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Abstract 

The interrelatedness of lexical items, typically defined in terms 
of semantic or phonological overlap, has been shown to 
influence language learning. Given that language also contains 
sequential structure, we investigate here whether temporal 
overlap among words, formalized in graph theoretical terms as 
displaying the property of community structure, might also 
have consequences for learning. We create a graph organized 
into clusters of densely interconnected nodes with relatively 
sparse external connections. After assigning a novel 
pseudoword to each node in the graph, we generate a 
continuous sequence of visually-presented items by walking 
along its edges. Word-by-word reading times suggest that 
learners are indeed sensitive to temporal overlap. 
Compellingly, we also demonstrate that prior exposure to 
sequences organized into temporal communities influences 
performance on a subsequent word recognition task.   

Keywords: network science; statistical learning; language 
acquisition 

Introduction 
A foundational question in cognitive science asks how the 
human brain converts a vast amount of sensory input into 
usable knowledge. Fortunately for our brains, sensory input, 
though noisy, tends to be richly patterned. A means of 
characterizing broad-scale patterns, network science enables 
the mathematical description of systems as varied as social 
relationships (Scott, 2017) and neural connectivity (Bassett 
& Sporns, 2017). Of particular relevance to the present series 
of experiments, applications of network science to the 
domain of natural language have dramatically increased our 
understanding of the organization of phonological (Vitevitch, 
2008; Arbesman, Strogatz, & Vitevitch, 2018), syntactic 
(Ferrer i Cancho, Solé, & Köhler, 2004; Liu, 2008), and 
semantic systems (Collins & Loftus, 1975; Borge-Holthoefer 
& Arenas, 2010).  

A growing body of evidence suggests that humans use 
network-level properties when acquiring and accessing 

linguistic knowledge (for a review, see Karuza, Thompson-
Schill, & Bassett, 2016). For example, an index of the extent 
to which phonological neighbors of a word are themselves 
neighbors, clustering coefficient has been shown to predict 
acquisition of novel object labels designed to vary with 
respect to this property (Goldstein & Vitevitch, 2014). 
Learners also show sensitivity to lexical islands, or small 
groups of phonologically related words isolated from a 
network’s “giant component,” or the largest group of 
interrelated words. Siew & Vitevitch (2016) observed that 
words drawn from lexical islands are recognized and recalled 
more easily than those from a giant component. For semantic 
networks, in which nodes representing concepts are linked 
according to some similarity metric, evidence suggests that 
densely connected words are most likely to be acquired early 
in development (Steyvers & Tenenbaum, 2005). In sum, the 
structural properties of complex language networks may 
carry important implications for learning. 

Outside the language domain, a number of studies have 
also begun to probe human sensitivity to network topology, 
generally focusing on community structure in temporally-
defined graphs. In these studies, nodes correspond to fractals, 
glyphs, or button press combinations, and edges mark the 
transition between two images in a continuous sequence 
(Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 
2013; Karuza, Kahn, Thompson-Schill, & Bassett, 2017; 
Tompson, Kahn, Falk, Vettel, & Bassett, 2018; Kahn, 
Karuza, Vettel, & Bassett, 2018). Response times are 
typically recorded as participants view an uninterrupted 
stimulus stream created by “walking” along the edges of a 
graph comprised of sparsely connected clusters of densely 
interconnected nodes (i.e., that display the property of 
community structure; Figure 1). Results point to a signature 
response pattern associated with the transition between 
communities: a pronounced increase in learners’ processing 
times when measured against within-community transitions 
(Karuza et al., 2017).  
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Expanding on prior work, which has focused exclusively 
on non-linguistic visual stimuli, we investigate here whether 
learners display a comparable sensitivity to community 
structure when it dictates the order of visually-presented 
pseudoword sequences. One defining characteristic of 
linguistic signal is that it unfolds in time. In light of this, we 
examine whether the temporal overlap between words, not 
only their phonological and semantic interrelatedness, might 
steer the learning process. In adapting this paradigm to the 
language domain, our work makes two additional 
contributions: first we expand on the size of tested network 
structures, creating graphs of 40 nodes instead of the 10-15 
used in related prior work (Schapiro et al., 2013; Karuza et 
al., 2017; Tompson et al., 2018; Kahn et al., 2018). Second, 
we refine an offline measure that allows us to investigate the 
influence of community structure not only in moment-to-
moment processing of novel stimulus streams, but also in 
accessing previously acquired knowledge in future contexts. 

