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Emergent Ergodicity at the Transition between Many-Body Localized Phases

Rahul Sahay ,1,* Francisco Machado ,1,* Bingtian Ye ,1,* Chris R. Laumann ,2 and Norman Y. Yao 1,3

1Department of Physics, University of California, Berkeley, California 94720, USA
2Department of Physics, Boston University, Boston, Massachusetts 02215, USA

3Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Strongly disordered systems in the many-body localized (MBL) phase can exhibit ground state order in 
highly excited eigenstates. The interplay between localization, symmetry, and topology has led to the 
characterization of a broad landscape of MBL phases ranging from spin glasses and time crystals to 
symmetry protected topological phases. Understanding the nature of phase transitions between these 
different forms of eigenstate order remains an essential open question. Here, we conjecture that no direct 
transition between distinct MBL orders can occur in one dimension; rather, an ergodic phase always 
intervenes. Motivated by recent advances in Rydberg-atom-based quantum simulation, we propose an 
experimental protocol where the intervening ergodic phase can be diagnosed via the dynamics of local 
observables.

Traditionally, the classification of phases of matter
has focused on systems at or near thermal equilibrium.
Many-body localization (MBL) offers an alternative to this
paradigm [1–6]. In particular, owing to the presence of
strong disorder, MBL phases are characterized by their
failure to thermalize [7–10]. This dynamical property
imposes strong constraints on the structure of eigenstates;
namely, that they exhibit area-law entanglement and can be
described as the ground state of quasi-local Hamiltonians
[11,12]. Perhaps the most striking consequence is that such
systems can exhibit order—previously restricted to the
ground state—throughout their entire many-body spectrum
[12–17]. This offers a particularly tantalizing prospect for
near-term quantum simulators: The ability to observe pheno-
mena, such as coherent topological edge modes, without the
need to cool to the many-body ground state [18–22].
The presence of eigenstate order in the many-body

localized phase also raises a more fundamental question:
What is the nature of phase transitions between different
types of MBL order? This question highlights a delicate
balance between the properties of localization and phase
transitions. On the one hand, the stability of MBL is
contingent upon the existence of an extensive number of
quasilocal conserved quantities (“l-bits”) [11,23]. On the
other hand, the correlation length at a second-order phase
transition diverges [24]. Understanding and characterizing
this interplay remains an outstanding challenge. Indeed,
while certain studies suggest the presence of a direct
transition between distinct MBL phases [16,20,25–28],
others have found signatures of delocalization at the
transition [29–31].
In this Letter, we conjecture that any transition between

distinct MBL phases is invariably forbidden and that an

intervening ergodic phase always emerges [Fig. 1(a)]. This
conjecture is motivated by an extensive numerical study of
three classes of MBL transitions: (i) a symmetry-breaking
transition, (ii) a symmetry-protected topological (SPT)
transition, and (iii) a discrete time crystalline transition
(in a Floquet system). By systematically constructing the
various phase diagrams, we show that an intervening
ergodic region emerges for all numerically accessible
interaction strengths. Moreover, we demonstrate that this
emergent ergodicity is intimately tied to the presence of a
phase transition; a disorderless, symmetry-breaking field
suppresses the intervening ergodic phase. In addition to

(a) (b)

FIG. 1. (a) Phase diagram of the symmetry breaking model,
Eq. (1), as a function ofWJ=Wh and interaction strengthWV . For
all numerically accessible WV (outside the shaded region), we
observe a finite width ergodic region between the two different
MBL phases (PM and SG). At WV ¼ 0, the system is non-
interacting and exhibits a critical point atWJ=Wh ¼ 1 (red point).
(b) Phase diagram as a function of a symmetry breaking field Γ
and WJ=Wh for WV ¼ 0.3. With increasing Γ, the size of the
ergodic region decreases until the system remains localized for all
WJ=Wh. (inset) Schematic of the full phase diagram as a function
of WJ=Wh, WV and Γ.
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numerics, we analyze two instabilities which could induce
thermalization near the putative transition: (i) the prolifer-
ation of two-body resonances [2,32,33] and (ii) the run-
away of “avalanches” [34,35]. We find that the latter is
marginal. Finally, we propose and analyze an experimental
platform capable of directly exploring the emergence of
ergodicity at the transition between MBL phases. Our
proposal is motivated by recent advances in Rydberg-
dressed, neutral-atom quantum simulators [36–43]; we
demonstrate that the phase diagram depicted in Fig. 1
can be directly probed via quench dynamics of local
observables within experimental decoherence timescales.
Let us start by considering the paradigmatic example of a

