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Addendum to UCRL-17959, Kinematic Singularities and Threshold Relations for
Helicity Amplitudes,by J. D. Jackson and G. E. Hite.

The work of Frautschi and Jones (Ref. 14 of the above paper) is not
given proper credit, and is even somewhat misrepresented, in the preprint
‘version of this paper. Proper recognition of their work necessitates the

following modifications in the text:

Page 3, line 15

After the words hsections and density matrices."”, delete the
remainder of the line and substitute:
Our approach to the problem of the kinematic singularities is the same as
Frautschi and Jones;ll1L we show that the general results of Refs. 9 and 10
are obtainable by considerations of the thresholds alone, without reference
to the crossing matrix. The end results of the proper incorporation of the

kinematic structure in the observables are

Page 13, line 20

After the words '"as is, in fact, the phase factor.", add the following
sentence:
This change in the effective intrinsic parity of a fermion whose energy is
E = -m at the pseudothreshold has already been pointed out by Frautschi and

Jones.,ll1L

Page 35, lines 4 and 5

Delete the sentence beginning "Threshold relations like (36)--°",
and replace by:
The example of pion exchange (JP = O-) in the t-channel process, NA - P,
(sl + Sy = 2, s, + 8), = 1) has been discussed by Frautschi and Jones.lh

p)
Pages 6h‘and 65

Replace these two pages with the revised pages attached.
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t = 0.09 (GeV/c)Q, For natural parity exchanges (7§ = +1) the threshold
kinematic singularities are the same as for =N - n'A. For pion exchange
and others with 1 = -1, the threshold singularities are (TNTPT'NET' P)'l,
where primes refer to the NA channel. Frautschi and Jones keep only the
non-flip (A =0, u = 0) amplitude near t = O, but have fhe kinematic
singularity factors in the cross section. They discuss three'modeis:
(1) constant residue, (2) elementary pion exchange, and (3) linear residue.
The first model gives an unreasonably peaked cross section in the forward
direction because of the pole-like factors in t. The elementary pion
exchange model, a dynamical exception in the sense of Section IVC, gives
amplitudes vanishing at the thresholds as the reciprdecal of the standard
threshold behavior, This t-dependence in the numerator of the amplitude
rather than the denominator gives an unacceptably large and broad differéntial
cross section. In their third model Frautschi and Jones argue that for a
pionic Regge trajectory the proximity of the pion pole at t = 0.02 (GeV’/c)2
and the NA pseudothreshold at t = 0.09 (GeV‘/c)2 means that the residue
function should reflect approximately the exceptional behavior of the
elementary pion at this threshold, while at the other thresholds aﬂ is
probably different enough from zero to eliminate the dynamical exceptions.
Thus they parameterize the residue as 7(t) a (t - b), where b is expected
to be in the neighborhdod of the NA pseudothreshold. Comparison with data
at 4 and 8 GeV/c shows that b = 0.09 (GeV’/c)2 gives considerable improve-
ment over model (1), but that b = O is definitely superior. LeBellac o
has used this empirical vanishing of the non-flip residue function near t = O
as as supporting link in a chain of argument concerning conspiracy and the
pion trajectory.

Several remarks can be made. The first is that, as far as the cross

section is concerned, a choice of constant or slowly varying residue functions
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(model (1) of Frautschi and Jones) is possible provided all the amplitudes

are kept in the cross section and the various threshold relations are satisfied
explicitly. The kinematic singularity factor in the Frautschi-Jones cross
section decreases by a factor of 10 from the pion pole to t = -0.2 (GeV/c)g.
Once this is removed by cancellation from the :numerator, there is no need

for residues which vanish near t = O.

Model (3) had its origins in the idea of a dynamical exception, with
amplitudes having less than the standard kinematic singularities. The t-
channel pole-like factors would not then appear in the cross section from the
beginning and an acceptable t-dependence might result. But the empirical
result of a residue vanishing at t > 0 1is at variance with the original
motivation, as is admitted by Frautschi and Jones.lu From the present view-
point the vanishing of the residue at t = 0 1is forced by the presence of the
improper t-channel polé-like factors in the cross section.

The final remark is that the interpretation of the t-dependence of
the cross section for a process like =N - @A at small (-t) values demands
considerable care because of the finite widths of the p-meson and the
A(1236) resonance. This has been illustrated by Wolf’> in his discussion
of the energy and t-dependence of this reaction. If the events are plotted
versus cos 8  instead of t, or equivalently versus (t - tmin)’ where t .
is the maximum kinematically allowed value of t for each event, there is
little or no evidence of a turn-over in the cross section at small t values.

The above example illuétrates some of the dangers of application of
Regge pole formulas with the correct kinematic singularities included, but

without strict attention to the threshold relations among the amplitudes.

With pionic Regge exchange it may well be necessary to have a relatively

‘complicated parameterization of the residues, satisfying the elementary
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pion exchange requirements at the pion pole, as well as the threshold relations
among the amplitudes at the pseudothresholds, at least. In questions of
conspiracy and the detailed behavior of cross sections at small +t <values

it is essential to handle all aspects of the nearby t-channel thresholds
correctly. Otherwise, erroneous inferences may be drawn about presumed

dynamics.
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ABSTRACT

The kinematic singularities of two—body helicity amplitudes at
thresholds and the concomitant relations among the amplitudes there are
discussed in a direct and anschaulich way, without recourse to the
singularity structure of the crossing matrix. The tools are those of
nonrelativistic quantum mechanics, as befits a situation where p — 0,
with spins combiﬁed into channel spins g, and.Russell-Saunders coupling
of ,5 +‘§ :'g. The kinematic singularities are shown to follow from a

mismatch between J and L for each term in the partial wave series.
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The method is applicable at pseudothresholds, (ml - m2)2, as well as

normal thresholds, (ml + m 2, with two formal changées involving an

o)
intrinsic parity and a helicity-dependent phase. The relafions among

the different helicity amplitudes at fhe threéholds are shown to result
from the jpresence at threshold of fewer'RusSeil-Saunders amplitudes

than there are independent helicity amplitudes. The use of invariant
amplitudes is shown to be an alternative which automatically yields the
kinematic singularities and also the threshold relations among the
helicity amplitudes. A discussion is giveﬁ of dynamical exceptions to
the threshold constraints, resulting from less singular than standard
behavior at a threshold. The threshold relations are important constraiﬁts
on the amplitudes, and must be satisfied by any realistic model. ' In

the use of t-channel ampl;tudes for peripheral processes in thé‘§fchannel,
the explicit imposition of all the relations at thelyfchannel thresholds
18 necessary in order to assure a differential cross section without
.spurious, pole-like singularities in t whosé variation could.in_some
circumstances completely control the t-dependence. The reactions

il —- KY and %N‘f>nﬁ " are used as illustrations. The latter process

is especially illuminating because its t-channel amplitudes have a

pole (rather than a simple inverse square root singularity) at the ~NZ
pseudothréshold, t = 0.09 (GeV/c)g. The proximity of this poinf to

the physical region of the s-channel means that the threshold relations
there are of crucial importance. The consequences of these constraints

on the cross section and decay density matrix of the A are discussed
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within the framework of the Regge pole model. Comparison with

experiment implies that the dynamics make the amplitudes for uxn/ - NA
have less thah the standard kinematic singularity at NA pseudothreshold
and so avoid almost all the threshold constraints. Examples are cited
from the literature where use of Regge pole formulas possessing the
spurious kinematic factors has led to incorrect inferences concerning

the dynamic behavior of Regge residues.
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I. INTRODUCTION

The qﬁestion of kinematic singularities of S-matrix elements,
that is singularities associated with the threshold values of s, t, and
u, and so depending on the extérnal masses, has received considerable
attention in the past few years. Historically, the use of invariant
amplitudes in combination with explicit kinematic factors made up from
the momenta and the spin or Dirac operators automatically took into
account the kinematic singularities of the problem. Classic examples
are the A and B amplitudes in pion-nucleon scattering and the four

invariant amplitudes, Al""Ah’ in pion photoproduction.l The existence

and construction of invariant amplitudes free of kinematic singularities

5

2
for a general process has been discussed by Hepp, Willlams” and more

recently by FQX.M But with the consideration of processes involving

5

particles of arbitrary spin, the use of helicity amplitudes” became

prevalent, chiefly because (a) the formalism is completely general,

(b) the angular momentum and parity expansions are straightforward, and

6,7

finally (c) the helicity amplitudes satisfy elegant crossing relations. ’

The work of Hara8 and L. L. Wang9

solved, apart from a few details, the
problem of determining the kinematic singularities of helicity amplitudes.
Hara and Wang both made extensive use of the crossing matrix. Since then
other discussions of the kinematic singularity structure of helicity

amplitudes have been given from other points of view.lo’ll
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In peripheral reactions the t-channel amplitudes often possess
kinematic singularities that are sometimes close to thevphysical region
of large s and small (negative) t. For example, in the process
_§§'—§9§? illustrated in Fig. 1, the t-channel helicity amplitudes may
have inverse square root (or worse) singularities at one or more of
the points, t = (m, + mc)g, (my, + mg)? and t = (m, - mc)% (my, - md)g,
the normal and pSeudosthfesholds, respectively. The pseudo-thresholds
can lie considerably cloéer to the physical s-channel region than dynamic
singularities such as t-channel poles. Consgquently it seems important
to. take proper account of such kinematié singularities in a theoretical
modél tnat is to be confronted with éxperiment. An attempt was made
for‘the Regge pole model to do this by exhibiting in the E:channel Cross
section all the E:channel'kinematic singularities, leaving_supposedly
smootnly varying residue functions for phendmenological fitting.12
This compendium of formulas for many different reactions was then to
be viewed as the ultimate in Regge pole phenomenology. Some analysis
of data on the basis of these formulas has already been d,onev.u’llL
But the structure of the formulas ovaef. 12 has been questioned, with
gpeclal reference to the‘point t =0 by Lin15 and on general grounds
by Stack.;6

Another aspect of this general problem; recognizéd during the

past year, is the existence of relationships between various helicity

amplitudes at the kinematic thresholds. These threshold conditions .

or kinematic constraints are discussed in terms of partial wave expansions
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and orbital angular momentum for the normal threshold by Jones,17
in terms of the connection between invariant and helicity amplitudes,
with special emphasis on t = O, by Diu and LeBellac,18 and alsoc by

19 In Regge pole theory

Cohen~Tannoudji, Morel and Navelet,lo and Foi.
with two particles of equal mass (eg. NN — xp), the appropriate
pseudothreshold moves to t = 0. There the problem of kinematic
constraints is solved by "conspiracy" or ”evasion”,go depending on
whether or not a given trajectory needs the assistance of another
tréjectory in order to satisfy the conditions in a non-trivial fashion.
The main purposes of the present paper are (1) to present a
unified and anschaulich treatment of the kinematic singularities and
threshold conditions for helicity amplitudes using orbital angular
momentum, and (2) to show within the framework of the Regge pole model
how to incorporate properly the kinematic structure into the cross
gsections and density matrices. The end result of the latter are

phenomenological formulas very different from those of L. L. Wang12

in that they conform to the requirements of Lin‘15 and Stackl6 and
possess no t-channel kinematic singuwlarity factors. The somewhat
confusing and even subtle aspects of these problems are hopefully

illuminated by parallel treatment of some examples in terms of

Feynman perturbation theory and the use of invariant amplitudes.
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II. NOTATION AND BASIC CONCEPTS

The;present.discussion of kinematic singularities is based
entirely on the use Qf'orbitgl angular momentum and the standard
centrifugal bafrier factors of nonrelativistic quantum mechanics
with no consideratibn of crdssing relations. That nonrelati?istic
concepts shouid be suitable at thresholds is not surprising. But
in spite of the use of orbital angular momentum arguments for some

aspects of these problems,B’lh’l'?’21

it does not seem to be recognized
that a coﬁsistent discﬁssion of the whole question can be given in
tﬁose térms alone. |

Our interest ultimately is in peripheral processes and the
Regge pole model. Consequeﬁtly the>3:channel amplifudes and their
siﬁgﬁlarities are emphasized in the éhoice of notation; the treatment
is readily transcribed to other channels. We consider for the most

part amplitudes'with all four external masses different in order to

separate the normal and pseudothreéhold points from t = O.
A. Notation

The general labelling of the variables is indicated in Fig. 2.
The t-channel process is
1+2 53+ 4

where the ith particle has mass, m;,

spin, s;, and intrinsic parity, N
The initial and final center of mass momenta are p and p’, respectively,

and are given by
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2 2 2
P = [t - (mp o+ mp)TIlE - (m - mp)T 1/t |
(2)
. 12 5 5
p o= [t - (m5 + mu) 1[t - (m3 - mu) 1/t
It is convenient to introduce separate terminology for the square roots
of the brackets in Eq. (2). Thus we define
_ _ 2
Ty = YVt (m1 + mg)
2
Tp = Yt - (ml - mg).
(3)
I~ " 2
Ty = Vb= (mg +m)
- N 2
T, = Vi - (my - m,)
where the éubscripts N and P stand for normal and pseudo-threshold
and the prime or lack of it  1s associated with pl and p. From
Eys. (2) and (3) we have
TNTP = 2Vt »p
| - (4)
Aot /
TNTP = a*Jt D

The t-channel helicity ampiitudes are functions of t and cos@t
For discussion of analytic properties we will make considerable use of
the expression for cosGt in terms of s, t and u:

1
cosQt = ———— 1y -

V4
Lpp

; 2””]; ) (5)

Evidently then, (tpp‘cosec) is a polynomial in s, t and u, possessing

no threshold or other singularities. Another convenient relation is
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. 6=
5 . - : Loy 22
that between the Kibble boundary function .¢(s,t,u),"
o2 22\ (22 2 2
o(s,t,u) = stu - s(:;nlm3 + QOu:> -t mlm‘2 + .m3m4>

e+ ) ©

+

+
N[
=

£rol”

=
N
offrol”

ol
T ot

and‘sinOt:

2 v
® = htpgp’ sinzgﬁ : (7)

The virtue of Eq. (7) is that it tells one what powers of momenta and
energy to associate with sinEOt in order to obtain a polynomial in

23

s,t and u of impeccable analytic.properties.
B. No Spins

"The existence of kinematic éingularities is a complication
entirely caused by the presence of paftiéles with spin. .Without spin
the threshold behavior of partial wave amplitudes provides Just ﬁhe
necessary powers of momenta to combine with the corresponding Legendre
polynomials to give expressionsbmanifestly free of kinematic singularitieé.
Considér a spinless process with invariant émplitude A expanded in a

partial wave series:

A(t,@t) =Z(2L + l)'AL(t) PL(COSQT) ' (8)
L | |

We focus our attention on one of the thresholds, say p - OC.

