
UC Berkeley
UC Berkeley Previously Published Works

Title
A canonical form of the equation of motion of linear dynamical systems

Permalink
https://escholarship.org/uc/item/4xf124x7

Journal
Proceedings of the Royal Society A, 474(2211)

ISSN
1364-5021

Authors
Kawano, Daniel T
Salsa, Rubens Goncalves
Ma, Fai
et al.

Publication Date
2018-03-01

DOI
10.1098/rspa.2017.0809
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xf124x7
https://escholarship.org/uc/item/4xf124x7#author
https://escholarship.org
http://www.cdlib.org/


rspa.royalsocietypublishing.org

Research
Cite this article: Kawano DT, Salsa RG Jr, Ma
F, Morzfeld M. 2018 A canonical form of the
equation of motion of linear dynamical
systems. Proc. R. Soc. A 474: 20170809.
http://dx.doi.org/10.1098/rspa.2017.0809

Received: 22 November 2017
Accepted: 5 February 2018

Subject Areas:
mechanical engineering

Keywords:
linear systems, equations of motion,
decoupling, viscous damping

Author for correspondence:
Fai Ma
e-mail: fma@berkeley.edu

A canonical form of the
equation of motion of linear
dynamical systems
Daniel T. Kawano1, Rubens Goncalves Salsa Jr2,

Fai Ma2 and Matthias Morzfeld3

1Department of Mechanical Engineering, Rose-Hulman Institute of
Technology, Terre Haute, IN 47803, USA
2Department of Mechanical Engineering, University of California,
Berkeley, CA 94720, USA
3Department of Mathematics, University of Arizona, Tucson,
AZ 85721, USA

FM, 0000-0002-2583-9633

The equation of motion of a discrete linear system
has the form of a second-order ordinary differential
equation with three real and square coefficient
matrices. It is shown that, for almost all linear
systems, such an equation can always be converted
by an invertible transformation into a canonical
form specified by two diagonal coefficient matrices
associated with the generalized acceleration and
displacement. This canonical form of the equation
of motion is unique up to an equivalence class for
non-defective systems. As an important by-product, a
damped linear system that possesses three symmetric
and positive definite coefficients can always be recast
as an undamped and decoupled system.

1. Introduction
The equation of motion of linear systems is one of
the most commonly used equations in science and
engineering. This equation possesses three real and
square coefficient matrices of the same order, and the
properties of the coefficient matrices allow the system
concerned to be classified. For example, an undamped
gyroscopic system possesses a skew-symmetric coefficient
of velocity [1]. If a system is elastic and non-circulatory,
then the coefficient of displacement is symmetric. And
so one may go on. Of particular significance is the
class of non-gyroscopic, non-circulatory, passive systems

2018 The Author(s) Published by the Royal Society. All rights reserved.
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characterized by three constant, symmetric and positive definite matrices. For brevity, this class
of systems is referred to as passive or as damped linear systems. There should be no denying
that the bulk of existing literature on linear vibration and structural dynamics deals implicitly or
explicitly with passive systems.

It is well known that the equation of motion of a single-degree-of-freedom passive system
can be converted into an undamped system by an invertible transformation. For a multi-degree-
of-freedom passive system, this reduction poses a challenge because the equation of motion is
usually coupled. The reduction is still permissible under the assumption of classical damping,
whereby a passive system can be decoupled by modal analysis into a series of independent
single-degree-of-freedom systems. In general, passive systems are non-classically damped, and
reduction of the equation of motion of such systems has not been reported in the open
literature.

The purpose of this paper is to show that almost all linear systems can be transformed so as to
eliminate the coefficient of velocity from their equations of motion. In addition, the remaining two
coefficient matrices can be reduced to diagonal forms. This paper builds upon earlier works [2–5]
in the decoupling of linear systems. The original impetus was to show that any passive system
can be transformed into an undamped one, an important result that has become an offshoot.
The organization of the paper is as follows. In §2, the reduction of the equation of motion to
a canonical form specified by two diagonal matrices is formulated in mathematical terms and
previously known results are reviewed. This is followed in §3 by a concise exposition of an
extension of modal analysis to decouple non-defective linear systems in real space. In §4, an
explicit transformation to generate the canonical form of the equation of motion of non-defective
systems is developed. The reduction of defective linear systems is treated in §5. A summary of
findings is provided in §6. Two numerical examples are supplied for illustration.

2. Problem formulation
The equation of motion of an n-degree-of-freedom linear system can be written as

Mq̈ + Cq̇ + Kq = f(t), (2.1)

where M, C and K are arbitrary but real n × n matrices. The generalized coordinate q and the
excitation f(t) are n-dimensional column vectors. It is not assumed that M, C and K possess the
familiar properties of symmetry and definiteness, and thus equation (2.1) represents the so-called
linear non-conservative systems [6]. However, M is assumed non-singular. This assumption is not
unduly restrictive, as it might be possible to initially decrease the number of degrees of freedom to
ensure that M is non-singular. It will be shown that equation (2.1) can be reduced, by an invertible
transformation, to the real decoupled form

ẍ + Bx = h(t), (2.2)

where B is a diagonal matrix, and the generalized displacement x and excitation h(t) are n-
dimensional column vectors. Basically, a transformation will be found to convert M and K into
diagonal matrices while removing Cq̇ at the same time. The canonical form specified by equation
(2.2) is the simplest representation of linear dynamical systems.

