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Abstract. We enumerate Hurwitz orbits of shortest reflection factorizations of an arbitrary
element in the infinite family G(m, p, n) of complex reflection groups. As a consequence,
we characterize the elements for which the action is transitive and give a simple criterion to
tell when two shortest reflection factorizations belong to the same Hurwitz orbit. We also
characterize the quasi-Coxeter elements (those with a shortest reflection factorization that
generates the whole group) in G(m, p, n).
Keywords. Hurwitz action, reflection factorization, complex reflection group, dual Coxeter
theory, braid action and quasi-Coxeter element
Mathematics Subject Classifications. 05A05, 05A15, 05E18, 20F55

1. Introduction

Given an arbitrary group G, there is an action of the braid group

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣ σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2
σiσj = σjσi if |i− j| > 1

〉
on the set Gn of n-tuples of elements of G: the generator σi acts via a Hurwitz move(

t1, . . . , ti−1, ti, ti+1, ti+2, . . . , tn
) σi7−→(

t1, . . . , ti−1, ti+1, t−1
i+1titi+1, ti+2, . . . , tn

)
,

preserving the product of the tuple. It is easy to check that this extends to an action of Bn, which
is called the Hurwitz action. The case thatG is a reflection group and the factors tj are reflections
is of particular interest. Notably, one ingredient in Bessis’s proof [6] of theK(π, 1) property for
complements of finite complex reflection arrangements is the following transitivity property.

∗Supported in part by an ORAU Powe award, a Simons collaboration grant (634530), and the GW University
Facilitating Fund.
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Theorem 1.1 (Bessis [6, Prop. 7.6]). If G is a well-generated complex reflection group and c is
a Coxeter element inG, the Hurwitz action is transitive on minimum-length reflection factoriza-
tions of c.

The broader context for this result is the so-called dual Coxeter theory, developed by Bessis
[5] and Brady and Watt [7, 8] for real reflection groups and then extended to the complex case.
Working from this perspective, Baumeister–Gobet–Roberts–Wegener [2] gave a complete char-
acterization of those elements in a finite real reflection group with the property that the Hurwitz
action is transitive on their minimum-length reflection factorizations. (The precise statement of
their result may be found below as Theorem 5.2.)

Our goal in the present paper is to extend the work of Baumeister et al. to the complex case.
We have three main results. First, in Theorem 3.2, we give an exact enumeration of Hurwitz
orbits of minimum-length reflection factorizations for an arbitrary element in the infinite fam-
ily G(m, p, n) of “combinatorial” complex reflection groups. As a consequence, we obtain a
characterization (Corollary 3.4) of the elements in G(m, p, n) such that the Hurwitz action is
transitive on their minimum-length reflection factorizations. Second, in Theorem 4.1, we solve
the “inverse problem” for Hurwitz equivalence on minimum-length reflection factorizations in
G(m, p, n), showing that two such factorizations of the same element belong to the same Hur-
witz orbit if and only if they generate the same subgroup of G(m, p, n). Third, in Theorem 5.6,
we extend a result of Baumeister et al. by showing that for an arbitrary finite complex reflection
groupG of rank n, if g inG has reflection length n and has a minimum-length factorization that
generates G, then in fact all minimum-length factorizations of g generate G.

The plan of the paper is as follows: in Section 2, we give background on complex reflection
groups, reflection factorizations, and the Hurwitz action, and establish notation and conventions
that will be used throughout the paper. Section 3 is devoted to the statement and proof of our main
enumerative theorem (Theorem 3.2). In Section 4, we build on the tools developed in Section 3
in order to solve the inverse problem for Hurwitz equivalence in G(m, p, n) (Theorem 4.1).
In Section 5, we introduce the quasi-Coxeter property, which plays a key role in the work of
Baumeister et al. in the real case. We characterize the elements inG(m, p, n) with this property,
discuss its connection with the transitivity of the Hurwitz action, and prove that a weak form of
the property implies a stronger form for any complex reflection group (Theorem 5.6). Finally,
in Section 6, we discuss several open problems.

2. Background

2.1. Conventions

Throughout this paper, m, p, and n will represent positive integers with p | m. Since p divides
m, the cyclic group Z/mZ, whose elements are equivalence classes of integers modulo m, has
a unique subgroup pZ/mZ ∼= Z/(m/p)Z of order m/p: it consists of those equivalence classes
whose elements are divisible by p. We may write k ≡ 0 (mod p) to indicate that an element k
in Z/mZ belongs to this subgroup, and either k = 0 or k ≡ 0 (mod m) to indicate that k is the
identity in Z/mZ. As in the previous sentence, we do not distinguish notationally between the
integer k and its equivalence class modulo m.
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Given a collection of k1, k2, . . . , kn of elements of Z/mZ, they generate a subgroup kZ/mZ
for some k (the minimal subgroup that contains all of them). If we take k1, . . . , kn to be any
representatives of their equivalence classes, then the smallest positive representative k of kZ is
k = gcd(m, k1, . . . , kn). All greatest common divisors that appear in this paper (particularly, as
in Definition 3.1) will be meant in this sense.

Again throughout the paper, ω = exp(2πi/m) will denote a fixed primitivemth root of unity.
The collection {ωi : i ∈ Z} of all mth roots of unity is in natural bijection with Z/mZ, and the
(m/p)th roots of unity correspond exactly to the elements k ≡ 0 (mod p).

2.2. Complex reflection groups

For a general reference on the material in this section, see [20]. Given a finite-dimensional
complex vector space V , a reflection is a linear transformation t : V → V whose fixed space
ker(t− 1) is a hyperplane (i.e., has codimension 1), and a finite subgroup G of GL(V ) is called
a complex reflection group if G is generated by its subset R of reflections.1 Complex reflection
groups were classified by Shephard and Todd [27]: every complex reflection group is a direct
product of irreducibles, and every irreducible is isomorphic to a group of the form

G(m, p, n)
def
==

{
n× n monomial matrices whose nonzero entries are
mth roots of unity with product a m

p
th root of unity

}
for positive integers m, p, n with p | m or to one of 34 exceptional examples.

When p < m, the groupG(m, p, n) contains two types of reflections: for a = 0, 1, . . . ,m−1,
the transposition-like reflections 

1
. . .

1
ωa

1
. . .

1
ωa

1
. . .

1


of order 2, and for b = p, 2p, . . . ,

(
m
p
− 1
)
p the diagonal reflections

1
. . .

1
ωb

1
. . .

1


(2.1)

1In the literature, it is sometimes required a priori that reflections have finite order or that complex reflection
groups live in the unitary group on V . The former condition is implied by the fact that G is finite, and the latter
may be recovered by a standard averaging trick [20, Lem. 1.3].
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of various orders. The group G(m,m, n) contains only the transposition-like reflections.
One recovers the infinite families of real reflection groups (finite Coxeter groups) as the

following special cases: the groupG(1, 1, n) is the symmetric group Sn (of Coxeter type An−1);
G(2, 1, n) is the hyperoctahedral group of signed permutations (type Bn/Cn); G(2, 2, n) is the
group of even-signed permutations (type Dn); and G(m,m, 2) is the dihedral group of order
2×m (type I2(m)).

For every m, p, n, there is a natural projection map

π : G(m, p, n)� G(1, 1, n) = Sn

defined as follows: for g ∈ G(m, p, n), the matrix π(g) is the result of replacing every root of
unity in the matrix of g with 1. The resulting permutation is called the underlying permutation of
g. It will be convenient to use the following, more compact, notation for elements ofG(m, p, n):
one writes g = [u; (a1, . . . , an)] where u = π(g) and aj ∈ Z/mZ is the exponent of ω =
exp(2πi/m) in the nonzero entry of the jth column of g. For example, in this notation we have
in G(30, 5, 6) that ω21

ω
ω2

ω2

ω3

ω6

 = [214536; (1, 21, 2, 3, 2, 6)] = [(12)(345)(6); (1, 21, 2, 3, 2, 6)]. (2.2)

This notation reveals thatG(m, 1, n) has the structure of a wreath product, namely,G(m, 1, n) ∼=
(Z/mZ) oSn, with multiplication given by

[u; (a1, . . . , an)] · [v; (b1, . . . , bn)] =
[
uv; (av(1) + b1, . . . , av(n) + bn)

]
.

In the particular case of transposition-like reflections, we abbreviate the notation even further,
setting

[(i j); a]
def
== [(i j); (0, . . . , 0, a, 0, . . . , 0,−a, 0, . . . , 0)].

Given an element g = [u; (a1, . . . , an)] of G(m, p, n), the value ai is called the weight of i.
Further, for any subset S ⊆ {1, . . . , n}, we define

∑
i∈S ai to be the weight of S in g. This notion

will be particularly relevant when S is the set of entries of a cycle of g, or when S = {1, . . . , n}
and a1 + . . .+an is the weight of g. For instance, every transposition-like reflection has weight 0,
while the diagonal-like reflection in (2.1) has weight b. In this language, an element ofG(m, 1, n)
belongs to G(m, p, n) if and only if its weight is a multiple of p.

2.3. Shi’s formula for reflection length

Fix a complex reflection groupGwith reflectionsR. SinceG is a reflection group, every element
g ofG can be written as a product of reflections. If f = (t1, . . . , t`) is a tuple of reflections such
that g = t1 · · · t`, we say that f is a (reflection) factorization of g. We say that a reflection factor-
ization f of g is shortest, minimum, or of minimum length if there is no reflection factorization
of g using fewer reflections, and we define the reflection length `R(g) of g to be the length

`R(g)
def
== min{` : g = t1t1 · · · t` for some ti ∈ R}
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of the shortest factorizations.
WhenG is a finite real reflection group, the reflection length of an element can be interpreted

geometrically: one has `R(g) = codimV (ker(g − 1)), where ker(g − 1) = {v ∈ V : g(v) = v}
is the fixed space of g [9, Lem. 2]. The same is true in G(m, 1, n), but not in any of the other
irreducible complex reflection groups [12, 29]. In [29], Shi gave a combinatorial formula for
reflection length in the group G(m, p, n) that we describe next.

For an element g ∈ G(m, p, n), we say that a cycle of g is a cycle of the underlying permu-
tation π(g), and we denote by cyc(g) the number of cycles of g. A cycle partition Π of g is a set
partition of the set {C1, . . . , Ccyc(g)} of cycles of g such that for every part in Π, the correspond-
ing cycle weights sum to 0 (mod p). (Cycle partitions always exist because the weight of g is 0
(mod p).) For example, the element

g =


ω2

ω2

ω2

ω2

 = [id; (2, 2, 2, 2)] ∈ G(4, 4, 4)

has four cycle partitions:

Par(g) =
{

[[(1)(2) | (3)(4)]], [[(1)(3) | (2)(4)]], [[(1)(4) | (2)(3)]], [[(1)(2)(3)(4)]]
}
.

Observe that the set of cycle partitions depends on the choice of the group containing g: if we
were to view the same matrix g as an element of G(4, 2, 4) then Par(g) would consist of all
fifteen set partitions of the four cycles.

Given a cycle partition Π of an element g ∈ G(m, p, n), let |Π| denote the number of parts
of Π and let vm(Π) denote the number of parts of Π of weight modulo m (not just 0 modulo p).
The value v(Π) of a cycle partition Π is

v(Π)
def
== |Π|+ vm(Π).

A cycle partition is maximum if its value is the largest among the values of all possible cycle
partitions of g (relative to the given m, p), and we denote by Parmax(g) the set of maximum
cycle partitions of g. For example, with g = [id; (2, 2, 2, 2)] ∈ G(4, 4, 4) as above, the three
cycle partitions into two parts have value 4, while the cycle partition in one part has value 2, and
so

Parmax(g) =
{

[[(1)(2) | (3)(4)]], [[(1)(3) | (2)(4)]], [[(1)(4) | (2)(3)]]
}
.