The behavior of the.partial wave amplitude AL‘ in this limit is as
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pL. This can be taeken as a law of nature, or can be derived from the

Froissart-Gribov formula and the Mandelstam representation (see, for

. L
example, Ref. 21). Similarly, at p’ -0, Ap ~ pl . Thus AL(t)

can be written as AL(t) = (pp’)LKL(t), where KL(t) is an analytic
function of t in the neighborhood of either threshold. The Legendre

polynomials are finite series of all even or all odd powers of coth?

with the highest power being '(coset)L. This means that the expansion

(8) can be written as

A(t,Gt) = }E:_(EL + 1) ﬁi(t) (pp’cose_t)L il + O{_JET;%i

.COS O
L

where the square bracket represents a finite series in powers of

(cos® -2. From the definition of cose Eq. (5), we see that
t

t’

the combination (pp‘cose is analytic in s and t except perhaps

)

at t = 0. Furthermore, the square bracket in (9) is also well-~-
- 2 .

behaved since (cos@t) 2 . pgp' /(ppfcoset)e. Evidently then, if the

partial wave expansion converges, we have demonstrated that the
amplitude A(t,@t)‘ has no kinematic singularities. The amplitude

can, of course, be defined outside the domain of convergence. of

the partial wave series by analytic continuation.
C. Outline of the Method

When spins are present the situation is complicated by a
‘mismatch between the total angular momentum J and the orbital angular

momentum L. It is the latter which governs the centrifugal barrier

(9)
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factors pL while it is the former that determines the power of

cos@t. Obviously the difference (J-L) will specify the power of

Y] and/or p’ left over, and so the specific kinematic singularity
for the amplitude in question. In detail, care must be taken to

distinguish between normal and pseudothresholds so that various powers

/ /
N TP’ TN , and TP

p and p’,' This is spelled out in detail in Section III C. But

of T will occur rather than simple powers of

the basic approach is to use the concepts of nonrelativistic nuclear

Physics, to combine the spins of the payticles into channel spins,

z .
= = =+ t dd t
. EE i} +.i;- and iﬁ i? Sh’ o a orbital angular momenta
- L, I/' to give J = L + S, J = L’ +'SI with due account of
[ad el ~n Ll ~r we~ A Ao

.parity. The maximum difference for (J - L) is then determined and
the kinematic singularity étructure established for each term in the
partial wave series and hence for the full amplitude. In practice,
this is elementary and quick to do for any specific case, as shown
in Section IIT A and Appendix A, and also sipple for the general case
(Section III C). But before proceeding to the relatively trivial
task juSt déscfibed it is necessary to discuss some of the basic
formulas concerning helicity amplitudes and the differences between

normal and pseudothresholds.
D. Helicity Amplitudes and Their Partial Wave Expansions

In the helicity representation the invariant amplitude M

yields helicity amplitudes f with partial wave expansions:
x5xh;xlxgv

5,2k
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— 1 o 5
fk5%uixlxét’9t) =ZE; _(J + §)<x3xu|Fa(t)|xlx2>d Ml(Qt) (10)

J
where A = X, = M\ oy M= XB - xu. The propefties of the Wigner

1
5,25,26

d-functions in (10) are well known. For our immediate purposes

we note that

Ao+ NI
deu(e) - <}os % | l(Ein % Pun(cqse) (11)

where PJ% (z) is a polynomial in 2z whose highest power is 27
and m is the larger of |\]|, |u]-
It will be convenient to consider parity-conserving amplitudes.9’26

For each J parity-conserving amplitudes are given by linear combinations

of the helicity partial wave amplitudes in Eq. (10):

J,P

F .
Mgty M Mo

<x5xu|FJ]xlx2> + Pnlqg(—l)j_sl-sé<x3xu[FJ|-K1 “Ap)
(12)

where P 1is the parity eigenvaluef Following Gell-Mann et a126

we choose the parity-conserving states in anticiﬁation of Regge

trajectories and their equivalence. to a superposition of states in a

definite spin-parity sequence. Thus we introduce a parity factor

n = = 1 such that the parity of a given J state is

)J.- v

P = n(-1 (13)

where v = O for integral J and V.= % for odd half-integral J.

For integral J, the natural parity trajectories (p, w, A2,---) have
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n = + 1, while the unnatural parity trajectories (ﬂ,‘Al,"') have
: . o +
n = - 1. For odd half integral J, the N . trajectory (1/2°, 5/27,.--)

has 1 = +l, while the A trajectory (3/2%, 7/2%, +++) has n = -1,
etc. In terms of n the parity-conserving partial wave amplitudes,
(12), ares!

Jn

8, +s
1
A

o i S
Oughy [ hg) 4 mmyng(-1)°27°27 0o 77 f=n) = 2.

5Ku5KlX2 (lh)
Parity-conserving helicity amplitudes based on (10) can be
constructed after extracting the half-angle dependence of the Wigner

d-functions shown in (11). A detailed discussion is given in Ref. 26.

We only quote the key results. The parity- conserving amplitudes are

defined by
n - _ v
F Kjxh;xlxg(t,Z) = E(gt)f%5khsklk2(t?gt)
(15)
+ (1) P, (S5 e (- 0 )E L L (t,0,)
1'2 t xBxu,-xl-xg e

where 2z = cos@t and

E(Qt) = [}VE‘ cos(gt/gi]-lk " “I* [}fg sin(et/Eilnlx - vl e)

The amplitudes Fn are almost the same as the f(i) of Ref. 9. But

care must be taken in relating n = 1 to the (&) superscript of

- 2 N . :
f. 8 The partial wave expansion of (15) in terms of the amplitudes

(14) is
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" () =) @) | ]

>“5>‘2+ 32 N , >\.3>\h 32 A
J
(17)
J

“(, J, =1
+ eXu(z) FXBKh;Xlxg]

The functions eii(z) are defined in Ref. 26, Eq. (2.8)‘.and

9

A.ppendinA.2 For our purposes the essential facts about the

egj(z) are that they are finite polynomials in z of either all

odd or all even positive powers. Specifiéally,

, : ]
J+ J-m B J- - J-1-m /1 ., B e
eXH(z) = 2z »<%.+ ¥ + ..z> exu(z) = oz éi + ;5 + j)(lS)

The original helicity amplitude (10) can be recovered by
adding together the amplitudes - (17) for n = +1 and 7 = -1 and
dividing the result by 2t. The virtue of (17) is two4fold; firstly,
the half-angle dependence ¢ has been removed so that the resulting
t-channel amplitudes have only dynamical singularities in s,9
and secondly, the dependence on J and parity is explicitly exhibited
with coefficients which afe polynomials in z. The problem with spins

has thus been reduced as far as possible towards the example of no

spins.
E. Normal and Pseudothresholds

The process illustrated in Fig. 2 has four t-channel thresholds,

)2, (m3 - mu)z. Since we will

= (m e m)®, (mp 4 m)®, (m - m,
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consider the initial and final states separately_it will suffice to

discuss only the two thresholds of the initial state. The first one

(t = (m1 + mé)g) is the normal threshold, while the second (t = (m1 - mz)g)

is called the pseﬁdothreshold. In nQnrelativistic gquantum theory we are
familiar with only the normallthreshéld, but p vanishes at both.
It is almost unnecessary to say that at the normal.threshold such ideas
of nonrelativistic gquantum mechanics as the Vectbr additidh of angular
momenta and the straightfofwérd appiication of parity conservation
can be utilized without furthervthought. But care must be taken at
fhe pseudothreshold. | |

Aﬁ‘the normal threshold the particles are at rest with El =.ml
and E2 = m,. Inspection of the energy expréssion for each particle shows

that at the pseudothreshold the particles are again at rest, but

El = -m, while E, = m,, where the particles havé been labelled so

2
that m, <,m2. the change in sign of the energy‘of'the lighter particle
in going from the normal to the pseudothreshold has twfo.'consequences.'19
The single particle state |p,E,x), where the momentum is along the

z-axis can be obtained from the state at rest (normal threshold),

|0,m,\) by application of a '"boost" operator,

o ~i¢K
IP,L,X> € ¢ 3|O,m,)\‘)
where p =m sinh {, E = m cosh {. The unphysical complex "boost"

which transforms the particle from a state at rest with E = m (normal
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threshold) to a state at rest with E = -m (pseudothreshold) has

¢ = ix. Since the representations of K, are iJ3, we- see that the

3
transition from normal to pseudothreshold for particle 1 gives back
the normal threshold staté multiplied by a phase factor, exp(in%l).
As a consequence, if we consider the helicity amplitudé (10) near
the pseudothreshold, the right hand side will behave as if the particles
were "normal” particles at a normal threshold, except that there will be
a phase factor exp(inxl). We can therefore define new amplitudes,
called pseudo-amplitudes,
P 8, = A .

ijxu;xlxg = (DR fxBxu;xlxg (19)
to which the ordinary laws of nonrelativistic quantuﬁ mechanics can be
applied at the pseudothreshold. Consideration of the parity transfor-
mation (Eq. (4k4) of Ref. 5) applied to the pseudo~-amplitudes shows
)2

that there is an additional factor of exp(Enkli) = (-1)°°1 in the

connection between fi Ny ) and f?x oay sen ey OVer what appears
320 5 I e R~

for the f s. This can be interpreted as an effective change of the
o 2s
intrinsic parity of particle 1 from n, to nl(-l) L The change in intrinsic

parity for the lighter fermion at the pseudothreshold is familiar for
/

spin %-in the connection between negative energy states and antiparticles,

as is, in fact, the phase factor.
In summary, the normal and pseudothresholds can be handled on
an equal footing with nonrelativistic quantum mechanics provided that

at the pseudothreshold two modifications are made: (1) the intrinsic
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parity n, of the lighter particle is replaced by (_l)2s¢n£’ and

(2) the pseudo-amplitudes (19) are considered rather than the regular
amplitudes (10). The~firsf-modification has the consequence of giving
different kinematic singularities at the normal and pseudothresholds if
the lightef partiéle is a fermion.. The second alteration is important
for the kinematic constraints or threshold relations among the amplitudes,
independently of whether the lightér particle has integral or half-
integral spin.

The remaining point is specification éf the threéhold behavior
of the partial wave amplitudes (1L). Suépose that the smallest allowed
values of orbital angular momentu@ in the initial and final states at
the normal (pseudo-) thresholds are LN(LP) and L&(Lé), respectively.

Then we will assume that FJn can be written

J

T I e o)
¥ anAM;xlxg - (1) (1) (1) {?P) Fxlxu;xlxg (20)

where Ty, etc. are the threshold factors (3), proportional to the

- nonrelativistie momenta at the respective thresholds, and Eﬁﬂ is

a reduced partial wave amplitude, free of threshold singularities.
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IITI. KINEMATIC SINGULARITIES
A. gn! SHA

The basic tools for the analysis have been described in Sections
II C and E. Before proceeding to the general case it is instructive to
consider a specific example, namely the s-channel process of isobar

production,

(07) + (1/2%) - (07) + (3/2"),
- *+
examples of which are n'p - O™ and K'p - 7Y, . We will, for
convenience, write the t-channel reaction as

7 Trl - ﬁ

. A
(1) + (&) - (3) + (&)

with the first mentioned process in mind, but the results apply to any
reaction with the same spins and parities.

The process sr! - NA is an especially good one because it is
relatively simple, with only four independent amplitudes and spinless
particles partiéles in the initial state, butbstill has a relatively
complicated kinematic singularity structure because of the spin 1/2
and spin 3/2 baryons in the final state. Because of the zero spin
particles of the same intrinsic parity initially the allowed angular
momentum-parity states belong to the natural parity sequenée {n = +1).
Thus only Pt in (14) is different from zero and just the first term
in (17) occurs. Another way of saying it is that for this reaction the

basic helicity amplitude. (10) is already a parity4conserving amplitude

in the sense of Ref. 26.
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. We now proceed to construct the channel spins and parities.

For the initial state we obviously have

where the subscripts N and P denote normal and pseudothresholds,

respectively. For the final state of N(1/2-) and A(3/2%) we have

Sy = 17,2
+ o+
s% = 15,2

Note that for the pseudothreshold the N parity has been formally
reversed according to the rules of Sectibn IT E. The laws of addition
of angular momentum and parity conservation are applied to the orbitgl
angular momentum I, and the channel spin g to yield a total angular
momentum 4 and parity (-l)J. The results Qf'this elementary calcula-
tion are tabulated in Table I. Where more than one L or L' value
is possiblé,‘only the smallest one is tabulated because that is the one
which governs the threshold behavior of the amplifude in (20);

The final column in Table I exhibits the threshold behavior of
il according to Eq. (20) for successive partial waves. While the
first two J wvalues show abnormalities which are of interest in
understanding differences that arise between the general results and
'the singularities found for specific Feynman diagrams‘ (see Section IV ()

a pattern establishes itself for J 2 2. For the Jth partial wave

(J > 2), the threshold behavior is
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Pt 1‘.’; ' adk (21)
Iy Tp

where F does not have singularities at the four thresholds. From (17),
(18) and (5) it is seen that the combination of 2 with the numerafor
in (21) yields an analytic structure free from kinematic singularities
for each J value, at least for m = !pf = 0.30 Thus the class of

helicity amplitudes with XB = xu can be written

+ Axx(s’t)
fM;Oo = FM;OO = Tl 2
N P

(22)

where AXK(S’t) is free of kinematic (threshold) singularities. This
9

result is in_agreement with the general resuits gi#en by L. L. Wang

and others.
B. Behavior at the Physical Boundary; Powers of t

For X,u= O the discussion of the previous section is incomplete.
The threshold singularities are deterﬁined correctly, but the behavior
of the helicity amplitudes (10) at the boundary of the physical region
and at t = 0 was not considered. VFor all four masses unequal there
are no singularities in the helicity amplitudes at t = O_.lo’ll
Indeed, for (mi - mgX'mg - mi) < O the point t = 0 lies inside the

s-channel physical region where, from the crossing relations, it is

clear that the gontinued t-channel amplitudes cannot have singularities.
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The singularity at the physical boundary arises from the half-
angle factors‘in the connection between the helicity amplitudes T,
(10), and the parity-conserving amplitudes fn, (15). 'he latter are
functions of 2z = cosgt and so have no singularities at @ = O.
But sin(et/2) is proportional to \ﬂ; near cos6, =1 and cosCGt/Q)
is proportional to WJ5- neér cosGt = -1. Hence the helicity amplitude

(10) will behave as

4
=

(jﬁ5 |k - “l for coset

f oc (23)
Az Ny SAq A
e (3ﬁ5)lx tu for cos@t -1

The behavior at the two ends of the physical region can bevwritten as

&

(\f& )IMI, where M 1s the difference between the initial and final

z-components of total angular momentum.h’ll
The parity-conserving amplitudes Fl have siﬁgularities at

t = 0 as a consequence of the half-angle factor £, (16), even

though the f amplitudes do not. From (5) it follows that near

t =0, cosg =c¢'+ 0(t), where € = + 1. for (mi - mg)(mg - mi) Zo0.

This means that

£(,) oo (Ve el

t(r - 8) o (Vi) It

near t = O. Consequently the t = 0 singularity of Fl o is

F25Xuiklkg oc (l/\/%)|xl voIm] (2k)
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For m# O this added singularify must be included along with the
threshold factors such as (21).

