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ARTICLE

Functional disease architectures reveal unique
biological role of transposable elements
Farhad Hormozdiari 1,2, Bryce van de Geijn1,2, Joseph Nasser2, Omer Weissbrod1,2, Steven Gazal 1,2,

Chelsea J.-T. Ju 3, Luke O’ Connor 1,4, Margaux L.A. Hujoel 5, Jesse Engreitz 2,

Fereydoun Hormozdiari6,7 & Alkes L. Price 1,2,5

Transposable elements (TE) comprise roughly half of the human genome. Though initially

derided as junk DNA, they have been widely hypothesized to contribute to the evolution of

gene regulation. However, the contribution of TE to the genetic architecture of diseases

remains unknown. Here, we analyze data from 41 independent diseases and complex traits to

draw three conclusions. First, TE are uniquely informative for disease heritability. Despite

overall depletion for heritability (54% of SNPs, 39 ± 2% of heritability), TE explain sub-

stantially more heritability than expected based on their depletion for known functional

annotations. This implies that TE acquire function in ways that differ from known functional

annotations. Second, older TE contribute more to disease heritability, consistent with

acquiring biological function. Third, Short Interspersed Nuclear Elements (SINE) are far more

enriched for blood traits than for other traits. Our results can help elucidate the biological

roles that TE play in the genetic architecture of diseases.
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Transposable elements (TE), defined as DNA sequences
that can insert themselves at new genomic locations,
comprise roughly half of the human genome1,2. TE were

initially viewed as parasitic elements whose presence reduced
the host’s fitness, and were thus derided as junk DNA; more
recently, TE have been widely hypothesized to contribute to the
evolution of gene regulation by providing new targets for
transcription factor binding and rewiring core regulatory net-
works3–18, and TE have been shown to play important roles in a
growing number of disease-specific examples19–22. In addition,
TE have been shown to exhibit excess overlap with regions of
open chromatin and other functional annotations, but those
studies did not analyze disease and complex trait data. Thus,
our current understanding of the contribution of TE to the
genetic architecture of diseases and complex traits is extremely
limited.

The partition heritability method23,24 is one of the methods
used to increase our understanding about the genetic archi-
tecture of diseases and complex traits. These methods compute
the heritability of each functional annotation and subsequently
compute enrichment of each functional annotation to capture
disease and trait heritability. However, recent heritability par-
titioning methods25 only require GWAS summary statistics,
which is available for most studies. Stratified LD-score regres-
sion (S-LDSC)25 is one of the methods that can partition the
heritability of diseases and complex traits for a given set of
functional annotations.

Recently, S-LDSC25 was introduced as an effective way to
assess the heritability enrichment (and conditional informa-
tiveness for disease) of functional annotations by analyzing
genome-wide association study (GWAS) summary statistics,
which are widely available for many diseases and complex
traits; in particular, S-LDSC with the baseline-LD model26 has
been shown to effectively model LD-dependent architectures.
Here, we applied S-LDSC with the baseline-LD model to 41
independent diseases and complex traits (average N= 320 K) to
estimate the components of heritability explained by different
classes of TE. We sought to answer three questions. First, what
is the contribution of TE to disease, and does this differ from
what is expected based on the extent of their level of overlap
with known functional annotations27? Second, do older TE
contribute more to the disease heritability than younger TE?
Third, do there exist classes of TE that play a greater role in
specific diseases or traits?

We reached three main conclusions. First, TE are uniquely
informative for disease heritability. Although TEs are only
slightly depleted for disease heritability (54% of single-
nucleotide polymorphisms (SNPs), 39 ± 2% of heritability
where 2% denotes the standard error; enrichment of 0.72 ± 0.03,
where 0.03 denotes the standard error; 0.38–1.23 across four
main TE classes). Interestingly, they explain substantially more
heritability than expected based on their depletion for reg-
ulatory and other functional annotations; this excess is con-
centrated outside regulatory or other functional annotations,
implying that TE acquire function in ways that are currently
unrecognized. Second, older TE are substantially more enriched
for disease heritability than younger TE; SNPs inside the oldest
20% of TE explain 2.45× more heritability than SNPs inside the
youngest 20% of TE, consistent with acquiring biological
function. Third, short interspersed nuclear elements (SINE; one
of the four main TE classes) are far more enriched for blood
traits (2.05 ± 0.03; where 0.03 denotes the standard error) than
for other traits (1.18 ± 0.11; where 0.11 denotes the standard
error); this difference is far greater than expected based on the
weaker depletion of SINEs for regulatory annotations in blood
compared to other tissues

