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Environmental justice and health research demonstrate unequal exposure to environmental hazards at the
neighborhood-level. We use an innovative method—eco-intersectional multilevel (EIM) modeling—to assess
intersectional inequalities in industrial air toxics exposure across US census tracts in 2014. Results reveal stark
inequalities in exposure across analytic strata, with a 45-fold difference in average exposure between most and
least exposed. Low SES, multiply marginalized (high % Black, high % female-headed households) urban com-
munities experienced highest risk. These inequalities were not described by additive effects alone, necessitating

the use of interaction terms. We advance a critical intersectional approach to evaluating environmental

injustices.

1. Introduction

Air pollution can cause acute and chronic health problems ranging
from asthma to mortality, yet exposure to anthropogenic drivers of
pollution, such as industrial facilities and major transport in-
frastructures, is unequally distributed. In the US, hazardous facilities are
more likely to cluster in communities of color and poorer neighborhoods
(Campbell et al., 2010; Mohai et al., 2009; Pastor et al., 2001).
Neighborhood-level patterns of disparity in exposure to air pollution
have been widely documented, with neighborhoods with more Black
and Latinx residents (Ard, 2015; Downey and Hawkins 2008b; Liévanos
2015), lower socioeconomic status households, and more female-headed
households (Downey et al., 2017; Downey and Hawkins 2008b) at
greatest risk of exposure. These patterns align with a robust literature
from social epidemiology that identifies social determinants as the
fundamental drivers of health inequalities (Bauer, 2014; Kawachi and
Subramanian, 2018; Krieger, 1994). These findings are bolstered by
recent work which incorporates an intersectional framework (Ducre,
2012, 2018; Liévanos, 2015; Malin and Ryder, 2018), and draws
attention to the multiplicative effects of environmental hazards across
the United States.

Originating in Black feminist scholarship, intersectionality theory
critically addresses the structural determinants of social experiences and
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illustrates how the interlocking nature of these systems of inequality
erase the experiences of Black women from the status quo (Collins,
1990; Crenshaw, 1993). Intersectional frameworks move beyond addi-
tive approaches (e.g., race + class), and instead examine inequalities at
the intersections of multiple social dimensions (e.g., race x class). His-
torically, most intersectional scholarship has made wuse of
individual-level data; however, our work joins a growing movement of
critical environmental justice scholarship (Ducre, 2012; Malin and
Ryder, 2018; Pellow, 2017) that examines intersectionality at the level
of neighborhoods. This level of analysis is appropriate for a study of this
kind (Alvarez and Evans, 2021) because environmental injustices are
perpetrated through complex social, economic, political, and historical
processes that adversely expose entire communities to risk, rather than
selectively targeting individuals or households, as is the case with some
other forms of discrimination and violence. Our present work fits with
recent calls for structural intersectionality research (Homan et al., 2021)
and for consideration of intersectional geographical inequalities in
health (Bambra, 2022).

A variety of analytic approaches to quantitatively evaluate inter-
sectional inequalities have been developed and advanced (Bauer et al.,
2021; Homan et al., 2021). The conventional, most commonly applied
approach remains single-level regression models with fixed interaction
parameters, which render visible multiplicative effects. However, this
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approach presents important challenges: geometric increases in inter-
action terms as more categories of analysis are added rapidly consumes
degrees of freedom and decreases model parsimony in high-dimensional
analyses (Bauer, 2014). Our recent work (Evans et al., 2018; Alvarez and
Evans, 2021) addresses these concerns and improves conventional ap-
proaches by applying multilevel models to quantify structural in-
equalities across racialized, gendered, and classed neighborhoods.

Previous research (Ard, 2015; Collins et al., 2011; Downey and
Hawkins, 2008a, 2008b; Liévanos, 2015) demonstrates relational effects
across neighborhood demographics, including racial/ethnic composi-
tion, gendered family structure, socio-economic status, and urbanicity.
Yet these dimensions are seldom evaluated simultaneously, especially
using higher-level interactions. Moreover, the majority of intersectional
environmental justice studies focus on single-case studies (see e.g.,
Chakraborty et al., 2017; Collins et al., 2011; Grineski et al., 2013).
While these studies are crucial in that they establish that health hazards
place intersectionally-marginalized communities at heightened risk,
they also leave open the question of generalizability. In order to take the
next step and establish whether environmental health inequalities are
intersectionally patterned in communities across the US, we utilize an
intercategorical intersectional approach. This allows us to evaluate the
patterning of local industrial air pollution disparities at the neighbor-
hood level along interacting dimensions of race and ethnicity,
female-headed household, educational attainment, income, and urban-
icity. We use an innovative intersectional method—Eco-Intersectional
Multilevel (EIM) modeling—to examine these inequalities at the
geographical level, combining social demographic and air pollution data
for over 70,000 census tracts. We find considerable, systematic, and
non-additive patterns of inequality in air pollution exposure. By exam-
ining multiple racial and socioeconomic dimensions (as theorized crit-
ically within intersectionality), we uncover extreme polarities of
environmental inequalities. Our findings illustrate the importance of
examining intersectional geographic inequalities in environmental and
health disparities research. Moreover, these findings should serve as a
call to action for remediating environmental injustices.

2. Background
2.1. Environmental justice

Environmental justice (EJ)—a movement focused on ensuring all
communities have access to clean neighborhoods and workplaces—has
sparked research on environmental inequalities, calling particular
attention to the disproportionate exposure of low-income communities
of color to hazardous conditions (Mohai et al., 2009; Pellow, 2000;
Taylor, 2014). Air pollution from industrial facilities and major trans-
port infrastructures causes acute and chronic health effects ranging from
respiratory illnesses to mortality (Kampa and Castanas, 2008). A recent
report by the American Lung Association reported 4 out of 10 residents
live in counties with “monitored unhealthy ozone and/or particle
pollution” (American Lung Association, 2019). Health research has
found local environments, particularly neighborhoods, to be important
determinants of health outcomes (Arcaya et al., 2016). Early EJ research
focused on the relationship between racial/ethnic and socioeconomic
disparities of hazardous pollution (Bullard, 1983; Downey et al., 2008).
One of the first EJ reports, Toxic Wastes and Race in the United States
(Chavis, 1987) evaluated the relationship between toxic landfill place-
ment and the racial composition of zip codes and found racial envi-
ronmental disparities to be significant even when controlling for SES
and urbanicity. Though such work remains foundational, the EJ litera-
ture has expanded to demonstrate that exposure to pollution varies
across multiple social dimensions, including race, ethnicity, socioeco-
nomic status (SES), gendered family structures, immigrant status, and
urbanity (Chakraborty et al., 2017; Collins et al., 2011; Crowder and
Downey, 2010; Downey and Hawkins, 2008b; Heynen et al., 2006;
Liévanos, 2019; Pais et al., 2014). These multiple social dimensions of
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marginalization intersect and interact to produce environmental health
inequalities (Ducre, 2012; Liévanos, 2015; Malin and Ryder, 2018).

