
UC Davis
UC Davis Previously Published Works

Title
Reliability of arterial spin labeling derived cerebral blood flow in periventricular white 
matter

Permalink
https://escholarship.org/uc/item/4xc709f8

Journal
Neuroimage Reports, 1(4)

ISSN
2666-9560

Authors
Dolui, Sudipto
Fan, Audrey P
Zhao, Moss Y
et al.

Publication Date
2021-12-01

DOI
10.1016/j.ynirp.2021.100063

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, available at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xc709f8
https://escholarship.org/uc/item/4xc709f8#author
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


Reliability of arterial spin labeling derived cerebral blood flow in 
periventricular white matter

Sudipto Doluia,*, Audrey P. Fanb,c,d, Moss Y. Zhaod, Ilya M. Nasrallaha, Greg Zaharchukd, 
John A. Detrea,e

aDepartment of Radiology, University of Pennsylvania, PA, USA

bDepartment of Biomedical Engineering, University of California Davis, CA, USA
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Abstract

We aimed to assess the reliability of cerebral blood flow (CBF) measured using arterial spin 

labeled (ASL) perfusion magnetic resonance imaging (MRI) from the periventricular white 

matter (PVWM) by computing its repeatability and comparing to [15O]-water Positron Emission 

Tomography (PET) as a reference. Simultaneous PET/MRI perfusion data were acquired twice in 

the same session, about 15 min apart, from 16 subjects (age: 41.4 ± 12.0 years, 9 female). ASL 

protocols used pseudocontinuous labeling (pCASL) with background-suppressed 3-dimensional 

readouts, and included both single and multiple post labeling delay (PLD) acquisitions, each 

acquired twice, with the latter providing both CBF and arterial transit time (ATT) maps. The 

reliability of ASL derived PVWM CBF was evaluated using intra-session repeatability assessed by 

the within-subject coefficient of variation (wsCV) of the PVWM CBF values obtained from the 

two scans, correlation with concurrently-acquired PET CBF values, and by comparing them with 

that measured in other commonly used regions of interest (ROIs) such as whole brain (WB), gray 

matter (GM) and white matter (WM). The wsCVs for PVWM CBF with single and multi-PLD 

acquisitions were 5.7 (95% CI: (3.4,7.7)) % and 6.1 (95% CI: (3.8,8.3))%, which were similar to 

those obtained from WB, GM and WM CBF even though the PVWM region is the most weakly 

perfused region of brain parenchyma. Correlations between relative PVWM CBF derived from 

ASL and from [15O]-water PET were also comparable to the other ROIs. Finally, the ATT of the 

PVWM region was found to be 1.27 ± 0.27s, which was not an outlier for the arterial circulation 

of the brain. These findings suggest that PVWM CBF can be reliably measured with the current 

state-of-the-art ASL methods.
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1. Introduction

Cerebral small vessel disease (SVD) is among the most prevalent central nervous system 

disorders and has a key mechanistic role in both aging and dementia (Cannistraro et 

al., 2019; Cuadrado-Godia et al., 2018; Wardlaw et al., 2013). A major challenge in the 

investigation of cerebral SVD is that cerebral small vessel integrity cannot be visualized 

directly in vivo (Pantoni, 2010). Instead, white matter lesions (WMLs) detected as 

hyperintensities on Fluid Attenuated Inversion Recovery (FLAIR) T2 weighted structural 

brain MRI currently provide the most widely accepted biomarker of SVD (Prins et al., 

2005), albeit reflecting downstream effects of SVD and potentially also non-vascular 

pathologies such as inflammation and neurodegeneration (Lee et al., 2016; Nasrallah et 

al., 2019).

Cerebral blood flow (CBF) provides a direct measure of microvascular functional integrity 

(Detre et al., 1998) and has been associated with WML volumes (Shi et al., 2016). Arterial 

spin labeled (ASL) perfusion MRI allows noninvasive quantification of CBF (Alsop et al., 

2015; Detre et al., 1992), but most studies relating ASL CBF to SVD have considered 

large regions of interest (ROIs) encompassing gray matter (GM) or whole brain (WB) (Shi 

et al., 2016) to achieve sufficient signal-to-noise ratio from intrinsically noisy ASL MRI 

measurements. The ability of ASL to measure CBF in the white matter (WM) has been 

questioned because CBF in WM is much lower than in GM (van Gelderen et al., 2008). 