Results
Overview of methods. We applied stratified S-LDSC25 to assess
the contribution of different TE to disease and trait heritability.
We define a functional annotation as an assignment of a numeric
value to each SNP; annotations may be binary or continuous
valued (see Methods). The S-LDSC method operates by regres-
sing chi-square association statistics on LD scores computed with
respect to multiple overlapping functional annotations, and thus
accounts for LD tagging effects. We estimated the heritability
enrichment and standardized effect size (τ*) for each TE anno-
tation conditional on 75 functional annotations from the
baseline-LD (version 1.1) model26 (Supplementary Table 1, see
URLs). Heritability enrichment (denoted as Observed enrich-
ment) is defined as Observed %heritability divided by Expected
(%SNPs), where Observed %heritability is the proportion of
heritability causally explained by common SNPs (minor allele
frequency (MAF) ≥ 0.05) in an annotation and Expected (%SNPs)
is the proportion of common SNPs that lies in the annotation25.
Distinct from Observed enrichment, we also compute the
enrichment that is expected based on an annotation’s overlap
with baseline-LD model annotations, denoted as Expected
(baseline-LD) enrichment (see Methods); this computation
quantifies the extent to which heritability enrichment/depletion is
explained by known functional annotations. We note that
enrichment and expected enrichment can be either >1 or <1 (i.e.,
depletion). Standardized effect size (τ*) is defined as the pro-
portionate change in per-SNP heritability associated with an
increase in the value of the annotation by one standard devia-
tion26; unlike heritability enrichment, τ* quantifies effects that are
unique to the focal annotation (see Methods). For each TE
annotation, we include an additional annotation defined by 500
bp flanking regions, to guard against bias due to model mis-
specification25 (see Methods). We have made our annotations
and partitioned LD scores freely available (see URLs). Most of our
results are meta-analyzed across 41 independent diseases and
complex traits (average N= 320 K see Methods and Supple-
mentary Data 1, same traits as in ref. 28).

TE are uniquely informative for disease heritability. We first
focused on four main TE classes: long interspersed nuclear ele-
ments (LINE; 21% of SNPs), SINE (16% of SNPs), long terminal
repeats (LTR; 9.8% of SNPs), DNA transposons (DNA; 3.2% of
SNPs), and the union all TE (ALLTE; 54% of SNPs). The pro-
portion of SNPs in each TE class slightly exceeded the proportion
of the genome spanned by the TE class (Supplementary Fig. 1).
This is consistent with weaker selective constraint within sur-
viving TE, and provides an initial indication that SNPs lying
inside TE can potentially be assayed, as these SNPs have passed
stringent QC filters despite the challenges of aligning TE
sequences (see “Robustness of results to difficulty in mapping to
TE regions” below). ALLTE explained 39% of disease heritability
(meta-analyzed across 41 diseases and traits), a moderate deple-
tion (Observed enrichment of 0.72 ± 0.03; Fig. 1a, b and Sup-
plementary Table 2). The four main TE classes were all depleted
or non-significantly enriched for trait heritability, with substantial
heterogeneity between classes: 0.73 ± 0.05 for LINE, 1.18 ± 0.11
for SINE, 0.38 ± 0.07 for LTR, and 1.23 ± 0.19 for DNA (Fig. 1b
and Supplementary Table 2). Our simulations confirm that S-
LDSC produces unbiased estimates of enrichment for these
annotations (see Methods, Supplementary Fig. 2). A secondary
analysis of enrichment of fine-mapped causal disease SNPs29,30

