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ABSTRACT OF THE DISSERTATION

Identification and Estimation in Semiparametric

Social Interaction Models

by

Nan Liu

Doctor of Philosophy in Economics

University of California, Los Angeles, 2020

Professor Jinyong Hahn, Co-Chair

Professor Zhipeng Liao, Co-Chair

This dissertation investigates semiparametric social interaction models. The goal is to

identify and estimate the endogenous social interactions using a flexible semiparametric

model to control for confounding factors. The rationale for considering nonparametric con-

trols is that, if the groups or networks are not randomly assigned, or if the contextual effects

are heterogeneous, identifying the endogenous social interaction effect is difficult without

adequate controls. This thesis contains two chapters.

Chapter 1 first studies the identification of the endogenous social interaction effect in the

semiparametric models. The identification is attained by using the instrumental variable

(IV) approach after partialling out the nonparametric controls. To estimate the endogenous

social interaction effect, I propose a semiparametric two-step generalized method of mo-

ments (GMM) estimator with the optimal weight matrix clustered at the group or network

level. This chapter focuses on the semiparametric estimators that use the first step series

method. The primitive regularity conditions are provided for the consistency and asymptotic

normality of the semiparametric series GMM estimators.

In Chapter 2, I apply more flexible machine learning methods in the first step nonpara-

ii



metric estimation to detect severe nonlinearities and higher-order interactions, including

LASSO, Random Forest, and Neural Nets. Monte Carlo simulations are conducted to inves-

tigate the finite sample performance of semiparametric estimators using different first-step

Machine Learning methods. The results suggest that no estimation method dominates across

all the Data Generating Processes (DGPs) considered. It is also reflected in the simulation

results that the debiased estimators using first step post-LASSO or Neural Nets methods

are more reliable and performs relatively well across the settings considered. For this reason,

these two debiased estimators are recommended for use in empirical studies.
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CHAPTER 1

Identification and Estimation in Semiparametric Social

Interaction Models

1.1 Introduction

It is commonly observed that individual outcomes (e.g. GPA) are highly correlated with

the outcomes of their peers (e.g. class average). Empirical researchers are interested in

identifying the social interaction effects (or peer effects) out of these group correlations. For

instance, many studies have investigated peer influence in education (Sacerdote, 2001; Duflo

et al., 2011), criminal activity (Glaeser et al., 1996), welfare participation (Bertrand et al.,

2000), and the job search (Marmaros and Sacerdote, 2002).

The main challenge in these empirical studies arises from the fact that a variety of

reasons can lead to the outcome correlation among individuals and their peers. This problem

might lead to spurious or misleading measure of social interactions. A canonical example

is classroom peer effects. A student’s test score might depend on the class average, which

Manski (1993) terms the endogenous social interaction effect. Other influential factors could

be the student and class characteristics such as parental income, and also the average parental

income in what Manski (1993) terms the contextual effect (or exogenous social interaction

effect). Both the endogenous and contextual effects tend to cause students’ performance to

be correlated. Manski (1993) proposes the reflection problem which states the impossibility

of separately identify the endogenous and contextual effects in his setup.

Subsequent researchers have extended Manski (1993)’s study in various ways to resolve

the reflection problem. The commonly used approach relies on the parametric assumption or
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functional form restrictions to distinguish the endogenous social interaction and contextual

effects. Refer to Brock and Durlauf (2001), Graham (2008), Bramoullé, Djebbari, and Fortin

(2009), and a detailed literature review in Blume et al. (2011). However, a fully parametric

model is often too restrictive to capture the structure of social interactions. Estimators based

on this identification strategy can be severely biased if there are modest departures from the

parametric assumptions (Goldberger, 1983).

To address the above consideration, a more flexible semiparametric model can be applied

to capture the social interactions between individuals and their peer groups. This paper

focuses on the identification and estimation of the endogenous social interaction effect in

this semiparametric model setup. The endogenous social interaction effect is assumed to

be parametric and also linear-in-means. This setup is applied in much of the literature

on peer effects since Manski (1993), especially in the empirical studies of the education

field (Angrist and Lang, 2004). But unlike the existing literature, this paper uses a more

robust nonparametric function to capture the effects of confounding factors, such as the

contextual effects. By introducing the nonparametric function for covariates, the social

interaction model can control the interactions and other transformations such as higher-

orders of the individual and group characteristics, making the identification of endogenous

social interaction more credible. For instance, the average parental income might have

a heterogeneous effect on student’s performance. Omitting the interaction terms in the

parametric model could cause bias in the endogenous social interaction effect. This problem

can be addressed by applying the semiparametric model of social interactions.

This paper then presents a semiparametric instrumental variable (IV) approach to iden-

tify the endogenous social interaction effect. The models of social interactions involve si-

multaneity in determining the outcomes. Consequently, the semiparametric identification of

endogenous peer effects is different from classical models of treatment effects (Abadie, 2003).

Also, in contrast with the parametric social interaction models, the identification approach

taken in this paper accommodates the nonparametric controls. Concretely, the semipara-

metric identification in this paper is achieved by partialling out the nonparametric nuisance

function in the first step and then adopting an IV approach to identify the endogenous social

2



interaction effect.

The IV methods have been proposed to recover the endogenous social interaction effect

in the parametric models, such as in Brock and Durlauf (2001), Graham and Hahn (2005),

and among others1. Brock and Durlauf (2001) introduces a particular nonlinear in mean

function and establishes the identification for those functions with nonzero second derivatives.

Graham and Hahn (2005) constitute exclusion restrictions by assuming not all the exogenous

individual variables appear as the contextual effect. This paper does not assume nonlinearity

in average group outcome and follows the approach of Graham and Hahn (2005), which

impose exclusion restrictions based on prior information. In the example of classmates’

peer effects, the excluded contextual factors could be the childbearing age of the parents

and whether the students attend kindergarten or not. These variables might determine the

student’s IQ level, and thus can affect their school performance. In contrast, childhood

characteristics of a student’s classmates are unlikely to have a direct effect on that student’s

high school scores. Thus, excluded contextual factors can be used as instrumental variables

for the endogenous variable of the average class score.

Based on the identification strategy, this paper proposes a semiparametric two-step pro-

cedure to estimate the endogenous social interaction effect. The two-step procedure builds

upon the well established semiparametric estimation literature, see Newey (1994), Newey

and McFadden (1994), Ai and Chen (2003, 2007), Chen, Linton, and Van Keilegom (2003),

Chen (2007), and Ackerberg et al. (2012) among others. The general semiparametric two-

step estimation methods are widely studied in the treatment effects literature (Belloni,

Chernozhukov, and Hansen, 2014; Athey, Imbens, and Wager, 2016). To the best of my

knowledge, no paper discusses the estimation and inference for the semiparametric social

interaction model.

This paper fills in the gap between the general semiparametric theory and the specific

semiparametric model of social interactions with clustered data. In the first step, condi-

tional expectations can be estimated using any nonparametric methods. In the second step,

1A more detailed literature review for the identification of social interaction models is presented in Ap-
pendix 1.B.
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the endogenous social interaction effect is then estimated using a semiparametric GMM by

plugging the first step nonparametric estimators. The orthogonal moment condition is also

constructed for second-step estimation to reduce the bias induced by the first step nonpara-

metric estimators.

To establish the asymptotic normality of the semiparametric two-step GMM estimator,

this paper specializes in first step series estimator and makes use of the idea in Newey (1994,

1997). Primitive conditions are provided for the consistency and asymptotic normality of

the semiparametric two-step estimators for endogenous social interaction effect. The results

show that the application of series estimators are limited to low-dimensional settings and

relatively smooth nonparametric functions, which is the general limitations for the traditional

nonparametric methods.

This paper uses a Monte Carlo simulation approach to investigate the finite sample

performance of semiparametric two-step estimators for endogenous social interaction effects.

I apply both the parametric linear and nonparametric series methods in the first step to

obtain the second step estimators for β0. The results show that if the true model is nonlinear

but the linear method is applied in the first step, then the estimator for β0 suffers from an

over-rejection problem and more likely a significant social interaction effect is obtained which

is actually spurious. However, the semiparametric series estimators do not have such an issue

and have the correct size across all the nonlinear models considered in the simulation study.

The remainder of this paper is organized as follows. In section 1.2, the semiparamet-

ric social interaction model is introduced. Section 1.3 shows semiparametric identification

conditions for the endogenous social interaction effect. Section 1.4 utilizes the identifica-

tion results to construct the moment condition and also the orthogonal moment condition.

Section 1.5 proposes a semiparametric two-step GMM estimator for endogenous effect. Prim-

itive conditions for asymptotic normality of the semiparametric estimator are also provided

with first step series estimator. Section 1.6 uses cross-fitting to construct a semiparametric

estimator for endogenous social interaction effect and shows the asymptotic normality of the

cross-fitting estimator under weaker conditions. In section 1.7, Monte Carlo simulations are

conducted to investigate the finite sample performance of semiparametric GMM estimators.
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Section 1.8 concludes and discusses the directions for future research. Proofs are provided

in Appendix 1.A.

1.2 The Semiparametric Social Interaction Model

This paper investigates a semiparametric model of group social interactions. Assume econo-

metricians can observe a random sequence of G non-overlapping groups with the number

of groups G → ∞. For the gth group, assume the group size is ng, which is bounded but

allowed to differ across groups. Let n =
∑G

g=1 ng denote the total number of individuals.

Assume that the outcome variable of individual i in group g, Yg,i (g = 1, ..., G, i =

1, ..., ng), is determined according to the following semiparametric model of social interac-

tions:

Yg,i = β0Y g,−i + h0(Xg,i,Wg,i,W g,−i,Υg) + Ug,i; (g = 1, ..., G; i = 1, ..., ng), (1.2.1)

where Yg,i is the outcome variable of interest for individual i in group g. Y g,−i = 1
ng−1

∑
j∈Ig ,j 6=i

Yj denotes the leave-i-out average outcome within the gth group. Parametric linear-in-means

form for average group outcome is considered in this model. Following the terminology of

Manski (1993), the one-dimensional coefficient for Y g,−i, β0, captures the endogenous social

interaction effect. β0 is also the parameter of interest in this paper.

Econometricians can also observe vectors of exogenous individual characteristics Xg,i

and Wg,i for i in group g, and also the group characteristics Υg. The difference between the

individual characteristics Xg,i and Wg,i comes from whether they can generate contextual

effects on the outcome Yg,i. To be specific, Xg,i denotes the d dimensional (dim(Xg,i) = d)

individual-specific characteristics that only affect the outcome Yg,i through individual level,

which means the leaving-i-out group average Xg,−i does not affect the outcome directly,

while Wg,i denotes the dW dimensional (dim(Wg,i) = dW ) individual characteristics which

also induce the contextual effect. That is, the leaving-i-out group average for Wg,i, W g,−i, is

allowed to affect the outcome Yg,i. Another contextual factor comes from the dΥ dimensional

5



observed group characteristics Υg (dim(Υg) = dΥ) which can also influence the individual

outcome.

This paper relaxes the fully parametric model setup but allows the individual and con-

textual effects to be nonparametric. Let h0(·) denote an unknown function that summarizes

the effect of Xg,i, Wg,i,W g,−i and Υg on the outcome Yg,i. Then the effects of W g,−i and

Υg on Yg,i through h0(·) capture the contextual effect following the terminology in Manski

(1993). The last term in model (1.2.1), Ug,i, is the disturbance term that is unobserved to

econometricians. This paper will work with the exogeneity condition, which requires Ug,i to

be independent of all the controls.

Let ϑ0 = (β0, h0(·))′ be the true parameter vector. The parameter of interest β0 is the

1-dimensional parametric part which captures the endogenous social interaction effect. To

have a stable equilibrium social interaction model, it is reasonable to assume that |β0| < 1.

The unknown function h0(·) is the nonparametric part of the model which captures the

individual and contextual effects. This nonparametric function is also a nuisance parameter

in this paper.

The goal of this paper is to obtain a root-n consistent estimator for β0, in the presence of

the possibly complex nuisance function h0(.) and also the endogenous effect of group social

interactions. Model (1.2.1) belongs to the semiparametric partially linear model studied in

seminal paper of Robinson (1988). The nonparametric function can be concentrated out

by using the generalized residual regression. And then the parameter of interest β0 can

be estimated using the GMM approach with properly choose instrumental variables for the

endogenous effect.

Motivating Example

To illustrate the specification of semiparametric model (1.2.1) of social interactions, I will

use a concrete example of classmates’ peer effects on a student’s test scores. The object of

interest is the effect on a student’s test score by the average class score of other students in

the same class. Suppose we can observe a random sample of G classrooms with ng students in

6



the g th class. The test score of student i in class g, Yg,i is subject to the average score of other

students in class g, Y g,−i. The reason might be that a student with poor classmates (lower

Y g,i ) tend to make less effort in studies thus could perform worse. This is the endogenous

peer effect that this paper focuses on.

The student’s test score also depends on individual characteristics, such as parents’ in-

come, education level, childbearing age, or whether the student attended kindergarten or

not. Model (1.2.1) distinguishes two sources of individual effects, Xg,i and Wg,i, by whether

they can generate contextual effect on student i ’s test score or not. In this specific exam-

ple, Wg,i can be parents’ income or education level since the class average of these variables

for other students could also account for a student’s test score. For instance, the average

parental income for other students in class g could affect the investment in school or class,

and thus influence a student’s performance, which generates the contextual effect. In con-

trast, childhood characteristics of a student’s classmates, such as parents’ childbearing age

and whether the student attended kindergarten or not, are unlikely to have a direct effect

on a student’s high school test scores. These two variables are defined as the individual-

only characteristics, Xg,i, which provide an exclusion restriction for the identification of the

endogenous social interaction effect.

Anther key feature of social interaction model (1.2.1) is to introduce a nonparametric

function to control the confounding factors that could affect a student’s performance. This

nonparametric specification is important for the identification of parametric part of endoge-

nous peer effect. One reason is that students might not be randomly assigned to different

classes. For instance, students with high entrance scores might be assigned to one class with

the teacher has rich experience, then the interaction of students’ score and teacher’s experi-

ence also matters. If not fully controlled, the omitted factors become the correlated effects

termed in Manski (1993), which could then contaminate the endogenous social interaction

effect.

Nonparametric controls can also be used to better capture the heterogeneous individual

or contextual effects. For example, the average parental income might has a heterogeneous

effect on student’s performance, which might be negative for students from high income
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family but positive for low income’s. Then the interaction term should also be included. By

introducing the nonparametric function for covariates, the social interaction model is able

to control the interactions and other transformations such as higher orders of the individual

and group characteristics, making the identification of endogenous classmates’ peer effect

more credible.

1.3 Identification of Semiparametric Social Interaction Effect

In this section, I will consider the identification condition for the parameter of interest

β0. Section 1.3.1 restates the assumptions on the data structural of semiparametric social

interaction model (1.2.1). To illustrate the main idea of identification in models (1.2.1), I will

initially work with a simplified version of model (1.2.1) by excluding the contextual effect

(i.e. Wg,i,W g,−i and Υg are not included in h0(·)) in Section 1.3.2. Thus, the semiparametric

model of social interactions becomes

Yg,i = β0Y g,−i + h0(Xg,i) + Ug,i; (g = 1, ..., G; i = 1, ..., ng). (1.3.1)

The identification results can be easily extended to the general model (1.2.1) with contextual

effect if certain exclusion restrictions hold. This paper assumes that there exists individual-

only characteristics, Xg,i, that does not generate contextual effect on the outcome Yg,i. Then

the identification of endogenous social interaction effect can go through using the same strat-

egy as the simplified case. The identification for the general model (1.2.1) with contextual

effect will be discussed in Section 1.3.3.

1.3.1 Data Structure

Let Yg, Xg,Wg, and Ug denote the collection of observations for the corresponding vari-

ables in the gth group. For example, the outcome variable for group g is defined by

Yg = (Yg,1, · · ·Yg,ng). The following assumption restates the data requirements discussed

in the preceding section.
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Assumption 1.3.1: (i) Econometricians can observe a random sequence of G non overlap-

ping groups indexed by g, (g = 1, . . . , G) with the size of group g equal to ng, the output

Yg, and controls (Xg,Wg,Υg) for group g. (ii) The number of groups G → ∞, with group

size fixed ( max
g=1,···G

ng < M) but allowed to be different across groups. (iii) Observations

{Yg,i, Xg,i,Wg,i} (g = 1, · · ·G, i = 1, · · ·ng) have identical marginal distribution with finite

second moments.

Assumption 1.3.1(i) implies that the observations {Yg, Xg,Wg,Υg} (g = 1, · · ·G) are inde-

pendent across groups while the dependence within each group is unrestricted. For simplicity,

the identical marginal distribution for {Yg,i, Xg,i,Wg,i} (g = 1, · · ·G, i = 1, · · ·ng) is imposed

in Assumption 1.3.1(iii) but can be easily relaxed. Assumption 1.3.1(ii) allows for hetero-

geneity in group sizes but with bounded group size, M , and large numbers of groups, G.

Concretely, econometricians are assumed to have available data for repeated data on small

groups. The bounded group size can be relaxed by allowing ng to diverge but at a rate

slower than
√
n, which also implies large number of groups with G→∞. Identification with

dataset from a single large network or finite number of networks is complicated and beyond

the scope of this paper. All the subsequent discussions on identification of β0 are based on

the data requirements given in Assumption 1.3.1.

1.3.2 Identification without Contextual Effect

To illustrate the identification condition for the endogenous social interaction effect, β0,

first I consider the semiparametric model of social interactions defined in (1.3.1) where no

contextual effect is included. I will work with the following exogenous assumption:

Assumption 1.3.2: The controls Xg are assumed to be strictly exogenous and the group

size ng is also exogenously formed.

E[Ug,i|Xg,i, Xg,−i, ng] = 0; (g = 1, ..., G; i = 1, ..., ng). (1.3.2)

The restriction of Assumption 1.3.2 depends on the group selection process. If the groups are

9



randomly assigned, then the Assumption 1.3.2 only needs to hold without controling Xg,i, i.e.

E[Ug,i|Xg,−i, ng] = 0. The reason is because Xg,i and Xg,−i are independent under random

assignment. Thus, omitting the controls Xg,i does not generate the model misspecification

problem with random peers.

However, empirical studies seldom have randomly assigned data available which easily

make the assumption to fail without adequate controls. For example, a parametric linear

model of social interactions can not capture the higher-order or interaction terms of the

controls that could affect both the individual and average group outcomes. Thus, applying

a more flexible semiparametric model of social interactions is desirable from the perspective

of making this strong exogeneity assumption more plausible.

Given Assumptions 1.3.1 and 1.3.2, the identification for the semiparametric social inter-

action model (1.3.1) can be discussed. The identification strategy adopted is to partial out

the nuisance nonparametric function h0(·) in the first step, and then apply a semiparametric

IV approach to identify the endogenous social interaction effect β0. Based on the strong

exogeneity Assumption 1.3.2, any function t(Xg,−i) : Rd(ng−1) → Rq with E[‖t(x)‖2] < ∞

can be used as the instrumental variables for Y g,−i. To obtain the identification results, full

rank condition for t(Xg,i) is imposed as in the following assumption.

Assumption 1.3.3: Assume there exists some function t(Xg,−i) : Rd(ng−1) → Rq with

E[‖t(x)‖2] <∞, such that

E
[
t(Xg,−i)

(
Yg,−i − E[Yg,−i|Xg,i]

)]
has full column rank.

The full rank condition in Assumption 1.3.3 requires additional information on Xg,−i that

can be used as IV for the endogenous variable Y g,−i. This assumption is commonly imposed

in the instrumental variable identification literature. Specifically, if t(Xg,−i) : Rd(ng−1) → R

is a one dimensional function, then the Assumption 1.3.3 degenerates to

E
[
t(Xg,−i)

(
Yg,−i − E[Yg,−i|Xg,i]

)]
6= 0
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.

The optimal choice of instrumental variables is beyond the scope of this paper. Instead I

provide some idea for the choice of the instrumental variables, t(Xg,−i), based on the reduced

form of the model (1.3.1):

Y g,−i =
ng − 1

(1− β0)(ng − 1 + β0)
h0(Xg,−i) +

β0

(1− β0)(ng − 1 + β0)
h0(Xg,i) + V (Ug,i, Ug,−i),

(1.3.3)

where h0(Xg,−i) = 1
ng−1

∑
j∈Ig ,j 6=i h0(Xj) and V (Ug,i, Ug,−i) is the error term which depends on

the linear combination of Ug,i and Ug,−i. From the reduced form model (1.3.3), h0(Xg,−i) can

be used as IVs for Y g,−i given h0(·) is known. However, in semiparametric model defined in

(1.3.1), h0(·) is relaxed to be unknown nonparametric function. Thus, h0(Xg,−i) is infeasible,

but the series expansions of h0(Xg,−i) can be used as IV for Y g,−i. For simplicity, only the

linear approximation Xg,−i = 1
ng−1

∑
j∈Ig ,j 6=iXj is used as IV in the following discussions.

Then Assumption 1.3.3(iii) becomes

E
[
Xg,−i

(
Yg,−i − E[Yg,−i|Xg,i, ng]

)]
has full column rank.

Based on the above assumptions, the identification result for the semiparametric social

interaction model (1.3.1) without contextual effect is established in the following theorem.

Theorem 1.3.1: Under assumption 1.3.1, 1.3.2, and 1.3.3, the endogenous social inter-

action effect β0 and the nonparametric control function h0 in model (1.3.1) are identified.

Specifically,

(i) β0 is identified by

E [t(Xg,−i) (Yg,i − E[Yg,i|Xg,i, ng])] = β0E
[
t(Xg,−i)

(
Y g,−i − E[Y g,−i|Xg,i, ng]

)]
.

(ii) h0 is identified by h0(Xg,i) = E[Yg,i − β0Y g,−i|Xg,i] given β0 identified.

Remark: If t(Xg,−i) = Xg,−i, i.e., if Xg,−i is used as an IV for Y g,−i, then β0 can be
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identified by

E
[
Xg,−i

(
Yg,i − E[Yg,i|Xg,i, ng]

)]
= β0E

[
Xg,−i

(
Y g,−i − E[Y g,−i|Xg,i, ng]

)]
. (1.3.4)

Furthermore, if dim(Xg,−i) = 1, then β0 can be simply calculated by

β0 =
E
[
Xg,−i

(
Yg,i − E[Yg,i|Xg,i, ng]

)]
E
[
Xg,−i

(
Y g,−i − E[Y g,−i|Xg,i, ng]

)] .
The proof of Theorem 1.3.1 is presented in Appendix 1.A. The basic idea is to partial out the

nonparametric nuisance function h0(·) by subtracting the conditional expectations on both

side of model (1.3.1), Yg,i − E[Yg,i|Xg,i, ng] = β0

(
Y g,−i − E[Y g,−i|Xg,i, ng]

)
+ Ug,i, and then

apply the IV approach to address the endogeneity issue caused by simultaneous equations

on the residulized model to identify β0.

The identification results can be extended to related social interaction models, which are

discussed as follows.

Discussion 1.3.1: Identification with large numbers of same size groups:

The identification results in Theorem 1.3.1 covers the same group size model as a special

case. It is well known that Manski’s reflection problem shows up for the same group size

social interaction model since there is no extra between-group variation to disentangle the

endogenous social interaction effect and contextual effect. Here we assume that there are

individual-only characteristics, Xg,i, that affect Yg,i without generating contextual effects.

Thus, social interaction model with same group size can still be identified using the same

strategy as discussed above.

Discussion 1.3.2: Identification with large numbers of networks:

The identification results in Theorem 1.3.1 can also be applied to a semiparametric model

of social interactions with large numbers of networks. Network structures have exclusion

restrictions due to the incomplete overlap among individuals and their peers. Under this

case, the average characteristics of friends of friends can drive variation in endogenous effects

without having a direct effect on outcomes, and can be used as IV for average group outcomes.
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Thus, excluded factors of individual-only characteristics Xg,i is not required to identify β0.

This strategy is applied in Bramoullé, Djebbari, and Fortin (2009) for the parametric social

interaction models. Based on the results in Theorem 1.3.1, the semiparametric model of

network social interactions can also be identified using the same strategy.

1.3.3 Identification with Contextual Effect

Here we discuss the identification condition for a more general semiparametric model (1.2.1)

which also controls the contextual effects W g,−i and Υg in the nonparametric function h0(·).

Let Xg,i = (Xg,i,Wg,i,W g,−i,Υg, ng) denotes the collection of control variables at both the

individual and group levels. Including the contextual effect in model (1.2.1) brings challenge

for identifying the endogenous social interaction effect, which is the well-known reflection

problem (Manski, 1993). To resolve the reflection problem, this paper assumes that not all

exogenous variables appear as contextual variables, i.e. d = dim(Xg,i) > 0 and the leaving-i-

out group average Xg,−i does not affect individual’s outcome directly, which can provide an

exclusion restriction. Similar as Assumption 1.3.2, for model (1.2.1), the following exogenous

assumption is imposed:

Assumption 1.3.4: The controls Xg = (Xg,Wg,Υg, ng) are assumed to be strictly exoge-

nous:

E[Ugi | Xg ] = E[Ugi|Xg,Wg,Υg, ng] = 0 (1.3.5)

Assumption 1.3.4 relaxed the strong exogeneity in Assumption 1.3.2 by including additional

individual and contextual effects Wg,i,W g,−i,Υg in the nonparametric function. After condi-

tioning on a set of additional group-level covariates, Assumption 1.3.4 becomes more plausible

and credible.

Given the exclusion restriction and exogenous Assumption 1.3.4, the excluded contextual

factors Xg,−i can be used as IV for Y g,−i to identify β0 if the standard full rank condition

holds:

Assumption 1.3.5: Assume E
[
Xg,−i

(
Yg,−i − E[Yg,−i|Xg,i]

)]
has full column rank.
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Based on the above assumptions, the identification result for the semiparametric social

interaction model (1.2.1) with contextual effect is established in the following theorem:

Theorem 1.3.2: Under assumption 1.3.1, 1.3.4, and 1.3.5, the endogenous social inter-

action effect β0 and the nonparametric control function h0 in model (1.2.1) are identified.

Specifically,

(i) β0 is then identified by

E
[
Xg,−i

(
Yg,i − E[Yg,i|Xg,i]

)]
= β0E

[
Xg,−i

(
Y g,−i − E[Y g,−i|Xg,i]

)]
(1.3.6)

(ii) h0 is identified by h0(Xg,i) = E[Yg,i − β0Y g,−i|Xg,i] given β0 identified.

The proof is similar as Theorem 1.3.1 and is presented in Appendix 1.A.

Comparing the identification condition for social interaction model with contextual effect

in (1.3.6) and the condition (1.3.4) for model without contextual effect, I find that the only

difference comes from the partialled out conditional expectations, which will not affect the

discussion for the semiparametric estimation for β0. Thus, in the subsequent sections, I just

use the notation in the social interaction model (1.3.1) with no contextual effect to illustrate

the semiparametric estimation procedure and asymptotic properties of the estimators.

This paper will work under the strong instrumental variable case to derive theoretical

results in the subsequent sections. However, by partialling out additional control variable,

Xg,−i will be more likely to suffer from weak instrumental variable problem in the finite

samples. The weak identification issue will be addressed in the Monte Carlo simulations.

1.4 Moment and Orthogonal Moment Conditions

In this section, the moment condition and orthogonal moment condition are constructed

based on the identification results in the preceding section. To simplify the notation, I

consider the model (1.3.1) without contextual effect in the subsequent sections. As discussed
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above, the results can be easily extended to the general model (1.2.1) with the contextual

effect.