Theorem 2.1 ([29, Thm. 4.4]). Given an element g ∈ G(m, p, n), its reflection length is

`R(g) = n+ cyc(g)− v(Π),

where cyc(g) is the number of cycles of g and Π ∈ Parmax(g) is any maximum cycle partition
of g.
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Example 2.2. The element g = [(12)(345)(6); (1, 21, 2, 3, 2, 6)] of G(30, 5, 6) shown in (2.2)
has three cycles, of weights 22, 7, and 6. The unique partition of the cycles of g in which all
parts have weight 0 (mod 5) is the one-part partition Π = [[(12)(345)(6)]], of value v(Π) = 1.
Therefore `R(g) = 6 + 3− 1 = 8.

If instead g = [id; (2, 2, 2, 2)] is the element ofG(4, 4, 4) mentioned just before the statement
of Theorem 2.1, then Parmax(g) contains three cycle partitions, each of value 4. Thus for this
element `R(g) = 4 + 4− 4 = 4.

Remark 2.3 (Theorems 2.1 and 3.1 in [29]). In the particular cases p = 1 and p = m, the formula
in Theorem 2.1 can be simplified.

When p = m, every part in every cycle partition Π must have weight 0 (mod m), so
vm(Π) = |Π| and v(Π) = |Π| + vm(Π) = 2|Π|. Thus, in G(m,m, n) we have that
`R(g) = n+ cyc(g)− 2 maxΠ∈Par(g) |Π|.

When p = 1, every partition of the cycles is a cycle partition. It is shown below (as part of
the proof of Corollary 3.6, in Section 3.4) that a cycle partition Π is maximum if and only if each
part contains either a single cycle or two cycles of nonzero weights that sum to 0. It follows that
in G(m, 1, n) we have `R(g) = n−#{cycles in g of weight 0}.

Upon taking m = 1, both formulas correctly collapse to the symmetric group formula
`R(g) = n− cyc(g).
Remark 2.4. From a computational perspective, determining the reflection length of an ele-
ment in G(m, 1, n) is easy – naively computing cycle weights and counting how many are
0 (as in Remark 2.3) is polynomial time. Unfortunately, the same is not true in general, or
even in G(m,m, n). In particular, testing whether an element g ∈ G(m,m, n) has `R(g) <
n+cyc(g)−2 amounts to asking whether there is any nontrivial subset of the cycle weights that
sums to 0 modulo m. This is known in the literature as the modular subset sum problem (see,
e.g., [19]). The non-modular version of this question (in which the cycle weights are integers,
rather than integers modulo m) was one of Karp’s original NP-complete problems (he called it
the knapsack problem, although it is now more commonly known as the subset sum problem)
[17]. There is a standard reduction from the non-modular to modular versions of the question,
namely, by setting m = 2S + 1 where S is the sum of absolute values of the given collection of
numbers; thus modular subset sum is also NP-complete.

(The non-modular version of subset sum appears in the computation of reflection length in
the affine symmetric group [22, App. A], which is a generic cover in a certain sense of the groups
G(m,m, n) [28, 23].)

2.4. The Hurwitz action

As mentioned in the introduction, it is easy to check that Hurwitz moves satisfy the braid relations

σiσi+1σi(t1, . . . , tn) = σi+1σiσi+1(t1, . . . , tn) for i = 1, . . . , n− 2 and
σiσj(t1, . . . , tn) = σjσi(t1, . . . , tn) if |i− j| > 1,
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and consequently induce an action of the full braid group. In particular, the action of the inverse
of a generator is

(
t1, . . . , ti−1, ti, ti+1, ti+2, . . . , tn

) σ−1
i7−→(

t1, . . . , ti−1, titi+1t
−1
i , ti, ti+2, . . . , tn

)
.

We will refer variously to Hurwitz orbits (the orbits under the Hurwitz action), Hurwitz equiv-
alence (the induced equivalence relation, of belonging to the same orbit), and Hurwitz paths
(sequences of Hurwitz moves connecting factorizations in the same orbit) when speaking of the
orbit structure of this action.

The Hurwitz action was introduced by Hurwitz [14], in the context of his study of the cover-
ings of the Riemann sphere with given monodromy. In that setting, the groupG is the symmetric
group Sn, and the allowed factors are transpositions. The structure of the Hurwitz orbits on
transposition factorizations in Sn was essentially completely analyzed by Kluitmann.

Theorem 2.5 (Kluitmann [18, Thm. 1]). The set of all transposition factorizations (t1, t2, . . . , tk)
of an element w ∈ Sn such that 〈t1, t2, . . . , tk〉 = Sn forms a single orbit under the Hurwitz
action.

Kluitmann’s approach employs a graph-theoretic model for transposition factorizations that
goes back to Dénes [11]. This model may be easily extended to the classical families of Coxeter
groups, and more generally to G(m, p, n) (as in, for example, [21, 32]); we will make use of it
below in Section 3.

We end this section by mentioning a few other results on the Hurwitz action related to Bessis’s
theorem (Theorem 1.1) on minimum-length reflection factorizations of Coxeter elements. (For
a detailed discussion of the definition and properties of Coxeter elements in the complex set-
ting, see [25].) The analogous result was proved for (not necessarily finite) Coxeter groups by
Igusa and Schiffler [15], with a short and self-contained proof in [1]. This has been extended to
arbitrary-length reflection factorizations of Coxeter elements in Coxeter groups (first finite [21],
then in general [34]) and to the infinite family of complex reflection groups [23]. Finally, in [33],
Wegener extended one direction of the main result of [2] to the case of affine Coxeter groups.

3. The main theorem

This section is devoted to the proof of our first main theorem. In order to state it, we need one
further piece of terminology. (The reader may wish to recall our convention for greatest common
divisors from Section 2.1.)

Definition 3.1. Let g ∈ G(m, p, n), let Π be a cycle partition of g, and let B be a part in Π.
Suppose that the weights of the cycles in B are (k1, k2, . . . , k|B|). Define

r(B) = gcd(m, k1, k2, . . . , k|B|).
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Theorem 3.2. Given an element g ∈ G(m, p, n), the number of Hurwitz orbits of shortest
reflection factorizations of g is ∑

Π∈Parmax(g)

∏
B∈Π

(r(B))|B|−1.

Example 3.3. For example, the element g = [id; (2, 2, 2, 2)] ∈ G(4, 4, 4) discussed above has
twelve Hurwitz orbits of minimum-length reflection factorizations, including 4 = 22−1 × 22−1

from each of its three maximum cycle partitions.

As an immediate consequence of Theorem 3.2, we will derive the following characterization
of elements for which the Hurwitz action is transitive on the shortest reflection factorizations.

Corollary 3.4. Let g ∈ G(m, p, n). The shortest reflection factorizations of g form a single orbit
under the Hurwitz action if and only if Parmax(g) = {Π} is a singleton set and either |B| = 1
or r(B) = 1 for every part B ∈ Π.

We mention two particularly nice special cases.

Corollary 3.5. If g ∈ G(m, p, n) has a single cycle, then the shortest reflection factorizations
of g form a single orbit under the Hurwitz action.

Corollary 3.6. Let g ∈ G(m, 1, n). Then the shortest factorizations of g form a single orbit
under the Hurwitz action if and only if g does not have two cycles of nonzero weight whose
weights sum to 0 (mod m).

We divide the proof into four steps: first, we define a standard form of factorizations and
show that every minimum-length factorization is Hurwitz-equivalent to a factorization in stan-
dard form; next, we present a sufficient condition for two factorizations in standard form to be
Hurwitz equivalent, by explicitly constructing a Hurwitz path between them; then we show that
this condition is also necessary, by constructing an invariant that distinguishes Hurwitz orbits;
and lastly, we conclude with the proof of Theorem 3.2 and its corollaries.

3.1. Standard forms

In this section, we define a standard form for factorizations in G(m, p, n) and show that every
shortest factorization is Hurwitz-equivalent to a factorization in standard form. It is easiest to
describe the standard form in terms of a graph object associated to factorizations.

Definition 3.7. Given a reflection factorization f = (t1, . . . , t`) of an element g = t1 · · · t` ∈
G(m, p, n), the factorization graph of f is the graph Γf = (V,E) on (labeled) vertex set
V = {1, . . . , n} with (labeled) edges E = {e1, . . . , e`} defined as follows: if tk has under-
lying permutation (i j) then ek joins vertices i and j, while if tk is diagonal with nonzero weight
in position i then ek is a loop at vertex i.
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Example 3.8. Consider the element g = [(12)(345)(6); (1, 21, 2, 3, 2, 6)] in G(30, 5, 6) from
Example 2.2, with factorization

f =
(

[(13); 1], [(13); 23], [(36); 0], [(36); 29],

[id; (0, 0, 0, 0, 0, 5)], [(12); 1], [(34); 2], [(45); 3]
)
. (3.1)

The factorization graph Γf is

1 2 3 4 5 6
6

1

2

3

4

7 8

5

.

Fix an element g in G(m, p, n) and a reflection factorization f = (t1, . . . , t`) of g. The
connected components of the graph Γf form a set partition of {1, . . . , n}. In fact, this set partition
corresponds to a cycle partition of g: the action of each transposition π(ti) respects the set
partition, so π(g) must as well, and consequently all elements of a single cycle belong to the
same part. We denote by Πf the cycle partition induced in this way by the factorization f . If B
is a part in Πf , we denote by Γf |B the connected component of Γf that corresponds to B and by
f |B the subsequence of f whose factors correspond to the edges in Γf |B. If Πf contains just a
single part, i.e., Γf is a connected graph, then f is a connected factorization.

The next result is a trivial observation concerning the relationship between the factors in
different connected components of Γf ; its proof is left to the reader as an exercise.

Proposition 3.9. Suppose that f is a reflection factorization of an element g ∈ G(m, p, n), and
that B 6= B′ are parts in the cycle partition Πf . Then every reflection in f |B commutes with
every reflection in f |B′ . Moreover, the product g|B of the factors in f |B has the following form:
its nontrivial cycles are the cycles in B, and the weight of j in g|B agrees with its weight in g if
j is in the support of B, and is 0 otherwise.

Next, we give a more detailed description of the structure of the graphs that come from
minimum-length factorizations.

Proposition 3.10. Suppose that f is a shortest factorization of an element g ∈ G(m, p, n), and
let Πf be the cycle partition induced by the factorization graph Γf . Then Πf is a maximum cycle
partition of g.

Moreover, if B is a part of Πf that contains c = |B| cycles of g, supported on a total of k
elements of {1, . . . , n}, then Γf |B contains c+ k− 2 edges that join distinct vertices and either
one loop (if the weight of B in g is not 0) or no loops (if the weight of B is 0).

Proof. The result is implicit in the proofs of Lemmas 4.2 and 4.3 and Theorem 4.4 in [29].
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Example 3.11. Consider the factorization graph Γf in Example 3.8. Since Γf has a single
connected component, the cycle partition Πf has a single part that contains all three cycles in g,
with c = 3 and k = 6. In Γf , there are 3 + 6− 2 = 7 edges joining distinct vertices. Since the
weight of the element being factored is not 0, there is exactly one loop, for a total of eight edges.
This is the same as the reflection length of g (as computed in Example 2.2).

