Lawrence Berkeley National Laboratory
LBL Publications

Title
Performance on HPC Platforms Is Possible Without C++

Permalink
bttgs:ggescholarshiQ.orgéucgitem44xd2265§
Journal

Computing in Science & Engineering, 25(5)

ISSN
1521-9615

Authors

Dubey, Anshu
Ben-Nun, Tal
Chamberlain, Bradford L

Publication Date
2023

DOI
10.1109/mcse.2023.3329330

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at bttgs://creativecommons.orq/licenses/bv/4.0,|

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4xd22653
https://escholarship.org/uc/item/4xd22653#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Performance on High-performance Computing
Platforms is Possible without C++

Anshu Dubey, Argonne National Laboratory, U.S.A

Tal Ben-Nun, Lawrence Livermore National Laboratory, U.S.A

Bradford L. Chamberlain, Hewlett Packard Enterprise, U.S.A

Bronis R. de Supinski, Lawrence Livermore National Laboratory, U.S.A

Damian Rouson, Lawrence Berkeley National Laboratory, U.S.A

Abstract—Computing at large scales has become extremely challenging due to
increasing heterogeneity in both hardware and software. More and more scientific
workflows must tackle a range of scales and use machine learning (ML) and
artificial intelligence (Al) intertwined with more traditional numerical modeling
methods, placing more demands on computational platforms. These constraints
indicate a need to fundamentally rethink the way computational science is done
and the tools that are needed to enable these complex workflows. The current set
of C++ based solutions may not suffice and relying exclusively upon C++ may not
be the best option, especially because several newer languages and boutique
solutions offer more robust design features to tackle the challenges of
heterogeneity. In June 2023, we held a minisymposium that explored the use of
newer languages and heterogeneity solutions that are not tied to C++ and that
offer options beyond template metaprogramming and parallel-for for performance
and portability. We describe some of the presentations and discussion from the

minisymposium in this article.

Computing at large scales has become extremely
challenging due to increasing heterogeneity in both
hardware and software. A positive feedback loop exists
where more scientific insight leads to more complex
solvers which in turn need more computational re-
sources. More and more scientific workflows need to
tackle a range of scales and use machine learning
(ML) and artificial intelligence (Al) intertwined with
more traditional numerical modeling methods, plac-
ing more demands on computational platforms. These
constraints indicate a need to fundamentally rethink the
way computational science is done and the tools that
are needed to enable these complex workflows.
Hardware is becoming more complex because
Dennard scaling, which permitted faster chips by in-
creasing clock speeds, has ended. Now we obtain
greater computing power through different architec-
tures in different computational units, such as CPUs
and GPUs. GPU programming does not respect a

Author Copy © 2023 LBNL
Digital Object Identifier 10.1109/MCSE.2023.3329330

unified programming paradigm in the same way that
MPI did for distributed memory parallelism. Too many
design choices are available for software development
and choices are typically not universally applicable
across platforms in the same generation, let alone from
one generation to the next. A different cycle plays out
for scientific software. One starts with simplified mod-
els for initial insights. As understanding and insights
grow, models are refined, which in turn need more
diverse solvers, thereby increasing the complexity of
the software.

Abstractions have long been recognized as a key
mechanism to tame this complexity on multiple axes.
Maximum success in this arena has been obtained by
the tools that rely on C++ template meta-programming.
These tools hide the specialization for specific devices
from the code developer, letting them express their
computation through a common API. However, these
solutions have their own shortcomings. The most ob-
vious one is that they work only for C++ codes, but a
few others are also worth observing. Debugging with
templates is extremely difficult and tedious. Further,
since the tools must account for all corner cases, they
often themselves become cumbersome to manage. It

Computing in Science & Engineering



is also not obvious how C++ based solutions will fit with
workflows that involve interfacing with Al/ML tools.