For the example of ar! - NA, where » = O, insertion of a
factor (\[E)"“l into (21) 1leads to helicity amplitudes of the

form,
oy A (s
. - (Vo) Axéxg %)
ijhsoo E - (mA - mN)%}V& - (mA + mN)2

where AK A (s,t) is free of singularities at the kinematic thresholds,
3"k
on the physical boundary and at t = O. Eq. (25) exhibits the threshold

(25)

singularities explicitly, as well as the known behavior at the boundary

of the physical region.
C. General Result

The example discussed in Section III A can be generalized in an
obvious way. Combining (20) with (17), taking cognizance of (18),

and including the t = O behavior, (24), we see that we can write

o B B, . -1
n. _ Oy P,/ NN/t P E e
Fx5xu;xlx2 = [}TN) (1p) (1) (1)~ (Vo) Al (s,1)
3™ 201
(26)

where A(s,t) has only dynamic singularities, and the exponents are
- - - = -1/ - 4 -

@ = J-Ly-m B = J-Li-m . The differences (J - L) are

the 'mismatches" discussed in Section II C.0T There is one question,

namely whether or not. (J - L) is independent of J. Inspection of
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Table I shows the general behavior. For small J there are differences

caused by the channel spins being larger than J. But for .J )»Smax,

the difference (J - L) isindependent of J. Physically this occurs
because the minimum orbital angular momentum demands the maximum channel

spin. Then (J - L) is equal to Smax or (Smax - 1) depending upon

the parities involved. The only slight problem for the general case is

exhibiting the switch that gives S or S -1 in a compact
max max v

manner. The erratic behavioi of the L and Lj values for small J
is of no consequence because the threshold behévior for those partial
waves differs from the standard pattern by positive even powers of the
T's (See footnote 30).

We corsider first the initial state, with Smax =8 + 8,

At the normal threshold the intrinsic parity associated with the channel

spin is Mo For_a state with total angular momentum J  and parity

n(—l)J - V, the minimum allowed orbital angular momentum is

0 N ) S + 8 -V 1
L = J - (sl + 82) + , if nnlng(-l) 1 2 =
1 -1
This can be written in the form,
1 ' S. + 8, =V
L = J- (sl + 62) + .3 (l - mnyn(-1)71 T T2 T ) (27)

Eq. (27) is the basic result that gives the a's and B's in (26).

The only caution to be observed is.at the pseudothresholds where the
o . .\

effective intrinsic parity of the channel is nlng(-l) ¢. The four

exponents are
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For definiteness in (28) it has been assumed that m, < m,
m < . Note that for integral J (i.e. v = 0) the choice of
" which particles are lighter is immaterial.

The results contained in (26) and (28) can be shown to
9

be exactly equivalent to those of Wang” and Cohen-Tannoudji, Morel

and Naveletlo for the case of all unequal masses, although some care
must be taken in correlating correctly the parities.52’55 The speciali~
zation fo equality of various masses has been discussed in Ref. 9 and
much more thoroughly in Ref. 10 where the analyticity in \/E— for

half-integral J 1is also treated (see also Hara8). The above results

hold for positive values of Vt if J dis odd half integral.
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IV. THRESHOLD RELATIONS

'The various helicity amplitudes for a givenvprocess are in genefal
related only.by dynamical assumptioné. But at certain regions in the
(s,t) plane there are connections among them. One type of relation
occurs at the bouhdary of the physical region (z = 1+1) where amplitudes
with (A% u) % O must vanish b& conservation of angular momentum.

The crossing 'relationsv6’7 then imply that certain linear combinations
of the crossed channel amplitudes vanish there. This type of constraint,
first noted by Goldberger, Grisaru, MaéDowéll and Wong,iu ié discussed

in general by Abers and Teplitz.35

Our interest is in another kind

of rglation between helicity émplitudes, one that occurs at the kinematic
thresholds. For unequal masses these thresholds are distinét from

.any boundéry of the physical region.

Threshold relations between amplitudes df different helicities
are almost trivial if one restriéts oneself to the physical region of
cos ©, Thus, for a physical process at threshold, only those amplitudes
with orbital angular momentum I = O will be nonvanishing. Typicélly,
only one term in each partial wave expansion, that with J = S; will
survive, and the different helicities will be related by an ordinary

A

angular momentum Clebsch-Gordan coefficient, <:§aébxa - XblS(}a - xﬁ)j>;

This was pointed out by Jones17 who discussed the normal thresholds,
but applies equally to the pseudothresholds with the modifications
diséussed in Section'II E.

The argument of the preceding péragraph is correct for amplitudes

at threshold with- [cosOtl <& 1. This corresponds to the determination
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of relations among the amplitudes at the point O in Figure 3. But it
is desirable to know what constraints occur all aiong the line AB,
that is, for fixed threshold values of t, but arbitrary s. Eg. (5)
shows that, for.arbitrary s, cos@t. becomes infinite at the t-channel
thresholds; the point O 1in Figure * is the only exception.’ This means
that all J values in the partial wave expansion contribute, not just
those corresponding to L = O.56 It turns out that, while this compli-
cates the analysis somewhat, it is still possible to exhibit systematically
the threshold relations among the amplitudes. The method of Jonele
sometimes ylelds the same connections as the present approach, but his
development is really only valid at the threshold in the physical region.
‘Pion-nucleon scattering is one example. This is discussed in Appendix B
from several points of view.

An alternative, but entirely equivalent, way of establishing
these relations at threshold i1s the use of invariant amplitudes. This

%5 in their Appendix for

18

scalar meson-vector meson scattering and by Diu and LeBellac with

approach has been employed by Abers and Teplitz
special éttention to t =0 (for NN - xo, NN - xy). We discuss the
use of invariant amplitudes in Section IV B. Another eguivalent method,
discussed by Cohen-Tannoudji, Morel and Navelet,lO utilizes transversity
- amplitudes and the singularity structure of their crossing matrix. This
yields linear combinations df helicity amplitudes (and sometimes of "

derivatives of helicity amplitudes) that vanish at threshold.
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To illustrate the threshold relations we consider our previous
example, ax! = T A. Only the N A thresholds are relevant here.
We first examine the normal threshold, t = (m5 + mu)g. The helicity

amplitudes (10) can, in this case, be written

J J . ,
f>‘3>‘4500 :2 @+ 2 QM 1P IOC> dou @t) (29)

J

where u = XB - xu. At threshold it 1s appropriate to-introduce a

Russel-Saunders coupling expansion for the partial wave amplitude

. J' .
<>\3MJF ;oo> -
J | IN ol Tt of
ry, |F ,o<> = }:/ <53h>‘5 -, I8 ><L S ou[J> Fy (1',8")

17,8

(30)

/

where the sum is over 8 = 1,2 and all allowed L/ values.

FJ(L/,S/) is the reduced matrix element, and is a function of t as
well as its visible indices. Near threshold, 'FJ(L/,S,) has a behavior

/
L
)

(T

N . Thus; for fixed 'SI we need only keep the minimum r’/ value,

as given in Table I, and also only keep one S/ value if that happens
to have a smaller L/ than the other. At the normal threshold, the
minimm L' value is Lﬁ =J -1 (apart from the first two J values -

see Ref. 30). Both values of channel spin can occur. For elegance in

later formulas we extract not only the N A normal threshold behavior,
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but also the factors occurring in Eq. (20) for the other thresholds as

well. Thus .we write

)72

T - -1, 8 = () (Tl ' -7-1,s8) (1)

where 'fﬁ has no singularities at threshold. The factors other than

(T’)J-l can be thoughtof as merely constants. Multiplying both sides

2 .
of (29) by T Jo!” and making use of (30) and (31) with L/ =J - 1,

NP
we obtain the nonvanishing part of the numerator of Eq. (25) near
2
:(H%-}-mu)
TT'2 ssx-k[Sp (J+>“F'J(J-1s’)

(32)
¥ <G - 1)S’Oui® G, (8y) (btpp”)”

It is clear that only the highest power of 2z 1n the d-function will
survive at threshold. It is shown in Appendix A that the product of
Clebsch-Gordan coefficient and the leading term of the d-function

appearing in the sum over J can be written (Egs. (A6) and (A7)):

‘L o
<J - 18’ |a> a5 7(0,) = 1% Tags ()27 ay F(ey)  (33)

‘ /
where S = 1,2 and aS/(J) is given by (A9) and (A10). Thus the

right hand side of (%2) can be expressed as
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Tilef = % <§ S)hz = A ]S'u)psl-l(htbpl)sld
NP “Agh, 300 [ \N3H3 7o
‘ S

/

S(Q

&)
(34)

| | | | /
x zgj‘(J + 1) F 1 (3-1,8" )agr () (stop’2)7
T

The use of (33) is the key step in the development because it
causes -the separation of the helicity dependence from J. The two terms
in the S’/ sum of (34) have explicit dependence on XB)xu and
times a partial wave series that depends only on s’ and on the poly-

. / 2 2 2 2 .
nomial, M4tpp’z = t(s - u) + (m1 - m, )(m3 - m, ). The partial wave
" expansions can be assumed to converge, at least if the’}i values are
on the line AB in ‘the neighborhood of O in Figure 3. Labelling
these J sums in (34) as ysz(s), we have, at t = (m5 + mu)g:

T/T/gf =y (s)<§ Lo - |1H>(utpp’) a* (e,)

NP XBXh;OO 1 2273 Li=v/ Ot
(35)

l . r
+ uy()3 5 ny - a2 (btpp”) ay Z(6,)

Eq. (35) shows that the four independent helicity amplitudes are related
at t = (m3 +vmu)2,vactually depending on only two d&namical functions

of &. We note in passing that, if cos@t is held in the thsical
domain as threshold is approached, only the first term in (35) sufvives.

Thus at the point O 1in Figure 3 thé helicity_amplitudes are determined

by a single constant, the J =1, L =0, S =1 amplitude, as can be
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seen from Table I. Away from O, the relations written out in detail
2

are (remember t = (m.5 + mh) ).

112 1

- htpp”
Ty's f11500 N (htwp/2)y)

1 _ -
Tnlp fia,_%;oo = y; - 3(4tpp/ Z)yg} (4tpp/sine, )
(36)

.

I = ..5_ | / y
e 1, T \[; Efl + (btpp’z)y,| (4tpp’sine,)
52

2
!t _ é / ot 2
Tip T . = qu; yg(htpp 51n9t)

Here we have identified particles % and 4 as A and ‘ﬁ, respectively.
It is easy to translate (36) into expressions for the singularity-free

-amplitudes Ax N (s,t) in (29).
3
We now consider the pseudothreshold, t = (m3 - mh)g. The

arguments are the same, with the modification of the intrinsic parity of
N and the use of pseudo-amplitudes (19). Table I shows that the
minimum orbital angular momentum is now L/ =dJ - 2, and only S/ = 2
need be considered.”! Thus the sum over L' and §’ in (30) reduces

to a single term, and the equivalent of (32) at t = (m5 - mh)2 is
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oo/ “r = 1)2 Ny 25 >\ - xu_IELL)"Z (J,‘ i’r%)'FPJ(J - 2,2)

N P XBXA;OO
(37)

x (3 - 2)20u]3u) a5 ”(0,) (uipp?)’

Use of Appendix A, Eq. (A8), allows separation of the helicity dependence

from J,  the J series can be formaiiy summed, and (37) becomes

T, ) 00 <s>< -1)%” <i§ hs - ma} (btpp?)°ay %(6,),
(38)

showing that the amplitudes are related to a single function, y3(s),'
at the pseudothreshold. Here it happens that the method of Jones,17

based on only the L’ = 0 contribution, gives the same result, as can

be seen from Table I. The equivalent of the four equations in (36).

are (% = (m3 - mu)?):

’ 2 /)2
Ty Tp fi%;oo = \/E‘ (ktpp’z) y5
5in0
2 t 2
/i = - /
vp f1,-1500 cos@t TP 11500
(39)

' ,23 1n9 I
T/ p

e %;oo 1f’ cose TyTp f-%%;oo

s % T’T’ £
NP %,-%;oo 1/" cos@ 25300
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Here the ratio (sin@t/coset) is equal to i at threshold, but is

better given a meaning through the boundary function as

. _ SN’
(51n9t/coset) = vtp /(2(m5 mu)pp z).

Equations (36) and (39) do not exhaust the relations among
the amplitudes at threshold. The results derived so far concern the

most singular parts of each amplitude. If we imagire Taylor's series

;2

W around the normal

expansions of the amplitudes in powers of T
2
threshold or TP’ around the pseudo-threshold, we can ask whether

or not there are relations among the coefficients of higher powers of
T’g, i.e. among tﬁe derivatives of the amplitudes with respect to ot
for fixed s. 1In order to obtain such relationships, if any exist, it
is necessary to retain more than the lowest L’ value for each J in
the Russeli—Saunders expansions and lower powers of =z than the highest
in the expansion of the d-functions. A discuséion of the present

example is given in Appendix C. It is not difficult to show that at

the normal threshold no relations beyond those contained in (36) occur.
2

. N

contributions from L’ =J -1 and L’ =J +1 for both 8/ =1 and

The basic reasgon is that the first order terms in T receive
s/ = 2. Four unknown functions of s, analogous to Y and Yo in
(36), are thus introduced. Since there are only four independent helicity
amplitudes, no relation among the derivatives arises.
At the pseudo-threshold, however, the first order terms in

,2 . / / I /
TP involve L =J for 8" =1 and L =J -2 and L =J for

, ,

8" = 2. Only three unknown functions are present; there is thus one
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relation, (¢s), among the first'derlvat;ves.b With the TP_ terms
- the final L{ﬂ value, I/ =J + 2 for s/ - 2, enters and there are
és many. unknown functions as there are amplitudes. The one derivative

relation, (C5), is written here for convenience as

(0)
fEll + ‘sl 1 = ', T, |
22300 2720 5\ 23500 27-2500
t - (mg - m, )
| (40)
’ __ (0) |
= 111:00 1 - (m5 - m,)
2 { 2
5(my - m,) (Tp 2)

The tilde amplitudes, defined by (CE),‘are such as to remove éhe powers
éf (sinét/coset)‘ inb(59). The superscript zero on both sides indicates
the value at pseudo-thréshola.'