Remark 3.12. Given any element g ∈ G(m, p, n) and any cycle partition Π of g, it is easy to
construct a factorization f such that Πf = Π, as follows: choose a partB in Π, and suppose that
B = {C1 = (v1,1 · · · ), . . . , Cc = (vc,1 · · · )} contains c cycles, whose weights in g are k1, . . . , kc.
Begin with a product of 2(c− 1) transposition-like factors

[(v1,1 v2,1); a1] · [(v1,1 v2,1); a1 + k1] · [(v2,1 v3,1); a2] · [(v2,1 v3,1); a2 + k1 + k2] · · ·
· · · [(vc−1,1 vc,1); ac−1] · [(vc−1,1 vc,1); ac−1 + k1 + . . .+ kc−1]

for arbitrary ai ∈ Z/mZ. If the weight of B is nonzero, multiply on the right by a diagonal
reflection of weight wt(B) in position vc,1. The resulting product is a diagonal element in which
the weight of vi,1 is ki for i = 1, . . . , c and the other weights are 0. Next, for each cycle Ci, use a
tree of |Ci|−1 transposition-like factors to form the cycle; the weights are uniquely determined by
the sequence of underlying transpositions and the requirement that the product be the (correctly
weighted) cycle in g. Then do the same for the other parts of Π.

Inspired by the construction of Remark 3.12, we are now prepared for the key definition of
this section.

Definition 3.13. Given a shortest reflection factorization f of an element g ∈ G(m, p, n), with
factorization graph Γf and cycle partition Πf . Let B1, B2, . . . , B|Πf | be the parts of Πf . For
each part Bi ∈ Πf , let Ci,1, . . . , Ci,|Bi| be the cycles of g contained in Bi and for each j, let
vi,j be the smallest element of {1, . . . , n} permuted by Ci,j . Without loss of generality, assume
that the indices of the Bi and Ci,j have been chosen so that vi,1 < vi,2 < . . . < vi,|Bi| and
v1,1 < v2,1 < . . . < v|Πf |,1. We say that f is in standard form if the following conditions are
met:

(a) if i′ < i then every factor in f |Bi′
precedes (inside f ) all factors in f |Bi

;

(b) for each i, the first 2|Bi| − 2 factors t1, . . . , t2|Bi|−2 in f |Bi
have underlying transpositions

π(t1) = π(t2) = (vi,1 vi,2),

π(t3) = π(t4) = (vi,2 vi,3),

...
π(t2|Bi|−3) = π(t2|Bi|−2) = (vi,|Bi|−1 vi,|Bi|);

and

(c) for each i, if there is a loop in Γf |Bi
then it is e2|Bi|−1 and is incident to vertex vi,|Bi|.
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Example 3.14. Once again consider the factorization f from Example 3.8. It is a shortest fac-
torization since f has `R(g) = 8 factors. The factorization graph Γf has only one component,
corresponding to a cycle partition in which the three cycles (12), (345), and (6) are all placed in
the same part. Thus condition (a) of the definition is satisfied vacuously. By definition, v1,1 = 1,
v1,2 = 3 and v1,3 = 6 are the smallest elements in their cycles. The first two factors in f have
underlying permutation (v1,1 v1,2) = (13) and the next two factors have underlying permutation
(v1,2 v1,3) = (36), so condition (b) is satisfied. There is a loop, and it is the fifth factor and is
attached to vertex v1,3 = 6, so condition (c) is satisfied. Therefore, f is in standard form.

By Proposition 3.9, condition (a) in Definition 3.13 is “for free”: we can commute factors
from different components past each other without affecting conditions (b) and (c). The next
proposition spells out in great detail the structure of factorizations in standard form.

Proposition 3.15. Let g ∈ G(m, p, n) with a standard form factorization f and associated
graph Γf and cycle partition Πf . For each part B of Πf , the connected component Γf |B has
the following structure: (1) it contains a sequence of vertices v1, . . . , v|B| such that e2i−1 and e2i

join vi to vi+1; (2) if it contains a loop, the loop is e2|B|−1 and is attached to vertex v|B|; and (3)
removing the edges in (1) and (2) from Γf |B leaves a forest with |B| components, each of which
contains exactly one of the vertices v1, . . . , v|B|.

Proof. Parts (1) and (2) follow immediately from parts (b) and (c) of Definition 3.13, respec-
tively. We now consider part (3).

Let f |B = (t1, t2, . . .) be the subfactorization of f whose reflections correspond to edges in
Γf |B. By part (a) of Definition 3.13, this is a consecutive subsequence of f . By Proposition 3.9,
its product g|B has underlying permutation whose nontrivial cycles are the cycles in B, and
whose weights agree with g on the support of B and are 0 otherwise.

By part (1), for i = 1, . . . , |B| − 1 we have that the underlying permutations π(t2i−1) and
π(t2i) are both equal to the transposition (vi vi+1). Consequently, the underlying permutation
π(t2i−1t2i) of their product is the identity. Likewise, if there is a loop e2|B|−1, then the reflec-
tion t2|B|−1 is diagonal and so π(t2|B|−1) = id. It follows that removing these factors from the
factorization yields a shorter reflection factorization of an element with underlying permutation
π(g|B), with c = |B| cycles.

Let k be the size of the support of B. By Proposition 3.10, f |B contains either c+ k − 1 or
c + k − 2 edges, of which we remove either 2c − 1 or 2c − 2, respectively. Thus exactly k − c
edges remain after deletion. By elementary graph theory, a graph with k−c edges and k vertices
has at least c connected components. On the other hand, the edges correspond to a transposition
factorization of the permutation π(g|B) with c cycles, and the entries of any given cycle must
be in the same connected component, so there are at most c connected components. Combining
these two statements, we have that the deleted graph has exactly c connected components, and
in fact the vertex set of each component is the support of a cycle in B. Thus, each component
contains exactly one of the vertices v1, . . . , vc. Finally, by elementary graph theory, every graph
with k vertices, k − c edges, and c connected components is a forest.

Lemma 3.16. For any g ∈ G(m, p, n) and any minimum-length factorization f of g, there is a
standard form factorization of g that is Hurwitz-equivalent to f .
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Proof. It is easy to see that the Hurwitz action preserves the connected components of Γf . Since
factors from different components of Γf commute (Proposition 3.9), it suffices to consider the
case that Γf is connected (equivalently, that Πf is a one-part partition).

Let f ′ be a connected factorization of g in standard form. (This exists by, for example, the
construction in Remark 3.12.) By Propositions 3.10 and 3.15, both f and f ′ have n + c − 2
transposition-like factors and either both have no diagonal factors or both have one diagonal
factor. In the case that both have no diagonal factors (i.e., when wt(g) = 0), π(f) and π(f ′) are
both transposition factorizations of the same permutation π(g) in Sn. In addition, since both
f and f ′ are connected, factors in both projected factorizations π(f) and π(f ′) generate Sn.
Therefore, it follows immediately from Kluitmann’s theorem (Theorem 2.5) that the projected
factorizations π(f) and π(f ′) are Hurwitz-equivalent in Sn. In the case that both factorizations
have a diagonal factor, we may reduce to Kluitmann’s theorem by the easy observation that if
two tuples of elements in an arbitrary group are Hurwitz-equivalent, then they remain Hurwitz-
equivalent if we insert a copy of the identity in an arbitrary position in each tuple. Thus, in either
case we have that there is some braid (i.e., product of Hurwitz moves) β such that β(π(f)) =
π(f ′). Hurwitz moves commute with projection, so π(β(f)) = π(f ′). The definition of standard
form depends only on the projection; since f ′ is in standard form, it follows that β(f) is, as well.
Then β(f) is the desired factorization of g.

3.2. Hurwitz paths between standard form factorizations

In this section, we construct explicit sequences of Hurwitz moves connecting certain standard
form factorizations to each other. The main result of the section is Lemma 3.27, which gives a
criterion for two factorizations in standard form to be Hurwitz-equivalent.

In the first part of the section, we concentrate on connected factorizations that consist only
of the edges that appear in parts (b) and (c) of Definition 3.13.

Definition 3.17. For n > 1, we say that a factorization in G(m, p, n) is a doubled path if it is of
the form(

[(12); a1], [(12); b1], [(23); a2], [(23); b2], . . . , [(n− 1 n); an−1], [(n− 1 n); bn−1]
)

or (
[(12); a1], [(12); b1], . . . , [(n− 1 n); an−1], [(n− 1 n); bn−1], [id; (0, . . . , 0, d)]

)
.

We construct a collection of explicit sequences of Hurwitz moves that are well-behaved when
restricted to doubled paths, and use them as building blocks to prove the necessary Hurwitz
equivalences. As a first step, we establish some additional terminology.

By multiplying out, it’s easy to see that every doubled path in G(m, p, n) is a factorization
of a diagonal element g = [id; (k1, . . . , kn)] ∈ G(m, p, n) of weight 0 (if no diagonal element is
present) or d, and that for each i one has bi = ai + k1 + k2 + . . .+ ki. Consequently, given the
product g, the ai determine the entire factorization. This suggests the following definition.
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Definition 3.18. Let f =
(

[(12); a1], [(12); b1], [(23); a2], [(23); b2], . . .
)

be a doubled path,
factoring an element g = [id; (k1, . . . , kn)] ∈ G(m, p, n). Define the pair weight of the i-th
pair of factors (i.e., with underlying transposition (i i+ 1)) to be ai and the corresponding pair
difference to be di

def
== bi − ai = k1 + · · ·+ ki.

We consider three families of operations on doubled paths. The first family is extremely
simple.

Proposition 3.19. Let f be the doubled path in G(m, p, n) that has pair weights (a1, . . . , an−1)
and pair differences (d1, . . . , dn−1). Then σ2i−1(f) is also a doubled path. Moreover, σ2i−1(f)
has the same pair weights and pair differences as f , except that the i-th pair weight of σ2i−1(f)
is ai + di.

Proof. The full generality may be captured by considering the case n = 2, i = 1, when f has
only one pair of factors,

f =
(

[(12); a1], [(12); b1]
)
,

where b1 = a1 + d1. Applying σ1 gives(
[(12); a1], [(12); b1]

)
σ1−→
(

[(12); b1], [(12); 2b1 − a1]
)

=
(

[(12); a1 + d1], [(12); b1 + d1]
)

= σ1(f).

The result has new pair weight a1 +d1 and the same pair difference b1−a1 = d1, as claimed.

The second family of operations is more complex, and is indexed by a pair i < j of numbers
in {1, . . . , n− 1}.

Definition 3.20. For any pair of indices i, j with 1 6 i < j 6 n − 1, define τi,j to be the
following sequence of Hurwitz moves:

τi,j
def
== σ2j−2 ◦ σ2j−1 ◦ σ−1

2j−3 ◦ σ−1
2j−2 ◦ · · · ◦ σ2i+2 ◦ σ2i+3 ◦ σ−1

2i+1 ◦ σ−1
2i+2 ◦

σ−1
2i ◦ σ−1

2i+1 ◦ σ−1
2i−1 ◦ σ−1

2i ◦ σ−1
2i ◦ σ−1

2i+1 ◦ σ−1
2i−1 ◦ σ−1

2i ◦
σ2i+2 ◦ σ2i+1 ◦ σ−1

2i+3 ◦ σ−1
2i+2 ◦ · · · ◦ σ2j−2 ◦ σ2j−3 ◦ σ−1

2j−1 ◦ σ−1
2j−2.

(When i = j − 1, the first and third lines are empty compositions, vacuously giving the
identity braid.) The associated braids are illustrated in Figure 3.1.

Proposition 3.21. Let f be the doubled path in G(m, p, n) that has pair weights (a1, . . . , an−1)
and pair differences (d1, . . . , dn−1). Then τi,j(f) is also a doubled path. Moreover, τi,j(f) has
the same pair weights and pair differences as f , except that the ith pair weight of τi,j(f) is ai+dj
and the jth pair weight of τi,j(f) is aj + di.
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Figure 3.1: The braids corresponding to τ1,2 and τ1,3 when n = 4.

