
UCLA
UCLA Electronic Theses and Dissertations

Title
Towards Controllable Generative AI with Intrinsic Reasoning Capabilities

Permalink
https://escholarship.org/uc/item/4xc1x5bb

Author
Liu, Anji

Publication Date
2025

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4xc1x5bb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Towards Controllable Generative AI with Intrinsic Reasoning Capabilities

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Anji Liu

2025

© Copyright by

Anji Liu

2025

ABSTRACT OF THE DISSERTATION

Towards Controllable Generative AI with Intrinsic Reasoning Capabilities

by

Anji Liu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2025

Professor Guy Van den Broeck, Chair

Generative AI has become a transformative paradigm that enables machines to produce

high-quality content such as images, language, and audio. However, beyond creating charming

and coherent outputs, these systems must reason — steering their generations to satisfy

specific properties. For instance, in science and engineering, this capability could ensure

that synthesized molecular structures obey physical constraints or that design blueprints

meet safety standards. While sound reasoning techniques from classical symbolic AI can

rigorously guarantee these properties, they are often computationally prohibitive and difficult

to scale. As a result, many recent approaches rely on scalable yet unsound methods, such

as chain-of-thought prompting, which prioritize efficiency over rigorous correctness. In

this dissertation, I will discuss how to design tractable generative AI models as drop-in

replacements of existing models like autoregressive Transformers and diffusion models, with

the distinguishing capability of sound reasoning. I will demonstrate how such tractable

generative models enable high-fidelity yet controllable generations in various domains, and

highlight the importance of building generative models with intrinsic reasoning capabilities.

ii

The dissertation of Anji Liu is approved.

Stephan Mandt

Aditya Grover

Sriram Sankararaman

Guy Van den Broeck, Committee Chair

University of California, Los Angeles

2025

iii

To my family.

iv

Contents

Abstract ii

List of Figures ix

List of Tables xiv

Acknowledgements xvii

1 Introduction 1

2 Tractable Inference with Probabilistic Circuits 4
2.1 Background on Probabilistic Circuits . 5
2.2 Structural Properties of (Probabilistic) Circuits 6
2.3 A Compositional Atlas of Tractable Circuit Operations 9
2.4 From Simple Circuit Transformations. 11
2.5 . . . to Complex Compositional Queries . 17
2.6 Experiments . 20

3 Scalable Learning of Probabilistic Circuits – Algorithmic Side 23
3.1 Hidden Chow-Liu Trees – A General-Purpose Architecture 23
3.2 Learning Sparse PCs with Pruning and Growing 25

3.2.1 Probabilistic Circuit Model Compression via Pruning 27
3.2.2 Bounding and Approximating the Loss of Likelihood 31
3.2.3 Scalable Structure Learning . 33
3.2.4 Experiments . 35
3.2.5 Density Estimation Benchmarks . 36
3.2.6 Evaluating Pruning and Growing . 37

3.3 Latent Variable Distillation . 38
3.3.1 Latent Variable Distillation for Hidden Markov Model 40
3.3.2 Latent Variable Distillation for Probabilistic Circuits 42
3.3.3 Extracting Latent Variables for Image Modeling 48
3.3.4 Experiments . 49

4 Scalable Learning of Probabilistic Circuits – Systems Side 52
4.1 Related Work on Accelerating PCs . 53
4.2 Key Bottlenecks in PC Parallelization . 54
4.3 Harnessing Block-Based PC Parallelization 57

v

4.3.1 Fully Connected Sum Layers . 57
4.3.2 Generalizing To Practical Sum Layers 58
4.3.3 Efficient Implementations by Compiling PC Layers 59
4.3.4 Analysis: IO and Computation Overhead 61

4.4 Optimizing Backpropagation with PC Flows 63
4.5 Experiments . 65

4.5.1 Faster Models with PyJuice . 65
4.5.2 Better PCs At Scale . 67
4.5.3 Benchmarking Existing PCs . 68

5 Applications 70
5.1 Image Inpainting via Tractable Steering of Diffusion Models 71

5.1.1 Background and Motivation . 71
5.1.2 Guiding Diffusion Models with Tractable Probabilistic Models 74
5.1.3 Practical Implementation with Probabilistic Circuits 76
5.1.4 Towards High-Resolution Image Inpainting 78
5.1.5 Experiments . 79

5.2 Lossless Data Compression . 86
5.2.1 Background and Motivation . 86
5.2.2 Tractability Matters in Lossless Compression 87
5.2.3 Computationally Efficient (De)compression with PCs 89
5.2.4 Algorithm Details . 94
5.2.5 Experiments . 97

5.3 Offline Reinforcement Learning . 99
5.3.1 Background and Motivation . 99
5.3.2 Tractability Matters in Offline RL . 102
5.3.3 Exploiting Tractable Models . 104
5.3.4 Practical Implementation . 108
5.3.5 Experiments . 109

6 Tractability Matters in Diffusion Models 116
6.1 Background and Motivation . 117
6.2 Preliminaries . 119
6.3 Challenge of Modeling Variable Dependencies 120
6.4 Modeling Variable Dependencies with Copula Models 122

6.4.1 Combining Univariate Marginals with Inter-Variable Dependencies . . 123
6.4.2 Modeling Dependence in Discrete Diffusion Models 125

6.5 Autoregressive Models as Copula Models . 126
6.5.1 Extracting Copula Distributions from Autoregressive Models 127
6.5.2 Approximate I-Projection with Autoregressive Models 129
6.5.3 The Overall Diffusion Sampling Process 131

6.6 Experiments . 131
6.6.1 Unconditional Text Generation . 132
6.6.2 Conditional Text Generation . 133
6.6.3 Antibody Sequence Infilling . 134

vi

Appendices 136

A Tractable Inference with Probabilistic Circuits 137
A.1 Useful Sub-Routines . 137

A.1.1 Support circuit of a deterministic circuit 138
A.1.2 Circuits encoding uniform distributions 138
A.1.3 A circuit representation of the #3SAT problem 139

A.2 Circuit Operations . 141
A.2.1 Sum of Circuits . 142
A.2.2 Product of Circuits . 143
A.2.3 Power Function of Circuits . 146
A.2.4 Quotient of Circuits . 152
A.2.5 Logarithm of a PC . 153
A.2.6 Exponential Function of a Circuit . 157
A.2.7 Other tractable operators over circuits 159

A.3 Complex Information-Theoretic Queries . 161
A.3.1 Cross Entropy . 161
A.3.2 Entropy . 162
A.3.3 Mutual Information . 163
A.3.4 Kullback-Leibler Divergence . 165
A.3.5 Rényi Entropy . 166
A.3.6 Rényi’s alpha divergence . 167
A.3.7 Itakura-Saito Divergence . 168
A.3.8 Cauchy-Schwarz Divergence . 169
A.3.9 Squared Loss Divergence . 169

A.4 Expectation-based queries . 170
A.4.1 Moments of a distribution . 170
A.4.2 Probability of logical formulas . 171
A.4.3 Expected predictions . 171

A.5 Experiments . 173

B Scalable Learning of Probabilistic Circuits – Algorithmic Side 176
B.1 Learning Sparse PCs with Pruning and Growing 176

B.1.1 Pseudocode . 176
B.1.2 Proofs . 177
B.1.3 Experiments Details . 183

B.2 Latent Variable Distillation . 187
B.2.1 Proofs . 187
B.2.2 Details for Latent Variable Distillation 188
B.2.3 Experiment Details . 189
B.2.4 Efficiency Analysis . 190
B.2.5 Additional Ablation Studies . 190

C Scalable Learning of Probabilistic Circuits – System Side 192
C.1 Algorithm Details . 192

vii

C.1.1 The Layer Partitioning Algorithm . 192
C.1.2 Details of the Backpropagation Algorithm for Sum Layers 195
C.1.3 PCs with Tied Parameters . 197

C.2 Additional Technical Details . 198
C.2.1 Block-Sparsity of Common PC Structures 198
C.2.2 Relation Between PC Flows and Gradients 198

C.3 Experimental Details . 200
C.3.1 The Adopted Block-Sparse PC Layer 200
C.3.2 Details of Training the HMM Language Model 200
C.3.3 Details of Training the Sparse Image Model 200
C.3.4 Additional Benchmark Results . 200

C.4 Additional Experiments . 201
C.4.1 Runtime on Different GPUs . 201
C.4.2 Runtime on Different Batch Sizes . 202

D Applications 203
D.1 Image Inpainting via Tractable Steering of Diffusion Models 204

D.1.1 Proof of Theorem 11 . 204
D.1.2 Design Choices for High-Resolution Guided Image Inpainting 207
D.1.3 PC Learning Details . 208
D.1.4 Details of the Main Experiments and the Baselines 210
D.1.5 Additional Experiments . 211
D.1.6 Details of the Semantic Fusion Experiment 212

D.2 Lossless Data Compression . 217
D.2.1 Proof of Theorem 13 . 217
D.2.2 Methods and Experiment Details . 224

D.3 Offline Reinforcement Learning . 228
D.3.1 Proof of Theorem 14 . 228
D.3.2 Algorithm Details of Trifle . 230
D.3.3 Inference-time Optimality Score . 234
D.3.4 Additional Experimental Details . 235
D.3.5 Additional Experiments . 239

E Tractability Matters in Diffusion Models 243
E.1 Proof of the Theoretical Results . 243
E.2 Relation Between the Copula Objective and Matrix Scaling 250
E.3 Parameterizing Discrete Copulas by Odds Ratios 251
E.4 Unbiased Univariate Marginals from Discrete Diffusion Models 252
E.5 Implementation Details of DCD . 254
E.6 Additional Unconditional Generation Experiments 255
E.7 Additional Experimental Details . 257

E.7.1 Unconditional Text Generation . 257
E.7.2 Conditional Text Generation . 258
E.7.3 Antibody Sequence Infilling . 259

E.8 Additional Text Samples . 260

viii

List of Figures

2.1 An example PC over boolean variables X1, . . . , X4. Sum parameters are labeled
on the edges. The probability of every node given input x1x̄2x̄3x4 is labeled
blue on top of the corresponding node. 5

2.2 Examples of circuits with different structural properties. The feedforward
order is from left to right; input units are labeled by their scopes; and sum
parameters are omitted for visual clarity. Product units of the rearranged
omni-compatible circuits encoding p(X1) · p(X2) · p(X3) are shown in (c) and
color-coded with those of matching scope in (a) and (b). 8

2.3 Computational pipelines of the KLD (left) and cross entropy (right) over two
distributions p and q encoded as circuits, with the intermediate computations
(r, s and t) also represented as circuits. Their corresponding implementations
in a few lines of Julia code are shown on their right. 10

2.4 The modular operators defined in Section 2.4 can be easily composed to
implement tractable algorithms for novel query classes. Here we show the
code snippet for five queries: Kullback-Leibler divergence (kld), Cross Entropy
(xent), Entropy (ent), Alpha divergence (alphadiv), and Cauchy-Schwarz
divergence (csdiv). 22