In a Regge.pole model the threshold relations embodied in (36),

(39) and (LO) impose constraints on the residue functions By (t) at
o ' 3

t = (m3 T mu)g. These constraints are as important as the kinematic
singularities. Indeed, the two are different.asﬁects of the same

- kinematic phenomenon. In practice the relations at the pseudb-thresholds
are most important in peripheral processeé because of the proximity of
theée thresholds to the physical s-channel region. For the reactions

n+p —anoéf+ and K+p —>Kpéf+, the N A pseudothreshold is at

t =0.09 (GeV/c)gl Its closeness to t o, O and the degree of kinematic

singularity there'(seé (25)) demands careful attention to the constraints

contained in (39) and (40), as we shall discuss in detail in Section V B.
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B. Invariant Amplitudes for gsx' —N A

A method of incorporating the kinematic singularity structure
and the threshola relations is the use of invariant amplitudes, as was
mentioned in the Introduction. Wé examine the amplitudes for
an! 5N A within this framework in order to make comparisons with
Section III and Section IVA. The Feynman amplitude for the chhannel

reaction, N — x'A, has the general form,
-1
M = U 0 u
(20 ru(p)

where Uu(p') is the Rarita-Schwinger wave function38 for the A,
u(p) 1is a Dirac spinor for the N, and O“ is a polar vector made

39

up from the available momenta and Dirac y matrices. It is not

difficult to convince oneself that the most general structure for the

amplitude isuo

M = [—Jp,(p') [- A-l + iy (ﬂ%.i) B]] (q + q’)u

+ [ - AE + iy—(.q_;:__q_,_) Bg.] (q _ ql )H Y511(P)

where g and g’ are the LY-momenta of = and ﬂ', respectively, and

(41)

the Ai and Bi are four arbitrary scalar functions of s and +t.
The notation is chosen in analogy with xN scattering.
The t-channel amplitude is obtained from (41 ) by substituting
' ' i ‘
4 =Pp 4 =P, PPy, PPy, and u(p) »v(p,). The Jacob-

Wick helicity amplitudes are constructed by choosing definite helicites
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for N and A in the center of,momentum_frame. The reduction'is'

straightforward and yields

| Q+m2 -mg) | o7
= _@_ | - 2 4 ! ..._l. ._.____.E A
1 3500 = J 3 oty (2pp2)a; + N 2
‘ m_ + m - . 2
+ jJié 1 s 3 h ' 2 (2pp'z)2 - lEt(pp'z)2 + htpgp By
' 3 ' m P
NT P 3 .
- ) -
- \'—% 3___)4' T’N(pp'Z)Bg .
3
| \/‘ ' ' 3 ( ) T'E
. Ve | 2 g(”%"’z‘mu* PD 3
3, 3300 ~ T '[‘EAlJr \E n1'2, (2pp’z) B)
. N . 3 '
, e _ | |
1
* 3 — By (k2)
"3 ; | / ~
£ = M A, - (m, -m) (epp'z) B
2,%500 7’ LTS W g 1
2I%} N P
_ %
3 Lo Ve T
2 " NTOP

In writing (42) we have assummed that 5 and 5 have the same mass

in order to simplify somewhat the kinematics.
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The kinematic singularities established in (25) are evident in
the expressions (42). The operator structure of (41) is such that the
kinematic singularities are built in; the invariant amplitudes are then
free of such singularities. Similarly the threshold coﬁditions (36)
and'(59) are satisfied automatically. At the normal threshold only
terms in (42) involving Ay and Blv survive. The four amplitudes

are thus given in terms of two, just as in (36). The specific connec-

tions between y,, ¥, and Al’ B, at t = (m5 + mh)2 are -

2 /
hmBm A, - (3m, - m )pp’zB
LM My My 1
V3 (m3 + mh)

<
[
I

!

v o= ————
o2 21[5-.(m5 + mu)e

At the pseudothreshold, all the amplitudes are proportional to Bl and

the relations (39) are obtained.
The derivative relation (40) follows directly from the kinematic

structure in (42). That such a relation exists is evident from the fact

L

that the invariant amplitude A2 has as its coefficlent TPI ,

relative to the most singular terms. This means that near TP/ = 0,
2

the first order terms in TP' will involve only Al, Bl’ and B2

and a derivative relation will occur.

The use of invariant amplitudes has its obvious virtues in

handling the kinematic singularities and threshold relations in an
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automatic way. The only difficulty for a process involving high spins
is the establishment of a set of invariant amplitudes. This has been

3

sqlved, in principle at least, by‘Hepp,2 and Williams, and worked out
for a number of cases by Fox,2+ from the starting point of M—functionsf
A discussion of kinematic threshold constraints from the point of view
of'M—functions,bwith special reference to qxn’ _9ﬁ,A’ has been given

by Stack.hl

C. Dynamical Exceptions

The results of Sections IVA and B give a descriﬁtion of the
singularities of and relations among amplitudes resulting soleiy from
kinematics. The assumption of specific dynamical mechanisms may cause
departures from the purely kinematic results. Two reasons for such
departures are.(l) the presence of only a limited number of low J
values, and (2) the absence of some values of channel spin.

Anomalous behavior for small J values is illustrated for
e’ »N A in Table I. For J = O+, 1~ the standard singularity
behavior of Eq. (21) does not occur. If J = o" iwere_the only state
_ éontributing thevampiitude; wou;d vanish as T&I}fﬁ at the thresholds,
rather than being infinite there. For J = 1~ the amplitudes have the
standard behavior at the normal threshold, but are finite at the psuedo-
threshold rather than varying aé (TPI)-Q. Going along with the less
than standérd singularity behavior is a departure from.threshold

relations such as (36), (39). and (40). 1In general these anomalies of

the first kind will occur in dyanmical models that involve angular
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momentum states with J < (sl + 52), (s5 + sh). Fornsuch states the

minimum orbital angular momentum for each = J cannot be physically

reglized; a higher L value is necessary, with correspondingly less

singular behavior at the threshold. Threshold relations like (36)

and (39) hold only for amplitudes ?ossessing the standard singularities.
A well known model of the process s/ — N A is that of ]

vector meson exchange in perturbation theory. The V N A vertex

involves three coupling constants or vertex form factors, Gl’ G2,
39

G, .

>

amplitudes in (k1) are

A simple computation shows that for this model the invariant

g G
A = —=

m -t

v
Ag - ggGS (S - u)o

2(mV - t) (m5 + mu)“
Bl = 0
B . 2 G,

2 - 7 2
(m5 + mu)(mv - t)

Here g 1is the gx¢'V “coupling constant and m is the mass of the
vector meson. The kinematics have again been simplified by taking the

n and '/ masses equal. The notable point about these amplitudes is
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1
(42) are finite at T

that B, =0 (J =1 cannot have p = 2!). The remaining amplitudes

/
P

- 0 and the interconnection (39) does not
hold. At the normal ﬁhreshold, v, =0 in (36) and the first three

amplitudes are all proportional to one another, while the fourth vanishes,

/

as befits a situation where J =1 and L' =0 (see Table I). The

Pl
f

derivative relation (40) holds in a degenerate form with = 0

35 L.
275300

on the left and the right hand side equal to zero bécause the tilde
amplitudes (C2) vanish at the pseudothreshold.

.Fof specific couplings éven the remaining relation at the normal
threshold may disappear. The Stodolsky-Sakurai modlel,LL2 for example,
with its purely magnetic dipole coupling (no electric or longitudinal

multipoles) corresponds to

=

T m, +m

N 3 L
G = - Gy G - R — a_.
* ammg +m,) 2 ’ < "3 ) °

Now A, vanishes at the normal threshold. The helicity amplitudes are

/
N

proportional to T instead of its reciprocal and (36) becomes an
empty statement. In fact, the four amplitudes reduce to two at all

values of t:

SS ss
f110= T35 1. =0
22 3073390

(43)
ss 58
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The one independent amplitude vanishes at ﬁhe normal-thresholdiand is
finite at the pseudothreshold. The derivative relation (40) is
satisfied trivially.

The second cause of anomalous behavior, absence of one or more
values of channel spin, can Be seen from Table I, or equivalently (37)
or (k2). 1If, for example, the dynamics are suchvthat channel spin
s’ = 2 is not present i.e. Bl(s,t) = 0, the amplitudes will have less
than the standard singularity at the pseudothreshold. Conseguently,
(39) will reduce to zero equals zero. Furthermore, at the normal
threshold ¥, =0 in (36) so that the three nonzero amplitudes are
proportional. The derivative relation (40) will hold in the degenerate
form of its right hand side equal to zero. The left hand side of (40)
now actually represents the less singular amplitudes themselves, rather
than their derivatives, and its vanishing is the only relation remaining
among the three amplitudes at the pseudothreshold when B, = 0. A

1

model with B, = O identically contains the Stodolsky-Sakurai model as

1
a special case, but is considerably more general. An even less

restrictive variant is a model in which B vanishes only at the

1
pseudothreshold. All the remarks of this paragraph still apply, with
only slight modification.

The two examples Jjust discussed illustrate causes of less
singular behavior at thresholds than standard, with its consequences

of failure or modification of the threshold relations. The avoidance

of constraints such as (39) and (40) can have important consequences
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in the nearby s-channel physical region. It is well known that the

Stodolsky-Sakurai amplitudes, (43), give density matrix elements for

the A decay of the form, p, ; = '1/8, P5 q = ‘\/ 3 /8,

22 2’72
p2 , = 0. The constraint equation (38), with its equivalence to
2°2

J = 2 exchange, gives a quite different set of density matrix elements.

We discuss this point further in Section V B.
D. s-Channel Threshold Relations for sN — x/A

The singularity structure of the s-channel amplitudes an& the
relations between them at the fhresholds can be treated analogously to
the t-channel. The example of N —KY 1s given in Appendix B.5.
Because of the'preéence of spin in both initial énd final state and the
occurrence of both parity sequences it 1s convenient to use parity-
conserving amplitude526 ag8 discussed in Section II D. To avoid
confusion with the previous Seétions on the t-channel we redefine the

s s {
masses and he;lclty labels as follows: mo=H, M, o=H, e = M
m, = m/ and Mg =N M= A. The helicity amplitudes in the
S-channel are denoted by gx,.x, while the parity-conserving amplitﬁdes
2

(15) are written as F.s .Kn(s,zs). The initial and final center of
; :

mass momenta are Py and pS/, respectively. We assume V s >0,
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We need only consider the four amplitudes with helicity indices
- 1/2, -1/2 and % =1/2, 3/2. The inverse of (15) gives these

amplitudes as

1
g = == COS — +
1, 1.1
5 2 <§>§
g = 1 sin —
1 1 7 1/ , 1
22 V® ; 2

e
1 s . - +
g = == CO0S§ — sin & F + F
-‘f s 1 1
5 : 2 235 %59

P+
o+

mn—-
S

mn—J
Pl
mu—'

(k)

o+

PO
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The kinematic singularities can be read off from Egs. (26) and (28).

The results are, assuming u <m, p' <m',

: P

-+ S
F _];,L = ——"_‘—""V.s. ; ; l(s t)

55D Pgs 25
F 11 - = }. }_(s ,t)

2°D v 2%

(45)

o+ ‘ 2
F31 = 2% z;(s ®)

295 ' 25
F 2.-1- = 2 pSp él(s t)

5D L)

where the A's are all free of kinematic singularities. The amplitudes
(Lhk) can thus be written with their singularity structure exhibited

explicitly:

1 o, 1 i S |
R R PRI ool Qo W A I (k6)
2’72 - 2772 Ps 23

(4¢]
PONN
o=

n
N -

[¢]

O

[

n |:<D
0n
A

b

:>|
PORN
o=

+
o] l"d
- 1tn

-3
+

PPN
N
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(46)

2

. +
A
1 2 .
2

o+

The remaining half-angle factors appearing in (M6), as compared with
(25) for example, are a consequence of the half-integral spin in the
s-channel. The ("V?; )_l singularity in the first and third equations
is only apparent. In the discussion of Section III B, above Eg. (24),
it is noted than sin ©_ /2 oc ’J—;' near s = 0, while cos 95/2 'is
well-behaved. Thus the factor of (\[gb)_l in the second and foqrth
equations compensates for the behavior of sin 95/2. But in the first
and third the functions A  and A+ are related at s = O 1in such a
way as to remove the square root infinity, Jjust as in Eq. (B.14) for
the example of xN — KY.

Some of the threshold relations can be obtained by inspection
of (46). At both normal and pseudothresholds for the xNN channel

(pS - 0, p's 4: 0) only the A terms survive. Thus, in the

limits s = (m + u)g and ¢ = {(m - p)g,
1.1 1.1
272 22D
= (47)
cos ?5 sin ?E
2 2
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&1 %1
2°2 2’ 2 N
e, o (48)
cos _s sin s
Yy ?-, 2
o ' | 2 N
Similarly, at the thresholds, s = (m' +u)® and s=(m -/)5,
the -A+ terms dominate, and the amplitudes are related as follows:
1.1 1.1
2’2 2072 | , |
5 = - T % (49)
- cos _s sin s
2
€51 % 1
222 27 2
cos _s sin _s
2 2
The relations, (47) - (50), are akin to those obtained by Jones' T and

TruemahL_L3 fpyhvan scattering (see(B.15), They allow the creation of
linear combinations of amplitudes with more rapidly convergent asymptotic
behavior for \[g‘ - 00.

The question now arises as £Q whether there are more threshold
relations. In particular, cén the relations involving A' = 3/2,
(48) and (50), be connected to their counterparts, (47) and (L4L9), with
A = 1/2? The answer is that (L49) and (50) can be related, but (47)

and (L48) cannot. To demonstrate this we use arguments on orbital angular
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momentum. Consider the partial wave expansion (17) for F%"kﬁ‘ and a
b
Russell~Saunders expansion similar to (30) for F;Iijn. Now there
A
will be an expansion over L,3 and over L',S'. Actually, S and S'v

are fixed at S = 1/2, s = 3/2, and only one L value occurs for

each J. But L’ takes on two values. For 1

[

+1, we have

'

L=J+1/2, L =J-3/2, J+1/2, and for n =-1, L=J -1/2,

t

L' =J-1/2, J+ 3/2.

At the N thresholds (p, - O, p; + 0), evidently the
n = -1 sequence dominates because 1t has the smaller L wvalue, but
both -L’ values will be present. This means that the dependence on
initial state helicity is determined, as in (47) and (48), but the
different final sfate helicities cannot be connected. A development
parallel to that from (3%0) to (36) gives explicit demonstration éf the
fact. |

At the x'A thresholds, on the other hand, only the smallest
L' value, namely L' = J- 3/2, in the 5 = %l sequence, survives.
We now have only one L and one L' effective in the partial wave
expansion. All four helicity amplitudes are related. The derivation
of the connections is exactly as.in Section IV A, with the leading powers
in z_  of exu;i being given iﬁ Appendix A, by Egs. (A.12) and (A.13)
and the Clebsch-Gordan coefficients by (A.1k) and (A.15). .The result

is that, for s - (o & p')%,
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+ 1("“‘ _+
i1 T VI %5
2’2 2°2
or , v _ _ (51)
+ . t + .
A 11 ° V 3 (2Vs PP SZg A 51
2’2 2’2

The two relations, (49) and (50), can thus be combined:

1.1 1.1 5.1 .1
2°D 2272 022 227D
5 = - 5 = 3 cot Qs« 5 = - 3 cot © 5
CcoSs __S_ sSin _§ Ccos __S_ sin __§_
2 2 2 2
(52)
at the x'A thresholds, s = (m' + p')z.