Proof. First consider the case i = 1 and j = 2, with

τ1,2 = σ−1
2 ◦ σ−1

3 ◦ σ−1
1 ◦ σ−1

2 ◦ σ−1
2 ◦ σ−1

3 ◦ σ−1
1 ◦ σ−1

2 .

Here, the pair weights for factorization f = ([(12); a1], [(12); b1], [(23); a2], [(23); b2], . . .) are
(a1, a2, . . .) and the pair differences are (d1, d2, . . .) = (b1 − a1, b2 − a2, . . .). We compute

f =
(

[(12); a1], [(12); b1], [(23); a2], [(23); b2], . . .
)

σ−1
2−→
(

[(12); a1], [(13); a2 + b1], [(12); b1], [(23); b2], . . .
)

σ−1
1−→
(

[(23); a2 + d1], [(12); a1], [(12); b1], [(23); b2], . . .
)

σ−1
3−→
(

[(23); a2 + d1], [(1 2); a1], [(13); b2 + b1], [(12); b1], . . .
)

σ−1
2−→
(

[(23); a2 + d1], [(23); b2 + d1], [(12); a1], [(12); b1], . . .
)

σ−1
2−→
(

[(23); a2 + d1], [(13); a1 + b2 + d1], [(23); b2 + d1], [(12); b1], . . .
)

σ−1
1−→
(

[(12); a1 + d2], [(23); a2 + d1], [(23); b2 + d1], [(12); b1], . . .
)

σ−1
3−→
(

[(12); a1 + d2], [(23); a2 + d1], [(13); b1 + b2 + d1], [(23); b2 + d1], . . .
)

σ−1
2−→
(

[(12); a1 + d2], [(12); b1 + d2], [(23); a2 + d1], [(23); b2 + d1], . . .
)

= τ1,2(f).

The pair differences of τ1,2(f) are (b1 − a1, b2 − a2, . . .) = (d1, d2, . . .) and the pair weights are
(a1 + d2, a2 + d1, . . .), as desired.

The case that j = i+ 1 for i > 1 is identical to the previous case except for the indices.
For general j > i, one may show by induction that, after applying the first 4(j − i − 1)

Hurwitz moves in τi,j to f , the resulting factorization has the following four factors as entries in
position 2i− 1, 2i, 2i+ 1, and 2i+ 2:(

[(i i+ 1); ai], [(i i+ 1); bi], [(i+ 1 j + 1);�], [(i+ 1 j + 1);4]
)
,
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where � = aj + bj−1 + . . . + bi+2 + bi+1 and 4 = � + dj . Applying the same calculation as
above replaces these four factors with(

[(i i+ 1); ai + dj], [(i i+ 1); bi + dj], [(i+ 1 j + 1);�+ di], [(i+ 1 j + 1);4+ di]
)
,

and the final 4(j−i−1) Hurwitz moves restore the intermediate pairs and place the factorization
back in standard form.

For example, in the case i = 1, j = 3, starting from

f =
(

[(12); a1], [(12); b1], [(23); a2], [(23); b2], [(34); a3], [(34); b3]
)
,

the first four Hurwitz moves produce

f
σ−1
4−→
(

[(12); a1], [(12); b1], [(23); a2], [(24); a3 + b2], [(23); b2], [(34); b3]
)

σ−1
5−→
(

[(12); a1], [(12); b1], [(23); a2], [(24); a3 + b2], [(24); b3 + b2], [(23); b2]
)

σ3−→
(

[(12); a1], [(12); b1], [(24); a3 + b2], [(34); a3 + d2], [(24); b3 + b2], [(23); b2]
)

σ4−→
(

[(12); a1], [(12); b1], [(24); a3 + b2], [(24); b3 + b2], [(23); a2 + d3], [(23); b2]
)
.

Then applying τ1,2 affects only the first four factors:(
[(12); a1], [(12); b1], [(24); a3 + b2], [(24); b3 + b2], . . .

)
τ1,2−→(

[(12); a1 + d3], [(12); b1 + d3], [(24); a3 + b2 + d1], [(24); b3 + b2 + d1], . . .
)
.

And finally the last four Hurwitz moves leave the first two factors untouched while restoring the
original middle factors:(

. . . , [(24); a3 + b2 + d1], [(24); b3 + b2 + d1], [(23); a2 + d3], [(23); b2]
)

σ−1
4−→(

. . . , [(24); a3 + b2 + d1], [(34); a3 + d2 + d1], [(24); b3 + b2 + d1], [(23); b2]
)

σ−1
3−→(

. . . , [(23); a2], [(24); a3 + b2 + d1], [(24); b3 + b2 + d1], [(23); b2]
)

σ5−→(
. . . , [(23); a2], [(24); a3 + b2 + d1], [(23); b2], [(34); b3 + d1]

)
σ4−→(

. . . , [(23); a2], [(23); b2], [(34); a3 + d1], [(34); b3 + d1]
)

= τ1,3(f).

In τ1,3(f), the pair weights are (a1 + d3, a2, a3 + d1) and the pair differences are (b1 − a1, b2 −
a2, b3 − a3) = (d1, d2, d3), as claimed.

Finally, we introduce a third family of operations that will be of use in the case that the
factorization includes a diagonal reflection.
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Figure 3.2: The braid corresponding to γ1 when n = 4.

Definition 3.22. Given iwhere 1 6 i 6 n−1, define γi to be the following sequence of Hurwitz
moves:

γi
def
== σ2n−2 ◦ σ−1

2n−3 ◦ · · · ◦ σ2i+2 ◦ σ−1
2i+1 ◦

σ2i ◦ σ2i−1 ◦ σ2i−1 ◦ σ2i ◦
σ2i+1 ◦ σ−1

2i+2 ◦ · · · ◦ σ2n−3 ◦ σ−1
2n−2.

The associated braid is illustrated in Figure 3.2.

Proposition 3.23. Let f be the doubled path in G(m, p, n) that has pair weights (a1, . . . , an−1)
and pair differences (d1, . . . , dn−1), and with diagonal factor of weight d. Then γi(f) is also a
doubled path. Moreover, γi(f) has the same pair weights and pair differences as f , except that
the i-th pair weight of γi(f) is ai + d.

Proof. The proof is very similar to that of Proposition 3.21. After applying the first 2(n− i−1)
Hurwitz moves, the factorization will have the following three factors in positions 2i−1, 2i, and
2i+ 1: (

[(i i+ 1); ai], [(i i+ 1); bi], [id; (0, . . . , 0, d, 0, . . . , 0)]
)

where in the diagonal factor the nonzero weight is in position i. Applying the middle four Hur-
witz moves σ2i, σ2i−1, σ2i−1, σ2i replaces these three factors with(

[(i i+ 1); ai + d], [(i i+ 1); bi + d], [id; (0, . . . , 0, d, 0, . . . , 0)]
)
,

and the final 2(n − i − 1) Hurwitz moves restore the suffix and place the factorization back in
standard form.
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For example, in the case n = 3, i = 1, we have the following sequence of Hurwitz moves:

f =
(

[(12); a1], [(12); b1], [(23); a2], [(23); b2], [id; (0, 0, d)]
)

σ−1
4−→
(

[(12); a1], [(12); b1], [(23); a2], [id; (0, d, 0)], [(23); b2]
)

σ3−→
(

[(12); a1], [(12); b1], [id; (0, d, 0)], [(23); a2 + d], [(23); b2]
)

σ2−→
(

[(12); a1], [id; (0, d, 0)], [(12); b1 + d], [(23); a2 + d], [(23); b2]
)

σ1−→
(

[id; (0, d, 0)], [(12); a1 + d], [(12); b1 + d], [(23); a2 + d], [(23); b2]
)

σ1−→
(

[(12); a1 + d], [id; (d, 0, 0)], [(12); b1 + d], [(23); a2 + d], [(23); b2]
)

σ2−→
(

[(12); a1 + d], [(12); b1 + d], [id; (0, d, 0)], [(23); a2 + d], [(23); b2]
)

σ−1
3−→
(

[(12); a1 + d], [(12); b1 + d], [(23); a2], [id; (0, d, 0)], [(23); b2]
)

σ4−→
(

[(12); a1 + d], [(12); b1 + d], [(23); a2], [(23); b2], [id; (0, 0, d)]
)

= γ1(f).

In γ1(f), the pair weights are (a1 + d, a2, a3) with the same pair differences as in f , as desired.

By combining these operations, we give a sufficient condition for two doubled paths to belong
to the same Hurwitz orbit.

Proposition 3.24. Suppose f and f ′ are two doubled paths factoring the same element g of
weight d in G(m, p, n), with respective pair weights (a1, . . . , an−1) and (a′1, . . . , a

′
n−1). If there

exists an n× (n− 1) Z-matrix M = (mij) such that mij = mji for i, j ∈ {1, . . . , n− 1} and(
a1 · · · an−1

)
+
(
d1 · · · dn−1 d

)
·M ≡

(
a′1 · · · a′n−1

)
(mod m) (3.2)

(with equivalence taken coordinatewise), then f and f ′ belong to the same Hurwitz orbit.

Proof. Suppose that (3.2) holds. If d = 0 (i.e., the weight of g is 0, and f and f ′ do not contain
loops), redefineM by settingmnj = 0 for j = 1, . . . , n−1 (and leaving all othermij the same);2
then (3.2) still holds for the redefinedM . Then it follows from Propositions 3.19, 3.21, and 3.23
that applying the operations

• σmii
2i−1 for 1 6 i 6 n− 1,

• τmij

i,j for 1 6 i < j 6 n− 1, and

• γmnj

i for 1 6 j 6 n− 1

2This step insures that the operation γi is only applied if it is well-defined, i.e., if the factorizations have length
2n− 1.
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to f in any order produces a doubled path β(f) that factors g and has pair weights (a′1, . . . , a
′
n−1).

As remarked just before Definition 3.18, a doubled path that factors a given diagonal element is
determined by its pair weights; therefore, since β(f) has the same pair weights as f ′, it follows
that β(f) = f ′, and so f and f ′ belong to the same Hurwitz orbit.

Remark 3.25. Although the actions of the various τi,j and γk commute when restricted to act
on doubled paths, they do not generally commute as elements of the braid group, and so their
actions may not commute on other factorizations.

Next, we rephrase Proposition 3.24 in an easier-to-work-with form.

Corollary 3.26. Suppose f and f ′ are two doubled paths factoring the same element g =
[id; (k1, . . . , kn)] in G(m, p, n), with respective pair weights (a1, . . . , an−1) and (a′1, . . . , a

′
n−1).

Let r = gcd(m, k1, . . . , kn). If aj ≡ a′j (mod r) for j = 1, . . . , n − 1, then f and f ′ belong to
the same Hurwitz orbit.

Proof. Suppose that f and f ′ are two doubled paths in G(m, p, n) that factor [id; (k1, . . . , kn)],
with respective pair weights (a1, . . . , an−1) and (a′1, . . . , a

′
n−1), and that aj ≡ a′j (mod r) for

j = 1, . . . , n−1. By Proposition 3.24, it suffices to produce an n×(n−1) Z-matrixM = (mij)
such that mij = mji for i, j ∈ {1, . . . , n− 1} when i 6= j, and(

a1 · · · an−1

)
+
(
d1 · · · dn−1 dn

)
·M ≡

(
a′1 · · · a′n−1

)
(mod m),

where di = k1 + . . .+ ki for i = 1, . . . , n. In order to construct such a matrix M , we introduce
several auxillary sequences of integers. We will repeatedly make use of the following fact (an
extended form of the Euclidean algorithm): if (q1, . . . , qk) is any sequence of positive integers,
then there exist integers (p1, . . . , pk) such that p1q1 + . . . + pkqk = gcd(q1, . . . , qk). Now fix
particular positive integer representatives k1, . . . , kn of their equivalence classes modulo m, so
that d1, . . . , dn are also positive integers.