When M, C and K are symmetric and positive definite, they are referred to as the mass,
damping and stiffness matrices, respectively. In this case, the system is termed a passive or
damped linear system. It is well known that passive systems either of a single degree or under
classical damping can be reduced to an undamped form. Should equation (2.1) represent a
single-degree-of-freedom system, it may be rewritten as

mq̈ + cq̇ + kq = f (t), (2.3)
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where m, c and k are just real numbers. Using the invertible transformation [7,8]

y = exp
( c

2m
t
)

q, (2.4)

it can be readily verified that equation (2.3) is converted into

ÿ +
(

k
m

− c2

4m2

)
y = 1

m
exp

( c
2m

t
)

f (t). (2.5)

This undamped form is sometimes referred to as the normal form of a single-degree-of-freedom
system. Perhaps it would not be surprising that transformation to an undamped form involves
an exponential factor. In free vibration, the response q decays exponentially with any amount of
viscous damping. This decay is arrested by the exponential term in equation (2.4), which also
exponentially magnifies the excitation of y in equation (2.5).

If a passive system is classically damped, then it can be decoupled by modal analysis into a
series of independent single-degree-of-freedom systems. A necessary and sufficient condition [9]
under which a passive system is classically damped is

CM−1K = KM−1C. (2.6)

Proportional damping is just a special case of classical damping. Associated with a passive system
is the symmetric eigenvalue problem

Ku = λMu. (2.7)

Owing to the positive definiteness of M and K, all eigenvalues λj (j = 1, 2, . . . , n) are real and
positive, and the corresponding eigenvectors uj are real and orthogonal with respect to either M
or K. Denote the n × n modal and spectral matrices, respectively, by

U =
[
u1 u2 · · · un

]
, Ω = diag[λ1, λ2, . . . , λn]. (2.8)

Upon normalization of the eigenvectors with respect to the mass matrix, the generalized
orthogonality of the eigenvectors can be expressed as

UTMU = I, UTKU = Ω . (2.9)

Using the modal transformation q = Up, where p is an n-dimensional vector of principal
coordinates, a passive system represented by equation (2.1) can be converted into

p̈ + Dṗ + Ωp = UTf(t), (2.10)

for which the modal damping matrix D = UTCU is diagonal under classical damping. To
eliminate the damping term in equation (2.10), apply the transformation

y = exp
(

1
2

Dt
)

p. (2.11)

Observe that exp(Dt/2) is a diagonal matrix. Upon transformation, equation (2.10) is converted
into

ÿ +
(

Ω − 1
4

D2
)

y = exp
(

1
2

Dt
)

UTf(t). (2.12)

The original system becomes undamped and decoupled with respect to the coordinate y, which
is connected with q by

q = U exp
(

−1
2

Dt
)

y. (2.13)

The key to successful reduction of the equation of motion of classically damped linear systems,
as described earlier, is decoupling in real space. In general, there is no reason why equation
(2.6) should be satisfied for modal analysis to be applicable. Indeed, experimental modal testing
suggests that no physical system is strictly classically damped [10]. The reduction of non-
classically damped systems to an undamped form has not been reported in the open literature. In
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this connection, an attempt was made to reduce the equation of motion of damped gyroscopic
systems, for which only the coefficient matrix C is non-symmetric, to a form devoid of the
velocity term [11]. In addition, the possibility of decoupling equation (2.1) by a time-invariant
linear transformation (analogous to modal analysis) was examined [12]. It has been found that a
condition equivalent to equation (2.6) is required in both cases.

3. Generalization of modal analysis
Recently, modal analysis has been extended such that almost all linear systems can be decoupled
in real space [2–5]. Specifically, a real and invertible transformation has been determined to
convert equation (2.1) into

p̈ + Dṗ + Ωp = g(t), (3.1)

for which the n × n coefficient matrices D and Ω are real and diagonal. Unless equation (2.1)
represents a classically damped passive system, D and Ω are not the same as the modal damping
and spectral matrices, respectively. There are no scientific restrictions on this extension of modal
analysis, which is termed the method of phase synchronization. All parameters required for
decoupling are obtained through the solution of the quadratic eigenvalue problem

(Mλ2 + Cλ + K)v = 0. (3.2)

The system represented by equation (2.1) is said to be non-defective when every repeated
eigenvalue of equation (3.2) possesses a full complement of independent eigenvectors. To
streamline the presentation, it is assumed that all eigenvalues of equation (3.2) are distinct, which
guarantees that the system concerned is non-defective. Relaxation of this assumption to include
defective systems, which must possess repeated eigenvalues, will be considered in a subsequent
section. Perhaps an alternative viewpoint on repeated eigenvalues should be brought up. If M, C
and K are randomly chosen from a uniform distribution, the probability that all eigenvalues of
equation (3.2) are distinct is one [2]. In this sense, almost all linear systems are characterized by
distinct eigenvalues.