 
Study 1: Community Structure and Substring 

Familiarity 
We first examine whether learners exhibit cross-community 
reaction time (RT) increases as they process continuous 
sequences of unfamiliar linguistic stimuli. We also ask 
whether sensitivity to community structure will manifest in 
the expression of knowledge in offline familiarity 
judgements involving short sequences (substrings) extracted 
from the original exposure stream. Analyses test the 
hypothesis that learners prefer substrings drawn from within 
communities relative to those that span communities. 

Materials and Methods  
 
Participants 33 neurologically normal participants (5 male, 
28 female; 18-21 years old) participated in this study. They 
were recruited from the undergraduate psychology research 
pool at Pennsylvania State University and were granted 
course credit for their participation. All participants provided 
informed consent. Three participants were excluded for 
performance below a pre-determined threshold on an 
orthogonal cover task (<70% correct; Karuza et al., 2017).  

 
Stimuli  
Network properties. Exposure streams were generated via a 
random walk on a graph featuring five communities of eight 
nodes each (Figure 1). Each community was connected to 
two other communities through boundary nodes sharing a 
single edge with an adjacent community. With the exception 
of boundary nodes within the same community, which were 
unlinked, each other node was connected to every other node 
in their community. Thus, all nodes had equivalent degree, or 
number of incident edges. Because edges were undirected 
and unweighted, (1) they could be traversed in any direction 
and (2) transitions between any two nodes were equally 
probable. Nodes within the graph corresponded to a unique, 
pronounceable pseudoword, and edges represented the direct 
succession of two pseudowords within the stimulus stream. 
Pseudoword properties. Pseudowords were selected from the 
ARC non-word database (Rastle, Harrington, & Coltheart, 
2002). Forty orthotactically plausible, single-syllable words 
were chosen, 20 four-letter words and 20 five-letter words. 
All words had 5-30 orthographic neighbors and 5-30 
phonological neighbors. While metrics such as Coltheart’s N 

Figure 1. The network architecture used to generate stimulus streams in Studies 1 and 2. Each node represents a 
pseudoword, and edges represent the co-occurrence of two pseudowords in a continuous sequence 
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have been shown to have certain limitations (Yarkoni, Balota, 
& Yap, 2008), and indeed some pseudowords shared surface-
level similarities, we stress that any systematic phonological 
or orthographic overlap was minimized by our word-to-node 
randomization procedure. For the purposes of the cover task 
(described below), we created a scrambled, unpronounceable 
version of each pseudoword (e.g., clais and gilk became aislc 
and igkl).  
Test items. Eighteen short test sequences (length 5-7 
pseudowords) were spliced out of the continuous exposure 
stream. Half of these substrings consisted exclusively of 
nodes from within one community, while the other half 
included traversal of a community boundary.  Matched pairs 
of intra- and inter- community substrings were created by 
equating length (number of items in the string), number of 
node repetitions (if any), chunk strength (within one standard 
deviation of the mean; Meulemans & Van Der Linden, 1997), 
and general position in the exposure stream (first third, 
second third, etc.).  
 