Since di = k1 + . . .+ ki for i = 1, . . . , n, we have r = gcd(m, d1, . . . , dn). Therefore, there
exists a tuple (x0, x1, . . . , xn) of integers such that

x0m+ x1d1 + . . .+ xndn = r,

and consequently
x1d1 + . . .+ xndn ≡ r (mod m). (3.3)

Furthermore, since a′j − aj ≡ 0 (mod r) for j = 1, . . . , n − 1, we can choose the following
integers (u1, . . . , un−1) such that

a′j − aj ≡ ujr (mod m). (3.4)

For each i, j such that i, j ∈ {1, . . . , n− 1} and i < j, choose integers yij and yji such that

diyji − djyij = (ujxi − uixj) gcd(di, dj). (3.5)

Negating both sides of (3.5) and interchanging the letters i and j, we have that for this choice of
values yij , Equation (3.5) is valid for i > j, as well.
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Now for i = 1, . . . , n and j = 1, . . . , n− 1, define

mij =


ujxi +

dj
gcd(di, dj)

yij if i 6= j,

ujxj −
∑
k : k 6=j,
16k6n

dk
gcd(dk, dj)

ykj if i = j.

We claim that the matrix M = (mij) satisfies the desired requirements.
First, if i, j ∈ {1, . . . , n− 1} and i 6= j, we have

mij = ujxi +
dj

gcd(di, dj)
yij and mji = uixj +

di
gcd(di, dj)

yji.

By (3.5), these are equal to each other, fulfilling the first condition.
Second, by carrying out the matrix multiplication, we have that the jth coordinate of the

product
(
d1 · · · dn

)
·M is

n∑
i=1

dimij =
∑

i=1,...,n
i 6=j

(
ujxi +

dj
gcd(di, dj)

yij

)
di +

ujxj − ∑
i=1,...,n
i 6=j

di
gcd(di, dj)

yij

 dj

= uj

(
n∑
i=1

xidi

)
≡ ujr (mod m),

where in the last step we use (3.3). Then by (3.4), it follows that M satisfies (3.2).
The result follows by Proposition 3.24.

We end this section with a sufficient condition for two standard form factorizations of an
arbitrary element in G(m, p, n) to be Hurwitz equivalent.

Lemma 3.27. Suppose that f and f ′ are two standard form factorizations of the same element
g ∈ G(m, p, n). Suppose further that Πf = Πf ′ and that for every part B, the pair weights
(a1, . . . , a|B|−1) and (a′1, . . . , a

′
|B|−1) of the doubled paths in f |B and f ′|B satisfy the condition

that ai ≡ a′i (mod r(B)) for every i ∈ {1, . . . , |B|−1}. Then f and f ′ are Hurwitz-equivalent.

Proof. Let f and f ′ be as in the statement, with Π
def
== Πf = Πf ′ the common cycle partition of g,

andB a part of Π. Consider the restrictions f |B and f ′|B, two factorizations of the same element
g|B. By Proposition 3.15, f |B and f ′|B both consist of a doubled path of length k def

== 2|B|−2 or
2|B|−1, depending on the weight of g|B, followed by a collection of factors whose corresponding
edges in the factorization graph form a forest with |B| components.

By Corollary 3.26, there is a sequence β1 of Hurwitz moves that act only on the first k factors
such that the first k factors in β1(f ′|B) are equal to the corresponding factors in f |B. We now
“freeze” these factors and work only with the forests.
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By Proposition 3.9, if two factors correspond to edges in different components of the forest,
they commute. Consequently, we may choose an arbitrary ordering C1, . . . , C|B| on the cycles
in B and then choose braids β2 and β3 so that β2β1(f ′|B) and β3(f |B) consist first of |C1| − 1
factors whose product is C1, then |C2| − 1 factors whose product is C2, and so on. Taking
projections, the factors that factor a cycle generate the symmetric group on the support of the
cycle; consequently, applying Theorem 2.5, there is another braid β4 such that β4β2β1(f ′|B) and
β3(f |B) have the same factorization graph. Moreover, it is easy to see that the weights of the
edges in a factorization whose graph is a forest are determined by the product; since the two
products are equal, it follows that β−1

3 β4β2β1(f ′|B) = f |B.
By Definition 3.13(a), the factors in f ′|B form a consecutive subsequence, so the Hurwitz

moves in the braid β−1
3 β4β2β1 may be lifted to Hurwitz moves acting on the full factorization

f ′. Successively repeating this process for each part B of Π gives a Hurwitz path from f ′ to f ,
as needed.

3.3. When are two standard form factorizations not Hurwitz-equivalent?

The main result of this section is Lemma 3.34, which gives a necessary condition for two fac-
torizations to lie in the same Hurwitz orbit (the converse of Lemma 3.27). Our main tool is an
invariant that distinguishes different Hurwitz orbits.

Definition 3.28. Given a factorization f of an element inG(m,n, p), denote byGf the subgroup
of G(m,n, p) generated by the factors in f .

It is easy to see that Gf is preserved by Hurwitz moves. Our first result on the structure of
Gf is a completely straightforward consequence of Proposition 3.9.

Proposition 3.29. If f is a reflection factorization that induces the cycle partition Πf , we have
that Gf is the direct product of the restrictions Gf |B to individual parts B of Πf .

Consequently, in what follows, we focus on factorizations f for which the factorization graph
Γf is connected, so that the induced cycle partition Πf has only one part. Also, by Lemma 3.16,
it suffices to consider the case of factorizations in standard form.

Proposition 3.30. Let g be an element of G(m, p, n) of weight d, let f be a connected standard
form factorization of g, and let r be as in Definition 3.1. Then Gf

∼= G
(
m
r
, gcd(m,d)

r
, n
)

. More
concretely, there is a diagonal element δ ∈ G(m, 1, n) such that the conjugation map φδ defined
by φδ(g) = δgδ−1 restricts to an isomorphism φδ : Gf

∼−→ G
(
m
r
, gcd(m,d)

r
, n
)

.

Proof. First, consider the following sub-collection of edges of Γf : for each pair of factors in the
doubled path with same underlying transposition, include the edge corresponding to the first, and
also include all edges not in the doubled path. Since f is a connected standard form factorization,
we have by Proposition 3.15 that these edges form a spanning tree of Γf .

Choose a linear order on the edges of the tree, as follows: the first edge is arbitrary, and each
subsequently chosen edge should share an endpoint with a previously chosen edge. Without loss
of generality, let the edges in this order correspond to the reflections

t1 = [(i1 j1); a1], t2 = [(i2 j2); a2], . . .
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where for k > 1 we have that ik belongs to the set {i1, j1, j2, . . . , jk−1} of previously chosen
vertices, while jk does not. Iteratively choose the weights of the diagonal entries of δ, as follows:
the i1 entry has weight 0, and for k = 1, 2, . . ., the jk entry is chosen with the unique value so that
δtkδ

−1 is a true transposition (i.e., δtkδ−1 = [(ik jk); 0]). We claim this is the desired element.
We first show thatGδfδ−1 ⊆ G

(
m
r
, gcd(m,d)

r
, n
)

. Let c = cyc(g). By the choice of δ, the first
2(c− 1) factors of δfδ−1 are(

[(v1 v2); 0], [(v1 v2); d1], [(v2 v3); 0], [(v2 v3); d2], . . . ,

[(vc−1 vc); 0], [(vc−1 vc); dc−1]
)
,

and if the weight dc
def
== d of g is nonzero then the (2c − 1)th factor is a diagonal reflection of

weight d in the vcth position. Multiplying out this prefix produces a diagonal element whose
weight in position vi is ki

def
== d1 + . . .+ di and whose other entries have weight 0. By Proposi-

tion 3.15 and the choice of δ, the remaining factors of δfδ−1 form a forest of true transpositions,
each component of which contains exactly one vertex vi. The product of such a set of factors is
a permutation matrix such that each cycle contains exactly one of the vi. Consequently, in the
product δgδ−1 of δfδ−1, the ki are precisely the cycle weights. Since d1 = k1, di = ki − ki−1

for i > 1, and r = gcd(m, k1, . . . , kc), it follows immediately that each di is a multiple of r,
and consequently that the weight of every entry appearing in all the factors in δfδ−1 belongs
to rZ/mZ ∼= Z/(m/r)Z. Thus Gδfδ−1 ⊂ G(m/r, 1, n). Moreover, the weights of all of the
factors in δfδ−1 are not only multiples of r but (stronger) multiples of d, i.e., they belong to
gcd(m, d)Z/mZ ∼= Z/(m/ gcd(m, d))Z. Thus in fact

Gδfδ−1 ⊂ G

(
m

r
,

m/r

m/ gcd(m, d)
, n

)
= G

(
m

r
,
gcd(m, d)

r
, n

)
,

as claimed.
For the reverse inclusion, we first note that G (m/r,m/r, n) ⊂ G(m, 1, n) is generated over

Sn by the reflection [(12); r] [20, §2.7]. The factors that make up the true transpositions in
δfδ−1 generate the group Sn and so Sn ⊆ Gδfδ−1 . By conjugating the other transposition-like
factors in δfδ−1 by appropriate transpositions, we may produce the factors

[(12); d1], [(12); d2], . . . , [(12); dc−1].

If dc = d = 0 then [(12); dc] ∈ Sn. Otherwise, our factorization includes a diagonal reflection
of weight dc; conjugating it by an appropriate permutation produces [id; (dc, 0, . . . , 0)], and con-
jugating [(12); 0] by this reflection produces [(12); dc]. Thus, in either case, we have in Gδfδ−1

the set {[(12); di] : i = 1, . . . , c}. Multiplying each of these reflections by [(12); 0] produces the
elements

[id; (d1,−d1, 0, . . . , 0)], . . . , [id; (dn,−dn, 0, . . . , 0)]. (3.6)
Since r = gcd(m, k1, . . . , kc) = gcd(m, d1, . . . , dc), there exists a product of powers of the
elements in (3.6) equal to [id; (r,−r, 0, . . . , 0)], and multiplying by [(12); 0] finally produces the
desired reflection [(12); r]. Consequently G(m/r,m/r, n) ⊆ Gδfδ−1 .
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If d = 0, the preceding arguments complete the proof. If d 6= 0, then it suffices to observe that
G(m, p, n) is generated over G(m,m, n) by any element of G(m, 1, n) whose weight generates
pZ/mZ [20, §2.4]. Making the appropriate substitutions, sinceGδfδ−1 containsG(m/r,m/r, n)
and contains an element of G(m/r, 1, n) of weight d, it follows that G(m/r, gcd(m, d)/r, n) ⊆
Gδfδ−1 . This completes the proof.

Since diagonal matrices commute, the following consequence is immediate.

Corollary 3.31. If f is a connected standard form factorization of an element g in G(m, p, n),
then the diagonal subgroup of Gf is equal to the diagonal subgroup of G

(
m
r
, gcd(m,d)

r
, n
)

.

In addition, Proposition 3.30 allows the following refinement of Proposition 3.29.

Corollary 3.32. If f and f ′ are two standard form factorizations of the same element g such that
Gf = Gf ′ , then the induced cycle partitions are equal, that is, Πf = Πf ′ .