E. Invariant Amplitudes in the s-Channel

It is by now obvious that the relations of the previous Section
will all appear automatically when the amplitudes are expressed in terms

B B, of Eq. (41). For

of the invariant amplitudes, Al,: A 17 5

2’

completeness we list the g-channel analogs of (L42), or rather, the

invariant amplitude equivalents of (45):
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-
e

IR AR VE o, A+ B W/:-(E-———lg‘>
Vs VE+u 2 1R

/

/ 2p_ E
- 1 + 1 - 25 s

F = - b + F -— -1}z -

11 3/ 3.1 ~/ 3.1 </ > s /

32 > 2% > 2 N\ ™ Py

| (53)
=0 /2 _
. i [E +m s A -3 \ﬂ; N (El - :)

VB ~\JE' + m’ m/ 1 1 2

* 2 [B _+ mf . v (Ln_'._:__>
F 3 - Pg B + m Al ! A2 * (Bl * BE) (: s 2 T:)
2 ‘ :

- o E +m m' - )
Fs1 = PsPs \/E, v e Ay = (B) + By) 6[; " ( 2 )
2’2 L - v

Inspection of these expressions shows that (a) the singularity structure

of (45) is present, and (b) the threshold relation (51) emerges as

p; - 0.
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F. General Remarks

The examples of =N — x!A and N — K Y (Appendix B) in
both the t- and g-channels illustrate the methods of determining the
kinematic threshold relations, if any, between the various helicity
amplitudes. The general pattern of how many relations exist at.a given
threshold is also evident, We summarize the general situation in a
list of comments to follow. For simplicity we will speak of the
relations between amplitudes at the thresholds in the initial state.
But the words initial and final can be interchanged. The notatidn is
that of Figure 2, with initial orbital angular momentum L .and final,
L', etc.. Unequal masses are assumed unless otherwise stated.

1. . For the initial and final states, determine the allowed
values of channel spin, S and S’.

2. For given n,'determine'the allowed values of L and L,
with the intrinsic parities appropriate to the threshold in question.
The kinematic singularities at that threshold are given by (26) with
the "mismatch" exponents found from the smallest values of I and L.

3. At the initial state threshola, consider only the minimum
L sequence. This will correspond to one of the values of 1. If the
minimum L can occur for only one value of channel spin, S, the Qarious
helicity amplitudes with definite final helicity, but different initial
helicities, are related. Examples are the g-channel amplitudes for

sl — n'A at the 5N thresholds, as shown in (47) and (48), and

! = N A at the N A pseudothreshold, as given by (38) or (39).
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', The minimum L seqguence may occur for two S values,
namely S = si + 8, and S = 8¢ + 8, - 1. Then the amplitudes with
different initial helicities (but fixed final helicity) are given in
terms of two independent functions. An example is gxx! —» N A at the
normal threshold, as shown in (36). Note that, no matter how many
different channel spins there are, no more than the largest and next to
largest contribute to fhe minimum I or L’ sequence. ﬁence the
dependence‘on threshold helicity involves no more than two undetermined
functions for each of the other helicity values.

5. For unequal masses, the final state is not at threshold when

/ . R
and S' combinations

the initial is. This means that all possible L
can occur, and while amplitudes of different initial helicity may be
related, there will be no connections for different final helicities.

An example is N — xfA at the N thresholds, (47) and (48), where
the final helicities )/ = 1/2 and A = 3/2 are unrelated.

6. If the final channel happens to have only one L', s!
combination, tnen the dependence on that helicity index is also
determined. This occurs trivially for nn’/ — N A, but less trivially
for N — x!'A at the /A thresholds, as exhibited in (52).

7. For masses such that the initial and final state thresholds
occur at the same energy the threshold behavior in both channels must be
considered simultaneously. This normally occurs only if the particles

are the same in the initial and final states. Roughly speaking, one

then gets the sqnare of the formulas discussed here. For example, in
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the t-channel process, N A — N A (corresponding to- §p —-:A A in the
i—channel),_the relatiop between the various helicity amplitudes at the
N & (=N A) threshold has the appearance_bf (58),_but with another
Clebsch-Gordan coefficient for the initial state helicities and dxue’
instead of dOpz‘ In #«N - = N, the merging of the thresholds gives
(B15) as the relation at the normal and pseudothresholds.
| 8. To'determine the nonsderivative'threshold relations
explicitly, consider the partial wave.expansion (17) with the i
giveh by keeping oniy the 1owest allowed L or L' value in the
_ Russell-Saunders expansibﬁ. Then use the leading powers of z in'

A
Gordan coefficients <§ee (A1k) and (Al5)) to separate the sum over J

e uJi <?iven by (Alg) and (AlB)) in combination with the Clebsch-

values from_the helicities and a possible sum over channel spin.

9. The existence of derivative relations can be established
by considering how the higher L values enter successively in an
expansion of the amplitude in powers of Tg. There ére as many Russell-
Saunders combinations of (L,S) and (L’,S,) for each J as there
are independent helicity amplitudes. Thé non-derivative relations
éccur‘because not all (L,S). combinations contribute to zeroth order
in Te. For each higher power of T? more I values cohtribute.

But if not all possible values of (L,S) occur, there will be as many
relations among the successive'derivatives of the amplitﬁdés as there
are non-contributing (L,8) combinations at each stage. Eventuaily,

of course, all (L,8) values will enter and no further relations can
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emerge. Eq. (40) is an example of a first derivative relation for
an?’ - N A at the N A pseudothreshold. Its derivation is given

in Appendix C.
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V. CROSS SECTIONS AND DECAY DENSITY MATRICES

The t-channel kinematic singularities and the associated
threshold relations among amplitudes have an important4inflﬁence on the
structure of the differential cross section and decay density matrices
for peripheral processes in the s-channel. For the s-channel process,
a +b - c¢ +d, the differential cross section is

1 - | 2

do - = g (54)

dt 6hnsp82 (23a + l)(2sb +1) MePgitaMy

where g are the s-channel helicity amplitudes.gu The

chdsxaxb

orthogonality of the crossing matrix for heliéity amplitudes allows
the replacement in (54),

| 2

o
—_— :
e ) \ f= = (55)
1 MeradtaM Z g P
N

A

where:- f are the t-channel amplitudes. Now the s-channel

xcxa;kdxb
cross section is expressed directly in terms of the sum of the absolute
squares of the anlaytic continuations of the t-channel helicity

7,4k

amplitudes. Similarly, the decay density matrix of one of the

outgoing particles in the s-channel, say c, takes the form,
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| (c) i Z . B % - ] .
Com/ = mea 37 Lo XMoo MM (56)
Xﬁ;ﬁkb

provided the quantization axis is chosen as the momentum transfer
direction in the rest frame of g.uu The direct use of t-channel
amplitudes has obvious advantages in the treatment o?ﬁeripheral
processes.
A. Absence of t-Channel Kinematic Singularities
in the Cross Section

The first obvious requirement in using t-channel amplitudes is
to incorporate the proper kinematic singularity structure, as given by
(26) and (28). This is done automatically in perturbation theory or
with the use of invariant amplitudes. But in Regge pole models with
helicity amplitudes the requirements must be consciously imposed.
The résultiﬁg cross section expressions contain explicit pole-like
factors of the form, [t - (ma + mc)gl'l. From (25) it is clear that
the phenomenological expression fbr the differential cross section

for aN — /A will have the form,

do

B 1
Ty ) - el my - mp® - 6]

S(s,t) (57)

where 8(s,t) is well-behaved in t. A collection of Regge pole

formulas for a large class of reactions, showing explicit kinematic
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singularities of this type, have been given by Wang,‘l2 and have Been
used by some authorslj’llL in empirical fits to experimehtal data.
Similarly the standard formulas used to describe high energy pion-
nucleon charge exchangehs have an overall t-channel kinematic singu-
larity factor, (l+m2 - t)fl. A singulérity like (hm2 - t)_l- is
so far away from the s-channel physical region that its presence or
absence is of no pfactical consequence., But for processes like
2 - /A the factors exhibited in (57) almost completely determine
the t-dependence at small t.

The presence of these t-channel kinematic singularities in the
physical cross section for the E:channel'is not consistent with the
known singulérity structure of the §;channel amplitudes. This ppint

15 16

has been stressed by Lin, with emphasis on  t = 0, and by Stack.

Consider the expression (54) for the differential cross section. The’

S-channel amplitudes gx possess g-channel kinematic singularities
2 2 ' . . .

at s = (ma + mb) s, (m, % md) and singularities in t on the

I
9

but do not have singularities at the
2
)

boundary of the physical region,

t-channel thresholds, t = (ma +m

2
tm), (mb + md) . Thus the cross

section (54) cannot possess the pole-like factors in t shown in (57)
and all of the formulas of Ref. 12. The only E:channél singularities
allowed in fgxfg are dynamic ones, forvexample poles corresponding
to exchanged particles, whose locations do notvdepend on the external

masses.
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The puzzle or inconsistency here can be phrased as follows:
The g, have no chhannel kinematic singularities; the fx do have
them. Is the replacement (55) allowed, and if it is, how can we avoid
obtaining a cross section possessing the impermissible pole-like factors,
as in (57)? The first part of the question has a positive answer.
The equality of the left hand and right hand sides of (55) is assured
by the fact thaf the crossing matrix is a real orthogonal matrix in
the physical s-channel. Thus, as long as we stay in the physical
region of s, the use of (55) is allowed. But, as emphasized by Lin,15
the equality of the two sides of (55) does not hold outside the physical
region where the crossing angles become complex and have singularities.
In particular, near the t-channel thresholds the right hand side of
(55) has the singularities discussed in Section III, but the left hand
side is well-behaved. The second part of the question, how to avoid
obtaining expressions like (57), has a subtler answer. We have seen
in Section IV that when amplitudes have kinematic singularities there
are always accompanying threshold relationé among the amplitudes of
different helicity. The explicit satisfaction of these threshold
constraints among the fk will always elminiate the kinematic

singularities from the right hand side of (55), when it is evaluated

in the physical region of s. When the sum of the absolute squares

of the fx is computed in the unphysical region, it will contain, of
course, the threshold kinematic singularities since each t-channel
amplitude possesses them and no cancellation can occur in a sum of

absolute squares.
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To see how the singularities are cancelled in the physical
region in the g-channel, but not for positive t, we discuss the some-
what acadeﬁic excample of pion-nucleon charge exchange where the -
amplitudes are singular as (t - Mmg)—% at the normal N N threshold.
This singularity is not important at small t, but the principle
involved in its removal from thé cross section is the same as for more
pracfical examples such as‘ 7N — 15 A, and the details:are simpler.

We use. the Regge pole model with the exéﬁange of é p-mesdn trajectory
és the'framework, although thé method hés ﬁider applicability. The
kinematic singularities and threshold relations for sx — N N are
treated in Appendix B. The two t-channel amplitudés are given by

(BE). With the standard Regge pole assumptions (see Appendix D), the
amplitudes can be written as |

(t
£ = __-Y_l._)__R(S,t-)

++300 \\ﬁjj‘zgz

alt)r () (Yt sine,

_.v‘vv.: b R(S’t)
+=-300 ’[;':.ng 2m cosGJC : ‘

f

where R(s,t) is the usual‘Regge pole amplitude for spinless particles,
(DB), ‘a(t) is the p-meson trajectory, and Yi(t) is a reduced
residue function, frée of all Riﬁematic singularitieé; In forming the
'Oé care must be taken in the interpretafion

b

of (WV;. sinet/coset). As mentioned below (39), it is given meaning

absolute square of f
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through the expression ( Vi; sinet/coset) = Z‘Vw /(s - u). According

to (54) and (55) the differential cross section is

2
t) 1 : 2 t 2 2
o o RGOE . 1120 - 5 Pole)]| 69)
6Mﬁsps hm® - ¢ Lm
In writing (59) it has been assumed that t < 0, that a(t), Yl(t) and
Yg(t) are real, and that ]cos@tl ~ lsingt[ >> 1. This is the

- b
standard Regge pcle formula of HOhler 2

and others. Ty and Y, are
assumed to be arbitrary empirical functions of t, to be determined by
v fitting the data. |

But we know that Ty and Y, are not completely arbitraryf
The amplitudes must satisfy (B5) at t = bm®. In terms of the residue

functions this requirement is

ol £)r,(t)

_ = 6
"71—(-{} . 1 _ (60)

t=Lm

-1

To see how this condition removes the pole-like factor, (hm? -t) ,

in (59) we write, for arbitrary t,
2
oAt)ry(t) = ry(t) + e.(t)ﬁ*f—;—ﬁ (61)
o .

where £(t) is not infinite at t = hma, and is well-behaved and real

s
for t < Um~. The threshold condition (60) is now satisfied, but the
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cross section still involves two arbitrary residue functibns, Yi(t)_

and £(t). Substitution of (61) into (59) yields

2
dt ,6hnsp82 hm® l. Lm

o Bevl o L2l b zrlg+g2<1-ﬁ>> (62)
m

We note that the threshold Singularity has been cancelled out by the
imposition_of the threshold constraint (60). The crossvsectioﬁ has
the proper behavior in t, as required by (54).

| There only remains one further remérk. In the unphysical
region where t > 0, the sum of the absolute squares of the amplitudes
(58) is proportional to the square bracket in (59), but with a plus
sign between the two terms. Then substitutién of (61) does not result
in a common factor of (hm2 - t); the right hand side of (55) now
possesses the known kinematié singularity. The discontinuous behavior
as the line t =0 is cfossed is not surprising. The absolute squares

of analytic functions need not be analytic.
B. Cross Section and Decay Correlations for N = A

The example of charge exchange scattering is not very exciting
because the normal N N threshold is so far away from the region of
interest. Empirical fitting with (59) or (62) wiil'lead to substantially
the same results, even though (59) is incorrect in principle. But for
our favorite reaction, =N — np, the differences between the formulas

13

12
of Wang, as used by Krammer and Maor, and the correct expressions
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are enormous. The N A pseudothreshold is at t = O.O9(GeV/c)2.
Thus the cross section formula (57) appears to have a dynamic pole
corresponding to the exchange of a particle of mass 300 Mev, far lighter
than the p-meson presumed to be the dominant exchange. This sharply
peaked factor governs the small t Dbehavior and requires a zero in
the function 8S(s,t) between 1t =0.09 and the physical region,
t <0, in order to fit the experimental data.

The threshold relations, (36), (39), and (40), are required in
order to remove the spurious t-channel pole-like factors from (57).
Within a Regge pole framework we write the E;channel‘amplitudes as

(see‘Appendix D)

1 al \[; sin@t
£ . - : v, , (t){ ————= |} - R(s,t)
XBXM’OO TN’TP/ (o - u)! XBKH M cos@t ’
(63)

where pu = xB = Ay and M is a mass parameter inserted to make all
the residues have the same dimensions. It is conveniently chosen to
be the pseudothreshold mass, M = m3 -om,. The threshold conditions

then become relations among the residue functions at t = (m, + mu)g.