(a) Methodology for decoupling non-defective systems
To provide a concise exposition, an implementation1 of phase synchronization to decouple non-
defective systems with distinct eigenvalues is summarized as a series of tasks. The theory of
phase synchronization is expounded in [2–4], and formulas provided in [4] are drawn upon in
this presentation.
Task 1. Solve the quadratic eigenvalue problem (3.2) and index the eigensolutions.

There are 2n eigensolutions, and any complex eigensolutions occur in complex conjugate pairs.
Suppose 2c eigenvalues are complex and the remaining 2r = 2(n − c) are real. The c complex
eigenvalues with positive imaginary parts are arranged in order of increasing magnitude of their
imaginary parts as the first c eigenvalues such that

S1 = {λ1, λ2, . . . , λc : 0 < Im[λ1] ≤ Im[λ2] ≤ · · · ≤ Im[λc]}. (3.3)

Since Im[λj] can often be regarded as a frequency of vibration, this is consistent with the
convention of arranging frequencies in order of increasing magnitude. Enumerate the remaining
c complex eigenvalues, which are the complex conjugates with negative imaginary parts, in such
a way that

S3 = {λn+1 = λ̄1, λn+2 = λ̄2, . . . , λn+c = λ̄c}. (3.4)

Thus, S1 ∪ S3 contains the entire set of 2c complex eigenvalues. The real eigenvalues are arranged
in accordance with a primary–secondary pairing scheme [3]. Among the 2r real eigenvalues, the
r largest eigenvalues are referred to as primary eigenvalues and the r smallest eigenvalues are

1A computer program for decoupling linear systems is available upon request.
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termed secondary eigenvalues. Enumerate the r real secondary eigenvalues in order of increasing
magnitude such that

S2 = {λc+1, λc+2, . . . , λn : λc+1 < λc+2 < · · · < λn}. (3.5)

Enumerate the remaining r real primary eigenvalues also in order of increasing magnitude so that

S4 = {λn+c+1, λn+c+2, . . . , λ2n : λn+c+1 < λn+c+2 < · · · < λ2n}. (3.6)

Thus, S2 ∪ S4 contains the entire set of 2r real eigenvalues under the constraint that sup S2 < inf S4.
The 2n eigenvalues are partitioned into four disjoint subsets. A different indexing scheme for the
eigensolutions may be used, subject to the requirement that complex conjugate eigensolutions are
always paired.
Task 2. Normalize the eigenvectors of equation (3.2).

After the eigensolutions have been indexed, the 2n eigenvectors are normalized in accordance
with

2λjv
T
j vj + vT

j Cvj = λj − λn+j (3.7)

and
2λn+jv

T
n+jvn+j + vT

n+jCvn+j = λn+j − λj (3.8)

for 1 ≤ j ≤ n. The above normalization reduces to mass-normalization for undamped or classically
damped passive systems [10,13]. This task is optional, and a different scheme for normalizing the
eigenvectors may also be used.
Task 3. Construct the decoupled equation (3.1) using the eigenvalues and eigenvectors of equation (3.2).

Using the indexed eigensolutions, assemble the following n × n matrices:

Λ1 = diag[λ1, λ2, . . . , λn], Λ2 = diag[λn+1, λn+2, . . . , λ2n] (3.9)

and
V1 =

[
v1 v2 · · · vn

]
, V2 =

[
vn+1 vn+2 · · · v2n

]
. (3.10)

The real and diagonal coefficients of equation (3.1) are given by

D = −(Λ1 + Λ2), Ω = Λ1Λ2. (3.11)

The excitation g(t) of equation (3.1) is given in terms of f(t) by

g(t) =
(

D + I
d
dt

)
G1f(t) + G2f(t), (3.12)

where G1 and G2 are real n × n matrices computed in accordance with

G1 = [(V1Λ1 − V2Λ2V−1
2 V1)−1 + (V2Λ2 − V1Λ1V−1

1 V2)−1]M−1 (3.13)

and
G2 = [Λ1(V1Λ1 − V2Λ2V−1

2 V1)−1 + Λ2(V2Λ2 − V1Λ1V−1
1 V2)−1]M−1. (3.14)

Task 4. Construct the real decoupling transformations in the configuration and state spaces.
Assemble the following real n × n matrices:

T1 = (V1Λ2 − V2Λ1)(Λ2 − Λ1)−1, T2 = (V2 − V1)(Λ2 − Λ1)−1. (3.15)

The configuration-space decoupling transformation can be expressed as

q =
(

T1 + T2
d
dt

)
p − T2G1f(t). (3.16)

When cast in the state space, the decoupling transformation takes the form[
p(t)

ṗ(t)

]
= S

[
q(t)

q̇(t)

]
+
[

0
G1f(t)

]
, (3.17)
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where the 2n × 2n real and invertible matrix S is given by

S =
[

I I

Λ1 Λ2

][
V1 V2

V1Λ1 V2Λ2

]−1

. (3.18)

The upper half of equation (3.17) yields a configuration-space mapping from q to p that is an
inverse of equation (3.16). When t = 0, equation (3.17) generates the initial values p(0) and ṗ(0)
of equation (3.1). The decoupling transformations in both the configuration and state spaces are
nonlinear for non-homogeneous systems and linear for homogeneous systems.