produced concordant results (Supplementary Table 3). A sec-
ondary analysis of enrichment of fine-mapped causal cis-eQTL
SNPs28 from GTEx data31 also produced concordant results
(Supplementary Table 4).
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Notably, the heritability enrichments expected based on
overlap with baseline-LD model annotations were much lower
(e.g., Expected (baseline-LD) enrichment of 0.35 ± 0.03 for
ALLTE; Fig. 1a, b and Supplementary Table 2), consistent with
the large depletion of overlap between TE and known functional
annotations (Supplementary Fig. 4). Thus, TE are depleted for
disease heritability, but less depleted than expected based on their
functional annotations (Expected (baseline-LD)), such that TE
are uniquely informative for disease heritability despite being
depleted for disease heritability. Accordingly, τ* estimates were
significantly positive for each TE class (Fig. 1c), implying disease
heritability enrichment effects that are not captured by known
functional annotations. The τ* estimate of 0.43 for SINE was
similar (in absolute value) to τ* estimates for the most
informative annotations in our previous work (e.g., −0.46 for
predicted allele age in ref. 26, 0.52 for GTEx MaxCPP in ref. 28).
Furthermore, each of the four main TE classes (LINE, SINE, LTR,
and DNA) had a significant τ* conditional on each other and
baseline-LD model annotations (Supplementary Table 5). This
result indicates that each TE class is uniquely informative for
disease heritability, as expected since these annotations are
approximately mutually exclusive. As an additional check to
verify that the significant τ* for all four TE classes and ALLTE
would not occur due to chance, we constructed annotations of the
same size based on randomly selected control regions and ran S-
LDSC; as expected, we determined that enrichment estimates
were not significantly different from 1 (Supplementary Fig. 3a, b)
and τ* estimates were not significantly different from 0
(Supplementary Fig. 3c).

We investigated whether the age of a TE impacts its
contribution to disease heritability. We estimated the age of each
TE using miliDiv (RepeatMasker software; see URLs), which
computes the number of mutations relative to a consensus
sequence to estimate the age of each TE13. We stratified SNPs
lying in a TE into five quintiles based on the age of the TE. We
determined that older SNPs had higher heritability enrichments
than younger SNPs (e.g., 0.91 ± 0.11 for oldest quintile vs 0.37 ±
0.10 for youngest quintile; Supplementary Fig. 5 and Supplemen-
tary Table 6). Given that both the result that TE are depleted for
heritability (Observed < 1) and the result that they are less
depleted than expected based on their functional annotations
(Observed > Expected (baseline-LD)) were consistent across all
quintiles, age alone cannot explain either of these results. We
repeated this analysis for each TE class (SINE, LINE, LTR, and
DNA) and observed the largest effect for SINE (Supplementary

Fig. 6). Analyses of Expected (baseline-LD) across TE families/
subfamilies produced similar results, with the largest age effect for
SINE (Supplementary Fig. 7 and Supplementary Data 2). These
results indicate that older TE have a higher contribution to
disease heritability, perhaps because they have gained biological
function. Our findings are consistent with previous work
reporting increased overlap with open chromatin regions for
older TE13—although the baseline-LD model, includes a broad set
of coding, conserved, regulatory and LD-related annotations.

Next, we analyzed 35 TE families/subfamilies spanning at least
0.4% of common SNPs (Supplementary Table 7). We identified 4
TE families/subfamilies that were significantly depleted for trait
heritability (L1, L1PA3, ERV1, and L1PA4; Supplementary Fig. 9
and Supplementary Tables 7 and 8); none were significantly
enriched. As S-LDSC is not applicable to very small annotations25

(see Methods), for the 814 TE families/subfamilies spanning less
than 0.4% of common SNPs (Supplementary Data 3), we
estimated Expected (baseline-LD) enrichment only (Supplemen-
tary Data 4). We did not observe any substantial correlation
between Expected (baseline-LD) enrichment and TE annotation
size (Supplementary Fig. 8).

We identified 587 TE families/subfamilies that were signifi-
cantly depleted for expected disease heritability (Supplementary
Data 5). We also identified 46 TE families/subfamilies that were
significantly enriched for expected disease heritability (Supple-
mentary Fig. 10 and Supplementary Table 9), consistent with
their excess overlap with known functional annotations (Supple-
mentary Figs. 11 and 12 and Supplementary Datas 6 and 7).
Notably, LFSINE-Vert and AmnSINE1, which have previously
been reported to have important biological function32–34, had
very large expected enrichments (5.54 ± 0.39 and 5.44 ± 0.32
respectively).