Some scholars have focused on the relationship between SES and
racial and ethnic environmental inequalities. Downey and Hawkins
(2008b) found that income level and pollution exposure vary based on
neighborhood racial composition, with higher levels of income showing
the strongest negative correlation with air pollution among census tracts
with a higher percentage of Black residents as compared to percent of
White residents. Similarly, Zwickl, Ash, and Boyce (2014) found racial
and ethnic disparities in industrial air toxics were higher among
neighborhoods with low median household incomes. Previous work
using interactions of race and ethnicity and SES, found an overall decline
over time in industrial air pollution levels and exposure (Ard, 2015).
Still, Black residents faced greater exposure than white and Latinx res-
idents, even when comparing SES with measures of income and
educational attainment. Research focusing on intracategorical inter-
sectional disparities among Hispanic communities found neighborhoods
with greater median household income and educational attainment re-
ported less cancer risk from air toxics (Collins et al., 2011). These studies
make clear that SES inequalities in exposure to environmental hazards
differ across racial/ethnic lines.

Another line of EJ research has focused on gendered family struc-
tures. An early national study on neighborhood family composition by
Downey and Hawkins (2008a) found single-mother households to be
significantly correlated with industrial air toxics exposure even after
controlling for racial/ethnic composition and SES. Collins et al. (2011)
found significant elevated levels of air pollution as percent of
female-headed households increases in Hispanic communities. A more
recent study by Liévanos (2015) focused on intersectional environ-
mental inequality hypotheses—including female-headed house-
holds—found census tracts with higher racial/ethnic and immigrant
economic deprivation measures” had a greater likelihood of residing in
clusters of lifetime cancer risk from air toxics. These results highlight the
importance of further examining this understudied topic of gendered
family structure within environmental inequality.

While EJ research has demonstrated important relationships be-
tween neighborhood demographic characteristics in the patterning of
hazard exposure, important gaps remain. First, while measures of
neighborhood-level income and education reflect different aspects of
social status, power, and resources at the community level, the differ-
ences between these measures in producing inequalities in exposure
have been inadequately explored. Second, possible interactions between
other social dimensions such as gendered family structure and urban-
icity with established intersectional inequalities by race/ethnicity and
class remain underexamined. Third, a unique feature of environmental
justice research is the focus on neighborhood-level outcomes, a
geographical approach which can be compellingly applied to health
research. While the use of individual-level data in previous health
research has been productive, it has also shifted theoretical and analytic
attention to individual experiences within interlocking systems of
oppression, rather than structural, community-level experiences. This
has left gaps in our understanding of how certain types of social prob-
lems impact the community as a whole, which are crucial to unpack
when thinking about potential interventions, as they necessarily occur at
the community level. Further, the limited availability of individual-
level, geographically specific data that encompasses the entire US
makes it difficult to approach generalizability with an individual-level
focus. Fourth, there is room for innovative approaches to evaluate

! The authors interpret their findings to be a result of Black geographic
mobility, wherein high-income Black residents move out of highly polluted
neighborhoods.

2 The economic deprivation measure consisted of a principal component
factor analysis of educational attainment, unemployment, female-headed
households, and poverty.
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higher-level interaction effects within environmental inequalities,
which might better answer calls for analysis of structural intersection-
ality (Homan et al., 2021). It is not required to use interaction terms to
examine intersectional inequalities. Several analytic approaches have
been proposed to examine the relational and intersectional nature of
environmental inequalities between neighborhood demographics (such
as racial/ethnic composition, SES, and gendered family structure),
including interaction terms (Downey and Hawkins, 2008b), bivariate
analysis (Collins et al., 2011), and principal component analysis factor
analysis (Liévanos, 2015; Smith, 2009). Regardless of the specific
quantitative approach used, applying intersectionality to quantitative
methods poses challenges related to interpretability as the number of
interactions in the model increases. This paper joins a recent movement
to apply a critical intersectional lens to study structural and geographic
patterns of environmental health disparities (Bambra, 2022; Homan
etal., 2021; Malin and Ryder, 2018; Pellow, 2017). In summary, current
EJ scholarship demonstrates clear evidence of environmental in-
equalities patterned intersectionally along racial/ethnic, socioeco-
nomic, and gendered family structure categorizations, yet key gaps in
our understanding remain. To address this, we employ an intersectional
analytic framework to examine environmental disparities between
multiple social dimensions.

2.2. Intersectionality

Originating in Black feminist thought, intersectionality brings focus
to interlocking systems of power such as racism, sexism, and classism
(Collins, 1990; Crenshaw, 1993). Intersectionality showcases how
additive/singular approaches are incapable of adequately describing the
unique experiences and burdens of communities with multiply
marginalized populations, thus contributing to the erasure of the expe-
riences of Black women (Crenshaw, 1989). To amend the multiplicative
inequalities, intersectionality builds theory and methods from the
standpoint of Black women (Crenshaw, 1989). Intersectional studies
examine power dynamics ranging from the individual to the structural
level, focusing on the relational inequalities of overlapping axes of
marginalization (Cho et al., 2013; Collins, 1990). From this foundation,
scholars have brought attention to other areas of marginalization such as
age-based inequality (Calasanti and King, 2020), developed new meth-
odological approaches for intersectional analysis (Evans et al., 2018),
and identified pathways to create social change outside of the academy
(Cho et al., 2013).

Acknowledging intersectionality’s unique methodological chal-
lenges, McCall (2005) identifies three approaches in intersectional
scholarship: the anti-categorical, the intracategorical, and the inter-
categorical. Anti-categorical approaches emphasize the fluidity of social
categories and the “deconstruct[ion] of analytical categories” (McCall,
2005, p. 1773). Intracategorical approaches “focus on particular social
groups at neglected points of intersection ... to reveal the complexity of
lived experience within such groups” (McCall, 2005, p. 1774). Finally,
intercategorical approaches “provisionally adopt existing analytical
categories to document relationships of inequality” (McCall, 2005, p.
1773) and are typically used in quantitative analyses. An intercategor-
ical framework emphasizes the “process-centered” analysis which un-
covers the relational interactions of multiple systems of power and
discusses the subordinate groups as well as dominant groups (Choo and
Ferree, 2010). The relational approach emphasizes the social construc-
tionist perspective of the inequalities and the process of social positions
such as “racialization rather than race, economic exploitation rather
than classes, gendering and gender performance rather than gender”
(Choo and Ferree, 2010, p. 134).

Intercategorical intersectional approaches using quantitative
methods face specific challenges (Bauer, 2014). A recent review of
quantitative methods within intersectionality work found researchers
use a wide range of methods, from bivariate analyses to advanced
multivariable regression analyses (Bauer et al., 2021). A common
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approach involves the use of higher-level interaction terms to capture
the relationship between two variables (Bauer et al., 2021). Generally,
several challenges occur in the application of higher-level interactions
terms. As the number of interactions in the model increases (as
demanded by theory to account for additional axes of marginalization)
this rapidly consumes the limited degrees of freedom based on the
sample size. This has the unfortunate consequence of limiting certain
methods based on sample size alone. Moreover, the increase of inter-
action terms within the model decreases model parsimony and compli-
cates interpretability of the results. Recent methodological advances,
such as intersectional Multilevel Analysis of Individual Heterogeneity
and Discriminatory Accuracy (intersectional MAIHDA) and
Eco-Intersectional Multilevel (EIM) modeling, use the structure of
multilevel modeling to quantify a large number of interaction effects
without compromising model parsimony (Evans et al., 2018, 2020;
Jones et al., 2016; Merlo, 2018). These models have numerous other
methodological advantages over conventional single-level regression
models and other approaches, including improved interpretability,
scalability, and adjustment of intersectional stratum-specific estimates
based on sample size (Alvarez and Evans, 2021; Bell et al., 2019; Evans
et al., 2018, 2020; Mahendran et al., 2022; Merlo, 2018).

