification, Journal of vision 15 (2015),
no. 9 16–16.

[161] I. M. Park and J. W. Pillow, Bayesian spike-triggered covariance analysis, in
Advances in neural information processing systems, pp. 1692–1700, 2011.

[162] P. Dayan, L. F. Abbott, et. al., Theoretical neuroscience, vol. 806. Cambridge,
MA: MIT Press, 2001.

[163] M. R. Greene, A. P. Botros, D. M. Beck, and L. Fei-Fei, Visual noise from natural
scene statistics reveals human scene category representations, arXiv preprint
arXiv:1411.5331 (2014).

[164] A. Nguyen, J. Yosinski, and J. Clune, Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images, in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 427–436, 2015.

[165] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, Adversarial patch,
arXiv preprint arXiv:1712.09665 (2017).

[166] A. Nguyen, J. Yosinski, and J. Clune, Understanding neural networks via feature
visualization: A survey, arXiv preprint arXiv:1904.08939 (2019).

[167] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks,
in European conference on computer vision, pp. 818–833, Springer, 2014.

198

[168] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, Visualizing higher-layer
features of a deep network, University of Montreal 1341 (2009), no. 3 1.

[169] K. Simonyan, A. Vedaldi, and A. Zisserman, Deep inside convolutional networks:
Visualising image classification models and saliency maps, arXiv preprint
arXiv:1312.6034 (2013).

[170] A. Mahendran and A. Vedaldi, Understanding deep image representations by
inverting them, in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5188–5196, 2015.

[171] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, Network dissection:
Quantifying interpretability of deep visual representations, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 6541–6549,
2017.

[172] M. R. Cohen and W. T. Newsome, What electrical microstimulation has revealed
about the neural basis of cognition, Current opinion in neurobiology 14 (2004),
no. 2 169–177.

[173] P. M. Lewis, R. H. Thomson, J. V. Rosenfeld, and P. B. Fitzgerald, Brain
neuromodulation techniques: a review, The neuroscientist 22 (2016), no. 4
406–421.

[174] T. Moore and M. Fallah, Microstimulation of the frontal eye field and its effects
on covert spatial attention, Journal of neurophysiology 91 (2004), no. 1 152–162.

[175] F. A. Wichmann and N. J. Hill, The psychometric function: I. fitting, sampling,
and goodness of fit, Perception & psychophysics 63 (2001), no. 8 1293–1313.

[176] S.-R. Afraz, R. Kiani, and H. Esteky, Microstimulation of inferotemporal cortex
influences face categorization, Nature 442 (2006), no. 7103 692.

[177] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba, Hoggles: Visualizing
object detection features, in Proceedings of the IEEE International Conference on
Computer Vision, pp. 1–8, 2013.

[178] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, Inception-v4,
inception-resnet and the impact of residual connections on learning, in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[179] G. E. Hinton, S. Sabour, and N. Frosst, Matrix capsules with em routing, in 6th
international conference on learning representations, ICLR, 2018.

[180] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets, in Advances in neural
information processing systems, pp. 2672–2680, 2014.

199

[181] J. Bickle, Revolutions in neuroscience: Tool development, Frontiers in systems
neuroscience 10 (2016) 24.

[182] J. K. Liu, H. M. Schreyer, A. Onken, F. Rozenblit, M. H. Khani,
V. Krishnamoorthy, S. Panzeri, and T. Gollisch, Inference of neuronal functional
circuitry with spike-triggered non-negative matrix factorization, Nature
communications 8 (2017), no. 1 149.

[183] A. Wu, I. M. Park, and J. W. Pillow, Convolutional spike-triggered covariance
analysis for neural subunit models, in Advances in neural information processing
systems, pp. 793–801, 2015.

[184] U. Rajashekar, A. C. Bovik, and L. K. Cormack, Visual search in noise:
Revealing the influence of structural cues by gaze-contingent classification image
analysis, Journal of Vision 6 (2006), no. 4 7–7.

[185] A. Caspi, B. R. Beutter, and M. P. Eckstein, The time course of visual
information accrual guiding eye movement decisions, Proceedings of the National
Academy of Sciences 101 (2004), no. 35 13086–13090.

[186] B. P. Keane, H. Lu, and P. J. Kellman, Classification images reveal spatiotemporal
contour interpolation, Vision Research 47 (2007), no. 28 3460–3475.