First, this section restates the identification conditions for β0 in model (1.3.1) using

the moment conditions, and then discusses the construction of Neyman orthogonal moment

conditions which are robust to the first step nonparametric nuisance parameters.

Let µ0(Xg,i) , E[Yg,i|Xg,i]; ν0(Xg,i) , E[Y g,−i|Xg,i]; φ0(Xg,i) , E[Xg,−i|Xg,i] denote

the conditional expectations of Yg,i, Y g,−i, Xg,−i on Xg,i, respectively. The corresponding

residualized variables after subtracting the conditional expectations are denoted by ηg,i ≡

Yg,i−µ(Xg,i); ζg,i ≡ Y g,−i− ν(Xg,i); εg,i ≡ Xg,−i− φ(Xg,i). Then µ0(·), ν0(·) and φ0(·) can

be estimated by the following conditional moments:

E[Yg,i − µ0(Xg,i)|Xg,i] = 0, (1.4.1)

E[Y g,−i − ν0(Xg,i)|Xg,i] = 0, (1.4.2)

E[Xg,−i − φ0(Xg,i)|Xg,i] = 0. (1.4.3)

The identification condition for β0 in Theorem 1.3.1 can be restated using the following

moment condition:

E
[
Xg,−i

((
Yg,i − µ0(Xg,i)

)
− β0

(
Y g,−i − ν0(Xg,i)

))]
= 0, (1.4.4)

where nonparametric nuisance parameters µ0(·) and ν0(·) can be estimated using conditional

moments (1.4.1) and (1.4.2) in the first step. The parameter of interest, β0, then can be

estimated using (1.4.4) by plugging in the first step nonparametric estimators.

However, the estimator of β0 based on the moment condition (1.4.4) is sensitive to the

estimation bias of nonparametric parameters µ0(·) and ν0(·) (Chernozhukov et al., 2018a).

To be specific, let m(·) denote the moment function in condition (1.4.4),

m(Zg,i; β, µ, ν) = Xg,−i(Yg,i − µ(Xg,i))− βXg,−i
(
Y g,−i − ν(Xg,i)

)
, (1.4.5)
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where Zg,i = (Xg,i, Yg,i, Xg,−i, Y g,−i). Let
∂E[m(Zg,i;β0,µ0,ν0)]

∂µ
[vµ] denote the dm × 1 vector of

pathwise derivative of E [m (Zg,i; β0, µ0, ν0)] with respect to µ in the direction vµ evalu-

ated at true parameters (β0, µ0, ν0). Similarly, let
∂E[m(Zg,i;β0,µ0,ν0)]

∂ν
[vν ] denote the path-wise

derivative over ν in the direction vν . It is showed in Appendix 1.A that these two pairwise

derivatives are nonzero. Thus, the moment condition defined in (1.4.4) is not orthogonal

to the first step nonparametric parameters µ(·) and ν(·). This might lead to a bias in the

second step estimator for β0 based on the moment condition (1.4.4).

The robust strategy for estimating β0 is to use orthogonal moment condition instead.

Following the strategy in Chernozhukov et al. (2018a), the orthogonal moment condition

can be constructed by adding an adjustment term,

E
[(
Xg,−i − φ0(Xg,i)

)(
(Yg,i − µ0(Xg,i))− β0

(
Y g,−i − ν0(Xg,i)

))]
= 0. (1.4.6)

An additional nuisance function φ0(Xg,i) = E[Xg,−i|Xg,i] is introduced which can be esti-

mated by conditional moment (1.4.3). Let ψ(·) denote the orthogonal moment function in

(1.4.6),

ψ(Zg,i, β, µ, ν, φ) =
(
Xg,−i − φ(Xg,i)

)((
Yg,i − µ(Xg,i)

)
− β

(
Y g,−i − ν(Xg,i)

))
. (1.4.7)

It is verified in in Appendix 1.A that the pairwise derivatives of E [ψ (Zg,i; β0, µ0, ν0, φ0)] with

respect to µ(·), ν(·) and φ(·) vanish.

∂E [ψ (Z; β0, µ0, ν0, φ0)]

∂µ
[vµ] = 0;

∂E [ψ (Z; β0, µ0, ν0, φ0)]

∂ν
[vν ] = 0

∂E [ψ (Z; β0, µ0, ν0, φ0)]

∂φ
[vφ] = 0 (1.4.8)

That is, the moment is close to zero as the nuisance functions µ, ν, φ deviate from their true

value. Thus, the estimator for β0 based on the orthogonal moment condition (2.6) is locally

robust to the first step nonparametric estimators for µ0(·), ν0(·) and φ0(·)

Also, the orthogonal moment function ψ (Zg,i, β, µ, ν, φ) is affine in each of µ, ν and
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φ holding others fixed.2 By Theorem 5 in Chernozhukov et al. (2018a), the orthogonal

moment (1.4.6) is also a doubly robust (DB) moment condition. It can be verified that

ψ (Zg,i, β, µ, ν, φ) satisfies the definition of DB moment condition:

E [ψ (Zg,i, β0, µ, ν, φ0)] = 0; E [ψ (Zg,i, β0, µ0, ν0, φ)] = 0 (1.4.9)

Thus, the orthogonal moment condition still holds if part of the first stage nuisance functions

(µ, ν) or φ to be incorrect. This will lead to a simpler conditions for the asymptotic normality

in general (Chernozhukov et al., 2018a). The asymptotic property for the estimator of

semiparametric social interaction model will be discussion in Section 1.5.

1.5 Semiparametric Estimation of Endogenous Social Interactions

In this section, a semiparametric two-step GMM estimator is proposed to estimate the en-

dogenous social interaction effect, β0, in model (1.3.1). This section then shows the asymp-

totic normality of the semiparametric GMM estimator with first step series estimators under

primitive regularity conditions.

1.5.1 Construction of Semiparametric Estimators

Let ϑ0(x) = (µ0(x), ν0(x), φ0(x)) denote the first step conditional expectations. Then, ϑ0(x)

can be estimated by any nonparametric methods. In the second step, the endogenous social

interaction effect β0 is then estimated using GMM method with sample moment functions

of (1.4.5) and (1.4.7) after plugging the first step nonparametric estimators ϑ̂(x).

In the following discussion, I will call the estimator for β0 based on moment function

(1.4.5) as the plug-in (PI) estimator, and the estimator based on the orthogonal moment

function (1.4.7) as the debiasing (DB) estimator.

2An affine function is a linear function followed by a translation. It is verified in Appendix 1.A that
ψ (Zg,i, β, µ, ν, φ) defined in is affine in each of µ, ν and φ holding others fixed.
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1.5.1.1 First-step Nonparametric Estimation

In the first step, the conditional expectations

µ0 (Xg,i) = E [Yg,i|Xg,i] , ν0 (Xg,i) = E
[
Y g,−i|Xg,i

]
, φ0 (Xg,i) = E

[
Xg,−i|Xg,i

]
are nonparametrically estimated. There is a huge body of literature that addresses the es-

timation of conditional expectations. Parametric method usually uses a linear function to

approximate the conditional expectation, and then estimates it using least squares. Non-

parametric methods including kernel or series estimators are more flexible in the choice of

function forms.

In this paper, I will study a semiparametric GMM estimator of β0, which applies non-

parametric power series in the first step to estimate the conditional expectations ϑ0(x) =

(µ0(x), ν0(x), φ0(x)) . Assume we use the power series expansion with basis function PK(x) =

(P1(x), . . . , PK(x)) to approximate the first step conditional expectations. For K = K(n)→

∞, the first step series nonparametric estimators for conditional expectations are:

µ̂ (Xg,i) = PK (Xg,i)
′ (P ′P )

−1
P ′Y

ν̂ (Xg,i) = PK (Xg,i)
′ (P ′P )

−1
P ′Y −

φ̂ (Xg,i) = PK (Xg,i)
′ (P ′P )

−1
P ′X− (1.5.1)

where P = (P (Xg1) , ·, P (XG,nG))′ , Y = (Yg1, · · · , YG,nG) , Y − =
(
Y g,−1, · · · , Y G,−nG

)
, and

X− =
(
Xg,−1, · · · , XG,−nG

)
.

The motivation for considering this particular nonparametric method (power series) is

to provide the primitive regularity conditions for showing the consistency and asymptotic

normality of the semiparametric GMM estimator for β0.
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1.5.1.2 Second-step Estimation for β0

In the second step, the parameter of interest, β0, can be estimated by plugging in the first

step nonparametric estimators ϑ̂(x) = (µ̂(x), ν̂(x), φ̂(x)) into the moment function (1.4.5)

or orthogonal moment function (1.4.7). This paper proposes a semiparametric two-step

GMM method (Chen, 2007; Ackerberg, Chen, and Hahn, 2012) to estimate the parameter

of interest, β0. The idea is to make the sample analog of moment condition to be as close to

zero as possible.

To address the clustered structural data of the grouped social interaction model, it will

be convenient to define the clustered sum of moment functions:

mg (Zg, β, ϑ) =

ng∑
i=1

m (Zg,i; β, ϑ) ; ψg (Zg, β, ϑ) =

ng∑
i=1

ψ (Zg,i; β, ϑ) (1.5.2)

where Zg = (Zg,1, · · · , Zg,ng). Zg includes the group-level variables (Xg, Yg, Xg,−, Y g,−),

where Xg,− = (Xg,−1, · · · , Xg,−ng) and Y g,− = (Y g,−1, · · · , Y g,−ng) are the collections of

leave-i-out group average variables for group g.

The semiparametric plug-in GMM estimator, β̂gmm, is constructed by making the sample

analogy of moment function, 1
n

∑G
g=1 mg

(
Zg, β, ϑ̂

)
, as close to zero as possible. It solves the

following minimization problems:

β̂gmm = arg min
β

(
1

n

G∑
g=1

mg

(
Zg, β, ϑ̂

))′
Ω̂−1

(
1

n

G∑
g=1

m
(
Zg, β, ϑ̂

))
, (1.5.3)

where Ω̂−1 denotes an d × d positive definite weight matrix. Because of the linearity of

moment function, mg(·), with respect to β, the semiparametric GMM estimator β̂gmm defined

in (1.5.3) has a closed form solution:

β̂gmm =
( G∑
g=1

ζ̂ ′gXg,−Ω̂−1

G∑
g=1

X
′
g,−ζ̂g

)−1( G∑
g=1

ζ̂ ′gXg,−Ω̂−1

G∑
g=1

X
′
g,−η̂g

)
. (1.5.4)

where η̂g and ζ̂g are group level residuals for Yg and Y g,−, respectively. As usual, Ω̂ is chosen
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to be the consistent estimator of the variance Ω = Var
(

1√
n

∑G
g=1mg

(
Zg, β0, ϑ̂

))
.

The semiparametric debiased GMM estimator, β̂gmmdb , is constructed by making the sam-

ple analogy of orthogonal moment function ψg (Zg, β, ϑ), as close to zero as possible.

β̂gmmdb = arg min
β

(
1

n

G∑
g=1

ψg

(
Zg, β, ϑ̂

))′
Ω̂−1
db

(
1

n

G∑
g=1

ψg

(
Zg, β, ϑ̂

))
, (1.5.5)

where Ω̂−1
db denotes an d×d positive definite weight matrix. Similarly, the closed form solution

for the debiased GMM estimator β̂gmmdb is:

β̂gmmdb =
( G∑
g=1

ζ̂ ′gε̂gΩ̂
−1
db

G∑
g=1

ε̂′g ζ̂g

)−1( G∑
g=1

ζ̂ ′gε̂gΩ̂
−1
db

G∑
g=1

ε̂′gη̂g

)
(1.5.6)

where η̂g, ζ̂g, and φ̂ are group level residuals for Yg, Y g,−, and Xg,−, respectively. Ω̂db is

chosen to be the consistent estimator of the variance Ωdb = Var
(

1√
n

∑G
g=1 ψg

(
Zg, β0, ϑ̂

))
.

Since ψg (Zg, β, ϑ) is doubly robust to the nonparametric estimation of ϑ0, it can be shown

that Ωdb = Ω0 + op(1), where Ω0 = V ar
(

1√
n

∑G
g=1 ψg (Zg, β0, ϑ0)

)
.

Remark: Just identified second step:

If dim(m) = dim(ψ) = dim(Xg,i) = 1, then the second step estimation for β0 is exactly

identified by moment condition (1.4.4) or (1.4.6). The semiparametric two-step Plug-in and

debiased estimators for β0, β̂db, can be simplified by directly solving the sample analogy of

moment and orthogonal moment conditions. The closed form solution for β̂ and β̂db are

defined as follows:

β̂ =
( G∑
g=1

X
′
g,−ζ̂g

)−1( G∑
g=1

X
′
g,−η̂g

)
(1.5.7)

β̂db =
( G∑
g=1

ε̂′g ζ̂g

)−1( G∑
g=1

ε̂′gη̂g

)
(1.5.8)

where η̂g, ζ̂g, and φ̂ are group level residuals for Yg, Y g,−, and Xg,−, respectively.
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1.5.1.3 Relation of Plug-in and Debiased Estimators for β0

This subsection will discuss the relationship between the plug-in estimator β̂gmm and the

debiased estimator β̂gmmdb if the nonparametric parameters ϑ0 are estimated using series

method in the first step.

First, consider weight matrices for two semiparametric GMM estimators. The following

proposition shows the relation of the inverse weight matrix for the plug-in estimator Ω =

Var
(

1√
n

∑G
g=1 mg

(
Zg, β0, ϑ̂

))
, the debiased estimator Ωdb = Var

(
1√
n

∑G
g=1 ψg

(
Zg, β0, ϑ̂

))
,

and also Ω0 = V ar
(

1√
n

∑G
g=1 ψg (Zg, β0, ϑ0)

)
.

Proposition 1.5.1: Suppose

1

n

∥∥∥∥∥
G∑
g=1

ψg

(
Zg, β0, ϑ̂

)
−

G∑
g=1

ψg (Zg, β0, ϑ0)

∥∥∥∥∥
2

p−→ 0, (1.5.9)

then

Ω = Ωdb = Ω0 + op(1)

That is

Var

(
1√
n

G∑
g=1

mg

(
β0, ϑ̂

))
= Var

(
1√
n

n∑
g=1

ψg

(
β0, ϑ̂

))
= Var

(
1√
n

G∑
g=1

ψg (β0, ϑ0)

)
+op(1)

(1.5.10)

where ϑ̂ is any consistent nonparametric estimator of ϑ0 = (µ0, ν0, φ0).

The influence function of 1√
n

∑G
g=1mg

(
β0, ϑ̂

)
is 1√

n

∑G
g=1 ψg (β0, ϑ0). Following Newey (1994),

it is sufficient show Ω = Ωdb = Ω0 + op(1) if (1.5.9) holds and ϑ̂ can be any consistent first

step nonparametric estimators. I will specify the conditions for (1.5.9) holding if the first

step nonparametric parameters are estimated using series methods in the following section.

The proof of Proposition 1.5.1 is shown in Appendix 1.A.

Based on Proposition 1.5.1, the estimators for the optimal weight matrices of plug-in and
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debiased estimators can be constructed by

Ω̂ =
1

n

G∑
g=1

ψg

(
β̃, ϑ̂

)
ψg

(
β̃, ϑ̂

)′
;

Ω̂db =
1

n

G∑
g=1

ψg

(
β̃db, ϑ̂

)
ψg

(
β̃db, ϑ̂

)′
, (1.5.11)

where β̃ and β̃db are initial estimators for β0 using plug-in or debiased methods with iden-

tity weight matrix, respectively. It can be shown that β̃ = β̃db if the first nonparametric

parameters are estimated using series. Then, it follows that Ω̂ = Ω̂db.

Finally, the following proposition states the relationships of plug-in estimator, β̂gmm, and

debiased estimator β̂gmmdb if the series estimator is applied in the first step.

Proposition 1.5.2: Assume (i) the first step nonparametric parameters are estimated using

series as in (1.5.1); (ii) the weight matrices for plug-in and debiased estimators are defined

in 1.5.11; where (iii) the initial estimators β̃ and β̃db are estimated with identity weight

matrices for both the plug-in and debiased estimators. Then the semiparametric plug-in and

debiased estimators are exactly the same:

β̂gmm = β̂gmmdb

The proof of Proposition 1.5.2 are shown in Appendix 1.A. Our result verifies Newey, Hsieh,

and Robins (1998)’s statement that series estimators of conditional expectations belong to

the idempotent estimator class which has this smoothing correction built-in.

In the following discussion of the semiparametric series estimators for β0, I use the formula

of debiased estimators, β̂gmmdb (β̂db), to facilitate the proofs.

1.5.2 Asymptotic Normality of Semiparametric Series Estimators

This section discusses the consistency and asymptotic normality of the semiparametric two-

step estimator for β0 by plugging the series estimators in the first step. Theoretical results
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for semiparametric estimators with the first step series have been studied by Newey (1994,

1997) among others. This section applies results from Newey (1997) to derive regularity

conditions of asymptotic normality for semiparametric estimators, β̂gmmdb , using first step

series method.

The following regularity conditions are imposed to control the first step series approxi-

mation error and estimation error of the conditional expectations ϑ0 = (µ0, ν0, φ0).

Assumption 1.5.1:

(i) Assume 1
n

∑G
g=1E(η′gηg|X), 1

n

∑G
g=1E(ζ ′gζg|X) and 1

n

∑G
g=1E(ε′gεg|X) are all bounded.

(ii) The smallest eigenvalue λmin
(
E[PK(x)PK(x)′]

)
is bounded away from zero uniformly

in K.

(iii) Assume the approximation error to the nonparametric functions µ0, ν0, φ0 satisfies the

uniform convergence rate as follows:

|µ0 − PK′πµ| = O(K−αµ), |ν0 − PK′πν | = O(K−αν ), |φ0 − PK′πφ| = O(K−αφ)

Assumption 1.5.1 (i)-(iii) are all standard conditions for the series estimators of the nonpara-

metric conditional expectations. The bounded conditional variance in Assumption 1.5.1(i)

helps bound the variance of series estimators for the conditional expectations. Assump-

tion 1.5.1(ii) impose restrictions on the approximation basis functions to have nonsingular

second moment. Assumption 1.5.1 (iii) helps to control the approximation bias of series

expansions. From Newey (1997), for power series, Assumption 1.5.1(iii) is satisfied with

αµ = sµ/d, αν = sν/d, αφ = sφ/d where αµ, αν , αφ is the order of continuous derivative of

µ, ν, φ, respectively and d = dim(X).

To illustrate the Assumption 1.5.1 (iii) for the semiparametric social interaction model,

consider the special model which has same group size ng = 2. The reduced form of the model
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is as follows,

Yg,i =
1

1− β2
0

(h0(Xg,i) + β0h0(Xg,−i) + Vi

Y g,−i =
1

1− β2
0

(h0(Xg,−i) + β0h0(Xg,i)) + V−i,

Then the reduced form model implies that:

µ(Xg,i) = E[Yg,i|Xg,i] =
1

1− β2
0

(
h0(Xg,i) + β0E[h0(Xg,−i)|Xg,i]

)
ν(Xg,i) = E[Y g,−i|Xg,i] =

1

1− β2
0

(
β0h0(Xg,i) + E[h0(Xg,−i)|Xg,i]

)
Thus µ(Xg,i) and ν(Xg,i) have the same continuous differentiable order which depends on

the smoothness of h0(Xg,i) and E[h0(Xg,−i)|Xg,i].

To provide the asymptotic distribution of β̂gmmdb , define

Mn =
1

n

G∑
g=1

E
[
ε′gζg

]
,

Ωn =
1

n

G∑
g=1

E
[
ε′gUgU

′
gεg
]
,

Vn = M−1
n ΩnM

−1
n .

The next theorem show the result on the asymptotic normality of semiparametric GMM

estimator β̂gmmdb when the first step conditional expectations ϑ0(x) = (µ0(x), ν0(x), φ0(x)) are

estimated by series estimators as defined in (1.5.1).

Theorem 1.5.1: If Assumptions 1.3.1, 1.3.2, 1.3.3, and 1.5.1 are satisfied and assume the

following condition holds

√
nK−(αφ+αµ) +

√
nK−(αφ+αν) +K−αφ +K−αµ +K−αν +K/

√
n→ 0 (1.5.12)
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then it follows that

√
nV −1/2

n (β̂gmmdb − β0)
d−→ N(0, 1). (1.5.13)

Condition (1.5.12) controls the approximation and estimation errors induced by the first

step series estimators, ϑ̂ = (µ̂, ν̂, φ̂). If K/
√
n → 0 is satisfied, then the remainder rate

is dominated by order
√
nK−(αφ+max{αµ,αν}). Furthermore, there exists K = Kn satisfying

K/
√
n→ 0, such that condition (1.5.12) holds if and only if αφ + max{αµ, αν} > 1.

The general requirement for asymptotic normality of semiparametric estimator need to

control each of
√
nK−αφ ,

√
nK−αµ , and

√
nK−αν converges to zero (Newey, 1994). Here the

condition (1.5.12) only requires the product of them goes to zero, which simplifies the re-

quirement for the asymptotic normality of the semiparametric estimator. This is because the

estimator β̂gmmdb is constructed based on the doubly robust moment condition (1.4.6), which

still holds if one of the first step nonparametric estimators is not correct. The asymptotic

normality of doubly robust estimators have simpler conditions in general which are discussed

in Chernozhukov et al. (2018b) and Newey and Robins (2018).

Next, consider the construction of consistent estimator for the variance of β̂gmmdb . As usual

the estimator for the variance of β̂db can be constructed by

V̂n = M̂−1
n Ω̂nM̂

−1
n (1.5.14)

with M̂n = 1
n

∑G
g=1

[
ε̂′g ζ̂g

]
and Ω̂n = 1

n

∑G
g=1

[
ε̂′gÛgÛ

′
gε̂g

]
, where η̂g, ζ̂g, and ε̂g denote the

first step residualized terms for Yg, Y g,−, Xg,−respectively, and Ûg = η̂g − β̂gmmdb ζ̂g.

The variance estimator, V̂n is constructed “as if” the nonparametric parameters µ0, ν0,

and φ0 were known. This works because the moment condition (1.4.6) is locally/doubly

robust to the first step estimators (Ackerberg, Chen, and Hahn, 2012).

The following result gives results for the consistency of the variance estimator, V̂n.
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Theorem 1.5.2: If the assumptions in Theorem 1.5.1 hold, then

∥∥∥M̂n −Mn

∥∥∥ p→ 0,
∥∥∥Ω̂n − Ωn

∥∥∥ p→ 0, and
∥∥∥V̂n − Vn∥∥∥ p→ 0

The proofs for Theorem 1.5.1 and Theorem 1.5.2 are in Appendix 1.A.

1.6 Semiparametric Cross-fitting Estimation of Endogenous So-

cial Interactions

The plug-in and debiased semiparametric estimators for β0 considered in Section 1.5 have

the own-observation bias problem. With first step power series of K terms, the bias has an

order of K/
√
n. Chernozhukov et al. (2018a) has considered to apply the single cross-fitting

method to eliminate the own observation bias. The single cross-fitting method uses the same

subsamples to estimate the first step nonparametric functions. Thus, it will still suffer from

the nonlinearity bias. Newey and Robins (2018) proposes a double cross-fitting procedure

which uses different subsamples in the first step nonparametric estimation to further remove

the nonlinearity bias.

In this paper, I consider to apply the cross-fitting methods for the semiparametric social

interaction model to further eliminate the bias from first step nonparametric estimation.

1.6.1 Construction of Cross-fitting estimators

I will focus on the cross-fitting semiparametric estimator which is based on the doubly robust

moment function (1.4.7). The main idea of cross-fitting method is to estimate the nonpara-

metric parameters (µ0, ν0, φ0) and the second-step parameter β0 with different subsets in

order to remove the own observation bias.

For the social interaction models, researchers can obtain a clustered sample {Zg}Gg=1.

This paper assumes the observations {Zg} (g = 1, · · ·G) are independent across groups but

the dependence within each group is unrestricted. Thus, the subsamples should be generated
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at the group level instead of the individual level. Assume the group indexes {1, ...G} are

randomly partitioned into L distinct subsets I` (` = 1, ...L).

For notation simplicity, this section considers the just identified second step with dim(m) =

dim(ψ) = dim(Xg,i) = 1.

A single cross-fitting (CF) Estimator is defined as

β̂cf =
L∑
`=1

(∑
g∈I`

ng∑
i=1

(
Xg,−i − φ̃`(Xg,i)

)′(
Y g,−i − ν̃`(Xg,i)

))−1

L∑
`=1

(∑
g∈I`

ng∑
i=1

(
Xg,−i − φ̃`(Xg,i)

)′(
Yg,i − µ̃`(Xg,i)

))
(1.6.1)

where µ̃`, ν̃` and φ̃` are estimated using the subset Ĩ`. The set Ĩ` belongs to the partitioned

L subsets and is disjoint with I` (Ĩ` ∩ I` = ∅). For example, the two-folded cross-fitting

estimator uses one subset to estimate the first step nonparametric parameters and then plug

into another subset to obtain the second step estimator of β0. The two subsets are then

flipped to obtain another estimator of β0. By taking average of these two estimators of β0,

the efficiency of the CF estimator is improved.

However, the single cross-fitting estimator still have a nonlinearity bias which is induced

by the product of the estimation bias of φ̃` with (µ̃`, ν̃`). The bias also has the order of K/
√
n

with first step series estimator (Newey and Robins, 2018). To eliminate the nonlinearity bias,

I apply the doubly cross-fitting estimator for the social interaction effect β0 by following

Newey and Robins (2018).

To eliminate the nonlinearity bias, the doubly cross-fitting estimator further uses two

different subsamples to estimate the first step nonparametric parameters. µ̃` and ν̃` are

estimated using the subset Ĩ` which is disjoint with subset I`, and φ̌` is estimated using

subset Ǐ` which is disjoint with both Ĩ` and I`. Then, a doubly cross-fitting estimator for β0
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is obtained by plugging the nonparametric first step estimators (µ̃`, ν̃`, φ̌`) into the subset I`.

β̂dcf =
L∑
`=1

(∑
g∈I`

ng∑
i=1

(
Xg,−i − φ̌`(Xg,i)

)′(
Y g,−i − ν̃`(Xg,i)

))−1

L∑
`=1

(∑
g∈I`

ng∑
i=1

(
Xg,−i − φ̌`(Xg,i)

)′(
Yg,i − µ̃`(Xg,i)

))
(1.6.2)

The doubly cross-fitting also use the subsets flipping to obtain an averaging estimator which

helps to improve the efficient of the estimator for β0.

This section will focus on the doubly cross-fitting estimator defined in (1.6.2) by plug-

ging in the first step series estimation of ϑ0 = (µ0, ν0, φ0). I continue to apply the power

series expansion with basis function PK(x) = (P1(x), . . . , PK(x)). The nonparametric series

estimators µ̃(x), ν̃(x), φ̌(x) are constructed by

µ̃(x) = PK(x)

 1

G̃`

∑
g∈Ĩ`

PK(Xg)P
K(Xg)

′

−1 1

G̃`

∑
g∈Ĩ`

PK(Xg)Yg


ν̃(x) = PK(x)

 1

G̃`

∑
g∈Ĩ`

PK(Xg)P
K(Xg)

′

−1 1

G̃`

∑
g∈Ĩ`

PK(Xg)Y g,−


φ̌(x) = PK(x)

 1

Ǧ`

∑
g∈Ǐ`

PK(Xg)P
K(Xg)

′

−1 1

Ǧ`

∑
g∈Ǐ`

PK(Xg)Xg,−

 (1.6.3)

where Ĩ` is the index set for estimating µ0 and ν0, Ǐ` for estimating φ0. G̃` and Ǧ` denote

the number of groups for these two subsamples.

