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ABSTRACT OF THE DISSERTATION 
 
 

Reevaluation of Formal Model Comparison Between Slot and Resource Models of Visual 
Working Memory 

 
by 

 
 

Marcus John Cappiello 
 

Doctor of Philosophy, Graduate Program in Psychology 
University of California, Riverside, December 2019 

Dr. Weiwei Zhang, Chairperson 
 

 

Visual working memory actively maintains information over brief periods in service of 

other mental activities. Unlike other memory systems, visual working memory is highly 

limited in the amount of information that can be retained, however the nature of this 

limitation is still widely debated. Historically, research on working memory limitation 

was focused on the number of items that can be simultaneously maintained, but recently 

limitations in the precision of working memory representations has also been explored. 

Two theoretical models of working memory limitations that stem from the interest in 

precision limitations are investigated in depth. The slot model theorizes a limited number 

of slots for working memory representations. When there are more items than there are 

slots, then some items will be forgotten entirely resulting in a capacity limit. Conversely, 

the resource model theorizes all items are retained in visual working memory, and any 

behavioral limitations stem from low precision of memory representations. That is, high 



 v 

error responses are accounted for by a capacity limit in the slot model, and accounted for 

by low precision representations in the resource model. Previous formal model 

comparison between the measurement models of these two theoretical models has found 

support for the resource model, however important aspects have been overlooked. 

Support for the slot model is found in the current dissertation by expanding on the 

previous formal model comparison in four ways. First, a new model comparison analysis 

is created that includes the flexibility of model parameters; the inclusion of which shows 

support for the slot model at high set sizes when the capacity limit is exceeded. Second, 

using the measurement model for the resource model, a capacity limit is still observed. 

Third, using a non-parametric model fitting approach that does not assume any model, a 

capacity limitation is again found. Finally, a new measurement model is created that 

better matches the slot theoretical model. This new model outperforms the variable 

precision model showing further support for the existence of a capacity limit in visual 

working memory.  

 

 

 

 

  



 vi 

Table of Contents 
 
 

 
Chapter 1 ............................................................................................................................ 1 

1.0. Introduction ......................................................................................................................... 1 
1.1. Slot and resource model ...................................................................................................... 4 
1.2. Theoretical and measurement models ............................................................................... 6 
1.3. Dissertation overview .......................................................................................................... 7 

Chapter 2 ............................................................................................................................ 8 
2.0. Delayed-estimation continuous recall task ........................................................................ 8 
2.1. Measurement models of VWM .......................................................................................... 9 
2.2. Simulations ......................................................................................................................... 11 

2.2.1. Simulations with MLE .......................................................................................... 12 
2.2.2. Model flexibility ..................................................................................................... 15 
2.2.3. Simulations with model flexibility ........................................................................ 21 

2.3. Discussion ........................................................................................................................... 23 

Chapter 3 .......................................................................................................................... 24 
3.0. Empirical data ................................................................................................................... 24 
3.1. Replication ......................................................................................................................... 26 

3.1.1. Residuals ................................................................................................................. 28 
3.2. Formal model comparison ................................................................................................ 30 
3.3. Proportion of guessing in VP ............................................................................................ 32 
3.4. Non-parametric MLE (NPMLE) ..................................................................................... 34 
3.5. Discussion ........................................................................................................................... 37 

Chapter 4 .......................................................................................................................... 39 
4.0. Slot with variability (SLOTv) ........................................................................................... 39 
4.1. SLOTv measurement model ............................................................................................. 40 
4.2. Residuals ............................................................................................................................ 41 
4.3. Formal model comparison ................................................................................................ 43 
4.4. Discussion ........................................................................................................................... 46 

Chapter 5 .......................................................................................................................... 47 
5.0. Discussion ........................................................................................................................... 47 
5.1. Future research ................................................................................................................. 47 

5.1.1. Neural mechanism behind working memory capacity ....................................... 48 
5.1.2. Neural mechanism behind working memory precision ..................................... 49 
5.1.3. Research opportunity ............................................................................................ 50 
5.1.4. Alternative computational models of VWM ....................................................... 51 

References ......................................................................................................................... 54 
 
 
 



 vii 

List of Figures 
 

Figure 1.  ............................................................................................................................. 8 
Continuous-recall VWM experiment using color. 

Figure 2.  ........................................................................................................................... 26 
 Graphs of SD across set size from (van den Berg et al., 2012). Black circles 
represent empirical data, and colored bands indicated fits for a) SLOT and b) VP. 
Figure 3.  ........................................................................................................................... 27 
 Delta AIC for VP minus SLOT for each set size. A negative value indicates a 
better fit for VP. 

Figure 4.  ........................................................................................................................... 29 
 Residual plots for empirical data fit with SLOT (a) and VP (b), along with 
simulated data from VP fit with SLOT (c) and simulated data from SLOT fit with VP (d). 
Figure 5.  ........................................................................................................................... 31 

β for each set size in log likelihood units. A positive value indicates bias toward 
VP. Error bars in SE. 

Figure 6.  ........................................................................................................................... 31 
 ΔAIC for model comparison between VP and SLOT for each set size. Error bars 
in SE. 
Figure 7.  ........................................................................................................................... 34 
 Proportion guessing estimate from VP fits for each set size from NPMLE. 
Figure 8.  ........................................................................................................................... 36 
 a) NPMLE results for empirical data from set size 1, 4 and 8.  b) Estimated mean 
pi for kappa=0 by set size. c) Estimated capacity by set size. Note: All error bars in 
standard error. 
Figure 9.  ........................................................................................................................... 42 
 Residual plots of model fits including SLOT (first column) SLOTv (second 
column) and VP (third column) to empirical data (first row) and data simulated with 
models including SLOT (second row) SLOTv (third row) and VP (fourth row).  
Figure 10.  ......................................................................................................................... 42 

β for a) SLOTv versus SLOT and b) SLOTv versus VP. Note a larger value 
indicates a bias toward SLOTv.. 

Figure 11.  ......................................................................................................................... 44 
 ΔAIC for model comparison between SLOTv and SLOT for each set size. Error 
bars in SE. 
Figure 12.  ......................................................................................................................... 45 

ΔAIC for model comparison between a) SLOT and VP and b) SLOTv and VP for 
each set size. Error bars in SE. 



 viii 

 
List of Tables 

 
 

Table 1.  ............................................................................................................................ 13 
 Parameters used for MLE simulations by set size mimicking empirical fits. 

Table 2.  ............................................................................................................................ 14 
Model recovery results using MLE 

Table 3.  ............................................................................................................................ 21 
Model flexibility bias. 

Table 4.  ............................................................................................................................ 22 
Model recovery results using MLE with model flexibility. 

Table 5.  ............................................................................................................................ 25 
 Data summary. 



 1 

Chapter 1 

1.0.  Introduction 

If you were asked about your childhood, you undoubtedly currently store 

thousands of life experiences that you could report. If instead you were asked to 

remember eight colors for a few seconds, you would only perform well on three or four. 

This brief, limited memory system, often called working memory (WM; Baddeley & 

Hitch, 1974), is involved in nearly every cognitive task we perform, from forming full 

sentences when we speak to deciding what to have for lunch today. The extent of the 

limitation of WM is a strong predictor of individual differences such as spatial reasoning 

and fluid intelligence (Kane et al., 2004; Oberauer, Süß, Wilhelm, & Sander, 2008). In 

addition, deficits in the system relate to neuropathologies such as depression (Joormann 

& Gotlib, 2008) and schizophrenia (Park & Holzman, 1992). As such, the mechanism 

behind the limitation of working memory is of vital importance and is currently one of 

the primary cognitive psychology research topics (Nee & Jonides, 2008). 

The finding of a limited capacity of memory items over short delays (Miller, 

1956) coupled with the large capacity found for long-term memory (LTM; Standing, 

1973) show support for the classic modal model of memory (Shiffrin & Atkinson, 1967). 

In this model, memory is conceptualized as three separate systems, often called the 

system view of memory. Sensory memory is a high capacity fragile state that resembles 

residual perception after the offset of presented stimulus. Unless attended to, these items 

are erased when new information is presented such as what happens after eye movements 

(Cappiello & Zhang, 2016; Sperling, 1960). The attended items are then put into the 
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limited capacity working memory store. These representations are robust to distractors 

and eye movements and are stored actively allowing for responses to be made. According 

to the modal model, representation in WM may be transferred into a large capacity 

passive long-term memory system following repeated rehearsal. Items in LTM can be 

retrieved back into working memory and used for performance. The classic neurological 

evidence for the separation between the WM and LTM systems is patient H.M., where 

damage to the medial temporal lobe (MTL) lead to a deficit in LTM creation but not WM 

(Scoville & Milner, 1957). Since then, the MTL deficit finding has been replicated 

(Simons & Spiers, 2003), and a deficit to both WM and LTM has been found due to 

lesions in the prefrontal cortex (Voytek & Knight, 2010). 

