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Abstract

We propose a biologically constrained, large-scale neural net-
work model that solves the Wisconsin Card Sorting Test
(WCST). The WCST has been widely used in clinical and
research settings to study cognitive flexibility and executive
function. The model shows a good quantitative match with
human responses across a number of WCST scoring indices,
while consisting of neural networks that functionally and
anatomically map to brain areas and structures implicated in
the task, such as the prefrontal cortex and the cortico-basal
ganglia-thalamus-cortical loop. We argue that the model pro-
vides a mechanistic account of WCST solving, and demon-
strate its robustness by examining its performance across a
range of biologically motivated parameter values.

Keywords: Wisconsin Card Sorting Test; Spiking Neural Net-
work; Neural Engineering Framework; Semantic Pointers

Introduction

The Wisconsin Card Sorting Test (WCST) is used in clinical
and research environments to study a variety of higher-level
cognitive functions such as working memory, cognitive flex-
ibility and abstract reasoning. The test consists of a deck of
stimulus cards that need to be matched to 4 target cards. The
target cards remain unchanged for the duration of the experi-
ment, while the stimulus card changes in each trial. The cards
differ in colour, symbol shape, and the number of symbols.

In a trial, an individual matches a stimulus card to one of
the target cards and receives feedback indicating whether the
match was correct or incorrect. Unbeknownst to them, after
10 correct trials, the experimenter changes the sorting rule.
While a person is not told what the matching rule is, peo-
ple are quick to notice that the cards can be sorted according
to one of three rules: number, shape or colour. Importantly,
people with cognitive deficits show a pattern of persevera-
tion in their responses—even after being told that their match
is incorrect, they continue to apply the same rule. As such,
their performance is characterized by more errors and a lower
number of categories achievedﬂ

Here, we take a neurocomputational cognitive modelling
approach, and present a large-scale neural network model that
proposes specific mechanisms across different brain regions
that underlie solving WCST. The model bridges different lev-
els of analysis—at the lower level, individual computations
are realized by groups of neurons, while at the higher level it
exhibits human-like behaviour on the task.

I'A category is said to be achieved after 10 correct trials.
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Existing Models

The WCST has been used as a benchmark test for compu-
tational models investigating cognitive control. While many
models have been proposed that focus on different aspects of
the task, here, we focus on a smaller subset of neurocomputa-
tional models. Such models aim to explain how computations
performed by networks of neurons give rise to higher-level
cognitive functions.

One of the first neural network models solving the WCST
is that of Dehaene and Changeux (1991). Components of
their model are able to adjust the activity to reflect the pres-
ence of negative reward, memorize input values and rules, as
well as reason about the rules. The authors conduct ablation
studies to analyze the effect of lesioned networks, showing
that the model is able to reproduce aspects of the behaviour of
brain-lesioned patients. While reporting perseveration rates,
this work did not include a detailed comparison with human
data on the task.

Another, conceptually similar, neural network model was
proposed by Amos (2000). One feature of this model is
that it contains units that simulate some of the basal gan-
glia and thalamus function, known to be involved in the feed-
back processing in the WCST (Monchi et al. |2001). This
model also aims to coarsely match connectivity patterns of
associated brain structures. However, one drawback in terms
of the model’s ability to incorporate neuroanatomical de-
tails is the lack of the feedback connection that completes
the cortico-basal ganglia-thalamo-cortical loop (Parent and
Hazrati [1995). As such this model has a limited capacity to
account for the role of subcortical structures in the WCST.
Another concern with this model is the lack of evaluation with
respect to its variability in responses.

Finally, a model that performs a simplified version of the
WCST, and that has also been used in other similar cogni-
tive control tasks, has been proposed by Rougier et al. (2005).
Similarly to previous models, this model contains distinct net-
works with units representing dimensions and features of in-
terest. However, one key feature of this model is its ability to
learn to perform the task in a trial-and-error way. This is done
by training the model on thousands of task trials, resulting in
the adjustment of weights between individual networks. Sim-
ilarly to the model of Amos (2000), this model also contains a
component that resembles an aspect of basal ganglia function,



namely an adaptive gating mechanism.