However, advances in ASL MRI acquisition strategies such as pseudocontinuous labeling 

and 3D readouts with background suppression of static brain signal (Alsop et al., 2015) now 

allow CBF to be measured reliably, including in white matter, particularly for ROI-based 

analysis (Zhang et al., 2016). Multiple studies have even measured CBF in penumbras of 

WMLs and showed that to predict future development of WMLs (Promjunyakul et al., 2015; 

Promjunyakul et al., 2018).

While all parenchyma is ultimately perfused by microvessels, CBF measured in cortex 

also reflects neurodegenerative changes based on the tight coupling between CBF and 

metabolism (Dolui et al., 2017, 2020) and ASL derived CBF maps can also potentially 

be contaminated by signal changes in large arteries (Alsop and Detre, 1996). In contrast, 

the periventricular white matter (PVWM) region is supplied exclusively by the terminal 

distributions of long arterioles less than 100 μm in diameter (Moody et al., 1990). Hence 

CBF measured in PVWM can potentially provide a purer measure of cerebral microvascular 

perfusion than WB or GM. Notably, PVWM is even more weakly perfused than WM as a 

whole (Dolui et al., 2019; Holland et al., 2008) and age-associated WMLs also appear first 

and most frequently in the PVWM region (Dolui et al., 2019; Habes et al., 2016), which 

is consistent with the notion that they primarily result from chronic progressive ischemia. 
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Accordingly, PVWM CBF may provide a predictive biomarker of cerebral SVD (Dolui et 

al., 2019).

We previously demonstrated that the PVWM region showed reduced CBF as compared to 

the rest of brain tissue and that the reduction was not attributable to partial volume effects 

with the ventricles or the presence of WMLs (Dolui et al., 2019). Here we sought to evaluate 

the reliability of ASL MRI methods for quantifying PVWM CBF at the single subject level. 

The recent advent of dual modality positron emission tomography (PET)-MRI systems has 

enabled cross-validation of MRI and PET CBF using concurrent measurements to minimize 

differences due to physiological variations in CBF (Werner et al., 2015; Zhang et al., 2014). 

[15O]-water PET is considered the current gold standard method for measuring CBF (Xu 

et al., 2010), though the method requires exposure to ionizing radiation. An advantage of 

[15O]-water PET compared to ASL MRI is that the decay rate for [15O]-water PET is 

almost two orders of magnitude longer than that for blood or tissue T1, allowing much more 

tracer to accumulate even in weakly perfused regions. Furthermore, the method involves 

full dynamic acquisition of the tracer concentration allowing more accurate quantification 

of CBF and is more robust in subjects with varying arterial transit time. We leveraged 

the availability of previously acquired (Fan et al., 2017, 2019) [15O]-water PET and state-of-

the-art ASL MRI data obtained with background suppression, pseudocontinuous labeling, 

and both single and multiple post-labeling delays; the latter can provide a measure of 

arterial transit time (ATT) and a more accurate measure of CBF (Gunther et al., 2001; 

Wang et al., 2013). We aimed to assess the reliability of ASL derived PVWM CBF by 

computing its intra-session reproducibility, correlation with [15O]-water PET measurements 

and comparing the results with WB, GM and WM.

2. Materials and methods

2.1. Cohort

Data from 16 middle aged healthy subjects (age: 41.4 ± 12.0, range = 22–62 years, 9 

female) with no history of neurological disorders and no contraindications to MRI were 

considered for this study. The work has been carried out in accordance with the Code of 

Ethics of the World Medical Association, the study protocols were approved by the Stanford 

University Institutional Review Board and informed written consents were obtained from all 

the participants.

2.2. PET/MRI acquisition and processing

The PET/MRI data were acquired at the Stanford University on a simultaneous time-of-

flight (TOF)-enabled 3.0 T PET/MRI scanner (SIGNA; GE Healthcare, Waukesha, WI). 

Simultaneous acquisitions of PET and ASL-MRI scans were conducted twice about 15 

min apart within the same session and without repositioning the subjects in between scans. 