However, recent literature has found MTL involvement in WM tasks in amnesia 

case studies (Hannula, Tranel, & Cohen, 2006) and neuroimaging (Libby, Hannula, & 

Ranganath, 2014), challenging the system view of memory. Instead of the system view of 

WM, state models have gained popularity, which classify the different types of memory 

by their level of activation rather than separate systems. Two such competing models are 

the embedded process model (Cowan, 2001) and the three layer model (Oberauer, 2002). 

In these models, memory is all one storehouse and the differences seen between the 

systems predicted by the modal model are due to levels of activation. In the embedded 

process model, memory representations are stored as passive long-term memories, active 

long-term memories, or in the focus of attention. The focus of attention is capacity 

limited (~four items) and relate to the working memory store from the modal model. 

Memories that are related to the current goal, have been retrieved recently, or have been 
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created recently, are stored as active long-term memory. This store is largely capacity 

unlimited, and these representations can be quickly activated through shifting the focus of 

attention. All other memories are stored in the passive long-term memory store that 

resembles the long-term memory system in the modal model. The three-layer model is 

similar to the embedded process model, with the major difference being a capacity of one 

the focus of attention rather than four. With the advent of neuroimaging, neurological 

support for the state view of memory has been found where MTL activation is seen in 

WM experiments. 

The current dissertation will not focus on the system versus state debate, but 

rather focus on the WM mechanism. Both system and state models agree on three major 

aspects that define the WM system. First, due to the active nature of WM processes and 

the inclusion of both bottom-up and top-down information, WM is unique in its support 

of a wide range of other cognitive functions (Baddeley, 2012) such as attention (Kane, 

Poole, Tuholski, & Engle, 2006), fluid intelligence (Conway, Kane, & Engle, 2003), and 

emotion processing (Xie et al., 2017). Second, while LTM can store memories for up to a 

lifetime (Standing, 1973), WM representations decays only after a few seconds if no 

rehearsal tactic is implemented (Zhang & Luck, 2009). Third, and most importantly for 

the current dissertation, WM is limited in the amount of information it is able to store 

(Cowan, 2001; Miller, 1956), although the nature of this limitation is widely debated 

(Bays & Husain, 2008; van den Berg, Shin, Chou, George, & Ma, 2012; Zhang & Luck, 

2008). 
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1.1.  Slot and resource model 

Much of the past work investigating working memory limitations have focused on 

a limited quantity of items stored (Cowan, 2001; Koriat & Goldsmith, 1996; Miller, 

1956; 1965; Shiffrin & Atkinson, 1967; Standing, 1973). This ‘storehouse’ view of 

working memory conceptualizes working memory as discrete units of information. It is 

now common to also investigate the variability of the working memory representations, 

or the correspondence between the internal representation and the corresponding external 

stimulus (Koriat & Goldsmith, 1996). Although memory variability is closely related 

with successful retrieval, recent advances in methodology have allowed both the number 

and precision of WM representations to be independently measured. These advances have 

sparked several new categories of models that are a topic of active debate, two of which 

will be investigated here.  

Two prominent models of the working memory mechanism are the slot model 

(Zhang & Luck, 2008) and the resource model  (particularly the variable precision model 

variant of the resource model; van den Berg et al., 2012). Both models focus on the 

nature of working memory limitations, such as whether there is a stark capacity limit or 

just a degradation in precision, but make no assumptions on whether working memory is 

attention-based (embedded process model) or not (modal model).  

One of the first models to include the variability of VWM representations is the 

slot model, which predicts that there are a limited number of ‘slots’ that can be filled in 

working memory (Cowan, 2001; Luck & Vogel, 1997; Oberauer, 2002; Sperling, 1960; 

Zhang & Luck, 2008). Once the slots are filled, any additional memory items will be 
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discarded manifesting as a capacity limitation. When the number of items is lower than 

the number of slots, the slots can be averaged to increase quality of the memory items 

(slots plus averaging, Zhang & Luck, 2008). The slot model has been very successful at 

describing visual working memory performance, such as visual working memory 

retention over time (Zhang & Luck, 2009), incentivized changes in visual working 

memory (Zhang & Luck, 2011), dual visual working memory and attention paradigms 

(Zhang & Luck, 2015), and the interaction between emotion and visual working memory 

(Xie & Zhang, 2016). 

An alternative model, the resource model, instead predicts a resource pool that 

can be flexibly allocated to all memory items (Bays & Husain, 2008; Wilken & Ma, 

2004). For all resource models, there is no capacity limit. Rather, the observed working 

memory limitation at high set size originates from a decreased precision of the memory 

representations. That is, all presented items are remembered, but some of them will be 

very low quality. A recent updated version of the resource model, called the variable 

precision model, proposes that each memory item receives a variable amount of resource 

resulting in variable precision of memory representations (van den Berg et al., 2012; van 

den Berg, Awh, & Ma, 2014). Like the slot model, VP does not specify whether this 

resource limitation stems from attention, or some other system. 

The recent debate between SLOT and VP has primarily focused on formal model 

comparison e.g. (van den Berg et al., 2012; 2014), which will be addressed in detail here. 

Using model comparison, we will focus on the core difference between the models – is 

there a true capacity limit in working memory? The slot model predicts a capacity limit 
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originating from the limited number of slots. The resource models predict no true 

capacity limit, rather all limitations stem from variability of memory representation 

precision. Investigation into these differences provides an opportunity to deepen our 

understanding of the working memory system. 

 

1.2.  Theoretical and measurement models 

The focus on formal model comparison for model investigation requires us to be 

specific on the type of models used. All psychological models can be broken down into 

two types: theoretical models and measurement models (Roberts & Pashler, 2000). 

Theoretical models (also called abstract or explanatory models) are general principal 

models that seek to explain theories at a higher level and can be used for all experimental 

conditions. All models discussed above, including the slot and resource models, are 

therefore considered theoretical models. Measurement models are mathematical models 

that can be used to fit empirical data of interest to measure latent variables (such as how 

many items can be held in memory). They can vary according to the data structure and 

experimental paradigms (e.g., recognition versus recall,  

Xie & Zhang, 2017; Zhang, 2007). For each theoretical model, a measurement model can 

be created tailored to each experiment allowing for a formal mathematical model 

comparison approach to support or reject each theory. Doing so forces the researcher to 

be very specific about each aspect of the theoretical model. For example, if there is 

variability in internal WM representations, what does that variability look like? Is it 

normally distributed or take on another form? As will be explained in further detail 
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below, slight mistakes in the creation of a measurement models has led to gross 

misinterpretations of model comparison results. 

It is important to note that all models of the brain are wrong (Box, 1976). To have 

a ‘right’ model, we would eventually need to describe every neuron interaction in each 

individual brain, which would not lead to any insights into the nature of cognition and is 

currently computationally unfeasible. Instead, these theoretical and measurement models 

seek to describe higher-level rules that the brain operates on.  

 

1.3.  Dissertation overview 

 Support for resource models over slot models has been found previously in formal 

model comparison, including goodness of fit and residual patterns (van den Berg et al., 

2012; van den Berg & Ma, 2014). However, upon closer inspection the support found 

does not stem from theoretical differences between the models, but rather issues in formal 

model comparison methods and measurement model creation. The current dissertation 

first develops a new formal model comparison method that more accurately addresses the 

differences between the theoretical models (Chapter 2). Next, a comparison between the 

slot and resource measurement models is done using a variety of methods including the 

new formal model comparison method (Chapter 3). Finally, an entirely new measurement 

model for slot is created that better represents the theoretical model and a final formal 

model comparison is performed using the new measurement model (Chapter 4). All 

together the dissertation will largely be focused on primary difference between the slot 

and resource models: is there a capacity limit in WM. 
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Chapter 2 

2.0.  Delayed-estimation continuous recall task 

Measurement models for the SLOT and VP model have been created previously 

to describe delayed-estimation continuous report working memory data for simple 

circular features (Wilken & Ma, 2004; Zhang & Luck, 2008). In these tasks, participants 

see an array of to-be-remembered items, such as colors, lines of different orientations, or 

shapes, following a probe that indicates which memory item to be reported (Figure 1). 

The participants select the color, orientation, or shape that best matches their memory of 

the probed item from a continuous spectrum (e.g. from a color wheel).  

 

 

Figure 1. Continuous-recall VWM experiment using color. 