3.1 An example of constructing an HCLT PC given a dataset D with 4 features. (a):
Construct the Chow-Liu Tree over variables X1, . . . , X4 using D. (b): Replace
every variable Xi by its corresponding latent variable Zi. (c): Attach all Xi

back to their respective latent variables Zi. (d): This PGM representation of
HCLT is compiled into an equivalent PC. 24

3.2 Histogram of parameter values for a state-of-the-art PC with 2.18M parameters
on MNIST. 95% of the parameters have close-to-zero values. 26

3.3 A demonstration of the pruning and growing operation. From 3.3a to 3.3b,
the red edges are pruned. From 3.3b to 3.3c, the nodes are doubled, and each
parameter is copied 3 times. 27

3.4 A smooth and decomposable PC (b) and an equivalent Bayesian network (a).
The Bayesian network is over 4 variables X = {X1, X2, X3, X4} and 2 hidden
variables Z = {Z1, Z2} with h = 2 hidden states. The feedforward computation
order is from left to right;

⊙
are input Bernoulli distributions,

⊗
are product

units, and
⊕

are sum units; parameter values are annotated in the box. The
probability of each unit given input assignment {X1=0, X2=1, X3=0, X4=1}
is labeled red. 28

ix

3.5 A case study comparing pruning heuristics (eParam and eFlow) on the PC
in Fig. 3.4 given sample {X1=0, X2=1, X3=0, X4=1}. The pruned edges
are dashed and parameters are re-normalized. Compared to the likelihood of
the original PC, the changed likelihoods are in red, showing that pruning by
flows results in less likelihood decrease. 29

3.6 Empirical evaluation of the pruning operation. 33
3.7 Growing operation. Each unit is doubled, and each parameterized edge is

copied 3 times: (nnew, cnew) (orange), (nnew, c) (purple), and (n, cnew) (green). . 34
3.8 Model compression via pruning and finetuning. We report the training set bpd

(y-axis) in terms of the number of parameters (x-axis) for different numbers
of latent states. For each curve, compression starts from the right (initial
PC #Params |Cinit|) and ends at the left (compressed PC #Params |Ccom|);
compression rate (1 - |Ccom| / |Cinit|) is annotated next to each curve. . . . 38

3.9 Structure learning via 75% pruning, growing and finetuning. We report bpd (y-
axis) on both train (red) and test set (green) in terms of the number of latent
states (x-axis). For each curve, training starts from the top (large bpd) and
ends at the bottom (small bpd). 38

3.10 Latent variable (LV) distillation significantly boosts PC performance on chal-
lenging image (ImageNet32) and language (WikiText-2) modeling datasets.
Lower is better. 40

3.11 Latent variable distillation pipeline for hidden Markov models. 41
3.12 A mixture-of-Gaussian distribution (a) and two PCs (b-c) that encode the

distribution. 42
3.13 Materializing LVs in a PC. 43
3.14 Distribution decomposition of an example PC with materialized LVs Z1, Z2. . 46
3.15 Extracting LVs for image data. The MAE model (a) is used to extract

categorical LVs {Zi}ki=1 that correspond to image patches {Xi}ki=1, respectively.
(b) provides example patches from the training set that belong to four randomly
chosen clusters of the LV Z1. 48

3.16 Generative modeling performance of four TPMs on three natural image datasets.
For each method, we report the test set bits-per-dimension (y-axis) in terms
of the number of parameters (x-axis) for different numbers of latent states. . 51

4.1 Layering a PC by grouping nodes with the same topological depth (as indicated
by the colors) into disjoint subsets. Both the forward and the backward
computation can be carried out independently on nodes within the same layer. 54

4.2 Runtime breakdown of the feedforward pass of a PC with ∼150M edges. Both
the IO and the computation overhead of the sum layers are significantly larger
than the total runtime of product layers. Detailed configurations of the PC
are shown in the table. 55

4.3 Illustration of block-based parallelization. A processor computes the output
of 2 sum nodes, by iterating through blocks of 2 input product nodes and
accumulating partial results. 57

x

4.4 A sum layer (left) with a block-sparse parameter matrix (middle) is compiled
into two kernels (right) each with a balanced workload. During execution, each
kernel uses the compiled sum/prod/param indices to compute the outputs of
m0, . . . ,m5. 58

4.5 Runtime and IO overhead of a sum layer from the PD structure (with 29K
nodes and 30M edges). The results demonstrate significant performance gains
from our block-based parallelization, even with small block sizes. 62

4.6 Comparison on memory efficiency. We take two PCs (i.e., an HCLT w/ 159M
edges and an HMM w/ 130M edges) and record GPU memory usage under
different block sizes. 66

4.7 Runtime of a block-sparse sum layer as the function of the fraction of kept
(non-dropped) edge blocks. 67

4.8 Runtime per epoch (with 60K samples) of two sparse HCLTs with different
fractions of pruned edges. 67

5.1 Illustration of the steering effect of the TPM on the diffusion model. The
same random seed is used by the baseline (CoPaint; [191]) and our approach.
At every time step, given the image at the previous noise level, Tiramisu
reconstructs x̃0 with both the diffusion model and the TPM, and combines the
two distributions by taking their geometric mean (solid arrows). The images
then go through the noising process to generate the input for the previous
time step (dashed arrows). 72

5.2 Used masks. 82

5.3 Qualitative results on all three adopted datasets. We compare Tiramisu against
six diffusion-based inpainting algorithms. Please refer to Section D.1.5 for
more qualitative results. 83

5.4 Performance and runtime. 84

5.5 CelebA-HQ qualitative results for the semantic fusion task. In every sample,
two reference images together with their masks are provided to Tiramisu.
The task is to generate images that (i) semantically align with the unmasked
region of both reference images, and (ii) have high fidelity. For every input, we
generate five samples with different levels of semantic coherence. The left-most
images are the least semantically constrained and barely match the semantic
patterns of the reference images. In contrast, the right-most images strictly
match the semantics of the reference images. 85

5.6 Overview of the PC-based (de)compressor. The encoder’s side sequentially
compresses variables one-by-one using the conditional probabilities given all
sent variables. These probabilities are computed efficiently using Algorithm 5.
Finally, a streaming code uses conditional probabilities to compress the vari-
ables into a bitstream. On the decoder’s side, a streaming code decodes the
bitstream to reconstruct the image with the conditional probabilities computed
by the PC. 92

xi

5.7 Good variable orders lead to more efficient computation of Fπ(x). Consider
the PC p shown in (a). (b): If variable order X1, X2, X3 is used, we need
to evaluate 20 PC units in total. (c): The optimal variable order X3, X2, X1

allows us to compute Fπ(x) by only evaluating 13 PC units. 97

5.8 RvS approaches suffer from inference-time suboptimality. Left: There is a
strong positive correlation between the average estimated returns by Trajectory
Transformers (TT) and the actual returns in 6 Gym-MuJoCo environments
(MR, M, and ME denote medium-replay, medium, and medium-expert, re-
spectively), which suggests that the sequence model can distinguish rewarding
actions from the others. Middle: Despite being able to recognize high-return
actions, both TT and DT [11] fail to consistently sample such action, leading
to bad inference-time optimality; Trifle consistently improves the inference-
time optimality score. Right: We substantiate the relationship between low
inference-time optimality scores and unfavorable environmental outcomes by
showing a strong positive correlation between them. 103

5.9 (a) Stochastic Taxi environment; (b) Stochastic FrozenLake Environment; (c)
Average returns on the stochastic environment. All the reported numbers are
averaged over 1000 trials. 112

5.10 Correlation between average estimated returns and true environmental returns
for s-Trifle (w/ single-step value estimates), TT, and m-Trifle (w/ multi-step
value estimates) in the stochastic Taxi domain. R denotes the correlation
coefficient. The results demonstrate that (i) multi-step value estimates (TT
and m-Trifle) are better than single-step estimates (s-Trifle), and (ii) exactly
computed multi-step estimates (m-Trifle) are better than approximated ones
(TT) in stochastic environments. 114

6.1 Discrete Copula Diffusion (DCD). At each denoising step, a partially
completed sequence is given as input (top-left). The diffusion model indepen-
dently predicts the univariate marginals for each masked token, which leads to
the samples in the bottom left. DCD introduces an additional copula model
(top-right) to capture the inter-variable dependencies, thereby supplementing
the information missed by the diffusion model. By combining outputs from
both models in a principled way, DCD achieves better performance than ei-
ther model individually (see improved samples in the bottom-right), enabling
few-step discrete diffusion generation. 117

6.2 Illustration of the decomposition of a distribution into univariate marginals
and a copula. 125

6.3 Generative perplexity (↓) with different numbers of denoising steps. 132

6.4 Generated text from SEDDM and DCD with different number of steps. See
Section E.8 for more. 132

6.5 Sampling time vs. generative perplexity (the autoregressive version of DCD is
used). 135

xii

6.6 Antibody sequence infilling performance measured by sequence recovery rate
(↑). We compare DCD against its two base models in two tasks, where amino
acids at different locations are masked. DCD outperforms both baselines with
only 4 denoising steps. 135

A.1 Building the logarithmic circuit (right) for a deterministic PC (left) whose
input units are labeled by their supports. A single sum unit is introduced over
smoothed product units and additional dummy input units which share the
same support across circuits if they have the same color. 154

A.2 Encoding an additive ensemble of two trees over X = {X1, X2} (left) in an
omni-compatible circuit over X (right). 171

A.3 The modular operators defined in Section 2.4 can be easily composed to
implement tractable algorithms for novel query classes. Here we show the
code snippet for five queries: Kullback-Leibler divergence (kld), Cross Entropy
(xent), Entropy (ent), Alpha divergence (alphadiv), and Cauchy-Schwarz
divergence (csdiv). 175

D.1 User study interface. 212
D.2 Additional qualitative results on CelebA-HQ with six mask types. 214
D.3 Additional qualitative results on ImageNet with six mask types. 215
D.4 Additional qualitative results on LSUN-Bedroom with six mask types. 216
D.5 Convert a product unit with k children into an equivalent PC where every

product node has two children. 219
D.6 (a-b): An example structured-decomposable PC and a corresponding vtree.