In June 2023 we organized a minisymposium at
PASC-23" to explore portability solutions that do not
rely upon C++. We considered newer HPC languages,
extensions to languages that are attempting to provide
HPC solutions, tools developed to exploit the Python
ecosystem, and tools that came out as a result of
lack of choices, such as legacy Fortran. In this article
we feature some of the solutions that were presented
in the minisymposium, and also distill the discussions
with the attendees.

In this article we are deliberately avoiding the use of
the term "performance portability" because we agreed
that the term was misleading. What the scientific
community really cares about is obtaining acceptable
performance across platforms. In today’s landscape,
therefore, we can redefine portability to imply that the
code is able to use all available hardware resources
adequately. With that definition, portability suffices for
the purpose of this discussion.

It has always been true that target-specific code
optimization is needed for improving performance on
any platform. In the past, a common parallel program-
ming model, that of distributed memory, made it easy to
separate scaling optimization from arithmetic and com-
putational optimization. Further, scaling optimizations
typically worked well across platforms without needing
significant code modification. While this portability re-
mains valid for MPI-based scaling optimizations, much
more parallelism is available on the node, and no
widely avialable single programming model currently
works well across the existing variety of node archi-
tecture. Data locality, critical for on-node performance,
has become extremely difficult to understand, express
and manage. Mapping computation to resources, and
effecting data movement to execute the mapping are
difficult to determine, and impossible to express in
conventional programming languages. To circumvent
this challenge, abstraction tools have largely aimed at
providing a common interface with multiple backends.
They optimize performance by inferring the map and
movement through code analysis, and as a result end
up being very complex.

Thttps://pasc23.pasc-conference.org/, slides for most pre-
sentations are available at the website through the time-table

Performance on HPC Platforms Is Possible Without C++

Chapel? is a programming language defined from first
principles to support scalable parallel computing from
the desktop to the supercomputer [1]. Chapel aims to
support code that is similarly readable and writeable
as Python while providing the performance, scalabil-
ity, and control that users are accustomed to from
traditional HPC technologies like Fortran/C/C++, MPI,
OpenMP, and CUDA.

Beyond standard desktop language features like
procedures, objects, and iterators, Chapel has direct
support for expressing the two main concerns that
are crucial to scalable computing: parallelism—what
computations should execute simultaneously—and /o-
cality—where data should be allocated and where
computations should execute. These features can be
combined in various ways to express parallel compu-
tations for multicore processors, distributed memory
systems, and GPUs in a vendor-neutral manner.

The key feature supporting this portability is the
locale which can represent the memory and processor
cores of a network-attached compute node, a socket
on that compute node, or a GPU. By using Chapel’'s
on-clauses to target a given locale or sub-locale, com-
putation and memory allocation can be directed to a
specific unit of the target system with the compiler gen-
erating the appropriate instructions. Meanwhile Chapel
supports a partitioned global namespace in which vari-
ables can be accessed using traditional lexical scoping
whether they are local, remote, or in GPU memory.
These core features are then used to build higher-level
abstractions like distributed arrays or parallel iterators
to support higher-level parallel programming without
the need to manage every detail.

In practice, users are making use of these features
to write applications being actively used in produc-
tion and research in fields as diverse as unstructured
3D CFD for aircraft design, massive-scale interactive
data science, exact diagonalization for quantum many-
body physics, and image analysis to study coral reef
biodiversity. Chapel has also been applied to Al/ML
problems where the desire for writing innovative new
codes and algorithms portably and quickly can over-
come traditional barriers to trying new languages such
as the need to maintain long-lived legacy codes.

Fortran
The world’s first widely used, high-level program-
ming language invented in 1957, Fortran has evolved

2https://chapel-lang.org

2023



through the publication of standards offering array
programming in Fortran 90; object-oriented program-
ming and C-interoperability in Fortran 2003; modular,
parallel and GPU programming in Fortran 2008; and
expanded parallelism and C-interoperability in Fortran
2018. As of this writing, a 2023 standard is nearing
publication, and the Fortran standard committee is
developing type-safe generic programming and task-
based asynchrony for the next standard after 2023.
While the abstractions supporting these new features
offer improved programmability, the underlying runtime
libraries promise improved performance.