Proof. Let G = Gf = Gf ′ be the group generated by the two factorizations. By Proposi-
tion 3.29, G can be written as internal direct product over the components of the induced cycle
partitions:

G =
∏
B∈Πf

Gf |B =
∏

B′∈Πf ′

Gf ′|B′ . (3.7)

Now choose an element i ∈ {1, . . . , n}. Let C be the cycle of g containing i, let B be the block
of Πf containing C, and let ei be the ith standard basis vector for Cn. Consider the orbit of the
line Cei under the action of Gf |B ; since Gf |B ⊆ G(m, 1, n), this orbit consists of a number of
lines of the form Cej . Moreover, by Proposition 3.30, the values of j such that Cej belongs to
the orbit are precisely the vertices of the component Γf |B of Γf . Applying the same logic to f ′,
and using the fact that the orbit is determined by the group G = Gf = Gf ′ , it follows that for
all i, the components containing i in Γf and Γf ′ have the same vertex set. Thus the two cycle
partitions Πf and Πf ′ are equal.

The next result translates the equality Gf = Gf ′ into a more number-theoretic language.

Proposition 3.33. Suppose that f and f ′ are two connected standard form factorizations of
the same element g ∈ G(m, p, n), having respective pair weights (a1, . . .) and (a′1, . . .). If
Gf = Gf ′ , then ai ≡ a′i (mod r) for i = 1, . . . , cyc(g)− 1.

Proof. Let c = cyc(g). By hypothesis, f and f ′ respectively contain factors

[(v1 v2); a1], . . . , [(vc−1 vc); ac−1] and [(v1 v2); a′1], . . . , [(vc−1 vc); a
′
c−1].

For convenience, and without loss of generality, assume vi = i for i = 1, . . . , c. Then Gf

contains the element

C
def
== [(1 · · · c); (a1, . . . , ac−1,−(a1 + . . .+ ac−1), 0, . . . , 0)]

= [(12); a1] · · · [(c− 1 c); ac−1]
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and similarly Gf ′ contains the element

C ′
def
== [(1 · · · c); (a′1, . . . , a

′
c−1,−(a′1 + . . .+ a′c−1), 0, . . . , 0)].

Since Gf = Gf ′ , we have C,C ′ ∈ Gf and consequently

C · (C ′)−1 = [id; (a1 − a′1, . . . , ac−1 − a′c−1, a
′
1 + . . .+ a′c−1 − a1 − . . .− ac−1, 0, . . . , 0)]

belongs toGf as well. SinceC ·(C ′)−1 is a diagonal element, it follows from Corollary 3.31 that
C · (C ′)−1 ∈ G(m/r, gcd(m, d)/r, n). Thus the weight of each entry in C · (C ′)−1 is a multiple
of r. In particular, ai − a′i ≡ 0 (mod r), as claimed.

We are now in position to give the necessary condition for two standard form factorizations
to belong to the same Hurwitz orbit.

Lemma 3.34. Suppose f and f ′ are two standard form factorizations of the same element g ∈
G(m, p, n). Suppose further that f and f ′ are Hurwitz-equivalent. Then Πf = Πf ′ . Moreover,
for every part B in this cycle partition, the pair weights (a1, . . . , a|B|−1) and (a′1, . . . , a

′
|B|−1)

of the doubled paths in f |B and f ′|B satisfy the condition that ai ≡ a′i (mod r(B)) for every
i ∈ {1, . . . , |B| − 1}.

Proof. It is easy to see that for any Hurwitz move σ, we have Gf = Gσ(f). Since f and f ′ are
Hurwitz-equivalent, it follows that Gf = Gf ′ . By Corollary 3.32, the induced cycle partitions
Πf and Πf ′ are equal. Then it follows from (3.7) that for each part B of Πf = Πf ′ , we have
Gf |B = Gf ′|B . Moreover, since the decomposition (3.7) is a direct product, we can write g =∏

B∈Πf
g|B uniquely for some elements g|B ∈ Gf |B = Gf ′|B , and for each part B we have that

f |B and f ′|B are reflection factorizations of g|B.
Now fix a part B of the common cycle partition Πf = Πf ′ , supported on a set of size n′.

Setting aside the (irrelevant) labeling of the vertices, f |B and f ′|B are connected standard form
factorizations of the same element g|B in Gf |B = Gf ′|B ⊆ G(m, 1, n′). Furthermore, any
Hurwitz move respects the decomposition (3.7), so the hypothesis that f and f ′ are Hurwitz-
equivalent implies that also the restrictions f |B and f ′|B are Hurwitz-equivalent. Then the result
follows from Proposition 3.33, applied separately to each part B.

3.4. Proofs of main theorem and corollaries

In this section, we assemble the work of the preceding sections to prove the first main result and
its corollaries. For convenience, we restate the results here.

Theorem 3.2. Given an element g ∈ G(m, p, n), the number of Hurwitz orbits of its shortest
factorizations is given by ∑

Π∈Parmax(g)

∏
B∈Π

(r(B))|B|−1.
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Proof. Fix an element g inG(m, p, n). By Lemma 3.16, every Hurwitz orbit of minimum-length
reflection factorizations of g contains at least one factorization in standard form, so it suffices
to determine when two standard form factorizations of g belong to the same Hurwitz orbit. By
Proposition 3.10, each standard form factorization f of g induces a maximum cycle partition
Πf of g. By Proposition 3.15, if f is in standard form and B is a part of Πf then we may speak
of the doubled path in the restricted factorization f |B. By Lemmas 3.27 and 3.34, two standard
form factorizations f and f ′ belong to the same Hurwitz orbit if and only if (1) they induce the
same cycle partition Π

def
== Πf = Πf ′ and (2) for each part B of Π, the sequence of |B| − 1

pair weights of the doubled paths of f |B and f ′|B are congruent modulo r(B). The construction
of Remark 3.12 guarantees that each of these congruence classes is realized by a standard form
factorization. Thus, there are r(B)|B|−1 inequivalent ways to choose the restricted factorization
f |B; these choices are independent for the different parts B of Π, so there are

∏
B∈Π r(B)|B|−1

orbits that induce the cycle partition Π. Summing over all maximum cycle partitions gives the
result.

Corollary 3.4. Let g ∈ G(m, p, n). The shortest factorizations of g form a single orbit under the
Hurwitz action if and only if Parmax(g) = {Π} is a singleton set and either |B| = 1 or r(B) = 1
for every B ∈ Π.

Proof. Since r(B) and |B| are necessarily positive integers, the only way that∑
Π∈Parmax(g)

∏
B∈Π

(r(B))|B|−1

can be equal to 1 is if there is only one summand, and each factor in the product is equal to 1.
The result follows immediately.

Corollary 3.5. If g ∈ G(m, p, n) has a single cycle, then the shortest factorizations of g form a
single orbit under the Hurwitz action.

Proof. Let g ∈ G(m, p, n) with a single cycle. Then there is only one cycle partition of g, whose
unique part contains the unique cycle of g. The result follows from Corollary 3.4.

Corollary 3.6. Let g ∈ G(m, 1, n). Then the shortest factorizations of g form a single orbit
under the Hurwitz action if and only if g does not have two cycles of nonzero weight whose
weights sum to 0.

Proof. Fix an element g ∈ G(m, 1, n) with cycle weights (k1, . . . , kcyc(g)) and a cycle partition
Π of g. If any part B of Π contains three or more cycles, we may form a new cycle partition Π′

by splitting B into |B| singleton parts. Since the part B contributes at most 2 to v(Π), it follows
that v(Π′) > 3 + (v(Π)− 2) > v(Π), so Π is not maximum. Similarly, if Π contains a part with
exactly two cycles whose weights do not sum to zero, or a part with two cycles of weight zero,
splitting the part into singletons increases the value. On the other hand, any cycle partition Π in
which all parts consist either of a single cycle or of two cycles whose weights are nonzero but
add to zero has v(Π) = cyc(g) + #{i : ki = 0} and so is a maximum cycle partition of g.
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It follows from the preceding paragraph that if g has two cycles of nonzero weight whose
weights sum to zero, then g has at least two maximum cycle partitions (the partition into all
singletons; or, group those two cycles together) and so more than one Hurwitz orbit of shortest
reflection factorizations (by Corollary 3.4). Conversely, if g does not have two such cycles,
then it follows from the preceding paragraph that the unique maximum cycle partition of g is
the partition into singleton parts, and so g has a unique Hurwitz orbit of shortest reflection
factorizations (again by Corollary 3.4). This completes the proof.

4. A reformulation in terms of invariants

In this section, we reformulate the work in Section 3 to give a criterion to tell when two minimum-
length reflection factorizations of an arbitrary element inG(m, p, n) belong to the same Hurwitz
orbit. We then discuss the extent to which this can be extended to the other complex reflection
groups. Recall that for a factorization f , we denote by Gf the group generated by the factors in
f .

Theorem 4.1. LetG = G(m, p, n) and let g be any element ofG. Two minimum-length reflection
factorizations f and f ′ of g lie in the same Hurwitz orbit if and only if Gf = Gf ′ .

Proof. It has already been observed that the group Gf is preserved by the Hurwitz action. Con-
versely, suppose G = G(m, p, n) and g ∈ G. Consider two minimum-length factorizations f
and f ′ of g such thatGf = Gf ′ . By Proposition 3.16, we may as well assume that f and f ′ are in
standard form. By Corollary 3.32, it follows that f and f ′ induce the same cycle partition Π of g.
By Proposition 3.33, it follows that for each partB of Π, the pair weights of the doubled paths in
the restricted factorizations f |B and f ′|B are congruent modulo r(B). Finally, by Lemma 3.27,
it follows that f and f ′ are Hurwitz-equivalent.

Remark 4.2. In [2, Cor. 1.3], Baumeister–Gobet–Roberts–Wegener prove that if G is any finite
Coxeter group and f is a minimum-length reflection factorization of an element g ∈ G such
that Gf is finite, then all minimum-length Gf -reflection factorizations of g belong to a single
Hurwitz orbit. This immediately implies the hard direction of Theorem 4.1 when G is a finite
real reflection group.

In what follows, we consider the exceptional complex reflection groups. In the Shephard–
Todd indexing scheme, these are named G4, G5, . . . , G37; the groups G23, G28, G30, G35, G36,
and G37 are the exceptional real reflection groups of types H3, F4, H4, E6, E7, and E8, respec-
tively. Most of the exceptional groups (G4 throughG22) are rank 2, meaning they act irreducibly
on a two-dimensional space; the largest non-real exceptional groupG34 has rank 6 and cardinal-
ity 39191040.

Suppose that G is an arbitrary complex reflection group, g ∈ G, and f and f ′ are two
minimum-length reflection factorizations of g that generate the same subgroup Gf = Gf ′ . By
exhaustive computation in the non-real examples, we have verified that, if Gf is isomorphic to
any of the exceptional groupsG6,G7,G9,G11,G12,G13,G14,G15,G19,G21,G22,G23,G24,G27,
G28, G29, G30, G31, G33, G35, G36, or G37, then it follows that f and f ′ are Hurwitz-equivalent.
The next remarks discuss the situation in the remaining exceptional complex reflection groups,
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all of which contain some element g with multiple Hurwitz orbits of shortest factorizations that
generate the whole group.

Example 4.3. Consider3 the exceptional group G = G16, which is generated by two reflec-
tions a, b subject to the relations a5 = b5 = 1, aba = bab. The group may be represented
by matrices so that both generators have non-unit eigenvalue ω = exp(2πi/5). The element
g

def
== a2b3 is not a reflection (e.g., because it has determinant 1) and so f1 = (a2, b3) is a short-

est reflection factorization of g. Clearly f1 generates G. It is slightly more work to check that
f2 = (a−1ba, b−2a−1b2) is another shortest reflection factorization of g that also generates G.
The factors in f1 have determinants ω2 and ω3, while those in f2 have determinants ω and ω4,
so they lie in different conjugacy classes. However, applying a Hurwitz move to a factorization
f does not change its multiset of Gf -conjugacy classes: the multiset of factors changes by one
element, and the element that changes is conjugated by a reflection in Gf . Thus f1 and f2 lie in
different Hurwitz orbits.