)
To demonstrate the cancellation of the singularities it is necessary
to parametrize the residue functions so that the threshold relations

are exhibited explicitly. For relations at both thresholds, but no

derivative relations, an obvious parametrization is
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t - (mz - m,+)2 - (m3 + mu)2

um3mh - px(t) LLmBm)1L

v () = n (1)

Then the residues at the normal threshold are ﬁx(t) and at the
pseudothreshold are px(t). The various relations are then demanded
of nx and px, respectiﬁely; Away from the thresholds, nx and
pk are, of course, arbitiary. But in practice, a smooth functional
'dependence can be assumed. In verifyiﬁg the cancellgtion of the
kineﬁatic'singularities ih the c?oss section it is sufficient to
assu@e nx and -px' are constants. Functional dependence on t can
then be envisioned in terms of Taylor series expansiohs around the
respective thresholds.

if there'afe relations among derivatives, as wéll as the
amplitudes, obvious generélizations to the paresefrization are
necessary, with attendant complications in the algebra. For the
examﬁle of aN —» gxA we will simplify matters by ignoring the normal
T A thresh_o’,_l_'d,_at = h.72 (GeV/c)g. Then the conditions (39) and
(MO) at the N A pseudothreshold can be satisfied by a parametrization

of the form,
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(64)
_ t -t
73 = a ri 1 = a + b5 ——E——E
27 P
t -t
T, = ala - 1))r2 1 = & * by ————Et
272 P
where the derivative relation, (40), requires
e (b +D,) - (b5 +D) = a (65)

at t =1t = (m
P (‘5

(65) at t :'tp, the well-behaved functions a(t), bl(t), bg(t), bj(t),

- mu)2 = 0.09 (GeV/c)gL_ Apart from the condition

bh<t)’ are arbitrary, in the absence of dynamical information. But it
is reasonable to hope that they are relatively slowly varying in t,
at least for physical t values in the range, |t| :i}tp.

One simple, plausible choice for the residues follows from the
presence of a factor of aft) in Tor 73 and 7), 1in (64): With the

assumption of a linear trajectory, the parameters a and bi are

chosen as constants, and the residues ?2, ?5 and TA are made
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proportional to a(t). This fixes o, b5 and b) relaﬁive to» a. Then

the: slope parameter b, is determined by the derivative rélation, (65).

Assuming that the p-meson trajéctory vanishes at t 30.6‘(GeV/c)2, the

non-flip residue function ?i(t) goes from _+1/ET (in somé units) at

& = 0.09, to zero at t = 0.1, and down to -k.5 at +t = -0.6, while

the other three residues ?2,'?3; and'?h change from -1/5', +1, and

-1, respectively, to zero in the same intervai of t. | |
The density matrix deséribing ﬁhe decay of the A can be

written, apart from a very small region of t at QS ~ OO, as

2
_ 2 A2
232 . p
.
Y. S G G
= % : T L .
3% G @)

where N
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and A? = -t. In writing (66) it has been assumed that the residues
are real and that all the amplitudes have the same phase. The linear
residues Oflthe previous paragraph lead to tﬂe density métrix‘elements
shown in Figure L. Upon’comparison with experiment we find that thése
predictions are almost as far from the facts as they could be. The
data on x'p 50T et 3.5k GevV/c,LL6 4.0 GeV/c,u7 and 8.0 GeV/cu8
are all more or less in agreement with the Stodolsky;Sakurai model

predictionsug of o = 0.375, = \/;78 = 0.217, and

3 )
2

F3
2

MR
N [=

3

Pz = 0, shown as dashed lines in Fig. L. The most disagreeable
222

feature of the results shown in Fig. 4 is the negative value of p2 1

2272
This can be blamed in large measure on the ratio ?5/?2 = -1/V3

at t = tp, in contrast to the magnetic dipole model's ratio of +1/5,
as given in Eq. (43). Other simple choices for the residue functions,

e.g., making ?é constant, allowing only linear behavior for ?1 and.

Y3, and imposing the magnetic dipole coupling, (43), at t = mpg, give
results qualitatively similar to those shown in Fig. L4, with

<0 and p > 0 and of the same order of magnitude. The

)
» 2

R0} N o
PO
PO

S -
situation can be remedied within the framework of (64) with a 4 O,
of course, by choosing sufficiently rapidly varying functions, a(t)

and bi(t). But the threshold constraints at t = tp are a severe

hindrance, rather than a help, in obtaining a fit to experiment.
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Therexperimental'data'on n+p —anOA++ imply that the dynamics
a?e such that the threshold éonstraints are not applicable, as discussed
in Secfion IV C. If the ampliﬁﬁdes are finite at t = tp’ rather than
behaving as (t - tp)_l, i.e., a =‘O in (64), then the only relation
among the rééidues'is (65) with the right hand side equal to zero.
Cleafly there is now a tremendous amount of fregdom,'even with
relati&ely élowly varying residue functions. The choice, ?1 =0 = ?L,

and ?i(f) = 1/3— ?é(t) of .the magnetic dipole coupling mddel, is one -

of the possibilities that seems consistent with the'decay_corrélation
data. The differential cross sections at 3.54 and L.0 GeV/c give

further evidence of something close to the Stodolsky-Sakurai coupling.
.They show a dip in the forward direction consistent with a small Qalue

of the non-flip amplitude, fl 17 and also are consistent with a

22
dip in the cross section at t ~ -0.6 GeV/c, as expected from the

factors of a(t) in Y, and T, .

5 The 8 GeV/c data seem to show

departures from the ML coupling model, but still imply less than the
standard singularity behavior at t = tp. The density matrix elements

gquoted by Krammer and Maor15 have a t-dependence that indicates the

13

presence of £ . The differential cross section Shape is consistent

o=
=

with this, having a definitely non-zero value in the forward direction.
In spite of these differences from the lower energy data (differences

that may be hard to explain within the Regge pole model), the
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8 GeV/c results are far from agreeing with the curves shown in Fig. L,
Thus all the experimental daﬁa Support thé idea that the jfchénnel
dynamics aré such that the pseudothreshold constraints, (39), are
circum.ventedlL9 by having less than standard singularity behavior.
Within the framework of the Regge pole model, the only alternative is to
have what séem to be unreasonably violent_ﬁ;dependences of the residue
functions.

Independently of whether or not the dynamics chooses to make
empty the threshold relations, the cross section formulas used to méke
empirical fits.to the data must be free of the pole~type singularities
of (57). The work of Krammer and Maor on =N —anAlB and KN —>KA?O,
and of Krammer on N —enA?l must be reconsidered. Because of the
experimental density matrix elements for al; these réactions,'they were
led to empirical residues of roughly the ML variety for both the
p and A, trajectories. But the t-dependence of their residues and
the fits to the differential cross sections are in error because of the

use of Wangfs»formulas.la

C. Other Reactions

The generél behavior discussed in Sections A and B holds true
for other reactions as well. An example of interest is. the process,
7N — pA, discussed by Frautschi and Jones;l)‘L with a Regge pole model of
pion exchange. The thresholds of most significance are the 5

. o
threshold at t ~ 0.38 (GeV/c)® and the NA pseudothreshold at
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t = 0.09 (GeV/c)g. for natural paritj eXéhanges (n = +1) the thresh-
hold kinematic singularities are thé same as for N —}HA. For pion
.exchange and otﬁérs with 7 = -1, the threshold singulérities are
(TNTPTNIQTP/)-l, where ﬁrimes refer to the NA chaﬁnei. Frautschi
and Jones. keep only the non-flip amplitude near t = O, But have the
kinemaﬁic éingularify factors in the cross sec£ion.‘ In order to fit
the. data they are forded to have the fesidue Qf their one aﬁplitudei
vanishAbetween the physical region of t £0 and t = 0.09 (GeV/c)?,.
LeBellac52 has used this empirical vanishing of the non-flip residue
fuhcfion near f = 0 as a supporting link in a chain of.argﬁment
concerning conspirac& and the pion tréjectory.

| Two obvious remarks can bé made. jhe.first is that the zero
in the residﬁe found necessary by Frautschi and Jones is much less
necessary when the t-channel kinematic singularity factors are omitted
from thé cross sectidn formula. The kinematic singularity factor in
the Frautschi-Jones cross section decreases by a factor of iO from the
pion pole, t =°0.02 (GeV/c)2 to t = -0.2 (GeV/c)e. The second
remark is that the interpretation of the t-dependence of the cross
section for a process like nlN —pA at small (-t) values demands
considerable care becauée of the finite WidtthOf the p-meson and the
A (1256) resonance. This has bee illustrated by WOlf‘53 in his
discﬁssion of the energy and t-dependence of this reaction. If the
events are plottéd versus cos GS instead of t, or equivalently’

versus (t—tmin), where t . =~ is the maximum kinematically allowed
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value of t for each event, there is little or no evidence of a
turn-over in the cross section.at small t values.

The above example illustrates the dangers of cavalier applica-
tion of Regge pole formulas with the correct kinematic singularities
included, but without attention being paid to the threshold relations
among the amplitudes. 1In guestions of conspiracy and the detailed
behavior of cross sections at small t values it is essential to handle
all aspects of the nearby t-channel tﬁreshplds correctly. Otherwise,

erroneous inferences may be drawn about presumed dynamics.
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VI. SUMMARY AND CONCLUSIONS
The analytic structure of helicity amplitudes for two-body -
processes>near kinematic thresholds has been discussed without fecourse
to the'crossing matrix. The tools are those of nonrelativistic quantum
méchanics, e.g. channel spin g and.RusselFSaunders coupling of

L + 8 = 3, as befits a situation where p — 0, with the standard
partial wave threshold behavior, (20). The kinematic singularities of
the helicity amplitudes are shown to follow from a mismatch between -
J and L for each term in the partial wave series. There can be no
guestion about the applicability of these methods, including use of
(20), at the normal thresholds in each channel. The behavior of the
amplitudes at pseudothresholds can also be discussed within this frame-
work, provided changes are made in the formal assignments of parities
and phase factoré, as described in Section II E. Implicit here are
the assumptions of Lorentz invariance and analyticity, in common with
the approaches using the crossing matrix. The general result for the
kinematic sungularity structure is contained in Egs. (26) and (28).

Going along with the singularities of the helicity amplitudes
at the normal and pseudothresholds are relations amdng the amplitudes
and perhaps their derivatives with respect to the channel energy. These
relations can be understood as oécurring because only the lowest L
value for each J survives at threshold; the Russell-Saunders amplitudes

corresponding to higher L wvalues vanish as higher powers of the

momentum. If the number of Russeil-Saunders amplitudes contributing at
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threshold for each J 1is less thén the number of independent helicity
amplitudes, there will be relations among the helicity amplitudes there.
Similarly, if, to first order in the energy above threshold (i.e., to
next order in pg), there are still more helicityvamplitudes than there
are different Russell~Saunders amplitudes, there will be relations among
the first derivatives, and so on. The explicit construction of the
relations among the amplitudes for N — x'A in the t- and s-channels
is presented in Sections IVA and IVD, respectively. The simpler process,
aN —» KY, is treated in Appendix B.

For comparison, the helicity ampiitudes are expressed in terms
of invariant amplitudes and it is shown that their use automatically
incorporates both the kinematic singularity structure and ﬁhe accompanying
relations among the amplitudes at the thresholds, only provided we assume
that the invariant amplitudes have nothing but dynamic singularities.
The use of invariant amplitudes for both s- and t-channel process is
illustrated for N —KY and N - x'A.

An important aspect of the threshold relations is the possibility
of dynamical exceptions. 'For dynamical reasons the amplitﬁdes may
be less singular at one or more thresholds than expected from the
standard formulas, (26) and (28). Absence of one or more values of
channel spin is one reason for such behavior. 1In perturbation theory
the limitation of J values to less than the maximum channel spin is
another (see Section IV C). 1In such circumstances, the threshold

relations among the amplitudes reduce to zero equals zero, while
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relations among the derivatives may or may not exist in modified form,
'dependiﬁg on the degree of departure from the standard singularity
behavior aﬁd other details. The reaction =l — nA is an example‘of

a process which very likely avoids the imposition of threshold

relations on its amplitudes at the NA pseudothreshold,

t = 0.09 (GeV/c)g. This is discussed in detail in Sections IV C and V B.

The use of t-channel helicity amplitudes in the expression for

the s-channel cross section is standard in all models of pgripherai
processes at high energies for obvious reasons. The replacement; (55),
is justified in the physical s~-channel by the'orthngnality of the
crossing matrix.6’7 Since the t-channel helicity amplitudes in general
possess kinematic singularities of the inverse square root type at
t-channel thresholds which may lie close to the physical S-channel, one
is led to explicit exhibition of such kinematic factors in the s-channel

12,13,14

differential cross section. On general grounds it is known that

such t-channel kinematic factors cannot occur in the s-channel cross

section.l5’l6_

Explicit satisfaction of the various threshold relations
among the amplitudes is sufficient to cancel all the t-channel pole-
like factors, provided the variables (s,t) 1lie in the physical region

On with Regge

of the s-channel. The academic example of n™P — =
pole exchange is discussed in Section V A to illustrate this point.
The more significant reaction, N — 54, with‘its highly singular

behavior at the NA pseudothreshold, is treated in detail in Section V B

with special emphasis on the density matrix of the A. Tt is shown
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that the requirements on the amplitudes at the pseudothreshold, while
removing the spurious second order pole at t = 0.09 (G—eV/c)2 in the
cross section, . tend to give decay correlations of the A in sharp
disagreement with experiment. Apart from the possibiiity of unpalatably
rapid variations in t for the residue functions, experiment thus
indicates that the amplitudes for this process aré less singular than
expected at the thresholds. ‘This, of coursé, is another way of
eliminating the t-channel pole-like factors in the s-channel cross
section. It leaves only one relation among the four helicity ampiitudes
at the WNA pseudothreshold and encompasses a large class of models,
including the magnetic dipole coupling which gives decay correlations
vmore or less in agreement with existing data.

The resuifs obtained concerning the kinematic singulérities of
two-body helicity amplitudes are not new. But it is believed that the
derivation of the singularity structure at threshold by means of
nonrelativistic quantum mechanical principles appropriate to that
threshold, and without recourse to the cfossing matrix, is simpler

and more transparent than the other methods,8;9;lo,ll a

s well as being
an aid to the physical Understanding of these singularities. Similarly,
the existence of relations among the different helicity amplitudes at

thresholds has been discussed by others.lo’l7’l8

But again, the same
framework of nonrelativistic quantum theory yields in a sﬁraightforward
way the threshold relations without resort to elaborate relativistic

formalism. The two most important points for applications, at least,
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are (1) the non-existence of kinematic singularity factors in the cross
sections, a result that cén be assured providéd the threshold relations
are imposed in the parametrization of any model, and (2) the possibility
of avoidance of the requirements at a threshéld.by means of some
dynamical mechanism which lowefs the degree of the singularity.

One apparent lesson from this work is that helicity amplitudes
are a bad representation, with_many peculiarities and subtleties which
must be looked after with great care. The use of invariant amplitudes
or M-functions, with the kinematic structure all exhibited explicitly,
offers a more painless approach. But for high spins, invariant
amplitudes and their attendant‘kinematics are not easy to construct.
Furthermore, they do not have simple angular momentum and parity
properties. Helicity amplitudes will, in all probability, continue to
be used because of their elegant angular momentum properties and their

general applicability to arbitrary spins.
ACKNOWLEDGMENTS

The authors wish to thank Dr. J. D. Stack for discussion during
the early stages of this research and for emphasizing that t-channel
pole-like factors in s-channel cross sections were not permissible Just

because they lay outside the physical region.