Procedure The experiment was composed of four phases: 
familiarization, exposure, test and debriefing. Participants 
were randomly assigned to one of four conditions consisting 
of a unique random walk (i.e., ordering of nodes) in the 
exposure phase and a unique series of test items.  Independent 
of condition, node-to-pseudoword correspondence was 
randomized (i.e., “node 1” might correspond to clais in one 
participant and gilk in another).  
Familiarization phase. Participants were told that they 
would see a list of made up and scrambled words presented 
in alphabetical order. They then viewed the list of 
pseudowords and the scrambled words in a series of 1.5-
second trials. They were instructed to press [1] if the word on 
the screen followed the rules of English (these were the 
pseudowords) and [2] if the word did not follow the rules of 
English (these were the scrambled versions). To facilitate 
their understanding of the task, participants first saw two 
examples: the pseudoword was corb, and the scrambled word 
was brco.  
Exposure phase. Following the familiarization phase, 
participants viewed a 1000-trial continuous sequence of 
individually presented pseudowords. To obtain RT measures 
across the entirety of the exposure phase, we instructed 
participants to complete an orthogonal cover task.  At each 
trial, they were asked to press [1] if the pseudoword appeared 
in its “regular form” and [2] if the pseudoword appeared 
scrambled (12% of trials).  Each pseudoword was presented 
for 1.5s with no interstimulus interval. Total duration of the 
exposure phase was 25 minutes.  
Test phase. At the conclusion of the exposure phase, 
participants were presented with 18 pairs of substrings 
presented simultaneously on the screen, one above the other 
(position was randomly determined). They selected which of 
the two short sequences looked more familiar to them based 
on what they saw during the previous phase of the 
experiment. We adopted a familiarity-based approach to 
judging pairs to promote relatively implicit access of 

knowledge during the test phase. Unlike the exposure phase, 
the test phase was self-paced (i.e., both sequences stayed on 
screen until participants made their selection), with an 
interstimulus interval of 1.5 seconds.  
 
Analysis and Results 
 
Scrambled Word Detection Participants generally 
succeeded in distinguishing between pseudowords and their 
scrambled versions (95.8% accurate, SD = 2.4, excluding the 
three participants who scored below threshold).  
 
Data Exclusions In the exposure phase, data were prepared 
for analysis by first eliminating any implausible RTs (i.e., 
less than 100 ms), then by removing RTs that were greater 
than three standard deviations away from the mean (4.5% of 
total data). We also removed all scrambled word trials (12% 
of total data) and any incorrect responses (4.2% of total data). 
As we were particularly interested in the RT cost associated 
with crossing between communities, data were then subset to 
include only nodes corresponding to entry into a new 
community (transition nodes), as well as boundary nodes 
immediately prior to that transition (pre-transition nodes). 
 
Exposure Phase In a linear mixed effects model (library 
lme4 1.1-19 in R 3.5.1), RTs were regressed onto the main 
effects and interaction of Node Type (pre- vs. transition) and 
Trial (1-1000). All transitions were included in analysis. The 
model included the fullest random effects structure that 
allowed the model to converge: a random intercept for 
participant and a by-participant random slope for Node Type, 
Trial, and their interaction. 

We observed a significant main effect of Node Type (β = 
10.080, t = 2.310, p = 0.022), indicating a processing cost for 
transition nodes compared to pre-transition nodes. The main 
effect of Trial (β = -22.798, t = -3.191, p = 0.003) was also 
significant, an expected finding given that participants were 
likely to become faster overall at executing button presses. 
No interaction between Node Type and Trial was observed 
(β = -6.911, t = -1.477, p = 0.150).  
 
Test Phase Accuracy scores from the posttest did not differ 
significantly from chance (t(29) = 1.161, p = 0.255). When a 
post-hoc analysis (mixed logit model) was run to determine 
whether accuracy was affected by the length of sequences (5 
vs 6 word sequences: β = 0.103, z = 0.959, p = 0.341; 5,6 vs 
7 word sequences: β = 0.054, z = 0.860, p = 0.390), position 
on the screen (top or bottom) (β = -0.107, z = -1.208, p = 
0.227), or trial number (β = 0.027, z = 0.305, p = 0.761), we 
continued to observe no significant effects.  
 

Study 2: Community Structure and Word-
Level Recognition 

Study 1 offers evidence of a cross-community RT increase as 
learners viewed sequences of written pseudowords. Online 
measures, collected during the exposure phase, serve to 
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demonstrate learners’ expectation that words within a 
community should co-occur in time.  When that expectation 
was violated by entry into a new community, RTs reflected a 
processing penalty. Despite these promising results, we 
found no evidence that participants applied this knowledge 
offline as they made substring-level familiarity judgements. 
Successful language acquisition requires not only the 
accumulation of statistical regularities, but also accessing that 
accumulated knowledge in varied contexts. Therefore, the 
focus of Study 2 was on a post-exposure measure that would 
speak to the role of community structure in the latter process.  