(c-d): Converting (b) into an ordered vtree. (d) The converted ordered PC
that is equivalent to (a). 220

D.7 Scaling Curves of Inference Time. (Fix beam width = 32) 241

E.1 Sampling time of DCD and its two base models with 2 to 128 denoising steps. 254
E.2 Comparison between generative perplexity (↓), diversity (measured by sentence

entropy; ↑), and runtime (↓) of DCD with baselines. 256
E.3 Randomly selected unconditional samples from DCD (SEDDM +GPT-2S) with

4 denoising steps. 261
E.4 Randomly selected unconditional samples from DCD (SEDDM +GPT-2S) with

32 denoising steps. 262
E.5 Randomly selected conditional samples from DCD (SEDDM + GPT-2S) with 4

denoising steps. Prompt texts are bolded and in blue. 263
E.6 Randomly selected conditional samples from DCD (SEDDM + GPT-2S) with

32 denoising steps. Prompt texts are bolded and in blue. 264

xiii

List of Tables

2.1 Tractability and hardness of simple circuit operations. Tractable
conditions on inputs translate to conditions on outputs. E.g., for the quotient
p/q, if p and q are compatible (Cmp) and q is deterministic (Det), then the
output is decomposable (Dec); also (+) deterministic if p is deterministic; and
structured-decomposable (SD) if both p and q are. Hardness results are for
representing the output as a smooth (Sm) and decomposable circuit without
some input condition. 12

2.2 Tractability and hardness of information-theoretic queries over cir-
cuits. Tractability given some conditions over the input circuits; computational
hardness when some of these are unmet. 17

2.3 Sizes of the intermediate and final circuits as processed by the operators in
the pipelines of the Shannon and Rényi (for α = 1.5) entropies and Kullback-
Leibler and Alpha (for α = 1.5) divergences when computed for two input
circuits p and q learned from 20 different real-world datasets as in [32]. . . . 21

2.4 Times in seconds to compute the Shannon entropy (ENT), the cross-entropy
(XENT), Kullback-Leibler (KLD), Alpha (for α = 1.5) divergence, Rényi
entropy (RényiEnt), and Cauchy-Schwarz divergence (CSDiv) over the circuits
learned from 20 different real-world datasets by either using the algorithm
distilled by our pipelines (see Table 2.3 and Fig. 2.4) compared to the custom
and highly-optimized implementations of the same ENT [158] and KLD [91]
algorithms as available in Juice.jl [29]. 22

3.1 Density estimation performance on MNIST-family datasets in test set bpd. 37
3.2 Character-level language modeling results on Penn Tree Bank in test set bpd. 37
3.3 Density estimation performance of Tractable Probabilistic Models (TPMs) and

Deep Generative Models (DGMs) on three natural image datasets. Reported
numbers are test set bit-per-dimension (bpd). Bold indicates best bpd (smaller
is better) among all four TPMs. 50

4.1 Average (± stdev of 5 runs) runtime (in seconds) per epoch of 60K
samples for PyJuice and the baselines SPFlow [119], EiNet [132], Juice.jl [29],
and Dynamax [122]. Using four PC structures: PD, RAT-SPN, HCLT, and
HMM. All experiments ran on an RTX 4090 GPU with 24GB memory. To
maximize parallelism, we always use the maximum possible batch size. “OOM”
denotes out-of-memory with batch size 2. The best numbers are in boldface. 53

4.2 Average (± standard deviation of 3 runs) runtime (in seconds) of the compila-
tion process of four PCs. 65

xiv

4.3 Perplexity of HMM language models trained on the CommonGen benchmark [92]. 68

4.4 Density estimation performance of PCs on three natural image datasets. Re-
ported numbers are test set bits-per-dimension. 69

5.1 Quantative results on three datasets: CelebA-HQ [103], ImageNet [38], and
LSUN-Bedroom [189]. We report the average LPIPS value (lower is better) [193]
across 100 inpainted images for all settings. Bold indicates the best result. . 81

5.2 An (incomplete) summary of our empirical results. “Comp.” stands for
compression. 90

5.3 Efficiency and optimality of the (de)compressor. The compression (resp.
decompression) time are the total computation time used to encode (resp.
decode) all 10,000 MNIST test samples on a single TITAN RTX GPU. The
proposed (de)compressor for structured-decomposable PCs is 5-40x faster than
IDF and BitSwap and only leads to a negligible increase in the codeword bpd
compared to the theoretical bpd. 98

5.4 Normalized Scores on the standard Gym-MuJoCo benchmarks. The results
of Trifle are averaged over 12 random seeds (For DT-base and DT-Trifle, we
adopt the same number of seeds as [11]). Results of the baselines are acquired
from their original papers. 109

5.5 Normalized Scores on the Action-Space-Constrained Gym-MuJoCo Variants.
The results of Trifle and TT are both averaged over 12 random seeds, with
mean and standard deviations reported. 114

6.1 Evaluation of text infilling performance using the MAUVE score (↑) with 5
prompt masks. Scores of DCD are all better than (i) SEDD with the same #
denoising steps, and (ii) GPT-2S. 134

A.1 Sizes of the intermediate and final circuits as processed by the operators in
the pipelines of the Shannon and Rényi (for α = 1.5) entropies and Kullback-
Leibler and Alpha (for α = 1.5) divergences when computed for two input
circuits p and q learned from 20 different real-world datasets as in [32]. . . . 174

A.2 Times in seconds to compute the Shannon entropy (ENT), the cross-entropy
(XENT), Kullback-Leibler (KLD), Alpha (for α = 1.5) divergence, Rényi
entropy (RényiEnt), and Cauchy-Schwarz divergence (CSDiv) over the circuits
learned from 20 different real-world datasets by either using the algorithm
distilled by our pipelines (see Table A.1 and Fig. A.3) compared to the custom
and highly-optimized implementations of the same ENT [158] and KLD [91]
algorithms as available in Juice.jl [29]. 175

B.1 Dataset statistics including number of variables (#vars), number of categories
for each variable (#cat), and number of samples for training, validation and
test set (#train, #valid, #test). 184

xv

C.2 Average (± standard deviation of 5 runs) runtime (in seconds) per
training epoch of 60K samples for PyJuice and the baselines on five RAT-
SPNs [133] with different sizes. All other settings are the same as described in
Section 4.5.1. 201

C.1 Density estimation performance of PCs on the WikiText-103 dataset. Reported
numbers are test set perplexity. 201

C.3 Average (± standard deviation of 5 runs) runtime (in seconds) per
training epoch (excluding EM updates) of 60K samples for PyJuice
and the baselines on a RAT-SPNs [133] with 465K nodes and 33.4M edges.
All other settings are the same as described in Section 4.5.1. OOM denotes
out-of-memory. 202

D.1 Hyperparameters of the adopted VQ-GAN models for Tiramisu. 207
D.2 Mixing hyperparameters of Tiramisu. 208
D.3 Hyperparameters of EM fine-tuning process. 210
D.4 User study results. We report the vote difference (%), i.e., [percentage of

votes to Tiramisu] - [percentage of votes to the baseline]. The higher the vote
difference value, the more the annotators prefer images generated by Tiramisu
compared to the baseline. 211

D.5 Normalized Scores of QDT and Trifle on Gym-MuJoCo benchmarks 236
D.6 Results on the stochastic Taxi environment. All the reported numbers are

averaged over 1000 trials. 237
D.7 Ablations over Beam Search Hyperparameters on Halfcheetah Med-Replay. (a)

With H = 1, the beam search degrades to naive rejection sampling (b) With
W = 1, the algorithm doesn’t perform rejection sampling. It samples a single
action and applies it to the environment directly. 239

D.8 Varying Planning Horizon . 239
D.9 Varying Beam Width . 239
D.10 The one-step inference runtime of the Gym-MuJuCo benchmark 240
D.11 Comparison of Adaptive and Fixed Thresholding Mechanisms 242
D.12 Ablations over Adaptive Thresholding (Varying ϵ) on Halfcheetah Med-Replay 242
D.13 Performance of Fixed Thresholding (Varying v) 242

xvi

Acknowledgements

Completing a Ph.D. still feels somewhat unreal to me. While there were certainly difficult
moments along the way, when I look back on this journey, what I remember most is the
joy, even during times when my research wasn’t progressing as I had hoped. That sense of
joy and excitement came not from the absence of struggle, but from being surrounded by a
deeply supportive environment. I was incredibly fortunate to have people around me who
kindly offered their guidance, encouragement, and patience. I truly could not have made it
this far without them.

First and foremost, I would like to express my deepest gratitude to my advisor, Professor
Guy Van den Broeck. His unwavering support and exceptional mentorship have played a
central role in my growth as a researcher. Guy put an incredible amount of thought and
effort into helping me learn how to think independently and eventually craft my own research
agenda. He struck a rare and thoughtful balance between offering detailed guidance and
allowing me the space to develop and pursue my own ideas.

I was very fortunate to have had the opportunity to visit Professor Mathias Niepert’s lab
at the University of Stuttgart and Professor Yitao Liang’s lab at Peking University. My time
in both labs was incredibly enriching, and I am deeply grateful for the warm welcome and
inspiring environment I found at each place. I had the chance to meet and work alongside
many amazing people.

I would also like to express my heartfelt thanks to my other committee members–Professor
Stephan Mandt, Professor Aditya Grover, and Professor Sriram Sankararaman–for their
valuable feedback on my research and for their generous support throughout my job application
process.

I feel extremely lucky to have had such amazing labmates, collaborators, and friends
throughout this journey: Steven, Tal, Yitao, YooJung, Pasha, Kareem, Zhe, Honghua, Meihua,
Antonio, Poorva, Renato, Oliver, Gwen, Zoe, Benjie, Ian, Ruoyan, Wenzhe, Daniel, Vinh,
Edgar, Andrei, Mario, Duy, Samir, Tanja, Julia, Arman, Yun, Aneesh, Jan, Xuejie, Zihao,
Shaofei, Haowei, Xiaojian, Xue, Lifeng, Silong, Dayuan, Zhizhou, Jianshu, Ji, Zilong, Yuanjun,
Hongming and so on. I hope you all the best.

Above all, I want to thank my wife, whose love, patience, and unwavering belief in me
have been my greatest source of strength. I am endlessly grateful for her presence in my life
and for traveling across Europe with me as my favorite companion.

I am deeply grateful to my parents and grandparents for their unconditional and lifelong
support. Even from afar, they were always there for me, offering words of comfort and pride
that meant more than they will ever know. This accomplishment is as much theirs as it is
mine.

xvii

Vita

Education

Ph.D. (Computer Science) University of California, Los Angeles 2020 - 2025

B.Eng. (Automation Science and Electrical Engineering) Beihang University 2015 - 2019

Publications

[1] Anji Liu, Oliver Broadrick, Mathias Niepert, Guy Van den Broeck. Discrete Copula

Diffusion. In: The Thirteenth International Conference on Learning Representations

(ICLR), 2025.

[2] Xuejie Liu∗, Anji Liu∗, Guy Van den Broeck, Yitao Liang. A Tractable Inference

Perspective of Offline RL. In: Proceedings of the Thirty-Eighth Annual Conference on

Neural Information Processing Systems (NeurIPS), 2024.

[3] Anji Liu, Kareem Ahmed, Guy Van den Broeck. Scaling Tractable Probabilistic Circuits:

A Systems Perspective. In: The Forty-First International Conference on Machine

Learning (ICML), 2024.