[187] B. Willmore and D. J. Tolhurst, Characterizing the sparseness of neural codes,
Network: Computation in Neural Systems 12 (2001), no. 3 255.

[188] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner,
J. Yung, D. Keysers, J. Uszkoreit, M. Lucic, et. al., Mlp-mixer: An all-mlp
architecture for vision, arXiv preprint arXiv:2105.01601 (2021).

[189] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et. al., An image is worth 16x16
words: Transformers for image recognition at scale, arXiv preprint
arXiv:2010.11929 (2020).

[190] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, in International conference on machine
learning, pp. 448–456, PMLR, 2015.

[191] D. Hendrycks and K. Gimpel, Gaussian error linear units (gelus), arXiv preprint
arXiv:1606.08415 (2016).

[192] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, Randaugment: Practical
automated data augmentation with a reduced search space, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
pp. 702–703, 2020.

200

[193] I. Loshchilov and F. Hutter, Fixing weight decay regularization in adam, .

[194] D. Lian, Z. Yu, X. Sun, and S. Gao, As-mlp: An axial shifted mlp architecture for
vision, arXiv preprint arXiv:2107.08391 (2021).

[195] H. Liu, Z. Dai, D. R. So, and Q. V. Le, Pay attention to mlps, arXiv preprint
arXiv:2105.08050 (2021).

[196] H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby, E. Grave,
A. Joulin, G. Synnaeve, J. Verbeek, and H. Jégou, Resmlp: Feedforward networks
for image classification with data-efficient training, arXiv preprint
arXiv:2105.03404 (2021).

[197] Q. Hou, Z. Jiang, L. Yuan, M.-M. Cheng, S. Yan, and J. Feng, Vision permutator:
A permutable mlp-like architecture for visual recognition, 2021.

[198] B. Neyshabur, Towards learning convolutions from scratch, Advances in Neural
Information Processing Systems 33 (2020) 8078–8088.

[199] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, Mobilenets: Efficient convolutional neural networks
for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017).

[200] T. NVIDIA, Nvidia tesla v100 gpu architecture, 2017.

[201] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou, Going deeper
with image transformers, arXiv preprint arXiv:2103.17239 (2021).

[202] S. d’Ascoli, H. Touvron, M. Leavitt, A. Morcos, G. Biroli, and L. Sagun, Convit:
Improving vision transformers with soft convolutional inductive biases, arXiv
preprint arXiv:2103.10697 (2021).

[203] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin
transformer: Hierarchical vision transformer using shifted windows, 2021.

[204] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
Training data-efficient image transformers & distillation through attention, in
International Conference on Machine Learning, pp. 10347–10357, PMLR, 2021.

[205] H. Bao, L. Dong, and F. Wei, Beit: Bert pre-training of image transformers,
arXiv preprint arXiv:2106.08254 (2021).

[206] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and
L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions, arXiv preprint arXiv:2102.12122 (2021).

201

[207] J. Li, A. Hassani, S. Walton, and H. Shi, Convmlp: Hierarchical convolutional
mlps for vision, arXiv preprint arXiv:2109.04454 (2021).

[208] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, Attention is all you need, in Advances in neural
information processing systems, pp. 5998–6008, 2017.

[209] S. Chen, E. Xie, C. Ge, D. Liang, and P. Luo, Cyclemlp: A mlp-like architecture
for dense prediction, arXiv preprint arXiv:2107.10224 (2021).

[210] J.-B. Cordonnier, A. Loukas, and M. Jaggi, On the relationship between
self-attention and convolutional layers, arXiv preprint arXiv:1911.03584 (2019).

[211] Z. Dai, H. Liu, Q. V. Le, and M. Tan, Coatnet: Marrying convolution and
attention for all data sizes, arXiv preprint arXiv:2106.04803 (2021).

[212] J. Guo, K. Han, H. Wu, C. Xu, Y. Tang, C. Xu, and Y. Wang, Cmt:
Convolutional neural networks meet vision transformers, arXiv preprint
arXiv:2107.06263 (2021).

[213] I. Bello, B. Zoph, A. Vaswani, J. Shlens, and Q. V. Le, Attention augmented
convolutional networks, in Proceedings of the IEEE/CVF international conference
on computer vision, pp. 3286–3295, 2019.

[214] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and J. Shlens,
Stand-alone self-attention in vision models, arXiv preprint arXiv:1906.05909
(2019).