 

Error is calculated as the distance in degrees between the correct answer and the 

estimated response. Over many trials, a bell shaped curve is observed centered around 

zero degrees error. Much of the debate between slot and resource models has centered 

around describing these error distributions (e.g. van den Berg et al., 2012; 2014; van den 
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Berg & Ma, 2014; Zhang & Luck, 2008). For the remainder of this discussion, color will 

be discussed as the tested feature for clarity. However all principles described below can 

be extended to other continuous feature dimensions such as orientation and shape. 

 

2.1.  Measurement models of VWM 

The measurement model for the slot model stems from understanding what 

participants will do given different circumstances. If the probed color at test is not 

contained in WM, then participants will respond by clicking randomly on the color wheel 

(forced choice). Because the wheel is rotated randomly on each trial, this will manifest as 

a random distribution of responses, or a uniform distribution, across all errors. On the 

other hand, if the probed memory item is contained in WM, then their responses should 

cluster around zero degrees error. The spread of this bell-shaped distribution will rely on 

participants’ internal WM representation quality. While the representation quality will 

likely vary trial by trial, the mean internal representation quality can be found by the 

width of this bell-shaped distribution. For ease of computation, a normal distribution can 

therefore be used to account for all in-memory responses. Together, the measurement 

model for the SLOT consists of a mixture model of a normal distribution centered at zero 

and a uniform distribution (Zhang & Luck, 2008).  

 On the other hand, there is no capacity limit in the resource model, and therefore 

no uniform distribution is included in the measurement model (variable precision model, 

VP). Instead, high error responses are accounted for by very low-quality representations. 

Here, all items are remembered, but with varying levels of quality that all come from the 
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same resource pool. To account for this, the VP is a mixture model of many normal 

distributions whose precision is sampled from a continuous gamma distribution over 

precision (related to SD, see below). VP also has two free parameters, the shape and scale 

of the gamma distribution. For high error responses, the gamma distribution over 

precision can (and often does) cover a large range of values for precision, making this 

model highly flexible. As such, VP has found some success in model comparison (van 

den Berg et al., 2012; 2014). 

 The continuous report task used currently results in empirical data in circular 

space (i.e. 20° error on one trial). To formalize the measurement models for this task, all 

models must therefore be converted to circular space. A Gaussian analog in circular space 

is the von Mises distribution, described as: 

 

p(x |µ) = e
k cos(x−µ )

2π I0 (κ )
=VM (x;µ,κ )  

 

where µ is the mean, I0 is the Bessel function of the first kind, and κ is the concentration 

parameter that controls the width of the distribution. Using the von Mises distribution, 

SLOT is formalized as: 

 

p(x |µ) = (1− g)*VM (x;µ,κ )+ g 1
2π
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Unless experimental manipulation is introduced, the normal distribution is always 

centered on zero degrees error, removing the need for µ as a free parameter. SLOT model 

therefore only has two free parameters: SD (a linear analog of SD can be calculated from 

κ and will be used here for clarity) and the height of the uniform distribution (g). Given 

the set size (SS) of the to-be-remembered stimuli, the number of items each participant is 

able to hold in WM, or their capacity at high memory set sizes, can be calculated as (1-

g)*SS. The VP model is formalized as: 

 

p(x |µ) = VM (x;µ,k)dk∑  where k~Γ(modek, sdk)  

 

where k is precision (k~1/SD2), which can be used to calculate κ for the von Mises 

distribution (often using a look-up table; Suchow, Brady, Fougnie, & Alvarez, 2013; van 

den Berg et al., 2014), and Γ is a gamma function characterized by mode and standard 

deviation of the precision (modek and sdk, respectively). Mode and SD of the precision is 

used instead of the more traditional shape and scale parameters due to their ease of 

estimation and interpretability. VP therefore also has two free parameters – modek and 

sdk. It is important to note that these parameters are in a higher order space than g and SD 

from SLOT, which leads to model comparison issues discussed below.  

 

2.2.  Simulations 

 To determine which measurement model best fits empirical data, a plethora of 

different fitting techniques have been used previously, such as least-squares, maximum-
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likelihood estimation (MLE), Bayesian hierarchical modeling, conversion to Fischers J 

with simplex (van den Berg & Ma, 2014). By testing the validity of each model 

comparison technique, MLE is found to be ideal for our current model comparison, 

where least-squares and MLE give nearly identical results, yet MLE is used more 

commonly in the literature and will therefore be used here. Bayesian hierarchical model 

comparison is computationally intensive and does not produce better results than MLE 

except when the trial number per condition is very low (which will not be true here). 

Finally, MLE does a far better job at parameter estimation than conversion to Fischers J 

with simplex, which is important when understanding the psychological meaning behind 

each parameter.  

Before any formal model comparison can begin, it is crucial to test the reliability 

of the fitting technique. To do so, data will be simulated for both the SLOT and VP 

model using a wide variety of parameters. Then, a formal model comparison will be 

performed by comparing the log-likelihood estimation of the fits of each model to the 

simulated data. If the data is simulated using the SLOT model, the formal model 

comparison should choose SLOT over VP, and vise versa. If the formal model 

comparison is unable to make that distinction reliably, then the model comparison tactic 

must be re-evaluated. 

 

2.2.1.  Simulations with MLE 

 The first set of simulations used the following procedure: 
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1. Fit empirical data for all set sizes using MLE with both SLOT and VP to get 

parameters (see Chapter 3 for data summary). 

2. Simulate data with the number of trials and parameters from step 1 for both SLOT 

and VP 

• Parameters are idealized versions and representative of the parameters 

from data fits (Table 1) 

3. Fit all datasets with SLOT and VP using MLE and compare log-likelihoods. 

4. Repeat steps 2 and 3 (100 runs used here) 

5. Determine how frequently the model comparison method chose the correct model 

across all repetitions. 

Table 1 

Parameters used for MLE simulations by set size mimicking empirical fits. 
Set Size SLOT Pars VP Pars 

1 g=0, SD=10 modek=0.007 , sdk=0.005 

2 g=0, SD=20 modek =0.005 , sdk =0.005 

3 g=0, SD=25 modek =0.003 , sdk =0.006 

4 g=0.25, SD=25 modek =0.002 , sdk =0.006 

5 g=0.4, SD=25 modek =0.001 , sdk =0.007 

6 g=0.5, SD=30 modek =0.0008 , sdk =0.007 

7 g=0.57, SD=30 modek =0.0006 , sdk =0.008 

8 g=63, SD=30 modek =0.0004 , sdk =0.009 
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 The simulation results can be seen in Table 2. Overall, MLE formal model 

comparison is able to detect the correct mode 78.5% of the time. This varies by model 

used, where MLE chose SLOT model correctly less often than VP model 

(MeanSLOT=73.3%, SDSLOT=12.7%, RangeSLOT=[54, 100];  MeanVP=83.7%, 

SDVP=11.0%, RangeVP=[64, 100]). This stark difference suggests a bias toward VP in 

model fits, which will be discussed in detail below. 

Table 2 

Model recovery results using MLE 
 Set Size 1 2 3 4 5 6 7 8 

Number Trials Model         

110 
SLOT 60 60 69 77 83 82 72 84 

VP 90 86 86 75 78 67 69 70 

120 
SLOT 58 63 61 78 79 74 72 74 

VP 87 86 84 75 76 75 64 72 

130 
SLOT 63 67 71 66 88 73 68 77 

VP 93 87 84 72 72 76 69 70 

150 
SLOT 66 55 55 76 86 60 79 75 

VP 92 86 88 85 67 74 78 68 

320 
SLOT 61 54 62 88 88 86 78 86 

VP 98 97 99 95 87 82 90 83 

800 
SLOT 55 58 55 99 100 91 95 90 

VP 100 100 99 99 97 96 98 97 

Note. Numbers indicate percent correct model choice.  

 

As seen in Table 2, these values also change depending on number of trials and 

parameters used as expected. The change in results over parameters used is different for 
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each model, with SLOT doing well at high set size parameters and VP doing well at low 

set size parameters. This is to be expected. The uniform distribution in SLOT is only 

useful when participants cannot remember all colors, or at large set sizes. At low set 

sizes, the free parameter g accounts for a very small proportion of trials (likely lapses in 

attention). Interestingly, the advantage of SLOT peaks for parameters around set size 5, 

then decrease after. This will be discussed in further detail below. With an overall bias 

toward VP in model fits, the model fit procedure must be updated before these 

measurement models can be used to support slot or resource theoretical models. 

 

2.2.2.  Model Flexibility 

 One possibility for the observed bias for VP is a difference in model flexibility 

between SLOT and VP, or the amount of the data space each model can account for. For 

example, assume that we find a better fit for Model 1 over Model 2. It is temping to 

assume this means that Model 1 comes from a theoretical perspective that aligns better 

with the psychological system than Model 2, but there are two alternative possibilities. 