2.3. Intercategorical intersectional approach: Eco-intersectional multilevel
modeling

A growing body of literature uses intersectionality theory to examine
and explain health disparities at the intersection of multiple social
identities, including race, gender, and class (Bauer, 2014; Bowleg,
2012). Recent work calls for intersectional approaches in health to be
expanded from individual-level analyses to structural and place-based
analyses (Bambra, 2022; Homan et al., 2021). Such macro-level ap-
proaches draw attention to the consequences of multiple systematic
processes, such as the labor market, residential segregation, and
manufacturing zones, all of which shape environmental health outcomes
(Homan et al., 2021).

Our previous work introduces Eco-Intersectional Multilevel (EIM)
modeling, an innovative approach that combines intersectionality, EJ,
and social determinants of health theorizing to inform its methodology
while expanding the intersectional MAIHDA approach from the indi-
vidual to the neighborhood level (Alvarez and Evans, 2021; Evans et al.,
2018). The EIM approach allows for the examination of environmental
injustices above the individual level, which provides valuable insight
into specific types of injustices. For example, environmental injustices
occur at the neighborhood level, where the placement of “environ-
mental harms” (e.g., industrial sites and other pollution sources) and
“environmental benefits” (e.g., parks and other green spaces) have
important consequences for the whole neighborhood. This does not
conflate individual experiences with those at the community level;
rather, it assesses systematic processes that determine the toxicity of
environments, which are experienced at the community level. Black
feminist scholarship has long argued that marginalization and discrim-
ination operate intersectionally at the structural level, which Crenshaw
(1993) notably describes as “structural intersectionality.” Structural
intersectionality operates through structural racism, structural classism,
and gendered racism (Homan et al., 2021; Pirtle and Wright, 2021), and
environmental injustices fit this pattern of structural intersectionality.
Given this, while the majority of intersectional health inequalities
scholarship employs individual-level data, we argue that the use of
neighborhood-level data in the present study is a strength, not a limi-
tation. Indeed, we are returning to the theoretical roots of inter-
sectionality while answering calls for greater consideration of structural
processes. We use the term “eco-intersectional” not to imply that we are
reinventing intersectional theorizing, but instead to differentiate our
approach from intersectional analyses of population health that focus on
individual-level observations (which are often decontextualized, see
Evans, 2019).
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EIM uses multilevel models to examine outcomes (and inequalities)
across interacting categorizations, referred to as intersectional strata.
While multilevel models typically use geographical or administrative
groupings to hierarchically nest units—for example, nesting census
tracts (level 1) within counties (level 2)—in EIM, census tracts (level 1)
are nested in intersectional strata (level 2). EIM reflects the common
usage of place analysis in quantitative environmental justice research (
Ard, 2015; Downey and Hawkins, 2008a; Liévanos, 2015) and focuses
on geographical levels, including census blocks and census tracts. One
strength of EIM’s multilevel structure, in which variables are combined
linearly for the purposes of prediction rather than weighted inference, is
that multicollinearity does not pose the same challenge here that it
would in many conventional approaches. These intersectional strata are
defined based on theoretically and empirically relevant categorizations
of neighborhood-level sociodemographics, however they are understood
to be provisionally-adopted analytic categories and are not intended as
naturalistic, reified typologies (Choo and Ferree, 2010).

A natural follow-up question is: Does EIM commit ecological fallacy?
No, because EIM analyzes neighborhoods and makes assessments of
neighborhoods. A neighborhood-level focus is appropriate since envi-
ronmental injustices operate at the neighborhood level and have con-
sequences for all residents, as opposed to particular individuals or
households within the same neighborhood.

Though many sociodemographic variables are expected to correlate
with each other, multicollinearity does not affect how we structure the
present model. Intersectionality demands inclusion of multiple axes of
marginalization, even if they are correlated (e.g., race and poverty)
because they are understood to represent interlocking systems of
marginalization and oppression. Furthermore, the main use of the pre-
sent model is to generate predictions of air pollution exposure for each
stratum—Ilinearly recombining fixed and residual parameters—and
multicollinearity does not hamper this use. To the extent that multi-
collinearity affects parameter estimates, the EIM approach has a
comparative advantage over conventional intersectional interaction
models. Correlation between sociodemographic variables reduces the
expected sample size of some strata (e.g., there are fewer communities
with high SES and a high percentage of racial/ethnic minorities). In a
conventional regression model, estimates for small strata are less reli-
able. In EIM, on the other hand, estimates for each stratum are auto-
matically adjusted based on the sample size, providing more
conservative but ultimately more reliable estimates.

An intercategorical intersectional approach to environmental in-
equalities at the neighborhood level is important when examining air
toxics exposure because facilities that emit industrial air toxics have
spatial, community-level effects. Moreover, risk of exposure varies
across interactions of neighborhood demographic profiles, as defined by
characteristics such as communities’ racial/ethnic and socioeconomic
composition. In the present study, census tracts are used as a proxy for
neighborhoods. Intersectional strata are specified according to five
neighborhood characteristics: race and ethnicity, gendered family
structure, educational attainment, income, and urbanicity. Using EIM,
we contribute to the growing interest in quantitative intersectional
analysis by quantifying tract-level intersectional inequalities in indus-
trial air pollution exposure and critiquing the underlying social pro-
cesses that give rise to these environmental injustices.

2.4. Dependent variable: Industrial air toxics

The air pollution data is an annual estimate of industrial air toxics
concentrations from the Environmental Protection Agency’s Risk-
Screening Environmental Indicators Geographic Microdata (RSEI-GM)
(U.S. Environmental Protection Agency, 2015). RSEI-GM derives air
pollution estimates from the Toxic Release Inventory (TRI) and uses
geographical modeling techniques to estimate air toxic exposure at a
1-km square spatial resolution (see U.S. Environmental Protection
Agency, 2015 for detailed methodology). The RSEI-GM’s 1 km-grid map
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of the air toxics concentrations were aggregated up to the census tract
level based on the area of tract within each grid cell (see Ard, 2015 for
methodology). Here, we used the natural log transformation of the total
amount of industrial air toxics concentration measured in micrograms
per cubic meter (ug/m?) for the year 2014. Three-hundred and sixty-four
tracts have null values and were recorded as having zero estimated
pollution exposure (about 0.51%). Because TRI air pollutants have
varying levels of toxicity, we chose to use direct total air toxics con-
centration (ug/m>) as a starting place to understand how the total
amount of air toxics relates to neighborhood characteristics. Future
research should endeavor to incorporate chemical toxicity and
interactions.

