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Disclaimer 

This document was prepared as an account of work sponsored by the United States Government. While this 

document is believed to contain correct information, neither the United States Government nor any agency 

thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, 

express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 

owned rights. Reference herein to any specific commercial product, process, or service by its trade name, 

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof, or The Regents of 

the University of California. The views and opinions of authors expressed herein do not necessarily state 

or reflect those of the United States Government or any agency thereof or The Regents of the University of 

California. 

 

Acknowledgments 

This report was prepared by Lawrence Berkeley National Laboratory (LBNL) for the U.S. Department of 

Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Paul Sheaffer and 

Christopher Anderson for their review of the report and valuable insights. 



 

3 
 

Contents 
Introduction .................................................................................................................................................. 4 

Purpose ..................................................................................................................................................... 4 

Improvements in Operations, Behavior, and Maintenance Procedures ................................................ 4 

Operational ........................................................................................................................................... 4 

Behavior ................................................................................................................................................ 5 

Maintenance Procedures ...................................................................................................................... 5 

General Guidelines ........................................................................................................................................ 6 

General Approach .................................................................................................................................... 6 

Types of Improvements ........................................................................................................................... 6 

General Principles .................................................................................................................................... 8 

Methods for Determining Energy Consumption ..................................................................................... 9 

Utility Meter and Sub-Meter Analysis .................................................................................................. 9 

Data Logging and Spot Measurements ............................................................................................... 10 

Engineering Calculations ..................................................................................................................... 12 

Estimates, Correlations and Rule-of-Thumb ....................................................................................... 14 

Choosing an Appropriate Method ......................................................................................................... 14 

Detailed Guide and Examples by Type of Change ...................................................................................... 16 

Change in Operating Hours .................................................................................................................... 16 

Changes in Output .................................................................................................................................. 18 

Changes in Efficiency .............................................................................................................................. 22 

Combined Changes ................................................................................................................................. 23 

Additional Resources .................................................................................................................................. 27 

Resources ................................................................................................................................................ 27 

Air Compressors .................................................................................................................................. 27 

Boilers/Steam Systems........................................................................................................................ 27 

Pumps and Fans .................................................................................................................................. 27 

Motors ................................................................................................................................................. 28 

HVAC/Chiller Systems ......................................................................................................................... 29 

Summary ..................................................................................................................................................... 30 

 

  



 

4 
 

Introduction 

Purpose 
 

This Guide is intended to provide energy savings estimation methodologies for energy performance 

improvement actions resulting from changes in operations, behavior and maintenance procedures. 

These improvements are often referred to as “non-capital measures” because such improvements are 

typically achievable with little or no capital expenditures. This Guide is designed to assist industrial 

facilities in quantifying and documenting the energy savings resulting from these types of 

improvements, including the collection of essential data.  

This Guide was developed for use by facilities that are participating in a Strategic Energy Management 

(SEM) program that use a well-defined whole facility approach to measurement and verification, such as 

the Superior Energy Performance Measurement and Verification Protocol (SEP M&V Protocol) to 

determine their “top down” energy performance improvement level (e.g., 6.3% over three years), using 

energy consumption data from metered sources. The Guide is designed to assist these facilities in 

calculating a “bottom-up” comparison to support their top-down claims.  

Three categories of improvements are addressed in this Guide, operational, behavior, and maintenance 

procedures. The focus of the Guide is to assist users in recognizing the nature of the improvement and 

to select an appropriate method for determining the energy savings. Examples are provided to 

demonstrate the general principles, which are supplemented with selected detailed examples and 

additional resources.  The principles outlined in this Guide may also be applicable for certain types of 

capital projects.  

Users should be aware that the general methods provided here are for guidance purposes only.  SEM 

program participants should check on the specific requirements of the SEM program in which they are 

participating to ensure that the required M&V rigor is being met.  Use of this Guide should not be 

construed as either approval of the methodology chosen or the determined energy savings for purposes 

of SEP certification. Each unique application will be subject to engineering judgement of the SEM audit 

team or SEP performance verifier on the SEP audit team.  

Improvements in Operations, Behavior, and Maintenance Procedures 

Non-capital energy performance improvement actions can be divided into three following categories.  

Operational 
Operational energy performance improvement actions involve the modification of equipment operating 

parameters (such as pressure, temperature, flow rate or speed) to reduce energy consumption without 

negatively affecting the production rate or the quality of service or product. Some common examples 

are reducing the operating pressure of a compressed air or steam system, adjusting chiller temperature 

settings, and, optimizing chillers and pump sequences and loads. 
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Behavior 
Behavioral energy improvement actions involve routine human behavioral adjustments, typically made 

by building occupants, manufacturing workers or equipment operators. Some frequent examples 

include turning off lights when occupants leave the room, shutting off equipment when not in use, and 

refraining from using compressed air for personal cooling purposes.  

Maintenance Procedures 
Maintenance-related energy performance improvement actions involve adopting maintenance 

procedures or practices for equipment or systems which take energy performance into consideration. 

These types of actions vary significantly by end-use application. Common examples include establishing 

a compressed air leak detection program, repairing leaking steam traps regularly, periodic equipment 

vibration testing, and scheduling heat exchanger surface cleaning or equipment filters replacement 

based on hours of use. 

An important common trait of the three categories of improvements is that the resulting energy savings 

often requires continuous effort in order to persist. This is particularly true for the last two categories – 

behavior and maintenance procedure improvements. For organizations seeking conformity to ISO 

50001- Energy management system standard (required for SEP certification), these types of 

improvement actions achieve persistence of energy savings through incorporation into the organization 

or facility’s “operational control”. Please refer to the standard of ISO 50001: 2011 Energy management 

systems -- Requirements with guidance for use as well as the 50001 Navigator for requirements and 

guidance on the concept of operational control. 

  

https://navigator.industrialenergytools.com/
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General Guidelines 

General Approach 
There are multiple established guidelines and best practices on the topic of measurements and 

verifications for energy conservation measures published by DOE or other sources. These include but 

are not limited to International Performance Measurement and Verification Protocol (IPMVP), ASHRAE 

Guideline 14, M&V Guidelines: Measurement and Verification for Performance-Based Contracts and 

Uniform Methods Project. The general principles outlined in these guidelines are largely applicable to 

the verification, or estimation when verification is not practical, of energy savings from improvements in 

operation, behavior and maintenance procedures. This document does not intend to replace or repeat 

these well-established guidelines wherever applicable to non-capital measures. Rather, it provides a 

condensed and quick approach to concepts, general principles, common methods, examples and 

references to assist users in choosing an appropriate method to quantify energy savings from the non-

capital improvement actions at hand. 

Following a general M&V approach, the annual energy consumption of the affected equipment or 

system prior to the implementation of the energy performance improvement action (the “Pre-“) is 

determined first. In the next step, the annual energy consumption after implementation of the 

evaluated action (the “Post-“) is determined. The difference between the Pre- and the Post- is 

attributable to the improvement action, adjusted to similar conditions. 

In some cases, the before-and-after- difference in energy consumption (i.e. the energy savings) can be 

easily determined, but the base-case equipment/system energy consumption can be complex to 

determine. In those cases, the Pre- energy consumption may need to be a rough estimate for the 

purpose of reasonability check. Insulating a piece of pipe in a large steam system is an example of this 

case. 

It should be noted that the evaluation of certain types of actions may also require taking pre- and post- 

weather conditions and/or production rates or mix into account, to normalize for weather or 

production. The approach and techniques are similar to those used for normalization for capital-

investment actions. Typically, either the baseline energy consumption is adjusted to align with the Post- 

condition or both the Pre- and Post- energy consumption is adjusted to a “standard” or “common” 

condition using regression analysis approach. An example in the context of retro-commissioning is found 

in the section of “Combined Changes”. The SEP M&V protocol is good references for performing 

production related normalizations. 

Types of Improvements 
Due to the range and variety of energy performance improvement actions, this Guide cannot include 

specifics concerning how to determine energy savings for every possible improvement action. Rather, 

this Guide attempts to define a few common types of improvements and provide some general 

principles to assist users in categorizing the improvement under evaluation and finding a method 

suitable for their unique situations. 

To identify a few categories of improvement actions that are generally applicable to common 

operational, behavioral, and maintenance actions, a closer look at how energy is consumed is needed. 