First, Model 1 may have more free parameters than Model 2, which is commonly 

accounted for by adding a penalty parameter to the log likelihood (e.g., AIC; Akaike, 

1973). This is not currently an issue because both models contain two free parameters, 

but will be important for Chapter 4. Second, the free parameters for Model 1 may be 

more flexible, or may be able to account for more of the data space, than Model 2. Model 

flexibility is particularly important currently because the free parameters of the SLOT 

and VP models reside in different order spaces.  
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Although model flexibility has not been implemented in the slot versus resource 

model debate, it has gained popularity in psychological research largely due to Roberts 

and Pashler’s article on the persuasiveness of a good fit (Roberts & Pashler, 2000). They 

report thousands of articles that have used a ‘good fit’ to support or reject theoretical 

models in psychological science, none of which considered the flexibility of model 

parameters. A key factor of their suggested fix for the issue is to keep models as 

parsimonious as possible and to account for model flexibility in all fits. The typical 

definition of a parsimonious model is one that gives a desired level of explanation with as 

few predictor variables as possible. It is now necessary to extend this idea to finding a 

model that gives a desired level of explanation with as little model flexibility as possible. 

After Roberts and Pashler’s article, model flexibility has been successfully used in many 

areas of research (e.g. perception, LTM; Jang, Wixted, & Huber, 2007) but has yet to 

make its way to the slot versus resource debate. 

There are several model flexibility analyses available, and it is important to 

choose one that works well for the empirical question (Veksler, Myers, & Gluck, 2015). 

For example, parameter space partitioning separates the data space into regions, and 

determines how many regions each model can account for. While this results in a 

qualitative understanding of the flexibility of the models, it does not propose a way to 

penalize the more flexible model. An alternative approach, minimum description length, 

finds an appropriate quantitative penalty term by simulating all possible datasets and 

fitting all models to be compared. While this approach would be useful for our current 
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comparison, it is not feasible within a reasonable time frame to simulate all possible 

datasets (estimated to take ~1 year without a super computer).  

Here, a model flexibility analysis is developed that will produce a penalty term to 

more flexible models and be computationally feasible allowing other researchers to use 

the technique. The analysis developed here would be classified as a model mimicry 

analysis, which investigates how each model being compared can account for each 

other’s predictions (Veksler et al., 2015). That is, if Model 1 can fit more of Model 2’s 

predictions than vise versa, then it is a more flexible model. Of the various model 

mimicry approaches, one parametric bootstrap approach proposed by Wagenmakers et al. 

allows for a rank order flexibility analysis that gives a penalty term for the more flexible 

model (Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). The current approach aligns 

closely with this proposal, with some slight modifications to match the current datasets. 

In the following explanation, SLOT and VP will be used as examples, but this 

method will work for any measurement models. The overall approach is to simulate data 

using the models in question from a parameter range observed in empirical datasets 

(rather than the entire dataspace as in minimum description length), and then find how 

well each model fits all simulated datasets. The procedure is as follows: 

1. Fit participant data with SLOT and VP and extract parameters. 

2. Using one parameter set, simulate data for both SLOT (DSLOT) and VP (DVP).  

3. Fit DSLOT and DVP with both SLOT and VP. Ideally, SLOT will fit DSLOT better 

than VP and vice versa. 
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4. Determine which model fits better for the fits to both (DSLOT) and (DVP) by 

finding the difference in AIC. Here, it is important to keep the order of the model 

fits the same (e.g. always SLOT-VP rather than VP-SLOT). To simplify the 

notation, the following will be used for the rest of the analysis (GOF will be AIC 

here): 

• ΔGOFS = GOFSLOT|DSLOT – GOFVP|DSLOT  

• ΔGOFV = GOFSLOT|DVP – GOFVPDVP 

• Note: A lower AIC indicates a better fit. Therefore, if the models are 

equally flexible, then ΔGOFS should always be negative and ΔGOFV 

should always be positive.  

5. Repeat this process M for the same parameter set (M=500 currently). 

• Due to the random sampling of simulated datasets, ΔGOFS and ΔGOFV 

may be different for each run using the same parameter set.  

6. Find the distribution of values for ΔGOFs and ΔGOFV. 

7. Find the optimal criterion, or the ΔGOF value that optimizes the choice between 

the two models given ΔGOFS and ΔGOFV. 

• The optimal criterion is the point at which you choose the correct model 

the maximum number of times across all fits. If the models are equally 

flexible, the criterion will be zero. 

8. Calculate bias as the difference between the criterion and zero (β). 

9. Include β in the model comparison results. 

• ΔAICF = ΔAIC + β 
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Again, model mimicry is attempting to find how well a model can account for another 

models predictions. If data is simulated with SLOT, that data is what SLOT predicts. 

When SLOT is fit to that simulated data, it will be a perfect fit (with some residual due to 

noise). If instead VP is fit to the same simulated data, that fit is indicative of how much of 

SLOT model predictions can be accounted for by VP. As an extreme example, if VP fits 

just as well as SLOT to data simulated by SLOT, then the measurement model VP is so 

flexible that it accounts for both models at once and is not useful to support or reject 

either model. Here the difference between model fits will be zero. As this difference 

becomes larger, the better the measurement models are able to determine which model is 

closer to the underlying truth. Due to the number of data points simulated, parameter sets 

used for simulation, and random variability from the random sampling, this difference 

term, ΔGOFS, will change for each new simulation. Now, still using a simulated dataset 

from SLOT as an example, when we plot the difference between the fits of SLOT and VP 

over M simulations (steps 5 and 6), the resulting distribution shows how much of SLOT 

model predictions can be accounted for by VP. If the peak of the distributions lies at zero, 

this suggests that VP can account for SLOT predictions as well as SLOT can. As the peak 

shifts more negative (assuming ΔGOFS = GOFSLOT|DSLOT – GOFVP|DSLOT), the worse VP 

is at accounting for SLOT predictions. Then the same procedure is done with data 

simulated with VP to find how much of VP predictions SLOT can account for. As the 

peak of this distribution becomes more positive (assuming ΔGOFV = GOFSLOT|DVP – 

GOFVPDVP), the worse SLOT is at accounting for VP predictions.  
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 With these two distributions, it is now possible to determine if there is a bias 

toward one model or the other. Using the same extreme example as above, say VP is able 

to account for SLOT predictions as well as SLOT, however SLOT is not able to account 

for VP predictions. Here, the peak for ΔGOFS will lie at zero, and the peak for ΔGOFV 

will be positive. If these distributions are used to determine when SLOT or VP is 

supported, VP will be supported much more often than SLOT, which in classic model 

fitting would be the end of the SLOT model. However, in this example, VP is so flexible 

that it cannot tell between data simulated from SLOT or VP, giving us no indication of 

which model is closer to the truth. If instead, the models were equally flexible and only 

accounted for predictions from their own model, then the peaks would be equally spaced 

across zero. That is, when data simulated by SLOT is fit, SLOT fits well and VP does 

not, and vise versa. To quantify any bias (β) between the model flexibility, the point at 

which the correct model is chosen the maximum amount of the time is calculated (often 

called the optimal criterion is signal detection theory). If β is zero, the models are equally 

flexible. If β is non-zero, then one of the two models is accounting for more of the data 

space than the other. If positive, VP is accounting for DSLOT better than SLOT is 

accounting for DVP and vice versa. Since β is in the same units as GOF (AIC in this case), 

it can simply be added to the resulting fit (Step 9) to obtain ΔAICF – the model fit 

statistic that includes model flexibility. Using ΔAICF, it is now possible to find which 

measurement model best fits the data and, by extension, which theoretical perspective is 

closer to the underlying truth. 
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2.2.3.  Simulations with model flexibility 

 The validity of the new model comparison method designed in 2.2.1 is explored 

using the same simulation results from 2.2.1. A bias term is calculated separately for each 

trial number and each parameter set, the results of which can be seen in Table 3 

(Mean=0.45, SD=0.57, Range=[-0.77, 2.01]). 

Table 3 

Model flexibility bias. 
Set Size 1 2 3 4 5 6 7 8 

Number of Trials        

110 0.67 0.90 0.67 0.09 -0.47 0.14 0.15 0.15 

120 0.84 0.75 0.93 0.15 -0.36 0.19 0.15 0.13 

130 1.00 0.68 0.63 0.24 -0.40 0.26 0.34 0.11 

150 1.02 1.11 0.78 0.00 -0.44 0.13 0.02 0.16 

320 1.14 1.40 0.78 0.34 -0.59 0.39 0.39 0.24 

800 2.02 1.65 1.13 0.04 -0.77 0.96 0.90 0.75 

Note. Values are in log likelihood units, and positive indicates a bias toward VP over 

SLOT. 