[215] I. Bello, Lambdanetworks: Modeling long-range interactions without attention,
arXiv preprint arXiv:2102.08602 (2021).

[216] A. Trockman and J. Z. Kolter, Patches are all you need?, arXiv preprint
arXiv:2201.09792 (2022).

[217] J. Ho, N. Kalchbrenner, D. Weissenborn, and T. Salimans, Axial attention in
multidimensional transformers, arXiv preprint arXiv:1912.12180 (2019).

[218] R. Müller, S. Kornblith, and G. E. Hinton, When does label smoothing help?,
Advances in neural information processing systems 32 (2019).

[219] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, Deep networks with
stochastic depth, in European conference on computer vision, pp. 646–661,
Springer, 2016.

[220] R. Wightman, H. Touvron, and H. Jégou, Resnet strikes back: An improved
training procedure in timm, 2021.

202

[221] S. J. Luck and E. K. Vogel, The capacity of visual working memory for features
and conjunctions, Nature 390 (1997), no. 6657 279–281.

[222] S. Yantis, J. Schwarzbach, J. T. Serences, R. L. Carlson, M. A. Steinmetz, J. J.
Pekar, and S. M. Courtney, Transient neural activity in human parietal cortex
during spatial attention shifts, Nature Neuroscience 5 (2002), no. 10 995–1002.

[223] M. L. Sipos, Y. Bar-Haim, R. Abend, A. B. Adler, and P. D. Bliese,
Postdeployment threat-related attention bias interacts with combat exposure to
account for ptsd and anxiety symptoms in soldiers, Depression and Anxiety 31
(2014), no. 2 124–129.

[224] A. Mattarella-Micke, J. Mateo, M. N. Kozak, K. Foster, and S. L. Beilock, Choke
or thrive? the relation between salivary cortisol and math performance depends on
individual differences in working memory and math-anxiety., Emotion 11 (2011),
no. 4 1000.

[225] S. Loh, N. Lamond, J. Dorrian, G. Roach, and D. Dawson, The validity of
psychomotor vigilance tasks of less than 10-minute duration, Behavior Research
Methods, Instruments, & Computers 36 (2004), no. 2 339–346.

203

	Curriculum Vitae
	Abstract
	Permissions and Attributions

	List of Figures
	List of Tables
	Introduction
	Modeling Coupled Networks: Structural Connectivity and Static Functional Connectivity
	Introduction
	Constrained Multiple-Output Regression Formulation
	Multiple-output Regression Problem
	Relaxing Gaussian Assumptions
	Imposing Domain Constraints

	Alternating Minimization Solution
	Experiments on Synthetic and HCP Datasets
	Application to Simulated Data
	Application to Human Connectome Data

	Conclusion

	Modeling through Graph Neural Networks: Structural Connectivity and Dynamic fMRI
	Introduction
	Spatial-Temporal GNN for Learning Multi-Modality Brain Representation
	Preliminary
	Method
	Experiments

	Graph Attribution and Interpretations
	Attribution with IG (Integrated Gradients)
	Experiments

	Conclusion

	Going Beyond Brain Modalities: Reconstructing Observed Complex Images from Brain Activities
	Incorporating Additional Text Modality
	CLIP Space as the Intermediary

	Brain Decoding
	Method
	Results

	Brain Encoding and Encoding-Decoding Cycle
	Brain Encoding
	Complete Cycle

	Discussions
	Other Decoding Attempt
	Limitations and Future Work
	Using Pre-trained Models

	Conclusion

	Brain Activity Redundancies and Low-dimensional Representations
	Dataset and Models
	Findings
	Brain Signals Contain High-level Redundancy
	Autoencoders Effectively ``Denoise'' Brain Signals
	Brain Activity Resides in the Semantic Space—the Hopfieldian View
	Masking and Attribution Reveal Voxel and Region Importance

	Discussions and Conclusion

	Neuroscience-inspired DNN modeling
	White Noise Analysis of Neural Networks
	Introduction
	Related Works and Concepts
	Applications to Deep Learning Models
	Discussions and Conclusion

	Sparsifying DNNs: Fat-Trimming MLP-like Models
	Introduction
	SplitMixer
	Experiments and Results
	Related Work
	Discussions and Conclusion

	Conclusion and Contributions
	
	Tasks Descriptions of the CRASH dataset
	Experiment setting details for Chapter 4

	Bibliography