From a generic perspective, energy is typically consumed at a certain rate, steady or varying, for a 

specified period of time, for the purpose of  generating an output or result, which can be an input to 

http://www.coned.com/energyefficiency/PDF/EVO%20-%20IPMVP%202012.pdf
https://gaia.lbl.gov/people/ryin/public/Ashrae_guideline14-2002_Measurement%20of%20Energy%20and%20Demand%20Saving%20.pdf
https://gaia.lbl.gov/people/ryin/public/Ashrae_guideline14-2002_Measurement%20of%20Energy%20and%20Demand%20Saving%20.pdf
http://energy.gov/sites/prod/files/2016/01/f28/mv_guide_4_0.pdf
http://energy.gov/eere/about-us/ump-protocols
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another energy-using process, a product, a service, or another form of energy. The required energy 

consumption rate, which is also the energy input, relative to the quantified output defines the efficiency 

of that energy use. For example, the efficiency can be expressed as CFM/kW for compressed air 

systems, Btu/Wh (Energy Efficiency Ratio, or EER) for air conditioners, or, ton/Btu for a certain 

manufacturing process step.  

Many systems and equipment operate with distinct modes or operating conditions. For instance, air 

compressors with load/unload controls have two distinct modes during operation with dramatically 

different levels of power draw. For many manufacturing processes, equipment may be operating at 

different conditions depending on day types, shifts, and product types. The energy consumption rate of 

comfort cooling and heating systems are typically highly dependent on weather. Unlike the two previous 

examples with discrete modes or conditions, weather is described with continuous variables. “Bin 

analysis” is a popular and industry-accepted way of handling continuous variables such as weather. By 

totaling the energy consumption in all operating modes and conditions, we can obtain the annual 

energy consumption of a system or piece of equipment. Equation 1 below illustrates this approach. 

 

𝐴𝐸𝐶 = ∑(𝐷𝑒𝑚𝑎𝑛𝑑 × 𝐻𝑜𝑢𝑟𝑠)𝑚𝑜𝑑𝑒/𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = ∑(
𝑂𝑢𝑡𝑝𝑢𝑡

𝐸𝑓𝑓
× 𝐻𝑜𝑢𝑟𝑠)𝑚𝑜𝑑𝑒/𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

Equation 1 

Where AEC = Annual Energy Consumption (kWh/yr or Btu/yr)  

  Demand = Energy Demand (kW or Btu/hr) 

  Hours = Annual Operating Hours (hrs/yr) 

  Output = Output (rate of energy or work e.g. kW, Btu/hr, or, products e.g. lbs/hr) 

  Eff = Efficiency (can be dimensional or dimensionless, e.g. CFM/kW) 

 

Equation 1 provides insights to how the annual energy consumption, or AEC, of a system or piece of 

equipment may be changed as the result of an energy performance improvement action. There are five 

basic possibilities, which we call “types of changes”.  

1) Change of Annual Operating Hours, or Hours. No other parameter changes. 

2) Change of Output. No other parameter changes. 

3) Change of Efficiency, or Eff. No other parameter changes. 

4) Change of Energy Demand, or Demand, describing simultaneous change in Output and Eff. No 

change in Hours.  

5) Change of the Energy Consumption of a certain mode or condition, or (Demand x Hours). It 

indicates simultaneous change in Output, Efficiency and Hours. 

Note that for a given improvement action, the type of change it makes in each mode or condition can 

potentially be different. For example, it is possible that an action changes the Output (Type 2) during 

shift 1 and changes Hours (Type 1) during shift 2. However, those more complex changes can still be 

broken down into the five basic types of changes for further analysis. 

Table 1 provides common examples of operational, behavioral, or maintenance procedure 

improvements associated with each type of change. Be advised that the categorization of the examples 
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provided below is subject to certain assumptions, which may or may not be true for a specific 

improvement under evaluation. Later in this document, some of the examples below will be examined in 

detail to guide users in approaching energy savings estimation for each type of change. 

 

Table 1 Five Basic Types of Changes with Examples 

Type of Change Examples  

Type 1: 
Annual Operating Hours 

Shut off air compressor when not needed 

Install occupancy sensor on  HVAC fan controls 

Type 2: 
Output 

Repair compressed air leaks 

Reduce air compressor discharge pressure 

Repair steam traps or steam leaks 

Type 3: 
Efficiency 

Lower chiller condenser water temperature 

Tune-up boiler to reduce excess air  

Clean boiler tubes or heat exchanger surfaces 

Maintenance measures (e.g. fans and pumps, chillers) 

Type 4: 
Energy Demand 

Reduce steam system pressure 

Repair failed check valve in distribution piping 

Type 5: 
Energy Demand & Hours 

Adjust thermostat settings 

Repair rooftop air conditioner economizer 

Conduct HVAC system tuning measures (retro-
commissioning) 

 

General Principles 
There are four broad methods that are commonly used for estimating the Pre- and Post- 

equipment/system energy consumption, as well as energy savings associated with an action under 

evaluation. They are:  

 Utility meter and sub-meter analysis,  

 Data logging and spot measurements,  

 Engineering calculations, and,  

 Estimates and Rule-of-Thumb.  

Each of the four methods will be explained in detail in the following chapter. Here, we want to first 

discuss a few general principles to keep in mind when choosing the method or combination of methods 

for a specific application.  

First of all, for the purpose of performing bottom-up savings analysis for a given energy performance 

improvement action, the following factors should be considered: magnitude of the energy savings 
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relative to the total top-down energy savings, accuracy (method and device), cost of measurement 

(hardware and labor) and timeliness. Generally: 

1. Improvement actions with greater energy savings impact should be measured with more rigor; 

2. When energy savings compared to baseline energy consumption is greater than measurement 

error and other loads are relatively stable, utility meter and sub-meter analysis or logged 

consumption/demand data are usually the most accurate. They should be considered first if 

available or practical to obtain; 

3. When energy savings is significant but not practical or cost-effective to measure directly, 

engineering calculation using well-established models is a popular option to consider. Logged or 

spot measured values of the key parameters in the model should be used if practical to obtain;  

4. When engineering calculation is used and measured values are not available for a certain key 

parameter, its uncertainty and impact on the overall accuracy of the results should be 

considered; 

5. When energy savings is very small and impractical to measure or calculate (e.g. maintenance 

related actions), industry-accepted rule-of-thumb should be considered, if one exists. 

Otherwise, best possible estimate may be used. 

It should be noted that the general principles stated above are intended for the determination of energy 

savings once an energy performance improvement action is made (i.e. post-). The appropriate method 

for predicting the energy savings associated with a planned or considered action can be significantly 

different, which is outside the scope of this Guide. For example, to determine how much the pressure 

can be reduced in a steam system may require complex modeling, which is not required for estimating 

the energy savings once an action has been taken. 

Methods for Determining Energy Consumption  
This section builds on the general principles by providing additional details on each of the four common 

methods. 

Utility Meter and Sub-Meter Analysis 
In the US, utility meters are often attached to an individual or group of buildings/facilities or one or 

more section(s) of a larger building/facility. Sub-metering of processes, systems, and equipment may not 

present. If meters or sub-maters are available and have a scope appropriate to the action taken, 

analyzing these data is often a preferred method for evaluating pre- and post- improvement energy 

consumption, due its accuracy. If the process, system, or equipment associated with the evaluated 

action is the only load tied to a utility meter or sub-meter, or if it is the predominant load and the other 

loads can be readily estimated, then the energy consumption of the action of interest can be easily 

characterized by subtracting the other loads from the metered data. The energy savings attributable to 

the action is then the difference between the pre- and post- energy consumption, after any necessary 

adjustment for weather or production if necessary. If utility interval data (or also called “interactive 

data”, with 15-minute or hourly intervals) is available, analysis with greater resolution may be possible 

and more accuracy may be gained with much shorter pre- and post- data periods.  
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For example, several weeks’ worth of interval data could replace several months’ of utility bills in a 

weather dependent analysis because of increased number of data points with smaller intervals. The 

required data interval depends on the nature of the change under evaluation.  

In many instances, the process, system, or equipment of interest is tied to a meter or sub-meter with 

many other variable loads. In this case, analyzing the effects of an energy performance improvement 

action using this method can be challenging and would require knowledge of all the other loads on the 

meter, as well as their energy consumption levels. Under these circumstances, this method may not be a 

good choice due to the complexity of the analysis and the inaccuracies resulting from estimating and 

subtracting multiple loads. This method is not recommended unless the estimated energy savings is 5% 

or more of the total metered energy consumption and the remaining loads are not variable. 

Despite the limitations discussed above, this method can be valuable for a  reality check or secondary 

verification purposes for many improvement actions, even when the measured savings is small 

compared to the metered total load. It is important to note that any changes to the other loads on the 

meter will produce a difference in the meter readings. The meter reading may change due to any 

number of situations, including: a load is added or removed, the operating hours of a load change, a 

system’s operating parameters change, or the production rate/mix change. Any utility meter analysis 

needs to consider appropriate adjustments to account for these kinds of changes, if present. 