One feature shared among all mentioned models is their re-
liance on a pre-allocated role of neural units in the networks.
Such units encode unique and specific features, such as di-
mensions or dimension values that need to be specified for
the task. As such, those are all localist networks, contrast-
ing the idea of distributed neural representation ubiquitous in
the brain (McClelland et al. [1986). Dehaene and Changeux
(1991) acknowledge that that this type of “grandmother cell”
was adopted for simplicity in their model. However, it is un-
clear how existing models can be adapted to accommodate
distributed neural representations. Such representations have
important implications for scaling the models to accommo-
date a wider variety of tasks and inputs, as well as their ro-
bustness to deal with noise that naturally occurs in biological
neural systems.

Our proposed model uses a distributed, noisy representa-
tion in a neural network whose components and connections
between them functionally resemble those of the associated
brain areas. Crucially, the core components of the model are
agnostic to particular input features in the WCST. That is,
there are no units in the model that are uniquely and exclu-
sively representing input concepts, such as red or triangle.
Instead the model extracts those concepts from the inputs,
stores them in working memory, and uses the memory to ad-
just its response based on feedback from the environment. As
well, our model performs the task in a way comparable to
participants in the experiment—it performs the task contin-
uously over time while considering the four target cards, its
previous responses, and by matching a stimulus card in each
trial. With our model, the whole experiment is conducted as
one long simulation, which has not been done with the previ-
ous models. We also evaluate our model across a number of
WCST normative scoring indices, and show that it provides
a good match with human data while being robust to changes
in different model parameters.

Biologically Constrained Model

Methods We wuse the Neural Engineering Frame-
work (NEF; Eliasmith and Anderson [2003) to build the
neural network performing the WCST. To do this, we break
the WCST down into an algorithm consisting of vectors,
functions applied to those vectors, and differential equations
on those vectors. Vectors are represented with the pattern
of activity across a group of neurons, and the functions and
differential equations are implemented by finding connection
weights between groups of neurons that best approximate
those functions. Here we use the Leaky Integrate-and-Fire
(LIF) neuron model due to its favorable trade-off between
low computational complexity and rudimentary biological
realism capturing neuronal membrane voltage dynamics (i.e.,
“spiking” activity).

In our case, desired mathematical functions are derived
from a vector symbolic architecture that constitutes the Se-
mantic Pointer Architecture (SPA; Eliasmith 2013)). For ex-

2296

ample, those are the operations of vector (un)binding that are
used to (de)compress vector representations. In the SPA, such
vectors whose values are represented by neural activities are
referred to as semantic pointers (SPs) The SPA also in-
cludes control components that operate on such representa-
tions, such as different types of winner-take-all mechanisms,
some of which are used in the proposed WCST model.

The NEF and SPA have been used to model a wide range
of cognitive and neurobiological phenomena, such as spatial
cognition (Komer et al. 2019; Dumont and Eliasmith |2020)),
affective processing (Kaji¢ et al. 2019), structured semantic
representations (Crawford et al. [2016), low-level cerebellar
function (Stockel et al. [2020), as well as the functional brain
model Spaun (Eliasmith et al. 2012). Our proposed model
uses the same or similar components that have been used in
those other models of neurobiological and cognitive phenom-
ena.

Our model is built using the Nengo Python library for sim-
ulating large-scale neural networks (Bekolay et al.[2014)). The
library provides default values for many of the model param-
eters (i.e., synaptic time constants, ranges of frequencies for
neural responses, to name a few), some of which are set to
biologically plausible ranges. Most of the parameters in the
model are set to those default values, however, we needed
to adjust some time constants to stabilize model behaviour.
Those values, as well as the model source code are available
at: https://github.com/ikajic/cogsci2l-wcst/L

Model Architecture

The model consists of interconnected groups of neural en-
sembles that map to the functions of specific brain regions.
While connections between ensembles in our model represent
only a subset of all connections between associated brain ar-
eas, they are motivated by neuroanatomical connectivity pat-
terns (Monchi et al. [2001). The model is schematically de-
picted in Figure[T] (A). Neural ensembles are shown as circles,
with colours denoting whether an ensemble processes exter-
nal inputs (green), produces outputs (yellow), or its dynamics
is determined internally (white). Arrows denote neural con-
nections and determine the flow of information.