UCRL-17959
-71-

APPENDIX A

The Wigner d-functions can be written in the following form:

NN TR . ) .
(sin-g-) Q:o s9> N (J S
> E .
- - L)
DR

&’ (e) = -
A T+ W@ -+ 0N -
=0
(An)
. e
y LI+ o+ o)l (g - x)! (z - 1)
(b = n +a)f \ 2 J
where 2z = éosg and we have assumed J,u >0 and )\ £ p. Other
possibilities for » and . can be obtained from the symmetries of
the d-functions (see Ref. 5, for example). The leading term (highest
power of z) is
oV vt d-
3 (sin@)u(cot-g—) (EJ)! z° M
a’, (e) ~ (A2)
& VG i - W@+ 0l - )

In the Russell-Saunders expansions (32) and (37) there
occur the angular momentum Clebsch-Gordan coefficients,<:L SOupu 1 J u> s
with special values L = J -1, S=1,2,and L=J -2, S =2. The
coefficients are particular examples of (ia bap l(a + b)t>

and aboasp [(a +b - l)%::>, given explicitly by Brink and Satchler.sh

The three values needed in Section IVA are

1 (7 + Wi - w)/! .
! ! ! (A )

< - - -
S mronlze - (7 - D! Vs(es - ) V@ + I -0 ’
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| . v N 7_ “2-.1.!“"‘ J'l!J- !_.
<J -1) 20 pulJ u> =1 ?“g)} V[(éJJ+ 2?%23),/ %2 : L;.’EE - ﬁg7

(AL)
1 ~(eg - h)lu“wvl 7+ Wi - Wl
-2 \ =
o -220ul8 > - 5= e), )} %‘_%Wri%‘e e my
2 (A5)
The combinations of the leading term (A2) of dJ%u(gt) and
the various Clebsch-Gordan coefficients are conveniently written in
the form,
,, N LT J-1 L
<:i?J -1)10 u!JlB,/’d Ou(gt) = a (J)z Op(gt) v (A6)
17 - j:> J ~ J-2.2
< -v20pulru>a, (6,) = way()z77a (o) (a7)
~ .
_ ~N & _ J-2.2
<(g m2) 20 uls > @) - vy EE 6y) (48)

Note that Eqs. (A6), (A7), and (A8) hold only for the highest power
of z, namely ZJ-“, on both sides of each equation. The exhibition of
dSOp(et)’ rather than powers of 2z, serves two purposes; One is to
remind the reader that a particular channel spin 8 1is involved and

the other is to show that‘all the nontriviél dependénce on the helicity

index p is isolated in this d-function that is independent of J.

The coefficients in (A6) - (A8) are
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=73
(2J)! '
J) = ] A9)
(7 iz - 1) N(er - 1) , (
- o2V(2s - 3)!(23)! -
J ‘ (A10)
*(7) il - 2 Va3 + 1)
2 Mg - W)t |
b, (3) = 2\/3 I ol | (A11)
The specific form of al(J), ag(J) and bE(J) are of no real concern,

but it is perhaps worthwhile to note that their asymptotic forms for

large J are 25// 2¢J  times 1, -l/"V%v and 1/’J§: respectively.

For the general problem with nonvanishing helicities in the

initial and final states the coefficients of highest powers of 2z in

e)th(z) are needed. From the definitions in Reference 26 they are
|

found to be, with the same restrictions on ), p as in (A2),

T+ (25) 277 ‘1
e. “(z) = 2 1 +0 (=
A EJW/(J + “)!(J - u)!(J + X)!(J - k)! [; ' (zg)

(a12)

(A13)

The m dependence of the Clebsch-Gordan coefficients

(L 8 0m|J m) needed in the general case ig”
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((J_- S)s Om|J m) = \/gg 1‘ zg',gg - E)!' a(Jd,s)

((3 -8 +1)8 OmpIm} = mdégifgfg -r%l v(J,8S)

((0-8+2)s0m|dm = [%(J +1) - mg(gJ_- 28 + 5ﬂ
. (J + m)(J ~m)/

5+ mIis - w)/

Evidently the combination of (A1k) or (A15) with (Al2) allows the

(A1k)

(A15)

(416)

c(J,8)

J

dependence to be factored from the X\ or p dependence, as required

in the development from (32) to (35), for example.
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APPENDIX B

In this appendix we consider the relatively simple process of
0 + 1+ 507 + *. In order to maintain the most general kinematics
the s~-channel reaction will be called N —KY. But =« -N or K - N

elastic scattering can be obtained by considering the appropriate limits.

For convenience in writing formulas the simplified notation, m = p',

m, =, m, = m', m, = m, is used where the ordering corresponds to the

2 >

t-channel process, Kn — YN.
1. t-Channel Kinematic Singularities

'The channel spins are S8 =0 and s - 0,1 for the initial
and final states. There are thus no kinematic singularities at the
Kx thresholds. Table IT shows th?éllowed orbital angular momenta at the
YN normal and pseudo-thresholds for successive J values. For J > O,
the minimum L' value is seen to be T/ = J-1 (8 =1 only) at
the normal threshold, and 1L’ = J (both s/ - 0,1) at the pseudo-
threshold. The kinematic singularity at the normal threshold is
(see Egs. (20), (21), or (26)) (T’N)_l. There is no kinematic singularity
at the pseudothreshold. The helicity amplitudes can therefore be

written as

L AN S (51)
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in analogy to (25), with A% )(s,t) free of all kinematic singularities.

Explicitly, we have

A*, (s,t)

£ .. = ;

++300 Vi - (m+ m’ié

(B2)
o, /a4
. ) 2 {%‘pp sm.@t At (s.6)
LY = A5
=300 Vi - (m + nye

Note that the first (second) helicity index is for Y(IV).
2. t-Channel Threshold Constraints

At threshold the two amplitudes f++;OO and f+-;OO are
related. First consider the normal threshold. From Table II we
see that only channel spin S/ = 1 1s present and that v =J + 1.
The Russell-Saunders decomposition, (30), of the partial wave amplitude

thus has two terms. But at threshold only the lowest L/ value gives

a nonvahishing contribution to A)IK. Furthermore, the analog of

(31) is

g -1,8" =21) - (T’N)J'l(T i

/
PTNTP

This means that at threshold the helicity amplitude (Bl) has the partial

wave expansion,

.
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/ - ~ J J
v/ £y = 3 - xlle; (7 + 2)F,° (4tpp”)” -
N X A300 vy N
L.
J
(B3)

A J
-0 wlawy & (o

Op. t)

Use of Eq. (A6) gives an equation similar to (34). Within the region
of convergence of the partial wave sum ( a finite segment of the line
AB in Figure 3), the result is

/

Y _ /‘i,l_/ -2
v/ g0 = W8Iz -

T 1> (bt )a g (8,) (B4)

where (s) is the sum over J. In terms of the At>;x(s,t) in
\

Iy

(B2) +this threshold condition becomes

t
A (s,1)

t
A%, (s,t)

t = (m +,m’)2 (55)

- (m.p,’2 + mfug)
At the pseudothreshold we see from Tgble II thét both
s ~0and 8 =1 contribute. This means that instead of (B3)
there will be an expansion involving two terms for each J, one for
each 8’ value. Use of counterparts of (A6) and (A7) and
summation of the resulting J series leads to an expression like

(33), involving two independent functions of s. Since there are only
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two distinct helicity.amplitudes to begin with, there are novrelations
at the pseudothreshold. _

The structure exhibited in (B2), plus the threshold relation
(B5), is tﬁus a complete specification of the'restriqtions'imposed

on the t-channel helicity amplitudes by kinematics alone. .
3. Description in Terms of Invariant Amplitudes

The familiar description in terms of invariant amplitudes
A, B automatically displays the kinematic singularities and fhreshold
constraints. For thé s-channel process, N — KY, the Feynman amplitude

is

™

Moo= oG, (o) L- A+i Y'<'q—‘2+"('1‘f')}£l u, (p) - (B6)

where qu(qlu) is the b-momentum of x(K) and u(p)(u(p’)) is the

Dirac spinor for N(Y). The t-channel amplitude is
.3 v (2o d } -
M = s (pl)g._A+1yo< 5 )B‘Vx(p) (B7)
where now iu(ﬁu) is the L-momentum of X(N). The negative-energy
; . N _
spinor is conveniently written as vk(p) = (-l)%—2rru >(p), where
. )"‘

A is the helicity of T and Ys =<_(I) '2)), with I being the 2 x 2
unit matrix. | A

The Jacob=Wick helicity amplitudes are obtained by evaluating
(B6) or (B7) in the center-éf—momentum frame. For the t-channel

straightforward manipulation leads to the expression (Bl) with
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A++t and A.+_t given by
A K .— : -km + m’)2 - A‘ + LE_iJE:Z [“s -u+ ( e 2) Q:;:__—— B
++ - l— , 2 ‘L W H (m’4—é>
(B8)
A.+_t = B

We see by inspection that A++t and A+_t are free of all but dynamical
singularities if A and B are. Hence the kinematic singularity of

fhe helicity amplitudes at the normal threshold is automatically incor-
porated in the forms (B6) and (B7). Similarly we note that at the
normal threshold the coefficient of A in A++t vanishes. Both-

helicity amplitudes become proportional to B, with their ratio given

by (B5). The threshold relation is satisfied automatically, too.
4. Dynamical Exceptions.

The singularities and relations at ﬁhresholds hold in éeneral
merely because of kinematics. But simple enough dynamics may give
rise to exceptions. As an illustration, suppose that in the t-channel
only the J =1 state occurs, or more correctly, that a vector meson

(V) exchange is evaluated in perturbation theory. The invariant amplitudes

in this case are

r / ,2 o -]
A - & ¢ Wl -m@’ -p7) . (u-s) |
2 \i 2 T »
m < -t _ n’+m l
v i v B
(B9)
2g(G_ + G.) .
B = v 1
m 2 t



. UCRL~17959
-80-

where GV GT are the Dirac and Pauli coupling constants at the

V.Y N vertex, g is the K x V coupling constant and m, is

the mass of the vector meson. For arbitrary GV and GT ‘the helicity

amplitudes have the standard kinematic singularity and relation at
threshold. But if GT = = GV the B amplitude is zero. Then
f vanishes identically and £ vanishes as 7! at threshold.

+~300 ++300 N
This is an example of an exceptidn to the restrictions of (Bl) and
(B5). 1In general, if the amplitudeé are less singular than the require-
ments of kinematics imply,vconstraint equations such as (85) do not
_ apply. The threshold constraints hold for the most singular parts of

the amplitudes, i.e. for the nonvanishing parts of the A (s,t) _

Mgy 3y o

in (26). Another example, where the helicity amplitudes themselves
do not vanish at threshold, is afforded by vector meson exchange in

7N »w'2a (see Section IV C).
5. s-Channel Kinematic Singularities

The s-channel reaction, -N - KY, can be treated analogously.

Eq. (15) takes the form,

no_ L L -
F+;+ - 5 g & L 6. B4;- (B10)

cos——s~ sin 5
2 2

where the s-channel helicity amplitudes are denoted by g./

. t
Moo L
is easy to show that F | LA nF n. Thus we only need F
ty= tiE i +3+
and for simplicity of notation we write Pl - F n/W/D in what
+3+/ ¥ =
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follows. The two equations in (BlO) give55

cos ?E (F +F"
5 .

oQ
il

(B11)

o8]
1
]
.
[a
~~
=
1
1
=
+
~

Either by considering I and 1/ values, as in Section IIIA and
Section 1 of this Appendix, or directly from the general results of

(26) and (28), we obtain the kinematic singularity structure,

L (hSPSp/S)%(lm)An/W/g (12)

provided the mesons are assumed lighter than the baryons. It should

be recalled that the \/;, singularity in the denominator comes from
] \-1

. S
sin —

in (B10) [see above Eg. (24)]. Hence
2/

the factor (

the sum, (F~ + F'), will not contain it, while the difference,

(F~ - F'), will. The end result is

!

- +
A7(s,8) + Lspp A7 (s,1)

: Vs

- ) ;.-
. o 8& A (s,t) uspsp A (s%t)
2 | Vs

where the functions A~ and A’ are related at \/;. =0 accordihg

cos

m
I
no lmCD

UOENECEp——

(B13)

to
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- 2 2y, 42 42+
AT = - (@ - - )A o+ o(Ys) ‘ (Blll)
in order that 8, .. be well-behaved at s = O.

b

6. s-Channel Threshold Relations

Inspection of (Bl3) shows that in the limit hspsp/S -0
the amplitudes depend only on AT, Consequently, at the four normal and

pseudothresholds,

QS GS
g+;+/éos ;; = &, sin — . (B15)
2

Another way of establishing these threshold relations is by using (BlO)
43 v
and (BlE). Jones17 and Trueman5 obtained these constraints for alN

scattering and utilized them to détermine linear combinations of

amplitudes having more rapidly converging asymptotic behavior for

\/; - .

7. Invariant Amplitude Description in the §;Channel

The expressions for F' and F_ in terms of the invariant
.amplitudes A and B of (BS6) are obtained by reduction of the

Dirac spinors to Pauli form. The results are

=
+
I
™
1
g
T
A Y
[)
B\
|
>
[}
N\
B
~+
=]
Ol +
B\
./
w2

(B1£)
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where E and ‘E/ are the energies of the baryons in the center of

momentum frame. Using ULs(E + m)(E' & m’) = lﬁ\[; + m)2 - u%J°
2 .

. [;\/; + m’)g - p"] , we can verify that Fi have the proper

threshold behavior, (Bl2), provided A and B posséss no kinematic

singularities. The vanishing of F+‘ at all four thresholds auto~

matically implies the threshold relationm, (B15). Similarly it can
- + . . s .

be checked that (F + F ) is finite and regular at -V s = 0, while

(F" - F') goes as l/W/Ei The A® amplitudes of (Bl3) can be

expressed in terms of A and B:

#o- i :;KV-S- ¥ @2 - “2J [(‘\f: + ml)2 - u’ﬂ};a.

. «f

e Gren]

verifying the analytic behavior of Ai as functions of xfgﬂ for

Reﬁf; > 0.