Data Logging and Spot Measurements 
In addition to utility meters and sub-meters, there are other devices and associated methods that can 

provide energy consumption data or values of parameters which directly impact energy consumption of 

the improvement being analyzed. Methods include continuous measurements (also often referred to as 

“data logging” or “trended measurements”) and spot measurements. Continuous measurements are 

usually done using devices or systems (e.g. SCADA) which can automatically record sensor readings at 

predefined intervals. Spot measurements are often done with portable tools or manual reading of a 

meter or gauge. For both categories of measurements, the measured target can be energy demand 

(rate) or consumption or related influential parameters. 

When energy demand or consumption of the evaluated equipment/system is directly logged with a 

power recording device or fuel consumption meter (e.g. boiler in-line gas meter), the logged data can be 

used to determine the energy consumption of the equipment both before and after the implementation 

of improvement actions. Common examples of power recording devices include both equipment-

integrated (e.g. VFD, chiller) and user-configured single-phase current transducer (to approximate 

power with post- calculation) and data logger pairs, see Figure 1, and 3-phase true RMS (root mean 

square) power meters, see Figure 2. The logged power or fuel consumption often comes in daily, hourly 

or more frequent intervals as defined by the user or device default. Using a 3-phase true RMS power 

meter is more expensive, but can be advantageous when input power frequently drops to very low 

values where power factor is significantly lower, or in an unbalanced configuration among the three 

phases which makes single-phase measurement potentially misleading. When energy demand is stable 

enough, spot measurements can be performed instead of logging. For example, handheld multi-meters 

can be used to get amperage and voltage spot readings for power estimation.  
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Figure 1 Examples of Portable Single-Phase Current Transducer and Data Recorder (Online Source) 

 

 

Figure 2 Example of Portable 3-Phase Power Meter (Online Source) 

 

The use of logged data, however, is not limited to power or fuel consumption. They can be anything 

detected by a sensor and recorded by either individual data loggers or an automation/supervisory 

system. Examples of such data include temperatures, pressures, flow rates or on/off status. They can be 

hand logged by operators/crew reading gauges and equipment displays as well. Unlike power or fuel 

consumption data, these types of logged data often need to be used in conjunction with engineering 

calculations to determine the pre- and post- energy consumption. For example, if a boiler system does 

not have a dedicated gas meter, calculations could use data logs of steam pressure, flow rate exiting the 

boilers, flue gas temperature and oxygen content. It is possible to determine boiler fuel consumption 

from these parameters using engineering calculations. 

In addition to logged data, spot measurements also play a big role in energy savings estimation and 

verification in general, including for non-capital improvement actions. Similar to logged data, spot 

measurements cover power and other operating parameters. Generally speaking, data logging is more 

expensive as compared to spot measurements because it often requires simultaneous sensor allocation 

http://www.onsetcomp.com/products/data-loggers/ac-current
http://www.pmc-rentals.com/products/dent-instruments-eliteproxc-wireless-energy-datalogger/
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for each point of interest as well as investment in a recording mechanism, whereas spot measurements 

can often be done with handheld tools which can be reused to make readings on multiple points.  In 

many cases, when the parameter or point of interest is relatively stable or operates at a few limited 

levels, spot measurements are sufficient. The measured readings are then used in conjunction with 

engineering calculation to determine equipment/system energy consumption. 

Engineering Calculations 
Engineering calculations for energy consumption and savings fall into two broad types, calculations 

based on observed energy demand patterns and calculations based on mathematical models of 

equipment or systems. Both types of calculations require input parameters. As discussed earlier, 

metered and logged/measured data should be considered for those input parameters for better 

confidence whenever they are available or practical to obtain.  

The following examples are designed to assist the user in determining which type of calculation is most 

appropriate?  

Demand Pattern Based Calculations 

Equation 2 below is a common example of an engineering calculation that applies to equipment which 

operate in duty cycles, such as refrigeration compressors and boilers/furnaces. For these types of 

equipment, the on/off intervals are referred to as a duty cycle, which is represented as a percentage. 

Their energy consumption is based on average demand during active duty cycles. It is a special form of 

Equation 1.  

𝐴𝐸𝐶 = [𝐷𝑒𝑚𝑎𝑛𝑑𝑙𝑜𝑎𝑑 × 𝐷𝐶 + 𝐷𝑒𝑚𝑎𝑛𝑑𝑢𝑛𝑙𝑜𝑎𝑑 × (1 − 𝐷𝐶)] × 𝐻𝑜𝑢𝑟𝑠 

Equation 2 

Where AEC  = Annual Energy Consumption (kWh/yr or Btu/yr)  

  𝐷𝑒𝑚𝑎𝑛𝑑𝑙𝑜𝑎𝑑 = Energy Demand when loaded (kW or Btu/hr) 

  𝐷𝑒𝑚𝑎𝑛𝑑𝑢𝑛𝑙𝑜𝑎𝑑 = Energy Demand when unloaded (kW or Btu/hr) 

  DC  = Duty Cycle (%, 0-100%) 

  Hours  = Annual Operating Hours (hrs/yr) 

 

Some tips for the operating parameters required for this calculation include: 

 Demand. The average demand during active cycles typically require measured values. If the 

demand is stable enough, spot measurements can be satisfactory. Otherwise, continuous 

measurements may be necessary. It can be misleading to use manufacturer’s rated demand 

without knowledge of the true load, which is often determined by the actual operating 

conditions versus the rated. 

 Annual operating hours. Off-shift operations and seasonal variations should be taken into 

considerations. When the equipment operation is driven by demand rather than schedule, 

data logging is recommended in order to accurately determine the actual operating hours. 

 Duty cycle. Duty cycle is the total time when the equipment performed active work during a 

selected operation period (i.e. when the equipment is on). It is expressed as a percentage. If 

the refrigeration compressor operates 8 hours per day and was actively loaded for a total of 

3 hours during that operating period, then its duty cycle is 3/8 = 37.5%. Duty cycle primarily 
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depends on the system demand. For example, the higher the cooling demand, the more 

frequently the refrigeration compressor will cycle on. As such, one should be careful about 

extrapolating measured duty cycle across different demand conditions. Data logging is 

recommended to determine irregular duty cycles. Using a stopwatch can be a simple 

alternative for timing regular duty cycles. For variations in demand across time (shift, day 

type, season), developing a series of demand profiles is highly recommended. 

The above model is generally appropriate for motor-driven equipment such as chillers, air compressors, 

pumps and fans. It can be used on other types of equipment as well, such as boilers and furnaces. It is 

important to note that appropriate time intervals need to be selected during data logging in order to 

obtain good-quality duty cycle for a successful use of this method. Ideally, it should provide sufficient 

resolution to reveal the true operation of the equipment without using excessive logging memories. For 

example, 15 minutes is often sufficient for HVAC fans, pumps and chillers because they don’t typically 

cycle off frequently during normal operation. However, for compressors in a packaged air conditioner, 

smaller interval such as 1-5 minute should be used in order to capture on/off cycles. For load/unload 

controlled air compressors, 6-10 seconds are often recommended if the compressor is not base-loaded. 

Mathematical Model Based Calculations 

There are many mathematical models available which can be useful in describing the energy demand of 

a piece of equipment. The pump power equation (Equation 3) below is an example. The numerator in 

this equation represents “Output” in Equation 1 and the denominator in this equation represents “Eff” 

in Equation 1.  

𝑘𝑊𝑝𝑢𝑚𝑝 =
𝐻𝑒𝑎𝑑 × 𝐹𝑙𝑜𝑤 × 𝑆𝐺 × 0.746

3960 × 𝐸𝑓𝑓𝑝𝑢𝑚𝑝 × 𝐸𝑓𝑓𝑑𝑟𝑖𝑣𝑒 × 𝐸𝑓𝑓𝑚𝑜𝑡𝑜𝑟
 

Equation 3 

Where 𝑘𝑊𝑝𝑢𝑚𝑝 = Pump motor power (kW)  

  Head  = Total pump head (ft) 

  Flow  = Pump flow rate (gpm) 

  SG  = Specific gravity of the fluid (dimensionless) 

  𝐸𝑓𝑓𝑝𝑢𝑚𝑝 = Pump efficiency (dimensionless) 

  𝐸𝑓𝑓𝑑𝑟𝑖𝑣𝑒 = Drive efficiency (dimensionless) 

  𝐸𝑓𝑓𝑚𝑜𝑡𝑜𝑟 = Motor efficiency (dimensionlep 

 

Mathematical models hold great potential for applications where measured demand/consumption is 

not practical or too costly. However, users should be aware of the limitations of each unique model. 

Take Equation 3 as an example. If a constant-speed pump is known to be operating at design conditions 

and design parameters are available (e.g. pump curve available), this equation can provide reasonably 

good estimates. However, if the pump is driven by a variable frequency drive (VFD), knowing at least 

two out of the following three parameters in addition to the pump curve is required to use this equation 

for pump power at a given condition: pump speed, flow rate and pump head. Furthermore, if the pump 

flow modulates, this requirement has to be met for each condition in order to get a full picture, which 

essentially make this approach impractical in most cases. 