In the following subsection, I will discuss the asymptotic property of the doubly cross-

fitting estimator defined in 1.6.2 by plugging in the first step series estimators defined in

(1.6.3).

1.6.2 Asymptotic Normality of Cross-fitting Estimators

The asymptotic considered in this paper is to let the number of groups G→∞. The cross-

fitting estimator needs to split the groups into L subgroups (L ≥ 3 for doubly cross-fitting
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estimator). Let G` denote the number of groups in the subset indexed by I`. The following

Assumption 1.6.1 imposes restrictions on the sample spitting.

Assumption 1.6.1: (i) Assume {I`}(` = 1, ...L) are mutually exclusive and exhaustive sub-

sets of the group index set {1, ..., G}. That is,
∑L

`=1G` = G and I` ∩ I`′ = ∅ (` 6= `′ ∈

{1, · · · , L}). (ii) Assume the number of groups in each subset is of the same order as G.

That is, G`
G

= c (` = 1, ...L), where 0 < c <∞.

The assumption
∑L

`=1G` = G guarantees that each grouped data Zg can be used to estimate

β0 in the second step if we flipping the subsets. It is also assumed that G` has the same rate

with G. Thus, G→∞ implies that each subset has G` →∞ (` = 1, ..., L). Practically, the

groups can be partitioned into nearly equal sized subsets.

Next, I will discuss the conditions for the asymptotic normality of the doubly cross-fitting

estimator β̂dcf by plugging in the first step series estimation of ϑ0 in (1.6.3). The conditions

for bound the approximation error of the series expansions are the same with Assumption

1.5.1.

The conditions for the asymptotic normality of β̂dcf requires the remainder terms to be

op(1). The doubly cross-fitting estimator removes the own observation and nonlinearity bias

by estimating different nonparametric and parametric parameters using disjoint subsam-

ples. In general, Newey and Robins (2018) shows that the doubly cross-fitting estimator can

obtain the fastest remainder rate with first step series. For the semiparametric social inter-

action model with clustered data, the following result gives the conditions for the asymptotic

normality of β̂dcf defined in (1.6.2).

Theorem 1.6.1: If Assumptions 1.3.1, 1.3.2, 1.3.3, and 1.5.1 are satisfied and assume the

following condition holds

√
nK−(αφ+αµ) +

√
nK−(αφ+αν) +K−αφ +K−αµ +K−αν +

√
K/
√
n→ 0 (1.6.4)

then it follows that

√
nV −1/2

n (β̂dcf − β0)
d−→ N(0, 1). (1.6.5)
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The proof of Theorem 1.6.1 will be shown in Appendix 1.A.

Comparing the condition (1.5.12) for doubly robust estimator, the condition (1.6.4) for

the doubly cross-fitting estimator improves the remainder rate by changing the estimation

bias from order K/
√
n to

√
K/
√
n. If K/n → 0 is satisfied, then the remainder term

is dominated by the order of
√
nK−(αφ+max{αµ,αν}). Furthermore, there exists K = Kn

satisfying K/n→ 0, such that condition (1.6.4) holds if and only if αφ+max{αµ, αν} > 1/2.

1.7 Monte Carlo Simulation

This section investigates the finite sample performance of semiparametric two-step estimators

for endogenous social interaction effects, β0, using Monte Carlo simulations. The goal is to

show that parametric linear estimator might lead the spurious social interaction effect if the

true model is nonlinear, under which the semiparametric model should be applied.

To show the possible spurious social interaction effect when the linear estimator is applied,

I set the true value of endogenous social interaction effect β0 = 0.5. Different data generating

processes (DGPs)are considered with different nonparametric nuisance functions, including

the linear form and also nonlinear cases. For each DGP, I apply both the parametric linear

and semiparametric series estimators to obtain the estimator for β0. The results show that if

the true model is nonlinear, then the linear estimator suffers from an over-rejection problem

and more likely to obtain a significant social interaction effect which is actually spurious.

However, the semiparametric series estimators do not have such an issue and have the correct

size across all the nonlinear models considered in the simulation study.

1.7.1 Simulation Set-up

In the Monte Carlo Simulation studies, I consider the semiparametric social interaction model

with group size Mg = 2 across all the groups.

 Yg,1

Yg,2

 = β0

 Yg,2

Yg,1

+

 h0(Xg,1)

h0(Xg,2)

+

 Ug,1

Ug,2

 , g = 1, · · · , G. (1.7.1)
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The following describes the DGPs considered in the Monte Carlo simulation studies.

(i) The dimensionality of control variables X.

This simulation study considers the DGPs with multivariate case, dim(X) = 3.

(ii) The function forms of nonparametric nuisance function h0(·).

Both the linear and nonlinear function forms are considered in the simulation study,

including h0(X) = Xγ, h0(X) = exp(Xγ), and h0(X) = sin(Xγ) + cos(Xγ).

(iii) The distribution of the control variables X.

Assume the group pair regressors (Xg,1, Xg,2) are independently draw across groups.

I wil consider four cases in the simulation study: (1) (Xg,1, Xg,2) follows a indepen-

dent normal distribution; (2) (Xg,1, Xg,2) follows joint normal distribution with corre-

lation ρ = 0.5; (3) (Xg,1, Xg,2) follows a dependent bivariate logistic distribution; (4)

(Xg,1, Xg,2) follows a uncorrelated but dependent distribution.

(iv) The distribution of the disturbance Ui.

Assume Ui
iid∼ N(0, σ2

u) where σ2
u measures the noise/signal level. For all the DGPs,

σ2
u = 0.5 is considered.

(v) The parameter of interest β0.

β0 should belong to (−1, 1). For discussing the possible spurious social interaction

effect, let the true β0 = 0.5.

For each simulated dataset, the endogenous social interaction effect, β0, is estimated by

plugging in the first step parametric linear estimator or the nonparametric series estimator.

Linear estimators simply apply the linear regression with X as explanatory variables. Series

estimators consider using the polynomial expansion of X as explanatory variables which

should be more robust under the nonlinear case. The number of observations is n = 500,

and the number of simulation repetitions S = 1000.

To evaluate the performance of different estimators, this paper uses the following mea-

sures: Bias, Variance, mean squared error (MSE), mean absolute error (MAE) for estimators

β̂ and empirical size for the corresponding t test.

31



1.7.2 Simulation Results

The simulation results for the four cases with different DGP are reported in Table 1.1 - Table

1.4.

Case I: Uncorrelated Bivariate-normal Distribution

Table 1.1 reports the simulation results that assumes (Xg,i, Xg,−i) follows a joint normal

distribution with correlation ρ = 0. Since Xg,i and Xg,−i are independent, Xg,−i is a valid

IV even if the we omitted the nonparametric function h0(x). Thus, both the parametric

linear estimator and semiparametric series estimator should be consistent. This property is

reflected in the simulation results of Table 1.1. It shows that the estimator for β0 by applying

both the parametric linear estimator and nonparametric series estimator have similar perfor-

mance in terms of MSE and MAE, and have correct size across all the linear and nonlinear

DGPs considered.

Case II: Correlated Bivariate-normal Distribution

In Table 1.2, the results for a joint normal with correlation ρ = 0.5 are reported. One feature

of the joint normal distribution is that Xg,−i is uncorrelated with all the even order terms of

Xg,i, (cor(Xg,−i, X
2
g,i) = 0, et.al.). Thus, omitting all the even order terms (X2

g,i, X
4
g,i, ...) does

not generate bias in the estimation of β0. But it might still suffer from model misspecification

bias for omitting the odd order terms such as (X3
g,i, X

5
g,i, ...). From the simulation results in

Table 1.2 we learn that, the parametric linear estimator is slightly biased and oversized if

the true model is nonlinear.

Case III: Correlated Bi-logistic Distribution

In the simulation study, I also consider the case that (Xg,i, Xg,−i) is generated from bivariate-

logistic distribution with dependence parameter r = 0.5. Under this DGP, Xg,−i is correlated

with each term of the polynomials of Xg,i. Thus, model misspecification might lead to non-
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negligible bias for the parametric linear estimator of β0. From the simulation results in

Table 1.3, it can be found that linear estimators are severely biased and have over-rejection

problem under the nonlinear model. However, the semiparametric series estimator proposed

in this paper is robust to model specification, which has small bias and correct size across

the DGPs considered.

Case IV: Uncorrelated but Dependent Distribution

Finally, a special case of uncorrelated but dependent distribution for (Xg,i, Xg,−i) is consid-

ered. To be specific, Xg,i ∼ U [−1, 1], and Xg,−i = 1{Xg,i > 0}Xg,i−1{Xg,i ≤ 0}Xg,i
3. It can

be shown that Xg,i and Xg,−i are linearly uncorrelated but are dependent in higher order

terms. The simulation results are reported in Table 1.4 which have similar conclusion as

case III.

Simulation Summary

From the simulation results in Table 1.1-Table 1.4, it can learned that the parametric linear

estimator has the correct size if the true model is linear or groups are randomly assigned.

But it suffers from an over-rejection problem if applied to the nonlinear model. The results

indicate that using linear estimators is likely to obtain a significant social interaction effect

which is spurious. It can also be learned from the simulation result that the distortion

is more server if the true function becomes more curvature. However, the semiparametric

series estimators do not have such an issue and have the correct size for the nonlinear models

considered in the simulation study.

1.8 Conclusion and Future Research

The existing literature on the social interaction model focus on the identification issue of the

parametric setup. However, the parametric model is often restrictive and might lead to a

31(.) denote the indicator function.
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spurious or misleading social interaction effect in the empirical studies. This paper studies a

semiparametric social interaction model with a parametric linear-in-means endogenous social

interaction part and a nonparametric control variables part. To highlight the semiparametric

feature of the model, this paper excludes the correlated effect and also imposes restrictions

on the contextual effect to avoid the complexity of identification issues.

This paper adopts a semiparametric instrumental variable (IV) approach to identify

the endogenous social interaction effect. Based on the identification condition, this paper

proposes a two-step semiparametric estimator in which the first step nuisance functions could

be estimated by any nonparametric methods. This paper focused on the series estimation

in the first step. The second step parametric components are then estimated by method

of moment (MM) or generalized method of moments (GMM). I also consider using the

orthogonal moment condition in the second step estimation to reduce the bias induced by

the first step nonparametric estimators. The result shows that the two-step semiparametric

estimator with first step series is root-n consistent and asymptotically normally distributed

under regularity conditions.

The strong exogenous assumption and restricted contextual effect imposed on our model

could be a problem. It is meaningful to study how to disentangle the endogenous social

interaction effect from the contextual and correlated effect in the semiparametric model

setup. The identification strategy used in the parametric social interaction literature could

be applied to the semiparametric model. Based on the identification condition, in principle,

it is straightforward to generalize our semiparametric two-step estimation methods to this

case. I will consider relaxing these assumptions in future research.

Besides, the discussed group social interaction model can also be extended to a more

flexible network social interaction model. The network depicts the connections between

individuals and does not need to have the group structural which can be applied to a much

richer social structures. Also, the network structural impose certain exclusion restrictions on

the model and make the identification to be easier (Bramoullé, Djebbari, and Fortin (2009)).

Based on the identification condition, the semiparametric two-step estimation methods can

also be applied to the social interaction model with networks. I will consider extending our
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results for the semiparametric group social interaction model to the semiparametric network

social interaction model in future research.
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Appendix

1.A Proofs

1.A.1 Proofs in Section 1.3

Proof for Theorem 1.3.1

Proof: First, consider the identification of h0(·) given β0 identified. Under assumption

1.3.1, Ug,i and Xg,i are independent, then h0(·) is nonparametrically identified by

h0(Xg,i) = E[Yg,i − β0Y g,−i|Xg,i].

Next, consider the identification of endogenous social interaction effect β0. Based on As-

sumptions 1.3.1 and 1.3.2, E[Ug,i|Xg,i, ng] = 0, the nuisance function h0(·) can be partialled

out from the original model (1.3.1).

Yg,i − E[Yg,i|Xg,i, ng] = β0

(
Y g,−i − E[Y g,−i|Xg,i, ng]

)
+ Ug,i. (1.A.1)

Due to the simultaneous structural of the social interaction model, the term Y g,−i is en-

dogenous, i.e. E
[
Y g,−iUi

]
6= 0. In order to identify β0, we adopt an IV approach by using

the additional exogenous assumption E[Ug,i|Xg,−i] = 0 in Assumption 1.3.2 and impose the

condition on equation (1.A.1),

E
[
(Yg,i − E[Yg,i|Xg,i])

∣∣Xg,−i
]

= β0E
[(
Y g,−i − E[Y g,−i|Xg,i]

) ∣∣Xg,−i
]
. (1.A.2)

Then by law of iterated expectation, it follows the unconditional moment condition,

E [t(Xg,−i) (Yg,i − E[Yg,i|Xg,i, ng])] = β0E
[
t(Xg,−i)

(
Y g,−i − E[Y g,−i|Xg,i, ng]

)]
, (1.A.3)

holds for any function t(x) : Rd(ng−1) → Rq with E[‖t(x)‖2] < ∞. t(Xg,−i) can be taken as

the instrumental variables for the endogenous outcome variable Y g,−i. Then the identification
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of β0 can be achieved under full rank condition in Assumption 1.3.3. �

Proof for Theorem 1.3.2

Proof: The proof for 1.3.2 is similar as Theorem 1.3.1. First consider the identification of

h0(·) given β0 identified. Under Assumption 1.3.4, Ug,i and Xg,i are independent, then h0(·)

is nonparametrically identified by

E[Yg,i − β0Y g,−i|Xg,i] = h0(Xg,i) (1.A.4)

Next, consider the identification of endogenous social interaction effect β0. Based on

Assumption 1.3.4, E[Ug,i|Xg,i] = 0, we have

E[Yg,i|Xg,i] = β0E[Y g,−i|Xg,i] + h0(Xg,i) (1.A.5)

We can partial out the identified nuisance function h0(·) by subtracting (1.A.5) form the

original model (1.2.1) for both side:.

Yg,i − E[Yg,i|Xg,i] = β0

(
Y g,−i − E[Y g,−i|Xg,i]

)
+ Ug,i (1.A.6)

Combing the exclusive restriction, the exogenous assumption 1.3.4, Xg,−i that is not included

in the model can be used as IV for Y g,−i to identify β0.

E
[
Xg,−i

(
Yg,i − E[Yg,i|Xg,i]

)]
= β0E

[
Xg,−i

(
Y g,−i − E[Y g,−i|Xg,i]

)]
. (1.A.7)

Then β0 is identified given the standard full rank condition in Assumption 1.3.5. �
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1.A.2 Proofs in Section 1.4

The original moment and orthogonal moment functions are defined as

m(Zg,i, β, µ, ν) = Xg,−i

((
Yg,i − µ(Xg,i)

)
− β

(
Y g,−i − ν(Xg,i)

))
,

ψ(Zg,i, β, µ, ν, φ) =
(
Xg,−i − φ(Xg,i)

)((
Yg,i − µ(Xg,i)

)
− β

(
Y g,−i − ν(Xg,i)

))
.

Verify the orthogonality of m(·) and ψ(·)

Proof: First, we can show that the pairwise derivative of original moment function with

respect to µ and ν are not zero.

∂E [m (Zg,i; β0, µ0, ν0)]

∂µ
[vµ] =

∂E [m (Zg,i; β0, µ0 + τvµ, ν0)]

∂τ

∣∣∣
τ=0

= E [Xg,−i] 6= 0

∂E [m (Zg,i; β0, µ0, ν0)]

∂ν
[vν ] =

∂E [m (Zg,i; β0, µ0, ν0 + τvν)]

∂τ

∣∣∣
τ=0

= −β0E [Xg,−i] 6= 0

Next, we can show that the pairwise derivatives for orthogonal moment function with respect

to µ, ν and φ vanish.

∂E [ψ (Zg,i; β0, µ0, ν0, φ0)]

∂µ
[vµ] =

∂E [m (Zg,i; β0, µ0 + τvµ, ν0, φ0)]

∂τ

∣∣∣
τ=0

= −E [Xg,−i − φ(Xg,i)] = E [Xg,−i − E[Xg,−i|Xg,i]] = 0

∂E [ψ (Zg,i; β0, µ0, ν0, φ0)]

∂ν
[vν ] =

∂E [ψ (Zg,i; β0, µ0, ν0 + τvν , φ0)]

∂τ

∣∣∣
τ=0

= −β0E [Xg,−i − φ(Xg,i)] = 0

∂E [ψ (Zg,i; β0, µ0, ν0, φ0)]

∂φ
[vφ] =

∂E [ψ (Zg,i; β0, µ0, ν0, φ0 + τvφ)]

∂τ

∣∣∣
τ=0

= −E
[(
Yg,i − µ(Xg,i)

)
− β0

(
Yg,−i − ν(Xg,i)

)]
= 0. �
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Verify the doubly robustness of ψ(·)

First, it can be verified that ψ(Zg,i, β, µ, ν, φ) is affine in each of µ, ν, and φ holding others

fixed. For any 0 < λ < 1, µ1(·), and µ2(·),

ψ(Zg,i, β, λµ1 + (1− λ)µ2, ν, φ)

=
(
Xg,−i − φ(Xg,i)

)((
Yg,i − λµ1(Xg,i)− (1− λ)µ2(Xg,i)

)
− β

(
Y g,−i − ν(Xg,i)

))
= λψ(Zg,i, β, µ1, ν, φ) + (1− λ)ψ(Zg,i, β, µ2, ν, φ)

Thus, ψ(Zg,i, β, µ, ν, φ) is affine in µ holding ν, φ fixed. Similarly, it can be shown that

ψ(Zg,i, β, µ, ν, φ) is affine in ν and φ.

Then the doubly robustness of ψ(·) follows by Theorem 5 in Chernozhukov et al. (2018a).

1.A.3 Proofs in Section 1.5

Proof for Proposition 1.5.1

The influence function of 1√
n

∑G
g=1mg

(
β0, ϑ̂

)
is 1√

n

∑G
g=1 ψg (β0, ϑ0). Thus, the estimation

of ϑ0 = (µ0, ν0, φ0) will not affect Ωdb = V ar
(

1√
n

∑G
g=1 ψg

(
β0, ϑ̂

))
. Then, the results follows

directly from Ackerberg, Chen, Hahn, and Liao (2014).

Proof for Proposition 1.5.2

Proof: To proof Proposition 1.5.2, I use vector form of the estimators.

First, we consider the just identified case for β0. We can show that debiased estimator, β̂db

is exactly the same with the original estimator, β̂, in (1.5.7) if we plugging in the series

estimators in the first step, i.e.

β̂ = (X ′−ζ̂)−1(X ′−η̂) = β̂db = (ε̂′ζ̂)−1(ε̂′η̂) (1.A.8)
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Let MP = I − P (P ′P )−1P ′, the proof for (1.A.8) is as follows:

β̂db = (ε̂′ζ̂)−1(ε̂′η̂)

=
[
(MPX−)′(MPY−)

]−1[
(MPX−)′(MPY )

]
= (X−MPY−)−1(X−MPY )

= (X ′−ζ̂)−1(X ′−η̂)

= β̂

Next, we consider the over identified case, that is the more usual case which studies

dim(Xi) = d > 1. We can also show that the debiased semiparametric GMM estimator,

β̂gmmdb , defined in (1.5.7) is the same with the original semiparametric GMM estimator, β̂gmm,

in (1.5.7) if we plugging in series estimator for the first step, i.e.

β̂gmm =
(
ζ̂ ′X−Ω̂−1X ′−ζ̂

)−1(
ζ̂ ′X−Ω̂−1X ′−η̂

)
= β̂gmmdb =

(
ζ̂ ′ε̂Ω̂−1

db ε̂
′ζ̂
)−1(

ζ̂ ′ε̂Ω̂−1
db ε̂
′η̂
)

(1.A.9)

Firstly, we can show that the weight matrix are the same. i.e.

Ω̂ = ε̂′Û Û ′ε̂ = Ω̂db = ε̂′Ũ Ũ ′ε̂ (1.A.10)

where Û = η̂− β̃ζ̂ and Ũ = η̂− β̃dbζ̂. Since we plug in the same first step estimators (η̂, ζ̂, ε̂)

and also can show the preliminary estimators β̃ and β̃db are the same

β̃db =
(
ζ̂ ′ε̂ε̂′ζ̂

)−1(
ζ̂ ′ε̂ε̂′η̂

)
=

(
Y ′−MPMPX−X

′
−MPMPY−

)−1(
Y ′−MPMPX−X

′
−MPMPY

)
=

(
ζ̂ ′X−X

′
−ζ̂
)−1(

ζ̂ ′X−X
′
−η̂
)

= β̃,

it follows that Ω̂ = Ω̂db. Then we can show that the semiparametric debiased GMM estimator
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equals to the original estimator as follows:

β̂gmmdb =
(
ζ̂ ′ε̂Ω̂−1

db ε̂
′ζ̂
)−1(

ζ̂ ′ε̂Ω̂−1
db ε̂
′η̂
)

=
(
Y ′−MPMPX−Ω̂−1X ′−MPMPY−

)−1(
Y ′−MPMPX−Ω̂−1X ′−MPMPY

)
=

(
ζ̂ ′X−Ω̂−1X ′−ζ̂

)−1(
ζ̂ ′X−Ω̂−1X ′−η̂

)
= β̂gmm. �

Lemmas for proof of Theorem 1.5.1 and 1.5.2

(I) WLLN and CLT for grouped data

Assumption 1.A.1: Assume observations Xg are independently draw across groups, Xg,i

has identical marginal distribution, and the group size ng is fixed but are allowed to be different

across groups.

Let the sample mean Xn = 1
n

∑G
g=1

∑ng
i=1 Xg,i, and group sums Xg =

∑ng
i=1Xg,i which are

mutually independent given random sampling for groups. Then Xn = 1
n

∑G
g=1 Xg. The

variance of
√
NXn is

Ωn = E
[
n
(
Xn − EXn

) (
Xn − EXn

)′]
=

1

n

G∑
g=1

E
[(
Xg − E[Xg]

) (
Xg − E[Xg]

)′]
.

Lemma 1.A.1 (WLLN for grouped data (Hansen and Lee 2018)):

If Assumption 1.A.1 hold and E[|Xg,i|] <∞, then as n→∞,

‖Xn − E[Xn]‖ p−→ 0

Remark 1: A sufficient condition allowing for distributional heterogeneity is

sup
g,i

E[|Xg,i|r] <∞ for some r > 1.
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Remark 2: The fixed group size assumption can be relaxed to

max
g≤G

ng
n
→ 0, n→∞

Lemma 1.A.2 (CLT for grouped data (Hansen and Lee 2018)):

If Assumption 1.A.1 hold and E ‖Xg,i‖2 <∞, λn = λmin (Ωn) ≥ λ > 0. Then

√
n Ω−1/2

n

(
Xn − EXn

) d→ N (0, Id)

Remark i: A sufficient condition allowing for distributional heterogeneity is

sup
g,i

E ‖Xg,i‖s <∞ for some s > r ≥ 2

Remark ii: The fixed group size assumption can be relaxed to

max
g≤G

n2
g

n
→ 0, n→∞

But then the convergence rate of Ω
1/2
n might not be n−1/2. Because we also have the approx-

imation and estimation error to control, we just assume ng is fixed.

(II) Lemmas for series estimator

Lemma 1.A.3: Let Qn = P ′P/n Under assumption 1.5.1, we have,

Q−1/2
n

P ′ζ

n
= Op

(√
K/n

)
, and Q−1/2

n

P ′ε

n
= Op

(√
K/n

)
(1.A.11)
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Proof ( Lemma 1.A.3): Following Newey (1997) Theorem 1, we can show that

E
[
‖Q−1/2

n P ′ζ/n‖2|X
]

= E
[
ζ ′P (P ′P )−1P ′ζ

∣∣X]/n

= E
[
tr
(
P (P ′P )−1P ′ζζ ′

)
|X
]
/n

= tr
(
P (P ′P )−1P ′E[ζζ ′|X]

)
/n

. K/n

By Markov inequality, Q
−1/2
n

P ′ζ
n

= Op

(√
K/n

)
Similarly, we can also show that Q

−1/2
n

P ′ε
n

= Op

(√
K/n

)
�

Lemma 1.A.4: Let Qn = P ′P/n Under assumption 1.5.1, we have,

Q−1/2
n

P ′(φ− φK)

n
= Op

(
K−αφ

√
K/n

)
, and Q−1/2

n

P ′(ν − νK)

n
= Op

(
K−αν

√
K/n

)
(1.A.12)

Proof ( Lemma 1.A.3): Following Newey (1997) Theorem 1, we can show that

E
[
‖Q−1/2

n P ′(φ− φK)/n‖2
]

= E
[
(φ− φK)′P (P ′P )−1P ′(φ− φK)

]
/n

= E
[
tr
(
P (P ′P )−1P ′(φ− φK)(φ− φK)′

)]
/n

= trE
[
P (P ′P )−1P ′(φ− φK)(φ− φK)′

]
/n

. O(K−2αφK/n)

By Markov inequality, Q
−1/2
n

P ′(φ−φK)
n

= Op

(
K−αφ

√
K/n

)
.

Similarly, we can also show that Q
−1/2
n

P ′(ν−νK)
n

= Op

(
K−αν

√
K/n

)
�

Lemma 1.A.5:

ζ ′(φ− φK)

n
= Op(K

−αφ/
√
n),

ε′(ν − νK)

n
= Op(K

−αν/
√
n)
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Proof ( Lemma 1.A.5): First consider 1
n
ζ ′(φ− φK),

E
[
‖ζ ′(φ− φK)/n‖2|X

]
= E

[
(φ− φK)′ζζ ′(φ− φK)|X

]
/n2

= E
[
tr
(
(φ− φK)′ζζ ′(φ− φK)

)
|X
]
/n2

= tr
(
(φ− φK)(φ− φK)′

)
E[ζζ ′|X]/n2

. tr
(
(φ− φK)(φ− φK)′

)
/n2

= ‖φ(X)− φK(X)‖2
2/n

2

= O(K−2α/n)

where αφ is related to the smoothness of the function φ(x), the dimensionality of x, d. For

power series, αφ = sφ/d where sφ is the number of continuous derivatives of φ(x) that exist.

By Markov inequality,

ζ ′(φ− φK)/n = Op(K
−αφ/
√
n).

Similarly, ε′(ν − νK)/n = Op(K
−αν/
√
n), where αν = sν/d.

Proof for Theorem 1.5.1

Proof: Show
√
nV
−1/2
n (β̂db − β0)

d−→ N(0, 1).