[4] Anji Liu, Mathias Niepert, Guy Van den Broeck. Image Inpainting via Tractable

Steering of Diffusion Models. In: The Twelfth International Conference on Learning

Representations (ICLR), 2024.

[5] Xuejie Liu∗, Anji Liu∗, Guy Van den Broeck, Yitao Liang. Understanding the Distillation

Process from Deep Generative Models to Tractable Probabilistic Circuits. In: The

Fortieth International Conference on Machine Learning (ICML), 2023.

[6] Anji Liu∗, Honghua Zhang∗, Guy Van den Broeck. Scaling Up Probabilistic Circuits by

Latent Variable Distillation. In: The Eleventh International Conference on Learning

Representations (ICLR), 2023.

xviii

[7] Meihua Dang, Anji Liu, Guy Van den Broeck. Sparse Probabilistic Circuits via Pruning

and Growing. In: Proceedings of the Thirty-Sixth Annual Conference on Neural

Information Processing Systems (NeurIPS), 2022.

[8] Anji Liu, Stephan Mandt, Guy Van den Broeck. Lossless Compression with Probabilistic

Circuits. In: The Tenth International Conference on Learning Representations (ICLR),

2022.

[9] Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, Guy Van den Broeck. A

Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference. In:

Proceedings of the Thirty-Fifth Annual Conference on Neural Information Processing

Systems (NeurIPS), 2021.

xix

Chapter 1

Introduction

Generative AI has emerged as a powerful paradigm, allowing machines to generate high-

quality content across various modalities, including images, language, and audio. However,

beyond creating charming and coherent outputs, these systems must reason — steering

their generations to satisfy specific properties. For instance, in science and engineering, this

capability could ensure that synthesized molecular structures obey physical constraints or

that design blueprints meet safety standards. Similarly, in everyday applications, such as

personal assistants, it could guarantee compliance with ethical guidelines or adherence to

user preferences. While sound reasoning techniques from classical symbolic AI can rigorously

guarantee these properties, they are often computationally prohibitive and difficult to scale.

As a result, many recent approaches rely on scalable yet unsound methods, such as chain-of-

thought prompting, which prioritize efficiency over rigorous correctness.

This dissertation discusses the possibility of designing generative AI models as drop-in

replacements of existing models like autoregressive Transformers and diffusion models, with

the distinguishing capability of sound reasoning. This enables high-fidelity yet controllable

generations that align with user requests or domain constraints. While high fidelity is

ensured by accurately modeling data distributions, controllability and reasoning capability

are reflected in how we extract information from the model’s learned distributions, often

1

through probabilistic queries such as marginal probabilities and most probable explanations.

Two fundamental questions are: (i) What types of probabilistic reasoning can be supported

by a class of generative models? (ii) How can these reasoning capabilities be leveraged to

solve downstream tasks? In addressing these questions, this dissertation focuses on two main

topics.

First, we study how to advance tractable generative models that support exact and efficient

probabilistic reasoning. Probabilistic Circuits (PCs) [14] are a class of generative models

designed for efficient computation of probabilistic queries such as marginal probabilities.

Chapter 2 introduces backgrounds about PCs and further proposes a general pipeline to

derive algorithms to efficiently and exactly compute a wide range of probabilistic queries,

including many information-theoretic queries. Despite their capability to perform exact

reasoning, their practical adoption has been hindered by limitations in density estimation

performance. To address this, Chapters 3 and 4 propose algorithmic and systems-based

training techniques, respectively. These approaches collectively enhanced the expressiveness

of PCs — from underfitting on hand-written digits to achieving competitive results with

variational autoencoders and diffusion models on natural image datasets [100].

Do generative models with enhanced reasoning capabilities perform better on downstream

tasks? Leveraging the aforementioned modeling-side improvements, Chapter 5 discusses the

benefits of applying PCs to reasoning-demanding tasks such as lossless data compression,

controlled image generation, and offline reinforcement learning. Specifically, in many practical

applications involving deep generative models such as large language models and diffusion

models, performance is strongly hindered by the need to approximate the reasoning procedure

required by the task. To mitigate such problems, I show that tractable generative models

like PCs can control the denoising process of diffusion models to achieve unbiased conditional

generation [96]. Similarly, autoregressive Transformers (GPTs) can be controlled by tractable

models such as PCs to effectively generate actions conditioned on high expected returns,

achieving state-of-the-art performance on various robotics tasks [101].

2

In the last part of this thesis, I discuss the possibility of improving the reasoning capabilities

of modern deep generative models. As an example, non-autoregressive generative models, such

as diffusion models, offer significant advantages over widely adopted autoregressive models

by enabling the ability to answer arbitrary conditional queries. However, non-autoregressive

models fall short in modeling discrete data, such as language, where autoregressive models

like GPTs currently excel. In Chapter 6, I propose a novel hybrid framework that combines

autoregressive and non-autoregressive models at inference time, leveraging the strengths of

both approaches. This hybrid model not only surpasses autoregressive models in density

estimation but also retains the enhanced reasoning flexibility of non-autoregressive models.

Additionally, preliminary findings from my ongoing research suggest that a novel non-

autoregressive model architecture can achieve both high expressiveness and strong reasoning

capabilities.

3

Chapter 2

Tractable Inference with Probabilistic

Circuits

In this chapter, we first review a tractable deep representation of probability distributions

termed Probabilistic Circuits (PCs). Based on this representation, we develop a systematic

pipeline to perform exact and efficient probabilistic inference. Specifically, we show how

complex inference scenarios for these models that commonly arise in machine learning – from

computing the expectations of decision tree ensembles to information-theoretic divergences of

PCs – can be represented in terms of tractable modular operations over circuits. Specifically,

we characterize the tractability of simple transformations – sums, products, quotients, powers,

logarithms, and exponentials – in terms of sufficient structural constraints of the circuits

they operate on, and present novel hardness results for the cases in which these properties

are not satisfied. Building on these operations, we derive a unified framework for reasoning

about tractable models that generalizes several results in the literature and opens up novel

tractable inference scenarios.

The contents of this chapter appeared in paper [177].

4

X1

¬X2X2

0.4

0.6

1.0

¬X3X3

¬X4X4

1.0

0.8

0.2

0.5

0.5

1.0

1.00.0

1.00.0

1.0 0.0

1.0

1.0

0.0

0.0 0.6

1.0

1.0

0.8

0.6

0.8 0.7

p(x1x̄2x̄3x4) = 0.7

Figure 2.1: An example PC over boolean variables X1, . . . , X4. Sum parameters are labeled
on the edges. The probability of every node given input x1x̄2x̄3x4 is labeled blue on top of
the corresponding node.

2.1 Background on Probabilistic Circuits

This section provides background on Probabilistic Circuits (PCs) [21], which is a tractable

representation of probabilistic distributions. In particular, we will go through the syntax and

semantics of PCs to demonstrate how they build complex distributions from atomic building

blocks.

Probabilistic Circuits is an umbrella term for a wide variety of tractable probabilistic

models (TPMs), including the classical Hidden Markov Model (HMM) [139] and Chow-Liu

Trees [22] as well as more recent ones including Sum-Product Networks [136], Arithmetic

Circuits [156], and Cutset Networks [141].

A PC p(X) represents a distribution over X via a parameterized Directed Acyclic Graph

(DAG) with a single root node nr. There are three types of nodes: input, product, and sum

nodes. Input nodes define primitive distributions over some variable X ∈ X, while sum and

product nodes merge the distributions defined by their children, denoted ch(n), to build more

complex distributions as follows:

pn(x) :=





fn(x) n is an input node,

∏
c∈ch(n) pc(x) n is a product node,

∑
c∈ch(n) θn,c · pc(x) n is a sum node,

(2.1)

5

where fn(x) is an univariate input distribution (e.g., Gaussian, Categorical), and θn,c denotes

the parameter corresponding to edge (n, c). Intuitively, sum nodes and product nodes encode

mixture and factorized distributions of their children, respectively. To ensure that a PC

models a valid distribution, we assume the child parameters of every sum node n (i.e.,

{θn,c}c∈ch(n)) sum up to 1. The size of a PC p, denoted |p|, is the number of edges in its DAG.

The scope ϕ(n) of a node n is the set of variables defined by its descendent input nodes. The

support supp(n) of a node n is the set of inputs x ∈ val(X) for which the probability pn(x)

is strictly greater than 0.

Figure 2.1 shows an example PC where , , and represent input, product, and sum

nodes, respectively. The key to guaranteeing the tractability of PCs is to add proper structural

constraints to their DAG structure.

2.2 Structural Properties of (Probabilistic) Circuits

In the following, we slightly generalize the notion of PCs to Circuits if the encoded function

is not a valid distribution. Structural constraints on the computational graph of a circuit

in terms of its scope or support provide sufficient and/or necessary conditions for certain

queries to be tractably computed. We now define the structural properties needed for the

query classes that this work will focus on, referring to [14] for more details.

Definition 1 (Smoothness). A circuit is smooth if for every sum unit n, its inputs depend

on the same variables: ∀ c1, c2 ∈ ch(n), ϕ(c1) = ϕ(c2).

Smooth PCs generalize shallow mixture models [112] to deep and hierarchical models. For

instance, a Gaussian mixture model (GMM) can be represented as a smooth PC with a single

sum unit over as many input units as mixture components, each encoding a (multivariate)

Gaussian density.

Definition 2 (Decomposability). A circuit is decomposable if the inputs of every product

unit n depend on disjoint sets of variables: ch(n) = {c1, c2}, ϕ(c1) ∩ ϕ(c2) = ∅.

6

Decomposable product units encode local factorizations. That is, a decomposable product

unit n over variables X encodes pn(X) = p1(X1) ·p2(X2) where X1 and X2 form a partition of

X. Taken together, decomposability and smoothness are a sufficient and necessary condition

for performing tractable integration over arbitrary sets of variables in a single feedforward

pass, as they enable larger integrals to be efficiently decomposed into smaller ones [14,37].

The next Proposition formalizes it.

Proposition 1 (Tractable integration, [14]). Let p be a smooth and decomposable circuit over

X with input functions that can be tractably integrated. Then for any variables Y ⊆ X and

their assignment y, the integral
∫
z∈val(Z) p(y, z)dZ can be computed exactly in Θ(|p|) time,

where Z denotes X \Y.

As the complex queries we focus on in this work involve integration as the last step,

it is therefore needed that any intermediate operation preserves at least decomposability;

smoothness is less of an issue, as it can be enforced in polytime [160]. A key additional

constraint over scope decompositions is compatibility. Intuitively, two decomposable circuits

are compatible if they can be rearranged in polynomial time1 such that their respective

product units, once matched by scope, decompose in the same way. We formalize this with

the following inductive definition.