Model I/O Rather than modelling the complete visual sys-
tem, the visual input to our model is two vectors C; (for target)
and C; (for stimulus) that would be the high-level output of a
visual system. C; represents the 4 target cards as follows:

CG=CaP+CaP+CGoP3+Cs® Py, (1)
with individual card SPs C;,i € {1...4} defined as:

C1 = Color ® Red + Shape ® Square + Number ® One

C, = Color ® Blue + Shape ® Circle + Number ® Two

C3 = Color ® Green + Shape ® Triangle + Number ® T hree
C4 = Color ® Yellow 4 Shape ® Star + Number ® Four,

2We will be interchangeably using terms vector and semantic
pointer.
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Figure 1: (A): The model. PFC: Prefrontal Cortex, DLPFC: Dorsolateral PFC, VLPFC: Ventrolateral PFC, WM: Working
Memory, THAL: Thalamus, BG: Basal Ganglia, S1: Striatum D1, S2: Striatum D2, STN: Subthalamic Nucleus, GPi/GPe:
Globus Pallidus internal/external; SNR: Substantia Nigra. (B): An excerpt from a simulation showing the decoded vectors (a,

¢, e) and spiking activity (b, d, f) in the response population (a,

b), working memory (c, d), and the thalamus (e, f) over 4

trials. Decoded values are shown as dot products between the ideal vectors and the vectors represented by a neural population.

Experimental rule changed in Trial 11 from Number to Shape.

where ® denotes circular convolution, used for compres-
sive binding of vectors. Each non-composite SP, such as
P1, Color or Star, is a Holographic Reduced Representa-
tion (Plate [1995)), which is a random vector with elements
drawn independently from ((0, 1), where 7 is the number of
dimensions.

The stimulus vector C is composed in a similar way, by
controlling for all possible combinations of colour, shape
and number attributes (giving 64 stimulus cards). While C;
remains unchanged for the duration of the experiment, Cj
changes when the model produces a response, defined as rep-
resenting one of the 4 target card SPs in the response neural
group for at least 300 ms. We examine the effect of SP di-
mensionality on model performance in Experiment 1.

Key Components

Prefrontal Cortex In the context of the WCST, the pre-
frontal cortex (PFC) is associated with the maintenance of
task-related transient information, such as set maintenance
and set shifting (Monchi et al. 2001). In the model, the PFC
includes networks performing the following function: main-
taining the current rule/set (working memory and VLPFC),
evaluating individual exemplars based on the current rule
(DLPFC), and selecting the response card (DLPFC).

The novel component in charge of exemplar evaluation is
the reconfigurable associative memory. We refer to it as re-
configurable since it can be used to do any task, not just
WCST. Its goal is to take a complex stored vector (C; in the
WCST) and extract the 4 different features that are relevant
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for the current comparison. For C; given above, and in the
case where the current rule stored in working memory (V)
is Shape, the results should be Square, Circle, Triangle, and
Star.

To do this, each of the four reconfigurable units performs
the following operation:

feature; = C; ® Pfl ® V@b, 2)

where i =1...4, Vi) is the vector represented in the working
memory, ~! denotes the approximate vector inverse, and C;
and P; are as defined in Equation [I]

Then, each feature vector is compared with the stimulus
feature vector (obtained in the same way) using a dot product.
The 4 resulting values are fed into a WTA mechanism that
selects one of the 4 target cards and projects the winning SP
to the response population.

Importantly, this neural system computes this operation on
any input vectors C; and Vyyys. This means it could be used for
any task where a piece of information needs to be extracted
from a set, regardless of whether that information is about
colour, shape, size, count, age, location, or anything else that
can be represented as a vector.