On the programmability front, coarray distributed
data structures offer a simple syntactical extension
to traditional arrays and array statements and array
intrinsic functions facilitate compact expression of un-
ordered calculations without requiring compiler direc-
tives. Additional parallel features include atomic opera-
tions, collective procedures, image-failure detection (an
image is an instance of a program analogous to an MPI
rank), and teams (groupings) of images with intra-team
synchronizationa and communication mechanisms.

On the performance front, do concurrent loops
offer automatic GPU offloading with some compilers
and compiler developers can support coarray features
with communication libraries that outperform MPI. For
example, the Caffeine parallel runtime library uses the
GASNEt-Ex exascale networking middleware [2].

Owing partly to the ongoing development of legacy
applications in fields that embraced computing early
— fields such as nuclear energy; automotive and
aerospace engineeering; weather forecasting and cli-
mate prediction — Fortran occupies a substantial frac-
tion of HPC centers’ workloads [3]. A growing com-
munity of open-source, modern Fortran developers are
also pushing the language into non-traditional domains
such as package management, deep learning, and
task scheduling.

OpenMP

OpenMP [4] extends base languages through direc-
tives to support a wide-range of parallelization strate-
gies. This language began as an application program-
ming interface (API) that unified directive-based exten-
sions available in multiple compilers to support loop-
level parallelization. The APl has evolved during its
over 25 year history to support a nearly full-range of
parallelization idioms, including task-based parallelism,
SIMD/vector parallelism and accelerator/offload paral-
lelism. The API is supported by all HPC compilers and
so offers significant portability within the differences
and limitations of different implementations.

2023

OpenMP continues to evolve and to add function-
ality. While some complain about the wide range of
features available in the language, its original concepts
remain and the advanced features offer mechanisms to
increase parallelization control only if required. Impor-
tant recent additions reflect that parallelization control
can inhibit traditional compiler optimizations. Thus, di-
rect support to specify key optimizations such as loop
transformations are now included. These emerging
directions in OpenMP offer the programmer or tool
implementer the ability to "program the compiler" and
the use of OpenMP to implement autotuning tools and
domain specific languages is becoming common.

DaCe

Over the past decade, Python has become one of
the most popular programming languages. Python is
supported by an ecosystem of packages, with NumPy
as a central provider for scientific computing. Although
the NumPy syntax and semantics bear similarities to
Fortran’s array programming, Python and its quirks are
challenging to accelerate in the general case.

The Data-Centric (DaCe) parallel programming
framework [5] is a Python compiler focused on data
movement minimization. To balance productivity and
performance, DaCe defines and compiles a subset
of Python/NumPy in which data containers and their
accesses can be analyzed. The subset of Python
is complemented by augmenting the language with
optimization hints (e.g., symbolic array shapes, parallel
loop annotation), allowing programmers to compile
codes ahead-of-time and guide optimization.

Internally, DaCe uses an intermediate represen-
tation that exposes and transforms parametric data
movement and hierarchical parallelism, promoting
portability across its supported targets — CPU, GPU,
and FPGA. Data-centric transformations such as mem-
ory allocation scheduling, inter-component streaming
(i.e., array-to-FIFO), and global dataflow orchestration
have proven to be crucial in transforming imperative
NumPy code to efficiently utilize GPUs and FPGAs.
The parametric data movement analysis guides opti-
mization decisions via performance models (e.g., work-
depth analysis) or through automated instrumentation
and tuning. DaCe is actively used in atmospheric
modeling, running the finite-volume cubed-sphere dy-
namical Core® entirely on the GPU for the first time;

Shitps://www.gfdl.noaa.gov/fv3/

Performance on HPC Platforms Is Possible Without C++



quantum transport simulation; distributed multilinear
algebra; and machine learning; proving that Python
can be used to write portable HPC codes productively.