√
n(β̂db − β0) =

( 1

n

n∑
i=1

(
X−i − φ̂(Xi)

)(
Y−i − ν̂(Xi)

))−1

( 1√
n

n∑
i=1

(
X−i − φ̂(Xi)

)(
(Yi − µ̂(Xi))− β0(Y−i − ν̂(Xi))

))
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(i) First Consider the Jacobian term,

1

n

n∑
i=1

(
X−i − φ̂(Xi)

)(
Y−i − ν̂(Xi)

)
=

1

n

n∑
i=1

(
X−i − φ(Xi) + φ(Xi)− φ̂(Xi)

)(
Y−i − ν(Xi) + ν(Xi)− ν̂(Xi)

)
=

1

n

n∑
i=1

(
εi + φi − φ̂i

)(
ζi + νi − ν̂i

)
=

1

n

n∑
i=1

εiζi︸ ︷︷ ︸+
1

n

n∑
i=1

(
εi(νi − ν̂i) + ζi(φi − φ̂i) + (φi − φ̂i)(νi − ν̂i)

)
︸ ︷︷ ︸

LLN for group data A = A1+A2+A3

By Assumption 1.5.1(i), E
[
|εiζi|

]
< ∞, then by WLLN for grouped data for 1

n

∑n
i=1 εiζi =

1
n

∑G
g=1 ε

′
gζg

1

n

G∑
g=1

ε′gζg −
1

n

G∑
g=1

E
[
ε′gζg

]
p−→ 0 (1.A.13)

Consider νi − ν̂i; µi − µ̂i; φi − φ̂i,

νi − ν̂i = (νi − νKi ) + νKi − ν̂i

= (νi − νKi )− P (Xi)(P
′P )−1P ′(Y− − νK)

= (νi − νKi )− P (Xi)(P
′P )−1P ′(ν − νK)− P (Xi)(P

′P )−1P ′ζ

µi − µ̂i = (µi − µKi )− P (Xi)(P
′P )−1P ′(µ− µK)− P (Xi)(P

′P )−1P ′η

φi − φ̂i = (φi − φKi )− P (Xi)(P
′P )−1P ′(φ− φK)− P (Xi)(P

′P )−1P ′ε
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A1 =
1

n

n∑
i=1

εi(νi − ν̂i)

=
1

n
ε′(ν − νK)− 1

n
ε′P (P ′P )−1P ′(ν − νK)− 1

n
ε′P (P ′P )−1P ′ζ

=
1

n
ε′(ν − νK)−

(
Q−1/2
n

P ′ε

n

)′(
Q−1/2
n

P ′(ν − νK)

n

)
−
(
Q−1/2
n

P ′ε

n

)′(
Q−1/2
n

P ′ζ

n

)
= OP

(
K−αν/

√
n) +Op(

√
K/n

√
K/nK−αν ) +Op(K/n)

)
= OP

(
K−αν/

√
n+K/n

)
(1.A.14)

The third equality follows from Lemma 1.A.3, 1.A.4, and 1.A.5. Similarly,

A2 =
1

n

n∑
i=1

ζi(φi − φ̂i) = OP

(
K−αφ/

√
n+K/n

)
(1.A.15)

A3 =
1

n

n∑
i=1

(
φi − φ̂i

)(
νi − ν̂i

)
= (φ− φK)′(ν − νK)/n+ (φ− φK)′P (P ′P )−1P ′(ν − νK)/n+ ε′P (P ′P )−1P ′ζ/n

= Op

(
K−(αφ+αν)

)
+Op

(
K−(αφ+αν)K/n

)
+Op

(
K/n

)
(1.A.16)

= Op

(
K−(αφ+αν) +K/n

)
(1.A.17)

Adding up equation (1.A.14)-(1.A.17), we have,

A = Op

(
K−(αφ+αν) +K−αφ/

√
n+K−αν/

√
n+K/n

)
(1.A.18)

Under Assumption 1.5.1(iv), K → ∞ and K/n → 0, the error term A = op(1). Thus, the

Jacobian term,

1

n

n∑
i=1

(
X−i − φ̂(Xi)

)(
Y−i − ν̂(Xi)

)
− 1

n

G∑
g=1

E
[
ε′gζg

]
p−→ 0 (1.A.19)
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(ii) Next, consider the score term:

1√
n

n∑
i=1

(
X−i − φ̂(Xi)

)(
(Yi − µ̂(Xi))− β0(Y−i − ν̂(Xi))

)
=

1√
n

n∑
i=1

(
εi + φi − φ̂i

)(
Ui + (µi − µ̂i) + β0(νi − ν̂i)

)
=

1√
n

n∑
i=1

εiUi +B1 +B1 + (B21 +B22) + (B31 +B31)

By assumption 1.5.1(i), E
[
|εiζi|2

]
< ∞, then by CLT for grouped data for 1√

n

∑n
i=1 εiUi =

1√
n

∑G
g=1 ε

′
gUg,

Ω−1/2
n

1√
n

G∑
g=1

ε′gUg
d−−→ N(0, 1) (1.A.20)

From Lemma 1.A.3, 1.A.4, and 1.A.5 we know

B1 =
1√
n

n∑
i=1

(φi − φ̂i)Ui = OP

(
K−αφ +K/

√
n
)

B21 =
1√
n

n∑
i=1

ε(µi − µ̂i) = OP

(
K−αµ +K/

√
n
)

B22 =
1√
n

n∑
i=1

(φ̂i − φi)(µ̂i − µi) = OP

(√
nK−(αφ+αµ) +K/

√
n
)

B31 =
1√
n

n∑
i=1

ε(νi − ν̂i) = OP

(
K−αν +K/

√
n
)

B32 =
1√
n

n∑
i=1

(φ̂i − φi)(νi − ν̂i) = OP

(√
nK−(αφ+αν) +K/

√
n
)

(1.A.21)

Adding up equations in (1.A.21), we have,

B = Op

(√
nK−(αφ+αµ) +

√
nK−(αφ+αν) +K−αφ +K−αµ +K−αν +K/

√
n
)

(1.A.22)

Under Assumption 1.5.1(iv), K → ∞ and
√
nK−αφ−min{αµ,αν} + K−αφ + K−αµ + K−αν +
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K/
√
n→ 0, the error term B = op(1). Thus, the Score term,

Ω−1/2
n

1√
n

n∑
i=1

(
X−i − φ̂(Xi)

)(
(Yi − µ̂(Xi))− β0(Y−i − ν̂(Xi))

)
d−−→ N(0, 1) (1.A.23)

Combining (1.A.19) and (1.A.23) and applying Slutsky theorem, it can be concluded that

under Assumptions 1.5.1:

√
nV −1/2

n (β̂db − β0)
d−→ N(0, 1).

Proof: Show
√
nV
−1/2
n (β̂gmmdb − β0)

d−→ N(0, 1).

(i) First we show the root-n consistency and asymptotic normality of the preliminary esti-

mator β̃db =
(
ζ̂ ′ε̂ε̂′ζ̂

)−1(
ζ̂ ′ε̂ε̂′η̂

)
.

√
n(β̃ − β0) =

(( ε̂′ζ̂
n

)′( ε̂′ζ̂
n

))−1(( ε̂′ζ̂
n

)′( ε̂′η̂ − β0ε̂
′ζ̂√

n

))
,

From the proof of Theorem 1.5.1 we know, for Mn = 1
n
E[ε′ζ] and Ωn = 1

n
E[ε′UU ′ε]

∥∥∥∥∥ ε̂′ζ̂n −Mn

∥∥∥∥∥ p−−→ 0 (1.A.24)

Ωn
ε̂′η̂ − β0ε̂

′ζ̂√
n

d−−→ N(0, Id) (1.A.25)

Let Ṽn =
(
M ′

nMn

)−1(
M ′

nΩnMn

)(
M ′

nMn

)−1
. By Slutsky theorem, we have

√
nṼ −1/2

n (β̃ − β0)→ N (0, 1)

(ii) Next we show the consistency of the estimator for inverse weight matrix Ωn,

Ω̂db =
1

n
ε̂′Ũ Ũ ′ε̂ (1.A.26)
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where Ũ = (Y − µ̂)− β̃db(Y− − ν̂). Then,

ε̂′Ũ = (ε− (φ̂− φ0))′(U + Ũ − U) = ε′U − (φ̂− φ0)′Ũ + ε′(Ũ − U) (1.A.27)

By ordinary LLN, ∥∥∥∥ 1

n
ε′UU ′ε− Ωn

∥∥∥∥ p−−→ 0, (1.A.28)

We need to show all the other terms in Ω̂db equals to op(1). Let Û = (Y − µ̂)− β0(Y− − ν̂).

Then,

1√
n

(φ̂− φ0)′Ũ =
1√
n

(φ̂− φ0)′Û +
1√
n

(φ̂− φ0)′(Ũ − Û) (1.A.29)

1√
n
ε′(Ũ − U) =

1√
n
ε′(Û − U) +

1√
n
ε′(Ũ − Û) (1.A.30)

From the proof in Theorem 1.5.1, we know under the assumption for Theorem 1.5.1,

1√
n

(φ̂− φ0)′Û = op(1);
1√
n
ε′(Û − U) = op(1) (1.A.31)

Consider 1√
n
(φ̂− φ0)′(Ũ − Û). Since Ũ − Û = (β̃db − β0)η̂, then,

1√
n

(φ̂− φ0)′(Ũ − Û) =
√
n(β̃db − β0)

1

n
(φ̂− φ0)′η̂

where
√
n(β̃db − β0) = OP (1) is shown in the proof of part (i), and 1

n
(φ̂ − φ0)′η̂ = op(1) is

showed in the proof of theorem 1.5.1. Combining these results, we have

1√
n

(φ̂− φ0)′(Ũ − Û) = op(1). (1.A.32)

Next consider 1√
n
ε′(Ũ − Û),

1√
n
ε′(Ũ − Û) =

√
n(β̃db − β0)

1

n
ε′η̂

As showed in the previous proofs,
√
n(β̃db−β0) = Op(1) and 1

n
ε′η̂ = op(1) under the assump-
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tions for Theorem 1.5.1. Then

1√
n
ε′(Ũ − Û) = op(1) (1.A.33)

Combing the above equations, we have

∥∥∥Ω̂db − Ωn

∥∥∥ p−−→ 0 (1.A.34)

(iii) Finally, we can show that the semiparametric GMM estimator

β̂gmmdb =
(
ζ̂ ′ε̂Ω̂−1

db ε̂
′ζ̂
)−1(

ζ̂ ′ε̂Ω̂−1
db ε̂
′η̂
)

(1.A.35)

is also root-n consistent and asymptotically distributed.

The proof follows directly from part (i) and (ii). And the asymptotic variance for β̂gmmdb is

Vn = (M ′
nΩnMn)

−1 (
M ′

nΩnΩ−1
n ΩnMn

)
(M ′

nΩnMn)
−1

= (M ′
nΩnMn)

−1
(1.A.36)

Thus we have

√
nV −1/2

n (β̂gmmdb − β0)→ N (0, 1)

�

Proof for Theorem 1.5.2

Proof: The proof of Theorem 1.5.2 follows directly from the proof of Theorem 1.5.1
√
nV −1/2(β̂gmmdb − β0)

d−→ N(0, 1) part (ii). �
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1.A.4 Proofs in Section 1.6

Proof for Theorem 1.6.1

Proof: Define the group variable notations:

Zg =
(
Zg,1, ...Zg,ng

)
; Zg− =

(
Zg,−1, ...Zg,−ng

)
; f(Xg) =

(
f(Xg,1), ...Xg,ng

)

√
n
(
β̂cfdb − β0

)
=

1

n

( L∑
`=1

∑
g∈I`

(
Xg,− − φ̌`(Xg)

)′(
Y g,− − ν̃`(Xg)

))−1

1√
n

L∑
`=1

∑
g∈I`

(
Xg,− − φ̌`(Xg)

)′(
Yg − µ̃`(Xg)− β0

(
Y g,− − ν̃`(Xg)

))

(i) Show
√
nV
−1/2
n (β̂cfdb − β0)

d−→ N(0, 1).

1√
n

L∑
`=1

∑
g∈I`

(
Xg,− − φ̌`(Xg)

)′(
Yg − µ̃`(Xg)− β0

(
Y g,− − ν̃`(Xg)

))
=

1√
n

G∑
g=1

ε′gUg +
(
D1 +D21 +D22 +D31 +D32

)
(1.A.37)

By assumption 1.5.1(i), E
[
|εgUg|2

]
<∞, then by CLT for grouped data for 1√

n

∑G
g=1 εgUg

Ω−1/2
n

1√
n

G∑
g=1

ε′gUg
d−−→ N(0, 1) (1.A.38)

Consider the remainder terms D = D1 = D21 +D22 +D31 +D32.

D1 =
1√
n

L∑
`=1

∑
g∈I`

(
φ̌`(Xg)− φ0(Xg)

)′
Ug (1.A.39)

where φ̌`(Xg) = P (Xg)
(

1
ň`

∑
g∈Ǐ` P (Xg)P (Xg)

′
)−1(

1
ň`

∑
g∈Ǐ` P (Xg)Xg,−

)
Let D1(I`) = 1√

n

∑
g∈I` D1(I`, g) where D1(I`, g) =

(
φ̌`(Xg)− φ0(Xg)

)′
Ug.
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Denote Zc
I`

:= {Zg : g /∈ I`}. Then,

E
[
D1(I`,g)

∣∣Zc
I`

]
= 0, for g ∈ I`;

E
[
D1(I`,g)

′D1(I`,g′)
∣∣Zc

I`

]
= 0, for g, g′ ∈ I`;

E
[
D1(I`,g)

′D1(I`,g)
∣∣ Zc

I`

]
= Op(K

−2αφ +K/n) for g ∈ I`

Then we have,

E[D1(I`)
2|Zc

I`
] = E

[( 1√
n

∑
g∈I`

(
φ̌`(Xg)− φ0(Xg)

)′
Ug
)2
∣∣∣ Zc

I`

]
= Op(K

−2αφ +K/n)

Therefore

D1 =
1√
n

L∑
`=1

∑
g∈I`

(
φ̌`(Xg)− φ0(Xg)

)′
Ug = OP

(
K−αφ +

√
K/
√
n
)

Similarly, it can be shown that,

D21 =
1√
n

L∑
`=1

∑
g∈I`

ε′g
(
µ̃`(Xg)− µ0(Xg)

)
= OP

(
K−αµ +

√
K/
√
n
)

D22 =
1√
n

L∑
`=1

∑
g∈I`

(
φ̌`(Xg)− φ0(Xg)

)′(
µ̃`(Xg)− µ0(Xg)

)
= OP

(√
nK−(αφ+αµ) +

√
K/
√
n
)

D31 =
1√
n

L∑
`=1

∑
g∈I`

ε′g
(
ν̃`(Xg)− ν0(Xg)

)
= OP

(
K−αν +

√
K/
√
n
)

D32 =
1√
n

L∑
`=1

∑
g∈I`

(
φ̌`(Xg)− φ0(Xg)

)′(
ν̃`(Xg)− ν0(Xg)

)
= OP

(√
nK−(αφ+αν) +

√
K/
√
n
)

Adding up D1, D21, D22, D31, and D32, it follows that,

D = Op

(√
nK−(αφ+αµ) +

√
nK−(αφ+αν) +K−αφ +K−αµ +K−αν +

√
K/
√
n
)

(1.A.40)
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Under Assumption K →∞ and
√
nK−αφ−min{αµ,αν}+K−αφ +K−αµ +K−αν +

√
K/
√
n→ 0,

the error term B = op(1). Thus, the Score term,

Ω−1/2
n

1√
n

L∑
`=1

∑
g∈I`

(
Xg,−− φ̌`(Xg)

)′(
Yg− µ̃`(Xg)−β0

(
Y g,−− ν̃`(Xg)

)) d−−→ N(0, 1) (1.A.41)

(ii) We can also show that, under Assumption for theorem 1.5.2, the Jacobian term

1

n

( L∑
`=1

∑
g∈I`

(
Xg,− − φ̌`(Xg)

)′(
Y g,− − ν̃`(Xg)

))
− 1

n

G∑
g=1

E
[
ε′gζg

]
p−→ 0 (1.A.42)

Combining (i) and (ii), it follows that

√
nV −1/2

n (β̂dcf − β0)
d−→ N(0, 1). (1.A.43)

1.B Related Literature on Identification for Social Interaction Mod-

els

Our identification and estimation strategy for the semiparametric social interaction model

based on several branches of literature, including the identification for linear social interaction

model, semiparametric two-step method and also the machine learning method. In this

subsection, we will give a review of the related literature on identification for the social

interaction model, the estimation for the semiparametric model and also the machine learning

methods.

In the following subsection, we provide a brief review of the recent literature on the

identification of the endogenous social interaction effect in the parametric linear-in-means

model. In the pioneering work, Manski (1993) proposes the linear-in-means social interaction

model in which the individual’s outcome is determined according to

Yg,i = β0Y g,−i +Xg,iγ +Wgδ + αg + Ug,i, (1.B.1)
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where individual’s outcome, Yg,i, depends on the mean of all the linked friends’ outcomes,

Y g,−i, their own characteristics Xg,i and average of group-level characteristics, Wg, the un-

observed group characteristics αg that might drive the self-selection into certain groups, and

also the unobserved individual characteristics, Ug,i. Following the terminology in Manski

(1993), β0 denotes the endogenous peer effect which is the parameter of interest. δ cap-

tures the exogenous peer effect (or contextual effect). αg denotes the correlated effect within

groups.

Manski (1993) first points out the Reflection problem in the linear-in means social inter-

action model which contains two sources of identification issue. The first is social interaction

effect (including endogenous and exogenous) can not be identified from the correlated effect

driven by unobserved self-selection into certain groups. He further shows even if we rule out

the self-selection issue, the endogenous social interaction effect still can not be distinguished

from the exogenous social interaction effect.

We start by considering the identification problem by imposing a strong assumption that

there is no contextual and correlated effect. Subsequently, we relax the assumption and allow

for contextual effect and discuss how to solve the reflection problem. Finally, we consider

the identification issue also with a correlated effect.

1.B.1 Endogenous Social Interaction Effect

Consider the linear-in-means group social interaction model with no contextual or correlated

effect. Assume all the variables are demeaned. For notation simplicity, we omit the subscribe

g in the following discussion.

Yi = β0Y−i +Xiγ + Ui, E[Ui|X] = 0 (1.B.2)

where −i denote the friend’s index of individual i. Y−i is the average friend’s outcome which

is endogenous and β0 captures the endogenous social interaction effect. By excluding the

Wg and αg, we assume there is no contextual or correlated effect. Assume the model is in
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equilibrium condition, Y g = 1
1−β0Xgγ0 + U g, which implies the following reduced form

Y−i =
β0

1− β2
0

Xiγ +
1

1− β2
0

X−iγ + V−i (1.B.3)

where V−i = β0
1−β2

0
Ui + 1

1−β2
0
U−i.

The most widely used method to identify β0 in the literature is the instrumental vari-

ables approach, Lee (2003, 2007) Bramoullé, Djebbari, and Fortin (2009) to name a few.

Researchers use friend’s characteristics (X−i) or leave out average of X to instrument the

peer effect Y−i. The validity of the IV X−i comes from the strictly exogenous assumption

for the regressors which implies E[X−iUi] = 0. Also, from the reduced form model, X−i

contributes to Y−i as long as γ 6= 0 and X−i is linearly independent with Xi. Then β0 and

γ0 are identified by the following moment conditions:

E [Xi(Yi − β0Y−i −Xiγ0)] = 0

E [X−i(Yi − β0Y−i −Xiγ0)] = 0

Based on the identification condition, Kelejian and Prucha (1998) and Lee (2003) use a 2SLS

procedure for estimating β0. Denote the regressors X̃i = (Y−i, Xi) and IV Zi = (X−i, Xi),

then ϑ0 = (β0, γ0) can be estimated by

ϑ̂ =
(
X̃PZX̃

)−1

(X̃PZY ) (1.B.4)

where X̃ = (X̃1, ..., X̃N)′, Y = (Y1, ..., YN)′ , Z = (Z1, ..., ZN)′ and PZ = Z(Z ′Z)−1Z ′

Instead of using the IV approach, Angrist (2014) utilizes the between group variation to

identify β0. Consider the reduced form equilibrium model

Y g =
γ0

1− β0

Xgγ0 +
1

1− β0

U g

where the term γ0
1−β0 reflect the social multiplier of the endogenous peer effect which inflates
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the effect of individual characteristics by 1
1−β0 . Denote φ1 = γ0

1−β0 , then φ1 can be identified

by regressing the group average of outcome, Yg, over group average of regressors, Xg.

φ1 =
E[XgYg]

V [Xg]
(1.B.5)

Angrist (2014) also utilizes the OLS estimator of Yi on Xi which is defined as

φ0 =
E[XiYi]

V [Xi]
(1.B.6)

Based on the structural form model, E[XiYi] = β0E[XiY−i] + V (Xi)γ0, it implies that

φ0 = β0τ
2φ1 + γ0 (1.B.7)

where τ 2 = V [Xg ]

V [Xi]
. Then β0 can be identified by

β0 =
φ1 − φ0

φ1

1

(1− τ 2)
(1.B.8)

And the estimator for β0 just follows the sample analogy of the identification condition.

Angrist (2014) draws an interesting connection of the endogenous social interaction effect

with the difference between 2SLS of Yi on Xi with group dummies as IV and OLS estimators.

He shows that numerically the estimator for φ1 is exactly the same with the 2SLS estimator of

Yi on Xi with group dummies as IV. Due to this property, he also concerns that other sources

of difference between 2SLS and OLS estimator such as measurement error of regressors might

lead to spurious peer effects.

Another approach to identify β0 is based on the variance structural of the error terms,

Lee (2007); Graham (2008) to name a few. Consider the second moment for Y

E[Y ′Y ] =
1

(1− β0)2
E [(Xγ +X−γ0β0)′(Xγ +X−γ0β0)]

+
1

(1− β0)2
E [(U + β0U−)′(U + β0U−)′] (1.B.9)
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The covariance matrix of Y and X can be identified from the data. If we assume Ui’s are

i.i.d., E[UU ′] = σ2
uI (Lee (2007), then

E [(U + β0U−)′(U + β0U−)′] = (1 + β2
0)σ2

U . (1.B.10)

Combining (1.B.9) and (1.B.10) can be used as the moment conditions to identify and

estimate β0. If we relax the i.i.d assumption for Ui and allow for within group correlations

but still assume (Ui, U−i) are i.i.d distributed across groups. Then E[UU ′] becomes the block

diagonal matrix with each block equals to

B =

 E [U2
i ] E [UiU−i]

E [UiU−i] E
[
U2
−i
]
 (1.B.11)

Equation (1.B.9), combined with (1.B.11), can be used as the additional moment condition

to identify and estimate structural parameters β0.

The variance approach for identifying β0 does not need to find the IVs for Y−i which

requires some exclusive restrictions. However, it also comes with the cost that it requires

the restrictions on the variance structural of error terms. In our study for the identification

of the semiparametric social interaction models, we consider using the IV approach.

1.B.2 Reflection Problem

In our setup, we impose restrictions on the contextual and exclude the correlated effect, such

that the reflection problem can be solved. However, it is still important to consider how to

deal with these issues. In this section, we give a brief review of how to solve the reflection

problem in the recent literature for the linear social interaction models.

First consider the identification issue of distinguishing endogenous and exogenous social

interaction effect, assume no unobserved group characteristics that drive the self-selection

into certain groups in the model. Brock and Durlauf (2001) relax the linear-in-means set

up in Manski (1993) and consider the average linked friends’ outcome affects one’s outcome
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through a nonlinear function which is known. To be specific, they include φ(Y g,−i) as the

endogenous social interaction term and show that structural parameters are identified if

∂2φ(Y g,−i)

∂Y g,−i
6= 0. Graham (2008) propose another identification approach by making use of the

covariance structure of the error terms. Bramoullé, Djebbari, and Fortin (2009) discussed

the identification results of social interactions in a network framework. And they impose

assumptions on the network structure D, which requires the identity matrix I, D and D2

are linearly independent. If the assumption holds, then friends’ friends’ outcomes can be

used to identify the endogenous social interaction effect. This condition rules out the group

interaction case by Manski (1993) which induces the reflection problem.

For the identification issue with an unobserved group effect, αg, one needs to provide extra

information to distinguish the social interaction effect from the correlated effect. Graham

and Hahn (2005) restrict the structural model by excluding the exogenous peer effect first.

They reinterpret the linear-in-means models as a quasi-panel model because the reduced

form model is exactly a panel with a time-invariant regressor. They use the generalization

of the instrumental variables strategy of Hausman and Taylor (1981) to identify the time-

invariant coefficient and then showed that the structural parameter of endogenous social

interactions can also be identified. Goldsmith-Pinkham and Imbens (2013); Hsieh and Lee

(2016); Qu and Lee (2015); Johnsson and Moon (2015), and Auerbach (2016) also discuss

this identification issue by providing extra sources of information.

This paper focus on the identification of endogenous social interaction effects with our

semiparametric model. In model (1.3.1), we also consider the endogenous peer effect is

linear-in-means where the average friends’ outcome affects the individual’s output linearly.

We first assume there is no unobserved group effect that drives self-selection into certain

groups in our model,i.e. αg = 0, which is guaranteed by the strong exogeneity assumption.

But unlike the existing literature, we introduced a more flexible non-parametric part to

capture the effect of an individual’s characteristics. Thus we have a semiparametric model

and we still focus on the identification of the endogenous social interaction effect which is

the parametric part.
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The identification issue such as the reflection problem is widely discussed in the literature.

These issues are important because if we mixed the endogenous social interaction effect with

the contextual effect or correlated effect, then we might obtain a spurious social interaction

effect. However, another source of spurious effect might come from the misspecification in

the parametric model setup. Thus in this paper, we focus on the semiparametric model

setup. We discuss the identification condition in detail in Section 1.3.

For other identification issues, such as correlated effect, the identification results for the

linear social interaction model can also be applied in our semiparametric model.

1.C Simulation Results

Table 1.1: Simulation Results for Uncorrelated Bi-Normal ρ = 0

h0(x) Est. Bias Vars MSE MAE Size5 Size10 F-stat

x
Linear 0.0296 0.2691 0.2700 0.4144 0.0660 0.1210 210.8683

Series 0.0291 0.2780 0.2789 0.4210 0.0720 0.1280 211.0296

exp(x)
Linear 0.0577 0.9433 0.9466 0.7709 0.0770 0.1270 64.7422

Series 0.0727 0.8627 0.8680 0.7399 0.0760 0.1330 65.8090

sin(x) + cos(x)
Linear 0.1153 1.1738 1.1871 0.8648 0.0590 0.1090 51.4334

Series 0.0728 0.8599 0.8652 0.7374 0.0720 0.1200 54.2721

*Bias = 1
S

∑S
s=1 β̂s − β0; VAR = 1

S

∑S
s=1

(
∗β̂s − β̂s

)2
*MSE = 1

S

∑S
s=1

(
β̂s − β0

)2
= Bias2 + VAR; *MAE = 1

S

∑S
s=1 |β̂s − β0|

*Size5/10 =
∑S
s=1 1 (|t| > zα) /S. Two-sided empirical size with nominal size 5% and 10%;

*F-stat: F-stats of first stage regression in semiparametric two-step estimator of β0:
*Linear: regression with X as explanatory variables.
*Series: regression polynomial expansion of order 3 of X as explanatory variables.
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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Table 1.2: Simulation Results for Correlated Bi-Normal ρ = 0.5

h0(x) Est. Bias Vars MSE MAE Size5 Size10 F-stat

x
Linear 0.0231 0.2714 0.2719 0.4184 0.0680 0.1140 158.5402

Series 0.0199 0.2891 0.2895 0.4322 0.0670 0.1200 158.6238

exp(x)
Linear 0.0302 1.0484 1.0493 0.8184 0.0700 0.1250 47.8174

Series 0.0462 0.9021 0.9042 0.7628 0.0660 0.1260 49.3396

sin(x) + cos(x)
Linear 0.1179 1.6410 1.6549 1.0308 0.0490 0.0940 37.3101

Series 0.0397 0.9066 0.9082 0.7611 0.0650 0.1280 42.0433

*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 1.3: Simulation Results for Correlated Bi-Logistic r = 0.5

h0(x) Est. Bias Vars MSE MAE Size5 Size10 F-stat

x
Linear 0.0067 0.1394 0.1394 0.3003 0.0530 0.1000 531.5796

Series 0.0050 0.1451 0.1452 0.3045 0.0540 0.0970 526.6395

exp(x)
Linear 1.7188 1.6513 4.6057 1.7744 0.4200 0.5300 62.2892

Series -0.0714 0.3733 0.3784 0.4855 0.0900 0.1700 117.9166

sin(x) + cos(x)
Linear -2.7664 8.7366 16.3897 3.2982 0.1710 0.2630 10.0896

Series -0.2421 2.3107 2.3693 1.1986 0.0560 0.1110 25.8162

*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 1.4: Simulation Results for Uncorrelated but Dependent Distribution

h0(x) Est. Bias Vars MSE MAE Size5 Size10 F-stat

x
Linear -1.1763 1.9181 3.3019 1.4422 0.0920 0.1810 51.7247

Series 0.0224 0.8122 0.8127 0.7113 0.0590 0.1190 91.2694

exp(x)
Linear 0.2985 1.0281 1.1172 0.8601 0.0750 0.1410 73.1534

Series 0.0232 1.6581 1.6586 1.0110 0.0580 0.1110 49.1132

sin(x) + cos(x)
Linear -1.1763 1.9181 3.3019 1.4422 0.0920 0.1810 51.7247

Series 0.0224 0.8122 0.8127 0.7113 0.0590 0.1190 91.2694

*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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CHAPTER 2

Machine Learning Estimation of Semiparametric Social

Interaction Models

2.1 Introduction

The social interaction model is widely discussed in the empirical research. A great many

studies have investigated the existence and measure of the social interaction effect, for in-

stance, the peer effect in education (Sacerdote, 2001; Duflo et al., 2011), criminal activity

(Glaeser et al., 1996), welfare participation (Bertrand et al., 2000), and job search (Marmaros

and Sacerdote, 2002). The commonly used approach in the above-mentioned literature relies

on the parametric assumptions and functional form restrictions to identify the endogenous

social interaction effect.