disordered one dimensional spin chain, which hosts two
distinct MBL phases:

H¼
X
i

Jiσ
z
iσ

z
iþ1þ

X
i

hiσxi þ
X
i

Viðσxi σxiþ1þσziσ
z
iþ2Þ; ð1Þ

where σ⃗ are Pauli operators and all coupling strengths are
disordered, with Ji ∈ ½−WJ;WJ�, hi ∈ ½−Wh;Wh�, and
Vi ∈ ½−WV;WV � [44]. We choose to work with the nor-
malization

ffiffiffiffiffiffiffiffiffiffiffiffiffi
WJWh

p ¼ 1 and perform extensive exact
diagonalization studies up to system size L ¼ 16 [45].
In the absence of Vi, the system reduces to the non-
interacting, Anderson localized limit and for sufficiently

strong disorder (in Ji and hi), this localization persists in
the presence of interactions.
The Hamiltonian [Eq. (1)] exhibits a Z2 symmetry

corresponding to a global spin flip, G ¼ Q
i σ

x
i . In the

many-body localized regime, two distinct forms of eigen-
state order emerge with respect to the breaking of this
symmetry. For Wh ≫ WJ;WV, the transverse field domi-
nates and the system is in the MBL paramagnetic (PM)
phase. The conserved l-bits simply correspond to dressed
versions of the physical σxi operators. For WJ ≫ Wh;WV,
the Ising interaction dominates and the eigenstates corre-
spond to “cat states” of spin configurations in the ẑ
direction. Physical states break the associated Z2 symmetry,
the l-bits are dressed versions of σziσ

z
iþ1, and the system is

in the so-called MBL spin-glass (SG) phase [13,16].
These two types of eigenstate order can be distinguished

via the Edwards-Anderson order parameter which probes
the presence of long-range Ising correlations in eigenstates
jni, χ ¼ ⟪L−1 P

i;jhnjσziσzjjni2⟫, where ⟪ � � �⟫ denotes
averaging over disorder realizations [16,28]. In the SG
phase, this order parameter scales extensively with system
size, χ ∝ L, while in the PM phase, it approaches a constant
Oð1Þ value. Fixing WV ¼ 0.7, χ exhibits a clear transition
from PM to SG as one tunes the ratio of WJ=Wh
[Fig. 2(a)]. The finite-size flow of χ is consistent

(a) (b) (c)

(d) (e) (f)

FIG. 2. (a)–(d) Characterization of the symmetry breaking model, Eq. (1), forWV ¼ 0.7. (a) ForWJ=Wh ≳ 10, χ increases with system
size evincing the SG nature of the phase. In the PM phase, χ approaches a finite constant, albeit exhibiting two distinct behaviors (inset).
(b) hri-ratio as a function ofWJ=Wh reveals an intervening ergodic phase surrounded by two localized phases. The dash-dotted [dashed]
line corresponds to the GOE [Poisson] expectation. (c) The half-chain entanglement entropy SL=2 increases with system size for
intermediateWJ=Wh, in agreement with the expected thermal volume law. In the two localized phases, SL=2 saturates to different values,
highlighting the distinct nature of the underlying eigenstate order. (d) The variance of SL=2 exhibits two distinct peaks in agreement with
the presence of two distinct transitions. (e)[(f)] SL=2 for the SPT [DTC] model of Eq. (2) [Eq. (3)] also demonstrates the presence of an
intervening ergodic phase. Each data point corresponds to averaging over at least 103 disorder realizations.