Materials and Methods  
 
Participants 37 neurologically normal participants (9 male, 
28 female; ages 18-21) participated in this study. They were 
recruited from the undergraduate psychology research pool at 
Pennsylvania State University and were granted course credit 
for their participation. All participants provided informed 
consent. Four participants were excluded for cover task 
performance below the pre-determined threshold used in 
Study 1.  
 
Stimuli Pseudowords and the graph used to generate the 
exposure streams were identical to those used in Study 1. 
However, we increased the length of random walk by 40% in 
order to ensure participants were receiving sufficient 
exposure before completing a post-test. For the test phase, we 
developed a new approach to evaluating the influence of 
network architecture on retrieval of knowledge following 
initial learning.  
Test items. Our method represents an extension of a classic 
paradigm developed by Meyer & Schvaneveldt (1971). In 
that pioneering study, participants completed a lexical 
decision task on various pairs of words and pseudowords. 
Compellingly, RTs for pairs of semantically related words 
were significantly faster than RTs for pairs of semantically 
unrelated words. Instead of asking whether semantic 
similarity influences retrieval processes, we ask instead 
whether community structure, or temporal similarity, 
influences retrieval. Here, we test the hypothesis that 
participants will be faster to make old/new judgements on 
pairs of words drawn from the same community relative to 
those drawn from distant communities. 

We created 75 new pseudowords which were not seen in 
the exposure phase (“new words”). We then selected 15 non-
boundary pseudowords (“old words”) from the exposure 
phase (3 from each community). These old words were 
combined exhaustively to form 95 pairs in which items varied 
by community distance. Next, each old word was paired once 
with three new words (45 pairs). Finally, the 30 remaining 
old words were then paired with each other (15 pairs). In 
total, 165 pairs were created. 

For the purposes of analyses, distance between items in a  
pair was construed as follows: a community distance of 0 
meant the pair came from the same community (e.g. creer 
and toist in Figure 1). A community distance of 1 meant that 

the nodes were drawn from adjacent communities (e.g. creer 
and twing). A community distance of 2 meant that the nodes 
were two communities apart (e.g. creer and metch). There 
could be no measurement of community distance between old 
and new words, as the new words were not present in the 
exposure stream. 
 
Procedure With the exception of the test phase, described 
below, procedures for Study 2 mirrored that of Study 1. Due 
to the increased number of trials presented during the 
exposure phase, its duration was 35 minutes.  
Test phase. Participants were simultaneously presented with 
both items in a pair, one word above the other. Participants 
pressed [f] for “familiar” if both items had been seen in the 
exposure phase and [n] for “not familiar” if one or both of the 
items were new. All new words were only presented once to 
minimize confusion during the test phase.  Trials were self-
paced and separated by a 1.5 second blank screen.  The order 
of the pairs and the position (top or bottom) of all 
pseudowords was randomized across participants.  

Analysis and Results 
 
Scrambled Word Detection Participants generally 
succeeded in distinguishing between pseudowords and their 
scrambled versions (93.5% accurate on average, SD = 5.6, 
excluding the four participants below threshold). 
 
Data Exclusions For the exposure phase, data trimming 
techniques were identical to those described in Study 1 
(17.0% of total data removed). Similarly, we subset trials to 
include only transition and pre-transition nodes. 

For the test phase, we removed data corresponding to 
incorrect trials and any RTs greater than 3 standard deviations 
from the mean (total data loss = 11.3%).  