However, a fully parametric model is often too restrictive to capture the structure of the

data. Estimators based on this approach can be severely biased if the parametric assumptions

are violated (Goldberger, 1983). That is, the parametric model set-up could lead to a

spurious or misleading endogenous social interaction effect. Consequence, it is desirable to

consider a robust semiparametric model to control properly for confounding variables.

Motivated by the above consideration, this paper relaxes the parametric assumption and

considers a more flexible semiparametric model of social interactions. This paper assumes

the endogenous social interaction effect to be parametric and also linear-in-means where

the average peer group’s outcome affects the individual’s outcome linearly. But unlike the

existing literature, this paper introduces a more flexible non-parametric function to capture

the individual-specific effect and also contextual effect. This paper focuses on the semi-
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parametric feature of the model and imposes certain restrictions to avoid the complexity of

identification issues. To be specific, I assume there is no correlated effect or self-selection

that drives individual into certain groups which are guaranteed by the strong exogeneity

assumption. This paper also assumes the contextual effect is restrictive, i.e. not all the ex-

ogenous individual variables appear as the contextual effect which can be taken as imposing

exclusion restrictions.

The identification strategy for the endogenous social interaction effect in this semipara-

metric model is discussed in Section 1.3 of Chapter 1. The main idea is to partial out the

nuisance nonparametric function in the first step and then adopts a semiparametric IV ap-

proach to identify the parametric endogenous social interaction effect. The moment condition

and orthogonal moment conditions which depend on the first step conditional expectations

are then constructed in Section 1.4 of Chapter 1.

Based on the moment and orthogonal moment conditions, this thesis proposes a semi-

parametric two-step procedure to estimate the endogenous social interaction effect. In the

first step, conditional expectations can be estimated using any nonparametric method. In

the second step, the endogenous social interaction effect is then estimated using a semipara-

metric MM/GMM by plugging the first step nonparametric estimators into the moment or

orthogonal moment conditions.

In Chapter 1, the first step conditional expectations are estimated using the traditional

nonparametric methods, such as series estimator. Chapter 1 also provides the primitive

conditions for the consistency and asymptotic normality of the semiparametric two-step es-

timators for endogenous social interaction effect with first step series. The results show

that the application of series estimators are limited to low-dimensional settings and rela-

tively smooth nonparametric functions, which is the general limitations for the traditional

nonparametric methods.

To overcome the limitations of the traditional nonparametric methods, this chapter uti-

lizes the more recent Machine Learning methods in the first step conditional expectations

estimation, such as LASSO (Tibshirani, 1996), Random Forest (Breiman, 2001) and Neural
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Nets (Friedman and Stuetzle, 1981). The Machine Learning methods may be more flex-

ible and able to handle severe nonlinearity functions, higher-order interactions and more

covariates in the nonparametric functions.

The semiparametric two-step estimator with first step LASSO-type methods are widely

studied in the recent literature (Belloni, Chen, Chernozhukov, and Hansen, 2012; Belloni,

Chernozhukov, and Hansen, 2014; Zhang and Zhang, 2014). There are also some work on ap-

plying other Machine Learning methods (Chernozhukov, Hansen, and Spindler, 2015; Athey,

Imbens, and Wager, 2016; Athey and Imbens, 2015). Asymptotic properties of semipara-

metric two-step estimators by plugging the first step LASSO or Random Forest have been

shown in Belloni, Chen, Chernozhukov, and Hansen (2012) and Athey, Imbens, and Wa-

ger (2016). However, there are no theoretical results that compare the performance across

different Machine Learning methods.

This paper uses a Monte Carlo simulation approach to investigate the performance of

semiparametric estimators for endogenous social interaction effect across various first step

nonparametric methods. The Monte Carlo simulation results suggest that no estimator

outperforms the others across the data generating processes (DGPs) considered. However,

it is reflected in the simulation results that the debiased estimators using first step post-

LASSO or Neural Nets methods are more reliable and performs relatively well across the

settings considered. For this reason, these two debiased estimators are recommended for use

in empirical studies.

To illustrate the semiparametric two step estimator with first step Machine Learning

methods, this paper considers an empirical example which investigates the endogenous class-

mates’ peer effect on student’s performance. The data used in this study are from the China

Education Panel Survey (CEPS), which provides large-scale, nationally representative, lon-

gitudinal survey datasets. The results show that the classmates’ peer effect is insignificant

for student’s cognitive test scores across all the first step nonparametric estimators applied.

For student’s level of self confidence, the results are not consistent with various first-step

estimators applied. A significant endogenous classmates’ peer effect is obtained if Random

Forest or Neural Nets are utilized in the first step.
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The remainder of this chapter is organized as follows. In Section 2.2, I briefly restate the

framework, including the semiparametric model of social interactions, identification results

and estimation procedure. A review of the related literature on Machine Learning methods

for conditional expectations are given in Section 2.3. Section 2.4 utilizes the identification

results to construct the semiparametric two-step estimators for the endogenous social in-

teraction effect. Monte Carlo simulations are conducted to investigate the finite sample

performance of different estimation methods in Section 2.5. Section 2.6 illustrates the esti-

mation procedure by investing the classmates’ peer effect using the CEPS data. Section 2.7

concludes and discusses the directions for future research.

2.2 The Framework

In this section, I will briefly restate the semiparametric model of social interactions, identi-

fication results and estimation procedure.

2.2.1 The Semiparametric Social Interaction Model

This subsection reviews the semiparametric social interaction models proposed in Chapter 1.

Assume that the outcome variable of individual i in group g, Yg,i (g = 1, ..., G, i = 1, ..., ng),

is determined according to the following semiparametric model of social interactions:

Yg,i = β0Y g,−i + h0(Xg,i,Wg,i,W g,−i,Υg) + Ug,i; (g = 1, ..., G; i = 1, ..., ng), (2.2.1)

where Yg,i is the outcome variable of interest for individual i in group g. Y g,−i = 1
ng−1

∑
j∈Ig ,j 6=i

Yj denotes the leave-i-out average outcome within the gth group. Xg,i denotes the d dimen-

sional (dim(Xg,i) = d) individual-specific characteristics that only affect the outcome Yg,i

through individual level, which means the leaving-i-out group average Xg,−i does not af-

fect the outcome directly. Wg,i denotes the dW dimensional (dim(Wg,i) = dW ) individual

characteristics which also induce the contextual effect. That is, the leaving-i-out group av-

erage for Wg,i, W g,−i, is allowed to affect the outcome Yg,i. Υg denotes the dΥ dimensional
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(dim(Υg) = dΥ) observed group characteristics. The last term in model (2.2.1), Ug,i, is

the disturbance term that is unobserved to econometricians. This paper will work with the

exogeneity condition, which requires Ug,i to be independent of all the controls.

Let ϑ0 = (β0, h0(·))′ be the true parameter vector. The parameter of interest β0 is the

1-dimensional parametric part which captures the endogenous social interaction effect. To

have a stable equilibrium social interaction model, it is reasonable to require that |β0| < 1.

The unknown function h0(·) is the nonparametric part of the model which captures the

individual and contextual effects. This nonparametric function is also a nuisance parameter

in this paper.

The goal of this paper is to obtain a estimator for β0, in the presence of the possibly highly

complex nuisance function h0(·) and also the endogenous effect of group social interactions.

To handle severe nonlinearity functions, higher-order interactions and more covariates in the

nonparametric functions h0(·), Machine Learning methods are applied to concentrated out

h0(·), such as LASSO, Random Forest, and Neural Nets. And then the parameter of inter-

est β0 can be estimated using the MM/GMM approach with properly choose instrumental

variables for the endogenous social interaction effect.

2.2.2 Identification and Moment Conditions

Here I restate the identification results for the semiparametric social interaction model

(2.2.1).

Let Xg,i = (Xg,i,Wg,i,W g,−i,Υg, ng) denote the collection of control variables at both the

individual and group levels. The identification strategy is to partial out the nonparametric

nuisance function h0(·) by subtracting the conditional expectations on both side of model

(2.2.1) in the first step,

Yg,i − E[Yg,i|Xg,i, ng] = β0

(
Y g,−i − E[Y g,−i|Xg,i, ng]

)
+ Ug,i. (2.2.2)

In the second step, an IV approach is applied to address the endogeneity issue caused by
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simultaneous equations on the residulized model to identify β0. Throughout this paper, I

consider to use Xg,−i as the IV for the endogenous variable Y g,−i. Then, the parameter of

interest, β0, is identified by,

E
[
Xg,−i

(
Yg,i − E[Yg,i|Xg,i]

)]
= β0E

[
Xg,−i

(
Y g,−i − E[Y g,−i|Xg,i]

)]
. (2.2.3)

For notation simplicity, in the subsequent sections, I just use the notation Xg,i instead of

Xg,i. The results for the semiparametric estimation for β0 will not be affected.

Let µ0(Xg,i) , E[Yg,i|Xg,i]; ν0(Xg,i) , E[Y g,−i|Xg,i]; φ0(Xg,i) , E[Xg,−i|Xg,i] denote

the conditional expectations of Yg,i, Y g,−i, Xg,−i on Xg,i, respectively. The identification

condition for β0 can be restated using the following moment condition:

E
[
Xg,−i

((
Yg,i − µ0(Xg,i)

)
− β0

(
Y g,−i − ν0(Xg,i)

))]
= 0, (2.2.4)

The parameter of interest, β0, then can be estimated using (2.2.4) by plugging in the first

step nonparametric estimators of µ0 and ν0. However, the moment function of (2.2.4),

m(Zg,i; β, µ, ν) = Xg,−i

((
Yg,i − µ(Xg,i)

)
− βXg,−i

(
Y g,−i − ν(Xg,i)

))
, (2.2.5)

is not orthogonal to the first step nonparametric parameters, which might lead to severe

bias for the semiparametric estimation of β0 in the second step (Newey, 1994; Chernozhukov

et al., 2018b).

The robust strategy for estimating β0 is to use orthogonal moment condition instead.

Following the strategy in Newey (1994); Chernozhukov et al. (2018a), the orthogonal moment

condition can be constructed by adding an adjustment term,

E
[(
Xg,−i − φ0(Xg,i)

)(
(Yg,i − µ0(Xg,i))− β0

(
Y g,−i − ν0(Xg,i)

))]
= 0. (2.2.6)

An additional nuisance function φ0(Xg,i) = E[Xg,−i|Xg,i] is introduced. Let ψ(·) denote the
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orthogonal moment function in (2.2.6),

ψ(Zg,i, β, µ, ν, φ) =
(
Xg,−i − φ(Xg,i)

)((
Yg,i − µ(Xg,i)

)
− β

(
Y g,−i − ν(Xg,i)

))
. (2.2.7)

It can be verified that the moment function ψ(·) is not only locally robust but also doubly

robust to the first step nonparametric estimators.

In the following discussion, I will call the estimator for β0 based on moment function

(2.2.5) as the plug-in (PI) estimator, and the estimator based on the orthogonal moment

function (2.2.7) as the debiasing (DB) estimator. For a detailed discussion about the identifi-

cation results and moment conditions of the semiparametric social interaction model, please

refer to Section 1.3 and 1.4 in Chapter 1.

2.2.3 Estimation Procedure

The goal of this paper is to obtain the estimator for β0, in the presence of the possibly

highly complex nuisance function h0(.) and also the endogenous effect of group social inter-

actions. Based on the (orthogonal) moment conditions, I propose a semiparametric two-step

estimation procedure for the endogenous social interaction effect β0 for model (2.2.1).

The first step regression require the estimation of conditional expectations,

µ0(Xg,i) = E[Yg,i|Xg,i], ν0(Xg,i) = E[Y g,−i|Xg,i] and φ0(Xg,i) = E[Xg,−i|Xg,i],

which are all nonparametric functions. This paper considers to apply the Machine Learning

methods, such as LASSO, Random Forest and Neural Nets, in the first step estimation. The

Machine Learning methods are widely used for estimating the conditional expectations and

are able to handle highly complex function forms. Section 2.3 will give a brief review of the

widely used Machine Learning methods for the estimation of conditional expectations and

also discuss the application of these methods for our social interaction model.

In the second step, the parameter of interest,β0, is obtained using semiparametric MM

or GMM estimation by plugging in the first step Machine Learning estimators µ̂, ν̂, φ̂ into
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moment condition (2.2.4) or orthogonal moment condition (2.2.6). Due to the regulariza-

tion bias of the first step Machine Learning methods, the plug-in estimator for β0 based

on moment condition (2.2.4) could be severely biased and cannot obtain the root-n consis-

tency. Following Chernozhukov et al. (2018a), this paper make use the idea of orthogonal

moment condition (2.2.6) to remove the regularization bias. Section 2.4 will discuss the

semiparametric MM/GMM estimation for β0 in detail.

2.3 Machine Learning Methods for Conditional Expectations

This section will briefly review the widely used Machine Learning methods for the estima-

tion of conditional expectations and discuss the application of these methods for our social

interaction model. And based on our problem, the review will focus on the supervised Ma-

chine Learning methods for regression models, including (1) regularized linear regression

models; (2) regularized basis function models; (3) regression trees and Random Forest; and

(4) Neural Nets.

In general, consider estimating the conditional expectation of the outcome variable Yi

given the covariates or features Xi.

g(Xi) = E[Yi|Xi],

where g(·) denotes the unknown function that is aimed to estimate. Yi is a 1-dimensional

outcome variable for individual i, and Xi = (Xi1, · · · , Xip) denote the p-dimensional vector

of the covariates or features, (i = 1, . . . , n).

Consider the conditional mean g(X) = E[Y |X] is a linear function

g(X) = X ′γ =

p∑
j=1

X·jγj

whereX·j = (X1j, · · · , Xnj) denotes the jth covariates, j = 1, · · · , p. I omit the first subscript

(i = 1, · · · , n) for notation simplicity. γj is the corresponding coefficient for covariates X·j.
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Under high dimensional setup, the number of covariates p could be large relative to the

number of observations n. Then the traditional linear regression estimation method Least

Square γ̂ls has poor properties or even does not work for (p > n).

γ̂ls = arg min
γ

N∑
i=1

(Yi −X ′iγ)
2
. (2.3.1)

The idea of the Machine Learning methods is to shrink the LS estimator γ̂ls towards zero

using regularization. The usual way of regularization is by adding a penalty term in the

criterion function (2.3.1).

2.3.1 LASSO

Assume we have a high dimensional sparse linear model, that is the number of regressors, p,

can be larger or even much large than the sample size n. But only a small number s < n of

the regressors are of substantial importance for carving the conditional expectation. (Belloni

and Chernozhukov, 2011).

s = ‖γ0‖0 := |{j : γ0,j 6= 0}| � n.

The classic AIC/BIC estimator (Akaike, 1974; Schwarz, 1978) solves the following oracle

problem:

γ̂o = arg min
γ

N∑
i=1

(Yi −X ′iγ)
2

+ λ‖γ‖0, (2.3.2)

where ‖γ0‖0 := |{j : γ0,j 6= 0}| denotes the `0 norm and λ is the penalty parameter. Then

γ̂o defined in (2.3.2) can achieve the oracle convergence rate OP

(√
s/n
)

. However, the

criterion function (2.3.2) is a non-convex function and solving the minimization problem

requires
∑

k6n

(
p
k

)
least square estimations which is an NP-hard problem (Natarajan, 1995).

The LASSO estimator (Tibshirani, 1996) avoid the NP-hard problem by adding the
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convex function `1 norm as the penalty term in the criterion function

γ̂lasso = arg min
γ

N∑
i=1

(Yi −X ′iγ)
2

+ λ‖γ‖1, (2.3.3)

where ‖γ‖1 =
∑p

j=1 |γj| denotes for the l1 norm. By adding the `1 penalty, the LASSO

estimators for coefficients can be exactly driven to zero during the regularization process

and can be used for variable selection. Besides, the criterion function (2.3.3) is convex

thus the computation for LASSO estimator is efficient. The λ is a penalty parameter that

controls the shrinkage of estimators and variable selection. We review the choice of λ both

in theoretical and practical cross-validation methods.

Theoretically, λ should be large enough to dominate the noise with high probability,

λ > 2 ‖n−1
∑n

i=1Xiεi‖∞. At the same time, λ should be as small as possible to reduce the

bias induced by shrinkage. In practice, Bickel, Ritov, and Tsybakov (2009) suggest to set

λ = 2 · cσ
√

2n log(2p/α), (2.3.4)

where c > 1 and α ∈ (0, 1) are some constants, σ is the standard deviation of residual ε.

Typically σ is unknown and needs to be estimated from the data using iteration method.

Belloni and Chernozhukov (2013) also propose a choice of λ which is

λ = 2cσ
√
nΦ−1(1− α/2p), (2.3.5)

where Φ−1(·) is the inverse of the cumulative distribution function of the standard Normal dis-

tribution. As showed in Bickel, Ritov, and Tsybakov (2009) and Belloni and Chernozhukov

(2013), their choice of λ in (2.3.4) and (2.3.5) lead to a nearly oracle rates of convergence

for the estimator γ̂lasso under general conditions.

‖γ̂(λ)− γ‖2 = OP

(√
s log p

n

)
.

With `1 penalty in the criterion function, the LASSO estimators of the coefficients γ can

70



be driven exactly to zero during the regularization process. Hence this technique can be

used for variable selection and generating more parsimonious model. But only under special

cases LASSO can perfectly select the oracle model. In general, Belloni and Chernozhukov

(2013) show that the LASSO estimator γ̂(λ) with λ defined in (2.3.5) can obtain sparsity

results. Specifically, let T = {j : γj 6= 0} and T̂ = {j : γ̂j(λ) 6= 0}. Then |T̂\T | ≤ Cs with

high probability, where C is a constant, which indicates the number of irrelevant regressors

selected by LASSO at most has the same order with the true sparsity. The result also implies

that ŝ := |T̂ | ≤ s + |T̂\T | ≤ C̃s with high probability. Thus, the LASSO estimator with

penalty choice (2.3.5) has the sparsity property.

LASSO estimator can drive some parameters exactly to zero, but also shrinks all the

non-zero parameters towards zero which lead to the estimation bias. In order to eliminate

this bias, Belloni and Chernozhukov (2013) suggest to apply Post-LASSO estimator which

minimizes the least squares criterion (1) over the non-zero components selected by the LASSO

estimator.

γ̃ ∈ arg min
γ∈Rp

{
N∑
i=1

(Yi −X ′iγ)
2

: γj = 0 for each j ∈ T̂ c
}

(2.3.6)

where T̂ c = {j : γ̂j = 0}. If the variables are perfectly selected, then the Post-LASSO esti-

mator is exactly the oracle estimator for γ . But even if the model selection is not perfect,

Belloni and Chernozhukov (2013) proves that the Post-LASSO estimator can achieves the

same near-oracle convergence rate as LASSO and strictly faster under certain cases. Also,

by construction, post-LASSO estimator has smaller shrinkage bias.

The LASSO estimator based on theoretical penalty choice (2.3.4) or (2.3.5) has good

theoretical properties in both the convergence rate and variable selections. However, the

choice of parameters c, α in (2.3.4) and (2.3.5) are arbitrary in practice and they might

affect the performance of the estimators. In practice, researchers often prefer to use cross-

validation to choose the penalty parameter for the Lasso estimator (Chetverikov, Liao, and

Chernozhukov, 2019). Consider the K-folded cross-validation, the sample is partitioned

into K subsample. Denote γ̂−k(λ) as the LASSO estimator computed with the kth sample
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removed given any penalty level λ.

γ̂−k(λ) = arg min
γ∈Rp

 1

n− nk

∑
i/∈Ik

(Yi −X ′iγ)
2

+ λ‖γ‖1

 .

Then the cross-validated penalty parameter λ̂ is chosen by minimizing the summation of

prediction errors on the validation sets,

λ̂ = arg min
λ

K∑
k=1

∑
i∈Ik

(Yi −X ′iγ̂−k(λ))
2
.

Chetverikov, Liao, and Chernozhukov (2019) show that K-fold cross-validated Lasso es-

timator γ̂(λ̂) can attain optimal rate of convergence up to certain logarithmic factors.

‖γ̂(λ̂)− γ‖2 = OP

(√
s log p

n
×
√

log(pn)

)

Their simulation results show that the cross-validation LASSO estimator have much smaller

estimation error than the LASSO estimator with λ chosen by (2.3.5).

Chetverikov, Liao, and Chernozhukov (2019) also discuss the sparsity bound for cross-

validation LASSO estimator. Theoretically, they show that the number of non-zero com-

ponents in the cross-validated Lasso estimator γ̂(λ̂) may exceed s only by the small fac-

tor,
(
log2 p

)
(log n) (log(pn) + s−1 logr). However, the simulation results suggest that cross-

validation typically yields a small value of λ, thus tends to select too many covariates. Also,

for the cross-validation LASSO, to the best of my knowledge, there are still no theoretical

results for the performance of the post-LASSO estimator.

In practice, the choice of K for cross-validation is a bias-variance trade-off problem. If

K is large, for example, K = N (leave one out), the cross-validation estimator has small

bias but high variance. And vice versa for K to be small. Overall, K = 5 or K = 10

is recommended in practice as a good balance between bias and variance trade-off (Hastie,

Tibshirani, and Friedman, 2009).
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In our Monte Carlo simulation, we use the cross-validation to choose the penalty param-

eter λ to avoid the arbitrary choice of parameters in theoretical results. We also consider the

performance of the post-LASSO estimator based on the cross-validation variable selection

although there are no theoretical results for that case.

2.3.2 Regularized Series Expansions

In regression problems, the conditional expectation g(X) = E(Y |X) is typically a nonlin-

ear function. Under this case, non-parametric methods such as kernel regression or series

estimation methods are more flexible and can be applied.

Series estimators approximate g(·) by a linear model with additional variables which are

transformations of the covariates X. Denote hj(X) : Rp 7→ R, (j = 1, . . . , d) to be the

transformation of X. Then the conditional mean can be represented by

g(Xi) =
d∑
j=1

hj(Xi)γj + ξi,

where ξi denotes for the approximation error. The choice of the transformations h0(·) can

be some basis functions just as the non-parametric methods. For example, we can use

polynomial expansions with

hj(X) = Xm, hj(X) = X2
m or hj(X) = XmXk, · · ·

To capture the high-order Taylor expansions, we can include high-degree polynomials. But

the number of the variables h0(·) grows exponentially with the degree of the polynomials,

O
(
pd
)

for degree-d, which might induce high-dimensional covariates in our regression.

The order-M spline with knots ξj, j = 1, ..., K would include

hj(X) = Xj−1, (j = 1, . . . ,M); hM+`(X) = (X − ξ`)M−1
+ , ` = 1, . . . , K,

where (X − ξ`)+ = max (0, X − ξ`), and ξ` denotes a set of knots which needs to be chosen.
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A simple way is to just use the observations Xi as the knots. In practice, the order of the

spline M are typically chosen to be 2 (linear spline) or 4 (cubic spline).

The traditional non-parametric methods with series expansion restrict the model by

determining the number of regressors before-hand, p = O(n1/2). The choice of the basis

functions could be arbitrary such that the approximation error ξi is not guaranteed to be

small. We can relax that restriction by applying the regularization methods which can

include high dimensional transformations and impose the penalty on the coefficients to let

data determines the choice of basis functions.

Linear regularization methods can be applied to basis-function transformations of the

variables and this considerably expands their scope. Suppose we fit a linear spline of the form

g(x) =
∑p

j=1 γj max (0, x− ξj) and add a l1 penalty for regularization, then the minimization

problem

min
γ

n∑
i=1

∥∥∥∥∥Yi −
p∑
j=1

γj max (0, Xi − ξj)

∥∥∥∥∥
2

+ λ ‖γ‖1 (2.3.7)

Similarly for the polynomials expansion, we can just replace the basis function in equation

(2.3.7).

Next, consider the Kernel estimation of the conditional mean. Suppose we want to learn

a regression curve of the form

g(x) =
n∑
i=1

ciK (x, xi)

where K (x, xi) denotes for the kernel function, for example, K (x, x′) = e−γ‖x−x
′‖2 is the

Gaussian kernel. Then the regularized kernel estimator is define as

min
c

n∑
i=1

∥∥∥∥∥yi −
n∑
j=1

cjK (xi, xj)

∥∥∥∥∥
2

+ λ
∑
i,j

cicjK (xi, xj) (2.3.8)

In both series and kernel regressions, we regularized a high-dimensional linear model with

features to be the transformations of the original covariates.

In our Monte Carlo simulations, we use series expansions to approximate the nonlinear

conditional expectation function. We include higher order polynomials to reduce the approx-
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imation bias and then apply the LASSO regularization to let the data select the important

basic functions. We do not consider kernel estimation in our Monte Carlo simulation because

kernel estimator is known to have the boundary bias problem (Gasser and Müller, 1979; Rice

and Rosenblatt, 1981).

2.3.3 Regression Trees and Random Forest

Regression trees (Breiman et al., 1984), and its extension Random Forest (Breiman, 2001)

have become very popular and can be used as a more flexibly estimating methods for the

conditional expectations g(X) = E[Y |X].

The basic idea for regression tree is to recursively spit the covariates space into several

small regions. Then given a observation Xi, the conditional expectation is simply estimated

by the average of the output variable Y within the region that contains Xi. Assume we

finally split the sample into K regions based on certain splitting procedure and stopping

rule. Then the conditional expectation of Y given X can be estimated by

ĝ(X) = Ê[Y |X] =
K∑
k=1

Y RkI {X ∈ Rk}

where Rk denotes for the kth region, Y Rk is the mean value of outcome variable in that

region.

The splits process takes sequentially and based on a single covariate X·j together with a

threshold t at each step. Consider a simple example with two covariates (X·1, X·2). At the

first step, X·1 is compared with the threshold t1. If smaller, continue to compare X·2 with

another threshold t2. If smaller, we stop and take them as subgroup R1. Similarly, the other

subgroups can be reached.

In general, a tree is built by choosing the splitting variable X·j and the threshold t in

each step to minimize the quadratic loss function. Consider the selection problem of jth

75



covariates and the corresponding threshold t in the first step

(j∗, t∗) = arg min
j,t

[ ∑
Xi∈R1(j,t)

(
Yi − Y R1

)2
+

∑
Xi∈R2(j,t)

(
Yi − Y R2

)2
]
. (2.3.9)

After finding the best split in the first step, we partition the covariates space into two regions.

