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Radiation image reconstruction 
and uncertainty quantification 
using a Gaussian process prior
Jaewon Lee 1*, Tenzing H. Joshi 2, Mark S. Bandstra 2, Donald L. Gunter 3, Brian J. Quiter 2, 
Reynold J. Cooper 2 & Kai Vetter 1,2

We propose a complete framework for Bayesian image reconstruction and uncertainty quantification 
based on a Gaussian process prior (GPP) to overcome limitations of maximum likelihood expectation 
maximization (ML-EM) image reconstruction algorithm. The prior distribution is constructed with a 
zero-mean Gaussian process (GP) with a choice of a covariance function, and a link function is used 
to map the Gaussian process to an image. Unlike many other maximum a posteriori approaches, 
our method offers highly interpretable hyperparamters that are selected automatically with the 
empirical Bayes method. Furthermore, the GP covariance function can be modified to incorporate 
a priori structural priors, enabling multi-modality imaging or contextual data fusion. Lastly, we 
illustrate that our approach lends itself to Bayesian uncertainty quantification techniques, such as the 
preconditioned Crank–Nicolson method and the Laplace approximation. The proposed framework is 
general and can be employed in most radiation image reconstruction problems, and we demonstrate 
it with simulated free-moving single detector radiation source imaging scenarios. We compare the 
reconstruction results from GPP and ML-EM, and show that the proposed method can significantly 
improve the image quality over ML-EM, all the while providing greater understanding of the source 
distribution via the uncertainty quantification capability. Furthermore, significant improvement of the 
image quality by incorporating a structural prior is illustrated.

Radiation imaging plays a crucial role in numerous applications including medical diagnostic  imaging1, non-
destructive  testing2, nuclear contamination remediation, and nuclear  safeguards3. To this end, various radiation 
imaging modalities have been proposed, developed, and used in the past, with the goal of imaging the spatial 
variation of relevant properties such as the radioactivity distribution or attenuation coefficients of intervening 
materials. However, these properties are difficult to measure directly without physical modulations and subject 
to statistical noise. As a result, image reconstruction, in which the image of interest is recovered from indirect, 
noisy measurements, is a crucial part of radiation imaging.

Image reconstruction is often formulated as a statistical inverse problem and conventionally, it is solved with 
the maximum likelihood estimation (MLE)  method4. However, the noisy nature of the measurements, combined 
with various resource constraints in the measurement process often leads to solutions that are unstable and 
non-unique (i.e., it is an ill-posed inverse problem), adding complexity to the task of accurately interpreting the 
reconstructed images. Hence, an image reconstruction technique capable of improving the MLE solution and 
estimating uncertainties in the reconstructed images is of significant value.

Bayesian image reconstruction, in which a priori information is incorporated into an image reconstruction 
problem, is an attractive alternative to the MLE  approach5. In the Bayesian paradigm, image reconstruction is 
often posed as a maximum a posteriori (MAP) problem, where the image is recovered by locating the mode of 
the posterior distribution. Various MAP techniques have been studied extensively in the context of image recon-
struction, ranging from Tikhonov  regularization6, total variation (TV)7 regularization to plug-and-play  priors8 
that utilize pre-trained deep neural networks. It has been shown that the MAP approaches can significantly 
improve the quality of reconstructed images compared to the MLE, while alleviating the ill-posedness of the 
image reconstruction  problem9. Moreover, unlike frequentist approaches such as MLE, the Bayesian paradigm 
offers a straightforward interpretation of uncertainties, including both aleatoric uncertainties, arising from the 
inherent randomness in data, and epistemic uncertainties, resulting from a lack of  data10.
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However, the Bayesian image reconstruction paradigm often faces several challenges. First, the hyperparam-
eters (i.e., regularization parameters) reflecting a priori knowledge are often difficult to choose in a principled 
 manner11. Secondly, even with carefully selected hyperparameters, the prior model itself may not be flexible 
enough to model the a priori knowledge that needs to be incorporated. Lastly, Bayesian uncertainty quantifica-
tion of reconstructed images require very high dimensional integration, and analytical solutions are generally 
unavailable unless conjugate priors are  employed12.

To tackle the aformentioned challenges, we propose the use of a Gaussian process (GP)-based prior for image 
reconstruction and uncertainty quantification tasks. A GP is a stochastic process where the constituent random 
variables jointly follow a multivariate Gaussian  distribution13. The GPs can be made very flexible with a choice 
of mean and covariance functions, and they have been extensively studied in the context of regression  tasks14. In 
this work, we demonstrate that GPs can also serve as a powerful prior for Bayesian image reconstruction tasks. 
The proposed approach to use a GP prior will be referred to as Gaussian process prior (GPP) henceforth. The 
following are the contributions of our work:

• First, we demonstrate that the MAP estimate with the proposed GPP can significantly enhance the quality of 
the reconstructed radiation images compared to the conventional MLE-based approach. The computational 
cost in using the GP is greatly eased by exploiting the Kronecker product structure in the GP covariance 
matrix.

• We then show that uncertainties in the reconstructed images can be quantified using the preconditioned 
Crank–Nicolson (pCN)  algorithm15 and the Laplace  approximation1617.

• We illustrate that the flexibility of the GPP allows for incorporation of structural prior, which can dramati-
cally improve the reconstruction in some imaging scenarios.

• Lastly, we lay out a principled method for choosing the hyperparameters of the GPP, using the empirical 
Bayes method and Laplace approximation.

We note that a Bayesian approach using a GP prior for image reconstruction and uncertainty quantification was 
recently introduced by Zhou et al.18, where a combination of a TV and a GP prior and the pCN-based uncertainty 
quantification method were proposed. However, due to the non-differentiable nature of the TV prior, it limits the 
use of gradient-based optimization and Hessian information. In contrast, in this work, we demonstrate that the 
Laplace approximation, which leverages the Hessian of the posterior, enables scalable, yet effective uncertainty 
quantification and hyperparameter selection.