For the PET perfusion data, each subject received an intravenous bolus injection of [15O]-

water (490–960 MBq). The first 2 min of PET counts after tracer administration were 

reconstructed to create a map of relative CBF. PET reconstruction was performed using a 

TOF- ordered subset expectation maximization (OSEM) algorithm on a 192 × 192 matrix, 
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30 cm field-of view, 2.78 mm slice thickness, and included correction for scatter, random 

counts, dead time, and point-spread function.

ASL MRI data were acquired using pseudo-continuous labeling, both with single and 

multiple PLD, and a 3-dimensional fast spin echo readout with stack-of-spirals readout 

trajectory. The single-PLD data were acquired with a labeling duration of 1.5s, PLD 

of 2.025s, TR/TE = 4852/10.7 ms, in-plane acquisition resolution of 3.7 mm and slice 

thickness of 4 mm and reconstructed to 1.9 × 1.9 × 4mm3, 8 spiral arms with 512 points/

arm, 3 averages. The multi-PLD data were acquired with a labeling duration of 2s and with 

5 PLDs evenly spaced between 0.7 and 3s, TR/TE = 6489/10.7 ms, in plane acquisition 

resolution of 5.8 mm and slice thickness of 4 mm and reconstructed to 1.9 × 1.9 × 

4mm3, 4 spiral arms with 512 points/arm, and single image for each PLD. High resolution 

3-dimensional T1 -weighted scans were also obtained with an inversion-recovery prepared, 

fast spoiled gradient recalled sequence (TR = 9.5 ms; TE = 3.8 ms; spatial resolution = 0.93 

× 0.93 × 1 mm3).

The data were processed using standard processing pipelines ( Fan et al., 2016; Fan et 

al., 2019) implemented in MATLAB and SPM12. Briefly, single-PLD ASL was processed 

and quantified using a single compartment model as recommended by Alsop et al. (2015). 

For multi-PLD ASL, the arterial transit time (ATT) maps were obtained using a weighted 

delay method described by Dai et al. (2012). Thereafter CBF was quantified using a 

2-compartment model for each PLD, and the CBF maps for each delay time were combined 

through a weighted average to obtain the final CBF map (Dai et al., 2012; Fan et al., 2017). 

Note that the quantification models in single and multi-PLD ASL were different as they used 

single and two-compartment models respectively, but the goal of the study was to show the 

reliability of the ASL derived PVWM CBF values considering the assumptions associated 

with each modality. All the CBF maps were visually inspected for artifacts. The CBF maps 

were registered to the T1 image using normalized mutual information criteria in SPM12.

The T1 images were segmented into GM, WM and cerebrospinal fluid (CSF) tissue 

probability maps (TPMs) using SPM12 and whole brain ROIs for each subject were 

obtained by binarizing the sum of GM and WM tissue probabilities using a threshold of 

0.85. Mean CBF in the whole brain was obtained for further analysis. To obtain mean GM 

and WM CBF for each subject, we performed partial volume correction of the CBF maps 

using the method of Asllani et al. (2008) where the anatomical priors of the method were 

derived from smoothing the GM and WM TPMs by the estimated effective resolutions of 

each modality. The effective resolution of single PLD values was estimated by Petr et al. 

(2018) to have a Gaussian full width at half max (FWHM) of 4.6 × 4.3 × 11.8 mm3. We used 

the same effective resolution (FWHM = 11.8 mm) in slice encoding direction for multi-PLD 

acquisition while using the effective in-plane resolution same as the nominal resolution (5.8 

× 5.8 mm2). Finally, we used the PET effective resolution to have a FWHM of 4.5 × 4.5 × 

4.5 mm3 as suggested by the physicists in the acquisition site and which matched closely 

with previous publications (Grant et al., 2016). Mean CBF in GM and WM were obtained 

from the PVC maps within regions having corresponding TPMs, corrected for effective 

resolution, greater than 0.6.
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2.3. PVWM ROI definition from CARDIA data

In our previous work (Dolui et al., 2019), we constructed a functionally defined PVWM 

ROI based on the region of lowest perfusion in a sample of 436 subjects (age = 50.4 ± 3.5 

years, 54% female) from the NHLBI Coronary Artery Risk Development in Young Adults 

(CARDIA) study (Dolui et al., 2016). The group averaged CBF map is shown in Fig. 1(A). 