Boutique Tool-chain

The boutique tool-chain described in this section was
built for enabling portability in a multiphysics applica-
tion software largely written in Fortran, Flash-X 4. The
design of the tool-chain is based on the observation
that node heterogeneity requires applications to ad-
dress three main requirements.

e Abstraction for Unification: Different computa-
tional hardware components often require differ-
ent data layouts and orders of operation, while
the base arithmetic of the computation remains
the same. It is desirable to unify such variants
into a single expression for ease of maintenance.

e Mapping Computations and Data: Applications
need to map computations and data to different
computational compoments within the node for
optimizing performance and resource utilization.

e Dynamic Data and Computation Movement: A
mechanism needs to be in place to dynamically
move data and computation to the target com-
putational components based on the established

mapping

In response to these requirements, The Flash-X
team built three distinct sets of tools where each one
addresses a specific action mentioned above [6]:

Macro-based Code Compression where macros,
with a custom processor, are used to condense source
code. Macros are allowed to have multiple alternative
definitions, including null definitions. The expansion of
macros is managed by a Python tool called "macro-
processor" which also arbitrates on which definition to
apply where.

CGKit is a specialized tool designed to process
recipes expressed in a high-level pseudocode-like for-
mat. It assumes availability of templates that describe
the logical control flow of algorithm for which the code
is being generated. The recipes define concurrent
regions and high-level dependencies among functional
components, specifying the execution location of each
component. The tool translates these dependencies
into a graph, optimizing it to minimize data movement
and maximize load balance. It then uses specified
control flow template to convert the optimized graph
into compilable code.

“https://flash-x.org

Performance on HPC Platforms Is Possible Without C++

Milhoja Runtime functions as a runtime that ex-
ecutes an extended finite state machine. It assigns
thread teams to manage data movement to speci-
fied destinations and launches computations accord-
ingly. Application-specific helper tools translate the
data needs of computations into a Json description
of the required data packet. A data packet generator
then emits code capable of packaging the data and
associated pointers into data packets, facilitating their
movement by Milhoja. It is expected that Miljoha is
accompanied by data movement pipelines for target
platforms based on performance analysis. This may
need to be a separate activity for every application
using Milhoha.

Together these tools are able to provide an end-to-
end portability solution that is expected to be easy to
adapt for new architectures. In the best case scenario,
a new platform will only require generation of new
pipelines for Milhoja, and perhaps new templates for
CGKit. Some platforms may need additional alternative
definitions of macros. In the worst case, new sections
of the source may need to have variants, and new
macros may need to be introduced, or a completely
new algorithm may be needed. However, the design
philosophy of the tool-chain ensures that modifications
needed in the maintained source code are as un-
intrusive as possible for a given platform architecture.

We reserved the last slot of the minisymposium for
open discussion with audience participation. Not very
surprisingly, a great deal of discussion revolved around
Fortran’s language features and semantics and the
prospects of its future. It's evident that Fortran’s trajec-
tory is a significant point of debate, with a focus on its
continued relevance in the world of HPC. Some HPC
centers have a substantial presence of Fortran codes,
sometimes constituting up to 80% of computational cy-
cles. However, when these codes undergo refactoring,
especially for upgrades or GPU offloading, they often
transition to C++. The economics of the situation play
a crucial role; C++ gains adoption due to substantial
investment from major tech players, securing its future
in ways that other languages cannot.

An idea was proposed to freeze feature growth
in Fortran to maintain its viability, given the cost-
effectiveness of fewer features for writing compilers.
The discussion pointed to efforts towards enhancing
compilers being more useful for the scientific commu-
nity rather than addition of new unsupported features.
Additionally, it was noted that some large facilities
might not require compliance with the latest standard,

2023



as their users might not utilize the advanced features.
Not all participants agreed with this. Developments in
both the open source and commercial world are not
widely known and may lead to better sustainment of
the Fortran ecosystem. As a counterargument to the
expectation that open source would prove a panacea,
others noted that the broader Fortran community is
too small to sustain the development tools in the way
that LLVM has for C and C++. Another key aspect of
the discussion involved exploring ways to constrain the
language’s semantics in the standard, with advanced
features potentially being made available as add-ons.
However, concerns were expressed about the sustain-
ability of these features if they were not incorporated
into the standard, potentially dissuading users from
adopting them due to fear of losing support.