 

For the majority of trial numbers and parameter sets, β is positive as is expected due to 

the original discrepancy found between SLOT and VP fits on simulated data in 2.2.1. The 

change in β across set sizes also matches the original simulation results (Table 2) where 

the largest β value is found when MLE could recover VP better than SLOT (set size 1) 
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and the lowest β value is found when MLE could recover SLOT better than VP (set size 

5). Here, the bias term is added to the results of the simulations from 2.2.1., the results of 

which can be seen in Table 4 (MeanSLOT=85.3%, SDSLOT=8.1%, RangeSLOT=[65, 99];  

MeanVP=80.5%, SDVP=11.3%, RangeVP=[63, 100]).  

Table 4 

Model recovery results using MLE with model flexibility. 
 Set Size 1 2 3 4 5 6 7 8 

Number Trials Model         

110 
SLOT 83 94 85 77 75 84 80 85 

VP 71 73 80 73 86 64 63 70 

120 
SLOT 89 91 91 79 76 75 76 78 

VP 72 83 74 71 79 68 64 71 

130 
SLOT 93 90 91 69 86 78 73 79 

VP 80 84 81 70 81 68 65 65 

150 
SLOT 93 87 88 76 81 65 79 78 

VP 76 82 86 85 72 74 78 66 

320 
SLOT 90 93 88 91 87 87 85 87 

VP 90 95 96 95 90 79 83 82 

800 
SLOT 97 94 88 99 99 95 98 91 

VP 100 100 99 99 97 95 95 95 

Note: Numbers indicate percent correct model choice.  
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Overall, the inclusion of β in simulation results improved all fit recovery by 4.5% from 

78.5% to 83%. The model recovery for SLOT improved by 12% and the model recovery 

for VP decreased only 3.2%, supporting the use of model flexibility in the formal model 

fitting moving forward.   

 

2.3.  Discussion 

It is common to assume the literature standards for model fitting are giving results that 

can be used for theoretical support without checking. Here, it is now obvious that 

simulations are necessary before any formal model comparisons can be performed. Any 

differences in data type and model parameters may alter the ability of standard model 

comparison methods such as MLE to detect differences in theoretical models. Here, the 

difference in the order of space between SLOT and VP (with VP having free parameters 

in higher-order space) lead to a large difference in flexibility between the models. 

Simulations show this leads to an overall bias toward VP that is not indicative of any 

differences between slot and resource theoretical perspectives, but rather a difference in 

choice in measurement models. Once the penalty term for flexibility is added, not only is 

the overall performance of the model comparison method improved, but the bias toward 

VP is erased allowing for a true model comparison method. It is likely that the strong 

support found for the VP model over SLOT model found in the past e.g., (van den Berg 

et al., 2014) may no longer hold once flexibility is included. 
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Chapter 3 

3.0.  Empirical Data 

A dataset consisting of empirical data from continuous recall VWM experiments 

has been compiled previously (van den Berg et al., 2014) which will be useful currently 

to avoid replication issues. Ten datasets in total were used in the original dataset. Two of 

the papers (Anderson & Awh, 2012; Anderson, Vogel, & Awh, 2011) from which the 

data was gathered have since been retracted, and will therefore not be included here. One 

additional dataset was collected personally at UC Riverside, and the remaining 8 datasets 

were then scrutinized under the following two exclusion criteria. First, for each 

experiment, model comparison recovery and model parameter recovery using the number 

of trials included in the study must fall above 70%. Second, for each participant’s data, 

the data will not be included if, when fit with SLOT, g is above 0.8. Such a large 

guessing rate often shows clear misfits for both SLOT and VP. For the first criterion, two 

additional experiments were removed due to a low trial number (108 trials). For the 

second criterion, 10 participants were removed for low performance. All together, the 

data used currently can be viewed in Table 5.  
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Table 5 

Data summary 
Exp Article Subjects Feature Set 

Size 

Trials/SS  Eccentricity 

(Degrees) 

  Stimulus 

Duration 

(ms) 

 Delay 

1 (Wilken & Ma, 2004) 15 Color 1,2,4,8 128  7.2   100  1500 

2 (Zhang & Luck, 2008) 8 Color 1,2,3,6 125  4.5   100  900 

3 Bayes, 2009 12 Color 1,2,4,6 150  4.5   100, 500, 

2000 

 900 

9 (van den Berg et al., 

2012) 

6 Orientation 1-8 320  8.2   110  1000 

10 (Rademaker, 

Tredway, & Tong, 

2012) 

6 Orientation 3,6 800  4.0   200  3000 

11 N/A 11 Color 1,2,4,8 150  5.3   400  1000 

 

The Exp. number is kept the same as the original article for reference, where experiment 

11 is the new dataset. While all are experiments designed to test VWM, the eccentricity, 

stimulus duration, and delay all influence the results. Therefore, a multitude of values for 

these design aspects are used so any differences found between model fits will be due to 

theoretical differences, rather than experimental design. 
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3.1.  Replication  

Before using the model comparison procedure created in Chapter 2, a replication of 

previous research is important to 1) make sure our MLE procedure works properly and 2) 

give us a reference point for which our model flexibility analysis can be compared. 

It is common to fit all datasets at once rather than separately for each set size. 

There are two major ways of fitting data for all set sizes: 1) simply fit data for each set 

size and pool the results into one log-likelihood (Suchow et al., 2013) and 2) include free 

parameters that match the explanatory model across set sizes (e.g. step function versus 

power function for representation variability (see van den Berg & Ma, 2014; Zhang & 

Luck, 2008). The largest issue with the hierarchical model fitting procedure in method 2 

is the combination of highly variable data and the comparison of two very similar 

distributions – a step function and a power function. Figure 2 shows the subject-by-

subject SLOT (step function) and VP (power function) fits to SD calculated from 

empirical data from (van den Berg et al., 2012). Although VP outperforms SLOT in this 

example, simulations show this difference is not reliable (56% correct distribution chosen 

across 100 runs). Therefore the current replication will focus on method 1. 

 

Figure 2.  Graphs of SD across set size from (van den Berg et al., 2012). Black circles 

represent empirical data, and colored bands indicated fits for a) SLOT and b) VP. 
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A formal model comparison is done between SLOT and VP for the data discussed 

in 3.0. Overall, VP wins over SLOT 61% of all fits (198 total subjects) and the mean 

delta AIC value is -1.32 in favor of VP. The magnitude of the difference is smaller than 

in previous literature (mean delta AIC ~ -10; van den Berg et al., 2012; 2014) which is 

likely due to their inclusion of a lapse term, however VP clearly outperforms SLOT using 

MLE as seen previously. Figure 3 shows the mean delta AIC values by set size. As 

expected, VP outperforms SLOT at low set sizes. The model comparison is inconclusive 

at high set sizes, suggesting both models handle the data equally well. A large variability 

is seen at set size 7 due to the low participant number (only 5 datasets) and will therefore 

not be included in the current investigation. 

 

 

Figure 3. Delta AIC for VP minus SLOT for each set size. A negative value indicates a 

better fit for VP. 
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3.1.1.  Residuals 

If a misfit is found, it is important to understand what aspect of the model is 

leading to the misfit so we may better understand if it is a failure of the explanatory 

model or a misinterpretation of the measurement model. To achieve this, we observe 

residuals from fits to empirical data as well as residuals from fits to simulated data in a 

process used previously (van den Berg & Ma, 2014). If the explanatory model mimics 

underlying brain processes well, then empirical data should resemble data simulated from 

the corresponding measurement model. As no model is perfect as discussed in Chapter 1, 

the residuals found from measurement model fits to empirical data often form a pattern 

across error degrees (e.g. the common ‘mexican hat’ residual found when fitting SLOT to 

empirical data). If you see the same residual pattern when fitting that measurement model 

to simulated data, then that is support for the model used for the simulated data. This 

process with SLOT and VP includes: 

1. Fit empirical data with both SLOT and VP, extract parameters 

2. Use parameters to simulate data with both SLOT and VP 

3. Find residual pattern when fitting SLOT and VP to empirical and simulated data 

Note: Fitting SLOT to data simulated with SLOT will result in no residual, and 

likewise for VP. 

4. Compare residual patterns 
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Figure 4. Residual plots for empirical data fit with SLOT (a) and VP (b), along with 

simulated data from VP fit with SLOT (c) and simulated data from SLOT fit with VP (d). 

 

Replicating previous findings (van den Berg & Ma, 2014), the pattern of residuals 

when fitting SLOT to empirical data resembles the pattern of residuals when fitting 

SLOT to data simulated with VP (Figure 4a and 4b), yet this is not true vise versa (Figure 

4b and 4d) suggesting data simulated with VP resembles empirical data the best. It is 

possible that the observed residual pattern difference does not relate to any theoretical 

difference between slot and resource models, but rather by a choice in measurement 

model parameters. This is explored in Chapter 4. 
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3.2.  Formal model comparison 

Now that the results from previous research have been replicated, the new model 

comparison method including model flexibility is used to investigate support for SLOT or 

VP. Again, the major difference between the two models is the existence of a capacity 

limit. At low set sizes, the existence of a capacity limit is not seen; therefore the key 

comparison is SLOT versus VP at high set sizes.  