SINE are specifically strongly enriched for blood traits. We
investigated whether TE enrichment varies across disease and
traits. We estimated the heritability enrichment of each TE class
(ALLTE, LINE, SINE, LTR, and DNA) for five blood traits, six
autoimmune diseases, and eight brain-related traits (see Supple-
mentary Table 10; same traits as in ref. 28). We included a blood-
specific chromatin annotation in our analyses of blood traits and
autoimmune diseases, and a brain-specific chromatin annotation
in our analyses of brain-related traits, in addition to the baseline-
LD model (see Methods). Results are reported in Fig. 2a and
Supplementary Table 11. We determined that SINE are
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Fig. 1 TE are uniquely informative for disease heritability. For each of four main TE classes and ALLTE, we report a three measures of %heritability:
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specifically strongly enriched for blood traits (2.05 ± 0.30 vs. 1.18
± 0.11 for nonblood traits; P= 3E−04 for difference); no other
TE class had significant trait class-specific enrichment after cor-
recting for hypotheses tested, although SINE enrichment was
nonsignificantly higher for autoimmune diseases vs. other traits
(Supplementary Table 11). The difference in SINE enrichment for
blood traits vs. nonblood traits was much higher than expected
based on overlap with baseline-LD model and blood-specific
chromatin annotations (Expected (baseline-LD+ blood chroma-
tin); Supplementary Table 11). Accordingly, we estimated a
particularly large τ* for SINE for blood traits (0.88 ± 0.14; Fig. 2b
and Supplementary Table 11). The specific importance of SINE
for blood traits is consistent with the weaker depletion of SINE in
blood-specific chromatin annotations vs. other tissue/cell types
(Fig. 2c and Supplementary Table 12), but is far greater than
expected based on this weaker depletion; in particular, the τ*
estimates of Fig. 2b are conditioned on blood-specific chromatin
annotations.

We investigated whether motifs specific to SINE contribute to
the specific importance of SINE for blood traits. For each of the
281, 9-mers occurring in the consensus sequence of the Alu
family (which spans 80% of the SINE class), we defined a genomic
annotation based on regions of the genome that match the 9-mer
with at most one sequence mismatch (assessed using
mrsFAST35), and analyzed the genomic annotation using S-
LDSC. For one 9-mer, GCGGTGGCT, the resulting annotation
(spanning 0.5% of SNPs; see Fig. 3a top panel for sequence logo)
had much higher enrichment for blood traits (6.13 ± 1.59) than
for nonblood traits (−0.64 ± 0.69; not significantly different from
0) (Fig. 3b and Supplementary Table 13); P= 4.64E−05 for
difference, significant after correcting for 281 (hypotheses tested).
We also determined that this genomic annotation had signifi-
cantly higher excess overlap with blood open chromatin (1.05 ±
0.01) compared to nonblood open chromatin (0.86 ± 0.01)
(Fig. 3c and Supplementary Table 13; excess overlap <1 indicates
depletion), providing very strong statistical evidence that it has
functionality specific to blood. We repeated the analysis for all 27
possible 9-mers with one sequence mismatch to GCGGTGGCT
(effectively testing a total of 281*27= 7587 hypotheses). For one
9-mer, GTGGTGGCT, the resulting annotation (spanning 0.6%
of SNPs; see Fig. 3a bottom panel for sequence logo) had much
higher enrichment for blood traits (6.65 ± 1.37) than for
nonblood traits (−0.70 ± 0.58; not significantly different from 0)
(Fig. 3b and Supplementary Table 13; P= 4.63E−07 for
difference significant after correcting for 281*27= 7587

hypotheses tested). We also determined that this genomic
annotation had significantly higher excess overlap with blood
open chromatin (0.98 ± 0.01) compared to nonblood open
chromatin (0.81 ± 0.01) (Fig. 3c and Supplementary Table 13),
providing very strong statistical evidence that it has functionality
specific to blood. The higher excess overlap of the GCGGTGGCT
and GTGGTGGCT motif annotations with blood open chroma-
tin compared to nonblood open chromatin was observed both for
motif occurrences that lie within ALU elements and for motif
occurrences that do not lie within ALU elements, which have
systematically higher excess overlap (Supplementary Table 14).
We queried both GCGGTGGCT and GTGGTGGCT against the
CIS-BP transcription factor binding motif database36 (see URLs;
we used the default CIS-BP parameters), which reported a match
between GCGGTGGCT and the ZNF33A transcription factor
binding motif and a match between GTGGTGGCT and the
ZNF354C transcription factor binding motif. These results
suggest that the specific role of GCGGTGGCT and
GTGGTGGCT in blood traits may be related to ZNF33A and
ZNF354C binding.