Remark 4.4. In [23], it was conjectured that the two invariants Gf and the multiset of Gf -
conjugacy classes of factors were sufficient to distinguish factorizations of every element in
every complex reflection group.4 By brute-force computer calculations (using SageMath [26],
including its interface with GAP [30] and Chevie [13]), we discovered that the conjecture fails
in G32 and G34. We briefly describe these counter-examples now.

The group G32 is generated by four reflections a, b, c, d subject to the relations a3 = b3 =
c3 = d3 = 1, aba = bab, bcb = cbc, cdc = dcd, ac = ca, ad = da, and bd = db. The element
ab−1cdabcab−1a−1cdbc has reflection length 5. Its minimum-length reflection factorizations fall
into five Hurwitz orbits. The factorizations

(abc−1dcb−1a−1, a−1bcdc−1b−1a, bcdc−1b−1, ba−1bcb−1ab−1, b−1cdc−1b),

(ba−1bcdc−1b−1ab−1, bcb−1, aba−1, b−1c−1dcb, abcb−1a−1),

and

(b−1cb, a−1bcb−1a, bc−1dcb−1, ab−1c−1dcba−1, b),

lie in three different orbits, but all generate the full group G32 and all have the same multiset of
conjugacy classes. The only other minimum-length counter-examples to the conjecture in G32

are the conjugates of this element and of its inverse.
There are also counter-examples in G34: among the elements of reflection length at most

7, there are two (mutually inverse) conjugacy classes of examples, namely, those consisting
of elements whose eigenvalues (in the reflection representation) are {ω, ω3, ω4, ω6, ω7, ω9} or

3We are grateful to Theo Douvropoulos for this example.
4We mention the earlier work that informed this conjecture: for symmetric groups, it can be proved by extending

the work of Kluitmann [18] to cover factorizations with disconnected graphs, as in [3]. It was proved for dihedral
groups by Berger [4], and for the “tetrahedral family” of rank-2 complex reflection groups (G4, G5, G6, G7) by T.
Minnick, C. Pirillo, S. Racile and Y. Wang [24]. Theorem 4.1 and Remark 4.2 establish the case of minimum-length
factorizations in G(m, p, n) and in real reflection groups, respectively.
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{ω3, ω5, ω6, ω8, ω9, ω11} where ω = exp(2πi/12) is the primitive twelfth root of unity. These
elements have three Hurwitz orbits of factorizations, two of which generate the whole group
G34. (All reflections in G34 are conjugate to each other.) It is also possible that there are other
examples inG34: the group contains fourteen conjugacy classes of elements of reflection length
8, two of reflection length 9, and two of reflection length 10 (a total of nine mutually inverse
pairs), but because the numbers of factorizations for these elements are enormous (they range
from 705438720 for the class with eigenvalues {−1,−1,−1, ω2, ω2, ω2} to 42664933785600
for the classes of reflection length 10), it seems infeasible to test computationally whether they
satisfy the conjecture.

For the question of whether there is a uniform version of Theorem 4.1, see Section 6.

5. The quasi-Coxeter property

In the case of real reflection groups (that is, finite Coxeter groups), the transitivity of the Hurwitz
action on factorizations of a given element is closely tied to the quasi-Coxeter property, which
we define now.5

Definition 5.1. Let G be a finite complex reflection group, and g an element of G. We say that
g is a weak quasi-Coxeter element for G if there is a shortest reflection factorization of g that
generates G. If in fact every shortest reflection factorization of g generates G, we say that g is a
strong quasi-Coxeter element for G.

The following theorem of Baumeister–Gobet–Roberts–Wegener, promised in the introduc-
tion, explains the connection.

Theorem 5.2 (part of [2, Thms. 1.1 and 1.2]). If w is a weak quasi-Coxeter element for a finite
real reflection group W , then the Hurwitz action is transitive on the shortest reflection factor-
izations of w, and consequently w is a strong quasi-Coxeter element for W .

Conversely, if the Hurwitz action is transitive on shortest reflection factorizations of w, then
there is a parabolic subgroup (defined below) W ′ of W such that w is a strong quasi-Coxeter
element for W ′.

Here a parabolic subgroup is a subgroup that pointwise fixes a subspace of the space V on
which W acts; in the case of a finite real reflection group, one may equivalently [16, §5-2] say
that it is a conjugate of a standard parabolic subgroup generated by a subset of the standard
Coxeter generating set.

In this section, we explore the extent to which Theorem 5.2 is valid in the complex setting.
We begin by characterizing the weak quasi-Coxeter elements in the group G(m, p, n).

5The term quasi-Coxeter element was originally defined by Voigt [31], with a slightly broader meaning than the
one given here – see [2, Rmk. 1.8]. Our definition of a “weak quasi-Coxeter element” coincides with the definition
of a “quasi-Coxeter element” from [2].
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Lemma 5.3. Let G = G(m, p, n). Then g ∈ G has a shortest factorization f such that Gf = G
if and only if the following conditions hold:

(i) the cycle weights of g generate Z/mZ,

(ii) the weight of g generates pZ/mZ, and

(iii) no nontrivial subset of the cycles of g has weight 0 modulo p.

(If p = m, then the second condition is vacuous.)

Proof. First, suppose that g ∈ G = G(m, p, n) has a shortest factorization f that generates G.
By Lemma 3.16, we may assume without loss of generality that f is in standard form. Since

Gf = G, we have by Proposition 3.29 that Πf must be the one-part partition of the cycles of
g. Since Πf is the one-part partition, f is connected. Let B be the unique part of Πf and let
r = r(B). By Proposition 3.30, Gf

∼= G
(
m
r
, gcd(m,d)

r
, n
)

, where d is the weight of g. Since
Gf = G(m, p, n), it follows that r = 1, and so the cycle weights of g generate Z/mZ (condition
(i)), and that gcd(m, d) = p, so that the weight of g generates pZ/mZ (condition (ii)). To
complete this direction, we must show that condition (iii) holds, i.e., that no nontrivial subset
of the cycles of g has weight 0 modulo p. Since f is a shortest factorization of g, we have by
Proposition 3.10 that the cycle partition Πf is maximum. We consider separately the case p = m
and p < m.

Assume p = m. As observed in Remark 2.3, in this case v(Π) = 2|Π| for any cycle partition
Π; in particular, v(Πf ) = 2. Assume for contradiction that there is a nontrivial subset S of
the cycles of g such that wt(S) = 0. Since wt(g) = 0, it follows that Π

def
== {S, S} is a cycle

partition of g (where S denotes the complement of S), having value v(Π) = 4 > 2 = v(Πf ).
This contradicts the fact that Πf is maximum, so in fact no nontrivial subset of the cycles may
have weight 0, and condition (iii) holds in this case.

Now assume p < m. Since the weight of g generates pZ/mZ, it must be nonzero. Thus
v(Πf ) = 1. Assume for contradiction that there is a nontrivial subset S of the cycles of g such
that wt(S) = 0 (mod p). Since wt(g) = 0 (mod p), it follows that Π

def
== {S, S} is a cycle

partition of g (where S denotes the complement of S), having value v(Π) > 2 > 1 = v(Πf ).
This contradicts the fact that Πf is maximum, so in fact no nontrivial subset of the cycles may
have weight 0 modulo p, and condition (iii) holds in this case.

Conversely, suppose that g ∈ G(m, p, n) satisfies the three given conditions. Let f be a
shortest reflection factorization of g and let d = wt(g). By Lemma 3.16, we may assume
without loss of generality that f is in standard form. By condition (iii), g has a unique cycle
partition Π, with all cycles in the same part. Since Π is unique, it must be the case that Πf = Π,
and consequently f is connected. LetB be the unique part of Πf (containing all cycles of g), and
let r = r(B). By condition (i), we have r(B) = 1. By condition (ii), we have gcd(m, d) = p.
Therefore, by Proposition 3.30, we have

Gf
∼= G

(
m

r
,
gcd(m, d)

r
, n

)
= G(m, p, n).

Since Gf ⊆ G(m, p, n), it follows that actually Gf = G(m, p, n), as desired.
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As a consequence of Lemma 5.3, we can directly extend the first half of Theorem 5.2 to the
group G(m, p, n).

Corollary 5.4. Suppose that g is a weak quasi-Coxeter element for G(m, p, n). Then (a) the
Hurwitz action is transitive on shortest reflection factorizations of g, and (b) g is a strong quasi-
Coxeter element for G(m, p, n).

Proof. Suppose g is a weak quasi-Coxeter element for G(m, p, n). By Lemma 5.3(iii), the
unique cycle partition Π of g is the one-part partition. For this cycle partition, with unique
part B containing all cycles of g, we have by Lemma 5.3(i) that r(B) = 1. Therefore, by
Corollary 3.4, all shortest reflection factorizations of g belong to a single Hurwitz orbit. This
establishes (a). Since the group generated by a factorization is preserved under Hurwitz moves,
it follows from (a) that all shortest factorizations of g generate the same subgroup. Since g is
weak quasi-Coxeter, this subgroup is the whole group G(m, p, n). This establishes (b).

As in the case of Theorem 4.1, the same result does not hold if we replace G(m, p, n) with
an arbitrary complex reflection group: Example 4.3 shows that the statement of Corollary 5.4(a)
fails for G16, while the next example shows that even the weaker (b) fails in general.

Example 5.5. Consider the exceptional group G = G10, which is generated by two reflections
a, b subject to the relations a3 = b4 = 1, abab = baba. Let g = ba−1ba−1. One can show that g
has reflection length 3. One shortest reflection factorization of g is (b, a, aba−1), and this triple
obviously generates the entire group G. Thus, g is weak quasi-Coxeter for G. However, another
shortest factorization for g is (ba−1b−1, b−2, a−1). This triple generates an index-2 subgroup of
G isomorphic to G7. Thus g is not strong quasi-Coxeter for G.

For an arbitrary complex reflection groupG, define the rank rank(G) to be the codimension
of the subspace of V on which G acts trivially (i.e., the vectors that are fixed by every g in G).
Since each reflection fixes a hyperplane, it is clear that every generating set of reflections must
have size at least rank(G). In the preceding examples, the elements under consideration have
reflection length strictly larger than the rank of the group they belong to. The next result, a
uniform version of Corollary 5.4(b), shows that this is not a coincidence.

Theorem 5.6. IfG is any finite complex reflection group and g is a weak quasi-Coxeter element
for G whose reflection length is equal to the rank of G, then g is a strong quasi-Coxeter element
for G.

Proof. First, we claim that the truth of the statement for all complex reflection groups follows
from its truth for irreducible groups. To this end, suppose G = X × Y is reducible. Then
every reflection factorization f of an element g = (x, y) of G is the result of shuffling to-
gether a (X × {idY })-reflection factorization fX of (x, 1) and a ({idX} × Y )-reflection fac-
torization fY of (1, y). Now suppose f is a minimum-length reflection factorization of g such
that Gf = G and #f = rank(G). Since the factors in fX commute with those in fY , we have
G = Gf = GfX ×GfY . It follows that x is a weak quasi-Coxeter element for X and y is a weak
quasi-Coxeter element for Y , and so also that `R(x) > rank(X) and `R(y) > rank(Y ). On the
other hand, we have by hypothesis that

rank(X) + rank(Y ) = rank(G) = `R(g) = `R(x) + `R(y),
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so in fact `R(x) = rank(X) and `R(y) = rank(Y ). By induction on the number of irreducible
components of G, we may assume that x is strong quasi-Coxeter for X and y is strong quasi-
Coxeter for Y , and consequently g is strong quasi-Coxeter for G. Therefore, it suffices to check
the result for irreducible groups.