The parameters found in 3.1 are used to calculate the bias term for each subject fit 

using the procedure found in 2.2.2. That is, a new bias term will be calculated for each set 

size for each participant’s data separately. It is important to note that the inclusion of 

model flexibility does not change the fit, but rather simply penalizes models if too 

flexible. Therefore the residual results found in 3.1.1 still apply and must be addressed 

(see Chapter 4).  

 Bias calculated for each subject separately by set size can be seen in Figure 5 

(mean = 0.22, SD = 0.84, range = [-1.72, 4.39]). Again, a positive value indicates a bias 

toward VP, so VP will be penalized when the bias term is added to the GOF. The large 

range of bias values indicates the necessity of calculating bias for each dataset and 

condition separately rather than using an idealized version.  
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Figure 5.  β for each set size in log likelihood units. A positive value indicates bias 

toward VP. Error bars in SE. 

 

Overall the model comparison method is biased toward VP, especially at set size 8. 

Although the magnitude of the bias is not large, it makes a large difference in the results 

of the empirical model comparison as seen in Figure 6. 

 

 

Figure 6.  ΔAIC for model comparison between VP and SLOT for each set size. Error 

bars in SE. 
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Overall, VP wins over SLOT 58% of all fits (198 total subjects) and the mean delta AIC 

value is 0.6 in favor of SLOT. As mentioned previously, the key is to compare SLOT and 

VP fits at high set size where a capacity limit may be seen. SLOT outperforms VP at 

these high set sizes supporting the existence of a capacity limit as proposed by the slot 

theoretical model (set size 6: percent win for SLOT = 70%, mean ΔAIC = 3.00, SD ΔAIC 

= 5.00, range = [-0.96, 11.4]; set size 8: percent win for SLOT = 80%, mean ΔAIC = 

2.76, SD ΔAIC = 3.3, range = [-0.06, 7.7]). 

 

3.3.  Proportion of guessing in VP 

Since the model flexibility analysis is model mimicry, saying VP is more flexible 

than SLOT suggests that VP is able to account for more of SLOT predictions than vise 

versa. It is important to understand exactly what aspects of SLOT can be accounted for 

by VP. In particular, if VP can account for guessing due to its large flexibility, then it is 

possible to find a capacity limit within the VP model itself. It is important to note that VP 

is continuous, whereas SLOT is discrete which will make the guessing estimation differ 

between the two models. That is, for VP, as set size increases, the whole gamma 

distribution will be shifted toward a lower precision, which will affect the fits on the low-

error responses. For SLOT, the guessing parameter varies independent of the normal 

distribution avoiding the potential misfit for low-error responses.  

To find the proportion of guessing in VP, it must be understood what guessing looks 

like using normal distributions. As the standard deviation of a normal distribution is 
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increased, it will get more difficult for our model comparison method to tell the 

difference between a normal distribution and a uniform distribution. The more trials we 

have, the easier it will be to tell the difference. To determine what proportion of the 

gamma distribution is capturing a uniform distribution, we need to determine the point at 

which the model fitting procedure can no longer distinguish between a uniform and 

normal distribution. To find this point for each of the 11 datasets, the following procedure 

is used.  

1. Find the number of trials for the dataset. 

2. Simulate data for a von mises while varying the concentration parameter (in 

degrees, from 100°-180°, increment of 1°).  

3. Do a model comparison between a uniform and normal distribution for the 

simulated data.  

4. Find the threshold past which the model comparison can no longer tell the 

difference (~115°) 

5. Fit the data using VP to find the parameters for the gamma distribution. 

6. Find the proportion of trials that are captured by the gamma distribution below the 

threshold found in (4).  

 

The results are seen in Figure 7. As expected, the proportion of trials that fall below the 

threshold increases once set size is above 4. For low set sizes, very little of the gamma 

distribution falls below the threshold, which indicates participants are remembering the 

majority of the colors. At set size 5 and higher, we find capacity limitations. Due to the 
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continuous nature of the VP model, the estimated capacity is lower than what is found 

using SLOT model, though not unreasonable compared to previous literature (Zhang & 

Luck, 2008). 

 

 

Figure 7. Proportion guessing estimate from VP fits for each set size.  

 

3.4.  Non-parametric MLE (NPMLE) 

 Measurement models of explanatory models are useful for formal model 

comparison but may lead to conclusions based on aspects of the model that are not part of 

the explanatory models (see Chapter 4 for an example of this issue). It is therefore useful 

to ask the primary question of interest, the existence of a capacity limit in WM, without 

assuming a measurement model. To do so, an estimation of the proportion of trials 

accounted for by a uniform distribution is found non-parametrically. The NPMLE 

method used is similar to the VP measurement model, in that the resulting model is a 

mixture model consisting of many von Mises distributions. Unlike the VP model, the von 

Mises distributions are added to the mixture distribution one at a time with variable 
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precision (as a free parameter). In this way, the precision estimates are discrete and may 

very independently of each other.  

A constrained Newton method with multiple supports has been shown to allow 

fast computation of the non-parametric MLE in circular space (Wang, 2007), and is used 

here. The means of the von Mises distributions are constrained to zero, such that the only 

free parameter is the precision of the distributions. For each dataset, the concentration 

parameters (kappa) and the proportion of data captured by the corresponding von Mises 

distributions (pi) are calculated. Note that a lower pi indicates a wider von Mises 

distribution, with pi=0 indicating infinite width (a uniform distribution). Across all 

experiments and subjects, the fitting procedure converged after adding 2-6 von Mises 

distributions. That is, after adding 2-6 von Mises distributions, adding more did not 

significantly improve fits and the fit converged. With so few distributions, the NPMLE 

method cannot be used to determine whether the empirical data stems from a continuous 

or discrete mechanism, and therefore cannot test between SLOT and VP directly. 

However, it can be used to find the proportion of guessing trials without assuming a 

measurement model. 
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Figure 8. a) NPMLE results for empirical data from set size 1, 4 and 8.  b) Estimated 

mean pi for kappa=0 by set size. c) Estimated capacity by set size. Note: All error bars in 

standard error. 

 

As seen in Figure 8a and 8b, the proportion of data captured by a kappa=0 

increases as set size increases. Non-zero values are highly variable as expected with 

individual differences between participants. Capacity is estimated using (1-

(pi|kappa=0))*SS resulting in a capacity of ~4 from set sizes 5 – 8 (Figure 8c). If there 

was no capacity limit and all items were contained in memory, the low-resolution trials 

could be captured by non-zero kappa. Using NPMLE, it is found that the high error 

responses do require a uniform distribution to be captured, supporting the existence of a 

capacity limit as theorized by the slot model. 
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3.5.  Discussion 

Chapter 3 compared the slot and resource theoretical models using several 

different methods. The key difference between the theoretical models is a capacity limit, 

where slot predicts a limit on capacity, and the resource model does not. Using 

continuous-recall VWM experiments, any capacity limit of the VWM system would 

manifest as a uniform distribution across circular space. Therefore the current formal 

model comparison focused on the need for a uniform distribution to capture empirical 

data, particularly at high set sizes above participant capacities.  

Support for the VP model over SLOT is first found using a simple MLE formal 

model comparison, replicating past results (van den Berg et al., 2012; van den Berg & 

Ma, 2014). Observing fits for each set size, the major issue is the SLOT model’s inability 

to handle data from low set sizes, where there is no clear support for either model at 

higher set sizes. This is also observed in the pattern of residuals from SLOT and VP fits 

to empirical data. The SLOT residuals show a clear patter at low set sizes, with the 

largest residual (error in fit) at zero degrees error, while VP has lower residuals overall. 

Together, these results suggest both SLOT and VP are able to fit high error responses, but 

VP is better equipped to capture variability in low error responses. In addition, when data 

is simulated with VP, the residual pattern from SLOT fits is once again observed 

suggesting VP is capturing the underlying VWM mechanism. 

Simulations from Chapter 2 suggest that VP is more flexible than SLOT, giving it 

an unfair advantage in model comparison. A bias term is therefore added to the model fits 

that allows for a fair comparison between SLOT and VP. With this bias term included, 
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SLOT now outperforms VP at high set sizes supporting the need for a uniform 

distribution when the set size is above participants’ capacity limit. The need for a uniform 

distribution can also be found using VP, where some of the normal distributions included 

in the VP mixture model have widths so wide that they are indistinguishable from a 

uniform distribution. Looking at the proportion of trials that are captured by these wide 

normal distributions, a capacity is observed that resembles what is seen in the literature 

(Zhang & Luck, 2008). 