 

14 
 

There are also mathematical models which do not describe the energy demand or consumption of 

equipment or systems, but they are useful in quantifying energy saved because they describe the pre- 

and post- difference in energy loss directly. Examples include calculating energy savings by adding 

insulation, eliminating condensate loss and reducing boiler blow-down. The calculated energy savings 

typically needs to be multiplied by an equipment or system efficiency. This type of calculations is not 

appropriate if the equipment or system efficiency was also affected by the improvement action. 

Estimates, Correlations and Rule-of-Thumb 
Some operations, behavior and maintenance related improvement actions are impractical to measure, 

complicated to model and result in relatively small incremental energy savings. Estimates made based 

on established rule-of-thumbs, correlations and good engineering judgement are often acceptable for 

this type of applications.  

For example, chiller lift reduces, and hence chiller power, when chilled water discharge temperature is 

set higher or condenser inlet temperature is set lower. If either is changed by a couple of degrees, the 

resulted chiller power reduction will be too small to measure but can be easily estimated with industry-

accepted rule-of-thumb below.  

 Raise chilled water temperature. For a centrifugal chiller, if the chilled water temperature is 

raised by 2°F to 3°F, the system efficiency can increase by as much as 3% to 5%. Refer to Chapter 

9.4 of the DOE’s O&M Best Practices Guide (page 50) for more information.  

 Lower condenser water temperature. For a centrifugal chiller, if the condenser water 

temperature is decreased by 2°F to 3°F, the system efficiency can increase by as much as 2% to 

3%. Refer to Chapter 9.4 of the DOE’s O&M Best Practices Guide (page 50). 

Estimates using indirect measurement 

Another type of estimates is based on indirect measurements and correlations. Sometimes key 

parameters which determine the energy savings of a change are not practical to measure directly but 

can be estimated by measurement of a correlated parameter. Measuring compressed air leaks is a good 

example. Two common methods used for estimating the amount of compressed air leaked out of an 

opening are (1) observing/measuring the size of the opening; and (2) measuring the decibel level of the 

noise created by the leak. Both methods are based on established correlations with different advantages 

and disadvantages. The first method works better for larger openings when they are accessible and the 

second method is very useful when the leak is hidden or the opening is too small to measure. A third 

method, a leak-load test, can be used to determine the overall fraction of compressed air demand due 

to leaks if the facility has periods without production demands. 

There are other circumstances where estimation could be most appropriate although we cannot exhaust 

all of them here. Sometimes good engineering judgement is the only practical thing to do to get the 

energy savings of a particular improvement action.  

Choosing an Appropriate Method  
The selection of an appropriate method for determining energy consumption and energy savings for a 

given energy performance improvement action is ultimately based on the availability of data.  A 

combination of methods may be required to obtain an acceptable level of accuracy with available data. 

Even when the results of data logging or installed metering is readily available, engineering calculations 

http://www1.eere.energy.gov/femp/pdfs/OM_9.pdf
http://www1.eere.energy.gov/femp/pdfs/OM_9.pdf
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can be useful in determining whether the collected data is within expected ranges (reality check).   Table 

2 provides a crosswalk between the “type of change”, examples, and the four potential methods. It will 

become clear that, in many cases, there is a level 1 method and a level 2 method, often associated with 

each key parameter. Several examples in this table will be explained with greater detail in the next 

section. It should be noted that the examples provided are intended as guidance and are not necessarily 

the best or only method for a given. A case-by-case evaluation is needed for determining the energy 

savings of a specific improvement at a given facility using the data/resources available to the facility. 

Table 2 Suggested Energy Savings Estimation Methods for the Example Changes in Each Types of Changes 

Type of Change Examples Potential Methods 

Type 1:  
Operating 

Hours 

*Shut off air compressor when 
not needed 

Calculated with key parameter(s):  
• Compressor Power – measured; 
• Operating Hours (pre- and post-) – estimated.  

Type 2:  
Output 

*Repair compressed air leaks 

Calculated with key parameter(s):  
• CFM (reduced output) – directly or indirectly 

measured; 
• Compressor Efficiency – measured or 

estimated based on performance rating; 
• Operating Hours – estimated. 

 
*Reduce air compressor 

discharge pressure 

Calculated with key parameter(s): 
• Savings% – estimated with rule-of-thumb; 
• Compressor Power – measured; 
• Operating Hours – estimated. 

 
*Repair steam traps or steam 

leaks 

Option 1: If boiler(s) have a dedicated gas meter,  
Calculated with key parameter(s): 

• Steam flow rate (pre- and post-) – directly or 
indirectly measured; 

• Boiler gas consumption – measured.  
Option 2: Otherwise, 
Calculated with key parameter(s): 

• Steam flow rate – same as Option 1; 
• Combustion Efficiency – measured or 

estimated based on rule-of-thumb; 
• Operating Hours – estimated. 

Type 3:  
Efficiency 

Lower chiller condenser water 
temperature, or, raise chilled 

water temperature 

Calculated with key parameter(s): 
• Savings% – estimated with rule-of-thumb; 
• Chiller Power – measured; 
• Operating Hours – estimated. 
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Type of Change Examples Potential Methods 

 
*Tune-up boiler to reduce excess 

air  

Option 1: If boiler(s) have a dedicated gas meter 
and load is stable, 
Meter boiler gas consumption before and after; 
Option 2: Otherwise, 
Calculated with key parameter(s): 

• Heat Output – calculated with steam 
properties and measured flow rate; 

• Combustion Efficiency (pre- and post-) – 
measured or estimated with measured 
excess air ratio and flue gas temperature; 

• Operating Hours – estimated. 

 
*Clean boiler tubes or heat 

exchange surfaces 

Calculated with key parameter(s): 
• Savings% – estimated with rule-of-thumb; 
• Boiler gas consumption – see two options in 

the example of “Repair steam traps or 
steam leaks” in this table. 

Type 4:  
Energy Demand 

*Reduce steam pressure 
(significant enough to impact 
both output and efficiency) 

Similar to the example of “Boiler excess air tune 
up” in this table. 

Type 5:  
Energy Demand 

& Hours 

* Repair economizer and/or 
adjust thermostat settings for 

rooftop units (RTU) 

Calculated using regression models with key 
parameter(s): 

• RTU power – measured with BAS or logging; 
• Outdoor temperature – measured with BAS or 

from historical weather data source. 
Another option: industry-accepted calculators. 

 
*Conduct HVAC system tuning 

measures (retro-commissioning) 

Calculated using regression models with key 
parameter(s): 

• HVAC equipment energy consumption – 
metered whole-building consumption (as 
appropriate) or measured with BAS or 
data logging; 

• Outdoor temperature – measured with BAS or 
from historical weather data source. 

* Example changes which will be discussed in greater detail in the next chapter.  

 

Detailed Guide and Examples by Type of Change 

Change in Operating Hours 
This section includes a detailed example on estimating energy savings from a change in equipment 

operating hours using both direct and indirect measurement.  
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Example #1 

A proposed behavioral action involves adding a sign to remind operators to shut off the single 

air compressor in a facility at the end of the second shift.  If the facility operates on a 5-day, 2-

shift (8 hours per shift) schedule, the production hours are 4,016 hours per year (allowing for 10 

holidays). Prior to any improvement action, the compressor is been left on 24/7, with 8,760 

annual operating hours, well beyond production hours. During off-production periods, the only 

load demand is from air leaks.  After implementing the improvement, the compressor, which 

has load/unload controls, will be shut off on weekends, holidays, and weekday nights. The 

resulting reduction in compressor operating hours is estimated at 4,744 (8,760 – 4,016 = 4,744) 

hours per year.  

Following the general principles stated earlier in this document, the thought process for 

analyzing this example can be described as following. Considering that there are other large and 

intermittent loads on the same utility electric meter serving a very large section of the factory, 

utility meter analysis will not be the best option. Given that the expected energy savings is large, 

a rough estimate will not be satisfactory. Therefore, we have two options for an appropriate 

method in quantifying the energy savings from this improvement – data logging and engineering 

calculation. The key of this analysis is determining the air compressor’s energy consumption 

during off-production periods prior to the improvement because the improvement did not 

impact the production periods. Let’s review how each option work.  

Option #1: Data Logging is used to determine the average power demand of the air compressor 

during off-production periods directly. If the factory has access to a 3-phase power logger and 

installs it on the compressor for 2 weeks, the logged power data can be averaged over the off-

production period and multiplied by the 4,744 hours per year saved to determine the annual 

energy savings of this improvement. A time period of a week would be sufficient to capture off-

productions, but the additional week provides two sets of data to better ensure that the period 

is representative of typical operation.  Care should also be given to properly account for any off-

production periods, such as holidays, when scheduled maintenance activities may impact 

compressor savings.  It will be a valid alternative to use a single-phase current transducer paired 

with a data recorder to log compressor power for two weeks. However, the readings during 

unloaded periods will need adjustment for low power factor, which is explained in detail in 

Option#2. The remaining steps will be the same as the 3-phase logging. 