We now proceed case-by-case. The infinite family is covered by Corollary 5.4, and the real
exceptional groups are covered by Theorem 5.2. For each non-real exceptional group, the check
is a finite computation; however, because of the size of some of the groups involved, it is not a
trivial check. We describe our computational approach, which we implemented on SageMath
[26] using its interface with GAP [30] and Chevie [13]; the code to carry out the check is attached
to the arXiv version of this paper as an ancillary file.

All the properties in the theorem statement are invariant under conjugation, so it suffices to
check a set of conjugacy class representatives.

Given a conjugacy class representative g, we first confirm that its reflection length is equal
to the rank of the group. We use a standard technique based on the character theory of the group
G (as in, e.g., [10]) to compute the total number of minimum-length reflection factorizations of
g.

Next, we produce a reflection factorization of g by successively testing reflections r to see
if `R(r−1g) < `R(g). If so, g has a shortest factorization that begins (r, . . .), and we proceed
recursively. Having produced a factorization, we construct its Hurwitz orbit by applying Hurwitz
moves one by one, discarding already-discovered factorizations. If this orbit does not exhaust
the minimum-length reflection factorizations, we find a new factorization (not in any previously-
produced Hurwitz orbit) and continue until the sum of the sizes of the Hurwitz orbits produced
is equal to the number of minimum-length reflection factorizations.

If g has only one Hurwitz orbit of minimum-length factorizations then all its factorizations
generate the same subgroup and the result is immediate. Otherwise, we check for each orbit
whether or not its factorizations generate the whole group G.

The result of this calculation was to verify the claim in all the non-real irreducible complex
reflection groups.

The condition that the reflection length of g be equal to the rank ofG is quite natural: in a real
reflection group W of rank n, it follows from Carter’s theorem [9, Lem. 2] that `R(g) 6 n for
all g ∈ W , and so all quasi-Coxeter elements6 have reflection length n. Moreover, in a complex
reflection group of rank n, Coxeter elements (if any exist) all have reflection length n [6, §7.1].
Thus, it is natural to ask what Lemma 5.3 says in the case of elements of reflection length n.

For comparison, we mention the known descriptions of quasi-Coxeter and Coxeter elements
in combinatorial groups. In type Bn (the group G(2, 1, n)), the quasi-Coxeter elements are pre-
cisely the Coxeter elements; combinatorially, these are the n-cycles of weight 1 [2, Lem. 6.4 and
its proof]. In type Dn (the groupG(2, 2, n)), the Coxeter elements have cycle type (n−1, 1), with
both cycles of weight 1, while the quasi-Coxeter elements include all elements with two cycles,
both of weight 1 [2, Rem. 8.3]. Coxeter elements are defined for the well-generated complex
reflection groups (those with a generating set of reflections whose cardinality is equal to the rank

6By Theorem 5.2, the weak and strong quasi-Coxeter elements coincide in the real groups, so we may drop the
modifiers.
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of the group) [25, 6]. Among the groups G(m, p, n), the well-generated ones are G(m, 1, n),
whose Coxeter elements are the n-cycles of primitive weight modulom, andG(m,m, n), whose
Coxeter elements are the elements of cycle type (n − 1, 1) in which both cycles have primitive
weight modulo m.

Corollary 5.7. InG(m, 1, n), an element is quasi-Coxeter if and only if it has a single cycle and
its weight is primitive modulo m (i.e., if and only if it is a Coxeter element). All such elements
have reflection length n.

InG(m,m, n), an element is quasi-Coxeter of reflection length n if and only if it has exactly
two cycles and their weights are primitive modulo m.

If 1 < p < m, the groupG(m, p, n) does not contain any quasi-Coxeter elements of reflection
length n.

Proof. Suppose g is a quasi-Coxeter element for G(m, 1, n). Since p = 1, every subset of cy-
cles of g has weight 0 modulo p. Then by Lemma 5.3(iii), g must have only one cycle. By
Lemma 5.3(i), the weight of that cycle must be primitive modulo m. This completes one direc-
tion; the converse is completely straightforward by Lemma 5.3. Furthermore, by Theorem 2.1,
every such element has reflection length n.

Suppose instead that g is a quasi-Coxeter element for G(m,m, n) of reflection length n.
By Lemma 5.3(iii), the only cycle partition of g is the one-part partition, having value 2. By
Theorem 2.1, we have n = `R(g) = n− cyc(g) + 2, and consequently g has exactly two cycles.
Since g ∈ G(m,m, n), these cycle weights sum to 0, so each generates the same subgroup
of Z/mZ. By Lemma 5.3(i), the cycle weights are primitive modulo m. This completes one
direction; the converse is completely straightforward.

Finally, if 1 < p < m thenG(m, p, n) is not generated by any set of n reflections. Therefore,
if g has reflection length n, none of its shortest factorizations generateG(m, p, n). Consequently
G(m, p, n) has no quasi-Coxeter elements of reflection length n.

6. Open problems

We end with some natural problems left open by the preceding work.

6.1. Uniform counting?

Is there a uniform version of Theorem 3.2? That is, can the quantities that appear in the statement
be given an interpretation that generalizes to an arbitrary complex reflection group? One would
hope for some sort of geometric interpretation, especially in the real case.

6.2. Missing invariants?

Remark 4.4 shows that the invariants

(product g, generated subgroup H,multiset of H-conjugacy classes)
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fail to distinguish Hurwitz orbits of minimum-length factorizations in the groups G32 and G34

(but not in any other irreducible complex reflection group). Is there some other natural invariant
that can distinguish the Hurwitz orbits in these cases, as well?

In the real case, it follows from [2, Cor. 1.3] that just the invariants g andH suffice for shortest
factorizations. All known proofs of this fact are case-by-case, and it would be highly desirable
to give a uniform proof.

6.3. Special subgroups for transitive elements?

If the Hurwitz action is transitive on the shortest reflection factorizations of an element g, then g
is a strong quasi-Coxeter element for the subgroup generated by these factorizations. In contrast
with the real case (Theorem 5.2), the subgroups that arise this way are not limited to the parabolic
subgroups, even when restricting attention to G(m, p, n).
Example 6.1. For any n > 1, m > 2, consider g = [id; (1, . . . , 1)] ∈ G = G(m, 1, n) (an
element of the center ofG). By Remark 2.3 we have `R(g) = n, and so one shortest factorization
is as a product of the n diagonal reflections of weight 1. By Corollary 3.6, the Hurwitz action is
transitive on shortest reflection factorizations of g. Thus g is a strong quasi-Coxeter element for
the diagonal subgroup (Z/mZ)n in G. But G is not a parabolic subgroup because no nonzero
vector is fixed by g.

More generally, when m > 2, if g ∈ G(m, 1, n) has cycles of length n1, . . . , nk and weight
1, then the unique maximum cycle partition of g has one cycle in each part, and the subgroup
generated by all shortest factorizations of g is isomorphic to G(m, 1, n1)× · · · ×G(m, 1, nk).

Is there a good description of the subgroups of a complex reflection group that arise in this
way?

6.4. Uniform proof?

Theorem 5.6 is valid for any complex reflection group, but its proof relies heavily on the clas-
sification and brute-force checks in the exceptional cases. Is it possible to give a uniform proof
that “explains” why the result should be true?
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vrages de Mathématiques de la SMC, 5. Springer-Verlag, 2001. MR 1838580

[17] R.M. Karp, Reducibility Among Combinatorial Problems, Complexity of Computer Com-
putations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, 1972, 85–103. Reprinted in
50 Years of Integer Programming 1958-2008, pp. 219–241 MR 0378476

[18] Paul Kluitmann, Hurwitz action and finite quotients of Braid groups, Contemporary Math-
ematics, Volume 78, (1988), 299–325. MR 0975086

http://www.ams.org/mathscinet-getitem?mr=3592608
http://www.ams.org/mathscinet-getitem?mr=1996396
http://www.ams.org/mathscinet-getitem?mr=2776821
http://www.ams.org/mathscinet-getitem?mr=2032983
http://www.ams.org/mathscinet-getitem?mr=2032983
http://www.ams.org/mathscinet-getitem?mr=3296817
http://www.ams.org/mathscinet-getitem?mr=1857934
http://www.ams.org/mathscinet-getitem?mr=1950880
http://www.ams.org/mathscinet-getitem?mr=0318337
http://www.ams.org/mathscinet-getitem?mr=0318337
http://www.ams.org/mathscinet-getitem?mr=3291807
http://www.ams.org/mathscinet-getitem?mr=0115936
http://www.ams.org/mathscinet-getitem?mr=3210379
http://www.ams.org/mathscinet-getitem?mr=1486215
http://www.ams.org/mathscinet-getitem?mr=1510692
http://www.ams.org/mathscinet-getitem?mr=2596373
http://www.ams.org/mathscinet-getitem?mr=1838580
http://www.ams.org/mathscinet-getitem?mr=0378476
http://www.ams.org/mathscinet-getitem?mr=0975086


34 Joel Brewster Lewis, Jiayuan Wang

[19] Konstantinos Koiliaris and Chao Xu, A faster pseudopolynomial time algorithm for sub-
set sum, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017), 1062–1072. MR 3627797

[20] Gustav I. Lehrer and Donald E. Taylor, Unitary reflection groups, Australian Mathematical
Society Lecture Series, 20. Cambridge University Press, Cambridge, 2009. MR 2542964

[21] Joel Brewster Lewis and Victor Reiner, Circuits and Hurwitz action in finite root systems,
New York J. Math. 22 (2016), 1457–1486. MR 3603073

[22] Joel Brewster Lewis, Jon McCammond, T. Kyle Petersen, and Petra Schwer, Computing
reflection length in an affine Coxeter group, Trans. Amer. Math. Soc. 371 (2019), no. 6,
4097–4127. MR 3917218

[23] Joel Brewster Lewis, A note on the Hurwitz action in complex reflection groups, Electronic
J. Comb. 27 (2020), P2.54. MR 4245109

[24] Tyler Minnick, Colin Pirillo, Sarah Racile, and Yueqi Wang, Hurwitz equivalence of re-
flection factorizations in G7. arXiv:2110.08371, 2021.

[25] Victor Reiner, Vivien Ripoll, and Christian Stump, On non-conjugate Coxeter elements in
well-generated reflection groups, Math. Z. 285 (2017), 1041–1062. MR 3623739

[26] SageMath, the Sage Mathematics Software System (Version 9.2), The Sage Developers,
2020, https://www.sagemath.org.

[27] Geoffrey C. Shephard and John A. Todd, Finite unitary reflection groups, Canadian J. Math.
6 (1954), 274–304. MR 0059914

[28] Jian-yi Shi, Certain imprimitive reflection groups and their generic versions. Trans. Amer.
Math. Soc. 354 (2002), no. 5, 2115–2129. MR 1881032

[29] Jian-yi Shi, Formula for the reflection length of elements in the group G(m, p, n), Journal
of Algebra 316 (2007), no. 1, 284–296. MR 2354864

[30] Martin Schönert et al., GAP – Groups, Algorithms, and Programming – version 3 release 4
patchlevel 4. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany, 1997.

[31] Eberhard Voigt, Ausgezeichnete Basen von Milnorgittern einfacher Singularitäten, Bonner
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