Definition 3 (Compatibility). Two circuits p and q over variables X are compatible if (i)

they are smooth and decomposable and (ii) any pair of product units n∈p and m∈q with

the same scope can be rearranged into binary products that are mutually compatible and

decompose in the same way: (ϕ(n)=ϕ(m)) =⇒ (ϕ(ni)=ϕ(mi), ni and mi are compatible)

for some rearrangement of the inputs of n (resp. m) into n1, n2 (resp. m1,m2).

We can derive from compatibility the following properties pertaining to a single circuit,

which will be useful in our analysis later.

1By changing the order in which n-ary product units are turned into a series of binary product units.

7

X3

X2X2

X3

X1

X3

×

×

×

×

X1

X2

×

×

(a) Decomposable

X1

X1

X2

X2

×

×

X3

X3

×

×

(b) Structured-decomposable

X1

X2

X3

×

X2

X3

X1

×

×

×

×

X2

X1

×

X3

×

(c) Omni-compatible

Figure 2.2: Examples of circuits with different structural properties. The feedforward
order is from left to right; input units are labeled by their scopes; and sum parameters are
omitted for visual clarity. Product units of the rearranged omni-compatible circuits encoding
p(X1) · p(X2) · p(X3) are shown in (c) and color-coded with those of matching scope in (a)
and (b).

Definition 4 (Special types of compatibility). A circuit is structured-decomposable if it is

compatible with itself. A decomposable circuit p over X is omni-compatible if it is compatible

with any smooth and decomposable circuit over X.

Not all decomposable circuits are structured-decomposable (see Figs. 2.2a and 2.2b), but

some can be rearranged to be compatible with any decomposable circuit. For instance, in

Fig. 2.2c, the fully factorized product unit p(X) = p1(X1) · p2(X2) · p3(X3) can be rearranged

into p1(X1) · (p2(X2) · p3(X3)) and p2(X2) · (p1(X1) · p3(X3)) to match the yellow and pink

products in Fig. 2.2a. We can easily see that omni-compatible circuits must assume the

form of mixtures of fully-factorized models; i.e.,
∑

i θi
∏

j pi,j(Xj). For example, an additive

ensemble of decision trees over variables X can be represented as an omni-compatible circuit.

Also note that if two circuits are compatible and neither is omni-compatible, then both must

be structured decomposable.

Definition 5 (Determinism). A circuit is deterministic if the inputs of every sum unit n

have disjoint supports: ∀ c1, c2 ∈ ch(n), c1 ̸= c2 =⇒ supp(c1) ∩ supp(c2) = ∅.

Analogously to decomposability, determinism induces a recursive partitioning, but this

time over the support of a circuit. For a deterministic sum unit n, the partitioning of its

support can be made explicit by introducing an indicator function per each of its inputs,

i.e.,
∑

c∈ch(n) θcpc(x) =
∑

c∈ch(n) θcpc(x)Jx ∈ supp(pc)K. Determinism allows for tractable

8

maximization of a circuit [14,35]. While we do not consider maximization queries in this work,

determinism will still play a crucial role in the next sections. Moreover, bounded-treewidth

PGMs, such as Chow-Liu trees [22] and thin junction trees [4], can efficiently be represented

as a smooth, deterministic, and decomposable PC via compilation [32, 35]. Probabilistic

sentential decision diagrams (PSDDs) [82] are deterministic and structured-decomposable

PCs that can be efficiently learned from data [32].

2.3 A Compositional Atlas of Tractable Circuit Opera-

tions

Many core computational tasks in machine learning and AI involve solving complex integrals,

such as expectations, that often turn out to be intractable. A fundamental question then

arises: under which conditions do these quantities admit tractable computation? That is, when

can we compute them efficiently without resorting to approximations or heuristics? If we are

able to find model classes to tractably compute these quantities of interest—henceforth called

queries—we can then design efficient algorithms with important applications in learning,

approximate inference [158], model compression [91], explainable AI [174,179] and algorithmic

bias detection [15,20].

This “quest” for tracing the tractability of different queries has been carried out several

times, often independently for different model classes in ML and AI and crucially, for each

query in isolation. For example, the computation of the Kullback-Leibler divergence (KLD)

is known to have a closed form for Gaussians, but only recently has an exact algorithm been

derived for a more complex tractable model class such as probabilistic sentential decision

diagrams (PSDDs) [91]. On the other hand, tractable computation of the entropy, despite

being a sub-routine for the KLD, has only been derived for a different tractable model class—

selective sum-product networks (SPNs) [130]—by [158]. In the current paradigm, if one were

to trace the tractability of a query that has not yet been investigated but still involves the

9

p

q

/

r

log

s

×
t

∫
function kld(p, q)

r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

1

p

q

log

r

×
s

∫

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

1

Figure 2.3: Computational pipelines of the KLD (left) and cross entropy (right) over two
distributions p and q encoded as circuits, with the intermediate computations (r, s and t)
also represented as circuits. Their corresponding implementations in a few lines of Julia code
are shown on their right.

same “building blocks” such as logarithms, integrals and products over distributions, for

instance Rényi’s alpha divergence [144], they would need to derive a novel custom algorithm

for each model class and prove its tractability from scratch.

We take a different path and introduce a general framework under which the tractability of

complex queries can be traced in a unified and effortless manner over model classes and query

classes. To abstract from the different model formalisms, we carry our analysis over circuit

representations [14] as they subsume many tractable generative models—probabilistic circuits

such as Chow-Liu trees [22], hidden Markov models (HMMs) [139], sum-product networks

(SPNs) [136], and other deep mixture models—as well as discriminative ones, including

decision trees [25,77] and deep regressors [75], thus enabling a unified treatment across model

classes. To generalize our analysis across queries, we propose to represent a single query as a

circuit pipeline: a computational graph whose intermediate operations transform and combine

the input circuits into other circuits. We can first build a set of simple tractable circuit

transformations—sums, products, powers, logarithms, and exponentials—and then (i) analyze

the tractability of a single query by propagating the sufficient conditions for tractability of

the intermediate operators in the pipeline; and (ii) automatically distill a tractable inference

algorithm by composing the operators used. For instance, Fig. 2.3 shows the pipeline for

computing the KLD of p and q, two distributions encoded by circuits. We can identify a

general class of models that supports its tractable computation: by tracing the conditions for

tractable quotient, logarithm, and product over circuits such that the output circuit (i.e., t)

admits tractable integration, we can derive a set of sufficient conditions for the input circuits.

10

Moreover, we can reuse the logarithm and product operations in the KLD pipeline to reason

about the tractability of cross entropy, in the very same way we can reuse the corresponding

subroutines we provide in Julia to quickly implement algorithms for the two queries in a

couple lines of code as shown in Fig. 2.3. This compositionality greatly speeds up the design

of novel tractable algorithms.

2.4 From Simple Circuit Transformations. . .

This section aims to build an atlas of simple operations over circuits which can then be

composed into more complex queries via circuit pipelines—computational graphs whose units

are tractable operators over circuits. To compose two operators, we would need that the

output circuits of one satisfy the structural properties required for the inputs of the other.

As such, for each of these operations we are interested in characterizing (i) its tractability

in terms of the structural properties of its input circuits, and (ii) its closure w.r.t. these

properties, i.e. whether they are preserved in the output circuit, in order to compose many

operations together in a pipeline, while (iii) providing an efficient algorithmic implementation

for it. As we are interested in pipelines for queries involving integration, we would expect the

output circuits to at least retain decomposability (see Proposition 1). For a pipeline in which

all operators can be computed tractably, a simple tractable algorithm can be then distilled

for it. Furthermore, our analysis will highlight if one needs to resort to approximations, by

tracing the hardness of representing the output of an operator as a decomposable circuit

when some property of its inputs is unmet. We summarize all our main results in Table 2.1

and prove the corresponding statements in Chapter A.

Sum of Circuits. The operation of summing two circuits p(Z) and q(Y) is defined as

s(X) = θ1 ·p(Z)+θ2 · q(Y) for X = Z∪Y and two real parameters θ1, θ2 ∈ R. This operation,

which is at the core of additive ensembles of tractable representations,2 can be realized by

2If p and q are PCs, then s is a PC encoding a monotonic mixture model if θ1, θ2 > 0 and θ1 + θ2 = 1.

11

Table 2.1: Tractability and hardness of simple circuit operations . Tractable conditions
on inputs translate to conditions on outputs. E.g., for the quotient p/q, if p and q are
compatible (Cmp) and q is deterministic (Det), then the output is decomposable (Dec); also
(+) deterministic if p is deterministic; and structured-decomposable (SD) if both p and q are.
Hardness results are for representing the output as a smooth (Sm) and decomposable circuit
without some input condition.

Operation
Tractability

Hardness
Input conditions Output conditions Time Complexity

Sum θ1p+ θ2q (+Cmp) (+SD) O(|p|+|q|) NP-hard for Det out
Product p · q Cmp (+Det, +SD) Dec (+Det, +SD) O(|p||q|) #P-hard w/o Cmp

Power
pn, n ∈ N SD (+Det) SD (+Det) O(|p|n) #P-hard w/o SD
pα, α ∈ R Sm, Dec, Det (+SD) Sm, Dec, Det (+SD) O(|p|) #P-hard w/o Det

Quotient p/q Cmp; q Det (+p Det,+SD) Dec (+Det,+SD) O(|p||q|) #P-hard w/o Det
Log log(p) Sm, Dec, Det Sm, Dec O(|p|) #P-hard w/o Det
Exp exp(p) linear SD O(|p|) #P-hard

introducing a single sum unit that takes as input p and q. Summation applies to any input

circuits, regardless of structural assumptions, and it preserves several properties. In particular,

if p and q are decomposable then s is also decomposable; moreover, if they are compatible

then s is structured-decomposable as well as compatible with p and q. However, representing

a sum as a deterministic circuit is known to be NP-hard [156], even for compatible and

deterministic inputs.

Product of Circuits. The product of two circuits p(Z) and q(Y) can be expressed as

m(X) = p(Z) ·q(Y) for variables X = Z∪Y. If Z and Y are disjoint, the product m is already

decomposable. Otherwise, [156] proved that representing the product of two decomposable

circuits as a decomposable circuit is NP-hard, even if they are deterministic. We prove in

Theorem 16 that it is #P-hard even for structured-decomposable and deterministic circuits.

Theorem 1 (Hardness of product). If p and q are two structured-decomposable and deter-

ministic circuits, then computing their product as a decomposable circuit is #P-hard.

[156] also introduced an efficient algorithm for the product of two structured-decomposable

and deterministic PCs that are compatible (namely PSDDs). We generalize this result by

proving that compatibility alone is sufficient for the tractable product computation of any

two circuits.

12

Theorem 2 (Tractable product). If p and q are two compatible circuits, then computing

their product as a decomposable circuit that is compatible with them can be done in O(|p| · |q|)

time.