The lowest CBF values, shown in blue, were found in the PVWM region, hence a PVWM 

ROI was constructed by including WM voxels with CBF values below an empirically set 

threshold of 12.5 ml/100 g/min, as illustrated in Fig. 1(B). Note that the CARDIA data were 

not used in any further analysis in thus study. The ROI was warped to the T1 space of 

each subject and PVWM CBF was extracted as the median of partial volume corrected WM 

CBF values within this ROI and having corrected WM tissue probabilities greater than 0.6. 

We used median to have a robust measure in the small PVWM ROI of relatively low CBF 

values.

2.4. Data analysis

2.4.1. Intra-session repeatability of ASL derived CBF—We evaluated the intra-

session repeatability of ASL derived CBF values in each ROI for the single-PLD and 

multi-PLD protocols. First, we visualized scatter plots of the CBF values in WB, GM, 

WM and PVWM and quantitatively assessed the similarities of the values obtained in the 

two scans using Pearson’s correlation coefficient. Thereafter, we used Bland Altman plots 

as another approach to visualize their intra-session repeatability. For each subject, method 

and ROI, we computed the within-subject coefficient of variation (wsCV) as the standard 

deviation of the two CBF values normalized by their mean. The summary wsCV measure 

for all the subjects were obtained as the root mean square of the individual wsCV values. 

Their 95% confidence intervals and statistical comparisons with other ROIs were obtained 

using bootstrapping methods. A p value of less than 0.05 was considered significant in any 

statistical analysis. We also aimed to compute the reproducibility of PVWM CBF using 

[15O]-water PET, however the latter did not include arterial blood sampling needed for 

calculating absolute CBF. Hence, we computed relative PVWM CBF by dividing by the 

whole brain (WB) CBF, reported the corresponding wsCV for PET and compared that with 

single and multi PLD ASL.

2.4.2. Comparison of ASL CBF values with [15O]-water PET measurements—
For comparison across modalities, we considered the average ROI CBF of the two scans. 

Since [15O]-water PET measurements did not provide absolute CBF measurements, the 

intermodal analysis focused on relative CBF in the GM, WM, and PVWM computed by 

dividing the respective ROI CBF by the WB CBF. We visualized the data using scatter 

plots and computed the Pearson’s correlation coefficient to obtain a quantitative summary 

measure of similarity. In addition to comparing the ASL with PET measurements, we also 

compared the relative CBF measurements obtained with the single PLD and multi PLD ASL 

measurements.

2.4.3. Measurement of PVWM ATT—Finally, we measured the arterial transit time 

(ATT) of the PVWM region in individual subjects from the multi-PLD ASL data. For 

comparison we used the 10th and 90th percentile ATT values in both GM and WM. We 
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aimed to assess if ATT of the PVWM is of the same order as other regions of the brain, 

which would suggest that PVWM CBF can be measured with conventional ASL protocols.

3. Results

Multi PLD ASL data of one session of one subject was discarded from all analysis due to 

presence of visual artifacts. Table 1 shows summary statistics of the ASL derived ROI CBF 

values for each scan obtained with both single PLD and multi PLD acquisitions. The wsCV 

corresponding to their intra-session reliability and their 95% confidence intervals are also 

shown in the table.

Fig. 2 shows the intra-session repeatability of the ASL derived CBF values in each ROI. 

The top row shows scatter plots of the CBF values in the different ROIs and for each ASL 

protocol obtained from the two scans. Unity line references are shown in each plot and 

the Pearson’s correlation coefficients are provided in each plot. The middle and bottom 

rows show Bland Altman plots for each ROI and ASL protocol. The PVWM ROIs have 

numerically larger variabilities, although of the same order, compared to the other ROIs. 

When the wsCV values corresponding to PVWM were compared statistically with the 

other ROIs, only that of WB was found to be significantly lower (p = 0.046 uncorrected 

for multiple comparisons) than PVWM in single PLD acquisition, and not for the other 

protocol-ROI combinations. The wsCV values in single and multi PLD ASL did not differ 

significantly. The wsCV of relative PVWM CBF (computed by normalizing by whole 

brain CBF) obtained with [15O]-water PET was 5.1 (3.2,6.9)%, which was not statistically 

significantly different from that obtained with single PLD or multi PLD ASL whose wsCV 

values for relative PVWM CBF were 5.6 (3.5,7.4) and 5.0 (3.7,6.3) respectively.