2.5. Neighborhood demographic data

Demographic data is from the American Community Survey (ACS)
2010-2014 (U.S. Census, 2014), made available at the census tract level
by the National Historical Geographic Information System (Manson
et al., 2018). The ACS collects in-depth demographic and housing data.
We follow precedent set by previous intersectionality research by uti-
lizing census tracts as a proxy for neighborhoods (e.g., Liévanos 2015).
While not always a perfect representation of how one might define their
community, tracts offer several benefits. For example, census tracts fall
neatly within county boundaries, therefore reflecting administrative and
budgeting priorities within local governments. This is particularly
important when trying to understand the structural mechanisms that
perpetuate inequality, such as variation in welfare and social service
funding (Kelly and Lobao, 2021). Metropolitan data is from the most
current version of the Rural-Urban Continuum Codes (RUCC) (U.S.
Department of Agriculture Economic Research Service, 2013). RUCC
categorizes counties into a 1-9 scale with 1-3 classified as “metropolitan
counties” and 4-9 classified as “nonmetropolitan counties.” We con-
verted the RUCC codes to a binary metro/nonmetro where 1-3 RUCC
codes were classified as metro and 4-9 classified as nonmetro. The
sample includes a total of 71,625 census tracts within the contiguous
United States. Of the entire sample, 134 tracts have population of less
than 500 residents (approximately 0.19%). Tables 1 and 2 report
descriptive statistics.

2.6. Intersectional strata

In the present EIM models, analytic intersectional strata are identi-
fied using a five-digit stratum code based on race and ethnicity,
gendered family structure, SES, and urbanicity status. The racial and
ethnic dimension consists of four categories and represents the racial
and ethnic composition: (1) census tracts below the median percent
Black non-Latinx’ and below the median percent Latinx residents; (2)
census tracts above the median percent Black and below the median
percent Latinx residents; (3) census tracts below the median percent
Black and above the median percent Latinx residents; and (4) census
tracts above the median percent Black and above the median percent
Latinx residents. Gendered family structure represents the percent of
female-headed households and consists of three categories: (1) lowest;
(2) middle; and (3) highest tercile. Educational attainment is the percent
of residents over the age of 25 with some college education or higher and
has three categories: (1) lowest; (2) middle; and (3) highest tercile.
Median household income consists of the following three categories: (1)
lowest; (2) middle; and (3) highest tercile. Finally, urbanicity is repre-
sented by two categories: (0) non-metro and (1) metro.

Table 3 summarizes the categories of the stratum ID. For example,
the intersectional stratum code 21320 indicates census tracts with a
racial and ethnic composition of above the median percent Black and
below the median percent Latinx residents (2), lowest tercile of female-

3 Henceforth we refer to Black non-Latinx residents as Black for simplicity.
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Table 1
Descriptive statistics.
Mean SD Median Min Max
Industrial Air Toxics Concentration (jug/m®) 0.31 1.10 0.11 0.00 128.22
Race and Ethnicity by Tract
% Black 13.45 21.98 3.78 0.00 100.00
% Latinx 15.70 21.22 6.61 0.00 100.00
% Female-Headed Household 13.65 8.72 11.53 0.00 87.28
% Residents with Some College or More 57.10 17.84 56.19 4.74 100.00
Median household income ($) 57,179.34 28,489.62 50,906.00 2,499.00 250,001.00
Metro (binary) 0.83 0.37 1.00 0.00 1.00
Median age 38.75 7.62 38.80 11.50 84.30
% Housing units built in 1970 and after 55.39 28.78 57.08 0.00 100.00
Median housing value ($) [N = 70,921] 217,803.40 172,690.90 161,900.00 9,999.00 1,000,001.00
% Manufacturing Workers [N = 71,624] 10.50 6.90 9.17 0.00 61.39
% Renters 36.26 22.70 31.10 0.00 100.00
% Unemployment 9.78 6.01 8.45 0.00 100.00

Note: N = 71,625 unless otherwise stated. Median housing value is of owner-occupied housing units in tens of thousands of dollars. Percent of workers in manufacturing
is the number of civilians (aged 16 years and older) employed in manufacturing divided by the total number of civilians (aged 16 years and older) who are employed.
Percent renters was calculated as the number of rental housing units divided by the total number of housing units. Percent unemployed was calculated as the number of
civilians (aged 16 years and older) in the labor force who reported being unemployed divided by the total population in the tract (aged 16 years and older) who are in

the labor force.

Table 2
Descriptive Statistics of EPA region.

EPA Frequency % Average Industrial Air Toxins Concentration
Region Amount (pg/m>)
1 3346 4.67 0.06

2 6789 9.48 0.09

3 7311 10.21  0.15

4 13,759 19.21 013

5 13,005 18.16  0.20

6 8554 11.94 0.10

7 3497 4.88 0.13

8 2645 3.69 0.05

9 10,153 1418  0.08

10 2566 3.58 0.13

headed household (1), highest tercile of residents with some college or
more (3), middle tercile of median household income (2), and not within
a metro area (0). Fig. 1 displays maps of these categories as well as
pollution estimates.

2.7. Control variables

We include several control variables to examine whether the
observed inequalities could be explained by other factors, including
some which may be correlated with variables in our analysis, and are
often included in EJ research. First, we control for median age as pre-
vious research indicates older age is a disadvantaged status which may

affect residential mobility (Calasanti, 2020; Crystal et al., 2017). Sec-
ond, we follow earlier work and control for the percentage of rental
units, as homeownership has been found to be an indicator of neigh-
borhood wealth and social capital (Chakraborty et al., 2014; Morello--
Frosch et al., 2002; Pastor et al., 2005). Third, we control for the percent
of residents working in manufacturing industries, as prior scholarship
notes manufacturing workers tend to reside in closer proximity to
manufacturing industries (Anderton et al., 1994; Boer et al., 1997;
Downey and Hawkins, 2008b; Pastor et al., 2005). Fourth, previous
scholarship controls for the median year houses were built to gauge the
age of the residences and other infrastructural components within a
neighborhood (Downey and Hawkins, 2008a; Liévanos, 2015); we use
the percent of housing units built during or after the 1970s to demarcate
neighborhood age. Fifth, we follow previous research and include un-
employment percentage as a measure of economic deprivation
(Liévanos, 2015; Smith, 2009). Sixth, we follow earlier research and
control for median housing value as an indicator of neighborhood
wealth (Downey and Hawkins, 2008b; Morello-Frosch et al., 2002).
Seventh, we echo researchers who examine differences within
policy-implementing boundaries, such as EPA regions, which account
for regional environmental enforcement differences as well as broader
regional demographic profiles (Ard, 2015; Zwickl et al., 2014). In
summary, we controlled for median resident age; the percentage of
rented housing units; residents working in manufacturing; neighbor-
hood age; and unemployment. We also included the median housing
value of owner-occupied housing of the census tract and controlled for
the ten EPA regions.

Table 3
Stratum ID reference table.
Stratum 1st digit 2nd digit 3rd digit 4th digit 5th digit
D Racial and ethnic composition Female-Headed Household Educational Attainment Median Household Income Estimated
Industrial
Pollution
Exposure
1 Below the median % Black and below 1 Lowest tercile of % female- 1  Lowesttercileof%some 1  Lowest tercile of median 0  Non-
the median % Latinx residents headed household college or more household income metro
2 Above the median % Black and below 2  Middle tercile of % female- 2  Middle tercileof %osome 2  Middle tercile of median 1 Metro
the median % Latinx residents headed household college or more household income
3 Below the median % Black and above 3  Highest tercile of % female- 3  Highest tercile of % 3 Highest tercile of median
the median % Latinx residents headed household some college or more household income
4 Above the median % Black and above

the median % Latinx residents

Notes: The digits combine to represent the stratum IDs. For example, stratum 32310 indicates census tracts with low % Black and high % Latinx residents, middle tercile
of female-headed household, highest tercile of some college or more, lowest tercile of median household income, and within a non-metro area.
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Fig. 1. Maps of stratum for 2010 census tracts and pollution exposure.