(BL7)

¢¢¢¢¢
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APPENDIX -C
Thevthreshold relations, (39), for nx! > WA at t = (mB'- u)g
do not exhaust the relations among the ampliﬁudeé. There is a further
connection amohé their derivatives with respeét to t at the pseudo-
threshold.v To‘establish this relation iﬁ is necessary to go beyond the
expansion (37) and keep the next ordér terms in TPlg. The Russell-
Saunders decomposition will now contain contributions with S’ =.l,.
L’ =7 and S' = 2, L ='J, in addition to higher terms with §7 = 2
and L/ =J - 2. It is necessary to know the corrections to (A2) to

order 2—2. For our present purposes we need the result only for

A = O:

s o) . —(sin o) (en)l 277 L 3@ 1) et
Ok 2 gING + DI - ! _ 225 2(27 - 1)2°

(c1)

From (39) it is evident that it is useful to define amplitudes with

the boundary function and some other factors removed. Thus we introduce

e

Frn, 300

’ .
N Y PR _ /. \B=2
, TNTP Vo) (2(m5 .mu)pp z) fKBKASOO _ (c2)

The connections (39) now‘fead



- (0) -
1., ° 5Ve (g + m, )"y (s)
52’

- (0) ’F(O)

1 1., L1
20550 2 3590
= (0) 1 ,%,(0)

= +

51 11
35500 Vi 5300
,i:,(O) ) 1 ,%,(O)
3 Lo 11
Z,-5300 Y5 = 5300

- UCRL~17959

(c3)

where the superscript zero indicates evaluation at the pseudothreshold.

A treatment similar to that of Section IV A in obtaining (36)

(A15) and (C1) instead of (A2), leads to an expansion around T
of the form,

from (32) and (39) from (37), but using (Al6) as well as (AllL) and

/ _
p = 0]
~ 0)
L 300 :/f{\x-oo 1+ 5
3y 2 3 2z
2
+ TP’ X(s) --————iL———E + HQY(S)
2(m3 - mu)
' (ck)
1
2 1_ = = Az - AL |tu
- TPl (-1 62 B;H >Zs

1+ wla-w!
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whére the zeroth order terms are given by (38) or (C3). Since the first
order terms involve three unknown functions of s, there exists one

relation among the derivatives of the amplitudes at the pseudothreshold

It is easy to show from (Chk) that this relation is

£ + ¥ + 7 |
11, L _l \/ 2 L.
55390 555500 (:le 5390 5775300
| t - m - mh) ]
(c35)
?r(o)
11 ' 2
= =300 . (m, - m)
. b : )4_
- —g_g——g 1 - _.2_7___2__
- B(m'i - mh) (TP z) |

The square bracket on the right hand side can be expressed in terms of

masses and s. For myo= My o=, this bracket becomes

'(m -m )é— hm (m, - m )2 - hy2)
= “Lﬁ(f : 2w

showing that in the limit of large s it approaches unity.

The three unknown functions, X, ¥ Z, in (Ch) represent

2
TP’ contributions from (8’ = /

/
=2, L' =0-2), (8 =2, 17/ =37),

’ / . ;
and (8" =1, L The one remaining Russell-Saunders combination,

=J).
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L
(s'=2, 1/ =3+2), only enters at TP’ . This is the reason for

the existence of the relation (C5). The second and higher derivatives
with respect to t will receive contributions from all four Russell-
Saunders combinafions and so will have no relations aﬁong thém. At
the normal threshold the zeroth order in fNIQ involves (S’ =1,

v o-g- 1) and (S/ = 2, L/ = J -1), while the first order in

TN’2 has contributions from (8’ = 1, 1/ = J +1) and (s’ = 2,

=g+ 1) as well. Thus there are only the relationships contained

in (36), and none among the derivatives.
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APPENDIX D

In this appendix we give a brief discussiqn of Regge pole
amplitudes with emphasis on exhibiting the heliclty dependence in a
reasonable, factorable way.r We coﬁsider a singlé'Regge pole of
definite signature in the t-channel ; more elaborate exchanges can be.
built up by linear éuperposition. _Froﬁ.(l?) and (18) it is evident,
in the limit of large =z = cos Gt, that only amplitudes with a definite
value of 7 (equal to the signature) will survive. Thus the helicity

amplitude in the limit of large =z is
AN N
t
£ .. (t,6,) = (V2 cos == 2 sin == x
Kﬁkhyklkg t 2 K 2

1 |
x =F . (t,z)
2 KBKuaklkg

(p1)

It is sufficient to choose » = X

1" Aoy Ho= XB - xu' both non-negative.

Amplitudes for other values of x,p can be found from the Jacob-Wick

parity relation,

-h3'Xu,~hl-x2 nlng x5xu;xlx2
and
S. +s 1l - cos ©
- 172 t
f = n (-1)"H qon.(-1) — ) T
Aoy, 5=Ag ~ 12 :
3037 Ay L+ cos 0, ) T,

(D3)
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where m and n are the largest and smallest values of A and y,
respectively. Eq. (D3) follows from (15), to the leading power of z.
If lower powers of z are retained, (D1) and (D3) are more complicated,

but it is still sufficient to take \,u non-negative.
1. Singularity Structure and Residue Behavior

The kinematic singularity structure can be exhibited explicitly
be means of (26). The amplitude (D1) can be conveniently written in

the form,

“J sin @ -cos @
- 4
f)\-5>\-)_‘_;>\l>\-2 coS 9 l - CcoSs 9 )-"pp cos @ )

2 _ﬁ_)_ i
AKBxu,x A (s,t)

|

(Dk)

where X(t) is the Rinematic singularity factor (ﬁhe square bracket in
(26X> for A .=p = 0. A factor of (--l)n has been inserted into

(D4) for convenience since we assume the masses to be such that

cos Qt = -1 on the boundary of the s-channel physical region. The

behavior in J»%ﬂ sin @t is appropriate for the dependence (23) on
V¢ at this boundary.56 The analytic amplitude A" is assumed to
be dominated by a single Regge pole. From (17) and (Al2) we see that

for large gz, An will be given by
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no_ £ : _________;_____J&%Zlﬁ.szfl____________
A | @ ’ 2) Bkaxh”‘lxz(t) YV - w (@ + w)fa - Do +2)!

(D5)

sin xC

where a(t) is the trajectory of the pole and B(t)' is the residue
function. g(t) must have appropriate singularities in t so that
A" is well-behaved.

The specific dependence of B(t) on «, A, and u depends
on dynamical assumptions, such as whefher the trajectory chooses
"sense" or 'nmonsense" at integer values of « less than A or u.
These are discussed in footnotes 9 and 10 of Ref. 12. For:a trajectory

that chooses "sense" the residue function has a factor

“V&x - J)(a +J + 1) for each "sense-nonsense" value of J, i.e.,
ngJ <m and a factor (a - J){(@ +J +1) for "nonsense-nonsense"
values of J di.e., J <n., Thus the residue is proportional to

ala + 1)(a - 1)(a + 2)~'-"(oc -n+ 1)@ +n)~

e Yo -n)(a+n+1) (o -m+ 1) + m)‘. This can be written as

\ffd + W (a + u)!/(d - M a - H)!: The complete residue function
57

is therefore
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S EIDHCENINS A e
Pag i) -(® (F‘) \/(a - i (

(D6)

SN STRISES g(t)
)

Here M is a mass parameter inserted so that all the reduced residues

y(t) will have the same dimensions, and Sy 1is the usual scale
parameter. When (D6) is combined with (D5) and inserted into (DL4) the

result is

AT
- (e (v‘") alal
My 30 Mo (& - w)lla =)

(D7)

¢ K(t) v

x5xu,x Ao (£)R(s,t)

where

R(s,t) = (s - u)oz (“ i eniﬂa) (D8)
4 v_" OC. | 2 sin n&

R(s,t) 1is the standard Regge amplltude for spinless particles. In

writing (D8) we have appealed to the work of Freedman and Wang’ 58 and

others in order to make the replacement, (4pp’z) - (s - u), even for
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unequal masses.)? Notice that in (D7) we have written Wft;— in
ofder to have real quantities in tﬁé physicai region of the s-channel
(assumed to have t < 0). The reduced residue y(t)' is real and
analytic in t; it may contain a "ghost-killing" factor of «a for

even signature trajectories.
2. The Very Small t Region

The factor an is equal to unity over most of the physical
range. It has t-dependence only in a very small interval near the

forward direction in the s-channel. Explicitly we have

(ﬂmﬂl ‘ ‘\[% sin 6, - cos 6, n
-t an, = cos G 1 - cos @

-cos e
<;;P cos @ :) (:; - cos 9

With \ﬂ5 >0 and -cos et > 1 in the physical s-channel, it can be

(p9)

seen that an is positive and real there. Furthermore for large s,
-Co8 et increases rapidly away from the exact férward direction. -This
means that an approaches unity rapidly, too. The region of t over
whichlvariationkoccurs is measured in units of the minimum value of
momentum transfer. >Since the minimum momentum trénsfer falis off

-1 -2

as s or 8 for large s, this region of t where the mass

differences are important is very small. Accurate approximations can
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be given for an. We distinguish two cases: (a) equal masses in
either the initial or final state of the t-channel, and (b) unequal
masses in both initial and final t-channel states. We define g

dimensionless variable, x, such that

X = /(%) ' (D10)

x = 1 for GS = OO, and x > 1 away from the forward direction.

(a) Equal Masses in one t-channel state (e.g. s —NA, xp — NN)

6
For this case, (-t) oc 1/82 asymptotically, O and

min
~-Cco8 Qt ~ X 1is valid for x values from zero to where an is close

to unity. The approximation to an is thus

X (x) =

m-Fn m-n ‘
1) L1
- gx L) 'iﬁ F l)‘ (D11)

For the reaction N — x4, for which (_t)mi

[»]

st .
p % 0.1/P o (GeV/e) in
units of (GeV/c)g, the transition region in which X . rises from
zero (if m_* 0) to unity is confined to such small values of t

that present experiments cannot possibly explore it.

(b) Masses unequal in both t-channel states (e.g. »p —»NA, NA — NA)

Here (-t)min o 1/s asymptotically, and -cos o, x ox° - 1.

Then we obtain
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m+n ,
| (2 _ )2 mmn : |
(x) = ~ (p12)

mr . G{é_lm
2

It is of interest to note that, independently of whether or

not some of the masses are equal, at some fixed small value of -t,

for example, t = -mng, X, =1- 0(1/s). This can be seen by expanding
(D11) and (D12) in powers of x 1 and x—g, respectively, and noting
the dependence of (-t)min on s in each case. For all inelastic
processes at very high energies, then, the transition region in t
becomes unimporfant as s—l and all the relevant t-dependence is

contained in (D7) with an = 1. The explicit helicity dependence

in t is given by the factor ( V—t )h+“.
3. Trajectory Chooses "nonsense'

The choice of factorialé in the square root in (D6) is such as
to cause the residue to behave "sensibly", that is, to vanish when «
becomes equal to an unphysical integer J value, J < m. Another
possibility is to have the Regge trajectory choose ”nonsepse”, that is,
to have a residue which behaves the same for "sense-nonsense" helicity
values, but with the roles of "sense-sense’ and "nonsense-nonsense"
helicities inferchangéd. This means that the residue is proportionél

to (¢ -m)(ax+m+21)---(ax-8+21)(a -8) x

eV(O& -n)(@a+n+1){(a-n-1)(d+n+2).(a - rﬁ +1)(a +m) ,



UCRL~17959
-95-

where for integer J < S the trajectory chooses 'nonsense" (8 > m).

This can be written as

YEN CRSsYCEEnY
B e 82%/ §3+i§/gg = ﬁ)Y' (o13)

We note that the square root in (D13) is just the reciprocal of that
occurring in (D6), an acceptable alternative for combination with
(D5) to give an analytic amplitude. The choosing of "nonsense”
(sometimes called the Gell-Mann mechanism) has as its consequence

the replacement in (D7),

af af « (o +38)! al al (DLk)
(a -wfla-2F 7 (a-8) (a+u) (a+2r) '

Depending on the values of S, A\ and py and signature it may be necessary
to multiply (D1k) by additional factors in order to prevenf "ghost"
poles at negative integral values of «. In practice, only the point

o =0 1is impp?tant. Slowly varying factors from (D14) can then be
“incorporated into the reduced residue v(t) in (D7). As a final
comment we note, when lower order powers of z are kept in (D%),

that compensating trajectories are needed to prevent singularities in
the amplitude at "nonsense" values of J (0 J <n) (see Appendix B

of Ref. 26).
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Table I. ”Minimum< L and L‘ values (and associated channel spins

Sl) for s »NA and the corresponding threshold behavior of F

J+

P L values L' values _
J Normal Pseudo Normal Pseudo Threshold Behavior
+ i [ ,2
0 o 0 1 ' 2 Ty Tp
(st =1) (s =2)
- , ,
1 1 1 , 0 i 1 TNTPTP; Ltpp
(s' = 1) (s’ =1,2 _TN'
2" 2 2 1 0 2., 4 (btpp”)®
, , (TNTP)‘TN = 1 5
(s =1,2) (s' =2) TN'TP/
- N~ H5
3 3 3 2 1 (TNTP)BTN, TPI _ (bt
(s =1,2) (st = 2) T !
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{

Table II. Orbital angular momentum values L' at the

normal and pseudo-thresholds for the final state in

Kr — YN
P Normal Pseudo
J s' - o g =17 g oot gf -t
o* - 1 0 -
1 - 0,2 1 1
ot - 1,3 o o
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F = —8anl, F = -8an2
where
A
M = -8ﬂw(X’|fl + f20°6’o-p]X>

The.powers of W/;_ used in obtaining (D4) are not quite those
of (26). Théy are the powers necessary to compensate for the
behavior of £(8) at t = 0. See the discussion below Eq. (23).
We are here ignoring the presence of fixed poles in the partial
wave.amplitudes at nonsense, wrong-signature points, discussed by
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1490 (1967)]. If the effects of the third double spectral function
are small, the simple behavior presented here is expected to be
approximately valid.
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It should be remarked that there is some arbitrariness in our
assumptiéhé about the s-dependence at‘forward angles @S. For
example, in (D9) below, it could be argued that the factor
(2ppfcos @tj(m+n) should be replaced by (s - u)/2. These
differences are beyond the reach of present experimentation.

A rough approximation in the few GeV/c region is

2 ~
(-t)min = (mc - mag)d/hPLab2 if the s-channel process is

ab -»ecd, and m o= Mg
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FIGURE CAPTIONS

.No caption.

Diagram defining notation for Russell-Saunders coupling. The

t-channel process is. m, +m, —;mB +om, where the ith particle

has mass, spin and intrinsic parity my, Ss, and g

réspectively. The initial and final momehta in the center of
mass are p and p', respectively, while the channel spins-
are S= 8 TS ?.nd ’al =§5' + §),» and the orbital angglér :
momenta are L ‘and L’. ' |
Schematic Mandelstam diagrém showing ﬁhe physiéal regions of
s, t and wu.  The dashed line AB represents the normal
)2.

2
E;channel‘threshold, t = (m5 + mu) or t = (ml + m,

The point O dis the physical threshold in the t-channel,
where |cos Gt[ < 1.

Density matrix elements P! for the decayvof the A in
the‘process, N — nf, assuming that the threshold relations
(39) and (40) hold at the NA pseudothreshold, t = 0.09
(G—eV/c)2 and that the residue functions are not rapidly

varying in t (see text below (64) and (65)). The dashed

lines are the predictions: of the magnetic dipole coupling

model of Stodolsky and Sakurai.
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