 
Figure 2.  Cross community RT increase for Studies 1 and 2. 
Values included in the boxplot were calculated by 
subtracting, for each participant, mean RTs for pre-transition 
nodes from mean RTs for transition nodes. 
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Exposure Phase Similar to the previous study, RTs were 
regressed onto the main effects and interaction of Node Type 
(pre- vs. transition) and Trial (1-1400). The model included 
the fullest random effects structure that allowed the model to 
converge: a random intercept for participant and a by-
participant random slope for Node Type, Trial, and their 
interaction. 
   Again, we observed a significant main effect of Node Type 
(β = 15.582, t = 3.782, p = 0.0002), indicating a processing 
cost for transition nodes compared to pre-transition nodes. 
The main effect of Trial (β = -18.251, t = -2.609, p = 0.014) 
was also significant. As in Study 1, no significant interaction 
between Node Type and Trial was observed (β = -0.924, t = 
-0.226, p = 0.821). Cross-community RT increases from both 
Study 1 and Study 2 are presented in Figure 2. 
Repetition priming. Prior work examining the influence of 
community structure on RT patterns has addressed the 
potential for perceptual priming effects (e.g., Karuza et al., 
2017; Kahn et al., 2018).  It is well known that humans are 
faster to process a stimulus that they have seen recently. 
Though we propose that priming can in fact be considered a 
form of learning (see e.g., Chang, Dell, Bock & Griffin, 
2000), we make contact with prior work by adding to both 
exposure phase models (Studies 1 and 2) the following 
measures of repetition priming: Lag10 and Recency. Lag10 
indexes the number of times a particular node has been seen 
in the last 10 trials. Recency indexes the number of trials that 
have elapsed since a given node was last seen in the exposure 
stream. When adding these new predictors to our models, the 
main effect of Node Type was no longer significant (Study 1: 
β  = 2.345, t = 0.441, p = 0.660; Study 2: β  = 5.906, t = 1.104, 
p = 0.273). 
 
Test Phase As in Meyer & Schvaneveldt (1971), our 
dependent measure of interest was RT for the old/new 
judgements. Given our lengthy exposure phase, and the fact 
we never repeated any of the “new words” during the test 
phase, participants attending to the test phase should have 
been able to easily and accurately make judgements about the 
novelty of items in the word pairs.  Accuracy scores, though 
high (88.0% correct overall, SD = 9.9), were not our measure 
of interest. Rather, we were interested in whether RTs would  
 
Table 1: Coefficients, t-values, and p-values for each 
predictor in a model examining the effect of Community 
Distance and Trial on participants’ RTs for old/ new 
judgments (Study 2). 

vary as a function of the distance between nodes in a pair, 
with the fastest RTs for nodes within the same community.  
Thus, we imposed a cut-off of 75% accuracy on the test phase 
to exclude participants who were not complying with this 
relatively simple task, resulting in the exclusion of three 
additional participants. We note that without the exclusion of 
these participants, the significant results reported below do 
not hold.  

Response times from the old/new judgments were 
regressed onto main effects of Community Distance (reverse-
Helmert coded to reflect an increase in processing cost as 
distance increased) and Trial (1-165; intended to capture 
general task adaptation). Results are summarized in Table 1. 
Participants were fastest to respond to pseudoword pairs 
drawn from the same community relative to pseudowords 
drawn from the two adjacent communities. Unsurprisingly, 
participants were faster when responding to pseudowords 
pairs when they had seen both pseudowords before, 
compared to pairs in which when one or both of those 
pseudowords was new (Figure 3).  
 

  
Figure 3. Boxplot of RTs for old/ new judgments on word 
pairs (Study 2). Values included in the boxplot were 
calculated by averaging, for each color-coded participant, 
mean RTs for nodes within a community (community 
distance = 0), from adjacent communities (= 1) and from non-
adjacent communities (= 2).  “NA” signifies that at least one 
word in the pair had not been seen by participants during 
exposure.  
 

 Discussion 
We present data from two related studies demonstrating that 
learners are attuned to the network architecture underpinning 
continuous streams of linguistic stimuli. Specifically, we 
show that participants exhibited an increase in processing 
times when transitioning from one community of words to 
the next, suggesting that their expectations about upcoming 
input were influenced by the presence of element clusters in 
the sequence. As previous investigations into learners’ 
sensitivity to network architectures have taken place 

Predictor Results 
Community 
Distance (1 vs. 0) 

β = 0.018, t = 2.062, p = 0.041 * 

Community 
Distance (2 vs. 0,1) 

β = 0.005, t = 1.040, p = 0.302 

Community 
Distance (new vs. 
0,1,2) 