In the following, we provide a sketch of the algorithm for the case X = Z = Y and refer the

readers to the detailed Algorithm 11. Intuitively, the idea is to “break down” the construction

of the product circuit in a recursive manner by exploiting compatibility. The base case is

where p and q are input units with simple parametric forms. Their product can be represented

as a single input unit as long as we can find a simple parametric form for it, as is the case

for products of exponential families such as (multivariate) Gaussians. Next, we consider the

inductive steps where p and q are two sum or product units. If p and q are compatible product

units, they decompose X the same way for some ordering of inputs; i.e., p(X)=p1(X1)p2(X2)

and q(X)=q1(X1)q2(X2). Then, their product m as a decomposable circuit can be constructed

recursively from the products of their inputs: m(X) = (p1q1)(X1) · (p2q2)(X2). On the other

hand, if p and q are smooth sum units, written as p(X)=
∑

i θipi(X) and q(X)=
∑

j θ
′
jqj(X),

we can obtain their product m recursively by distributing product over sum. In other words,

m(X)=
∑

i,j θiθ
′
j(piqj)(X). Note that if both input circuits are also deterministic, m is also

deterministic since supp(piqj)=supp(pi) ∩ supp(qj) are disjoint for different i, j. Combining

these, the algorithm will recursively compute the product of each pair of units in p and q

with matching scopes. Assuming efficient products for input units, the overall complexity

is O(|p||q|), which yields a compact circuit m of size O(|p||q|). This upper bound is loose

and in practice product circuits will be much smaller as our experiments show (Section 2.6),

especially if inputs are deterministic as products of units with disjoint supports will be

“pruned” away.

Powers of a Circuit. The α-power of a PC p(X) for an α ∈ R is denoted as pα(X) and is

an operation needed to compute generalizations of the entropy of a PC and related divergences

(Section 2.5). Let us first consider natural powers (α ∈ N) which can be computed even for

13

general circuits.

Theorem 3 (Natural powers). If p is a structured-decomposable circuit, then for any α ∈ N,

its power can be represented as a structured-decomposable circuit in O(|p|α) time. Otherwise,

if p is only smooth and decomposable, then computing pα(X) as a decomposable circuit is

#P-hard.

The proof for tractability easily follows by directly applying the product operation

repeatedly. However, we prove in Theorem 19 that the exponential dependence on α is

unavoidable unless P=NP, rendering the operation intractable for large α.

Turning our attention to non-natural α ∈ R, and restricting our attention to PCs,

structured-decomposability is not sufficient to tractably compute α-powers, which we will

show in the next theorem for α = −1. First, as zero raised to a negative power is undefined,

we instead consider the restricted α-power of a PC, denoted as pα(x)|supp(p) and equal to

(p(x))α if x ∈ supp(p) and 0 otherwise. Note that this is equivalent to the α-power if

α ≥ 0. Abusing notation, we will also denote this by pα(x)Jx ∈ supp(p)K, where J·K stands

for indicator functions.

Theorem 4 (Hardness of reciprocals). If p is a structured-decomposable circuit over variables

X, then computing p−1(X)|supp(p) as a decomposable circuit is #P-hard.

The key property that enables efficient computation of power circuits is determinism.

More interestingly, we do not require structured-decomposability, but only smoothness and

decomposability (see Theorem 21).

Theorem 5 (Tractable real powers). If p is a smooth, decomposable, and deterministic PC,

then for any α ∈ R, its restricted power can be represented as a smooth, decomposable, and

deterministic circuit that is compatible with p in O(|p|) time.

Again, the proof is done by construction and detailed in Section A.2.3. The key insight

is that restricted powers “break down” over a smooth and deterministic sum unit p. That

14

is, (
∑

i θipi(x)Jx ∈ supp(pi)K)α Jx ∈ supp(p)K =∑i θ
α
i p

α
i (x)Jx ∈ supp(pi)K. This follows from

the fact that for any x, at most one indicator Jx ∈ supp(pi)K evaluates to 1. As such, when

multiplying a deterministic sum unit with itself, each input will only have overlapping

support with itself, thus effectively matching product units only with themselves. This is

why decomposability suffices. In conclusion, this recursive decomposition of the power of

a circuit will result in the power circuit having the same structure as the original circuit,

with input functions and sum parameters replaced by their α-powers. The space and time

complexity of the algorithm is O(|p|) for smooth, deterministic, and decomposable PCs, even

for natural powers. This will be a key insight to compactly multiply circuits with the same

support structure, such as when computing logarithms and entropies (Section 2.5).

We can already see an example of how simple operators can be composed to derive other

tractable ones. Consider the quotient of two circuits p(X) and q(X), denoted as p(X)/q(X),

and restricted to supp(q). The quotient, appearing in queries such as KLD or Itakura-Saito

divergence (Section 2.5), can be computed by first taking the reciprocal circuit (i.e., the

(−1)-power) of q, followed by its product with p. Thus, if q is deterministic and compatible

with p, we can take its reciprocal—which will have the same structure as q—and multiply

with p to obtain the quotient as a decomposable circuit. There, we prove that the quotient

between p and a non-deterministic q is #P-hard even if they are compatible.

Logarithms of a PC. The logarithm of a PC p(X), denoted log p(X), is fundamental in

computing quantities such as entropies and divergences between distributions (Section 2.5).

Since the log is undefined for 0 we will again consider the restricted logarithm, denoted as

log p(x)|supp(p) and equal to log p(x) if x ∈ supp(p) and 0 otherwise.

Theorem 6 (Logarithms). If p is a smooth, deterministic and decomposable PC, then its

restricted logarithm can be represented as a decomposable circuit in O(|p|) time. Otherwise, if

p is only smooth and decomposable, or even structured-decomposable, computing its restricted

logarithm as a decomposable circuit is #P-hard.

Note that while the input of the logarithm operator must be a PC, its output can be a

15

general circuit. Moreover, if p is structured decomposable, then so is its logarithm. We point

out that determinism again allows the restricted log to decompose over the support of the

PC, but this time the output circuit is not deterministic. Nevertheless, the inputs of the

newly introduced sum units can be clearly partitioned into groups sharing the same support

of the corresponding product units in p. This implies that whenever we have to multiply a

deterministic circuit and its logarithmic circuit—for instance to compute its Shannon entropy

(Section 2.5)—we can leverage the sparsifying effect of non-overlapping supports and perform

only a linear number of products (cf. product and power operators).

Exponentials of a Circuit. The exponential of a circuit p(X), denoted exp(p(X)), is the

inverse operation of the logarithm and is a fundamental operation when representing distri-

butions such as log-linear models [83]. Similarly to the logarithm, building a decomposable

circuit that encodes an exponential of a circuit is hard in general.

Theorem 7 (Hardness of exponentials). If p is a smooth and decomposable circuit, then,

computing its exponential as a decomposable circuit is #P-hard, even if p is structured-

decomposable.

Unlike the logarithm however, restricting the operation to deterministic circuits does not

help with tractability, since the issue comes from product units: the exponential of a product

is neither a sum nor product of exponentials. Nevertheless, it is easy to see that if p encodes

a linear sum over its variables, i.e., p(X) =
∑

i θiXi, we could easily represent its exponential

as a circuit comprising a single decomposable product unit, hence tractably.

Proposition 2 (Tractable exponential of a linear circuit). If p is a linear circuit, then its

exponential can be represented as an omni-compatible circuit in O(|p|) time.

Note that if we were to add an additional deterministic sum unit over many omni-

compatible circuits built in this way, we would retrieve a mixture of truncated exponen-

tials [120,190]. This is the largest class of tractable exponentials we know so far, and enlarging

16

Table 2.2: Tractability and hardness of information-theoretic queries over circuits.
Tractability given some conditions over the input circuits; computational hardness when
some of these are unmet.

Query Tract. Conditions Hardness

Cross Entropy −
∫
p(x) log q(x) dX Cmp, q Det #P-hard w/o Det

Shannon Entropy −∑p(x) log p(x) Sm, Dec, Det coNP-hard w/o Det

Rényi Entropy
(1− α)−1 log

∫
pα(x) dX, α ∈ N SD #P-hard w/o SD

(1− α)−1 log
∫
pα(x) dX, α ∈ R+ Sm, Dec, Det #P-hard w/o Det

Mutual Information
∫
p(x,y) log(p(x,y)/(p(x)p(y))) Sm, SD, Det* coNP-hard w/o SD

Kullback-Leibler Div.
∫
p(x) log(p(x)/q(x))dX Cmp, Det #P-hard w/o Det

Rényi’s Alpha Div.
(1− α)−1 log

∫
pα(x)q1−α(x) dX, α ∈ N Cmp, q Det #P-hard w/o Det

(1− α)−1 log
∫
pα(x)q1−α(x) dX, α ∈ R Cmp, Det #P-hard w/o Det

Itakura-Saito Div.
∫
[p(x)/q(x)− log(p(x)/q(x))− 1]dX Cmp, Det #P-hard w/o Det

Cauchy-Schwarz Div. − log
∫
p(x)q(x)dX√∫

p2(x)dX
∫
q2(x)dX

Cmp #P-hard w/o Cmp

Squared loss
∫
(p(x)− q(x))2dX Cmp #P-hard w/o Cmp

its boundaries is an open problem. Our compositional atlas is now complete: If we were

to add an additional circuit operator to it, it would take the form of the already discussed

powers, logarithms or exponentials.

2.5 . . . to Complex Compositional Queries

In this section, we show how our atlas of simple tractable operators can be effectively used

to systematically find a tractable model class for any advanced query that comprises these

operators. We will show its practical utility by quickly coming up with tractability proofs

as well as distilling efficient algorithms for several entropy and divergence queries that are

largely used in ML. We will then discuss how our discovered tractable circuit classes subsume

some previously known results in the literature and prove novel hardness results for when the

structural properties of these circuits are unmet. Table 2.2 summarizes our results.

We now showcase how a short tractability proof can be easily distilled, using Rényi’s

α-divergence3 [144] as an example. Note that no tractable algorithm was available for it

yet. A proof can be built by inferring the sufficient conditions to tractably compute each

operator in the pipeline—starting from the last before the integral and proceeding backwards

3Several alternative formulations of α-divergences can be found in the literature such as Amari’s [118] and
Tsallis’s [127] divergences. However, as they share the same core operations—real powers and products of
circuits—our results easily extend to them as well.

17

according to Table 2.1.

Theorem 8 (Tractable alpha divergence). The Rényi’s α-divergence between two distributions

p and q, defined as (1 − α)−1 log
∫
pα(x)q1−α(x) dX, can be computed exactly in O(|p|α|q|)

time for α ∈ N, α > 1 if p and q are compatible and q is deterministic, or in O(|p||q|) time

for α ∈ R, α ̸= 1 if p and q are both deterministic and compatible.