The proposed framework is general and can be used for most radiation imaging modalities with Poisson likeli-
hood and (with a small modification) Gaussian likelihood. In this work, we show the effectiveness of the proposed 
method with free-moving single detector imaging scenarios, which is based on the recently developed scene 
data fusion (SDF)  concept3,19,20. We chose this imaging modality for two reasons: firstly, due to the insufficient 
angular modulation from a single detector and vast imaging space, the imaging problem is highly ill-posed. As 
a result, the solutions found from the ML-EM algorithm are often  undesirable21, highlighting the benefits of the 
GPP image reconstruction and uncertainty quantification methods. Secondly, there has been growing interest 
in the free-moving imaging modalities due to its significant impact in nuclear safety and security  applications22; 
however, the concept is often challenged by the absence of reliable image reconstruction methods. Hence the 
proposed approach can provide accurate reconstruction of radiation fields for a wide range of applications, 
thereby addressing the current needs of the research field.

Results
In this section, we demonstrate the effectiveness of the proposed GPP MAP image reconstruction and uncertainty 
quantification techniques using simulated free-moving single detector imaging scenarios.

Each free-moving measurement scenario was simulated with a 10-cm diameter spherical detector (i.e., iso-
tropic response) in a 20 m × 20 m 2-D imaging space. The detector intrinsic efficiency was assumed to be 10% and 
the detector moving paths were simulated on the x-y plane. In all measurement scenarios, the z-coordinates of 
the pixel centers and detector paths were fixed at 0 m and 0.5 m, respectively. Along the detector paths, recorded 
counts were binned with the integration time of 0.1 s.

Anisotropic Gaussian Source
First, a measurement scenario with an anisotropic Gaussian source was simulated to demonstrate the effectiveness 
of the proposed algorithm. Gaussian source distributions are of particular interest because radioactive material 
dispersion often exhibits Gaussian-like distributional  features23.

Fig. 1a illustrates the simulated 1-mCi anisotropic Gaussian distributed source positioned at the center of 
the imaging space and the 150-m path of the moving detector. Assuming the average human walking speed of 
1.5 m/s, the total measurement time amounted to 98 s.

Fig. 1b,c show the image reconstruction results of the ML-EM after 200 iterations and the proposed GPP 
algorithm. As can be evidently seen, the ML-EM reconstructed image exhibits high frequency features clustered 
around the path, and we observed such patterns even after 20 iterations. On the other hand, the image recon-
structed with the GPP MAP successfully localizes and maps the Gaussian distribution.

The hyperparameters of the GPP algorithm ( σ = 4.1 m and � = 1.4× 10−4 Bq−1 ) were chosen with Algo-
rithm 2. Fig. 2a shows the contour plot of the negative log-marginal likelihood as a function of σ and � , together 
with the optimal hyperparameters selected from Algorithm 2. To investigate the impact of hyperparameter 
choices on image reconstruction, Fig. 3 shows the GPP MAP reconstructed images with various hyperparameters. 
As illustrated, the algorithm performs well over a large range of hyperparameter choices.
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Fig. 1d,g show the pixel-wise 90% credible interval maps from the pCN and Laplace approximation, respec-
tively. For the pCN MCMC, 106 samples were collected and the pixel-wise credible intervals were computed. 
In both cases, there exists about 10% of uncertainty around the source region, due to the ambiguity in the 
reconstructed images. Interestingly, the uncertainty is lower in those pixels close to the path, reflecting the fact 
that the source activity can be inferred with more confidence in the pixels with large sensitivity. Conversely, the 
unexplored region in the upper right corner exhibits high uncertainties, because the measurement is not sensi-
tive to the pixels in the region. Note that with the Laplace approximation, the uncertainties in the upper right 
corner are slightly overestimated. We suspect that the marginal pixel posteriors in the upper right corner are 
exponentially distributed due to the lack of measurements, (i.e., prior ∼ posterior). Capturing the skewness of 
the exponential distribution is challenging with the Laplace approximation because of the Gaussian posterior 
assumption. However, from Fig. 1e,h, which depict the slices of the credible interval maps at y = 0 m, it can be 
observed that both uncertainty quantification methods produce very similar results at the center of the imaging 
space where the source is distributed.

Fig. 1f,i display the ternary maps, where 3 different colors are used depending on the ground truth pixel 
values relative to the estimated credible intervals. The pixels where the ground truth values are bounded by the 

Fig. 1.  (a) A simulated measurement scenario with a 1-mCi anisotropic Gaussian distributed source. 
The human-walked path is marked with arrows and colored according to the measured counts. (b) The 
reconstructed image from the ML-EM algorithm after 200 iterations. (c) The reconstructed from the proposed 
GPP MAP. The hyperparameters σ=4.1 m and � = 1.4 × 10−4 Bq−1 found from the empirical Bayes method 
were used for reconstruction. (d, g) The pixelwise 90% credible interval maps from the pCN and the Laplace 
approximation, respectively. (e, h) The credible intervals and the ground truth at y=0 m (red dotted lines in (d) 
and (g)). (f, i) Ternary maps in which the pixels are colored differently based on the ground truth pixel values 
relative to the estimated 90% credible intervals.
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Fig. 2.  Contour plots of the negative log-marginal likelihood as a function of the hyperparameters σ and � . 
The hyperparameters selected from Algorithm 2 are marked with red Xs. (a) The anisotropic Gaussian source 
measurement scenario. (b) The ring and Gaussian source measurement scenario. (c) The uniform square 
source measurement scenario with a structural prior. When using the structural prior, 2 different sets of 
hyperparameters were used for in-square and out-of-square. Therefore, only the in-square hyperparameters 
were used to create the contour plot, while the out-of-square hyperparameters were fixed at the values found 
from Algorithm 2.

Fig. 3.  To better understand the impact of the hyperparameters, the anisotropic Gaussian source images 
reconstructed from the GPP MAP with different choices of the hyperparameters σ and � are displayed. With 
larger σ and � , the prior distribution is spatially more correlated and the pixel values are pushed towards zeros. 
As a result, the reconstructed image with large hyperparameters (bottom right) tend to spread out.
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credible intervals are colored green, while red and blue indicate the ground truth values exceeding and falling 
below the credible intervals, respectively. As illustrated, in most pixels the ground truth is well bounded by the 
credible intervals estimated from both the pCN and Laplace approximation.