Notes: Each map shows the category breakdown for each dimension of the intersectional social strata: Map A shows racial and ethnic composition, Map B shows
terciles of female-headed household, Map C shows terciles of educational attainment, Map D shows terciles of median household income, Map E shows metro/
nonmetro, and Map F shows the estimated concentration of industrial pollution.

2.8. Analytic approach: EIM modeling

Here, we explain in detail the EIM approach, where census tracts
(level 1) are nested hierarchically within intersectional strata (level 2).
The general equation for the models is:

Vi =P8 + Uy + e @
Hoj ~ N(O, ‘73)
eo; ~ N(0,07)

where in Eq. (1). y; represents the total amount of industrial air toxics
concentration (log transformed) of a census tract i in intersectional
stratum j, &; is the vector of the intercept and fixed effects for stratum j,
and f represents the corresponding parameters. The tract-level residual
is e for census tract i within stratum j, which is normally distributed
with a mean of 0 and between-tract/within-stratum variance of ¢2. The
stratum-level residual is yg; for stratum j, which is normally distributed
with a mean of 0 and between-stratum variance of aﬁ.

Equation (2) is the variance partition coefficient (VPC) and estimates
the proportion of the total variance of the dependent variable that re-
sides at the between-stratum level, thus making it an excellent measure
of inequalities between strata:

62

VPC= s @

For the analyses, several models were estimated. The first model
(Model A) is the null random-intercept model which includes no fixed
effects. In this model, the VPC provides a measure of the total between-
stratum inequalities in air toxics exposure, unadjusted for other factors.
The null model also serves as the reference point for later models to
compare variances.

The second model (Model B) adds fixed effect parameters to adjust
for the additive neighborhood-level “main effects.” In EIM models where
the additive effects are controlled for, but no interactions are added as
fixed effects, the stratum-level residuals (ﬂoj) estimate the interaction

effect unique to each stratum. Also of interest in this model is an
assessment of how much variation (or inequality) remains between
strata overall after adjustment for additive components. In cases where
aﬁ has decreased to zero, this indicates that overall, there is little
interaction between the axes of marginalization evaluated. Where
variation remains, this indicates that additive effects are inadequate to
account for the existing inequalities. Helpful when examining this is the
Proportional Change in Variance (PCV), which estimates what propor-
tion of the total between-stratum variance (from Model A) is accounted
for by the additive main effects. Equation (3) is the PCV as:

2 2
o -0
. Model A . Model B
PCV =-tr RIS 3
Oy, Model A

Models C and D build on Model B by adding control variables to
examine the extent to which these residual inequalities attributable to
interaction effects can be explained by specific factors. Model C adds the
neighborhood-level demographic controls and Model D adds the EPA
regions.

In the results and discussion sections, we frequently discuss “additive
effects” versus “interaction effects.” To be clear, the additive effects refer
to the singular main effects of the stratum such as “the middle tercile of
percent female-headed household.” As discussed above, the EIM
modeling approach quantifies the “interaction effects” with the inter-
sectional social strata by using the multilevel modeling structure. Thus,
the interaction effects refer to the evaluation of the intersectional social
strata including the VPC and PCV as well as the ranking of predicted
values of each stratum and the significance of the stratum residuals.

All models were run in MLwiN 3.02 (Rasbash et al., 2017) called
from Stata 14.1 using the runmlwin command (Leckie and Charlton,
2013). We use Bayesian Markov Chain Monte Carlo (MCMC) estimation
procedures (Browne, 2017) with diffuse priors. The MCMC procedure
with initialization values were provided with quasilikelihood methods.
Models have a burn-in of 5000 iterations with a total length of 50,000
iterations (with thinning every 50 iterations). Credible intervals at 95%
were calculated for all estimates.
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3. Results

Table 1 reports descriptive statistics, while Table 2 reports the
average industrial air toxics concentration by EPA region. The average
level of industrial air toxics® was 0.31 pg per cubic meter (ug/m>),
however this varied widely, ranging from 0 to over 128 pg/m>. While
these numbers help to paint a picture of how crowded air is with esti-
mated air toxics, what we are most interested in understanding is how
the amount of estimated air pollution compares across community types.
Neighborhood demographic characteristics also varied widely across
census tracts in the sample. Percentage of Black or Latinx residents
ranged from O to 100. Female-headed households averaged at 13.65%
with a range of 0%-87.28%. Residents reporting some college education
or higher averaged at 57.10% with a range of 4.74%-100%. Median
household income ranged from $2,499 to $250,001 with an average of
$57,179.34. We use EPA region 5, which had the highest average air
pollution concentration (0.20 pg/m>), as the reference category in our
analyses.

Table 4 reports the results from the EIM models. The intercepts are
negative due to the natural log transformation of the air toxics outcome
variable, and negative values indicate extremely small numbers (e.g.,
exp(-2.550) ~ 0.078 pg/mB). We begin with the null model without
main effects and add fixed effects to models thereafter. The VPC of the
null model (Model A) is 23.49%, meaning nearly a quarter of the vari-
ation in industrial air toxics across census tracts is attributable to in-
equalities between intersectional strata, supporting a narrative of
extreme environmental injustices.

The additive fixed effects model (Model B) demonstrates how much
of the between-stratum variance can be explained when controlling for
the additive main effects. The VPC of Model B decreased to 2.86%,
indicating inequalities between strata are not explained by additive ef-
fects alone. This is confirmed by the PCV of 90.4% between the Models A
and B, which suggests that approximately ten percent of the between-
stratum variance may be attributed to interaction effects. The addition
of the neighborhood-level demographic controls (Model C) decreases
the VPC to 1.28%, and the further addition of EPA regions (Model D)
resulted in a VPC of 1.27%. This indicates that despite inclusion of a
variety of controls, considerable inequalities and residual interaction
effects remained unexplained between strata.

Fig. 2 plots the expected value (and 95% CI) for each stratum and
illustrates the wide inequalities summarized by statistics such as the VPC
in Model A. Supplementary Table 1 reports these expected values
numerically for each stratum. Fig. 3 contains a close-up of the ten
highest and ten lowest ranking strata by total amount of air pollution.
The stratum with the highest expected value of air toxics was stratum
23111 (high percentage Black and low percentage Latinx residents, high
percentage female-headed households, lowest terciles of educational
attainment and median household income, metro) with expected value
= 0.361 pg/m°. The predicted air pollution level for stratum 23111 was
approximately 45-times higher than pollution levels predicted for the
stratum with the least exposure, stratum 31330 (low percentage Black
and high percentage Latinx residents, low percentage female headed-
households, highest terciles of educational attainment and median
household income, non-metro; expected value = 0.008 pg/m>).