Finally, the need for a uniform distribution to capture continuous-report VWM 

empirical data is explored non-parametrically, without assuming any theoretical model. 

This is important because a measurement model may lead to unforeseen issues due to 

choices in free parameters that do not have anything to do with the theoretical models. 

Using the NPMLE approach, support is again found for the need of a uniform 

distribution. 

All together, strong support is found for the need of a uniform distribution, and by 

extension the need for a capacity limit, using three separate methods. However, the VP 

model still outperforms the SLOT model overall, but this is not due to the inclusion of a 

uniform distribution. Therefore the normal distribution of the SLOT model must be 

updated to capture empirical data, which is explored in Chapter 4.  
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Chapter 4 

4.0.  Slot with variability (SLOTv) 

The original measurement model for the slot model (SLOT) has lead to 

misinterpretations of the explanatory model due to the lack of the term for variability of 

memory representations. VP assumes this variability stems from noisy memory 

representations, and accounts for the variability using a mixture of many normal 

distributions with varied precision. VP has been compared to SLOT, which accounts for 

memory representation noise using one normal distribution. The decision to use one 

normal distribution in SLOT was not reflecting a theoretical viewpoint that internal 

representations may not vary in precision, but was rather a simple statistic that reflected 

average memory precision across memory items and experimental trials. Therefore any of 

the improvements in the performance of VP compared to SLOT may be due to the lack of 

variability, rather than investigating the true difference between the two explanatory 

models. Instead, a measurement model needs to be created that investigates the major 

theoretical difference between the two models: is there a capacity limit in VWM? The 

slot-model assumes there is, where any memory items that are not collected by the 

limited number of slots are lost. VP assumes no capacity limit to working memory, where 

all items are retained until retrieval. 

To test for a capacity limit, an updated measurement model for the slot-model is 

needed that captures both the capacity limit as a uniform distribution and the variability 

of memory representations (SLOTv). By comparing SLOTv to SLOT, we can directly 

investigate whether or not the addition of variability to the measurement model is 
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necessary. Next, by comparing SLOTv to VP, we investigate whether or not a capacity 

limit is beneficial to describe working memory performance. As discussed above, the VP 

measurement model may also include a uniform distribution by allowing precision values 

of zero. The key difference between SLOTv and VP, then, is the independence between 

the variability of memory representations and the uniform distribution. If this 

independence more accurately represents the underlying WM mechanism, we expect 

SLOTv to outperform VP at high set size. As seen with SLOT in Chapter 3, at low set 

sizes the uniform distribution will not benefit model fits.  

 

4.1.  SLOTv Measurement model 

The new measurement model for the slot model (SLOTv) contains a normal 

distribution in precision space that is sampled from to allow for variability of in memory 

responses. A normal distribution is used because the free parameters of the normal 

distribution, mean and standard deviation, have psychological meaning: the mean 

indicating the overall VWM precision of the participant and the standard deviation 

indicating the overall variability of the VWM representations. Three parameters are used, 

one for the uniform distribution and a mean and standard deviation of the normal 

distribution. SLOTv is formally defined as: 

 

p(x |µ) = (1− g)* VM (x;µ,k)dk∑ + g 1
2π

 where k ~ N(m,σ )  

 

where m and σ are the mean and standard deviation of the normal distribution from which 
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precision is sampled from. SLOTv therefore has three free parameters: g, m, and σ. The 

addition of an extra free parameter may lead to overfitting, which will be accounted for 

by the penalty term in AIC (Akaike, 1973). 

 

4.2.  Residuals 

In section 3.1.1, a residual pattern was found when fitting SLOT to data simulated 

with VP that resembled the residual pattern when fitting SLOT to empirical data, yet this 

was not true when fitting VP to data simulated with SLOT. The observed residual pattern 

resides within the range -60° to 60° suggesting the issue is with describing low error 

responses, or the single normal distribution in SLOT. As discussed above, an updated 

version of SLOT, SLOTv, is better equipped to handle variability in memory 

representation while retaining the primary theoretical viewpoint – a capacity limit. An 

identical procedure used in 3.1.1 is used again now including three models: SLOT, VP 

and SLOTv. The results can be seen in Figure 9. 
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Figure 9.  Residual plots of model fits including SLOT (first column) SLOTv (second 

column) and VP (third column) to empirical data (first row) and data simulated with 

models including SLOT (second row) SLOTv (third row) and VP (fourth row). 

 

Several key results are found in the residual patterns. First, the ‘Mexican hat’ 

residual pattern seen when fitting SLOT to empirical data is not evident when fitting 

SLOTv to empirical data. Second, SLOT fits to data simulated with both SLOTv and VP 

show the same Mexican hat pattern, suggesting both models accurately represent 

empirical data. 
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4.3.  Formal model comparison 

 A bias term is calculated using the same procedure as used in section 2.2.2 for 

SLOTv versus SLOT and for SLOTv versus VP. Results are seen in Figure 10 with a 

larger value indicating a bias toward SLOTv. 

 

 

Figure 10.  β for a) SLOTv versus SLOT and b) SLOTv versus VP. Note a larger value 

indicates a bias toward SLOTv. 

 

A bias toward SLOTv is found when compared to SLOT (Figure 10a). This bias is 

similar to the bias toward VP found in Chapter 3.2, but with a smaller magnitude likely 

due to the AIC penalty term for the number of free parameters. Interestingly, nearly no 

bias is found comparing SLOTv and VP, suggesting the AIC penalty term penalized 

SLOTv for the third parameter to an appropriate extent. Without the addition of a 

uniform distribution, SLOTv and VP are nearly identical models, which results in no bias 

observed. Due to the variability of the bias and the value of including model flexibility in 
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formal model comparison seen in Chapter 2, the bias terms will be included in the current 

formal model comparison. 

Using the bias term, a formal model comparison is performed first comparing 

SLOT and SLOTv to determine if the addition of another free parameter to allow for 

variability for in-memory representations is necessary. Overall, SLOTv wins over SLOT 

63.3% of the time. As seen in Figure 11, the only clear advantage that SLOTv has over 

SLOT is at low set sizes (set size 1: percent win for SLOTv = 74%, mean ΔAIC = -5.5, 

SE ΔAIC = 1.24, range = [-27.1, 2.4]; set size 2: percent win for SLOT = 67%, mean 

ΔAIC = -4.0, SE ΔAIC = 1.0, range = [-19.2, 2.1]). At higher set sizes, the addition of the 

third free parameter does not improve SLOTv fits enough for it to overcome the penalty 

added for the free parameter in AIC. The results suggest the addition of the third free 

parameter in SLOTv improves the model performance at low set sizes, and does not 

impair model fits at high set sizes, suggesting it is preferred as the new measurement 

model for the slot theoretical model. 

 

Figure 11.   ΔAIC for model comparison between SLOTv and SLOT for each set size. 

Error bars in SE. 
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Since the addition of the extra free parameter is found to be necessary in the 

measurement model for the slot theoretical model, SLOTv is now compared to VP. 

Overall, SLOTv outperforms VP 93% of fits. No difference in fits is observable at low 

set sizes, but SLOTv clearly outperforms VP at high set sizes as seen in Figure 12b. A 

side-by-side comparison between SLOT-VP and SLOTv-VP shows the value of adding 

variability to the measurement model. Originally, VP outperformed SLOT at low set 

sizes and SLOT outperformed VP at high set sizes. Now, with the updated measurement 

model, SLOTv and VP show similar fits at low set size but again SLOTv outperforms VP 

at high set size. All together these results suggest 1) variability must be included in 

measurement models to account for in-memory representations and 2) a uniform 

distribution is needed to account for high set size conditions supporting the existence of a 

capacity limit.  

 

 

Figure 12.   ΔAIC for model comparison between a) SLOT and VP and b) SLOTv and 

VP for each set size. Error bars in SE. 
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4.4.  Discussion 

Creating measurement models forces researchers to be very specific about what 

each aspect of the model represents using free parameters. The difference between SLOT 

and SLOTv is a good example of how these choices may lead to incorrect conclusions. 

Originally, in-memory representations were captured by a single normal distribution that 

acted as a mean precision statistic. VP capitalized on this use by creating a largely 

flexible model that allowed for in-memory variability and found it outperformed SLOT 

(van den Berg et al., 2012; van den Berg & Ma, 2014). 