Ring and Gaussian source
A more challenging measurement scenario involving a 2 mCi ring-shaped source and a 1 mCi anisotropic Gauss-
ian source was simulated as depicted in Fig. 4a along with the detector moving path. The total measurement 
duration was approximately 100 s. As can be seen in Fig. 4b,c, while the ML-EM produces source distribution 
concentrated around the measurement path, the GPP MAP estimate offers significantly more improved recon-
struction results. The GPP hyperparameters were set to σ = 2.4 m and � = 6.0× 10−5 Bq−1 , which were selected 
with Algorithm 2. The contour plot of the negative marginal log-likelihood as a function of the hyperparameters 
can be found in Fig. 2b.

Fig. 4d,g present the results of the uncertainty quantification using the pCN and Laplace approximation, 
respectively. Similarly to the findings in Sect. 2.1, the pixel uncertainties are predominantly influenced by the 

Fig. 4.  (a) A simulated measurement scenario with a 2-mCi ring-shaped source and a 1-mCi anisotropic 
Gaussian distributed source. The detector moving path is marked with arrows and colored according to 
the measured counts. (b) The reconstructed image from the ML-EM algorithm after 200 iterations. (c) The 
reconstructed from the proposed GPP MAP. The hyperparameters σ=2.4 m and � = 6.0 × 10−5 Bq−1 found 
from the empirical Bayes method were used for reconstruction. (d, g) The pixelwise 90% credible interval maps 
from the pCN and the Laplace approximation, respectively. (e, h) The credible intervals and the ground truth at 
y=0 m (red dotted lines in (d) and (g)). (f,  i) Ternary maps in which the pixels are colored differently based on 
the ground truth pixel values relative to the estimated 90% credible intervals.
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sensitivities of the pixels; uncertainties are lower around the detector path and elevated in those unvisited regions. 
Also, the Laplace approximation slightly overestimates the uncertainties, yet overall it remains largely comparable 
to the pCN as can be seen in Fig. 4e,h. In addition, the ternary maps Fig. 4f,i demonstrate that the ground truths 
are mostly bounded by the credible intervals estimated from the both methods.

Uniform square source with a structural prior
We also demonstrate that incorporation of a structural prior using the GPP algorithm could significantly improve 
the image quality. Fig 5a show another measurement scenario with a 1 mCi uniform square source locate at 
(x, y) = (2.5 m, 2.5 m). The total measurement duration was approximately 70 s. The reconstruction result using 
the GPP MAP is shown in Fig. 5b. Although the GPP MAP reconstruction successfully localized the source, the 
high frequency edges could not be recovered for two reasons: first, due to the lack of modulations in the single 
detector measurements, the forward projected measurements are blurred and noisy, leading to some ambiguity 

Figure 5.  (a) A simulated measurement scenario with a 1-mCi uniform located at (x, y) =  (2.5m, 
2.5m). The detector moving path is marked with arrows and colored according to the measured counts. 
(b) The reconstructed image from the GPP MAP without incorporating the structural information. The 
hyperparameters found from Algorithm 2, σ = 2.03 m and � = 8.10 Bq−1 were used. (c) The reconstructed from 
the proposed GPP MAP with the structural prior. σ = 1.0× 104 m and � = 1.1× 10−5 Bq−1 for the in-square 
hyperparameters, and σ = 9.8× 103 m and � = 7.7× 104 Bq−1 for the out-of-square hyperparameters. (d, g) 
The pixelwise 90% credible interval maps from the pCN and the Laplace approximation, respectively. (e, h) The 
credible intervals and the ground truth at y = 2.5 m (red dotted lines in (d) and (g)). (f, i) Ternary maps in which 
the pixels are colored differently based on the ground truth pixel values relative to the estimated 90% credible 
intervals.
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in the reconstructed images. Second, the GP prior with the SE kernel is not apt to model the high frequency 
edges of the ground truth distribution.

Here we show that the limitations can be overcome by incorporating a priori structural information. The 
prior covariances between the pixels within and outside the source square can be zeroed to enforce independence 
between the two pixel clusters. The reconstruction result with the structural prior is presented in Fig. 5c. As can 
be observed, the reconstruction successfully recovers the uniform ground truth distribution with the edges. Note 
that two different sets of hyperparameters were used for the two pixel clusters, namely the in-square hyperparam-
eters and the out-of-square hyperparameters. Using Algorithm 2, the hyperparameters were set at σ = 1.0× 104 
m and � = 1.1× 10−5 Bq−1 for the in-square hyperparameters, and σ = 9.8× 103 m and � = 7.7× 104 Bq−1 
for the out-of-square hyperparameters. The very large σ hyperparameters for both pixel clusters indicate that a 
piecewise constant function with the discontinuities at the pixel cluster boundaries well-explain the measurement 
data. Also the large difference in the � parameters between the pixel clusters reflects the fact that the source is 
only present in the in-square pixel clusters. Fig. 2c shows a contour plot illustrating the negative log-marginal 
likelihood as a function of in-square hyperparameters.

The 90% credible interval maps found from the pCN and Laplace approximation are displayed in Fig. 5d,g, 
respectively. Note that due to the strong correlations between the pixel clusters, the marginal credible interval 
maps are also step-function like. Also, similarly to the findings from the results presented in Sects. 2.1 and 2.2, a 
slight overestimation of uncertainties was observed with the Laplace approximation. However, both methods pro-
duce comparable results as can be observed from Fig. 5e,h, where the slices of the uncertainty maps at y = 2.5 m 
are shown. Also, the ternary maps in Fig. 5f,i indicate that the ground truth distribution is well-bounded by the 
estimated uncertainties.

Discussion
In this section, we discuss the implications of the proposed methods and potential future research directions.