And for each region, we can repeat the procedure to further split the subspace. The question

is to determine when to stop splitting the tree. If the tree is too deep then it might have

an overfitting problem. While a shallow tree might not be enough to capture the structure.

Hastie, Tibshirani, and Friedman (2009) discussed two ways to determine the depth of the

tree.

One approach is to stop splitting the tree if the decrease in quadratic loss function (2.3.9)

is smaller than some threshold. But the problem is that a good split might still happen after

this stopping rule reached. Thus a tree built using such a stopping rule might be too shallow.

Hastie, Tibshirani, and Friedman (2009) suggest using another strategy which is to grow

a large tree T0 at first, stopping the splitting process only when some minimum node size

(say 5) is reached. Then this large tree is pruned to small shallow trees using cost-complexity

pruning. Let |T | denotes the number of terminal nodes in any subtree T ∈ T0. Then the

cost-complexity criterion function is defined as

|T |∑
k=1

∑
Xi∈Rk

(
Yi − Y Rk

)2
+ α|T | (2.3.10)

where α is the tuning parameter that controls the trade-off between the size of trees and

overfitting of the data. Given each α, there is a smallest subtree Tα that minimizes the

criterion function (2.3.10). If α = 0, then T is just the original tree T0. As α increases, the

tree Tα becomes smaller. And the penalty parameter α can be chosen via K-folded cross-

validation just like the LASSO estimator. The regression tree estimator is straightforward

and easy to implement. However, it suffers from a high variance problem.

The idea for Bagging (bootstrap aggregating) (Breiman, 1996) is to fit the regression tree

to different subsamples and then taking averaging over many trees to reduce the variance.
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The additional trees can be built by bootstrapping the original data (random draw with

replacement). And then g(X) = E[Y |X] is estimated by

ĝ(X) =
M∑
m=1

1

M
ĝm(X) (2.3.11)

with ĝm(X) estimated by regression trees using the mth bootstrap sample. Each regression

tree can grow deep and is not pruned. Thus the variance for each tree if high and the bias is

low. Taking an average of over M trees can reduce the variance. However, the bagged trees

built using this method will look similar and the predictions based on these bagged trees will

be highly correlated. Thus, the bagging estimator in (2.3.11) which is defined as averaging

over highly correlated trees will not leads to a significant reduction in variance (Breiman,

2001).

Random Forest (Breiman, 2001) which is also based on the regression trees further reduces

the variance by eliminating the correlation between trees. The idea is to randomly select

some input variables instead of using all covariates in the tree-growing process. Specifically,

when growing a tree on a bootstrapped sample, at each step, s < p covariates are selected

at random for splitting and they are changed for every split. Typically we choose s =
√
p.

Then the Random Forest estimator is the average of the M de-correlated trees.

ĝrf (X) =
M∑
m=1

1

M
ĝsm(X) (2.3.12)

where ĝm(X) is estimated by regression trees using the mth bootstrap sample and random

selected s =
√
p inputs in each split.

Due to the random selection of a small set of covariates for each split, Random Forest

could perform poorly for very sparse models. For example, if p = 100 but only 3 of the

covariates are relevant. Assume we choose m =
√
p = 10, then the probability of selecting

the 3 relevant variables in each split is small. If that is the case, the Random Forest estimator

will perform poorly. But as the number of relevant variables increases, then Random Forest

becomes robust to the number of noisy variables because the splitting will generally ignore
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the irrelevant ones (Athey and Wager, 2017).

One merit of the Random Forest is that it does not suffer from the overfitting problem

(Hastie, Tibshirani, and Friedman, 2009). The Random Forest is defined as the average

of over M de-correlated trees. First increasing the number of trees M can not cause the

overfitting problem. Second, for the depth of each tree in the Random Forest, Segal (2004)

show that there are small improvement in the performance if we prune the individual trees

in the forest. But Hastie, Tibshirani, and Friedman (2009) suggests using full-grown trees

instead because it will not cost too much and we do not need to deal with the tuning

parameter problem.

Another important feature of Random Forest is the use of out-of-bag (OOB) samples

to do prediction. Each time we draw a bootstrap sample, we only use part of the original

sample. Thus, to do a prediction for observation Xi, we only need to pick the bootstrap

samples which do not contain Xi (OOB sample). And then the OOB predictor is constructed

by averaging over the predictors for the OOB samples. Athey and Wager (2017) show that

the performance of the target parameter will be improved if we use such techniques in the

first step estimation of nuisance parameters. And Random Forest can achieve that goal

without doing sample splitting which might cause efficiency loss.

Athey, Tibshirani, and Wager (2019) also discuss the connection between Random Forest

and the traditional kernel estimation methods. For a regression tree, the prediction of

observation Xi is simply the sample average of outcome over the region that contains Xi.

The region can be taken as the set of nearest neighbors for the targeted observation Xi.

Thus the regression tree is just a special case of matching estimator. And Random Forest is

the average of several such matching estimators. Which can be interpreted as the weighted

average estimator with weighting functions analogous to kernel estimators. Compared with

the kernel regression, Random Forest is robust to increasing the noisy covariates since it can

ignore them during the splitting.
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2.3.4 Neural Nets

The basic idea of Neural Nets (Friedman and Stuetzle, 1981) is to generate new features using

the linear combinations of the original covariates, and then model the outcome variable as a

nonlinear function of these features. Consider the single hidden layer Neural Nets.

In the first stage, the hidden features hm, (m = 1, . . . ,M) are generated by the linear

combinations of the covariates.

hm = h0(X ′γm)

where γm is a p dimensional coefficients vector for each m = 1, · · · ,M .

In the second stage, the output is then generated by a linear combinations of the hm, (m =

1, · · · ,M).

g(X) =
M∑
m=1

αmhm =
M∑
m=1

αmh (X ′γm) (2.3.13)

h0(·) is called the activation function and typically we use the nonlinear Hinge or Sigmoid

function

Hinge function : h0(v) = max{0, v},

Sigmoid function: h0(v) = 1/
(
1 + e−v

)
.

The nonlinear Hinge or Sigmoid function imposed on a linear combinations on the covari-

ates can generate a large class of models, thus can handle complex function forms of the

conditional expectation (Hastie, Tibshirani, and Friedman, 2009).

The Neural Nets is related to the basis expansion methods such as series or kernel re-

gression. The hidden units hm are similar to the basis expansions of the original covariates

X. But these hm are unobserved and the function parameters are learned from the data.

Usually, there are too many weight parameters α and γ such that overfitting is a problem.

A simple and explicit method for regularization is to add a penalty term to the criterion
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function just as the LASSO/ridge regression in the linear model.

min
α,γ


n∑
i=1

(
Yi −

M∑
m=1

αmh (X ′iγm)

)2

+ λ

(
M∑
m=1

α2
m +

∑
m,`

γ2
m,`

) . (2.3.14)

Neural Nets estimator defined in (2.3.14) is just an extension of the traditional non-linear

least square (NLS) estimator with the `2 penalty term. The direct computation of the

nonlinear regularization is a problem. Rumelhart et al. (1986) proposed the back-propagation

algorithm to compute the weight coefficient α, γ defined in equation (2.3.14).

Step (i) Pick an initial value for α, γ

Step (ii) Compute the value of each hm, (m = 1, . . . ,M), and then estimate g(·) using ridge

regression. –(feed-forward)

Step (iii) Compute the errors Y − ĝ(X)

Step (iv) Update all parameters via gradient descent, and go back to Step (ii) to iterate.

– (back propagation)

We can extend the single hidden layer network model to the Deep Neural Nets model

by including more layers. The Deep Neural Nets can be even more flexible for fitting the

models (Hastie, Tibshirani, and Friedman, 2009). However, choosing the number of hidden

layers and the number of hidden units for each layer is still a problem. For our simulation,

we just use the simple single hidden layer Neural Nets model to estimate the conditional

expectations in the first step.

2.4 Semiparametric Estimation of Endogenous Social Interaction

Effect

In this paper, the parameter of interest is the endogenous social interaction effect, β0, in

model (2.2.1). I apply a semiparametric instrumental variable strategy to identify the pa-

rameter of interest β0. Based on the identification condition, a semiparametric two-step
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estimator is constructed in which the first step nonparametric functions could be estimated

by Machine Learning methods as discussed in Section 2.3, such as LASSO, Random Forest,

and Neural Nets. Then the second step parametric endogenous social interaction effect, β0,

is estimated based on the moment condition (2.2.4) or orthogonal moment condition (2.2.6).

There are several papers that discuss the semiparametric two step estimation for the pa-

rameters identified by moment or orthogonal moment conditions. Following the terminology

in literature, they are named as “plug-in” estimator and “debiased” estimator, respectively.

I will first give a review of the existing literature and then discuss how to apply the method

in the semiparametric social interaction model (2.2.1).

2.4.1 Review of the Semiparametric Estimation Methods

There are several papers discuss the semiparametric plug-in estimation for the parameters

identified by moment condition (2.2.4).

Andrews (1994) proposed a general semiparametric two-step M-estimators for β0 and

provide the conditions for the root-n consistency and asymptotic normality for these esti-

mators. The estimators are named MINPIN because they minimize a criterion function that

depends on a preliminary infinite-dimensional nuisance parameter estimators of ϑ0 in the

first step.

This method can be used to derive the asymptotic distribution of a wide variety of

semiparametric estimators. For example, a simple sample analog estimator for β0 is an

M-estimator that minimizes(
1

n

n∑
i=1

m(Zi, β, ϑ̂)

)′(
1

n

n∑
i=1

m(Zi, β, ϑ̂)

)

where ϑ̂ is some preliminary nonparametric estimator for ϑ0 in the first step.

Andrews (1994) provided a set of relatively high level assumptions to show the root-n

consistency and asymptotic normality for the MINPIN estimators of β0. The key condition

employed is stochastic equicontinuity which can be verified using empirical process results.
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Define the empirical process νn(ϑ) by

νn(ϑ) =
1

n

n∑
i=1

(
m(Zi, β0, ϑ)− E [m(Zi, β0, ϑ)]

)
(2.4.1)

Then the definition for stochastic equicontinuity of {νn(·)} is that

∣∣∣νn(ϑ̂)− νn (ϑ0)
∣∣∣ p→ 0 (2.4.2)

holds for all ϑ̂ that satisfies ρ
(
ϑ̂, ϑ0

)
p→ 0, where ρ(·) is pseudo-metric.

Andrews (1993, 1994) provide a set of sufficient conditions for stochastic equicontinuity.

However, they are still high-level conditions and are difficult to verify especially for some

highly nonlinear functions. Indeed, it does not hold for all classes of functions. Some

restrictions on the functions are necessary. If the model is too complex, for example, high

dimensional models, the stochastic equicontinuity condition might not hold.

Ichimura and Lee (2010) presented a set of relatively low-level conditions to ensure the

root-n consistency and asymptotic normality of the semiparametric two-step M-estimator of

β0, which is relatively easier to verify and also weaker than the conditions given by Andrews

(1994).

Newey (1994), Pakes and Olley (1995), Chen, Linton, and Van Keilegom (2003), and

Chen (2007) studied the semiparametric two-step MM/GMM for β0. If β0 is just identified

by moment condition, i.e. dim(m) = dim(β0), then β0 can be directly estimated by solving

the sample analogy of the moment function:

1

n

n∑
i=1

m(Zi, β̂, ϑ̂) = 0 (2.4.3)

where ϑ̂ denote an estimator of the true nuisance function ϑ0 using any nonparametric

methods.

If β0 is over identified by moment condition, i.e. dim(m) > dim(β0), then β0 can be

estimated by making 1
n

∑n
i=1m(Zi, β̂, ϑ̂) as close to zero as possible, this is the idea of GMM
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estimator. As considered in Newey (1994), Pakes and Olley (1995), Chen, Linton, and

Van Keilegom (2003), and Chen (2007), a semiparametric two-step GMM with a nonpara-

metric first step estimator is defined

β̂gmm = arg min
β

(
1

n

n∑
i=1

m(Zi, β, ϑ̂)

)′
Ŵ

(
1

n

n∑
i=1

m(Zi, β, ϑ̂)

)
(2.4.4)

where Ŵ is a positive-definite (random) weight matrix and Ŵ
p−→ W .

Newey (1994), Pakes and Olley (1995), Chen, Linton, and Van Keilegom (2003), and Chen

(2007) have also studied conditions to ensure the asymptotic properties of the semiparametric

two-step MM/GMM estimator. Chen, Linton, and Van Keilegom (2003) ’s results extend

Newey (1994) and Pakes and Olley (1995) ’s by considering where the criterion function does

not obey standard smoothness conditions. The key condition for the asymptotic properties

of β0 is still to show the stochastic equicontinuity for νn(ϑ). Besides, Newey (1994) showed

that the limiting distribution of the second stage estimation of β0 is invariant to the choice

for the first step nonparametric estimator as long as certain convergence rate requirement is

satisfied.

For specific first step estimators, such as kernel and series, more primitive conditions are

employed in the literature to ensure the consistency and root-n asymptotic normality of β0.

For example, Newey (1994) derives the regularity conditions given the first step to be series

estimators. Newey and Mcfadden (1994) take the first step kernel estimator as an example

to illustrate the primitive conditions. Chen (2007, 2013) considers the series extremum

estimation in the first step. Abadie (2003) studies the semiparametric IV estimation of

treatment response models. He provides primitive conditions for asymptotic normality of

the treatment effect that use power series in the first step.

Newey (1994) also provides a general formula to compute the asymptotic variance of the

semiparametric second-step estimator for β0 by taking into account the first step nonpara-

metric estimates of nuisance functions. The asymptotic variance estimator based on the

influence function constructed by adding an adjustment term in the usual formula for the
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M-estimator if ϑ0 is known.

φ(z) = −M−1 {m (z, β0, ϑ0) + α(z)} (2.4.5)

where M ≡ ∂E [m (z, β, h0)] /∂β|β0 and α(z) is the adjustment term such that E[α(z)] = 0

and ∂E[m(z, h0(θ))]/∂θ = E[α(z)S(z)].

Newey (1994) showed that given the influence function, the estimator of ϑ0 does not affect

calculating the asymptotic variance, the same as if ϑ0 is known. Adding the adjustment term

α(z) is to make the second step moment condition to be orthogonal to the first step nuisance

function which ensures the invariance to the first step nonparametric estimations.

The other papers mentioned above also derive the formula for the semiparametric asymp-

totic variance of the corresponding estimators they considered. Some of them also show how

to consistently estimate the asymptotic variance. However, in practice, it is not straight-

forward for empirical researchers to implement. There are also papers consider to use the

bootstrap to estimate asymptotic variances (Ellickson and Misra, 2008), but the computa-

tion burden is heavy and is difficult to verify theoretically (Ackerberg, Chen, and Hahn,

2012).

Ackerberg, Chen, and Hahn (2012) provide several equivalence results that can greatly

simplify the semiparametric asymptotic variance estimation. They showed that for a large

class of models, the semiparametric asymptotic variance with nonparametric methods in

the first step is numerically identical to pretending to use a parametric first step. Thus,

in the empirical studies, one can ignore the semiparametric setup and simply calculate the

asymptotic variance as if the first step is parametrically estimated.

2.4.2 Plug-in Estimator for Endogenous Social Interaction Effect

In the semiparametric social interaction models, the parameter of interest, β0, is identified

by the moment condition (2.2.4). This paper adopts the semiparametric MM/GMM method

to estimate β0 by plugging in the first step nonparametric (Machine Learining) estimators
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ϑ̂ = (µ̂, ν̂, φ̂).

The endogenous social effect β0 is a one-dimensional parameter (dim(β0) = 1) while the

dimension of moment conditions (2.2.4) (denoted by dim(m)) used to estimate β0 has the

same dimension as Xg,i. Denote d = dim(Xg,i) and assume d is fixed, then dim(m) = d. In

the following discussion, I will consider the estimator for β0 under two cases: d = 1 (‘just

identified’) and d > 1 (‘over identified’). Here I might abuse the concept for ‘just’ and ‘over’

identification. By using ‘just’ or ‘over’ identified, I do not refer to the model is just or over

identified based on the strictly exogenous assumption, but assume we are restricted to use

moment conditions (2.2.4) to identify β0.

Just identified second step

Consider the just identified second step case for β0 by moment condition (2.2.4), i.e. dim(m) =

dim(β0) = 1. Then the semiparametric plug-in estimator β̂ for β0 can be computed by di-

rectly solving the sample analogy of moment conditions (2.2.4).

0 =
1

n

G∑
g=1

ng∑
i=1

Xg,−i

((
Yg,i − µ(Xg,i)

)
− β

(
Y g,−i − ν(Xg,i)

))
. (2.4.6)

Thus the semiparametric plug-in estimators β̂ has the closed form solutions as follows:

β̂ =
( G∑
g=1

ng∑
i=1

Xg,−i
(
Y g,−i − ν̂(Xg,i)

))−1( G∑
g=1

ng∑
i=1

Xg,−i
(
Yg,i − µ̂(Xg,i)

))
=

( G∑
g=1

X
′
g,−ζ̂g

)−1( G∑
g=1

X
′
g,−η̂g

)
(2.4.7)

where η̂g and ζ̂g are the group level residualized terms for Yg and Y g,−, respectively.

Over identified second step

Next, I will discuss the over identified second step where dim(m) > dim(β0) = 1. To address

the clustered structural data of the grouped social interaction model, it will be convenient to
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define the clustered sum of moment functions, mg (Zg, β, ϑ) =
∑ng

i=1m (Zg,i; β, ϑ) where Zg =

(Zg,1, · · · , Zg,ng). Then β0 is estimated based on the sample analog of 1
n

∑G
g=1m

(
zg, β̂, ϑ̂

)
to be as close to zero as possible. This is the idea of the semiparametric two-step GMM

procedure (Chen, 2007; Ackerberg, Chen, and Hahn, 2012).

The Semiparametric Plug-in GMM estimator, β̂gmm, solves the following minimization

problems:

β̂gmm = arg min
β

(
1

n

G∑
g=1

mg

(
zg, β, ϑ̂

))′
Ω̂−1

(
1

n

G∑
g=1

m
(
zg, β, ϑ̂

))
(2.4.8)

where Ω̂−1 denotes an d × d positive definite weight matrix. Because of the linearity of

moment function mg(·) with respect to β, β̂gmm defined in (2.4.8) has a closed form solution:

β̂gmm =
( G∑
g=1

ζ̂ ′gXg,−Ω̂−1

G∑
g=1

X
′
g,−ζ̂g

)−1( G∑
g=1

ζ̂ ′gXg,−Ω̂−1

G∑
g=1

X
′
g,−η̂g

)
. (2.4.9)

where η̂g and ζ̂g are the group level residualized terms for Yg and Y g,−, respectively.

Next, I will discuss the choice of the inverse of weight matrix Ω. Following Ackerberg,

Chen, and Hahn (2012) and Ackerberg, Chen, Hahn, and Liao (2014), the optimal choice of

the weight matrix that minimizes the asymptotic variance of
√
n(β̂gmm − β0) should be the

consistent estimator of the inverse of the variance defined as follows,

Ω = Var

(
1√
n

G∑
g=1

mg

(
zg, β0, ϑ̂

))
. (2.4.10)

Due to the first step nonparametric estimator ϑ̂, in general the variance Ω is different from

Var
(

1√
n

∑G
g=1 mg (zg, β0, ϑ0)

)
. Following Newey (1994), the variance Ω can be computed

using the influence function by taking into account the first step nonparametric estimators.

In Section 2.2, we have shown that the influence function or orthogonal moment function
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for m(.) is ψ(.) which is defined in 2.2.7. Then the inverse weight matrix Ω equals to

Ω = Ω0 = Var

(
1√
n

G∑
g=1

ψg (zg, β0, ϑ0)

)
(2.4.11)

where ψg(.) is the orthogonal moment function. It follows from (2.4.11) that the inverse

weight matrix Ω can be estimated by

Ω̂ =
1

n

G∑
g=1

(
ε̂′gÛgÛ

′
gε̂g

)
(2.4.12)

where ε̂g = Xg,− − φ̂(Xg) and Ûg = (Yg − µ̂(Xg)) − β̃(Y g,− − ν̂(Xg)). ϑ̂ = (µ̂, ν̂, φ̂) are

any first step consistent nonparametric estimators for ϑ0 = (µ0, ν0, φ0), and β̃ can be any

consistent estimator for β0 that solves the minimization problem (2.4.8) with an arbitrary

weight matrix.

Finally, the asymptotic variance of β̂gmmdb can be constructed by

Vn = M−1
n ΩnM

−1
n (2.4.13)

where Mn = 1
n

∑G
g=1E

[
ε′gζg

]
and Ωn = 1

n

∑G
g=1 E

[
ε′gUgU

′
gεg
]
.

As usual the estimator for the variance of β̂db can be constructed by

V̂n = M̂−1
n Ω̂nM̂

−1
n (2.4.14)

with M̂n = 1
n

∑G
g=1

[
ε̂′g ζ̂g

]
and Ω̂n = 1

n

∑G
g=1

[
ε̂′gÛgÛ

′
gε̂g

]
, where η̂g, ζ̂g, and ε̂g denote the first

step residualized terms for Yg, Y g,−, Xg,−, respectively, and Ûg = η̂g − β̂gmmζ̂g. The variance

estimator, V̂n is constructed “as if” the nonparametric parameters φ, µ, and ν were known.

This works because the moment condition (2.2.6) is locally/doubly robust to the first step

estimators (Ackerberg, Chen, Hahn, and Liao, 2014).

The following is the algorithm for obtaining the plug-in semiparametric GMM estimator

β̂gmm and the estimator for its variance.
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(i) Estimate ϑ̂ = (µ̂, ν̂, φ̂) by any nonparametric (Machine Learning) methods, such as

LASSO, Random Forest, and Neural Nets.

(ii) Using an arbitrary inverse weight matrix Ω̃, plug into (2.4.9) to obtain a preliminary

estimator β̃ for β0. For example, if we choose Ω̃ to be identity matrix, then β̃ =(
ζ̂ ′X−X

′
−ζ̂
)−1(

ζ̂ ′X−X
′
−η̂
)

(iii) Construct the consistent estimator for the optimal inverse weight matrix,

Ω̂ =
1

n

G∑
g=1

(
ε̂′gŨgŨ

′
gε̂g

)

where ε̂g = Xg,− − φ̂(Xg) and Ũg = (Yg − µ̂(Xg))− β̃(Y g,− − ν̂(Xg)). µ̂, ν̂, φ̂ and β̃ are

defined in step (i) and (ii).

(iv) The semiparametric estimator β̂gmm for β0 can be constructed by plugging in first step

estimators ϑ̂ = (µ̂, ν̂, φ̂) in step (i) and also the inverse weight matrix estimator Ω̂ in

step (iii) into (2.4.9).

(v) The consistent estimator for asymptotic variance of β̂gmm can be constructed by plug-

ging in first step estimators ϑ̂ = (µ̂, ν̂, φ̂) in step (i) and the second step semiparametric

estimator β̂gmm in step (iv) into (2.4.14).

2.4.3 Debiased Estimator for Endogenous Social Interaction Effect

The semiparametric debiased estimator for the parameter of interest β0 is constructed based

on the orthogonal moment condition (2.2.6) by plugging in the first step nonparametric

(Machine Learining) estimators ϑ̂ = (µ̂, ν̂, φ̂). In the following discussion, I will still consider

both the just identified case (dim(Xi) = 1) and over identified case (dim(Xi) > 1).
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Just identified second step

Consider the just identified second step case for β0 by moment condition (2.2.6), i.e. dim(m) =

dim(β0) = 1. Then the semiparametric debiasing estimator β̂ for β0 can be computed by

directly solving the sample analogy of moment conditions (2.2.6).

0 =
1

n

G∑
g=1

ng∑
i=1

(
Xg,−i − ψ̂(Xg,i)

)((
Yg,i − µ(Xg,i)

)
− β

(
Y g,−i − ν(Xg,i)

))
. (2.4.15)

Thus the semiparametric debiased estimators β̂db has the closed form solutions as follows:

β̂db =
( G∑
g=1

ε̂′g ζ̂g

)−1( G∑
g=1

ε̂′gη̂g

)
(2.4.16)

where η̂g, ζ̂g, and φ̂g are group level residuals for Yg, Y g,−, and Xg,−, respectively.

Over identified second step

The semiparametric debiased GMM estimator, β̂gmmdb , is constructed by making the sample

analogy of orthogonal moment function ψg (Zg, β, ϑ), as close to zero as possible.

β̂gmmdb = arg min
β

(
1

n

G∑
g=1

ψg

(
Zg, β, ϑ̂

))′
Ω̂−1
db

(
1

n

G∑
g=1

ψg

(
Zg, β, ϑ̂

))
, (2.4.17)

where Ω̂−1
db denotes an d×d positive definite weight matrix. Similarly, the closed form solution

for the debiased GMM estimator β̂gmmdb is:

β̂gmmdb =
( G∑
g=1

ζ̂ ′gε̂gΩ̂
−1
db

G∑
g=1

ε̂′g ζ̂g

)−1( G∑
g=1

ζ̂ ′gε̂gΩ̂
−1
db

G∑
g=1

ε̂′gη̂g

)
(2.4.18)

where η̂g, ζ̂g, and φ̂ are group level residuals for Yg, Y g,−, and Xg,−, respectively. Ω̂db is chosen

to be the consistent estimator of the variance Ωdb = Var
(

1√
n

∑G
g=1 ψg

(
zg, β0, ϑ̂

))
. Since

ψg (Zg, β, ϑ) is doubly robust to the estimation of ϑ0, it can be shown that Ωdb = Ω0 + op(1),
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where Ω0 = V ar
(

1√
n

∑G
g=1 ψg (zg, β0, ϑ0)

)
.

The algorithm for obtaining the debiased semiparametric GMM estimator β̂gmmdb is similar

as the plug-in GMM estimator β̂gmm discussed in Section 2.4.2.

2.5 Monte Carlo Simulation

This section investigates the finite sample performance of semiparametric two-step estimators

for endogenous social interaction effects, β0, using Monte Carlo simulations. The goal is to

evaluate the performance of different estimation methods for β0 under the semiparametric

model setup.

I will conduct a Monte Carlo study with different DGPs to compare the performance. I

consider different DGPs with different function forms in the nonparametric nuisance function

part, including linear or nonlinear functions. For each DGP, different semiparametric esti-

mators will be applied with different first-step nonparametric estimation methods, including

the traditional series estimators and the more recent Machine Learning methods, and also

different second step methods, including the plug-in estimators and debiased estimators.

I will report five measures to evaluate the performance of different estimation methods:

Bias, Variance, Mean square error (MSE), Mean absolute error (MAE) and empirical size.

I find that there is no unique estimation method that dominates all the other estimators

consistently across different DGPs. However, the results show that a certain estimator has a

more stable performance for all the DGP considered which is recommended in the empirical

studies for the semiparametric social interaction models.
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2.5.1 Simulation Set-up

2.5.1.1 Data generating process (DGP)

In the Monte Carlo Simulation studies, I will consider the semiparametric social interaction

model with group size Mg = 2 across all the groups.

 Yg,1

Yg,2

 = β0

 Yg,2

Yg,1

+

 h0(Xg,1)

h0(Xg,2)

+

 Ug,1

Ug,2

 , g = 1, · · · , G (2.5.1)

The following are the DGPs considered in the Monte Carlo simulation studies.

(i) The dimensionality of control variables X.

This simulation study considers the DGPs with both univariate control variable case,

dim(X) = 1, and multivariate case, dim(X) = 3.