We repeated the trait class-specific analysis for the 35 TE
families/subfamilies spanning at least 0.4% of common SNPs
(Supplementary Tables 15–17). We did not detect any trait class-
specific enrichments except for the Alu family, which spans ~80%
of the SINE class and produces results similar to SINE. For the
814 TE families/subfamilies spanning less than 0.4% of common
SNPs, we detected 27 that had significantly higher Expected
(baseline-LD+ blood chromatin) enrichment for blood-related
traits vs. other traits (Supplementary Table 18; see Supplementary
Fig. 13 for distribution of TE classes) and 27 that had significantly
higher Expected (baseline-LD+ blood chromatin) enrichment for
autoimmune diseases vs. other traits (Supplementary Table 19;
see Supplementary Fig. 13 for distribution of TE classes). The
majority of TE families/subfamilies for that were specifically
enriched for autoimmune diseases are endogenous retroviruses
(ERV, which belong to LTR TE class), including MER41, which
has previously been reported to contribute to autoimmune
disease16. We also detected 109 TE families/subfamilies with
higher Expected (baseline-LD+ brain chromatin) enrichment for
brain-related traits vs. other traits (Supplementary Data 8; see
Supplementary Fig. 13 for distribution of TE classes).

Robustness of results to mappability of TE regions. We sought
to investigate whether our results could be explained by the fact
that TE regions are parts of the genome that are harder to
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uniquely map to. We determined that 79% of ALLTE SNPs (vs.
85% of 1000 Genomes SNPs) lie in a 35-mer that has mappability
of 1 (i.e., unique mappability) based on the ENCODE 35-mer
track. We refer to these SNPs as “uniquely mappable” SNPs. We
first confirmed that the depletion of functional annotations from
the baseline-LD model in ALLTE SNPs is still observed when
restricting to uniquely mappable ALLTE (ALLTE-unique) SNPs
(Supplementary Table 20), and thus cannot be explained by the
difficulty in mapping to TE regions.

We repeated our heritability enrichment analysis for the main
TE classes (ALLTE, LINE, SINE, LTR, and DNA; see Fig. 1) while
restricting to uniquely mappable SNPs (ALLTE-unique, LINE-
unique, SINE-unique, LTR-unique, and DNA-unique). We
continued to observe that TE are significantly informative for

disease heritability conditional on baseline-LD model annotations
(Fig. 4 and Supplementary Table 21; e.g., τ*= 0.38 ± 0.06 for
ALLTE-unique vs. τ*= 0.31 ± 0.05 for ALLTE). We also observed
that ALLTE-unique had higher absolute enrichment than ALLTE;
this can partly be explained by the older age of TE in ALLTE-
unique, as a subset of ALLTE-unique with the same distribution
of age as ALLTE produced enrichment estimates closer to ALLTE
(Supplementary Table 22). In the above analyses we retained
nonuniquely mappable SNPs in the 1000 Genomes reference
panel used by S-LDSC to compute LD scores, but we obtained
similar results when removing nonuniquely mappable SNPs from
the reference panel as well (Supplementary Table 23). Overall, our
results confirm that our results are robust to the difficulty in
mapping to TE regions.
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Fig. 4 Robustness of results to difficulty in mapping to TE regions. For each of LINE-unique, SINE-unique, LTR-unique, DNA-unique, and ALLTE-unique, we
report a two measures of heritability enrichment: observed and expected (baseline-LD); and b standardized effect size (τ*), which quantifies effect that are
unique to the focal annotation. Results are meta-analyzed across 41 independent traits. Numerical values of %SNPs are provided for each annotation. Error
bars denote 95% confidence intervals. Numerical results are reported in Supplementary Table 21
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Discussion
We have quantified the disease heritability explained by TE,
including different classes of TE. We reached three main con-
clusions. First, TE are uniquely informative for disease herit-
ability, as they explain substantially more heritability than
expected based on their depletion for known functional annota-
tions. This implies that TE acquire function in ways that differ
from known functional annotations. Second, we observed that
older TE contribute more to disease heritability, consistent with
acquiring biological function. Third, the SINE class of TE is far
more enriched for blood traits than for other traits, showing that
TE biology can be trait class-specific.