Implications of the proposed approach
First, the proposed GP prior can be made highly flexible with a choice of a covariance function and a link 
function. Therefore, the GP prior can effectively model desired properties of the reconstructed images, and is 
directly applicable to a wide range of highly ill-posed image reconstruction tasks. Such tasks arise from various 
radiation imaging modalities including Compton  cameras24, coded aperture  imaging25, limited angle computed 
tomography (CT)26, low-dose positron emission tomography (PET)27, among others.

Secondly, the uncertainty quantification capability of the proposed framework offers valuable insights into 
the reconstructed images, and it becomes particularly important when critical decisions are made based on the 
reconstructed images. Such problems commonly arise in many  healthcare28 and nuclear security  applications29. 
Moreover, posterior distributions estimated from the pCN and the Laplace approximation can be employed 
for further inferences on quantities derived from the reconstructed images. For instance, suppose a quantity of 
interest u can be derived from an image x as u = g(x) . From a set of posterior samples obtained from the pCN, 
{ξn}Jn=1 , the samples of the derived quantity {un}Jn=1 can be obtained as un = g(f −1(ξn)) . In the context of the 
Laplace approximation, samples of ξ can be obtained from the approximating Gaussian distribution in (29). 
Some examples of such derived quantities are total dose registered in radiopharmaceutical  therapy30, in-beam 
ion ranges in ion cancer therapy, and in-vivo proton range verification in ion cancer  therapy31.

Future works
Incorporation of background contribution
The results presented in section demonstrate that the proposed GPP algorithm can significantly improve the 
reconstruction quality where the ML-EM may be inadequate. However, the simulated measurement scenarios 
assume no present background contributions, which may be unrealistic in some radiation imaging applications. 
When the background contribution is known, it can be straightforwardly accounted for by changing the forward 
projection ȳ = Ax to ȳ = Ax + b , where the elements of the vector b are the known background contribution to 
the measurements. When the background rate is unknown, it has to be jointly estimated with the image x , and 
it can be done by augmenting the system matrix A and the image vector x as Ã = [A|ab] and x̃ =

[
x
b

]
 , where 

the vector ab is assumed to be known (e.g., in the case of a constant background rate, a vector of integration time 
ab = �t� ). Subsequently, the prior covariance matrix � can be augmented as

where the �b accounts for the variance of the background rate.
The use of the Gaussian-to-exponential link function may be inadequate as the background rate can be typi-

cally well specified within an order of magnitude. In such case, a different link function, such as the truncated 
Gaussian-to-Gaussian link  function32, can be used to effectively model the background prior distribution.

List‑mode data and Gaussian likelihood
Although the work presented here assumes bin-mode data with the Poisson likelihood model, it should be 
emphasized that the proposed framework can be trivially modified to accommodate list-mode  data33 or Gaussian 
likelihood model. Essentially, the only differences in the formulation will be the likelihood function formulation 
in (4), and subsequently its gradient, Hessian expressions.

(1)�̃ =
[
� 0
0 �b

]
,
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For example, when the measurements are given in terms of dose rates, Gaussian likelihood model can more 
aptly describe the measurement noise. In such cases, the likelihood function l(x; y) in (5) can be modified as 
follows:

where the matrix W ∈ R
M×M is the inverse of the measurement covariance matrix (i.e. a precision matrix). 

When independent and identical noise distribution is assumed, W is an identity matrix. With the Gaussian 
likelihood model, the GPP image reconstruction and uncertainty quantification presented in this paper can be 
similarly applied.

By accommodating various data types, the proposed framework is applicable to a wide range of radiation 
imaging applications.

Scalable implementation
In Sect. 4.1, we illustrated how the Kronecker product structure in the covariance matrix � can be exploited to 
avoid the computational challenges involving the Cholesky factor L . The approach is particularly attractive as it 
provides exact representation of the covariance matrix; however, the method is not readily applicable when the 
imaging space is not in a dense Cartesian grid. For example, Compton cameras or active coded apertures imagers 
often employ a 4 π spherical imaging  space34,35, and free-moving imaging scenarios often assume sparse voxel 
grid imaging  spaces36. Thus, a different strategy is needed when more diverse imaging spaces are considered.

Several recent advances from the GP regression research community could potentially be employed to tackle 
the challenges. For example,  in37, Willson et al. introduced the structured kernel interpolation (SKI) scheme, 
where the covariance matrix is interpolated from a Kronecker product represented sparse inducing points. The 
resulting approximate covariance matrix can be handled efficiently thanks to the sparsity of the interpolation 
coefficient matrix and the Kronecker product structure. Such formulation could be applied to imaging spaces 
on a non-structured grid.

Another interesting approach is Gaussian Markov random field (GMRF), where a sparse precision matrix �−1 
is directly constructed and utilized. Such precision matrices admit rapid realization of GPs, removing the com-
putational bottlenecks involving Lξw . Moreover, Lindgren et al. showed that a GMRF can directly approximate 
GPs with a Matérn covariance kernel, and it can be efficiently applied to meshed imaging  spaces38.

Covariance Kernels
The SE kernel in (11) is a popular choice in many GP regression tasks, and in this work we demonstrated that it 
can be used to effectively model the prior covariance. In many radiation imaging modalities, the point spread 
functions (PSF) have smoothly falling edges and therefore, the use of the SE kernel could be well-justified. 
However, when it is required to recover high frequency features (e.g., edges or point sources), more expressive 
kernels may be desired. Rational quadratic kernel or Matérn covariance kernels could be readily used to pro-
vide more flexibility for better high frequency feature resolving capability. Moreover, recent works from the GP 
regression community suggest the use of spectral mixture (SM)  kernel39 or deep kernel learning  framework40, 
where a deep neural network is used to construct a highly expressive covariance kernel. It was demonstrated 
 in40 that such kernels can successfully recover piecewise constant functions with sharp falling edges, which is 
attractive for imaging applications.