with the presence of a single critical point at WJ ¼ 3.2,
Wh ¼ 0.32 (WJ=Wh ≈ 10).
However, thermalization diagnostics tell a different

story. In particular, we compute the hri-ratio, a measure
of the rigidity of the many-body spectrum: hri ¼
⟪minfδn; δnþ1g=maxfδn; δnþ1g⟫, where δn¼Enþ1−En,
En is the nth eigenenergy and averaging is also done across
the entire many-body spectrum [46,47]. In the MBL phase,
energy levels exhibit Poisson statistics with hri ≈ 0.39,
while in the ergodic phase, level repulsion leads to the
Gaussian Orthogonal Ensemble (GOE) expectation hri ≈
0.53 [4,6,8]. Unlike χ, which exhibits a single transition, the
hri-ratio exhibits two distinct critical points, each charac-
terized by its own finite-size flow [Fig. 2(b)]. This demar-
cates three distinct phases: two many-body localized phases
(for WJ=Wh ≲ 0.1 and WJ=Wh ≳ 10) separated by an
intervening ergodic phase. Interestingly, the location of
the ergodic-MBL transition at WJ=Wh ≈ 10 matches the
location of the spin-glass transition observed via χ. The fact
that an additional ergodic-MBL transition is observed in the
hri-ratio, but not in χ, suggests that the PM regime has
slightly more structure.
In order to further probe this structure, we turn to the half-

chain entanglement entropy, SL=2 ¼ −Tr½ρs logðρsÞ�, where
ρs ¼ Tri≤L=2½jnihnj� [6,11,16,48–55]. The behavior of SL=2,
illustrated in Fig. 2(c), allows us to clearly distinguish three
phases: the MBL paramagnet, the ergodic paramagnet, and
the MBL spin glass. For WJ=Wh ≪ 0.1, the eigenstates
are close to product states and the entanglement entropy SL=2
is independent of L, consistent with a localized para-
magnet. Near WJ=Wh ≈ 1, SL=2 increases with system size,
approaching ðL log 2 − 1Þ=2, consistent with an ergodic
paramagnet [56]. Finally, for WJ=Wh ≫ 10, the half-chain
entanglement again becomes independent of L and, for very
large WJ=Wh, approaches log 2, consistent with the cat-
state-nature of eigenstates in the MBL SG phase.
A few remarks are in order. First, the variance of SL=2

across the ensemble of disorder realizations provides a
complementary diagnostic to confirm the presence of two
distinct ergodic-MBL transitions [Fig. 2(d)] [16,49–55].
Indeed, one observes two well-separated peaks in
varðSL=2Þ, whose locations are consistent with the tran-
sitions found in the hri-ratio. Second, although χ only
scales with system size in the SG phase, one expects its
behavior to be qualitatively different in the MBL versus
ergodic paramagnet. In particular, in the MBL para-
magnet, the l-bits have a small overlap with σziσ

z
j and one

expects χ > 1; meanwhile, in the ergodic paramagnet, for a
state chosen at the center of the many-body spectrum, one
expects that χ → 1 rapidly with increasing system
size (owing to the eigenstate thermalization hypothesis)
[8,57–59]. This is indeed borne out by the numerics, as
shown in the inset of Fig. 2(a).
Diagnostics in hand, we now construct the full phase

diagram as a function of WV and WJ=Wh [Fig. 1(a)]. Even

for the smallest interaction strengths accessible WV ∼ 0.07
(i.e., where the minimum interaction coupling remains
larger than the mean level spacing) one observes a finite
width region where the hri-ratio increases with system size
[45,48,60,61]. Although clearly indicative of an ergodic
intrusion, it is possible that our analysis underestimates
the size of the intervening ergodic phase [48,62,63].
Extrapolating toward WV ¼ 0, our phase diagram suggests
the presence of a finite-width thermal region between the
two MBL phases, which terminates at the non-interacting
critical point [Fig. 1(a)].
To verify that the presence of a phase transition is indeed

responsible for the intervening ergodic region, one can
explicitly break the Z2 symmetry in Eq. (1). We do so by
adding a disorderless, on-site longitudinal field, Γ

P
i σ

z
i .