Our findings have several biological implications. First, our
results suggest that the functional annotation of the human
genome is far from complete, as the functional regions underlying
the contribution of TE to disease heritability have yet to be
annotated. This motivates intense efforts to identify these func-
tional regions. We have provided a framework (τ* metric; Fig. 1c)
to evaluate these efforts. Specifically, a τ* value close to 0 (con-
ditional on a new set of functional annotations) would imply that
this goal has been achieved; this can be evaluated for all TE and
all traits (Fig. 1c), but is of particular interest for SINE and blood
traits (Fig. 2b). Second, our TE-related annotations with con-
ditionally significant signals (Fig. 1c) can be incorporated to
improve functionally informed fine-mapping37–39, as well as
functionally informed efforts to increase association power40–42

and polygenic prediction accuracy43,44.
We note several limitations of our work. First, S-LDSC cannot

be applied to estimate the heritability enrichment of TE families/
subfamilies that span a small proportion of the genome (e.g., less
than 0.4% of common SNPs; see Methods)25. We can instead
compute the heritability enrichment that is expected based on
an annotation’s overlap with baseline-LD model annotations,
although we caution that this quantity has a different inter-
pretation. Second, we focused our analyses on common variants,
as we used the 1000 Genomes LD reference panel, but future
work could draw inferences about low-frequency variants using
larger reference panels45. Third, SNPs lying inside TE may be
difficult to identify and annotate due to the challenges of
aligning TE sequences. However, analyses restricted to SNPs
that lie in a 35-mer that has mappability of 1 based on the
ENCODE 35-mer track (“uniquely mappable” SNPs) produced
similar findings (Fig. 4 and Supplementary Tables 21–23),
confirming that our results are robust to the difficulty in map-
ping to TE regions. Fourth, our work focuses on polymorphic
SNPs, and does not quantify the contribution of polymorphic
TE to disease heritability. We expect the impact of polymorphic
TE on our results to be extremely small, as it has been estimated
that <0.05% of TEs remain active today46, and only TEs that
have inserted within the past few hundred thousand years would
remain polymorphic in humans. Indeed, we confirmed that
removing the set of 14,870 human-specific TE identified by ref.
47 (which is a superset of polymorphic TE) does not significantly
change our results (Supplementary Table 24). Fifth, inferences
about components of heritability can potentially be biased by
failure to account for LD-dependent architectures26,48,49. All of
our analyses used the baseline-LD model, which includes 6 LD-
related annotations26. The baseline-LD model is supported by
formal model comparisons using likelihood and polygenic pre-
diction methods, as well as analyses using a combined model
incorporating alternative approaches50; however, there can be
no guarantee that the baseline-LD model perfectly captures LD-
dependent architectures. Despite these limitations, our results
substantially improve our current understanding of the con-
tribution of TE to the genetic architecture of diseases and
complex traits.

Methods
We use two metrics (heritability enrichment and standardized effect size (τ*)) to
measure the contribution of an annotation to disease and trait heritability25, 26. We
define a functional annotation as an assignment of a numeric value to each SNP.
Binary annotations can have value 0 or 1 only; a binary annotation can be viewed
as a subset of SNPs (the set of SNPs with annotation value 1). Continuous-valued
annotations can have any real value.

Standardized effect size (τ*). S-LDSC assumes that the per-SNP heritability or
variance of effect size (of standardized genotype on trait) of each SNP is equal to
the linear contribution of each annotation25

VarðβjÞ ¼
X

c

acjτc; ð1Þ

where acj indicates the annotation value of SNP j for the annotation c and τc is the
contribution of annotation c to the per-SNP heritability. S-LDSC estimates the τc
for each annotation using the following equation

E½χ2j � ¼ N
X

c

‘ðj; cÞτc þ 1; ð2Þ

where N is GWAS sample size and ‘ðj; cÞ is the LD score for the SNP j and
annotation c computed from the 1000 Genome project (see URLs). We estimated
‘ðj; cÞ as P

k
ackr

2
jk where rjk is the genotypic correlation between SNPs j and k.

Because τc depends on trait heritability and the size of annotation we cannot
compare τc between different traits or annotations. Gazal et al.26 introduced
standardized effect size (τ*) for an annotation as follows

τc� ¼
τcsdðcÞ
h2g=Mc

; ð3Þ

where sd(c) is the standard deviation of the annotation values, Mc is total number
of common SNPs used to estimate the h2g , and h2g is the SNP heritability for each
trait. In our experiments Mc is equal to 5,961,159. We can compare τ* between
different traits or annotations.