Methods
Image reconstruction with GPP
GPP MAP image reconstruction
The goal of radiation imaging is to recover an N-dimensional image vector x ∈ R

N
≥0 from an M-dimensional 

non-negative measurement vector y ∈ Z
M
≥0 . The two vectors are related by a system matrix A ∈ R

M×N
≥0  such that

Hence the system matrix contains the probabilities of radiation emitted from a voxel being detected in a meas-
urement bin. With the Poisson measurement model, the likelihood function of an image vector x given the 
measurement vector y can be formulated as

The well-established maximum likelihood (ML) image reconstruction approach seeks a solution x̂ML , which 
minimizes the negative log-likelihood function l(x;y) = − log p(y|x) up to a constant as follows:

(2)l(x; y) = 1

2
(y − Ax)TW(y − Ax),

(3)y ∼ Poisson(ȳ), where ȳ = Ax.

(4)p(y|x) =
M∏

i=1

e−ȳi ȳ
yi
i

yi!
.

(5)x̂ML = argmin
x,x�0

l(x; y)

(6)
c= argmin

x,x�0

M∑

i=1

ȳi − yi log ȳi
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where x � 0 imposes the non-negativity constraints and c= denotes equivalence up to a constant. It is well-known 
that the above optimization problem can be iteratively solved using the expectation maximization (EM) algo-
rithm, leading to the popular maximum likelihood-expectation maximization (ML-EM)  algorithm41.

Although ML-EM has become a standard approach for image reconstruction tasks, for many radiation imag-
ing problems the system matrix A is often not well-conditioned. Hence, the optimization problem (5) is ill-posed 
and the ML-EM algorithm is susceptible to overfitting.

A popular approach to combat the ill-posedness is to incorporate a prior distribution p(x) to make use of 
Bayesian formalism. Using Bayes’  rule42, the posterior distribution p(x|y) is given by

In Bayesian image reconstruction, often the image vector is recovered by locating the mode of the posterior 
distribution, leading to the Maximum a Posteriori (MAP) estimation as follows:

where lp(x) = − log p(x) is the negative log prior distribution. An appropriate choice of a prior distribution is 
crucial for reliable image reconstruction, especially when the system matrix A is ill-conditioned.

In this work, for prior model construction, we assume that the image vector x is governed by a latent variable 
ξ , which follows a zero-mean Gaussian process (GP),

where k(r, r′) is a covariance kernel, and r, r′ ∈ R
3 represents vectors containing the Cartesian coordinates of 

two points in the imaging space.
The choice of a covariance kernel k(r, r′) is crucial as it dictates the underlying spatial correlation of the image. 

In this work, we use the unit-variance squared exponential (SE) kernel to encode spatial correlation between 
pixels as follows:

where σ is the characteristic correlation length scale parameter of the prior distribution with the dimension of 
distance. It should be noted that various covariance kernels have been explored in the context of GPs, and the 
optimal covariance kernel may vary depending on  applications43.

For practical purposes, the imaging space is discretized with pixels and the GP in (10) is evaluated at the pixel 
centers. Then, the GP reduces to a zero-mean multivariate Gaussian distribution,

Hence,

Once the prior p(ξ) is defined, a link function f : RN
≥0 −→ R

N is used to relate ξ and x , keeping the positivity 
constraints imposed on x . There are a variety of choices for the link function; for example, a simple logarithmic 
function, f (xi) = log xi = ξi could be used as a link function satisfying the non-negativity constraint on x . 
However, for simpler statistical interpretation, we use the exponential-to-Gaussian link  function32, and its inverse 
can be used to recover x as follows:

where � is the scale parameter for the exponential distribution and erf  is the error function. ⊘ denotes the 
element-wise division operator. The link function converts a zero-mean Gaussian distributed random variable 
ξi with the variance �ii into a random variable following the exponential distribution with the scale parameter 
� . As the reciprocal of � defines the mean value of the exponential distributed random variable, it can be used 
to incorporate a priori information about the average pixel value, allowing for more statistically interpretable 
hyperparameter selection. Furthermore, due to the long-tailed nature of the exponential distribution, the link 
function can effectively model radiation source strength that varies over several orders of magnitudes. Samples 
from the prior distribution p(x) with different hyperparameters σ and � are shown in Fig. 6.

(7)= argmin
x,x�0

M∑

i=1

[Ax]i − yi log [Ax]i ,

(8)p(x|y) = p(y|x)p(x)
p(y)

.

(9)x̂ = argmin
x,x�0

l(x; y)+ lp(x),

(10)ξ ∼ G P (0, k(r, r′)),

(11)k(r, r′) = exp

(
−
∥∥r − r′

∥∥2

2σ 2

)
,

(12)ξ ∼ N(0,�)

(13)where �ij = k(ri , rj).

(14)p(ξ) = 1√
(2π)n|�| exp

(
−1

2
ξT�−1ξ

)
.

(15)x = f −1(ξ) = −1

�
log

(
1

2
− 1

2
erf

(
ξ ⊘ (

√
2diag(�))

))
,
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It should be emphasized that the appropriate choice of a link function may vary depending on the application, 
and the methods presented in this work are applicable with various link functions.

From (14), the negative log-prior for ξ can be written as follows:

Combining (15) and (16), the MAP solution in terms of ξ can be obtained by minimizing the unnormalized 
negative log posterior �(ξ)

c=l(ξ ; y)+ lp(ξ) as follows:

The optimization problem (18) can be solved in a more efficient and numerically stable manner by introducing 
an uncorrelated multivariate unit Gaussian variable ξw ∼ N(0, I) . Hence, we use a change of variable Lξw = ξ , 
where L is the Cholesky factor of � . The final optimization problem in terms of ξw is

(16)
lp(ξ) = − log p(ξ)

= 1

2
log

√
(2π)n|�| + 1

2
ξT�−1ξ

(17)ξ̂ = argmin
ξ

�(ξ)

(18)= argmin
ξ

N∑

i

[Af −1(ξ)− y ⊙ log (Af −1(ξ))]i +
1

2
ξ⊤�−1ξ .