(ii) The function forms of nonparametric parameter h0(·).

Both the linear and nonlinear function forms are considered in the simulation study,

including h0(X) = Xγ, h0(X) = 1/(1 + exp(−Xγ)), h0(X) = exp(Xγ), and h0(X) =

sin(Xγ) + cos(Xγ).

(iii) The distribution of the control variables X.

Assume the group pair regressors (Xg,1, Xg,2) are independently draw across groups.

First, consider (Xg,1, Xg,2) follows multivariate Gaussian distribution:

 Xg,1

Xg,2

 iid∼ N

( 0

0

 ,
 1 ρ

ρ 1

)

where ρ measures the within group correlations of Xg,1 and Xg,2. I consider two cases

which are ρ = 0 and ρ = 0.5. ρ = 0 denotes the case that groups are randomly

assigned and ρ = 0.5 represents the case that groups are linked through the similarity

of individuals’ characteristics.
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I will also consider the case that (Xg,1, Xg,2) follows bivariate logistic distribution (Gum-

bel, 1960). The bi-logistic distribution function with parameter 0 < r < 1 is

G (Xg,1, Xg,2) = exp
[
−
(
y

1/r
g,1 + y

1/r
g,2

)r]
where yg,i = yg,i (Xg,i) = {1 + sg,i (Xg,i − ag,i) /bg,i}−1/sg,i , for 1+sg,i (Xg,i − ag,i) /bg,i >

0 and i = 1, 2. The marginal distributions are generalized extreme value G (Xg,i) =

exp (−yg,i) for i = 1, 2. The dependence between Xg,1 and Xg,2 are measured by r. In

the simulation study, I choose r = 0.5.

Finally, I will discuss a special case that Xg,1 and Xg,2 are uncorrelated but dependent.

To be specific, Xg,i ∼ U [−1, 1], and Xg,−i = 1{Xg,i > 0}Xg,i − 1{Xg,i ≤ 0}Xg,i
1. It

can be shown that Xg,i and Xg,−i are linearly uncorrelated but are dependent in higher

order terms.

(iv) The distribution of the disturbance Ug,i.

Assume  Ug,1

Ug,2

 iid∼ N

( 0

0

 ,
 σ2

u ρuσ
2
u

ρuσ
2
u σ2

u

)

For all the DGPs, σ2
u = 0.5, ρu = 0.5 is considered.

(v) The parameter of interest β0.

β0 should belong to (−1, 1). For discussing the possible spurious social interaction

effect, let the true β0 = 0.5.

Given the setup above, Table 2.1 summarizes all the DGPs considered in the Monte Carlo

simulation study.

The number of observations is N = 500, and the number of simulation repetitions S =

1000.

11(.) denote the indicator function.
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Table 2.1: List of DGPs
dim(X) Function form h0(X) Distribution of X Parameters

DGP 1/3-1-1 1 or 3 h0(X) = Xγ Bi-Normal γ = 1; 0.1, ρ = 0.5

DGP 1/3-1-2 1 or 3 h0(X) = Xγ Bi-Logistic γ = 1; 0.1, α = 0.5

DGP 1/3-2-1 1 or 3 h0(X) = 1/exp(−Xγ) Bi-Normal γ = 1, ρ = 0.5

DGP 1/3-2-2 1 or 3 h0(X) = 1/exp(−Xγ) Bi-Logistic γ = 1, α = 0.5

DGP 1/3-3-1 1 or 3 h0(X) = exp(Xγ) Bi-Normal γ = 0.5, ρ = 0.5

DGP 1/3-3-2 1 or 3 h0(X) = exp(Xγ) Bi-Logistic γ = 0.5, α = 0.5

DGP 1/3-4-1 1 or 3 h0(X) = sin(Xγ) + cos(Xγ) Bi-Normal γ = 1, ρ = 0.5

DGP 1/3-4-2 1 or 3 h0(X) = sin(Xγ) + cos(Xγ) Bi-Logistic γ = 1, α = 0.5

DGP 3-1/2/3 3 3 function forms Special case γ = 1

2.5.1.2 Estimators

For each simulated dataset, the endogenous social interaction effect, β0, is estimated by the

semiparametric two-step GMM described in the preceding section.

In the first step, the conditional expectations, µ0(x), ν0(x), φ0(x), are estimated using dif-

ferent Machine Learning methods such as LASSO, Post-LASSO (P.L.), Post-Lasso Selection

(PL.S), Random Forest (R.F.) and Neural Nets (N.N.). For comparison, I also consider to

apply the parametric linear estimator and the nonparametric series estimator with polyno-

mial expansion.

Table 2.2 summaries the methods used in the first step conditional expectations estima-

tion.

Table 2.2: List of Estimation Methods
Methods Description

Linear Linear regression with X as explanatory variable

Series Linear regression with the polynomial expansion as explanatory variable

LASSO Apply LASSO with the polynomial expansion for each µ0(x), ν0(x), φ0(x)

Post-LASSO (P.L.) Apply Post LASSO for each µ0(x), ν0(x), φ0(x)

P.L. Selection (P.L.S) LASSO for variable selection for µ0(x), ν0(x), φ0(x), then apply Post LASSO

Random Forest (R.F.) Number of trees=500 and each time randomly select s =
√
d variables.

Neural Nets (N.N.) Number of hidden layers=1, with the size for the layer =3
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To estimate each of the conditional expectation µ0(x), ν0(x), φ0(x), linear estimators sim-

ply apply the linear regression with X as explanatory variables. Series estimators consider

using the polynomial expansion of X as explanatory variables which should be more robust

under the nonlinear case. However, these traditional nonparametric estimation methods can

not deal with the very large number of polynomial terms. In our simulation, we also consider

more recent Machine Learning methods in the first step estimation. For example, LASSO

can be applied to estimate each of the conditional expectations µ0, ν0, and φ0. Post-LASSO

refit each of the LASSO selected models to reduce the attenuation bias due to regularization.

Post-LASSO Selection(PL.S) uses a slightly different strategy that refits the three regressions

using all the variables selected in the first step LASSO estimators. For the Random Forest

method, we choose the number of trees to be 500 and for each bootstrapped sample, this

simulation study randomly select s =
√
d control variables from X to fit in each split. The

Neural Nets (N.N.) is also applied in the simulated dataset. As far as my knowledge, there

is no theoretical results on how to choose the hyperparameters for the Neural Nets. In our

Monte Carlo simulation, to avoid the overfitting issue, I choose the number of hidden layers

in the network just to be one.

Our Monte Carlo simulations are implemented using R programming. LASSO is imple-

mented using the ‘cv.glmnet’ package with the penalty parameter chosen by the 10-folded

crossvalidation. Random Forest is implemented using the ‘randomForest’ package. For the

hyperparameters values, I choose number of trees (ntree) to be 500 and number of variables

randomly sampled at each split (mtry) to be s =
√

dim(X). Finally, Neural Nets is im-

plemented using ‘neuralnet’ package. I choose the number of hidden layers in the network

to be one. For that hidden layer, we let the number of hidden units to be 3. Different

activation functions are imposed for Neural Nets, such as logistic(x) = 1/(1 + exp(−x)),

tanh(x) = e2x−1
e2x+1

, and softplus(x) = log(1 + exp(x)).

The second step estimation for the 1-dimensional endogenous social interaction effect,

β0, are constructed using the moment conditions (2.2.4) or orthogonal moment conditions

(2.2.6) after plugging the first step nonparametric estimators ϑ̂ = (µ̂, ν̂, φ̂).

For univariate control variable case, i.e. dim(Xi) = 1, as discussed in Section 2.4, β0
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is estimated using exactly one moment function, either the original score (2.2.4) or the

orthogonal score (2.2.6). The estimators which are denoted by β̂ and β̂db are defined in

(2.4.7) and (2.4.16). For the multivariate control variables case, i.e. dim(Xi) > 1 and fixed,

we apply a semiparametric GMM estimator for β0. The original and debiased estimators

which are denoted by β̂gmm and β̂gmmdb are defined in (2.4.9) and (2.4.18) respectively.

2.5.1.3 Performance measure

Our Monte Carlo simulation study focuses on the performance comparison of semiparametric

estimators for β0 using different first step Machine Learning methods. This paper uses the

following measures to evaluate the performance across different methods: Bias, Variance,

mean squared error (MSE), mean absolute error (MAE) for estimators of β0 and empirical

size for the corresponding t test. These performance measures are defined as follows:

Bias =
1

S

S∑
s=1

β̂s − β0

VAR =
1

S

S∑
s=1

(
β̂s − β̂s

)2

MSE =
1

S

S∑
s=1

(
β̂s − β0

)2

= Bias2 + VAR

MAE =
1

S

S∑
s=1

|β̂s − β0|

Size =
S∑
s=1

1 (|t| > zα) /S

where S is the number of simulation repetitions. MSE is a practical measure of performance

widely used for estimator evaluation, smaller values are preferred. However, MSE has the

disadvantage that gives heavily weighting on outliers by squaring each error term. Like

variance, MSE does not exist under some cases which are known as the moment problem

(Sargan 1978). In the simulation studies, I also report the more robust performance measure

95



MAE for estimator evaluation under such cases.

To evaluate the performance of t test for β0,

H0 : β = β0 vs. H1 : β 6= β0,

this simulation study reports the empirical size of the t test with nominal size α equal to

5% and 10% (size5% and size10%). The empirical size which measures the proportion of

rejection of H0 in the Monte Carlo simulation should close to the nominal size of α.

2.5.2 Simulation Results

2.5.2.1 Univariate case, dim(X) = 1

We first consider the univariate control variable case, dim(X) = 1. For the linear func-

tion h0(x) = xγ, we consider four cases, including bivariate normal and bivariate logistic

distribution of Xg,1, Xg,2 with γ = 1 or 0.1, respectively. We also consider the nonlinear

function h0(x) = 1
1+e−xγ

, h0(x) = exγ, and h0(x) = sin(xγ) + cos(xγ). Table 2.3-Table 2.6

report the performance measures across different estimation methods with linear function

form. Table 2.7-2.12 report the results for the nonlinear cases. In the following discussion,

we first point out the possible moment problem under the univariate control variable case,

and then discuss the performance comparison of the original and debiased estimators (β̂ and

β̂db) given first step estimators. Finally, we focus on the debiased estimator β̂db and compare

their performances across different first step estimators applied.

Moment problem and weak identification

From our simulation results in Table 2.5, we find that there might have moment problem

under the univariate control variable case. Sargan (1978) shows that the standard two-stage

least square (2SLS) estimators possess finite k-th moments if k ≥ dxdy − dz where dx is

the number of exogenous regressors, dy is the number of endogenous variables and dz is the

number of instrumental variables. For our social interaction model with univariate control,
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dx = dim(Xg,i) = 1, and dy = 2 for the two endogenous variables Yg,i and Y g,−i. Assume

we use Xg,−i as IV for Y g,−i, then dz = 1 which implies that dxdy − dz = 1. Thus our MM

estimator for β0 has finite moment up to order 1 and the second moment (Variance or MSE)

does not exist.

Consider the simulation results for linear bivariate normal cases with γ = 1 and γ = 0.1

reported in Table 2.3 and Table 2.5. Given γ = 0.1, the VAR and MSE for β̂ are all relatively

large which is an indicator for the nonexistence of the second moment. In this case, we also

report the MAE measure to evaluate model performance. The moment problem is obvious

only for the case that γ = 0.1 (Table 2.5) but not for γ = 1 (Table 2.3). From the reduced

form model, we know that γ is a measure for the strength of the instrumental variable Xg,−i.

The smaller γ, the weaker the instrumental variable. We also reported the corresponding

first-step F statistics for the semiparametric two step estimator for β0, which is an empirical

measure for the strength of the instruments. From the last line of Table 2.3 and 2.5, we can

conclude that under γ = 0.1, F statistics is small and Xg,−i tend to be a weak IV for Y g,−i.

Thus, the moment problem is reinforced and becomes obvious under the weak identification

case.

The simulation results for linear bivariate logistic cases with γ = 1 and γ = 0.1 which are

reported in Table 2.4 and Table 2.6 have the similar features as the bivariate normal cases.

However the moment problem is not that severe compared with the bivariate normal case.

The reason is that the first step F-statistics in Table 2.6 is larger than 10, which indicates the

weak identification might not be a problem. Thus, the moment problem is not that severe

under the bivariate logistic case.

Besides, if the nuisance parameter h0(x) is nonlinear, the moment problem might also

exist. For example, consider the simulation result for h0(x) = 1/(1+exp(−x)) that is shown

in Table 2.7 and Table 2.8, the conclusion is similar to the linear case which shows that

moment problem exists and become obvious under the weak identification case.

Although there is a moment problem for the semiparametric estimator when γ = 0.1 for

linear model and also the nonlinear case with h0(x) = 1/(1 + exp(−x)), the empirical size
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for the two-sided t-test still has the correct size but is undersized in general.

Plug-in V.S. Debiasing estimator for β0

As shown in Section 1.5, if we plugging the first step series estimator, the second step debiased

estimator β̂db is the same with the plug-in estimator β̂. More generally, the variables used

in the first step are not restricted to series expansion but we can allow for any variables

included as long as the estimation of the first step conditional expectations use the same

set of regressors. Thus the first step Post-LASSO selection (P.L.S) estimators should also

satisfy this property.

This statement is verified in our Monte Carlo simulation result. From Table 2.3-Table

2.12, it can be learned that for the first step linear, series, Post-LASSO selection (P.L.S)

estimators, the second step plug-in estimators and debiased estimators for β0 have exactly

the same results.

For the other first step Machine Learning estimators, such as Post-LASSO (P.L), Random

Forest (R.F.) and Neural Nets (N.N), the debiased estimator is different from the plug-in

estimator and there are no consistent results that which one performs better. Theoretically,

debiased estimators should have smaller bias which also holds in our simulation results in

general. However, the additional estimation of φ0(Xg,i) = E[Xg,−i|Xg,i] brings some noise

into the second step which might lead to an increase in the variance of β̂ thus the comparison

of MSE becomes unclear. For example, from Table 2.11 and 2.12 we know, if h0(x) =

sin(x) + cos(x), the debiased estimator with the first step Neural Nets performs better than

the plug-in estimator in terms of MSE. However, for the results of h0(x) = exp(0.5x) in

Table 2.9 and 2.10, if we apply Neural Nets in the first step, the debiased estimator performs

even worse.

Comparison across different first step estimators

From the simulation results, we can learn that in general the parametric linear estimator

only has the correct size if the true model is linear but have an over-rejection problem if
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applied to the nonlinear models. The results indicate that using linear estimators is likely

to obtain a significant social interaction effect which is spurious. We can also learn from

the simulation result that the distortion is more server if the true function becomes more

curvature. However, all the semiparametric debiased estimators do not have such an issue

and have the correct size across the nonlinear models considered in the simulation study.

To be specific, first consider the simulation results for weak identification case in linear

model with γ = 0.1 in Table 2.5 and 2.6. We focus on the performance comparison of

the debiased estimator for β̂db by plugging in different first step nonparametric estimators.

Under this case, MSE can not be a good measure since the second moment for β̂db does not

exist. We use MAE and empirical size to evaluate the performance. Among the debiased

estimators, β̂db with the first step Random Forest has proper size control under this case but

due to the large variance of the estimator, the results might not be reliable. For the other

first step estimators, they are all undersized.

The simulation results for the linear model with γ = 1 in Table 2.3 and 2.4 are relatively

more well-behaved for all the estimation methods applied. All the debiased estimators for

β0 under this case have the proper empirical size and moderate MSE. Among them, β̂db

with the first step linear estimator performs the best in terms of both MAE and empirical

size. The reason is that the true model is linear and apply the linear regression in the first

step obtains the oracle estimator. The estimator with series, Post-LASSO selection (P.L.S),

Neural Nets have similar performance with the linear estimator under this case. Random

Forest is slightly worse since it is more fitted for the nonlinear and many control variables

case.

For the nonlinear models considered in the simulation in Table 2.7- Table 2.12, the

semiparametric series estimator performs the best in terms of both MSE and empirical size

in general. The reason is that for dim(X) = 1, the nonlinear function h0(x) could be well-

approximated by its series expansions without curse of dimensionality. Besides, the Post-

LASSO debaised estimator and Neural Nets debiased estimator have the similar performance

which are also recommended in the empirical studies.
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2.5.2.2 Multivariate case, dim(X) = 3

In this part, we consider the more realistic case that dim(Xi) > 1, here we assume dim(Xi) =

3. In order to have a better understanding of the performance of different estimators under

different DGPs, we consider the nuisance function h0(x) can be linear or nonlinear forms.

Table 2.13 - Table 2.16 report the performance measures for β̂ and β̂db across different first

step estimation methods with linear function form h0(x) = xγ. Table 2.17 - Table 2.22

report the results for the nonlinear function, h0(x) = 1
1+e−xγ

, h0(x) = exγ, and h0(x) =

sin(xγ)+ cos(xγ). Similar to the univariate case, in the following discussion, we first discuss

the possible weak identification issue, and then compare the performance of the plug-in

estimator (β̂gmm) and debiased estimator (β̂gmmdb ) given different first step estimators. Finally,

we will consider to evaluate the performance of the debiased estimators using different first

step nonparametric methods.

Weak identification

We can show that the second moment of estimator for β0 exists under dim(X) = 3 since

dxdy − dz = 3 ∗ 2 − 3 = 3. This is verified in our simulation results from Table 2.13 -

Table 2.22. The simulation results shows the second moment (VAR or MSE) is bounded

across all the cases. However, weak identification might still be an issue and thus t-test

has incorrect size under these cases. For example, for linear function with γ = 0.1 which

are reported in Table 2.15 and Table 2.16, the F-stat are relatively low. The variance

of these estimators are large compared with the strong identified cases. Besides, for the

nonlinear case h0(x) = 1/(1+e(−x)) reported in Table 2.17, the estimator for β0 also suffers

from the same weak identification problem. One reason for the weak identification issue is

because the correlation between the control variables within groups (ρ = 0.5 or r = 0.5).

Thus the residualized instrumental variable is weakly correlated with the endogenous social

interactions.
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Original V.S. Debiasing estimator for β0

As shown in Section 1.5, if we plugging the first step series estimator, the second step debiased

estimator β̂gmmdb is the same with the plug-in estimator β̂gmm. This is also true for the Post-

LASSO (double) selection estimators which is verified in our Monte Carlo simulation results.

For the other first step nonparametric estimators, such as LASSO, Random Forest (R.F.)

and Neural Nets (N.N), our simulation results suggest that debiased estimators outperform

the plug-in estimators in terms of both MSE and empirical size in general. Thus, estimate

β0 using the orthogonal moment condition instead of the original moment condition in the

second step is recommended in the empirical studies.

Comparison across different first step estimators

To compare the performance across different first step estimators, we still focus on the

debiased estimator β̂db under the strong identified case. Similar to the univariate strong

identification linear cases, in terms of both the MSE and empirical size (5% and 10%), β̂gmmdb

with first step linear regression estimator performs the best since linear regression in the

first step can achieve the oracle estimator. All the other semiparametric estimators given

the linear model are all have good performance in terms of both MSE and empirical size.

For the nonlinear cases reported in Table 2.18 - Table 2.22, Post-LASSO debiased esti-

mators and Neural Nets debiased estimators performs the best and they are stable across

different DGPs. Random Forest is too risky since it has poor performance under the linear

case especially with few regressors.

Simulation results summary

(i) Orthogonal score helps in the performance of two-step estimators for β0. That is in

general β̂gmmdb (β̂db) outperforms β̂gmm(β̂) across different first step estimation methods

and different DGPs in the terms of performance measures such as MSE and empirical

size.
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(ii) The performance of debiased estimators β̂gmmdb (β̂db) with first step Post-LASSO or Neu-

ral Nets estimators are relatively stable across different DGPs and is recommended in

the empirical studies.

(iii) In general, the estimators β̂db with first step Random Forest is too risky since its

performance is very unstable. But Random Forest methods are more robust to the

complexity of the nuisance function h0(x).

(iv) Neural Nets has several tuning parameters and there are still no theoretical results on

how to choose them. And the performance of the second step estimator β̂ is sensitive

to the choice of some tuning parameters such as the number of hidden layers, size for

each layer and also the activation function applied.

2.6 Empirical Example

To illustrate the semiparametric methods developed in the preceding sections, this section

considers an empirical example which investigates the endogenous classmates’ peer effect on

student’s performance.

2.6.1 Data and Descriptive Statistics

The data used in this study is from wave 1 (2013-2014) of the China Education Panel Survey

(CEPS), which provides large-scale, nationally representative, longitudinal survey datasets.

In 2013-2014, CEPS surveys 19,487 students at the 7th and 9th grade from 112 schools in

the 2013-2014 academic year, and also survey information from their parents, teachers, and

principals.

In this empirical study, I focus on the data for students at the 7th grade only. After

dealing with the missing values, the sample includes 7442 students across 167 classes. Table

2.26 summaries the variables used in this empirical study, and Table 2.27 shows the summary

statistics of these variables.
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The outcome variables I am interest in include the cognitive test score for the student and

their level of self confidence. The cognitive test was conducted by the CEPS which included

20 questions. The cognitive test score reported in the dataset was then standardized using

the Item Response Theory (IRT) model. Another outcome variable, level of self confidence,

was reported by students themselves. The level of self confidence was from 1 ∼ 4, in which 1

denoteed for not confident at all and 4 denoted for very confident. The parameter of interest

is the effect of class average cognitive test score or level of self confidence on student’s own

outcomes.

The dependent variables include the individual only effect X, the individual and contex-

tual effect (W and W ), and also the group effect Υ. For the individual effect, I include the

variable whether the students attended kindergarten or not. This variable might determine

the student’s IQ level, and thus can affect their school performance. In contrast, childhood

characteristics of a student’s classmates are unlikely to have a direct effect on that student’s

high school scores. Thus, average class preschool attendance ratio is excluded for the con-

textual factors and can be used as instrumental variables for the endogenous variable of the

average class cognitive score or level of self confidence.

Besides, I also include students’ age, gender, one child family or not, minority, hukou

status, migrant status, parents’ education level, family income as the individual effect W

and also their class average W as the contextual effect. For the group controls Υ, I consider

to use teacher’s age, gender, years of schooling, experience, and also tracking school or not.

2.6.2 Data Exploration

For the purpose of data exploration, I plotted the correlation heatmap for the variables

discussed in the preceding subsection.

Figure 2.1 plots the correlation map between endogenous variables (cognitive test score

and level of self confidence) and the instrumental variables (whether attended preschool or

not). From the correlation plot, it can be learned that IV has relatively high correlation with

the endogenous variables, which have preliminarily implications that the strength of the IV
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is relatively strong.

Figure 2.2 plots the correlation map of the control variables X,W,W,Υ. From the plot,

it can be learned that class average father’s education level is highly positive correlated with

class average family income, class average one child ratio, and father’s education. In order

to avoid the multicollinearity problem, in the empirical study I remove the average father’s

education level. And the correlation heatmap becomes Figure 2.3. There is no any strong

correlation (absolute value greater than 0.7) any more.

I also plot the correlation map for the controls of only X and W in Figure 2.4. It can be

learned from the Figure 2.4 that the correlation among these variables are all relatively low

(absolute value smaller than 0.4). The empirical study also considers this case to learn the

effect of omitting the contextual variables on the estimation of endogenous social classmates’

effect.

2.6.3 Estimation Results

Table 2.28 - Table 2.29 reports the estimation results for the endogenous classmates’ effect.

I apply the debiased semiparametric estimators with first step linear, series, Post-LASSO,

Random Forest, and Neural Nets. The first three columns report the results for only including

the individual controls (X,W ). The dimension of the original controls d = 7 and I use

series expansion which include p = 31 terms. The second three columns report the results

for including the controls of both the individual and contextual effect (X,W,W,Υ). The

dimension of the controls becomes d = 14 and the series terms is p = 155.

Table 2.28 shows the estimation results for the endogenous classmates’ effect on student’s

cognitive score. It can be learned that if only the individual controls (X,W ) are included,

the endogenous classmates’ effect on cognitive score is significant. However, after controlling

the contextual effect (W,Υ), the endogenous classmates’ effect becomes insignificant. The

magnitude of the debiased estimator for β0 is different across first step estimation methods

applied, but they have the same insignificant conclusion. This empirical result shows that

omitting contextual effect might lead to spurious endogenous peer effect.
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Table 2.29 reports the estimation results for the endogenous classmates’ peer effect on

student’s level of self confidence. For the empirical results with only the individual controls

(X,W ), the classmates’ level of self confidence also has a significant effect on student’s level of

self confidence. If the contextual effect (W,Υ) are included, the measure of the endogenous

classmates’ effect becomes different across various first step estimators applied. For first

step linear, series or Post-LASSO estimator, the endogenous effect becomes insignificant.

Since the linear estimator might suffer from the model misspecification problem and series

estimator has the curse of dimensionality problem (p = 115), the results based on these first

step estimators might be problematic. If the Random Forest or Neural Nets is applied, the

endogenous effect is still significant. Also, these two debiased estimators indicate a large

(0.8501, 0.8928) significant peer effect on student’s level of self confidence.

2.7 Conclusion and Future Research

The existing literature on the social interaction model focuses on the identification issue

of the parametric setup. However, the parametric model may be too restrictive and might

lead to a spurious or misleading social interaction effect in the empirical studies. This

paper studies a semiparametric social interaction model with a parametric linear-in-means

endogenous social interaction part and a nonparametric control variables part. To highlight

the semiparametric feature of the model, this paper excludes the correlated effect and also

imposes restrictions on the contextual effect to avoid the complexity of identification issues.

This paper adopts a semiparametric IV approach to identify the endogenous social inter-

action effect. Based on the identification condition, I then propose a semiparametric two-step

estimator in which the first step nuisance functions could be estimated by any nonparamet-

ric (Machine Learning) estimators, such as LASSO, Random Forest and Neural Nets, and

then the second step parametric components are estimated by MM/GMM. This paper also

considers using the orthogonal moment condition in the second step estimation to reduce

the bias induced by the first step Machine Learning estimators.

For the first step of Machine Learning methods, there are no theoretical results to show
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the performance comparison across different methods applied. This paper uses Monte Carlo

simulations to investigate the finite sample performance of our two-step estimators using

various first-step nonparametric estimation methods with different DGPs considered. The

Monte Carlo simulation results suggest that no estimation method dominates across all the

Data Generating Processes (DGPs) considered. However, it is also reflected in the simulation

results that the debiased estimators using first step post-LASSO or Neural Nets methods

are more reliable and performs relatively well across the settings considered. For this reason,

these two debiased estimators are recommended for use in empirical studies.

The discussed group social interaction model can also be extended to a more flexible

network social interaction model. The network depicts the connections between individuals

and does not need to have the group structural which can be applied to a much richer social

structures. Also, the network structural impose certain exclusion restrictions on the model

and make the identification to be easier (Bramoullé, Djebbari, and Fortin (2009)). Based

on the identification condition, the semiparametric two-step estimation methods can also be

applied to the social interaction model with networks. I will consider extending our results

for the semiparametric group social interaction model to the semiparametric network social

interaction model in future research.

It would also be interesting to apply the cross-fitting methods for the semiparametric

estimators to further eliminate the overfitting bias introduced by the first step Machine

Learning estimators. It be considered in future research.
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Appendix

2.A Simulation Results

DGP1-1-1/2: dim(X) = 1; Linear h(x) = xγ; γ = 1.