Observed %heritability and heritability enrichment. Observed %heritability
(Observed %h2gðcÞ) is the proportion of heritability causally explained by the set of
common SNPs in an annotation, computed as follows

Observed%h2gðcÞ ¼
Observed h2g ðcÞ

h2g
; ð4Þ

where

Observed h2gðcÞ ¼
P
j
ajcVarðβjÞ ¼

P
j
ajcð

P
c
ajcτcÞ : ð5Þ

Expected (%SNPs) is the proportion of common SNPs that lie in an annotation.
Observed heritability enrichment is defined as the Observed %heritability captured
by an annotation divided by Expected (%SNPs). Observed heritability enrichment
is computed as follows

Observed heritability enrichment ¼ Observed%h2g ðcÞ
Expected ð%SNPsðcÞÞ ¼

h2g ðcÞ
h2gP
j

ajc

Mc

: ð6Þ

We have previously shown that replacing the denominator with % heritability
that is expected based on a MAF+LD model consisting of just the 10 MAF bins+ 6
LD-related annotations from the baseline-LD model (Expected (MAF+ LD))
produces results very similar to Expected (%SNPs)50.

Both Observed heritability enrichment and τ* are computed conditional on set
of annotations in the model (e.g., the baseline-LD model26, which includes a broad
set of coding, conserved, regulatory, MAF, and LD-related annotations).
Standardized effect size (τ*) is defined as the proportionate change in per-SNP
heritability associated with an increase in the value of the annotation by one
standard deviation26; τ* quantifies signals that are unique to the focal annotation
after conditioning on all the annotations in the model. On the other hand,
enrichment quantifies signals that are unique and/or nonunique to the focal
annotation.

We computed the statistical significance of Observed heritability enrichment
using block jackknife, as described in our previous studies25,26,28 where we break
the genome to 200 equal blocks. We compute the statistical significance of τ* by
assuming that τ�

seðτ�Þ follows a normal distribution with mean zero and variance one

τ�
seðτ�Þ � Nð0; 1Þ

� �
25,26,28.

Expected %heritability and Expected enrichment. We computed the Expected
(baseline-LD) %heritability and Expected (baseline-LD) enrichment of an anno-
tation by assuming that the τ of the annotation is zero. This is equivalent to
applying S-LDSC to each trait using the baseline-LD model and computing the per-
SNP heritability for each variant using Eq. (1). We computed the Expected
(baseline-LD) %heritability of an annotation by summing the per-SNP heritability
of all common SNPs that lie in the annotation and dividing by the total per-SNPs
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heritability of all common SNPs. We computed Expected (baseline-LD) enrich-
ment as Expected (baseline-LD) %heritability divided by Expected (%SNPs). We
computed standard errors using block jackknife as described above.

We initially considered 34 GWAS summary association statistic data sets that are
publicly available and 55 UK Biobank traits (see URLs) for which summary
association statistics were computed using BOLT-LMM (see URLs; up to N= 459 K
European-ancestry samples). We restricted our analyses to 47 data sets with z-scores
of total SNP heritability at least 6 (Supplementary Data 1). The 47 data sets included 6
traits that were duplicated in two different data sets (genetic correlation of at least 0.9).
Thus, we analyzed 41 independent diseases and complex traits (N= 320 K).

The meta-analyzed values of Observed heritability enrichment, Expected
(baseline-LD) enrichment, and τ* across the 41 independent traits (47 data sets, see
Supplementary Table 2) were computed using a random-effect meta-analysis, as
implemented in the rmeta R package (see URLs).

TE annotations. We constructed two annotations for each TE where the first
annotation is obtained by considering all the SNPs that fall in a TE and the second
annotation is obtained by considering all the SNP in a 500 bp window of the TE.
The window annotation is based on recommendation of previous work25. All
results are obtained by conditioning over baseline-LD model. The τ* and enrich-
ment reported for each TE class/family/subfamily are based on the first constructed
TE annotation. We compared this enrichment estimates with the case where we
compute the enrichment of an annotation conditional jointly on four extra
annotations created by considering different window size of 100, 200, 500, and
1000 bp. We observed that S-LDSC results does not depend on the window size
(Supplementary Fig. 14 and Supplementary Table 25).