When examining strata with highest and lowest total amount of air
pollution, several important findings stand out. The three strata
reporting the highest exposure to air pollution share many characteris-
tics (a high percentage of Black and low percentage of Latinx residents,
high percentage of female-headed households, lowest tercile of median
household income, metro area) and differ only in educational attain-
ment. Generally, strata predicted to have the highest exposure levels are
census tracts with a higher percentage of Black residents within a metro
area, with all ten highest-exposed strata sharing these characteristics.

4 The reported values are the unlogged estimates of industrial air toxics.
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On the other hand, census tracts exposed to lower levels of air pollution
tended to be in non-metro areas and have fewer Black residents. The
census tracts exposed to lower levels of air pollution tended to have
fewer Black residents and more Latinx residents, fewer female-headed
households, higher educational attainment, and classified as non-
metro areas.

In Model B, a purely additive take on the results suggests that strata
will tend to have higher air pollution levels if they are metro neigh-
borhoods with a higher percentage of Black residents, in the highest
tercile of female-headed household, and lowest tercile of educational
attainment. Overall, strata with a high percentage of Black and high
percentage of Latinx residents tended to have elevated pollution levels,
but it was the “high % Black and low % Latinx” strata that had the
highest levels. While additive fixed effects for median household income
did not show clear evidence of inequalities in Model B, adjustment for
demographic controls in Model C did reveal inequalities, with higher
income levels correlating (on average) with higher pollution levels.
Furthermore, even when additive fixed effects are not statistically sig-
nificant, income remained important to predicting pollution inequalities
for some strata, which is reflected in the stratum-level residuals. In
Model C, all other additive fixed effects maintain the direction and
significance found in Model B except for educational attainment. Model
D includes EPA regions, and all additive fixed effects maintain their
direction significance except for educational attainment, which is no
longer significant.

While additive results are worth examining, it is essential to under-
stand that these additive patterns can obscure intersectional patterns of
inequalities. As noted previously, the VPC suggests that substantial
variation (or inequality) between strata is accounted for by interaction
effects. For instance, although additive parameters for educational
attainment and median household income are inconsistent in their sta-
tistical significance, education and household income do appear to
combine with other demographic factors to place certain strata at
heightened (or reduced) risk of high industrial air pollution exposure.
For instance, strata 31330, 31320 and 31310 were three of the four
strata with lowest overall predicted air pollution levels. These strata
have substantially similar profiles, consisting of communities with a low
percentage of Black and high percentage Latinx residents, low percent-
age female headed households, high average educational attainment, in
metro areas. The three strata differ only with respect to median house-
hold income. This indicates that the educational attainment of residents
is a salient component of the intersectional advantage experienced by
these communities with respect to air toxics exposure.

Fig. 4 plots the 56 (out of 216) strata with significant residual
interaction effects in Model B. We focus here on the “total interaction
effects” in Model B because subsequent models’ adjustment for controls
may be identifying and attenuating for underlying explanations of in-
equalities. Strata with significant residual interaction effects appear to
experience predicted air pollution levels that substantially differ from
what might be expected based on a purely “additive story” about results.
The magnitude of these residuals and the frequency of significant re-
siduals among strata support our conclusion that it is essential to
examine interactions in order to adequately describe patterns of
inequality in air toxics exposure.

We ran robustness checks on Models A-D and Figs. 2-4 by dropping
census tracts with less than 500 residents, removing 134 tract observa-
tions. Estimates were consistent with findings from all the models. For
the caterpillar plot (Model B), there was a slight change in the order of
the strata within the top ten highest and the top ten lowest, but there was
no evidence of substantive changes. This indicates the original findings
were robust.

4. Discussion

In an EIM analysis of United States census tracts, we find evidence of
significant, intersectional inequalities in industrial air toxic exposure
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Table 4
Multilevel regression results.
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Model A (Null) Model B (Main Effects) Model C (Demographic Controls)

Est. 95% CI P Est. 95% CI P Est. 95% CI P
FIXED EFFECTS
Intercept —2.550 —2.654 —2.438 0.000 —3.266 -3.373 -3.153 0.000 —3.045 —3.140 —2.957 0.000
Racialization
Low % Black, Low % Latinx (ref)
High % Black, Low % Latinx 0.604 0.506 0.702 0.000 0.663 0.599 0.728 0.000
Low % Black, High % Latinx -0.292 —0.389 -0.192 0.000 -0.172 —0.236 —0.108 0.000
High % Black, High % Latinx 0.098 —0.006 0.194 0.031 0.190 0.124 0.258 0.000
Female Headed Household
Low Tercile (ref)
Middle Tercile 0.215 0.130 0.291 0.000 0.079 0.022 0.136 0.005
High Tercile 0.345 0.246 0.429 0.000 0.141 0.077 0.204 0.000
Educational Attainment
Low Tercile (ref)
Middle Tercile —0.128 -0.214 —0.046 0.003 0.059 0.004 0.118 0.015
High Tercile —-0.216 -0.311 -0.127 0.000 0.149 0.086 0.214 0.000
Median Household Income
Low Tercile (ref)
Middle Tercile 0.012 —0.072 0.092 0.405 0.123 0.066 0.178 0.000
High Tercile —0.031 -0.122 0.056 0.243 0.264 0.193 0.334 0.000
Metro 1.039 0.967 1.116 0.000 1.029 0.979 1.081 0.000
CONTROLS
Median Age* —0.015 —0.016 —-0.013 0.000
Housing built in and after 1970s (%)* —0.010 —0.010 —0.010 0.000
Median Housing Value** —0.160 -0.179 -0.141 0.000
Manufacturing (%)* 0.054 0.052 0.055 0.000
Renters (%)* 0.006 0.005 0.007 0.000
Unemployment (%)* —0.004 —0.005 —0.002 0.000
RANDOM EFFECTS Est. 95% CI Est. 95% CI Est. 95% CI
Stratum Variance (c%,) 0.470 0.384 0.583 0.045 0.034 0.059 0.017 0.012 0.023
Individual Variance ((;&0) 1.532 1.516 1.548 1.532 1.515 1.548 1.314 1.299 1.326
VPC 23.49% 2.86% 1.28%
PCV (from null model) 90.40% 90.40%f
N 71,625 71,625 70,920

Model D (EPA Regions)
Est. 95% CI P

FIXED EFFECTS
Intercept —3.443 —3.529 —-3.357 0.000
Racialization
Low % Black, Low % Latinx (ref)
High % Black, Low % Latinx 0.502 0.438 0.567 0.000
Low % Black, High % Latinx -0.130 —0.194 —0.067 0.000
High % Black, High % Latinx 0.161 0.095 0.228 0.000
Female Headed Household
Low Tercile (ref)
Middle Tercile 0.118 0.064 0.172 0.000
High Tercile 0.204 0.145 0.263 0.000
Educational Attainment
Low Tercile (ref)
Middle Tercile 0.030 —0.025 0.084 0.286
High Tercile 0.037 —0.024 0.099 0.237
Median Household Income
Low Tercile (ref)
Middle Tercile 0.154 0.100 0.208 0.000
High Tercile 0.383 0.317 0.448 0.000
Metro 0.998 0.947 1.049 0.000
CONTROLS
Median Age* —0.014 —0.015 —0.013 0.000
Housing built in and after 1970s (%)* —-0.012 —-0.012 —-0.012 0.000
Median Housing Value** 0.084 0.063 0.107 0.000
Manufacturing (%)* 0.047 0.046 0.049 0.000
Renters (%)* 0.008 0.007 0.008 0.000
Unemployment (%)* 0.002 0.000 0.004 0.026
EPA Regions
1 —1.047 —1.089 —1.003 0.000
2 —0.887 —-0.923 —0.847 0.000
3 —0.092 —0.125 —0.058 0.000
4 0.031 0.000 0.061 0.023
5 (ref)
6 —0.126 —0.161 —0.091 0.000
7 0.079 0.035 0.119 0.000