The cortico-basal ganglia-thalamo-cortical loop The
basal ganglia (BG) and the thalamus are generally associ-
ated with control in the brain, playing a critical role in ac-
tion selection and decision making. Our model uses the BG
model proposed by Gurney et al. (2001) that is anatomically
and physiologically consistent with the biological system.



Through the thalamus and a gating mechanism, the BG
control the contents of the working memory based on the cur-
rent contents as well as the experimental feedback. This feed-
back is an exogenous signal provided by the environment, and
is shown as the green “feedback” population in DLPFC in
Figure[T] (A).

If the feedback received in a trial is positive, the thalamus
selects a cognitive action corresponding to “maintain the rep-
resentation in working memory”. In Figure [I] (B) this thala-
mus activity is shown as the WM<«WM SP in the panel (e).
If the feedback is negative, the current rule in working mem-
ory will be replaced by a different one. For example, if the
current rule is Color, it will be replaced with Number, if it
is Number, it will be replaced with Shape, and Shape will be
replaced with Color. As a consequence, this implements a
cyclical selection of rules until positive feedback is received.
An example of a rule switch from Number to Shape is shown
in Figure[T] (B) in the panels (c) and (e).

Results

We first evaluate the model by examining its overall perfor-
mance on the WCST. To do so, we focus on two commonly
used scoring indices: the number of categories achieved and
the number of perseverative errors. The experiment termi-
nates once the model achieves 6 consecutive categories, or
when all 128 stimulus cards are exhausted.

Then, we compare model performance to performance of
young healthy adults on a range of scoring indices. While
previous modelling studies predominantly reported achieved
categories and perseverative errors, here we include a more
exhaustive comparison including 6 additional indices fre-
quently reported for human data.

In all instances, we run 100 model simulations to account
for possible differences in performance due to parameter ini-
tialization. Each simulation corresponds to a different seed
used to initialize random parameters in the model. In the
NEEF, there are several such parameters, such as neural fir-
ing rate ranges, membrane thresholds, preferred input direc-
tions and encoding weights, thus modelling the variability ob-
served in biological systems. As a first approximation, the di-
versity in models due to such random parameter initialization
can also be considered analogous to individual differences.

Experiment 1: Categories Achieved

We investigated the effect of two parameters on the number of
achieved categories: the dimensionality of semantic pointers,
and the strength of memory defined by the value of the re-
current connection on the neural population representing the
current rule.

Representation Dimensionality The SP dimensionality
affects the number of neurons in the model and the average
pairwise similarity of randomly generated VectorsE] We in-

3Vectors randomly sampled from a higher-dimensional space are
more likely to be dissimilar, as measured by some metric of pairwise
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vestigate the effect of representation dimensionality in an at-
tempt to quantify the robustness of our model in terms of the
total number of neurons used. A model relying on vectors
with many dimensions will contain more neurons to represent
these additional dimensions. As we show later, our model
exhibits graceful degradation in performance as we decrease
this number, thus showing that even a smaller model is able
to perform the task.

We run 100 simulations for each of the 4 dimensions:
128,256,512 and 1024, and show the distribution of cate-
gories achieved in Figure [2](A). We observe a bimodal dis-
tribution with a small mode corresponding to 0 categories
and a larger mode corresponding to 6 categories. The model
with d = 128 has the worst performance, as evidenced by the
largest number of simulations (N = 27) that failed to com-
plete even one category, but also smallest number of simu-
lations (N = 33) that completed 6 categories. Increasing the
SP size improves the performance, but appears to saturate be-
yond d = 512: N =79 simulations complete all 6 categories
for both d =512 and d = 1024.

The approximate model sizes are as follows: 0.53M neu-
rons for d = 128, 1.06M for d = 256, 2.1M for d = 512 and
4.2M for d = 1024. Based on these results, we use d = 512
in remaining experiments, as the larger model did not offer
any substantial improvements and thus did not justify the ad-
ditional computational expense.