Despite the fact that the field is uniform, it causes the
hri-ratio to systematically decrease [Figs. 3(a) and 3(b)],
and for a sufficiently large symmetry breaking field, all
finite-size flow tends toward localization. This allows us to
construct the phase diagram in the presence of finite Γ, as
depicted in Fig. 1(b) for WV ¼ 0.3.
To understand the generality of an emergent

ergodic region between many-body localized phases,
we now consider two additional types of MBL transitions:
a symmetry-protected topological (SPT) transition and a
discrete time-crystalline (DTC) transition. The Hamiltonian
of the SPT model is given by [64]

HSPT ¼
X
i

Jiσ
z
i−1σ

x
i σ

z
iþ1 þ

X
i

hiσxi

þ
X
i

Viðσxi σxiþ1 þ σzi−1σ
y
i σ

y
iþ1σ

z
iþ2Þ; ð2Þ

with Ji∈ ½−WJ;WJ�, hi∈ ½−Wh;Wh�, and Vi∈ ½−WV;WV �.
HSPT exhibits a Z2 × Z2 symmetry, which gives rise to an
MBL SPT (Haldane) phase for WJ ≫ Wh;WV and a

(a) (b)

FIG. 3. (a) hri-ratio as a function ofWJ=Wh atWV ¼ 0.3 in the
presence of an explicit symmetry breaking field Γ ¼ 2. The dash-
dotted [dashed] line corresponds to the GOE [Poisson] expect-
ation. Unlike the symmetry respecting case (Γ ¼ 0, inset), the
system remains localized for all values ofWJ=Wh. (b) Within the
ergodic region (here withWJ=Wh ¼ 1), an increasing symmetry-
breaking field drives the system towards localization. Each data
point corresponds to averaging over at least 3 × 102 disorder
realizations.



topologically trivial MBL phase for Wh ≫ WJ;WV
[15,18,65]. For the DTC model, we consider the Floquet
unitary evolution UF ¼ T exp½−i R T

0 HFðtÞdt� generated
by the stroboscopic Hamiltonian:

HFðtÞ ¼

8>><
>>:

P
i
Jiσ

z
iσ

z
iþ1 þ hiσxi þ Viσ

z
i t ∈ ½0; T=2Þ

− π
T

P
i
σxi t ∈ ½T=2; TÞ ð3Þ

where Ji ∈ ½0.5; 1.5�, T ¼ 2, hi ∈ ½0; h� and Vi ∈ ½0; 2V�.
When h ≪ 1, the Floquet system spontaneously breaks
time-translation symmetry and is in the so-called DTC
phase, while for h ≫ 1, the system is in a Floquet para-
magnetic phase [20,21,29,66–68]. We analyze each of
these models using the four diagnostics previously
described: (i) the order parameter, (ii) the hri-ratio, (iii) the
half-chain entanglement, and (iv) the variance, varðSL=2Þ.
We observe the same qualitative behavior for both tran-
sitions across all diagnostics: An intervening ergodic phase
emerges which terminates at the noninteracting critical
point. This is illustrated in Figs. 2(e) and 2(f) using SL=2 for
both the SPT model (for an eigenstate of HSPT at zero
energy density) and the DTC model (for an eigenstate of
UF at π quasienergy); all additional data for the different
diagnostics can be found in the Supplemental Material [45].
We further analyze the finite-size effects arising from small
couplings [45], which we believe underlie previous numeri-
cal observations of apparent direct transitions [20,26–28].
Experimental realization.—Motivated by recent