However the slot theoretical model makes no claims about a lack of variability in 

memory representations, so the original model fits did not support any theoretical 

differences in the theoretical models. Here, the updated measurement model SLOTv 

solves this issue by allowing for variability in the free parameters while retaining a 

capacity limit parameter. It outperforms SLOT suggesting that in-memory representations 

have variability that does not resemble a single uniform distribution, and also 

outperforms VP supporting the existence of a capacity limit.   
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Chapter 5 

5.0.  Discussion 

Several lines of research are used to investigate the primary difference between 

the slot and resource theoretical models: is there a capacity limit in VWM? The majority 

of the current dissertation focuses on two primary measurement models for slot and 

resource models (SLOT and VP, respectively). When model flexibility is appropriately 

penalized, a large benefit is found for the inclusion of a capacity limit in the measurement 

models. This finding is supported by determining the proportion of VP that captures a 

capacity limit, which follows the same pattern as proposed by the slot model. Even when 

no model is assumed using a non-parametric approach, the data requires a capacity limit 

to be fit appropriately.  Finally, an updated version of SLOT, named SLOTv, is created 

that more accurately represents the slot theoretical model. In formal model comparison, 

SLOTv outperforms VP at high set sizes and removes the residual pattern observed using 

SLOT, again adding support for a capacity limit in VWM. 

 

5.1.  Future research 

The slot model predicts independence between capacity, which relies on the number of 

slots, and memory precision for the representations within the slots. Resource models 

assume there is no set capacity limit, and any guessing we see is due to low precision 

representations. Therefore it is important to test if we can manipulate the capacity and 

resolution of memory representations independently. This is not novel, and has been used 

to support the slot model previously e.g. (Zhang & Luck, 2008). Consolidation masking, 



 48 

where a mask is displayed after the offset of the memory array to interrupt consolidation 

of working memory representations, decreases the number of items encoded while 

leaving the precision of the memory representations intact. On the other hand white noise 

masking, a noise mask presented with the memory array, decreases memory precision but 

does not affect the number of items encoded. However, resource models may account for 

these differences using a flexible measurement model such as VP. When VWM is 

manipulated using these paradigms, the gamma distribution may be able to shift and 

continue to describe the data. To get around this issue, the neural systems that are 

involved in capacity and resolution can be investigated. If support is found for 

independent brain systems for capacity and resolution, it will be strong support for the 

slot model. 

 

5.1.1.  Neural mechanism behind working memory capacity 

Historically, working memory representations were thought to be retained as sustained 

neural activity due to the persistent neural firing observed during the delay interval of a 

working memory task in the prefrontal cortex (Fuster & Alexander, 1971), the 

inferotemporal cortex (Fuster & Jervey, 1982), and parietal cortex (Todd & Marois, 

2005).  The sustained neural activity in the parietal cortex can even be used to predict 

working memory capacity (Todd & Marois, 2005), however the growing consensus is 

that the capacity of working memory is dependent on multiple brain regions (Eriksson, 

Vogel, Lansner, Bergström, & Nyberg, 2015; Postle, 2015). 
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One prominent theory for the mechanism behind the limited capacity observed in 

visual working memory focuses on neural oscillations between the parietal lobe and 

frontal cortex (Raffone & Wolters, 2001). In this model, oscillations in the alpha range 

between the parietal lobe and frontal cortex carry active working memory 

representations. If the phase of these oscillations match, then the two representations will 

combine into one, effectively decreasing the capacity of the system by one representation. 

Through simulations, Raffone & Wolters show that there can only be 3-4 simultaneous 

oscillations at a time before they begin to phase lock, which results in the capacity limit 

of three to four items as observed behaviorally (Luck & Vogel, 1997).  

 

5.1.2.  Neural mechanism behind working memory precision 

Two primary models have been proposed to account for working memory precision. 

First, the neural noise hypothesis is a neural instantiation of the resource model, and 

attributes all limitations found in working memory to randomness in neural spiking 

(neural noise; Bays, 2015). Each working memory representation is retained as the 

sustained firing of an ensemble of neurons, where each neuron in the ensemble 

contributes to one preferred feature (e.g. vertical orientation). Each individual neuron’s 

activity is related to the activity a large population of neurons due to interconnections, 

called normalization. As more neurons are active (i.e. as the set size increases), each 

neuron becomes more normalized resulting in less precision as observed behaviorally 

(Zhang & Luck, 2008). However, this model cannot account for the capacity limit 

observed in working memory performance.  
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 Second, the sensory recruitment hypothesis assumes working memory 

representations ‘recruit’ the same sensory neurons that were used to encode them while 

they are being retained over a delay. This recruitment results in the precision of the 

working memory representation. Previous research has found that you can decode the 

contents of working memory during the delay interval as early as V1 (for orientation 

bars), suggesting these areas are still active during the delay interval (Ester, Anderson, 

Serences, & Awh, 2013; Harrison & Tong, 2009). However, the precision of perception 

or sensory memory does not seem to predict the precision of working memory at the 

behavioral level (Brady, Konkle, Gill, Oliva, & Alvarez, 2013; Cappiello & Zhang, 

2016), suggesting another mechanism is needed. 

One candidate for this mechanism suggested by the hippocampus-precision 

hypothesis, is the pattern separation computation in the hippocampus. A large literature 

has investigated the ability to discriminate similar long-term memory representations, and 

strong support has been found for a mechanism that converts population codes coming 

from sensory areas into sparse codes in the hippocampus e.g. (S. M. Stark, Yassa, Lacy, 

& Stark, 2013; Yassa & Stark, 2011) . This pattern separation computation could also 

help keep working memory representations separate, and would give each representation 

precision.  

 

5.1.3.  Research opportunity 

The ongoing debate on VWM mechanisms does not shed a clear light on whether there 

are separate neural mechanisms for capacity and resolution. However, the theoretical 
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viewpoints discussed above suggest an opportunity for neural manipulation that may 

dissociate these two aspects of VWM. One option for such and investigation is using 

non-invasive brain stimulation (NIBS) to modulate areas that are thought to be involved 

in VWM capacity and resolution. NIBS has become a common way to find causal 

relationships between brain region and function (Nitsche et al., 2008). These techniques 

are relatively new, and a full understanding of the mechanism behind any observed 

effects has not been reached. Transcranial direct current stimulation (tDCS) and 

transcranial alternating current (tACS) use low voltage electric currents to modulate 

neural activity. tDCS has been found to facilitate transsynaptic activity of the stimulated 

region in cats even in deep brain tissues (Bolzoni, Pettersson, & Jankowska, 2013). It is 

therefore a useful tool for manipulating the activity in deep brain structures, unlike other 

NIBS such as transcranial magnetic stimulation. tACS has been shown to entrain brain 

oscillations at low and high frequencies in the animal model (Reato, 2013) by affecting 

excitability, shifts in spike timing, and modulation of firing rate. 

 If the neural oscillation theory for VWM capacity is true, then tACS in the 

parietal lobe should modulate VWM capacity but not precision. Likewise, if the 

hippocampus-precision hypothesis is true, then anterior temporal lobe tDCS should 

modulate VWM precision but not capacity. Preliminary results show this is the case, with 

parietal lobe tACS decreasing VWM capacity, and ATL tDCS decreasing precision. 

However, due to the widespread effect of tACS and tDCS, it is difficult to know exactly 

what part of the brain being manipulated is resulting in the observed VWM effects. 
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Therefore more research is needed to become confident in the separate capacity and 

resolution mechanisms for VWM. 

 

5.1.4.  Alternative computational models of VWM 

An alternative account for VWM limitation has recently been proposed called the 

interference model (IM; Oberauer & Lin, 2017). IM proposes all observed working 

memory limitations are due to variable precision of the in-memory representations and 

interference between the memory representations at retrieval (Oberauer & Lin, 2017). 

Similar to resource models, the interference model predicts all memory items are stored 

simultaneously, however IM predicts one representation is in focus of attention and the 

rest in active long-term memory. During retrieval, the context of the cue may target 

multiple stored representations for response, which leads to interference and decreased 

performance. As set size increases, the likelihood of the interference increases resulting 

in the observed working memory limitation.  

SLOT, IM, and VP have been compared in a formal model comparison (Oberauer 

& Lin, 2017), however this model comparison used the original version of the slot-model, 

with one normal and one uniform distribution, and did not address model flexibility. It is 

therefore important to redo the formal model comparison using the techniques and 

models created in this dissertation. However IM requires 6 parameters, which requires a 

larger number of trials for each condition to appropriately compare the models (~1000 

trials per condition based on simulations).  
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It is also possible to investigate IM experimentally. According to IM, all guessing 

is due to interference at retrieval. If this is true, then VWM of items from difference 

features (mixed condition; e.g. color and shape) should show a higher capacity than those 

from the same features (non-mixed condition; e.g. color only). Even if this is the case, 

however, it may be due to differences between the memory items at encoding rather than 

interference at retrieval. Instead, CDA could be measured to determine if all items are 

maintained during the delay interval. 
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