Memory Strength We examine the effect of the recurrent
connection on the “recurrent rule” population in WM shown
in Figure E](A). The strength of this connection (w) deter-
mines memory characteristics. Lower values can be seen as
modelling a “volatile” working memory that is unable to keep
information for a sustained period of time, while higher val-
ues reinforce the current representation and saturate memory
in a way which can make it difficult to integrate new infor-
mation. w = 0 corresponds to a memory-less system, that is a
feed-forward network, while w = 1 corresponds to a “perfect”
memoryﬂ The results of 100 simulations for each model us-
ing one of the five different connection strengths are shown
in Figure[2] (B).

The highest number of simulations achieving 6 categories
(N =179), as well as the smallest number of simulations
achieving 0 categories (N = 16) is observed with the model
with w = 0.6. Increasing the weight beyond that value in-
creases the number of simulations achieving 0, 1 or 2 cat-
egories, and reduces the number of simulations achieving 6
categories. None of the simulations with w = 0.1 achieves
more than 2 categories.

Experiment 2: Perseverative Errors

In this set of experiments, we examined the effects of memory
on the incidence of perseverative errors. We use the same 100

similarity such as the cosine angle or the dot product.

4Since we still use neurons, the resulting memory will not ac-
tually be perfect, as the neurons are only approximating this ideal
function.
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Figure 2: Number of categories achieved for models using semantic pointers of different dimensionality (A), and memory
strength (B). Distribution of perseverative errors for different memory strengths (C).

simulations for each of the five different connection strengths
as in the previous experiment. A KDE plot showing the distri-
bution of perseverative errors for each connection strength is
shown in Figure [2](C). Each continuous density is estimated
using a Gaussian kernel with bandwidth size 0.2, and it has
been normalized so that the total area under it sums to 1. The
curves have been truncated after the error value of x =45 to
highlight the differences in their shapes.

The resulting distributions show different quantitative
properties, with a few showing prominent modes at x = 0.
This corresponds to the majority of simulations where the
model failed to achieve a single category. Next, we observe
another mode at approximately x = 7 for several distributions,
as well as one prominent one at x = 25 for the distribution
with w = 0.8. For w = 0.8 this mode corresponds to simu-
lations that achieved both O categories and more than O but
less than 6. A small mode also at x = 25 for w = 0.6 is
due to 3 simulations: one simulation where the model pro-
duced at most 8 correct responses, thus failing to complete
one category; one where it produced one category and many
sequences of 5+ correct responses but never 10; as well as
one simulation with 6 categories and many errors.

These results lead us to conclude that the strength of re-
current memory connection has a strong impact on the distri-
bution of perseverative errors. We observe a higher number
of perseverative errors when w = 0.8, consistent with the hy-
pothesis that more saturated memory interferes with the suc-
cessful integration of new information.

Experiment 3: Comparison with Empirical Data

In addition to achieved categories and perseverative errors,
other performance scores typically reported on WCST are:
(1) trials achieved, (2) correct trials, (3) total number of er-
rors, (4) perseverative responses, (5) trials to complete the
first category, (6) failure to maintain set, (7) conceptual level
responses and (8) learning to learn (Heaton et al. [1993).

We use simulation data produced by the three models that
yield the highest rates of 6 categories achieved, based on the
results shown in Figure2] (B). Those are models with memory
connection strengths w € {0.4,0.6,0.8}. We also remove all
simulations that did not complete a single category, resulting

2299

in 73 simulations for the model with w = 0.4, 84 for w = 0.6
and 56 for w = 0.8. These results are compared to the data
on WCST performance of 25 college-aged students published
in Ashendorf and McCaffrey (2008). The results are shown
in Figure [3] with human averages highlighted in yellow.

To compare the results quantitatively, Bonferroni corrected
95% confidence intervals for the difference between two pop-
ulation means are computed, and used to test for differences
in reported scores. No significant difference was found for
any of the 8 scores when w = (0.6, while 2 and 3 significant
differences were found with w = 0.4 and w = 0.8, respec-
tively. For w = 0.4 those were the number of categories and
failure to maintain set, and for w = 0.8 the same two, as well
as the number of perseverative responses.