Fig. 6.  Random samples from the prior distribution p(x) on a 20 × 20 m 2-D imaging space with different 
sets of hyperparameters, σ and � . Each sample was realized by first drawing a sample from ξw ∼ N(0, I) and 
then transforming it by x = f

−1(Lξw) . The properties and characteristics of the prior distribution can be better 
understood by examining random samples from the prior. Note that the σ parameter defines the characteristic 
correlation length, while the reciprocal of � parameter determines the mean pixel values.
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where ⊙ is the element-wise product operation. Note that (19) is an unconstrained optimization problem, and 
it can be solved with a general purpose global optimization algorithms. We find that quasi-Newton algorithms, 
such as the Limitied memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)44 achieves swift convergence. The 
gradient of (19), which is required for many optimization algorithms, can be analytically found as follows:

where ◦ is the element-wise power operations. Also, the diag(·) operator extracts the main diagonal elements of a 
matrix into a vector. The derivation of the gradient expression (21) can be found in the "Supplementary informa-
tion". Once the optimization problem is solved and ξ̂w is obtained, the image x̂ can be obtained by x̂ = f −1(Lξ̂w) . 
The pseudocode for the GPP MAP estimation is shown in Algorithm 1.

Algorithm 1.  GPP MAP estimation

Kronecker product representation of the covariance matrix
With a large number of voxels N, setting up and solving (19) is a burdensome task due mainly to the computa-
tional costs involved in the Cholesky factor L ∈ R

N×N . For example, storing and computing the Cholesky factor 
requires O (N2) memory and O (N3) time, which can be prohibitively expensive for a large N.

Computation of the Cholesky decomposition is also the main computational bottleneck in the GP regression 
problems. To overcome the challenge,  in45 Saatci et al. showed that when the GP regression input variables lie 
on a multi-dimensional Cartesian grid, the Kronecker structure in the covariance matrix � can be exploited to 
significantly lessen the computational costs involving the Cholesky factor L . As many imaging problems employ 
Cartesian grid imaging spaces, here the strategy can be readily extended to the GPP image reconstruction.

When a covariance kernel function is the product of kernels across each Cartesian input dimension, such that 
k(ri , rj) =

∏D
d=1 k(r

d
i , r

d
j ) , the covariance matrix � constructed for a multi-dimensional lattice imaging space can 

be expressed as a Kronecker product of much smaller covariance matrices for each input dimension �d (i.e., x-, 
y- and z-dimensions), such that � =

⊗D
d=1 �d . Furthermore, the Cholesky factor of a such covariance matrix 

is also a Kronecker product of Cholesky factor in each dimension, L =
⊗D

d=1 Ld . Hence, assuming the same 
number of voxels in each dimension, the memory and time complexity of the Cholesky factor computation are 
eased with O (DN2/D) and O (DN3/D).

Even with the obtained Kronecker product of the Cholesky factor, a naive matrix-vector multiplication Lξw 
in (19) and (21) limits the scalability of the algorithm. Surprisingly, multiplication of a Kronecker product matrix 
on a vector can be cast as a tensor outer product and performed in O (DN

1+D
D )  time4546.

Equipped with the Kronecker product covariance matrix and its Cholesky factor, the overall time complexity 
of computing the cost function (19) and its gradient (21) is determined by the forward projection Af −1(Lξw) , 
which is computed in O (MN) . Note that the ML-EM has the same complexity of O (MN) per iteration.

(19)ξ̂w = argmin
ξw

�(Lξw)

(20)= argmin
ξw

N∑

i

[
Af −1(Lξw) − y ⊙ log(Af −1(Lξw))]i +

1

2
ξTwξw ,

(21)
∇ξw

�(Lξw) = LT
((

AT − AT
�
(
y⊘(Ax)

))
⊙

(
�⊘

(√
2π�diag(�)

)
⊙ exp

(
�x − ξ◦2⊘

(
2diag(�)

))))
+ ξw ,
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Incorporation of structural prior
With the growing interest in contextual data fusion and multi-modality radiation  imaging47–49, we discuss here 
the incorporation of a priori structural information using the GPP. Such a priori structural information can 
be obtained from other radiation imaging modalities (e.g., MRI, CT), commercial sensors (e.g., LiDAR, visual 
camera), or object detection algorithms.

We consider an imaging space X with N voxels X = {x1, x2, . . . xN } and further, L voxel clusters Cl ⊆ X for 
l = 1, 2, . . . L , each belonging to different objects or structures in the imaging space X . This structural infor-
mation can be incorporated by modifying the covariance matrix of the Gaussian prior � (11). The modified 
covariance matrix is given by:

In other words, spatial correlation is defined only within the same object Cl . Note that different hyperparameters 
σ and � can be applied to each voxel cluster Cl . The benefit of incorporating a structural prior is that it introduces 
correlations within salient features in the imaging space, leading to improved image quality and interpretability 
of the reconstruction results.

Note that, with the use of structural prior, the covariance matrix cannot be represented as a Kronecker prod-
uct; however, by assigning zeroes for the covariances between different voxel clusters, the covariance matrix 
becomes a sparse block diagonal matrix, whose Cholesky decomposition can be computed and stored efficiently.

Bayesian uncertainty quantification
The use of a Gaussian process prior in this work furnishes the basis for further Bayesian inference such as Bayes-
ian uncertainty quantification. In Bayesian statistics, the uncertainty in the posterior distribution p(x|y) is often 
expressed in terms of a Bayesian credible interval. For a marginalized posterior variable xj , the (1− α)100% 
Bayesian credible interval is defined as the range [xj−, xj+] within which xj falls with a probability of 1− α . In 
other words, p(xj ∈ [xj−, xj+]|y) = 1− α . The choice of such interval is not unique; therefore, we use an equal-
tailed interval to define xj− and xj+ as follows:

However, computation of the credible intervals is a daunting task, as it requires the integration of a very high 
dimensional distribution, p(y) =

∫
p(y|x)p(x) dx (i.e., the marginal probability). Therefore, in this work, we 

investigate two different posterior approximation methods for credible interval estimation.

Preconditioned Crank–Nicolson (pCN) algorithm
In Bayesian statistics, Markov chain Monte Carlo (MCMC) algorithms have been widely used to generate a 
sequence of samples from an analytically intractable posterior distribution. However, for high dimensional 
posterior distributions (e.g., images), the MCMC sample convergence rate becomes very  slow50.