advances in the characterization and control of Rydberg
states, we propose an experimental protocol to directly
explore the emergence of ergodicity between MBL phases.
Our protocol is most naturally implemented in one-
dimensional chains of either alkali or alkaline-earth
atoms [36–43]. To be specific, we consider 87Rb with an
effective spin-1=2 encoded in hyperfine states: j↓i ¼
jF ¼ 1; mF ¼ −1i and j↑i ¼ jF ¼ 2; mF ¼ −2i. Recent
experiments have demonstrated the ability to generate
strong interactions via either Rydberg dressing in an optical
lattice (where atoms are typically spaced by ∼0.5 μm) or
via Rydberg blockade in a tweezer array (where atoms are
typically spaced by ∼3 μm) [36–43]. Focusing on the
optical lattice setup, dressing enables the generation of
tunable, long-range soft-core Ising interactions,
HZZ ¼ P

i;j Jijσ
z
iσ

z
j, with a spatial profile that interpolates

between a constant at short distances (determined by the
blockade radius) and a 1=r6 van der Waals tail.
A particularly simple implementation of a PM-SG

Hamiltonian [closely related to Eq. (1)] is to alternate time
evolution under HZZ and HX ¼ P

i hiσ
x
i , with the latter

being implemented via a two-photon Raman transition
[Fig. 4(a)]. In the high frequency limit, the dynamics are
governed by an effective Hamiltonian:

Heff ¼
τ1

τ1 þ τ2

X
i

hiσxi þ
τ2

τ1 þ τ2

X
ij

Jijσ
z
iσ

z
j; ð4Þ

where HX is applied for time τ1,HZZ is applied for time τ2,
and the Floquet frequency ω ¼ 2π=ðτ1 þ τ2Þ ≫ hi, Jij.
This latter inequality ensures that both Floquet heating and
higher-order corrections to Heff can be safely neglected on
experimentally relevant timescales [45,69,70]. Note
that unlike the DTCmodel [Eq. (3)], here Floquet engineer-
ing is being used to emulate a static MBL PM-SG
Hamiltonian [71,72].
A few remarks are in order. First, by applying the

Rydberg dressing to only one of the two hyperfine states
[Fig. 4(a)], an additional longitudinal field HZ ∝ σzi is
naturally generated. To restore the Z2 symmetry, one can
exactly cancel this field by embedding a spin echo into the
Floquet sequence [Fig. 4(b)]. In addition, varying the
spacing between the echo π pulses [Fig. 4(b)] directly
controls the degree of cancellation, enabling one to
experimentally probe the effect of an explicit symmetry
breaking field. Second, although our prior analysis has
focused on eigenstate properties, these are inaccessible to

(a) (c)

(b)

(f)

(d)

(e)

FIG. 4. (a) Schematic of the proposed experimental protocol.
Within an optical lattice, neutral atoms are prepared along two
adjacent diagonals (say, with a gas microscope), defining a zig-
zag spin chain configuration. Dressing with a Rydberg state jri
leads to HZZ with an additional on-site fieldHZ ∝

P
i σ

z
i , while a

two-photon Raman transition mediated by an excited state jei
leads to HX . (b) By combining rapid spin echo pulses with
Floquet evolution under HX and HZZ þHZ, one can engineer
Heff [Eq. (4)]. (c)–(e) Dynamics of σxL=2 (blue) and σzL=2−1σ

z
L=2

(red) under Heff starting with initial states jψxi and jψzzi,
respectively. Different panels correspond to representative behav-
iors for the three distinct phases (tuned via h). (f) The height of
the late-time plateau distinguishes between the three phases. Each
data point corresponds to averaging over at least 102 disorder
realizations.



experiment. Fortunately, as we will demonstrate, the phase
diagram can also be characterized via the dynamics of local
observables. The intuition behind this is simple:
Observables that overlap with an l-bit exhibit a plateau
at late times. To investigate this behavior, we use Krylov
subspace methods [73–76] to numerically simulate the
dynamics of Heff with τ1 ¼ τ2 ¼ 1, Ji;iþ1 ∈ ½−1;−3�,
Ji;iþ2 ¼ 0.6Ji;iþ1 and hi ∈ ½h; 3h�. We note that the ratio
of the nearest- to next-nearest-neighbor coupling strength is
chosen based upon the experimentally measured Rydberg-
dressing-interaction profile and a 1D zig-zag chain geom-
etry [Fig. 4(a)] [38,77,78].