(b) Relationship with modal analysis
The decoupling procedure expounded earlier is a direct extension of modal analysis. If equation
(2.1) represents an undamped passive system with a mass-normalized modal matrix U, then the
eigenvectors of equation (3.2) are such that V1 = V2 = U up to arbitrary signs in the columns of U.
Consequently,

T1 = U, T2 = 0. (3.19)

In this case, the configuration-space decoupling transformation represented by equation
(3.16) reduces to the modal transformation q = Up. With different indexing schemes, phase
synchronization generates all possible decoupled forms into which a linear system can be
transformed in real space [3,4].

4. Generation of the canonical form
An explicit transformation is developed in this section to convert equation (2.1) into the canonical
form specified by equation (2.2). When the eigenvalues of equation (3.2) are distinct, equation
(2.1) can be decoupled into equation (3.1) by either the configuration-space transformation (3.16)
or the state-space transformation (3.17). To eliminate the velocity term in equation (3.1), apply the
transformation

x = exp
(

1
2

Dt
)

p. (4.1)

Upon transformation, equation (3.1) is converted into equation (2.2), for which

B = Ω − 1
4

D2 (4.2)

is a real diagonal matrix, and

h(t) = exp
(

1
2

Dt
)

g(t) = exp
(

1
2

Dt
){(

D + I
d
dt

)
G1f(t) + G2f(t)

}
. (4.3)

Consequently, when recast in the generalized coordinate x, equation (2.1) takes on a decoupled
form devoid of the velocity term. To determine a configuration-space transformation between q
and x, combine equations (3.16) and (4.1) to yield

q =
(

T1 + T2
d
dt

)
exp

(
−1

2
Dt
)

x − T2G1f(t). (4.4)

Alternatively, a state-space transformation can be determined by combining equations (3.17) and
(4.1) to obtain [

x(t)

ẋ(t)

]
=
[

exp(Dt/2) 0

(D/2)exp(Dt/2) exp(Dt/2)

]{
S

[
q(t)

q̇(t)

]
+
[

0

G1f(t)

]}
. (4.5)

When t = 0, the above state-space transformation generates the initial values x(0) and ẋ(0) of
the canonical form (2.2). The transformations given by equations (4.4) and (4.5) are both real,
nonlinear and invertible. In the reduction of equation (2.1), the canonical form specified by
equation (2.2) is the simplest representation that one may achieve.
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The generation of the canonical form defined by equation (2.2) is certainly applicable to passive
systems, which are characterized by three symmetric and positive definite coefficient matrices.
Consequently, a solution to the well-trodden problem of reducing a damped linear system to an
undamped form has been provided herein.

(a) Uniqueness of the canonical form
How many different canonical forms, of the type defined by equation (2.2) into which equation
(2.1) can be reduced, are there? It is obvious that the canonical form (2.2) is unique if phase
synchronization generates a unique decoupled system represented by equation (3.1). However,
phase synchronization can be implemented with different indexing and normalization schemes.
For a given indexing scheme, the coefficient matrices D and Ω of equation (3.1) are independent of
the normalization of eigenvectors because they are constructed from the eigenvalues. As a result,
the homogenous part of equation (2.2) remains unchanged by normalization. By contrast, the
excitation h(t) of equation (2.2) is dependent on the eigenvectors of equation (3.2) and, therefore,
on the normalization used. However, normalization has no physical significance and is just a
matter of convenience. For a given indexing scheme, the canonical form (2.2) is unique up to the
normalization of eigenvectors.

There remains the question of equivalence due to different indexing schemes. Two decoupled
systems are regarded as the same if their component equations coincide; the order in which the
component equations appear is immaterial. Hence, indexing schemes that re-order the component
equations of equation (2.2) are considered equivalent. Any indexing scheme must pair the
complex conjugate eigensolutions. For a given normalization scheme, there is only one decoupled
system associated with equation (3.1) if all eigenvalues are complex, and, therefore, only one
canonical form defined by equation (2.2). If there are 2r distinct real eigenvalues of equation (3.2),
then there are

N =

(
2r
2

)(
2r − 2

2

)(
2r − 4

2

)
· · ·
(

2
2

)

r!
= (2r)!