In our approach, the use of GP prior in (19) lends itself to the use of the pCN  algorithm15, a dimension-robust 
MCMC algorithm specifically designed for posterior distributions with a Gaussian prior. The pCN convergence 
rate is independent of discretization of a parameter space, which is an attractive feature for high-dimensional 
inverse problems such as image reconstruction.

With the pCN algorithm, a chain of J samples {ξn}Jn=1 is obtained by following the proposal and acceptance/
rejection steps. First, the pCN proposal in terms of ξ is given by,

where �n+1 is a sample from N(0,�) and the hyperparameter 0 < β < 1 is a step size which is chosen manually. 
With the obtained ξ ′n+1 , the acceptance probability is computed as

Subsequently, the acceptance probability α(ξn, ξ
′
n+1) is compared to a random number Zn+1 drawn from a 

uniform distribution Zn+1 ∼ Unif([0, 1]) and sets

In our experiments, the MCMC sample chains were started from the reconstructed image (i.e., the mode of the 
posterior). Once a sufficient number of samples are obtained, the pixelwise (1− α)100 % confidence intervals 
can be found as follows. First, compute the pixelwise (α/2)100% and (1− α/2)100% quantiles ξ− and ξ+ from 
the obtained samples {ξn}Jn=1 . Then, the quantiles in x are obtain as x− = f −1(ξ−) and x+ = f −1(ξ+) . As the 
inverse link function f −1 is monotonically increasing, it ensures that the quantiles of x can be directly found 

(22)�ij =
{
k(ri , rj), if xi , xj ∈ Cl ∀l = 1, 2, . . . , L
0, otherwise.

(23)
∫ xj−

−∞
p(xj|y) dxj =

α

2

(24)
∫ ∞

xj+
p(xj|y) dxj =

α

2
.

(25)ξ ′n+1 =
√

1− β2ξn + β�n+1,

(26)α(ξn, ξ
′
n+1) = min (1, exp (l(ξn; y)− l(ξn+1; y))).

(27)ξn+1 =
{
ξ ′n+1, if Zn+1 < α(ξn, ξ

′
n+1)

ξn, otherwise.
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by transforming the quantiles of ξ . Lastly, the pixelwise (1− α)100 % credible interval map xCI can be found as 
xCI = x+ − x−.

Collecting S samples, the time complexity of the pCN method is O (MNS) . Although each sample can be 
taken efficiently, ensuring convergence of the MCMC chain requires a large S, on the order of 105 to 106 samples. 
In the next section, we explore an alternative approach to posterior approximation, which typically runs much 
faster than the pCN method.

Laplace approximation
Another posterior estimation method, the Laplace approximation, uses a multivariate Gaussian distribution 
with the mean located at the MAP estimate ξ̂ found from (19) to directly approximate a posterior distribution.

Using second-order Taylor expansion of the unnormalized log posterior −�(ξ) at the mode ξ̂ , the posterior 
distribution can be approximated with q(ξ |y) as follows:

A more detailed derivation as well as the expression for ∇2
ξ�(ξ)|

ξ=ξ̂
 is presented in the "Supplementary 

information". Once the approximate posterior distribution q(ξ |y) is obtained, the pixelwise (α/2)100% and 
(1− α/2)100% quantiles ξ− and ξ+ are found directly from the Gaussian distribution quantile functions. Then, 
the (1− α)100 % pixelwise credible interval map xCI can be obtained as xCI = f −1(ξ+)− f −1(ξ−) . Note that the 
matrix ∇2

ξ�(ξ)|
ξ=ξ̂

 has the dimension of N × N . With moderate number of voxles (i.e., N < 104 ), the inversion 
in (29) can be directly performed. However, with a large number of voxels, instantiating the covariance matrix 
and computing the inversion in (29) can be computationally very expensive.

In order for more efficient covariance matrix computation, the Hessian of the log-likelihood can be approxi-
mated with the Fisher information matrix at the mode F(ξ̂),

where we define B ≡ (Jξ f
−1(ξ)|

ξ=ξ̂
)TATdiag

(
(Af −1(ξ))◦−

1
2

)
 . The detailed derivation of (31) and the expression 

for Jξ f −1(ξ) is presented in the accompanying "Supplementary information". Fisher information has been studied 
extensively for neural network Hessian approximation, and it is well-justified as it is the expected Hessian of 
log-likelihood under p(y|ȳ) . Equipped with the Hessian of the log-likelihood approximation, the expression for 
the covariance matrix in (29) becomes

Next, we perform rank-K truncated eigendecomposition on LTBBTL , such that LTBBTL ≈ QSQT where 
Q ∈ R

N×K is a matrix containing eigenvectors and S ∈ R
K×K is a diagonal matrix whose elements contain 

K largest eigenvalues of LTBBTL . Such decomposition can be efficiently obtained from randomized eigende-
composition algorithms. Randomized decomposition methods first proceed by forming a matrix Y ∈ R

N×K by 
multiplying a random matrix P ∈ R

N×K such that

The matrix Y captures most of the column space in LTBBTL yet considerably smaller with K ≪ min(M,N) . 
Therefore, it can be further processed to efficiently estimate the eigendecomposition of LTBBTL . More details 
on the randomized eigendecomposition methods can be found in Halko et al.51. When the system matrix A is 
computed on-the-fly or too large to be loaded into core memory, the decomposition can be obtained efficiently 
with only single-pass of A using the matrix sketch  algorithm52. Also, note that by computing the matrix-matrix 
multiplication in the order specified by the parentheses in (35), we never instantiate an N × N matrix, which is 
potentially too large to be stored in memory.