For system sizes up to L ¼ 20, we compute the
dynamics of initial states jψxi and jψ zzi [79]; both states
are easily preparable in experiment, close to zero energy
density, and chosen such that hψxjσxL=2jψxi ¼ 1 and
hψ zzjσzL=2−1σzL=2jψ zzi ¼ 1. Starting with jψxi as our initial
state and large h, we observe that hσxL=2ðtÞi plateaus to a
finite value at late times, indicating the system is in the MBL
PM phase [Fig. 4(c)]. Analogously, for jψ zzi and small h, we
observe that hσzL=2−1ðtÞσzL=2ðtÞi plateaus to a finite value at
late times, indicating the system is in the MBL SG phase
[Fig. 4(e)]. For h ∼ 1, both observables decay to zero,
indicating the system is in the ergodic phase [Fig. 4(d)].
The plateau value of the two observables as a function of h
clearly identifies the intervening ergodic region [Fig. 4(f)].
To ensure that one can observe the intervening ergodic

phase within experimental coherence times, we now
estimate the timescales necessary to carry out our protocol.
Previous experiments using Rydberg dressing have
demonstrated coherence times T2 ∼ 1 ms, with nearest
neighbor couplings Ji;iþ1 ∼ ð2πÞ × 13 kHz and a micro-
wave-induced π-pulse duration ∼25 μs [38]. Taken
together, this leads to an estimate of ∼55 μs for the
Floquet period [Fig. 4(b)]. Crucially, within T2 (i.e., ∼20
Floquet cycles), all observables approach their late-time
plateaus [45].
Analytic discussion.—We conclude by discussing pre-

vious analytical results and how they may shed light on the
origins of the intervening ergodic phase. In the absence of
interactions, the transitions we consider all fall into infinite-
randomness universality classes characterized by both a
divergent single-particle density of states (DOS, DðεÞ ∼
jε log3 εj−1 near zero single-particle energy ε) and single-
particle orbitals with diverging mean and typical localization
lengths (ξmean ∼ j log2 εj and ξtyp ∼ j log εj, respectively)
[80–85]. These divergences suggest that two-body resonan-
ces might directly destabilize MBL upon the introduction of
interactions; however, a simple counting of resonances in
typical blocks does not produce such an instability: In a
block of length l, there are lNðεÞ “active” single particle
orbitals with ξtypðεÞ ≥ l, where NðεÞ ¼ R

ε dε0Dðε0Þ is the
integrated DOS [33,45,86]. These orbitals overlap in real
space and are thus susceptible to participating in perturbative
two-body resonances. A perturbative instability of the

localized state arises if lN diverges as ε → 0; even for
arbitrarily small interactions, a large network of resonant
pairs can be found at low enough energy. Using the DOS and
localization lengths of the infinite-randomness transition, we
find lN ∼ 1=j log εj which vanishes slowly as ε → 0.
Alternatively, one might consider the susceptibility to

avalanches due to rare thermal bubbles induced by the
interactions [34,87,88]. For a system with a distribution of
localization lengths, it has recently been shown that the
average localization length controls this instability [35]: for
ξ̄ > 2= log 2, thermal bubbles avalanche. However, this is
within a model where the orbitals have a single localization
center. Near the infinite-randomness transition, the orbitals
have two centers whose separation is controlled by ξmean
but whose overlap onto a putative thermal bubble is
controlled by ξtyp. Thus, while ξmean diverges logarithmi-
cally, the more appropriate ξtyp remains finite and this
criterion does not produce an absolute instability [45]. We
highlight that it is only a logarithmic correction which
causes the convergence of the average localization length;
unaccounted channels might provide an additional loga-
rithm leading to an absolute avalanche instability. We leave
this to future work.
Finally, let us note that the direct numerical observation

of avalanche instabilities remains extremely challenging
[34,89]; the presence of a robust intervening ergodic region
in our study suggests that an alternate mechanism might be
at the heart of our observations.
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Note added.—Recently, we became aware of complemen-
tary work on the presence of intervening thermal phases
between MBL transitions [91].
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