Fig. 3 shows correlations between normalized ROI CBF values obtained with different 

methods. All the ROI CBF values between modalities were significantly correlated. The 

correlations with PVWM CBF were significantly lower than WM for single PLD versus 

PET (p = 0.02 uncorrected) and single PLD versus multi PLD (p = 0.03 uncorrected), 

but not for other ROI-protocol combinations. Surprisingly, the correlation with GM was 

significantly lower (p = 0.04 uncorrected) than WM for the single PLD acquisition. None 

of the differences in correlation coefficients was significant after correcting for multiple 

comparisons. In all the plots, the points are mostly scattered close to the unity line 

demonstrating similar GM-WM contrast after correcting for partial volume errors.

Fig. 4 shows the group averaged relative CBF maps obtained with each modality without 

correction for partial volume errors. CBF maps obtained with [15O]-water PET are visibly 

sharper than those acquired with ASL. As can be seen in the images for all modalities, CBF 

values are lower in the periventricular region, and this reduction is distributed anisotropically 

around the caps of the lateral ventricles demonstrating that this distribution is not primarily 

driven by partial volume effects. The CBF gradient from deep WM to PVWM is however 

most prominent in PET data and least prominent in the single PLD ASL acquisition.

Fig. 5 shows the mean arterial transit times (ATT) in the PVWM ROI for all the subjects. 

The average ATT across subjects is 1.27 ± 0.27s. For comparison, the 10 and 90 percentile 
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ATT values in GM and WM are also shown. The plot suggests that ATT values for voxels in 

the PVWM region are not outliers within the cerebral arterial circulation.

4. Discussion

We evaluated CBF in the PVWM ROI using both single and multi PLD ASL acquisitions 

and demonstrated that it provided comparable test-retest reliability when compared to larger 

and more conventional ROIs. Furthermore, the correlations between ASL and [15O]-water 

PET derived PVWM CBFs were comparable to the other ROIs, demonstrating that PVWM 

CBF can be reliably measured.

The within-session test-retest reliabilities were of the same order in all the ROIs, though 

the PVWM reliability in single PLD acquisition was lower than the WB ROI. Of note, the 

PVWM CBF is over an order of magnitude smaller than the other ROIs and are most weakly 

perfused resulting in lower signal to noise ratio than the other ROIs, so it was expected to 

show somewhat lower reliability than the other ROIs.

The CBF values from single-PLD and multi-PLD data were highly correlated and had 

comparable within session reliability. For a given scanning time, a single-PLD acquisition 

has advantage of providing higher SNR because of averaging with a greater number of label/

control pairs, if acquired with optimal parameters. However, single-PLD data can still suffer 

from bias resulting from mismatch of the arterial transit time and choice of parameters, 

resulting in consistent error in both the sessions. In patients with cerebrovascular disease or 

in older subjects, the optimal PLD for a specific subject is not known in advance and hence 

multi-PLD acquisition can be more accurate (Fan et al., 2019; Wang et al., 2014).

Comparison of relative CBF obtained with [15O]-water PET and ASL derived CBF 

values demonstrated significant correlations with values scattered close to the unity lines. 

Specifically, the correlations obtained with PVWM CBF were not markedly different from 

the other ROIs. The correlations with GM were unexpectedly somewhat lower than that 

with WM CBF. Although we corrected for partial volume errors, there can still be errors 

associated with the correction techniques that can potentially affect GM more than WM due 

to relatively thin cortical regions than WM volume. Future work using higher resolution 

ASL MRI would be expected to improve intermodality correlations in CBF. The CBF values 

obtained with single and multi PLD acquisitions were highly correlated, including those in 

the PVWM ROI. Hence the recommended single PLD ASL in Alsop et al. (2015), that does 

not account for ATT, can still be used to measure PVWM CBF, at least in healthy adults.

The ATT values of PVWM were relatively longer than the average ATT of GM and WM, 

but they are not so long that they cannot be measured with conventional ASL acquisition 

protocols. Note that the ATT reported here only represents the time for the labeled blood to 

reach the voxel of interest. The time to reach the microvasculature or tissue can be longer, 

but that should not affect CBF quantification at the voxel level.