Proof. A circuit pipeline for Rényi’s α-divergence involves first computing r = pα and

s = q1−α, then t = r · s and finally integrate it.4 Therefore we require t to be a smooth

and decomposable circuit (Proposition 1), which in turn requires r and s to be compatible

(Theorem 2). To conclude the proof, we need to compute two compatible circuits r and s in

polytime, which can be done according to Theorem 5 or Theorem 3 depending on the value of

α. As these theorems state, pα and q1−α will be compatible with p and q , respectively, with

sizes O(|p|α) and O(|q|) for a natural power α or O(|p|) and O(|q|) for a real-valued α. As

such, t could be computed in O(|p|α|q|) time for α ∈ N or O(|p||q|) for α ∈ R (Theorem 2).

□

We leave the formal theorems and proofs for the other queries listed in Table 2.2 to

Section A.3 in the Appendix for space constraints. We remark again that our technique can

be used beyond this query list and can be applied to any complex query that involves a pipeline

comprising the operations we discussed in Section 2.4 and culminating in an integration.

Shannon entropy Smooth, decomposable and deterministic PCs enable the exact

computation of Shannon entropy and this tractability result translates to bounded-treewidth

PGMs such as Chow-Liu trees and polytrees as they are special cases. Our framework

provides a more succinct tractability proof for the computation of Shannon entropy derived

by [158], which we complete by proving that it is coNP-hard for non-deterministic PCs.

Rényi entropy For non-deterministic PCs we can employ the tractable computation of

Rényi entropy of order α [144], which recovers Shannon Entropy for α→ 1. As the logarithm

4Note that all the operations outside integration are tractable, therefore we can skip them.

18

is taken after integration of the power circuit, the tractability and hardness follow directly

from those of the power operation (Theorem 3 and 5).

Cross entropy As hinted by the presence of a logarithm, the cross entropy is #P-hard

to compute without determinism, even for compatible PCs. Nevertheless, given our atlas

the cross entropy can be tractably computed in O(|p||q|) if p and q are deterministic and

compatible.

Mutual information Let a joint distribution p(X,Y) and its marginals p(X) and p(Y)

be represented as PCs. Then the mutual information (MI) over these three PCs can be

computed via a pipeline involving product, quotient, and log operators and it is tractable if

all circuits are compatible and deterministic. On the other hand, if the marginal distributions

cannot be represented as compact deterministic PCs, we prove it to be coNP-hard.

Divergences [91] proposed an efficient algorithm to compute the KLD tailored for

PSDDs.5 This has been the only tractable divergence available for PCs so far. We greatly

extend this panorama with our atlas by introducing Rényi’s α-divergences which generalize

several other divergences such as the KLD when α → 1, Hellinger’s squared divergence

when α = 2−1, and the X 2-divergence when α = 2 [54]. As Theorem 8 states, they are

tractable for compatible and deterministic PCs, as is the Itakura-Saito divergence [182]. For

non-deterministic PCs, we characterize the tractability of the squared loss and the Cauchy-

Schwarz divergence [69]. The latter has applications in mixture models for approximate

inference [171] and has been derived in closed-form only for mixtures of simple parametric

forms like Gaussians [73], Weibull and Rayligh distributions [125]. Our results generalize

them to deep mixture models [136].

Expectation queries Among other complex queries that can be abstracted into the

general form of an expectation of a circuit f w.r.t. a PC p, i.e., Ex∼p(X) [f(x)], there are the

moments of distributions, such as means and variances. They can be efficiently computed for

any smooth and decomposable PC, as f is an omni-compatible circuit. This result generalizes

5Note that our tractability proof in Theorem 30 is only a few lines long and does not require the lengthy
and ad-hoc algebraic derivations of [91].

19

the moment computation for simple models such as GMMs and HMMs as they can be encoded

as smooth and decomposable PCs. If f is the indicator function of a logical formula, the

expectation computes its probability w.r.t. the distribution p. [13] proposed an algorithm

tailored to formulas f over binary variables, encoded as SDDs [36] w.r.t. distributions that

are PSDDs. We generalize this result to mixed continuous-discrete distributions encoded as

structured-decomposable PCs that are not necessarily deterministic and to logical formulas

in the language of satisfiability modulo theories [5] over linear arithmetics with univariate

literals. Lastly, if f encodes constraints over the output distribution of a deep network, we

retrieve the semantic loss [184]. If f encodes a classifier or a regressor, then Ep[f] refers to

computing its expected predictions w.r.t. p [76]. Our results generalize the results reported

in [174] such as computing the expectations of decision trees and their ensembles [77] as well

as those of deep regression circuits [75].6

2.6 Experiments

We prototyped the tractable operators defined in Section 2.4 as subroutines in Julia in

the Juice.jl framework [29] to showcase how our modular atlas can practically and quickly

help implement tractable algorithms for novel query classes.7 To this extent, we distilled

algorithms for the Shannon, Rényi, and cross entropies and for the KL, α, and Cauchy-Schwarz

divergences. We then ran them on deterministic and structured-decomposable circuits learned

as in [32] from 20 publicly available real-world benchmark datasets [106,176].

Table 2.3 and Table 2.4 report all the intermediate circuit sizes in their respective pipelines

as well as the time taken to build and execute the pipelines. First, the intermediate circuits

created in the pipeline do not blow up in size: as predicted by our theoretical analysis, the

size of the logarithm circuit grows by a linear factor (∼3–4x). Moreover, the size of the

product circuit p · q is only slightly larger than max(|p|, |q|) when p and q are deterministic,

6Despite the name, regression circuits do not conform to our definition of circuits.
7Code is available at https://github.com/UCLA-StarAI/circuit-ops-atlas.

20

https://github.com/UCLA-StarAI/circuit-ops-atlas

Table 2.3: Sizes of the intermediate and final circuits as processed by the operators in the
pipelines of the Shannon and Rényi (for α = 1.5) entropies and Kullback-Leibler and Alpha
(for α = 1.5) divergences when computed for two input circuits p and q learned from 20
different real-world datasets as in [32].

Dataset p q pα q1−α r = log(q) s = p/q t = log(s) p× q p× r p× t pα × q1−α

nltcs 2779 7174 2779 7174 26155 7202 26239 7202 26183 26239 7202
msnbc 2765 6614 2765 6614 24111 6634 24171 6634 24131 24171 6634

kdd 4963 50377 4963 50377 184575 50417 184695 50417 184615 184695 50417
plants 12909 64018 12909 64018 234661 64070 234817 64070 234713 234817 64070
audio 10278 45864 10278 45864 168062 45950 168320 45950 168148 168320 45950

jester 6475 35369 6475 35369 129579 35479 129909 35479 129689 129909 35479
netflix 5068 14636 5068 14636 53571 14706 53781 14706 53641 53781 14706

accidents 3193 8183 3193 8183 29891 8299 30239 8299 30007 30239 8299
retail 4790 14926 4790 14926 54554 14994 54758 14994 54622 54758 14994
pumsb 4277 12461 4277 12461 45500 12595 45902 12595 45634 45902 12595

dna 73828 856955 73828 856955 3141981 857029 3142203 857029 3142055 3142203 857029
kosarek 5115 12988 5115 12988 47354 13106 47708 13106 47472 47708 13106
msnweb 4859 9025 4859 9025 32675 9175 33125 9175 32825 33125 9175

book 7718 12731 7718 12731 45985 12943 46621 12943 46197 46621 12943
movie 8309 11732 8309 11732 42374 11926 42956 11926 42568 42956 11926

webkb 10598 13397 10598 13397 47859 13653 48627 13653 48115 48627 13653
cr52 10912 14348 10912 14348 51094 14546 51688 14546 51292 51688 14546

c20ng 11386 14630 11386 14630 52120 14886 52888 14886 52376 52888 14886
bbc 13884 17016 13884 17016 60857 17282 61655 17282 61123 61655 17282
ad 17744 21676 17744 21676 76870 21920 77602 21920 77114 77602 21920

much smaller than the theoretical bound of O(|p||q|).

In terms of execution time, our algorithms run in less than a second for most circuits

and peak at slightly more than one minute to compute a pipeline of the KLD, whose output

circuit has more than 3 million edges on the DNA dataset (Table 2.3). A custom and highly

optimized implementation of the KLD for PSDDs by [91] runs up to ten times faster on smaller

circuits but surprisingly takes ∼220 seconds for DNA, highlighting that our compositional

atlas is a promising way to distill tractable algorithms. We emphasize that the aim of these

experiments, however, is to demonstrate that our compositional framework can quickly distill

new tractable algorithms for queries that were not available before, such as Rényi entropy and

α and Cauchy-Schwarz divergences.

21

Table 2.4: Times in seconds to compute the Shannon entropy (ENT), the cross-entropy
(XENT), Kullback-Leibler (KLD), Alpha (for α = 1.5) divergence, Rényi entropy (RényiEnt),
and Cauchy-Schwarz divergence (CSDiv) over the circuits learned from 20 different real-world
datasets by either using the algorithm distilled by our pipelines (see Table 2.3 and Fig. 2.4)
compared to the custom and highly-optimized implementations of the same ENT [158] and
KLD [91] algorithms as available in Juice.jl [29].

Dataset ENT KLD XENT AlphaDiv RényiEnt CSDiv
ours Juice ours Juice ours Juice ours Juice ours Juice ours Juice

nltcs 0.143 0.001 0.830 0.207 0.422 - 0.140 - 0.013 - 0.300 -
msnbc 0.109 0.001 0.369 0.182 0.297 - 0.105 - 0.018 - 0.227 -

kdd 0.157 0.001 3.154 0.790 2.180 - 0.885 - 0.016 - 1.136 -
plants 0.679 0.005 3.983 3.909 3.739 - 1.160 - 0.088 - 1.572 -
audio 0.406 0.003 2.736 1.681 1.873 - 0.537 - 0.029 - 0.771 -

jester 0.764 0.003 1.019 0.432 0.805 - 0.351 - 0.024 - 0.476 -
netflix 0.106 0.002 0.352 0.175 0.264 - 0.100 - 0.017 - 0.201 -

accidents 0.055 0.001 0.207 0.039 0.542 - 0.091 - 0.009 - 0.124 -
retail 0.108 0.001 0.508 0.153 0.415 - 0.184 - 0.013 - 0.197 -
pumsb 0.092 0.001 0.701 0.133 0.316 - 0.119 - 0.012 - 0.214 -

dna 4.365 0.027 64.664 220.377 52.997 - 15.609 - 0.255 - 22.901 -
kosarek 0.182 0.002 0.477 0.106 0.379 - 0.139 - 0.011 - 0.735 -
msnweb 0.128 0.002 0.261 0.047 0.211 - 0.342 - 0.015 - 0.135 -

book 0.086 0.003 0.215 0.036 0.202 - 0.075 - 0.020 - 0.115 -
movie 0.272 0.002 0.443 0.063 0.373 - 0.172 - 0.015 - 0.194 -

webkb 0.138 0.003 0.241 0.031 0.164 - 0.079 - 0.023 - 0.098 -
cr52 0.141 0.004 0.260 0.035 0.188 - 0.087 - 0.031 - 0.143 -

c20ng 0.118 0.003 0.264 0.034 0.194 - 0.088 - 0.032 - 0.101 -
bbc 0.205 0.005 0.308 0.037 0.225 - 0.110 - 0.038 - 0.189 -
ad 0.193 0.007 0.346 0.046 0.281 - 0.151 - 0.031 - 0.207 -