Once the eigendecomposition is obtained, the covariance matrix can be computed as follows:

(28)p(ξ |y) ≈ q(ξ |y), where

(29)q(ξ |y) ∼ N

(
ξ̂ ,
(
∇2
ξ�(ξ)|

ξ=ξ̂

)−1
=

(
∇2
ξ l(ξ ; y)|ξ=ξ̂

+�−1
)−1

)
,

(30)∇2
ξ l(ξ ; y)|ξ=ξ̂

≈ Ey∼p(y|ȳ)

[(
∇ξ l(ξ ; y)|ξ=ξ̂

)(
∇ξ l(ξ ; y)|ξ=ξ̂

)T]

(31)= (Jξ f
−1(ξ)|

ξ=ξ̂
)TATdiag

(
(Af −1(ξ))◦−1

)
A(Jξ f

−1(ξ)|
ξ=ξ̂

)

(32)= BBT,

(33)
(
∇2
ξ�(ξ)|

ξ=ξ̂

)−1
≈ (BBT + �−1)−1

(34)= L(LTBBTL + I)−1LT.

(35)Y = (LTB(BTLP)).
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The second equality follows from the Woodbury matrix  identity53. The resulting expression (39) for the covari-
ance matrix can be partially computed to obtain necessary covariance elements for uncertainty quantification. 
For example, to create a pixel-wise uncertainty map, only the diagonal elements can be computed without form-
ing an N × N matrix.

Due to the unimodality of the approximating Gaussian distribution, the Laplace approximation is well-justi-
fied when the posterior density is concentrated around the mode of the posterior, ξ̂ . The so-called “Bayesian cen-
tral limit theorem” (i.e., Berstein-von Mises theorem) states that with increasing number of conditionally inde-
pendent measurements, posterior distributions tend toward Gaussian distributions under certain  conditions54. 
Hence, with a sufficient number of measurements, the Laplace approximation provides fast, yet reasonably 
accurate approximation of the posterior distribution.

Hyperparameter selection with empirical Bayes
Although the hyperparameters of the GPP offers good physical and statistical interpretability, a principled 
method to infer the hyperparamters from the measurement is highly desirable. Here we show that the hyperpa-
rameters σ and � can be systematically determined with the empirical Bayes method.

Including the hyperparameter vector θ = [σ , �]T , the Bayes rule (8) can be re-written in terms of ξ as

The empirical Bayes approach finds the hyperparameters θ̂ maximizing the marginal likelihood as follows:

where �(θ)
c=− log p(y|θ) is the unnormalized log-marginal likelihood. However, as the computation of �(θ) is 

intractable due to the high dimensional integration in (40), we use the Laplace approximation to estimate �(θ)
55. With the Laplace approximation, the unnormalized negative log-marginal likelihood �(θ) at the posterior 
mode ξ̂ is given as

The derivation can be found in the "Supplementary information". Note that in (43), the �(ξ̂) term is an output 
of Algorithm 1. The computation of the log-determinant term has the complexity of O (N3) , which prevents 
scalable computation of the log-marginal likelihood when N is large. Therefore, we exploit the low-rank structure 
of the matrix ∇ξ l(ξ ; y)|ξ=ξ̂

� to accelerate the computation of the log determinant.
As in (31), using the Fisher information matrix approximation to ∇2

ξ l(ξ ; y)|ξ=ξ̂
 , the determinant can be 

approximated as,

We also observe that using the precomputed Cholesky decomposition � = LLT , the matrix determinant lemma 
enables the following reformulation of the log-determinant term,

The Kronecker structure of the Cholesky factor L allows for very efficient matrix-matrix multiplication BTL or 
LTB in (45) and (46). Furthermore, depending on the dimensions of the system matrix A , (45) (when M ≪ N ) 
or (46) (when N ≪ M ) can be used to compute the log determinant efficiently.

(36)
(
∇2
ξ�(ξ)|

ξ=ξ̂

)−1
≈ L(QSQT + I)−1LT

(37)= L(I−Q(S−1 +QTQ)−1QT)LT

(38)= L(I−Q(S⊘ (S+ I))QT)LT

(39)= LLT − LQ(S⊘ (S+ I))QTLT

(40)p(ξ |y, θ) = p(y|ξ , θ)p(ξ |θ)
p(y|θ) , where

(41)p(y|θ) =
∫

p(y|ξ , θ)p(ξ |θ) dξ .

(42)θ̂ = argmin
θ ,θ≻0

− log p(y|θ) = argmin
θ ,θ≻0

�(θ),

(43)�(θ) ≈ 1

2
log |I+∇2

ξ l(ξ ; y)|ξ=ξ̂
�| +�(ξ̂).

(44)�(θ) ≈ 1

2
log |I+ BBT�| +�(ξ̂).

(45)
1

2
log |I+ BBT�| = 1

2
log |I+ BTLLTB|

(46)= 1

2
log |I+ LTBBTL|.
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Algorithm 2.  Hyperparameter selection with empirical Bayes

When both the M and N are too large, a low rank approximation of the system matrix A ≈ UKV
T
K 

where UK ∈ R
M×K and VK ∈ R

N×K with K ≪ M,N  can be used to accelerate the computation. Defining 
C = VT

K Jξ f
−1(ξ)|

ξ=ξ̂
L and D = UT

Kdiag(�⊘ ȳ◦
1
2 ) , the log-determinant term can be approximated as,

Hence using the rank-K approximation, the log-determinant computation has O (K3) time complexity. The 
low-rank approximation of A needs to be computed only once using various techniques, and we found that 
randomized singular value decomposition (rSVD) provides a good approximation with the time complexity of 
O (MN logK + (M + N)K2)51. Such approximation of A may sacrifice some accuracy in image reconstruction; 
however, we found that the approximation has negligible impact for hyperparameter selection and once the 
hyperparameters are chosen, the full-rank system matrix can be used for more accurate image reconstruction. 
Additionally, the low rank approximation can also reduce the computation of forward projection Af−1(ξ) , which 
helps to accelerate the overall optimization process.

Once an adequate log-marginal likelihood computation scheme is selected, the L-BFGS can be used to solve 
the optimization problem (42). The necessary gradient of �(θ) with respect to θ can be found with finite differ-
ence methods. The entire marginal likelihood maximization scheme is illustrated in Algorithm 2.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
The code used for analysis can be found at https:// github. com/ jwonl/ GPP_ public.
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