It is uncertain whether S-LDSC estimates for annotations of size smaller than
0.4% (of common SNPs) would be reliable25, and for this reason we did not use S-
LDSC to estimate Observed heritability enrichment for these annotations, but
rather only estimated the Expected (baseline-LD) enrichment based on other
annotations (see above).

S-LDSC simulations. We set the τ for each annotation based on enrichment
obtained in real data sets. Utilizing the total heritability we simulated causal trait
effect sizes using a polygenetic model: β � Nð0; h2g=ncÞ where nc is the number of
causal SNPs. We simulated the phenotypic values under the additive model (Y=
Xβ+ e), where X is the standardized genotype matrix and e is the environment and
measurement noise. We computed the summary statistics by performing linear
regression between the phenotypic values and genotype data using PLINK software
(see URLs). In our simulation, we vary the number of individuals for the traits
among 2000, 20,000, and 40,000 where UK biobank genotypes51 are used. After
simulating the summary statistics, we applied S-LDSC conditional on baseline-LD
model and our TE annotation. Regression SNPs in S-LDSC were obtained from the
HapMap Project phase 352 (see URLs). These SNPs are well-imputed SNPs. SNPs
with marginal association statistics larger than 80 or larger than 0.001 N and SNPs
that are in the major histocompatibility complex region were excluded from all the
analyses25,26,28. Reference SNPs were obtained using the European samples in
1000G53. Heritability SNPs, which are used to estimate h2g , were common variants
(MAF ≥ 0.05) in the set of reference SNPs.

Excess overlap. Let A and B indicate two annotations and |.| indicate the number
of SNPs in the annotation. We defined the excess overlap as follows

ExcessðA;BÞ ¼
jA\Bj
M

jAj
M

jBj
M

; ð7Þ

where M is total number of SNPs and |A ∩ B| indicates the set of SNPs that is
shared in both annotations A and B. We compute the standard error over our
estimates using block jackknife with 200 blocks that is similar how S-LDSC
computed the standard error over heritability enrichment as described in our
previous studies25,26,28.

Tissue-specific chromatin annotations. Blood chromatin is blood active chro-
matin regions by combining 27 blood cells and 6 chromatin marks (H3K27ac,
H3K4me3, DNase, DNase-H3K27ac, and DNase-H3K4me3) obtained from
ChromImpute54 applied on Roadmap Epigenomics data27. Nonblood chromatin is
nonblood active chromatin regions by combining 100 nonblood cells and 6
chromatin marks (H3K27ac, H3K4me3, DNase, DNase-H3K27ac, and DNase-
H3K4me3).

Brain chromatin is brain active chromatin regions by combining 13 brain cells
and 6 chromatin marks (H3K27ac, H3K4me3, DNase, DNase-H3K27ac, and
DNase-H3K4me3) obtained from ChromImpute54 applied on Roadmap
Epigenomics data27. Nonbrain chromatin is nonbrain active chromatin regions by
combining 114 nonbrain cells and 6 chromatin marks.

URLs
For baseline-LD annotations, see https://data.broadinstitute.org/
alkesgroup/LDSCORE/; TE annotations are available at https://data.

broadinstitute.org/alkesgroup/LDSCORE/TE/; RepeatMasker soft-
ware is available at http://www.repeatmasker.org; 1000 Genomes
Project Phase 3 data is available at ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/release/20130502; PLINK software is available at https://
www.cog-genomics.org/plink2; BOLT-LMM software is available
at https://data.broadinstitute.org/alkesgroup/BOLT-LMM; BOLT-
LMM summary statistics for UK Biobank traits is available at
https://data.broadinstitute.org/alkesgroup/UKBB; rmeta R package
is available at https://cran.r-project.org/web/packages/rmeta/index.
html; CIS-BP is available at http://cisbp.ccbr.utoronto.ca/. Sequence
logo is generated by WebLogo 3 software which is available at
http://weblogo.threeplusone.com/create.cgi.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Data availability
This work used summary statistics from the UK Biobank study (http://www.ukbiobank.
ac.uk/). The summary statistics for UK Biobank is available online (see URL). The TE TE
annotations created in this works is available online at https://data.broadinstitute.org/
alkesgroup/LDSCORE/TE/.
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