Option #2: Engineering Calculation, uses Equation 2 and measure key parameters “Demand” 

and “Duty Cycle” in the equation because of the significance of the savings. The factory can use 

a stopwatch to time compressor load/unload cycles during a non-production period (time at 

least a few cycles to obtain average). Then it also involves using a handheld multi-meter to read 

compressor amperage draw both when it is loaded and unloaded during non-production. 

Option#2 is less robust than Option#1 and need more calculation steps, but it only requires tools 

that are commonly available at industrial facilities. And, since there is only leak load during off-

production period, this option should provide acceptable accuracy. Such an analysis requires the 

following steps:  

Determine power draw of the compressor. Inspection of the name plate reveals the 

compressor is rated as 125-hp and draws 90 kW at rated condition. Use clamp-on multi-meter 
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to read operating amperage at both loaded (121 A) and unloaded (55 A) conditions during off-

production period. Averaging a few readings across three phases is recommended. Spot check 

voltage with multi-meter to be 480 V. Use the facility’s recent power factor reading if available, 

otherwise assume 0.85-0.88 for full load condition and use correction curves for partial load 

conditions. 

In the above example, loaded power is calculated as 1.73 x 480V x 121A x 0.88/1000 = 88.4 kW; 

unloaded power is calculated as 1.73 x 480V x 55A x 0.60/1000 = 27.4 kW. It reveals that 

unloaded power is more than 30% of loaded power, a non-negligible load. 

1. Determine the conserved annual operating hours. The compressor operating hours will be 

reduced by 4,744 hours per year, as discussed earlier.  

2. Determine the duty cycle. The duty cycle during off-production periods can be determined by 

measuring the amount of time when the compressor is loaded versus unloaded over a few 

cycles. In this example, the compressor was timed before implementation during a third shift for 

four cycles, which lasted 32 minutes in total. A stopwatch was used to determine that the 

compressor was loaded for 7.5 minutes in total. This determines the duty cycle to be 7.5 min/32 

min = 23.4%. 

3. Estimate the savings. Using the inputs determined above, the annual energy savings can be 

estimated based on Equation 2 as following: 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = [88.4 𝑘𝑊 × 23.4% + 27.4 𝑘𝑊 × (1 − 23.4%)] × 4,744 ℎ𝑜𝑢𝑟𝑠 = 197,701 𝑘𝑊ℎ/𝑦𝑟 

Changes in Output 
The key parameter “Output” used as reference for energy consumption in Equation 1 can either be the 

rate of energy or work (i.e. power), or, the rate of product throughput. Transformation of energy is very 

common among industrial and building systems and equipment – electric energy transformed to 

compressed air, pumped water or chilled water; energy from natural gas combustion transformed into 

steam. A frequent example among energy consuming equipment is fluid power as the output, which can 

be expressed as “head or pressure” multiplied by “flow rate”. There are many established energy 

performance improvements which tackle either or both of them to conserve energy.  

In the first example, energy savings are determined for a compressed air system leak program that 

results in a lowered demand for compressed air.  

One common strategy to reduce compressed air demand is by establishing an air leak detection and 

repair program as part of maintenance procedures. Compressed air leaks develop over time in every 

plant and can be huge waste if not addressed regularly. It is not uncommon in a poorly maintained 

compressed air system to have leaks that represent more than 20% of total compressed air production.  

Establishing a proactive leak detection and repair program can keep leaks to under 10%. An ongoing 

compressed air leak management program is needed in order for the resulting energy savings to persist. 

It is important to note that the energy savings from fixing compressed air leaks are only fully realized if 

the compressor controls are properly adjusted to support the reduced demand. Additionally, oversized 

compressors lacking the ability to operate efficiently at low loads (including centrifugals that blow off) 

may not yield the expected energy savings. 
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Energy savings from repairing air leaks is often estimated by multiplying total CFM saved and 

compressor system efficiency, usually measured in kW per 100 CFM, and compressor operating hours. It 

should be noted that this approach is limited to its assumption of linear compressor efficiency, which 

can over-estimate the savings when the compressor power does not turn down adequately or 

efficiently. There are different options in obtaining leak CFM sizes, including estimates based on 

ultrasonic leak detector decibel reading, difference in pre- and post- compressed air flow meter readings 

(make sure the flow meter is reading accurately), pre- and post- leak load tests, and estimates from 

opening dimension and pressure (see Compressed Air Tip Sheet #3 for an example). As a rule of thumb, 

16-20 kW of motor consumption is typically required per 100 CFM of compressor air produced at 100 

psig (DOE, see Resources). 

Site-specific compressor system efficiency should be used for analysis whenever possible. It can be 

obtained by logging compressor kW data and CFM data (if available). Alternatively, it can be calculated, 

see Example 2.  

Example #2 

A plant decided to implement a regular air leak detection and repair program. The compressed 

air system includes three lubricated rotary screw air compressors. One of the two 150-hp (600 

CFM capacity at 100 psig) compressors normally operates as the baseload compressor while the 

other serves as backup; there is also a smaller 100-hp (400 CFM capacity at 100 psig) 

compressor that serves as the trim compressor. Compressors are manually turned on and off, 

and the two operating compressors are controlled by pressure switches. The facility has a 1000-

gallon receiver. During their first compressed air leak detection, the facility found 80 air leaks 

totaling 200 CFM, as estimated by the ultrasonic leak detector’s decibel-to-CFM table, which is 

over 20% of their normal compressed air produced.  

Considering that compressed air demand can be varying even when production is relatively 

stable, the engineering calculation method was chosen for savings estimation combined with 

measurements on key parameters. In order to estimate the energy savings transferred to 

compressor power, the Compressed Air Challenge (CAC) performance curve for load/unload 

capacity controls (Figure 3) is used. Similarly, the performance curve of other types of 

compressor capacity controls are also found in DOE/CAC’s Industry Sourcebook: Improving 

Compressed Air System Performance). First, the storage-to-capacity ratio of the compressed air 

system is determined as 1000 GAL/(600 CFM + 400 CFM) = 1 GAL/CFM. As revealed by the 

performance chart, when the storage-to-capacity ratio is 1 GAL/CFM, the compressor input 

power does not scale down as much as it would with higher GAL/CFM ratios. Therefore, using 

manufacturer rated kW/100 CFM efficiency is not recommended in this case because it will 

over-estimate energy savings.  

http://energy.gov/sites/prod/files/2014/05/f16/compressed_air3.pdf
https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/compressed_air_sourcebook.pdf
https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/compressed_air_sourcebook.pdf
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Figure 3 Performance Curve of Lubricant-Injected, Rotary Compressor with Load/Unload Capacity Control 

(Source: DOE/CAC’s Industry Sourcebook: Improving Compressed Air System Performance, page 43) 

Since the 200 CFM of conserved leaking air will affect operation of the 100-hp trim compressor, 

the next step is to determine the before and after operating points on the performance chart. 

The average CFM produced as a percentage of the compressor’s capacity before and after repair 

air leaks needs to be determined. Because this facility does not have compressed air flow 

meters, the average air flow on the trim compressor can be estimated by timing several 

compressor load/unload cycles with a stopwatch. If the air demand varies significantly, a better 

alternative would be installing a single-phase current transducer paired with a data recorder or 

a 3-phase power logger. For example, four load/unload cycles were timed and the trim 

compressor was loaded for a total of 55 minutes out of a total 75 minutes, then the before-

implementation operating point was at 73% (55min/75min = 73%) of capacity and 96% of full-

load power by reading the performance curve above. The after-implementation operating point 

can be determined as 23% [(73% x 400 CFM - 200 CFM)/400 CFM = 23%] of capacity and 68% of 

full-load power correspondingly.  

Handheld multi-meter and back-of-envelope calculation was used to estimate the input power 

(see Example #1, Option #2 for details about this method) of the trim compressor to be 70 kW 

when it was loaded and that of the baseload compressor to be 95 kW.  

The facility operates its compressed air systems 5,000 hours per year. Therefore, the baseline 

energy consumption of the air compressor system was 825,000 kWh/yr [(70 + 95) kW x 5000 hrs 

= 825,000 kWh/yr]. And, the energy savings from repairing 200 CFM leaks was estimated to be 

98,000 kWh/yr [70 kW x (96% - 68%) x 5000 hrs = 98,000 kWh/yr]. This savings represents 11.9% 

of the baseline consumption. 

https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/compressed_air_sourcebook.pdf
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Example #3 

Fixing steam leaks is an example of reducing steam flow rate. Similar to compressed air leaks, steam 

leaks are also difficult to measure directly but can be estimated by the size of the opening and steam 

pressure using Napier’s Equation below. There are other methods for estimating steam leak sizes such 

as the plume length based method. 