Discussion

The proposed WCST model shows a good match with hu-
man data on the test, while establishing an important link
to the cognitive and neurobiological levels of explanation.
For example, at the cognitive level, the proposed reconfig-
urable associative memory module is consistent with the two-
stage process accounts of discrimination learning (Mackin-
tosh [1965)): first, attention is directed towards the relevant
cue (e.g., the task rule, such as shape), and the cue is used
to evaluate individual target cards against the stimulus card.
At the neurobiological level, this module operates on non-
specific, distributed, noisy representations. As such, it differs
from the existing “localist” models that scale poorly and are
biologically unrealistic, as they represent a concept with a
specific and unique neural population. It should be noted that
this module is resource-heavy, as it contains over 95% of all
neurons in the model. However, we find that such cost may
be justified when considering the added benefit of general-
ity, and applicability to different discrimination tasks with a
relatively small set of cues.

We have also demonstrated the robustness of the model, by
showing that varying the parameters of the model results in
gradual impairment in performance. For example, reducing
the semantic pointer dimensionality below d = 512 negatively
affected the number of simulations that achieve all 6 cate-
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Figure 3: Mean performance and 95% confidence intervals on 8 different WCST normative scores for humans and three models
(w € {0.4,0.6,0.8}). H: Baseline human performance of 25 college-aged adults (Ashendorf and McCaffrey [2008)

gories, while no substantial improvements were found with
d = 1024, which led us to conclude that d = 512 offers a good
trade-off between the model size and performance. Interest-
ingly, d = 512 has been found as the optimal size in related
modelling work (Crawford et al. Eliasmith et al. 2012).

Varying the strength of the recurrent feedback connection
on the memory module resulted in a higher incidence of per-
severation errors, and a lower number of categories achieved.
This decline in performance is consistent with two empiri-
cally observed accounts: first, age-related decline in the set
shifting and set maintenance ability (Ashendorf and McCaf-
frey 2008); second, impaired performance observed in pa-
tients with dysfunctional prefrontal brain regions, such as in
schizophrenia (Weinberger et al.[1986). We speculate that our
experimental manipulation is more likely to reflect the poorer
working memory abilities of older adults, since it is consistent
with empirical evidence of age-related decline in memory up-
dates (Hartman et al.[2001)). Furthermore, the role of the basal
ganglia-thalamocortical loop in the model is consistent with
the proposal of its importance in determining the attentional
set and overall action guidance (Monchi et al. 2001). How-
ever, additional parameter exploration is needed to compre-
hensively characterize impaired performance in the context
of various cognitive deficits.

We believe that, compared to existing models, our model
provides a more accurate match to cognitive and biologi-
cal mechanisms in the WCST. However, we highlight sev-
eral venues for future investigations. First, the model makes
an assumption about the specific sequential order of testing
for three possible task rules (i.e., Shape, Number or Color).

While our results demonstrate that this is a reasonable strat-
egy, as evidenced by our model producing responses that
match human data well, it does not account for the learning
stage that occurs before one settles onto the three possible
rules.

Second, while the model provides a good match with hu-
man data, it should be noted that there are certain caveats as-
sociated with the statistical comparison of the human data and
the model data. While, in many cases, we found no signifi-
cant difference between the two scores, the inability to reject
the null hypothesis (due to overlapping confidence intervals)
does not imply equivalence between the model and the system
being modelled. In the future, we would like to apply more
conservative statistical tests that take into account the relative
difference in confidence intervals when evaluating the mod-
elsfl

Finally, given that some components of our model neu-
roanatomically map to biological structures, the model can
be lesioned in a way which corresponds to the damage to the
neural system. For example, there is empirical data available
on WCST performance in Parkinson’s and Huntington’s pa-
tients and the model could be used to investigate the role of
different subcortical nuclei.
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