2rr!
(4.6)

different ways to pair the real eigensolutions [3]. Indeed, using a fixed normalization but different
indexing schemes, there are N different decoupled systems associated with equation (3.1), and
hence N different canonical forms defined by equation (2.2). These N canonical forms usually
have different homogeneous parts. For a non-defective system with repeated eigenvalues, the
number of different canonical forms is less than N. It can be stated that various indexing and
normalization schemes generate an equivalence class of canonical forms of the type defined by
equation (2.2). However, there are not more than N members of this equivalence class that are
essentially different with different homogeneous parts.

(b) An illustrative example
Consider a two-degree-of-freedom system governed by

q̈ +
[

0.1 0.2

0.1 0.3

]
q̇ +

[
0.7 0.3

0.5 0.4

]
q =

[
1

−1

]
sin 2t, (4.7)

with initial values q(0) = 0 and q̇(0) = 0. This is a realization of equation (2.1) with non-symmetric
coefficient matrices. Solution of the quadratic eigenvalue problem (3.2) yields

Λ1 =
[−0.0402 + 0.3683i 0

0 −0.1598 + 0.9599i

]
, Λ2 = Λ̄1 (4.8)

and

V1 =
[

0.4756 + 0.1059i 0.7404 − 0.0497i

−0.9092 + 0.0139i 0.6698 + 0.0632i

]
, V2 = V̄1. (4.9)
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The eigenvectors are normalized in accordance with equations (3.7) and (3.8). Since all
eigenvalues are complex and distinct, there is only one canonical form of the type defined by
equation (2.2), unique up to the normalization of eigenvectors. The real and diagonal coefficients
of the decoupled equation (3.1) are given by

D =
[

0.0804 0

0 0.3196

]
, Ω =

[
0.1373 0

0 0.9470

]
. (4.10)

From equations (3.13) and (3.14),

G1 =
[−0.0374 0.1698

−0.1770 0.2236

]
, G2 =

[
0.6808 −0.7721

0.9234 0.4728

]
. (4.11)

It can be verified that the canonical form (2.2) is specified by

ẍ +
[

0.1357 0

0 0.9215

]
x = h(t), (4.12)

for which

h(t) =
[

(−0.4144 cos 2t + 1.4362 sin 2t)e0.0402t

(−0.8012 cos 2t + 0.3226 sin 2t)e0.1598t

]
. (4.13)

Using equation (4.4), the configuration-space transformation between q and x can be expressed
as

q =
(

E(t) + F(t)
d
dt

)
x +

[
0.0388

0.0342

]
sin 2t, (4.14)

where

E(t) =
[

0.4756e−0.0402t 0.7404e−0.1598t

−0.9092e−0.0402t 0.6698e−0.1598t

]
(4.15)

and

F(t) =
[

0.2874e−0.0402t −0.0518e−0.1598t

0.0377e−0.0402t 0.0658e−0.1598t

]
. (4.16)

The state-space transformation that reduces equation (4.7) to equation (4.12) is given by equation
(4.5), for which

⎡
⎢⎢⎢⎣

exp
(

Dt
2

)
0

(
D
2

)
exp

(
Dt
2

)
exp

(
Dt
2

)
⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

e0.0402t 0 0 0

0 e0.1598t 0 0

0.0402e0.0402t 0 e0.0402t 0

0 0.1598e0.1598t 0 e0.1598t

⎤
⎥⎥⎥⎥⎥⎦ , (4.17)

S =

⎡
⎢⎢⎢⎣

0.6941 −0.7286 −0.0374 0.1698
0.9281 0.5045 −0.1770 0.2236

−0.0587 −0.0567 0.6808 −0.7721
0.0121 −0.0363 0.9234 0.4728

⎤
⎥⎥⎥⎦ (4.18)

and

[
0

G1f(t)

]
=

⎡
⎢⎢⎢⎣

0
0

−0.2072 sin 2t
−0.4006 sin 2t

⎤
⎥⎥⎥⎦ . (4.19)

The initial values of equation (4.12) are x(0) = 0 and ẋ(0) = 0. To examine the effect of
normalization, let the eigenvectors vj (j = 1, 2) be normalized in such a way that the state
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eigenvectors
[
vj λjvj

]T
have unit Euclidean norm. In this case,

V1 =
[

0.4308 + 0.1028i 0.5309

−0.8265 0.4751 + 0.0773i

]
, V2 = V̄1. (4.20)

The homogeneous part of equation (4.12) remains unchanged because it is constructed from the
eigenvalues. However, the excitation h(t) in equation (4.12) becomes

h(t) =
[

(−0.5877 cos 2t + 1.5759 sin 2t)e0.0402t

(−1.1927 cos 2t + 0.4078 sin 2t)e0.1598t

]
. (4.21)

The transformation given either by equation (4.4) or equation (4.5) also changes with
normalization in such a way that equation (4.12) with h(t) specified by equation (4.21) is
generated. As explained earlier, canonical forms generated by different normalization schemes
are regarded as equivalent.