𝑊 = 24.24 × 𝑃𝑎 × 𝐷2 

Equation 4 

Where  W =  Leakage rate (lbs/hr) 

  Pa =  Absolute pressure drop across the orifice (psia) 

  D =  Diameter of leaking orifice (inch) 

Another similar example is including steam traps inspection and repair in maintenance procedures. In a 

period of 3 to 5 years, between 15% and 30% of installed steam traps have likely failed. In regularly 

maintained systems, leaking traps should account for less than 5% of the trap population. DOE’s Steam 

Tip Sheet #1 provides a table for estimating steam loss based on trap orifice size and steam pressure. 

Example #4 

A facility operates a boiler which provides process heating 24/7. The boiler delivers 4,500 lbs/hr 

of saturated steam at 215 psig. According to data recorded daily by the boiler operator, last year 

the boiler used 51,470 MMBtu of natural gas. During a recent maintenance, seven observed 

steam leaks were repaired, each about 1/16 inch in diameter. In addition to fixing the steam 

leaks, a new steam line was added to the boiler to meet additional process heating 

requirements. After using a loaner portable ultrasonic flow meter to measure for a few days, it 

was determined that the additional line utilizes about 500 lbs/hr of steam stably.  

Because of the added load of the new steam line, the energy savings from fixing the steam leaks 

will not be visible on the boiler natural gas meter. However, an existing steam flow meter can be 

leveraged in this analysis. The meter monitors the total steam production delivered to the plant 

and records readings in the supervisory system. The flow meter previously read 4,500 lbs/hr as 

the baseline. After the leaks were repaired and the added line was operational, the total steam 

flow rate delivered by the boiler was collected for 30 days and it was found to be relatively 

stable and averaged 4,820 lbs/hr. Although this figure is higher than before, after accounting for 

the additional load of 500 lbs/hr, analysis shows that repairing leaks has reduced the steam 

demand by 180 lbs/hr (4,500 + 500 - 4,820 = 180).  

The Napier’s equation (Equation 4) was also used for a sanity check: 

𝑊 = 7 𝑙𝑒𝑎𝑘𝑠 × [24.24 × 229.7 𝑝𝑠𝑖𝑎 × (0.0625)2] = 152 𝑙𝑏𝑠/ℎ𝑟 

The calculations of saved steam came close using the two different approaches above. The 

boiler fuel consumption over the 30-day Post-period was determined to be 4,588 MMBtu, which 

was extrapolated to annual consumption (365 days) of 55,820 MMBtu. The baseline annual fuel 

http://energy.gov/sites/prod/files/2014/05/f16/steam1_traps.pdf
http://energy.gov/sites/prod/files/2014/05/f16/steam1_traps.pdf
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consumption is adjusted for the 500 lbs/hr additional load to represent the consumption that 

would have occurred with the new steam line before the leaks are fixed. Therefore, it was 

calculated as 57,188 MMBtu [51,470 MMBtu x (4,500 + 500) lbs/hr / 4,500 lbs/hr = 57,188 

MMBtu]. If the boiler efficiency has changed significantly before and after, measured efficiency 

data should also be taken into account in the baseline adjustment. It is not the case with this 

example. Finally, the annual fuel savings was estimated to be 57,188 - 55,820, or 1,368 MMBtu. 

Changes in Efficiency 
Changing efficiency is another popular type of energy performance improvements. It’s not only 

achievable with capital improvements such as high-efficiency unit retrofits but also with many 

operational, behavioral and maintenance improvements. A behavior example may be running less 

redundant units if supported by the result of a careful risk and response time analysis. This applies to a 

wide range of equipment and systems. Raising chilled water supply temperature (section Estimates, 

Correlations and Rule-of-Thumb) is an operational change example. There are also numerous examples 

in maintenance activities, such as those pertaining to lubricating moving parts, cleaning heat transfer 

surfaces, replacing worn parts and repairing leaks. 

In choosing the appropriate method to estimate energy savings from this type of improvements, the 

general principles also apply. Generally, the efficiency increase from enhanced maintenance procedures 

is small and rule-of-thumb or good engineering judgement based estimations are acceptable. For 

savings greater than a few percent, especially if the baseline consumption is large, it should be 

supported by before and after spot measurements and/or engineering calculations. Below are two 

examples with boiler maintenance. There are also exceptions – improvement actions like the first 

example in this section, which reduces the number of operating redundancy units typically yield very 

large energy savings, and hence, will require data logging or other rigorous methods as appropriate.  

Example #5 

Cleaning boiler waterside tubes and adopting maintenance practices to prevent formation of 

scale on the tubes will increase heat transfer rate and hence the boiler efficiency. Energy savings 

from this maintenance related improvement can be estimated from measuring the thickness of 

deposit before the cleaning. For example, removal of a 1/16 inch scale can reduce boiler fuel 

usage by 4%. Rule-of-thumb values for different thickness of scale and a calculation example can 

be found in the DOE’s Steam Tip Sheet #7. 

Example #6 

Too much excess air is known to harm boiler and furnace combustion efficiency. Including 

boiler/furnace excess air tune-up at desirable intervals in maintenance procedures can generate 

significant energy savings. 10% excess air is attainable on well-designed natural gas fired 

systems. A common rule-of-thumb is that boiler/furnace efficiency can increase by 1% for each 

15% reduction in excess air or 40°F reduction in stack gas temperature. In order to use this rule-

of-thumb, before and after spot measurements of stack gas temperature and excess air (or 

Oxygen) percentage are necessary to support claimed efficiency improvement. Before and after 

measurements can also be read on Figure 4, which is taken from DOE’s Steam Tip Sheet #4, to 

obtain combustion efficiencies. A savings calculation example is also found in the same source 

http://energy.gov/sites/prod/files/2014/05/f16/steam7_surfaces.pdf
https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/steam4_boiler_efficiency.pdf
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tip sheet. In addition, the DOE’s Advanced Manufacturing Office also provides a tool to estimate 

the savings associated with optimizing a boiler’s amount of excess air.  

 

Figure 4 Combustion Efficiency for Natural Gas (Source: DOE’s Steam Tip Sheet #4) 

Combined Changes  
Earlier in this chapter, examples are provided for changing one of the three key parameters (operating 

hours, output and efficiency) at a time. There are other improvement actions which change two or all of 

the three key parameters simultaneously. Let’s look at a few different scenarios.  

First, if the overall change can be broken down and isolated into singular changes discussed in the 

previous three sections in this chapter, then the corresponding methods discussed earlier may still be 

able to apply. For example, this might be the case when an improvement changes both output and 

operating hours or both efficiency and operating hours of equipment. 

If an improvement changes output and efficiency simultaneously, i.e. changes “Demand” in Equation 1 

(Type 4), it will often be difficult to isolate these changes and will likely to require data logging of power 

or fuel consumption for before and after comparison analysis. For example, reducing steam pressure 

can potentially be a very good opportunity for plants with oversized boilers and steam systems. If the 

steam system pressure is reduced significantly, boiler output will be reduced and boiler efficiency may 

change as well depending on the boiler control. The better option for determining the associated energy 

savings will involve obtaining boiler fuel consumption data before and after the change. If that is not 

possible, an indirect alternative may be engineering calculation which can determine the before and 

after boiler output and efficiency with measured parameters. The DOE’s Steam Pressure Reduction, 

Opportunities and Issues is a good resource, as is DOE’s Steam System Modeler. 

Another complicated scenario is that output, efficiency and operating hours all change under one 

improvement or, in some cases, one improvement bundle. In fact, many heating, ventilation and air 

conditioning (HVAC) related improvements, whether operational, behavioral or maintenance in nature, 

fall in this category of changing everything altogether. Let’s use the improvement of increasing building 

or factory thermostat setting from 67°F to 72°F during cooling season as an example. In this case, 

https://ecenter.ee.doe.gov/EM/tools/Pages/BoilerTuneUp.aspx
https://www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/steam4_boiler_efficiency.pdf
http://www.nrel.gov/docs/fy06osti/37853.pdf
http://www.nrel.gov/docs/fy06osti/37853.pdf
https://ecenter.ee.doe.gov/EM/tools/Pages/BoilerTuneUp.aspx
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rooftop units (RTUs) provides space cooling. The RTUs will need to operate less hours in a year as a 

result of this improvement. Meanwhile, on a given cooling day, the cooling load (i.e. output) is also 

smaller than before. This is because part of the space cooling load is determined by the indoor-and-

outdoor temperature difference. RTU efficiency is also known to be dependent on load, and therefore, 

has also changed as a result of this improvement.  