(continued on next page)
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Table 4 (continued)
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Model D (EPA Regions)

Est. 95% CI P
8 —0.635 —0.688 —0.579 0.000
—0.691 —0.729 —0.656 0.000
10 0.060 0.011 0.112 0.006
RANDOM EFFECTS Est. 95% CI
Stratum Variance (0%,) 0.016 0.011 0.022
Individual Variance (nfo) 1.221 1.208 1.234
VPC 1.27%
PCV (from null model) 96.67%7
N 70,920

Notes: * Variable is mean-centered. ** Variable is natural log transformation. { The PCV of Model C and D should be interpreted carefully because of the change in the

sample size due to missing values of control variables.
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Fig. 2. Expected values of total air pollution by stratum, ranked from lowest to highest exposure levels.
Notes: Markers indicate expected values of air pollution and lines indicate 95% credible intervals for each stratum from Model 1B.
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Fig. 3. Up-close of high- and low-risk air pollution exposure by stratum
ranking.

Notes: Markers indicate expected values of air pollution and lines indicate 95%
credible intervals for each stratum from Model 1B. The numeric value for
Stratum IDs is a five-digit code: Digit 1: racial/ethnic composition (1 = low%
Black low% Latinx, 2 = high% Black low% Latinx, 3 = low% Black high%
Latinx, 4 = high% Black high% Latinx); Digit 2: percent female-headed
households tercile (1 = low, 2 = middle, 3 = high); Digit 3: educational
attainment tercile (1 = low, 2 = middle, 3 = high); Digit 4: median household
income tercile (1 = low, 2 = middle, 3 = high); Digit 5: metro/non-metro (1 =
metro, 0 = non-metro).

between strata of census tracts, patterned according to racial/ethnic
composition, percent female-headed households, educational attain-
ment, household income, and urbanicity. The magnitude of these in-
equalities was considerable, with tracts from the highest-exposed stratum
(stratum 23111: high percentage Black, low percentage Latinx residents,

high percentage female-headed households, lowest terciles of educa-
tional attainment and median household income, metro) experiencing
45 times more exposure on average than tracts from the least-exposed
stratum (stratum 31330: low percentage Black, high percentage Latinx
residents, low percentage female headed-households, highest terciles of
educational attainment and median household income, non-metro). Of
the total variation in industrial air pollution in the sample, 23.5% was at
the between-stratum level, again indicating significant inequalities.
Phrased differently, while there was substantial variation in exposure
level across census tracts, with some experiencing very high or very low
pollution levels, exposure was also meaningfully patterned such that
certain multiply marginalized strata were significantly more likely to expe-
rience high exposure levels. Fig. 2 shows a pronounced spike in exposure in
the right-hand tail, indicating that not only were inequalities pro-
nounced overall, but a subset of strata experienced dramatically
heightened toxic exposures. Importantly, these inequalities are not
adequately represented by the additive contributions of these axes of
marginalization alone. Nearly 10% of this between-stratum variation
remained unexplained after adjusting for additive main effects, indi-
cating interaction effects contribute meaningfully to the inequalities as
well.

We find evidence of interaction effects impacting air quality for both
marginalized and privileged strata. In other words, this is not a simple
story of additivity explaining inequality for most strata, with a few
multiply marginalized strata experiencing an additional burden
(captured by interaction effects) above and beyond the additive. Strata
at various intersections of privilege and marginalization experience
positive (higher exposure) and negative (lower exposure) interaction
effects than would be expected for them based on additive effects alone.
For example, stratum 11331 (low percentage Black and low percentage
Latinx residents, low percentage female-headed household, highest
tercile of educational attainment and median household income, metro)
reported significant positive interaction residuals and ranked 152nd
(out of 216) for best air quality. On the other hand, stratum 41120 (high
percentage Black and high percentage Latinx residents, low percentage
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Fig. 4. Ranked stratum-level of statistically signifi-
cant residuals for industrial air toxics.

Notes: Markers indicate stratum residuals and lines
indicate 95% credible intervals for strata with statis-
tically significant residuals in Model 1B. The numeric
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% Black high% Latinx, 4 = high% Black high% Lat-
inx).

Digit 2: percent female-headed households tercile (1
= low, 2 = middle, 3 = high)

Digit 3: educational attainment tercile (1 = low, 2 =
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female-headed household, low tercile of educational attainment, middle
tercile of median household income, non-metro) reported significant
negative interaction residuals and ranked 19th (out of 216) for best air
quality. In other words, despite the differences in neighborhood de-
mographics categories and air quality, both strata showed evidence of
significant interaction effects—which work to either increase the health
risk for the most marginalized or decrease the health risk for the most
privileged.

Consistent with previous research (Ard, 2015), we found that
neighborhoods with the most air pollution tend to have a higher per-
centage of Black residents and Latinx residents. On the other hand,
neighborhoods with a lower percentage of Black residents and a higher
percentage of Latinx residents reported the least air pollution, as seen in
Fig. 3. We hypothesize several potential explanations for this finding.
First, Fig. 2 demonstrates there are a fair number of strata at the lower
end; in other words, the lower end of the caterpillar is fairly flat, indi-
cating those strata have similar exposure levels. Second, this finding
may be explained by the overlapping dimensions of a high percentage of
Latinx residents and non-metro strata living in more rural or agricultural
communities with fewer industrial air pollution sources, as suggested by
the macro regional patterns in Fig. 1. Our dependent variable does not
capture agricultural sources of air pollution, so there may be additional
pollutants in non-metro strata that we cannot assess. Third, while some
research has suggested that Latinx residents may live in less polluted
areas as compared to Black and White residents (Ash and Fetter, 2004;
Downey and Hawkins, 2008a), this finding could be attributable to the
census definition of Latinx, which collapses many ethnic groups, such as
Puerto Ricans, Mexicans, and Cubans, as well as racial groups including
white Latinxs, Afro-Latinxs, and Indigenous-Latinxs into a single cate-
gory (Chakraborty et al., 2017; Collins et al., 2011; Grineski et al., 2013;
Rubio et al., 2020). We use the “Hispanic or Latino Origin by Race”
variable to capture the overlap between ethnicity and race, however this
approach is limited in its understanding of all intracategorical groups of
ethnicity and race within the Latinx community. These populations
might have distinct spatial patterning and notable inequalities in
exposure to pollution, yet these results may obscure inequalities that
here would be captured as within-stratum variation. Also important to
this summary, which thus far is distinctly additive, is the intersectional
perspective. While strata with a high percentage of Latinx and low
percentage of Black residents may tend to have lower levels of air
pollution exposure, this is not universally true. For example, stratum
32131 (low percentage Black and high percentage Latinx residents,
middle tercile of female-headed households, low educational attain-
ment, high tercile of income, metro) has a relatively high level of air
pollution: 0.156 meg/m® (ranking 167th out of 216 strata for best air
pollution). This stratum leans toward more disadvantage and margin-
alization on other axes, which is reflected by its higher-than-average
exposure score and rank. Accurately estimating exposure levels for
strata such as this necessitates an intersectional model capable of
capturing residual interaction effects.