In conclusion, we demonstrated that with current advanced ASL acquisition strategies, 

CBF in the weakly perfused PVWM can be measured with comparable reliability to other 

commonly evaluated ROIs. A limitation of this study is that PET acquisitions lacked arterial 
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sampling and so comparisons between ASL CBF and PET CBF used relative CBF values. 

Another limitation is the use of a middle-aged cohort. Older and diseased subjects with 

compromised cerebrovasculature might have lower reliability and longer arterial transit time 

in the PVWM ROI compared to that reported here, the reliability of PVWM CBF still needs 

to be confirmed in these populations.
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Fig. 1. 
(A) Group averaged CBF obtained from 436 subjects (age = 50.4 ± 3.5 years, 54% female) 

from the NHLBI Coronary Artery Risk Development in Young Adults (CARDIA) study; (B) 

A periventricular white matter (PVWM) region of interest (ROI) obtained by thresholding 

the group averaged map in (A) to CBF<12.5 ml/100 g/min.
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Fig. 2. 
(A)–(D): Scatter plots comparing the (A) whole brain (WB) CBF, (B) gray matter (GM) 

CBF, (C) white matter (WM) CBF and (D) periventricular WM (PVWM) CBF obtained 

from the two sessions using single-PLD (shown in blue) and multi-PLD (shown in red) ASL. 

The black lines correspond to the unity line. (E)–(H) Bland Altman plots corresponding to 

(E) WB CBF, (F) GM CBF, (G) WM CBF and (H) PVWM CBF using the two sessions 

of single PLD data; (I)–(L) Bland Altman Plots corresponding to (I) WB CBF, (J) GM 

CBF, (K) WM CBF and (L) PVWM CBF using the two sessions of multi PLD data. CBF 

is expressed in ml/100 g/min. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the Web version of this article.)
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Fig. 3. 
Scatter plots comparing the normalized CBF values (A)–(C) between [15O]-water PET and 

Single PLD ASL in (A) Gray Matter (GM), (B) White Matter (WM) and (C) Periventricular 

White Matter (PVWM); (D)–(F) between [15O]-water PET and Multi PLD ASL in (D) GM, 

(E) WM and (F) PVWM; and (G)–(I) between Single PLD and Multi PLD ASL in (G) GM, 

(H) WM and (I) PVWM. The normalizations in each case were obtained using whole brain 

(WB) CBF values. The dotted black lines in each plot correspond to the unity line.

Dolui et al. Page 13

Neuroimage Rep. Author manuscript; available in PMC 2022 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Group averaged relative CBF obtained with (A) single PLD ASL, (B) multi PLD ASL and 

(C) and [15O]-water PET. The relative CBF for each subject was obtained by normalizing by 

whole brain CBF values.
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Fig. 5. 
Arterial transit times (ATTs) of the periventricular white matter (PVWM) region of interest 

(ROI) in each subject. The standard deviations within the ROI for each subject are shown 

as error bars. For comparison, the 10th and 90th percentile arterial transit time values of the 

gray and white matter ROIs are also shown.
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Table 1

Descriptive Statistics of ASL derived CBF values.

Single PLD ASL Multi PLD ASL

Scan 1 Scan 2 wsCV (95% CI) Scan 1 Scan 2 wsCV (95% CI)

WB CBF 40.1 ± 5.9 39.5 ± 5.4
3.3 (2.0,4.6)

a 40.1 ± 6.2 39.3 ± 6.7 4.0 (2.7,5.2)

GM CBF 66.0 ± 8.9 64.3 ± 8.0 3.4 (2.2,4.7) 66.7 ± 9.7 65.4 ± 10.4 4.8 (2.0,6.4)

WM CBF 23.9 ± 5.1 24.1 ± 4.8 4.9 (2.4,6.7) 21.6 ± 5.1 21.2 ± 5.6 5.1 (3.7,6.3)

PVWM CBF 18.9 ± 4.5 19.4 ± 4.2 5.7 (3.4,7.7) 16.6 ± 4.4 16.2 ± 4.6 6.1 (3.8,8.3)

a
Represents that the wsCV for the specific ROI – protocol combination was significantly lower than the wsCV of PVWM for that specific protocol 

(fourth row).
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