Energy savings estimation for HVAC system improvements are often not straightforward for back-of-the-

envelope calculations. Furthermore, multiple such improvements often come in a “bundle”. A 

frequently seen approach among the building sector but spilled to the industry is called “retro-

commissioning”. Retro-commissioning (RCx) originally refers to the action of restoring the HVAC 

system’s (among other building systems) performance back to the design conditions, although the 

industry use of the term has expanded and is now inclusive of most low-cost changes that leads to 

energy savings. Many of the changes under RCx are operational or maintenance-related changes in 

nature, such as equipment scheduling, repairing/optimizing economizers, supply air temperature reset, 

static pressure reset, unoccupied room temperature setback, optimize VFDs on supply fans, pumps and 

cooling towers, repairing pneumatic control components and more. The energy savings associated with 

HVAC changes can be complex in analysis and very significant in aggregation.  

RCx tends to be implemented as a bundle project which covers all HVAC systems and equipment in a 

building or multiple buildings. It is usually labor-intensive and happens during non-cooling season. The 

individual changes are often highly interactive on the result of overall energy savings. Therefore, it often 

makes sense to perform energy savings analysis for the bundle of changes or its subsets. This often 

involves regression modeling of energy consumption data of affected energy-consuming equipment 

(e.g. chillers, fans, pumps, RTUs) before and after RCx implementation with respect to weather 

parameters. Outdoor dry bulb temperature is the most popular parameter for this type of regression 

analysis although wet bulb temperature is also sometimes used mainly for water-cooled systems. The 

weather parameter is often captured by building automation systems (BAS) if exists. Otherwise, they can 

be obtained from historical local weather data available at public sources such as National Climate Data 

Center (NCDC) and Weather Underground. 

In commercial buildings or the like, it’s most common to use building-level utility metered consumption 

for this regression analysis because HVAC consumption drives its shape with respect to weather. For 

industrial facilities, this approach might work for light-manufacturing facilities but may be found 

unviable for many facilities where industrial process loads are dominant and varying. If facility loads (like 

lighting and HVAC) are on a separate meter from the industrial loads, this approach may still apply. 

Otherwise, logged or trended data is required for equipment input power and/or fuel demand over a 

period of time before and after RCx. Today, automatic data trending capabilities for HVAC equipment 

are common in buildings where BAS exists. Compared to the logging techniques introduced earlier in 

“Data Logging and Spot Measurements”, this is an easier option for logging multiple pieces of 

equipment simultaneously. Another aspect for obtaining this energy consumption data is the HVAC 

system type. For example, it is easier to capture the energy consumption of chiller and boiler systems 

than that of distributed RTUs or room heat pumps. This is especially true when BAS trending capability is 

absent and logging is necessary. In the absence of BAS trending capabilities, a sampling approach should 

be considered for distributed HVAC systems. Hourly time interval is commonly used for collecting data 

and daily interval is common for regression analysis of the collected data. This is because building 

physics dictates a delayed load and system response to weather change. The period necessary for BAS 

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/quality-controlled-local-climatological-data-qclcd
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/quality-controlled-local-climatological-data-qclcd
https://www.wunderground.com/history/
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trending or data logging can be between several weeks and a few months depending on weather 

conditions and, sometimes, other factors. Generally, the more outdoor temperature varies during 

logging, the shorter a period will be needed because capturing readings cover a wide range of 

temperatures is necessary to develop valid regression models. If shorter logging period is stressed, one 

technique available for trying is to use 8-hour or 12-hour intervals instead of daily in order to get more 

data points out of the same logging period. 

 

   

Figure 5 Types of Linear and Change-point Linear Regression Models Frequently Used for HVAC Energy Consumption (Left) 

Figure 6 Example of Regression Models of Facility Energy Consumption vs. Weather before and after EE Improvement (Right) 

(Source: Figure 6 from A Conference Paper and Figure 5 from ASHRAE Research Project 1050-RP) 

Once the necessary energy consumption and weather data are collected, the analysis steps work as 

following. First, the hourly trended/logged data is processed to daily average values. Then daily average 

kW or fuel consumption rate is scatter-plotted against daily average temperature on a spreadsheet. A 

regression model can be fit to the scatter plot. Linear, change-point linear (Figure 5) and polynomial 

regression models are often used for this purpose. This same process repeats for both Pre- and Post- 

data (see Figure 6 for an example). Lastly, both Pre- and Post- models will be applied to the local typical 

meteorological year (TMY) ambient temperature (usually comes in hourly interval) so that Pre- and Post- 

annual energy consumption is calculated, the difference of which will be the annual energy savings. For 

additional guidance on regression modeling, Bonneville Power Administration has a Verification by 

Energy Modeling Protocol for assistance among other resources such as ASHRAE Handbook 

Fundamentals. 

http://esl.tamu.edu/docs/terp/2006/ESL-HH-06-07-37.pdf
http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/2847/ESL-TR-02-11-02.pdf
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
https://www.bpa.gov/EE/Policy/IManual/Documents/July%20documents/7_BPA_MV_Energy_Modeling_Protocol_May2012_FINAL.pdf
https://www.bpa.gov/EE/Policy/IManual/Documents/July%20documents/7_BPA_MV_Energy_Modeling_Protocol_May2012_FINAL.pdf
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When trending and logging are not possible, simulation models with software tools (such as eQuest, 

EnergyPlus) is another option to evaluate the dynamic impact of multiple measures although the use of 

such tools typically require deep HVAC system simulation expertise. It should be noted that such 

simulation tools are typically less suitable for evaluating changes of maintenance in nature because they 

are built upon mathematical models representing normal performance characteristics of systems and 

equipment. When used for operational changes, actual pre- and post- operating parameters should be 

used instead of assumptions.  

There are other industry-accepted estimation tools that are developed at local level for reference when 

climate zone is applicable or climate characteristics are similar. The C-BOA tool offered by the California 

Commissioning Collaborative is an example of such.  Those type of tools are sometimes good options for 

evaluating single changes that they are developed for. 

 

  

http://cacx.org/resources/rcxtools/cboa/index.html
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Additional Resources 

Resources 

Air Compressors 
DOE, among others, has numerous resources to assist facilities in maximizing compressed air efficiency. 

These resources can be found at the Office of Energy Efficiency and Renewable Energy’s (EERE) 

Compressed Air Systems overview. For maintenance-related tips and best practices, Chapter 9.11 of the 

O&M Best Practices Guide offers assistance.  

The resources mentioned in maintenance improvement actions for compressed air systems are also 

applicable to operational improvement. They are listed on the DOE Office of Energy Efficiency and 

Renewable Energy’s (EERE) Compressed Air Systems overview. The most common opportunities for 

compressed air systems are to reduce either pressure or flow requirements: 

 Replace filters as per manufacturer’s recommendation. For an example of energy savings 

estimation for improved filter replacement practices, refer to the DOE’s Compressed Air Tip 

Sheet #6. In general, there is a significantly higher pressure drop across unmaintained filters as 

compared to well-maintained filters, which results in a higher pressure requirement at the 

compressor. The 1% less compressor power for every 2 psi of decreased discharge pressure rule-

of-thumb also applies to this type of estimation. 

Boilers/Steam Systems 
As mentioned for boiler/steam system maintenance opportunities, EERE’s Steam Systems overview 

contains useful information and tools. Operational improvements of boilers and steam systems tend to 

yield significant savings, which will generally require customized engineering calculations supported with 

logged/measured data as key inputs. While the combination of combustion and steam tables (see 

discussions in the maintenance chapter) may satisfy the calculation for some improvement actions, 

others tend to have system level impact and change balances of steam flow. DOE’s Advanced 

Manufacturing Office provides a detailed Steam System Modeler tool, which will model many 

operational improvement actions.  Below are a couple of common energy performance improvement 

actions and resources for savings estimation: 

DOE offers tools to assist facilities in improving boiler and steam system efficiency including EERE’s 

Steam Systems overview and Chapter 9.1 of the O&M Best Practices Guide. Considering the complexity 

of steam systems and generally small savings from maintenance improvements, rule-of-thumbs are 

primarily used for estimating savings from these types of actions. Below are a few examples of such. 