5. Defective linear systems
In this section, formulas presented previously will be generalized to reduce defective linear
systems to the canonical form specified by equation (2.2). In addition, any type of linear
system not previously considered can be treated by this generalization. When an eigenvalue
λk of equation (3.2) occurs mk times and a full complement of mk independent eigenvectors
cannot be found, equation (2.1) is defective; the ρk < mk eigenvectors vk

j (j = 1, 2, . . . , ρk)

must be supplemented by mk − ρk generalized eigenvectors vk
ρk+� (� = 1, 2, . . . , mk − ρk). These

generalized eigenvectors are defined by the sequence [14]

Q(λk)vk
ρk+1 + Q′(λk)vk

ρk
= 0,

Q(λk)vk
ρk+2 + Q′(λk)vk

ρk+1 + 1
2

Q′′(λk)vk
ρk

= 0,

...

Q(λk)vk
mk

+ Q′(λk)vk
mk−1 + 1

2
Q′′(λk)vk

mk−2 = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

where
Q(λk) = Mλ2

k + Cλk + K, Q′(λk) = 2Mλk + C, Q′′(λk) = 2M. (5.2)

Once a complete set of vectors is obtained for every defective eigenvalue, it is then possible
to convert equation (2.1) into the decoupled system represented by equation (3.1). Afterwards,
equation (4.1) can be applied to convert equation (3.1) into the canonical form (2.2). While
defective systems do not typically arise in practical applications, they have received attention
from a number of authors [15,16]. As demonstrated in [5], the decoupling of defective systems
is a delicate procedure that can easily vary on a case-by-case basis, but regardless it is always
possible to recast equation (2.1) in the canonical form (2.2).

(a) Decoupling of defective systems
In general, for homogeneous systems with f(t) = 0, equations (2.1) and (3.1) are connected in the
state space by a real, invertible and time-varying transformation given by [5][

q
q̇

]
=
[

Vq

VqJq

]
eJqte−Jpt

[
Vp

VpJp

][
p

ṗ

]
= T(t)

[
p

ṗ

]
=
[

T1(t) T2(t)

T3(t) T4(t)

][
p

ṗ

]
. (5.3)

In the above expression, Jq and Jp are 2n × 2n Jordan matrices of the indexed eigenvalues on
the diagonal, where Jp is usually a modified form of Jq whose structure imposes the eigenvalue
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pairing scheme required for decoupling. The n × 2n matrix Vq contains the eigenvectors and
generalized eigenvectors associated with the indexed eigenvalues in Jq, while the structure of the
n × 2n matrix Vp enforces the pairing scheme imposed by Jp. The coefficient matrices of equations
(2.1) and (3.1) are related by the 2n × 2n real and invertible transformation matrix T(t) according
to [

0 I

−Ω −D

]
= T−1(t)

[
0 I

−M−1K −M−1C

]
T(t) − T−1(t)Ṫ(t). (5.4)

To decouple equation (2.1) when the excitation is included, consider the state-space
transformation [

q

q̇

]
= T(t)

[
p1

p2

]
. (5.5)

After casting equation (2.1) in the state space as[
q̇

q̈

]
=
[

0 I

−M−1K −M−1C

][
q

q̇

]
+
[

0

M−1f(t)

]
, (5.6)

substitute equation (5.5) into equation (5.6), pre-multiply the result by T−1(t), and use relationship
(5.4) to obtain [

ṗ1
ṗ2

]
=
[

0 I

−Ω −D

][
p1

p2

]
+
[

g1(t)

g2(t)

]
, (5.7)

where [
g1(t)

g2(t)

]
= T−1(t)

[
0

M−1f(t)

]
=
[

G1(t)f(t)

G2(t)f(t)

]
. (5.8)

Extracting the upper and lower halves of equation (5.7), eliminating the coordinate p2, and
comparing the result to equation (3.1) reveals that

p1 = p, p2 = ṗ − G1(t)f(t) (5.9)

and the excitation

g(t) =
(

D + I
d
dt

)
G1(t)f(t) + G2(t)f(t). (5.10)

Consequently, from equation (5.5), the decoupling transformation in the state space is[
p(t)

ṗ(t)

]
= T−1(t)

[
q(t)

q̇(t)

]
+
[

0
G1(t)f(t)

]
. (5.11)

The corresponding configuration-space decoupling transformation is given by

q =
(

T1(t) + T2(t)
d
dt

)
p − T2(t)G1(t)f(t). (5.12)

When t = 0, equation (5.11) generates the initial values p(0) and ṗ(0) of equation (3.1).
Decoupling a defective system represented by equation (2.1) is less systematic than in the non-

defective case, as the process for constructing the coefficient matrices D and Ω of equation (3.1)
varies with the number of real eigenvalues and with the geometric multiplicities of the defective
eigenvalues. Moreover, it is generally not possible to simplify the time-varying transformation
matrix T(t) in equation (5.3) to a more explicit and descriptive form, as exemplified by equation
(3.18) when the system is non-defective. However, a special case in which simplification occurs
is when all eigenvalues are complex. Suppose 2N < 2n of these eigenvalues are distinct and, for
simplicity, each defective eigenvalue has unit geometric multiplicity (i.e. each has one associated
eigenvector). The latter assumption is simply a matter of convenience and can be relaxed with
care [5]. Let mk (k = 1, 2, . . . , N) denote the algebraic multiplicity (the number of occurrences) of
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each unique eigenvalue λk with positive imaginary part. Associated with λk is an mk × mk Jordan
block

Jk =

⎡
⎢⎢⎢⎢⎢⎢⎣

λk 1 0 · · · 0
0 λk 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λk 1
0 · · · 0 0 λk

⎤
⎥⎥⎥⎥⎥⎥⎦

= λkImk +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . .

...
...

...
... 0 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Λk + Nk. (5.13)

Under the assumption of unit geometric multiplicity, λk has a single eigenvector vk
1 and mk − 1

generalized eigenvectors vk
j (j = 2, 3, . . . , mk) that are computed according to equations (5.1) and

(5.2). Arrange these vectors in an n × mk matrix

Vk =
[
vk

1 vk
2 · · · vk

mk

]
. (5.14)

Compile the N Jordan blocks Jk and the N matrices Vk of eigenvectors and generalized
eigenvectors to form the n × n matrices

J = diag[J1, J2, . . . , JN], V =
[
V1 V2 · · · VN

]
. (5.15)

Likewise, construct the following n × n matrices from the N diagonal matrices Λk and the N
nilpotent matrices Nk defined in equation (5.13):

Λ = diag[Λ1, Λ2, . . . , ΛN], N = diag[N1, N2, . . . , NN]. (5.16)

Note that the matrices Λ and N commute in multiplication. For this special case of a defective
system, the decoupling transformation is such that [5]

Jq = diag[J, J̄], Vq =
[
V V̄

]
, Jp = diag[Λ, Λ̄], Vp =

[
I I

]
, (5.17)

where the coefficient matrices of the decoupled equation (3.1) are given by

D = −(Λ + Λ̄), Ω = ΛΛ̄. (5.18)

In other words, equation (3.1) comprises N collections of mk identical, independent single-degree-
of-freedom systems with generally different excitations and initial values. Note that the Jordan
matrices of equation (5.17) imply that the corresponding decoupling transformation preserves
the eigenvalues of equation (2.1) but not the geometric multiplicities. Based on equation (5.17),
the state transformation matrix T(t) defined in equation (5.3) becomes

T(t) =
[

T1(t) T2(t)
T3(t) T4(t)

]
=
[

V V̄
VJ VJ

][
I I
Λ Λ̄

]−1 [
eNt 0
0 eNt

]
, (5.19)

where the n × n sub-matrices

T1(t) = (VΛ̄ − V̄Λ)(Λ̄ − Λ)−1eNt, T2(t) = (V̄ − V)(Λ̄ − Λ)−1eNt. (5.20)

As a result, equation (5.8) yields

G1(t) = e−Nt[(VJ − (VJ)V̄−1V)−1 + (VJ − (VJ)V−1V̄)−1]M−1 (5.21)

and

G2(t) = e−Nt[Λ(VJ − (VJ)V̄−1V)−1 + Λ̄(VJ − (VJ)V−1V̄)−1]M−1. (5.22)

It is generally not possible to express the transformation matrix T(t) in an explicit form such
as equation (5.19) when some of the defective eigenvalues are real. Additional details of the
decoupling of equation (2.1) when it possesses defective real eigenvalues are provided in [5].
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(b) Transformation to the canonical form
After a defective system has been converted into a decoupled system represented by equation
(3.1), the canonical form (2.2) is obtained through application of transformation (4.1). In this case,
the diagonal coefficient matrix B is still given by equation (4.2), and the excitation has the form

h(t) = exp
(

1
2

Dt
)

g(t) = exp
(

1
2

Dt
){(

D + I
d
dt

)
G1(t)f(t) + G2(t)f(t)

}
. (5.23)

Combining equations (4.1) and (5.12) yields the configuration-space transformation relating q and
x:

q =
(

T1(t) + T2(t)
d
dt

)
exp

(
−1

2
Dt
)

x − T2(t)G1(t)f(t). (5.24)

When equations (4.1) and (5.11) are combined, the transformation connecting equations (2.1) and
(2.2) in the state space is obtained:[

x(t)

ẋ(t)

]
=
[

exp(Dt/2) 0

(D/2)exp(Dt/2) exp(Dt/2)

]{
T−1(t)

[
q(t)

q̇(t)

]
+
[

0

G1(t)f(t)

]}
. (5.25)

Note that equations (5.23)–(5.25) hold for any defective system. If a defective system has all
complex conjugate eigenvalues, then the matrices D and Ω that characterize the canonical form
(2.2) are as specified in equation (5.18), and the matrices G1(t), G2(t), T1(t), T2(t) and T(t) in
equations (5.23)–(5.25) are given by equations (5.19)–(5.22). Should this system be non-defective,
then the matrices N = 0 and J = Λ. Taking Λ = Λ1, Λ̄ = Λ2, V = V1 and V̄ = V2, it is easy to verify
that all formulae for transforming equation (2.1) into the canonical form (2.2) reduce to their
non-defective counterparts.