β = 0.024, t = 4.480, p = 0.0001 
*** 

Trial  β = -0.018, t = -1.626, p = 0.115 
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exclusively in the visuomotor domain (Schapiro et al., 2013; 
Karuza et al., 2017; Kahn et al., 2018; Tompson et al., 2018), 
one notable contribution of the present work is that it speaks 
to the potential domain-generality of this learning 
mechanism.   
   Complex network analysis of natural language has 
consistently revealed that, among other properties, 
community structure may be essential to the organization of 
the mental lexicon. To varying degrees, real-world networks  
in which edges represent phonological overlap, semantic 
relatedness, and temporal co-occurrence, display this 
property (De Deyne, Verheyen, & Storms, 2016). The present 
experiments break new ground in that they demonstrate that 
community structure is not only an emergent property of 
language, but also a form of high-level regularity that can 
guide sequence-level learning. Perhaps of greatest interest, 
we show through a post-exposure measure in Study 2 that 
temporal overlap can be translated into an accessible 
representation, as evidenced by the influence of community 
distance as participants completed a subsequent word 
recognition task. 

At first blush, it is potentially surprising that we observe no 
significant interaction between Node Type and Trial. In other 
words, the magnitude of the cross-community RT increase 
did not change significantly over the course of exposure. 
However, these results align with previous findings 
suggesting that sensitivity to community structure may 
emerge very early in exposure (e.g., Karuza et al., 2017; 
Karuza, Kahn, & Bassett, 2019). To be clear, we do find a 
key point of divergence between the present findings and the 
existing literature on community structure in visuomotor 
sequences.   Specifically, the effect of traversing an inter-
community edge was substantially weakened by the inclusion 
of nuisance regressors intended to account for repetition 
priming. While there are several possible explanations for 
this pattern of results, we narrow in on two of them. First, we 
studied stimulus streams generated from a significantly larger 
graph than those used in related experiments (i.e., a total of 
40 nodes relative to 15).  Participants therefore observed far 
fewer unique edge traversals throughout the course of the 
experiment. Perceptual priming may have an inflated effect 
when learners are exposed to more varied stimulus streams in 
which nodes are repeated only a handful of times. Second, the 
choice to include pronounceable pseudowords with relatively 
few real-word orthographic and phonological neighbors 
meant that these features of our stimuli may have also exerted 
an undue influence on processing times (Vitevitch, Chan, & 
Roodenrys, 2012). This source of noise, coupled with some 
phonological overlap between the pseudowords themselves 
(e.g., wabe and woast), may have also contributed to null 
results obtained for the substring comparison post-test of 
Study 1. We reiterate that the randomization of word-to-node 
mapping should have minimized these effects. Nevertheless, 
evaluation of the full impact of phonological and 
orthographic neighborhood, defined in terms of the extent of 
overlap with existing English words as well as among 
stimulus items themselves, will be an important area of future 

study. It is possible, for example, that cross-community RT 
effects shift in magnitude in cases where pseudoword stimuli 
have an extremely high number of real-word neighbors.  
  Taken together, this set of results opens up a number of 
intriguing future directions not limited to investigations into 
learners’ sensitivity to multiple layers of structure (e.g., 
through the construction of multiplex networks that 
simultaneously take into account phonological and temporal 
overlap; Stella, Beckage & Brede, 2017). In a broader 
context, formalization of the relationship between linguistic 
network structure and learning could add substantially to 
discussions regarding how language networks change with 
development (Ke & Yao, 2008) or why they display certain 
characteristic properties in special populations (Beckage, 
Smith & Hills, 2011). On a final note, decreased sensitivity 
to statistical associations has been linked to disorders ranging 
from Broca’s aphasia (Goschke, Friederici, Kotz, & van 
Kampen, 2001) to dyslexia (Schmalz, Altoe, & Mulatti, 
2017) and developmental language disorder (Lammertink, 
Boersma, Wijnen, & Rispens, 2017). Extending these lines of 
inquiry to reveal potential impairments in the extraction of 
network-level patterns could have powerful consequences, 
not only in terms of informing rehabilitative practices but also 
in deepening our understanding of language acquisition more 
generally.  
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