10

middle, 3 = high)Digit 4: median household income
tercile (1 = low, 2 = middle, 3 = high); Digit 5:
metro/non-metro (1 = metro, 0 = non-metro).

We also found strong evidence of the importance of an understudied
neighborhood demographic—female-headed households—in the
patterning of industrial air toxics. In both additive and intersectional
effects, female-headed household is one of the most consistent pre-
dictors (after urbanicity and racial/ethnic composition) of total air
pollution. Previous quantitative EJ literature has used female-headed
household as an indicator of socioeconomic status within a measure of
“economic deprivation index” along with unemployment and educa-
tional attainment (Smith, 2009; Liévanos 2015). It is important to note
that there are unique ways in which gendered family structure is
marginalized and locales are gendered (Ducre 2012); our findings
clearly highlight its salience in air toxics exposure.

Viewed in purely additive terms, educational attainment and median
household income appeared to have inconsistent correlation with air
pollution levels. However, when viewed intersectionally, education and
income were clearly important, placing neighborhoods either at
heightened or reduced risk of exposure. For instance, higher average
educational attainment was an important dimension in shaping the low-
risk status of three of the four lowest-exposure strata (31330, 31320 and
31310), all communities with low percentage Black and high percentage
of Latinx residents, and low percentage female headed households in
non-metro areas. At the same time, the three strata reporting the highest
exposure to air pollution (23111, 23311 and 23211) share many char-
acteristics (high percent Black, low percent Latinx, high female-headed
household, lowest income tercile, metro) and differ only in education
level. For these strata, low median household income clearly contrib-
uted to a heightened risk of exposure as one of multiple axes of
marginalization. This reflects the importance of an intersectional
approach because whether income or education matters more for
reducing risk of exposure will depend on other axes of marginalization.
Higher levels of either income or educational attainment will vary across
the strata and without the intersectional approach the effects can get
washed out.

We also found clear and significant additive effects for urbanicity,
wherein strata within metro areas generally had higher exposure to air
pollution when compared to non-metro strata. The intersectional effects
of urbanicity are more complicated to parse out. For example, stratum
31330 (low percent Black, high percent Latinx, low female-headed
household, high educational attainment, high income, non-metro) is
1st for best air quality, while its metro analog 31331 (low percent Black,
high percent Latinx residents, low female-headed household, high
educational attainment, high income, metro) is 113rd for best air quality
(a nearly 100 place difference in ranking for best air quality). Is this
effect simply additive? Or is there a multiplicative effect wherein a
multiply privileged stratum is able to move away from pollution or “vote
with their feet” (Banzhaf and Walsh, 2008)? If the latter is the case, how
do those mechanisms play out for multiply disadvantaged communities
(Ard and Fairbrother, 2017)? These findings stress the importance of
place and direction in the application of intersectionality theory. Alto-
gether, our findings highlight the importance of an intersectional
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approach when analyzing industrial air toxic exposure.

No study is without limitations and ours is no exception. First is our
inability to examine how the timing of residential mobility relates to the
observed inequality in exposure. In other words, while we can observe
the inequality, we are unable to make concluding statements about how
these inequalities were generated. For instance, did industry predate the
current sociodemographic profile, while marginalized populations
moved there over time? Or were new industrial production sites
disproportionately placed in marginalized communities because of their
marginalized status? Residential mobility has been addressed in previ-
ous research (Crowder and Downey, 2010; Downey et al., 2017; e.g.,
Pais et al.,, 2014) and findings suggest that residents of color and
single-mother households are more likely to reside in neighborhoods
with higher air toxics, and are more likely to move into said neighbor-
hoods. This happens in part because of policy or land-use decisions, such
as redlining, restrictive covenants, or zoning (Ard, 2016; Maantay, 2001;
Taylor, 2014). Regardless of how present patterns of unequal exposure
came to be, the existence demands future action in order to shield
vulnerable populations from the health inequities generated from air
toxic exposure.

A second limitation relates to problems inherent to defining analytic
categories for the purposes of comparison. Such categorizations may not
be optimized to detect the full magnitude of inequalities. We focused on
Black and Latinx residents because they are at present the largest racial
and ethnic minority populations in the U.S. and this focus is consistent
with prior research (Downey and Hawkins, 2008b). However, one
oversight of this categorization is the grouping of white residents with
Asian and Pacific Islander and Indigenous residents, who have also been
found to experience heightened risk of hazards exposure (Grineski et al.,
2017, 2019; Liévanos, 2019). Future research can expand on these
categorizations and may include other axes of marginalization such as
nationality and citizenship. These categories are not naturalist cate-
gories and are intended to describe larger inequalities across society.
Moreover, our findings reflect ongoing segregation patterns of the US
and so future research can investigate other measures such as segrega-
tion indices (Ard, 2016).

Future work bridging the EIM approach with a spatial analysis would
be fruitful. Such efforts could provide an opportunity to determine what
policies configurations, across administrative levels, are most impactful
on social outcomes. Moreover, we can use the intersectionality frame-
work to re-operationalize community, determining which boundaries
align with health and well-being. Future research could develop a multi-
scalar framework linking EIM and intersectional MAIHDA to evaluate
the individual- and neighborhood-levels as well as their interactions.
Additional avenues for future research might include an examination of
the mediating effects of socio-economic status such as income or
educational attainment on various neighborhood demographics, as well
as inequalities in other sources of environmental health hazards, such as
drinking water contaminants (Uche et al., 2021) and land waste.

5. Conclusion

Scholarship in EJ and public health demonstrate environmental in-
equalities at the neighborhood-level, but the interaction between axes of
marginalization in generating hazard exposure inequalities remains
understudied. To incorporate intersectionality into our understanding of
environmental inequalities, explore the generalizability of previous EJ
research, and move toward greater consideration of structural inter-
sectionality, we use EIM, an innovative statistical model, to examine the
patterning of industrial air toxics. This intercategorical intersectional
approach finds stark patterns of inequality in industrial air toxics
exposure between strata of census tracts, which are of significant
magnitude and inadequately explained by additive narratives of
inequality. Future research should incorporate additional aspects of
marginalization and environmental indicators into the EIM approach.

Air pollution has serious repercussions for public health and EJ.
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Estimates of chemical exposure used here have been deemed hazardous
to health and therefore any amount represents a risk. Future work
should examine how different chemicals and specific health hazards
vary across these axes of marginalization. A large, unequal distribution
of risk resides in historically marginalized communities. It is important
to understand these disparities are based not on singular factors but
rather on multiple, overlapping systems of oppressions. By taking a
holistic approach to air pollution disparities we aim to shed light on this
issue and seek to motivate social and political measures to address these
inequalities.
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