Pumps and Fans 
One important operational energy performance improvement action for fans and pumps involves 

optimizing the sequencing in multiple fan/pump arrangements. The use of Pre- and Post- 

logged/measured data is generally recommended for verifying energy savings from such improvement 

actions. For assistance with analyzing systems with multiple pump arrangements, refer to Section 2-8 of 

the DOE’s Improving Pumping System Performance: A Sourcebook for Industry. For assistance with 

analyzing systems with multiple fan arrangements, refer to Section 2-10 of the DOE’s Improving Fan 

System Performance: A Sourcebook for Industry. For other types of improvement actions, such as 

http://www.energy.gov/eere/amo/compressed-air-systems
http://www1.eere.energy.gov/femp/pdfs/OM_9.pdf
http://www.energy.gov/eere/amo/compressed-air-systems
http://energy.gov/sites/prod/files/2014/05/f16/compressed_air6.pdf
http://energy.gov/sites/prod/files/2014/05/f16/compressed_air6.pdf
http://energy.gov/eere/amo/steam-systems
https://ecenter.ee.doe.gov/EM/tools/Pages/BoilerTuneUp.aspx
http://energy.gov/eere/amo/steam-systems
http://www1.eere.energy.gov/femp/pdfs/OM_9.pdf
http://www.energy.gov/sites/prod/files/2014/05/f16/pump.pdf
http://www.energy.gov/sites/prod/files/2014/05/f16/fan_sourcebook.pdf
http://www.energy.gov/sites/prod/files/2014/05/f16/fan_sourcebook.pdf
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adjusting flow rates or pressure, engineering calculations with pump/fan curves and spot 

readings/measurements will likely to serve a reasonable savings estimation. 

Good maintenance for fans and pumps can contribute to energy performance improvement. Simple 

calculations and good engineering judgement can be used for estimating energy savings associated with 

such improvement, considering they are often of small impact (a few percent of equipment power or 

less). A few references for estimating savings are given below.  

However, when repairs and significant adjustments are performed, the energy savings can be more 

significant and would warrant data logging/measurements and a more thorough analysis (see “Data 

Logging and Spot Measurements” section for details).  DOE has tools that can assist facilities in this type 

of analysis. The Fan System Assessment Tool (FSAT) can help users identify problems such as high duct 

velocity, discharge dampers in locked position, obstructed inlets, incorrectly sized fans and degraded 

impellers. Similarly, the Pumping System Assessment Tool (PSAT) can help identify pumping systems 

that could benefit from improved performance. In addition, Chapter 8-8 of the DOE’s Motor Driven 

Systems Guidebook for Industry provides details for analyzing fluid movement systems. A basic 

maintenance checklist for pumps and fans includes: 

Table 3: Basic Maintenance for Pumps and Fans 

Pumps Fans 

Bearing lubrication and replacement Periodic inspection of all system components 

Mechanical seal replacement Bearing lubrication and replacement 

Packing tightening and replacement Belt tightening and replacement 

Wear ring adjustment or replacement Motor repair or replacement 

Impeller replacement Fan cleaning 

Pump/motor alignment  

Motor repair or replacement 

 

For a detailed description of each of these items, refer to Section 2-3 of DOE’s Improving Fan System 

Performance: a Sourcebook for Industry and Section 2-5 of DOE’s Improving Pumping System 

Performance: A Sourcebook for Industry. A generic rough energy-saving figure that might be expected 

from maintenance-related performance improvement associated with pumps and fans are given below:  

 Maintain pumping systems. According to the US Industrial Electric Motor Systems Market 

Opportunities Assessment (page 58 & 59), the energy savings from regularly replacing worn 

impellers, inspecting and repairing bearings, lip seals, packing and other mechanical seals will 

likely be 2-7%.  

 Maintain fan systems. According to the US Industrial Electric Motor Systems Market 

Opportunities Assessment (page 61), improved fan maintenance practices, such as tightening 

belts, cleaning fans and changing filters regularly, can yield energy savings of 2-5% savings. 

Motors 
Energy performance improvement of motor systems from good maintenance practices can vary largely, 

from 2-30% according to the US Industrial Electric Motor Systems Market Opportunities Assessment 

(page 55). Certain types of motor-driven equipment, such as air compressors, can benefit more savings 

than the others. Due to the large variation of potential savings, we recommend power 

http://www.energy.gov/sites/prod/files/2014/04/f15/fsat_fs.pdf
http://www.energy.gov/sites/prod/files/2014/04/f15/psat_fs.pdf
http://energy.gov/sites/prod/files/2014/04/f15/amo_motors_guidebook_web.pdf
http://energy.gov/sites/prod/files/2014/04/f15/amo_motors_guidebook_web.pdf
http://www.nrel.gov/docs/fy03osti/29166.pdf
http://www.nrel.gov/docs/fy03osti/29166.pdf
http://energy.gov/sites/prod/files/2014/05/f16/pump.pdf
http://energy.gov/sites/prod/files/2014/05/f16/pump.pdf
http://www.energy.gov/eere/amo/downloads/united-states-industrial-electric-motor-systems-market-opportunities-assessment
http://www.energy.gov/eere/amo/downloads/united-states-industrial-electric-motor-systems-market-opportunities-assessment
http://www.energy.gov/eere/amo/downloads/united-states-industrial-electric-motor-systems-market-opportunities-assessment
http://www.energy.gov/eere/amo/downloads/united-states-industrial-electric-motor-systems-market-opportunities-assessment
http://www.energy.gov/eere/amo/downloads/united-states-industrial-electric-motor-systems-market-opportunities-assessment
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logging/measurements for determining the actual energy savings from maintenance activities (see “Data 

Logging and Spot Measurements” section for details). The Office of Energy Efficiency and Renewable 

Energy also provides resources and tools to assist facilities seeking to improve motor system 

performance. One tool of such is MotorMaster+ – an online software which can help optimizing drive 

systems, analyzing repair vs. replace cost effectiveness for in-service motors, and providing motor 

purchasing information. 

For a detailed list of suggested motor maintenance practices, refer to Improving Motor and Drive 

System Performance: A Sourcebook for Industry (page 29) as well as Chapter 9.10 of the O&M Best 

Practices Guide.  

For a detailed description of the best maintenance practices for each energy end-use, consult the DOE’s 

guide to O&M Ideas for Major Operating Equipment Types. 

 Cover heated, open vessels. Refer to DOE Steam Tip Sheet #19 for a detailed example of 

calculations. 

HVAC/Chiller Systems 
Maintenance-related energy performance improvement for HVAC equipment, such as packaged air 

conditioners (ACs), air handling units (AHUs), chillers and cooling towers, can yield a very wide range of 

energy savings from small to very significant. For this reason, we recommend that the actual savings 

should be determined by analysis of site-specific data whenever feasible, although rule-of-thumbs can 

assist sanity checks. Multiple interactive measures can also be combined for a total improvement 

analysis as appropriate.  

HVAC 

Options for centrifugal chiller maintenance for energy performance improvement include: 

 Clean chiller tube bundle; 

 Monitor and address reduced condenser flow; 

 Properly maintain refrigerant levels; 

 Eliminate oil contamination in refrigerant; 

 Repair leaks in the compressor; 

 Sustain proper water treatment.  

Actions for rooftop unit maintenance for energy performance improvement include: 

 Repair/adjust economizer; 

 Adjust thermostat settings; 

 Clean evaporator and condenser coils; 

 Check refrigerant charge; 

 Unoccupied fan controls. 

 

http://www.energy.gov/eere/amo/motor-systems
http://www.energy.gov/eere/amo/articles/motormaster
http://www.energy.gov/sites/prod/files/2014/04/f15/amo_motors_sourcebook_web.pdf
http://www.energy.gov/sites/prod/files/2014/04/f15/amo_motors_sourcebook_web.pdf
http://www1.eere.energy.gov/femp/pdfs/OM_9.pdf
http://www1.eere.energy.gov/femp/pdfs/OM_9.pdf
http://www1.eere.energy.gov/femp/pdfs/OM_9.pdf
http://energy.gov/sites/prod/files/2014/05/f16/steam19_vessels.pdf
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Institute for Building Efficiency has provided reference energy savings range for a spectrum of chiller and 

rooftop units maintenance measures. Utility commercial HVAC quality maintenance programs have also 

established a set of maintenance measures which lead to energy performance improvement. Below are 

some examples of these measures. Additional resources on chilled water systems analysis include 

Chapter 9.4 of DOE’s O&M Best Practices Guide and the Chilled Water System Analysis Tool (CWSAT). 

Summary 
Non-capital energy performance actions include behavioral, maintenance-related, and operational 

actions.   There are three methods that are commonly used for estimating the Pre- and Post- 

equipment/system energy consumption, as well as energy savings associated with an action under 

evaluation: 1) utility meter analysis, 2) data logging and 3) engineering calculations. As described in this 

guide, energy savings estimation methodologies for non-capital energy performance improvement 

projects/actions (energy performance actions) can vary significantly, and the M&V and level of detail of 

the energy savings calculation methodology should be aligned with the potential savings.   

 

http://www.buildingefficiencyinitiative.org/resources/fact-sheet-ibe-energy-savings-maintenance
http://www.buildingefficiencyinitiative.org/resources/fact-sheet-ibe-energy-savings-maintenance
http://www.energydataweb.com/cpucFiles/pdaDocs/1454/HVAC3ImpactReport_PUBLIC_COMMENT.pdf
http://www1.eere.energy.gov/femp/pdfs/OM_9.pdf
https://www.fedcenter.gov/Bookmarks/index.cfm?id=1879