Table 2.3: dim(X) = 1; Linear h(x) = xγ; γ = 1; Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -0.0403 -0.0407 -0.0491 -0.0395 -0.0415 0.0006 -0.1068 -0.0369 -0.0423

Vars 0.2943 0.2955 0.2948 0.2958 0.2956 0.4689 0.5166 0.2942 0.2931

MSE 0.2959 0.2972 0.2972 0.2973 0.2973 0.4689 0.5280 0.2955 0.2949

MAE 0.4256 0.4268 0.4273 0.4282 0.4278 0.5438 0.5675 0.4269 0.4266

Size5% 0.0570 0.0580 0.0560 0.0570 0.0550 0.0840 0.0970 0.0530 0.0530

Size10% 0.1240 0.1170 0.1160 0.1130 0.1120 0.1490 0.1630 0.1160 0.1180

F-stats 431.3731 430.9149 430.3033 429.4495 429.4495 403.1003 403.1003 429.5267 429.5267

*(Xg,i, Xg,−i) follows a bivariate-normal with correlation ρ = 0.5
*The estimators (Linear, Series, P.L.S, P.L.,R.F., N.N.) are described in Table 2.2 of Section 2.5.1.2
*The performance measure ( Bias, Vars, MSE, MAE, Size5%, Size10% are described in Section 2.5.1.3)
*F-stat: F-stats of first stage regression in semiparametric two-step estimator of β0:
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.4: dim(X) = 1; Linear h(x) = xγ; γ = 1; Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.0130 0.0146 0.0100 0.0324 0.0166 0.3247 -0.0168 0.0187 0.0130

Vars 0.1922 0.1971 0.1961 0.2002 0.1953 0.3897 0.3156 0.1970 0.1962

MSE 0.1924 0.1973 0.1963 0.2013 0.1955 0.4951 0.3159 0.1974 0.1964

MAE 0.3513 0.3548 0.3544 0.3575 0.3535 0.5540 0.4420 0.3555 0.3545

Size5% 0.0470 0.0560 0.0550 0.0600 0.0530 0.1900 0.1040 0.0520 0.0530

Size10% 0.0970 0.1020 0.1020 0.1010 0.0980 0.2630 0.1770 0.1020 0.1020

F-stats 1165.3027 1143.7756 1144.6131 1139.2702 1139.2702 1054.1264 1054.1264 1137.9467 1137.9467

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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DGP1-1-1/2: dim(X) = 1; Linear h(x) = xγ; γ = 0.1.

Table 2.5: dim(X) = 1; Linear h(x) = xγ; γ = 0.1; Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 5.6967 -2.7684 -16.4474 -0.8493 -2.8973 13.0369 20.0722 14.0447 -0.6402

Vars 58741 594 258749 2715 670 208866 393283 259791 3312

MSE 58774 602 259019 2716 679 209036 393686 259988 3313

MAE 13.6254 6.7950 24.2230 8.8329 6.9531 26.4334 33.9162 22.2069 8.1225

Size5% 0.0320 0.0330 0.0450 0.0360 0.0340 0.0730 0.0810 0.0320 0.0310

Size10% 0.0650 0.0660 0.0850 0.0690 0.0690 0.1200 0.1150 0.0670 0.0650

F-stats 4.8020 4.8064 4.8782 4.7972 4.7972 4.8514 4.8514 4.8032 4.8032

*(Xg,i, Xg,−i) follows a bivariate-normal with parameter ρ = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.6: dim(X) = 1; Linear h(x) = xγ; γ = 0.1; Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.4451 0.4335 0.3844 0.3925 0.4394 0.6282 0.1649 0.6737 0.4512

Vars 22.8605 23.4415 23.2794 23.4601 23.2211 46.0983 48.4058 22.6058 22.9960

MSE 23.0586 23.6294 23.4272 23.6142 23.4142 46.4930 48.4330 23.0597 23.1995

MAE 3.6963 3.7331 3.7256 3.7422 3.7267 4.6678 4.9146 3.6573 3.6985

Size5% 0.0340 0.0290 0.0290 0.0300 0.0290 0.0570 0.0650 0.0290 0.0320

Size10% 0.0890 0.0910 0.0890 0.0910 0.0910 0.1260 0.1310 0.0800 0.0850

F-stats 11.9591 11.8409 11.7790 11.8056 11.8056 11.9157 11.9157 11.8622 11.8622

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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DGP1-2-1/2: dim(X) = 1; Nonlinear h(x) = 1/(1 + exp(−x)).

Table 2.7: dim(X) = 1; Nonlinear h(x) = 1/(1 + exp(−x)); Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -0.7942 -0.7996 -0.8469 -0.9116 -0.7824 -1.0005 -1.8059 -0.8400 -0.7990

Vars 22.2020 22.3110 85.7675 86.1319 22.1642 181.2936 325.3122 22.3462 22.2960

MSE 22.8328 22.9504 86.4848 86.9630 22.7764 182.2946 328.5734 23.0518 22.9344

MAE 3.2655 3.2638 3.3753 3.4416 3.2573 5.1020 6.0717 3.2792 3.2599

Size5% 0.0360 0.0340 0.0380 0.0400 0.0350 0.0650 0.0740 0.0320 0.0310

Size10% 0.0780 0.0740 0.0800 0.0780 0.0770 0.1000 0.1120 0.0740 0.0750

F-stats 9.6773 9.7062 9.7208 9.6887 9.6887 9.3972 9.3972 9.6719 9.6719

*(Xg,i, Xg,−i) follows a bivariate-normal with parameter ρ = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.8: dim(X) = 1; Nonlinear h(x) = 1/(1 + exp(−x)); Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -0.1007 0.4812 0.4222 0.4835 0.4893 0.4835 0.2075 0.4061 0.4813

Vars 28.5679 26.4348 26.6546 27.5114 26.2572 74.7801 65.1258 26.7854 26.3256

MSE 28.5780 26.6663 26.8329 27.7452 26.4966 75.0139 65.1689 26.9504 26.5572

MAE 4.1067 3.9441 3.9599 4.0021 3.9462 5.2375 5.3432 3.9768 3.9416

Size5% 0.0440 0.0280 0.0280 0.0280 0.0250 0.0530 0.0580 0.0290 0.0260

Size10% 0.0920 0.0880 0.0900 0.0920 0.0850 0.1220 0.1280 0.0820 0.0790

F-stats 9.8136 10.7349 10.6365 10.6620 10.6620 10.6785 10.6785 10.6396 10.6396

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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DGP1-3-1/2: dim(X) = 1; Nonlinear h(x) = exp(0.5x).

Table 2.9: dim(X) = 1; Nonlinear h(x) = exp(0.5x); Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -0.0864 -0.0849 -0.0900 -0.0884 -0.0891 0.0103 -0.1441 -0.0839 -0.1020

Vars 1.1419 0.9565 0.9565 0.9570 0.9569 1.5702 1.7260 0.9463 0.9444

MSE 1.1494 0.9637 0.9646 0.9648 0.9649 1.5703 1.7468 0.9533 0.9548

MAE 0.8516 0.7636 0.7648 0.7663 0.7656 0.9915 1.0259 0.7639 0.7625

Size5% 0.0530 0.0550 0.0520 0.0530 0.0540 0.0890 0.0950 0.0500 0.0510

Size10% 0.1160 0.1090 0.1080 0.1060 0.1060 0.1510 0.1630 0.1040 0.1070

F-stats 128.5615 131.4096 131.3602 131.0863 131.0863 124.5216 124.5216 130.7998 130.7998

*(Xg,i, Xg,−i) follows a bivariate-normal with parameter ρ = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.10: dim(X) = 1; Nonlinear h(x) = exp(0.5x); Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 1.8948 0.0162 -0.0141 -0.0841 -0.0456 1.7581 -0.0819 -0.0943 -0.1330

Vars 3.3856 0.3260 3.5872 2.2782 0.3701 4.1334 1.3812 0.4443 0.4806

MSE 6.9756 0.3263 3.5874 2.2853 0.3722 7.2242 1.3879 0.4532 0.4983

MAE 2.0918 0.4492 0.6119 0.7108 0.4773 1.9047 0.8199 0.5102 0.5159

Size5% 0.3890 0.0510 0.0650 0.0980 0.0440 0.4070 0.1060 0.0640 0.0670

Size10% 0.4840 0.0980 0.1260 0.1660 0.1040 0.4900 0.1840 0.1160 0.1230

F-stats 204.4779 332.5040 330.1172 325.6427 325.6427 305.8845 305.8845 331.6955 331.6955

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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DGP1-4-1/2: dim(X) = 1; Nonlinear h(x) = sin(x) + cos(x).

Table 2.11: dim(X) = 1; Nonlinear h(x) = sin(x) + cos(x); Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -0.0864 -0.0787 -0.0812 -0.0795 -0.0804 -0.2019 -0.1787 -0.1185 -0.0904

Vars 1.6154 0.8040 0.8083 0.8098 0.8058 1.3186 1.4459 0.8369 0.8378

MSE 1.6228 0.8102 0.8149 0.8161 0.8123 1.3594 1.4778 0.8509 0.8460

MAE 1.0014 0.7006 0.7023 0.7035 0.7016 0.9122 0.9392 0.7175 0.7166

Size5% 0.0410 0.0510 0.0520 0.0510 0.0500 0.0720 0.0930 0.0550 0.0560

Size10% 0.0900 0.1080 0.1100 0.1060 0.1040 0.1360 0.1540 0.1080 0.1060

F-stats 114.2840 128.6217 128.4820 127.8354 127.8354 120.5450 120.5450 127.0486 127.0486

*(Xg,i, Xg,−i) follows a bivariate-normal with parameter ρ = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.12: dim(X) = 1; Nonlinear h(x) = sin(x) + cos(x); Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -5.5566 0.0449 0.0654 0.0735 0.0710 0.3630 -0.0761 0.5614 0.0101

Vars 12.4722 1.2731 1.3359 1.4038 1.3885 2.2872 2.2777 1.8692 1.3956

MSE 43.3478 1.2751 1.3402 1.4092 1.3936 2.4190 2.2835 2.1844 1.3957

MAE 5.7222 0.8813 0.8989 0.9226 0.9156 1.1784 1.1299 1.1518 0.9245

Size5% 0.2890 0.0340 0.0350 0.0360 0.0360 0.0840 0.0820 0.0860 0.0340

Size10% 0.4430 0.0800 0.0830 0.0840 0.0800 0.1750 0.1470 0.1460 0.0830

F-stats 25.6250 90.2842 89.7199 88.8940 88.8940 85.8868 85.8868 88.6245 88.6245

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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DGP1-1-1/2: dim(X) = 3; Linear h(x) = xγ; γ = 1.

Table 2.13: dim(X) = 3; Linear h(x) = xγ; γ = 1; Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.0231 0.0199 -0.0197 0.0197 0.0216 1.8247 0.4227 0.0398 0.0336

Vars 0.2714 0.2891 0.2842 0.2934 0.2908 0.3689 0.3794 0.2795 0.2835

MSE 0.2719 0.2895 0.2846 0.2937 0.2913 3.6984 0.5581 0.2810 0.2846

MAE 0.4184 0.4322 0.4285 0.4378 0.4332 1.8259 0.6107 0.4268 0.4294

Size5% 0.0680 0.0670 0.0620 0.0590 0.0610 0.8610 0.1410 0.0650 0.0580

Size10% 0.1140 0.1200 0.1170 0.1200 0.1210 0.9080 0.2180 0.1170 0.1180

F-stats 158.5402 158.6238 157.6166 154.0685 154.0685 152.3965 152.3965 155.2407 155.2407

*(Xg,i, Xg,−i) follows a bivariate-normal with parameter ρ = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.14: dim(X) = 3; Linear h(x) = xγ; γ = 1; Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.0106 0.0114 -0.0116 -0.0020 0.0026 4.0767 0.9923 0.0532 0.0348

Vars 0.1400 0.1475 0.1437 0.1568 0.1529 0.4412 0.3106 0.1468 0.1452

MSE 0.1401 0.1476 0.1438 0.1568 0.1529 17.0609 1.2953 0.1496 0.1464

MAE 0.3003 0.3053 0.3026 0.3138 0.3110 4.0767 1.0021 0.3093 0.3043

Size5% 0.0540 0.0560 0.0560 0.0600 0.0600 1.0000 0.3950 0.0580 0.0600

Size10% 0.0990 0.1010 0.1000 0.1140 0.1040 1.0000 0.5330 0.1000 0.0970

F-stats 531.3653 526.5358 522.7558 500.3013 500.3013 469.4460 469.4460 496.0114 496.0114

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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DGP1-1-1/2: dim(X) = 3; Linear h(x) = xγ; γ = 0.1.

Table 2.15: dim(X) = 3; Linear h(x) = xγ; γ = 0.1; Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.2682 0.2758 0.4116 0.2448 0.2996 1.5027 0.5947 0.2644 0.3231

Vars 6.8963 7.2790 6.8239 7.6992 7.2056 7.2106 9.2723 7.1767 6.9271

MSE 6.9682 7.3551 6.9933 7.7591 7.2953 9.4687 9.6260 7.2466 7.0315

MAE 2.0957 2.1500 2.1145 2.2288 2.1390 2.5376 2.4288 2.1376 2.1141

Size5% 0.0680 0.0800 0.0770 0.0790 0.0750 0.1700 0.1060 0.0670 0.0710

Size10% 0.1150 0.1250 0.1240 0.1350 0.1280 0.2230 0.1710 0.1220 0.1210

F-stats 6.8716 6.9039 6.8554 6.8079 6.8079 7.0396 7.0396 6.8850 6.8850

*(Xg,i, Xg,−i) follows a bivariate-normal with parameter ρ = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.16: dim(X) = 3; Linear h(x) = xγ; γ = 0.1; Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -0.0907 -0.0544 -0.0336 -0.2022 -0.0221 2.8931 0.7712 0.0609 0.0177

Vars 14.5380 15.2292 15.3329 16.2284 14.9188 12.8231 18.7303 14.4723 14.4979

MSE 14.5462 15.2322 15.3340 16.2693 14.9193 21.1930 19.3251 14.4760 14.4982

MAE 3.0325 3.0613 3.0712 3.1745 3.0303 3.6899 3.4444 2.9973 2.9885

Size5% 0.0490 0.0470 0.0480 0.0570 0.0470 0.0920 0.0720 0.0460 0.0450

Size10% 0.0920 0.0920 0.0930 0.1120 0.0940 0.1670 0.1300 0.0870 0.0910

F-stats 5.6354 5.6820 5.5532 5.6053 5.6053 6.1033 6.1033 5.6483 5.6483

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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DGP3-2-1/2: dim(X) = 3; Nonlinear h(x) = 1/(1 + exp(−x)).

Table 2.17: dim(X) = 3; Nonlinear h(x) = 1/(1 + exp(−x)); Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.2635 0.2633 0.4129 0.2391 0.3097 1.3829 0.5435 0.2105 0.3165

Vars 6.5846 6.9436 6.5447 7.3677 6.8657 7.0933 8.9338 6.8431 6.6227

MSE 6.6541 7.0129 6.7151 7.4249 6.9617 9.0056 9.2292 6.8874 6.7228

MAE 2.0519 2.1016 2.0727 2.1800 2.0909 2.4541 2.3784 2.0790 2.0688

Size5% 0.0680 0.0790 0.0740 0.0770 0.0700 0.1550 0.1140 0.0720 0.0690

Size10% 0.1160 0.1260 0.1210 0.1230 0.1310 0.2120 0.1660 0.1180 0.1160

F-stats 7.1158 7.1759 7.1261 7.0777 7.0777 7.2579 7.2579 7.1343 7.1343

*(Xg,i, Xg,−i) follows a bivariate-normal with parameter ρ = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.18: dim(X) = 3; Nonlinear h(x) = 1/(1 + exp(−x)); Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -0.4052 -0.0217 -0.0576 -0.0124 0.0200 2.5467 0.5212 0.0491 -0.0028

Vars 4.9630 4.6777 4.6396 4.6873 4.6520 3.9928 5.7928 4.7329 4.6676

MSE 5.1272 4.6781 4.6429 4.6875 4.6524 10.4787 6.0644 4.7353 4.6676

MAE 1.8154 1.7108 1.7067 1.7073 1.7049 2.7370 1.9517 1.7268 1.7164

Size5% 0.0620 0.0520 0.0610 0.0580 0.0600 0.1930 0.0760 0.0510 0.0540

Size10% 0.1140 0.1000 0.0990 0.0970 0.0940 0.3100 0.1400 0.1000 0.0980

F-stats 15.6798 17.0872 16.8920 16.7916 16.7916 16.9203 16.9203 16.5507 16.5507

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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DGP3-3-1/2: dim(X) = 3; Nonlinear h(x) = exp(0.5x).

Table 2.19: dim(X) = 3; Nonlinear h(x) = exp(0.5x); Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.0302 0.0462 0.0034 0.0114 0.0179 1.7698 0.4239 0.0942 0.0499

Vars 1.0484 0.9021 0.9061 0.9150 0.9116 1.0014 1.1631 0.9099 0.8985

MSE 1.0493 0.9042 0.9061 0.9151 0.9120 4.1336 1.3428 0.9188 0.9010

MAE 0.8184 0.7628 0.7652 0.7690 0.7651 1.8159 0.9313 0.7631 0.7596

Size5% 0.0700 0.0660 0.0620 0.0620 0.0660 0.5010 0.1180 0.0690 0.0640

Size10% 0.1250 0.1260 0.1200 0.1250 0.1230 0.6010 0.1720 0.1240 0.1250

F-stats 47.8174 49.3396 49.1973 48.1536 48.1536 48.9535 48.9535 48.3920 48.3920

*(Xg,i, Xg,−i) follows a bivariate-normal with parameter ρ = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.20: dim(X) = 3; Nonlinear h(x) = exp(0.5x); Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.9225 -0.0069 -0.0453 -0.1643 -0.0509 4.6727 1.2862 0.0771 -0.0085

Vars 1.6387 1.0877 1.0791 1.7187 1.1071 2.1176 2.0260 1.1876 1.1017

MSE 2.4897 1.0877 1.0812 1.7457 1.1097 23.9520 3.6803 1.1936 1.1017

MAE 1.2505 0.8300 0.8261 0.9382 0.8389 4.6727 1.5223 0.8747 0.8383

Size5% 0.1510 0.0540 0.0580 0.0840 0.0600 0.9610 0.2000 0.0590 0.0570

Size10% 0.2290 0.1040 0.1060 0.1350 0.1120 0.9830 0.2810 0.1130 0.0980

F-stats 61.4364 65.6591 65.9029 64.1136 64.1136 72.3944 72.3944 64.5415 64.5415

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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DGP3-4-1/2: dim(X) = 3; Nonlinear h(x) = sin(x) + cos(x).

Table 2.21: dim(X) = 3; Nonlinear h(x) = sin(x) + cos(x); Bivariate-Normal

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.1179 0.0397 0.0399 0.0150 0.0131 1.3103 0.2440 0.0295 0.0649

Vars 1.6410 0.9066 0.9087 0.9238 0.9159 1.0468 1.1825 0.8414 0.8487

MSE 1.6549 0.9082 0.9102 0.9240 0.9161 2.7637 1.2421 0.8423 0.8529

MAE 1.0308 0.7611 0.7627 0.7666 0.7642 1.4205 0.8909 0.7388 0.7470

Size5% 0.0490 0.0650 0.0670 0.0620 0.0600 0.2900 0.0690 0.0560 0.0560

Size10% 0.0940 0.1280 0.1260 0.1210 0.1230 0.4030 0.1320 0.1070 0.1070

F-stats 37.3101 42.0433 41.9871 40.9103 40.9103 39.9044 39.9044 41.1875 41.1875

*(Xg,i, Xg,−i) follows a bivariate-normal with parameter ρ = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.22: dim(X) = 3; Nonlinear h(x) = sin(x) + cos(x); Bivariate-Logistic

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -2.7621 -0.2225 -0.2266 -0.2061 -0.2062 1.1356 0.1000 0.7936 0.0379

Vars 8.8179 2.2922 2.4965 2.6802 2.3755 3.2328 2.2460 1.9738 1.4055

MSE 16.4470 2.3417 2.5479 2.7227 2.4181 4.5224 2.2560 2.6036 1.4069

MAE 3.3108 1.1954 1.2311 1.2562 1.2140 1.6769 1.1723 1.2604 0.9366

Size5% 0.1660 0.0540 0.0520 0.0520 0.0480 0.1510 0.0470 0.1190 0.0470

Size10% 0.2640 0.1100 0.1030 0.0970 0.0930 0.2320 0.0920 0.2150 0.0890

F-stats 10.0470 25.7178 25.2618 24.7216 24.7216 22.8050 22.8050 27.7708 27.7708

*(Xg,i, Xg,−i) follows a bivariate-logistic with parameter r = 0.5
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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Table 2.23: dim(X) = 3; Linear h(x) = xγ, γ = 1; Uncorrelated but dependent

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -0.0047 0.0043 -0.0145 0.0670 -0.0044 -1.5700 -0.3952 -0.3381 -0.2736

Vars 0.3587 0.4799 0.4821 0.5490 0.4801 0.5858 0.7437 1.1594 1.1067

MSE 0.3587 0.4799 0.4823 0.5535 0.4802 3.0507 0.8999 1.2737 1.1815

MAE 0.4807 0.5483 0.5506 0.5837 0.5481 1.5755 0.7371 0.8804 0.8526

Size5% 0.0580 0.0580 0.0580 0.0780 0.0590 0.4160 0.0720 0.2540 0.2430

Size10% 0.1010 0.1120 0.1050 0.1330 0.1090 0.5690 0.1280 0.3340 0.3120

F-stats 212.6313 165.6984 164.8807 164.1038 164.1038 116.9175 116.9175 183.1432 183.1432

*(Xg,i, Xg,−i) follows a uncorrelated but dependent distribution
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.

Table 2.24: dim(X) = 3; Nonlinear h(x) = exp(0.5x); Uncorrelated but dependent

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias 0.2985 0.0232 -0.0651 0.2820 0.0084 -1.6509 -0.4531 -0.0860 -0.0876

Vars 1.0281 1.6581 1.6801 1.9565 1.6606 1.9296 2.6507 1.8235 1.7394

MSE 1.1172 1.6586 1.6843 2.0360 1.6607 4.6550 2.8560 1.8309 1.7471

MAE 0.8601 1.0110 1.0113 1.1263 1.0110 1.7532 1.2942 1.0610 1.0368

Size5% 0.0750 0.0580 0.0530 0.1020 0.0560 0.0940 0.0520 0.1420 0.1280

Size10% 0.1410 0.1110 0.1050 0.1540 0.1080 0.1830 0.1070 0.2190 0.2150

F-stats 73.1534 49.1132 48.7938 48.5459 48.5459 33.9561 33.9561 74.1576 74.1576

*(Xg,i, Xg,−i) follows a uncorrelated but dependent distribution
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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Table 2.25: dim(X) = 3; Nonlinear h(x) = sin(x) + cos(x); Uncorrelated but dependent

Linear Series P.L.S P.L. P.L.(db) R.F. R.F.(db) N.N. N.N.(db)

Bias -1.1763 0.0224 -0.0110 -0.0487 0.0113 -0.6245 0.0400 -0.0252 -0.0518

Vars 1.9181 0.8122 0.8327 0.8485 0.8134 0.9895 1.0288 0.9152 0.9295

MSE 3.3019 0.8127 0.8328 0.8509 0.8136 1.3795 1.0304 0.9159 0.9322

MAE 1.4422 0.7113 0.7176 0.7266 0.7112 0.9222 0.7994 0.7596 0.7669

Size5% 0.0920 0.0590 0.0570 0.0630 0.0580 0.0760 0.0660 0.0490 0.0480

Size10% 0.1810 0.1190 0.1150 0.1060 0.1190 0.1400 0.1100 0.0860 0.0850

F-stats 51.7247 91.2694 89.7274 90.3729 90.3729 76.0486 76.0486 66.3849 66.3849

*(Xg,i, Xg,−i) follows a uncorrelated but dependent distribution
*The number of observations is n = 500, and the number of simulation repetitions S = 1000.
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Table 2.26: Variables

Outcome variables: Yg,i:

Cognitive test score / Confidence level

Endogenous social outcomes: Y g,−i

Leave out class average of Yg

Individual only effect: Xg,i

Preschool / preschool family income / Parents’ childbearing age

Individual & Contexture controls:Wg,i

Student: age, gender, one child family

minority, hukou status, migrant status

avg study hours per day (HW by teacher / parents)

Family: father’s and mother’s years of schooling.

Financial condition

Group controls: Υg

School: Tracking school

Teacher: age, gender, years of schooling, experience, title

119



Table 2.27: Summary Statistics

Variables Describe Mean s.d. Min Max

Outcome variables: Yg,i

score Cognitive test score 0.0444 0.8727 -2.0290 2.3330

confident Confidence level (1 ∼ 4) 3.3092 0.6926 1.0000 4.0000

Individual only controls: Xg,i

presch Attended preschool or not 0.8121 0.3906 0.0000 1.0000

Individual controls: Wg,i

gender Gender 0.5227 0.4995 0.0000 1.0000

age Age 13.1249 0.8864 9.5000 17.8333

hkplace Hukou 0.7761 0.4169 0.0000 1.0000

only One child or not 0.4530 0.4978 0.0000 1.0000

inc Family income level 2.8339 0.5946 1.0000 5.0000

fa edu father’s education level 10.9878 2.9649 0.0000 18.0000

Group average controls: Wg,i

gender.1 Class average gender 0.5227 0.0774 0.2000 0.8696

age.1 Class average age 13.1249 0.3582 12.5123 14.4718

hkplace.1 Class average Hukou 0.7761 0.2269 0.0000 1.0000

only.1 Class average child 0.4530 0.2730 0.0000 1.0000

inc.1 Class average income 2.8339 0.2598 1.9259 3.4062

fa edu.1 Class average father’s educ 10.9878 1.8431 6.6250 15.9375

Group controls: Υg

t gender Teacher’s gender 0.2816 0.4498 0.0000 1.0000

t exp Teacher’s experience 15.0414 8.7929 0.0000 45.0000

t edu Teacher’s education level 15.4714 0.8122 14.0000 18.0000
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Figure 2.1: Correlation Matrix of Endogenous Variable Y g,−i and IV Xg,−i

Figure 2.2: Correlation Matrix of Controls Xg,i,Wg,i,W g,i,Υg,i
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Figure 2.3: Correlation Matrix of Controls Xg,i,Wg,i, W̃g,i,Υg,i

*Note: W̃g,i removes the average father’s education from W g,i.

Figure 2.4: Correlation Matrix of Controls Xg,i,Wg,i
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Table 2.28: Estimated Results for Endogenous Classmates’ Effect on Cognitive Score

Y : Cognitive Score X,W (d=7) X,W, W̄ ,Υ (d=14)

β̂ t F-stats β̂ t F-stats

Linear 0.7805 15.0310 1411.1197 0.3809 0.8458 25.3490

Series 0.7811 14.8586 1375.3621 0.3973 1.1019 50.8572

Post-LASSO 0.7773 14.7517 1374.3083 0.2558 0.5438 30.3884

Random Forest 0.7215 12.9016 1198.7643 0.2584 0.4018 46.3981

Neural Nets 0.7545 12.2958 944.4589 0.1664 0.2381 14.6908

Table 2.29: Estimated Results for Endogenous Classmates’ Effect on Self Confidence

Y :Confidence level X,W (d=7) X,W, W̄ ,Υ (d=14)

β̂ t F-stats β̂ t F-stats

Linear 0.5611 4.0430 830.9615 0.8037 1.5239 70.2071

Series 0.6123 4.3713 827.9498 0.4519 1.0965 138.2236

Post-LASSO 0.7095 5.6359 991.2625 0.6360 1.1985 78.9778

Random Forest 0.5643 4.0030 770.4734 0.8501 2.7376 234.1050

Neural Nets 0.5864 3.5214 574.8543 0.8928 2.6541 106.4527
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