Despite the growth of C++, the conversation ac-
knowledged the rising popularity of languages like Julia
and Rust in general, and Chapel in HPC, which strive
to amalgamate the best features of high productivity
languages like Python and MATLAB while preserv-
ing the performance characteristics of traditional lan-
guages. However, their long term viability was noted to
be uncertain given that they still have modest levels of
adoption. They are used by smaller projects, and show
a great deal of promise, while large-scale codes are
more conservative in adopting these newer solutions,
as they should be. Tools based solutions are by design
adaptable to the changes in hardware landscape more
readily at the cost of requiring more direct input from
the users and creating their own portability challenges.

This work was supported in part by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration.

Authors would like to acknowledge contributions
from attendees, and in particular, Emil Vatai and
Valentin Churavy who also gave presentations.

1. B. L. Chamberlain. Chapel. In P. Balaji, editor, Pro-
gramming Models for Parallel Computing, chapter 6,
pages 129-159. MIT Press, November 2015.

2. D. Rouson and D. Bonachea. Caffeine: Coarray fortran
framework of efficient interfaces to network environ-
ments. In 2022 IEEE/ACM Eighth Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC),
pages 34-42. |EEE, 2022.

2023

3. B. Austin et al. NERSC-10 Workload Analysis, 2020.
doi:10.25344/S4N30W.

4. OpenMP ARB. OpenMP 5.2 Specification.
https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-2.pdf, Nov. 2021.

5. T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schnei-
der, and T. Hoefler. Stateful dataflow multigraphs:
A data-centric model for performance portability on
heterogeneous architectures. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC 19,
New York, NY, USA, 2019. Association for Computing
Machinery.

6. A. Dubey, Y. Lee, T. Klosterman, and E. Vatai. A
tool and a methodology to use macros for abstracting
variations in code for different computational demands.
Future Generation Computer Systems, 2023.

Anshu Dubey is a Senior Computational Scientist in
the Mathematics and Computer Science Division at
Argonne National Laboratory and a Senior Scientist
(CASE) at the University of Chicago. Her research
interests include all aspects of scientific software de-
velopment.

Tal Ben-Nun is a Computer Scientist in the Center for
Applied Scientific Computing at Lawrence Livermore
National Laboratory. His research interests lie in the in-
tersections between programming languages, scientific
computing, and machine learning.

Brad Chamberlain is a Distinguished Technologist at
Hewlett Packard Enterprise (formerly Cray Inc.) whose
career has focused on user productivity for HPC sys-
tems, particularly through the design and develop-
ment of the Chapel parallel programming language
(https://chapel-lang.org).

Bronis R. de Supinski is Chief Technology Officer
(CTO) for Livermore Computing (LC) at Lawrence Liv-
ermore National Laboratory (LLNL), a role in which he
formulates LLNLs large-scale computing strategy and
oversees its implementation. He is a Fellow of the ACM
and the IEEE.

Damian Rouson is a Scientist at Berkeley Lab, where
he leads the Computer Languages and Systems Soft-
ware Group, researches language-based parallel and
GPU programming and deep learning for HPC applica-
tions and teaches parallel programming model tutorials.
He also founded and leads the research software engi-
neering firms Archeaologic Inc. and Sourcery Institute.

Performance on HPC Platforms Is Possible Without C++


https://doi.org/10.25344/S4N30W
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

	INTRODUCTION
	Portability Challenges
	Language/Compiler Based Solutions
	Fortran
	OpenMP

	Tools Based Solutions
	DaCe
	Boutique Tool-chain

	Discussion
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES
	Biographies
	Anshu Dubey
	Tal Ben-Nun
	Brad Chamberlain
	Bronis R. de Supinski
	Damian Rouson