(c) Numerical example of a defective system
A two-degree-of-freedom system is governed by

q̈ +
[

2 −1
−1 2

]
q̇ +

[
5 −1

−1 10

]
q =

[
1

−2

]
cos t, (5.26)

with initial values q(0) = 0 and q̇(0) = 0. Solution of the quadratic eigenvalue problem (3.2) reveals
that the system is defective with a repeated complex eigenvalue such that

J =
[−1 + i

√
6 1

0 −1 + i
√

6

]
, V =

[
−i

√
6/2 5/2

1 0

]
(5.27)

and

Λ =
(
−1 + i

√
6
)

I, N =
[

0 1
0 0

]
. (5.28)

The real and diagonal coefficients of the decoupled equation (3.1) are given by

D = 2I, Ω = 7I. (5.29)

From equations (5.21) and (5.22),

G1(t) =
[

0 −t/6
0 1/6

]
, G2(t) =

[
−t/2 t/6 + 5/6
1/2 −1/6

]
. (5.30)

The canonical form (2.2) for equation (5.26) is then specified by

ẍ +
[

6 0
0 6

]
x = h(t), (5.31)
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where the excitation

h(t) = et

6

[
−8 cos t − t(cos t + 2 sin t)

cos t + 2 sin t

]
. (5.32)

The coordinates q and x are related in the configuration space by transformation (5.24):

q =
([

0 5e−t/2

e−t te−t

]
+
[−e−t/2 −te−t/2

0 0

]
d
dt

)
x. (5.33)

Reduction of equation (5.26) to equation (5.31) is accomplished in the state space by equation
(5.25), for which

[
exp(Dt/2) 0

(D/2)exp(Dt/2) exp(Dt/2)

]
=

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

⎤
⎥⎥⎥⎦ et, (5.34)

T(t) =

⎡
⎢⎢⎢⎢⎢⎣

−1/2 5/2 − t/2 −1/2 −t/2

1 t 0 0

7/2 7t/2 − 1/2 1/2 t/2 + 2

0 1 1 t

⎤
⎥⎥⎥⎥⎥⎦ (5.35)

and

[
0

G1(t)f(t)

]
= 1

3

⎡
⎢⎢⎢⎣

0
0

t cos t
− cos t

⎤
⎥⎥⎥⎦ . (5.36)

The initial values of equation (5.31) computed from equation (5.25) are x(0) = 0 and ẋ(0) =
[0, −1/3]T. As in the non-defective case, the canonical form generated is dependent on the
normalization of eigenvectors. For example, if instead

V =
[−0.1250 − 0.2041i 0.5 − 0.2552i

0.1667 − 0.1021i 0.0680i

]
, (5.37)

then the excitation h(t) in equation (5.31) becomes

h(t) = et

[−8.7438 cos t + 2.5124 sin t − t(3.4545 cos t + 0.9091 sin t)

3.4545 cos t + 0.9091 sin t

]
. (5.38)

The homogeneous part of equation (5.31) is unaffected by normalization because it is constructed
only from the eigenvalues. The transformation given either by equation (5.24) or equation (5.25)
changes with normalization in such a way that equation (5.31) with h(t) specified by equation
(5.38) is generated.

6. Conclusion
It has been shown that almost all linear systems governed by equation (2.1) can be reduced to a
canonical form specified by equation (2.2), a decoupled equation devoid of the velocity term and
with the identity matrix as the coefficient of acceleration. While an exhaustive derivation has been
provided only for non-defective systems with distinct eigenvalues, the reduction is applicable to
both non-defective and defective linear systems possessing either symmetric or non-symmetric
coefficient matrices. Major findings are summarized in the following statements.

1. All parameters required to construct the invertible transformation to convert equation
(2.1) into equation (2.2) are obtained through the solution of the quadratic eigenvalue
problem (3.2). For systems with distinct eigenvalues, the transformation is given either
by equation (4.4) or equation (4.5), both of which are nonlinear.
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2. For non-defective systems, different indexing and normalization schemes generate an
equivalence class of canonical forms of the type defined by equation (2.2). If there are 2r
real eigenvalues of equation (3.2), then not more than N members of this equivalence class
have different homogeneous parts, where N is given by equation (4.6). If all eigenvalues
of equation (3.2) are complex, the canonical form (2.2) is unique up to the normalization
of eigenvectors.

3. As an important by-product, a solution to the well-trodden problem of reducing a
damped passive system to an undamped form has been provided.

Almost all linear systems are non-defective with distinct eigenvalues, and an emphasis has
been placed on such systems. In the reduction of the equation of motion, the canonical form
specified by equation (2.2) is the simplest representation of linear systems. Two examples have
been supplied for illustration.
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