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

function ent(p)
q = log(p)
r = product(p, q)
return -integrate(s)

end

function alphadiv(p, q, alpha =1.5)
r = real_pow(p, alpha)
s = real_pow(q, 1.0- alpha)
t = product(r, s)
return integrate(t) / (1.0- alpha)

end

function csdiv(p, q)
r = product(p, q)
s = real_pow(p, 2.0)
t = real_pow(q, 2.0)
a = integrate(r)
b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

function ent(p)
q = log(p)
r = product(p, q)
return -integrate(s)

end

function alphadiv(p, q, alpha =1.5)
r = real_pow(p, alpha)
s = real_pow(q, 1.0- alpha)
t = product(r, s)
return integrate(t) / (1.0- alpha)

end

function csdiv(p, q)
r = product(p, q)
s = real_pow(p, 2.0)
t = real_pow(q, 2.0)
a = integrate(r)
b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

function ent(p)
q = log(p)
r = product(p, q)
return -integrate(s)

end

function alphadiv(p, q, alpha =1.5)
r = real_pow(p, alpha)
s = real_pow(q, 1.0- alpha)
t = product(r, s)
return log(integrate(t)) / (1.0- alpha)

end

function csdiv(p, q)
r = product(p, q)
s = real_pow(p, 2.0)
t = real_pow(q, 2.0)
a = integrate(r)
b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))

end

1

Figure 2.4: The modular operators defined in Section 2.4 can be easily composed to implement
tractable algorithms for novel query classes. Here we show the code snippet for five queries:
Kullback-Leibler divergence (kld), Cross Entropy (xent), Entropy (ent), Alpha divergence
(alphadiv), and Cauchy-Schwarz divergence (csdiv).

22

Chapter 3

Scalable Learning of Probabilistic

Circuits – Algorithmic Side

In the previous chapter, we discussed how to systematically derive efficient inference

algorithms for various probabilistic queries in the context of PCs. However, such inference

tools will only be helpful if we can learn PCs that accurately capture the distribution of

complex and real-world data. This section focuses on three algorithmic side developments that

collectively allow us to significantly improve modeling performance and lead to competitive

performance against expressive deep generative models such as diffusion models and variational

autoencoders.

3.1 Hidden Chow-Liu Trees – A General-Purpose Archi-

tecture

Hidden Chow-Liu Trees (HCLTs) are smooth and structured-decomposable PCs that combine

the ability of Chow-Liu Trees (CLTs) [22] to capture feature correlations and the extra

The contents of this chapter appeared in papers [31,97,99].

23

Z1

Z2 Z3X1

Z4X2 X3

X4

X1

X2 X3

X4

Z1

Z2 Z3

Z4

Replace
Xi by Zi

Attach Xi
back to Zi

(a) (b) (c) (d)

X1 X1

X3 X3

X2 X2

X4 X4

Z3

Z1

Z2

Z4

Equivalent

Figure 3.1: An example of constructing an HCLT PC given a dataset D with 4 features. (a):
Construct the Chow-Liu Tree over variables X1, . . . , X4 using D. (b): Replace every variable
Xi by its corresponding latent variable Zi. (c): Attach all Xi back to their respective latent
variables Zi. (d): This PGM representation of HCLT is compiled into an equivalent PC.

expressive power provided by latent variable models. Every HCLT can be equivalently

represented as a Probabilistic Graphical Model (PGM) [83] with latent variables. Specifically,

Fig. 3.1(a)-(c) demonstrate how to construct the PGM representation of an example HCLT.

Given a dataset D containing 4 features X = X1, . . . , X4, we first learn a CLT w.r.t. X

(Fig. 3.1(a)). To improve expressiveness, latent variables are added to the CLT by the two

following steps: (i) replace observed variables Xi by their corresponding latent variables

Zi, which are defined to be categorical variables with M (a hyperparameter) categories

(Fig. 3.1(b)); (ii) connect observed variables Xi with the corresponding latent variables Zi

by directed edges Zi→Xi. This leads to the PGM representation of the HCLT shown in

Fig. 3.1(c).

Finally, we are left with generating a PC that represents an equivalent distribution w.r.t.

the PGM in Fig. 3.1(c). After generating the PGM representation of an HCLT model,

we are left with the final step of compiling the PGM representation of the model into an

equivalent PC. Recall that we define the latent variables {Zi}4i=1 as categorical variables

with M categories, where M is a hyperparameter. As demonstrated in Algorithm 1, we

incrementally compile every PGM node into an equivalent PC unit through a bottom-up

traverse (line 5) of the PGM. Specifically, leaf PGM nodes corresponding to observed variables

Xi are compiled into PC input units of Xi (line 6), and inner PGM nodes corresponding to

latent variables are compiled by taking products and sums (implemented by product and

24

Algorithm 1 Compile the PGM representation of a HCLT into an equivalent PC
1: Input: A PGM representation of a HCLT G (e.g., Fig. 3.1(c)); hyperparameter M
2: Output: A smooth and structured-decomposable PC p equivalent to G
3: Initialize: cache← dict() a dictionary storing intermediate PC units
4: Sub-routines: PC_leaf(Xi) returns a PC input unit of variable Xi; PC_prod({ni}mi=1) (resp.

PC_sum({ni}mi=1)) returns a product (resp. sum) unit over child nodes {ni}mi=1.
5: foreach node g traversed in postorder (bottom-up) of G do
6: if var(g) ∈ X then cache[g]←

[
PC_leaf

(
var(g)

)
for i = 1 : M

]

7: else # That is, var(g) ∈ Z
8: chs_cache←

[
cache[c] for c in children(g)

]
#children(g) is the set of children of g

9: prod_nodes←
[
PC_prod

([
nodes[i] for nodes in chs_cache

])
for i = 1 : M

]

10: cache[g]←
[
PC_sum

(
prod_nodes

)
for i = 1 : M

]

11: return cache[root(G)][0]

sum units) of its child nodes’ PC units (lines 8-10). Leaf units generated by PC_leaf(X)

can be any simple univariate distribution of X. We used categorical leaf units in our HCLT

experiments. Fig. 3.1(d) demonstrates the result PC after running Algorithm 1 with the

PGM in Fig. 3.1(c) and M = 2. Fig. 3.1(d) illustrates an HCLT that is equivalent to the

PGM shown in Fig. 3.1(c) (with M=2).

3.2 Learning Sparse PCs with Pruning and Growing

Recent advancements in PC learning and regularization [159], and efficient implementa-

tions [30,119,132] have been pushing the limits of PC’s expressiveness and scalability such

that they can even match the performance of less tractable deep generative models, including

flow-based models and VAEs. However, the performance of PCs plateaus as model size

increases. This suggests that to further boost the performance of PCs, simply scaling up the

model size does not suffice and we need to better utilize the available capacity.

We discover that this might be caused by the fact that the capacity of large PCs is wasted.

As shown in Figure 3.2, most parameters in a PC with 2.18M parameters have close-to-zero

values, which have little effect on the PC distribution. Since existing PC structures usually

have fully-connected parameter layers [98, 141], this indicates that the parameter values are

only sparsely used.

25

0.00 0.01 0.02 0.03 0.04 0.05
Parameter Values

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge

< 0.001 (54%)

< 0.01 (76%)

 0.05 (5%)

Figure 3.2: Histogram of parameter values for a state-of-the-art PC with 2.18M parameters
on MNIST. 95% of the parameters have close-to-zero values.

We propose to better exploit the sparsity of large PC models by two structure learning

primitives — pruning and growing. Specifically, the goal of the pruning operation is to

identify and remove unimportant sub-networks of a PC. This is done by quantifying the

importance of PC parameters w.r.t. a dataset using circuit flows, a theoretically-grounded

metric that upper bounds the drop of log-likelihood caused by pruning. Compared to L1

regularization, the proposed pruning operator is more informed by the PC semantics, and

hence quantifies the global effects of pruning much more effectively. Empirically, the proposed

pruning method achieves a compression rate of 80-98% with at most 1% drop in likelihood

on various PCs.

The proposed growing operation increases the model size by copying its existing compo-

nents and injecting noise. In particular, when applied to PCs compressed by the pruning

operation, growing produces larger PCs that can be optimized to achieve better performance.

Applying pruning and growing iteratively can greatly refine the structure and parameters

of a PC. Empirically, the log-likelihoods metric can improve by 2% to 10% after a few

iterations. Compared to existing PC learners as well as less tractable deep generative models

such as VAEs and flow-based models, our proposed method achieves state-of-the-art density

estimation results on image datasets including MNIST, EMNIST, FashionMNIST, and the

Penn Tree Bank language modeling task.

26

(a) PC with fully connected layers (b) PC after pruning operation (c) PC after growing operation.

Figure 3.3: A demonstration of the pruning and growing operation. From 3.3a to 3.3b, the
red edges are pruned. From 3.3b to 3.3c, the nodes are doubled, and each parameter is copied
3 times.

3.2.1 Probabilistic Circuit Model Compression via Pruning

Figure 3.2 shows that most parameters in a large PC are very close to zero. Given that these

parameters are weights associated with mixture (sum unit) components, the corresponding

edges and sub-circuits have little impact on the sum unit output. Hence, by pruning away

these unimportant components, it is possible to significantly reduce model size while retaining

model expressiveness. Fig. 3.3b illustrates the result of pruning five (red) edges from the PC

in Fig. 3.3a. Given a PC and a dataset, our goal is to efficiently identify a set of edges to

prune, such that the log-likelihood gap between the pruned PC and the original PC on the

given dataset is minimized.

Pruning by parameters. The parameter value statistics in Figure 3.2 suggest that a

natural criterion is to prune edges by the magnitude of their corresponding parameter. This

leads to the eParam (edge parameters) heuristic, which selects the set of edges with the

smallest parameters. However, edge parameters themselves are insufficient to quantify the

importance of inputs to a sum unit in the entire PC’s distribution. The parameters of a

sum unit are normalized to be 1 so they only contain local information about the mixture

components. Specifically, θc|n merely defines the relative importance of edge (n, c) in the

conditional distribution represented by its corresponding sum unit n, not the joint distribution

of the entire PC. Figure 3.5(a) illustrates what happens when the edge with the smallest

27

Z1 X1

Z2 X3

X4X2

(a)

.12

.279

.014

0.4

0.6

.388

.066

X1⇠B(.1)X3⇠B(.2)

.9.8

X1⇠B(.7)X3⇠B(.3)

.3.7

.48

.02

0.8

0.2

0.1

0.9

X2⇠B(.6)

X4⇠B(.8)

.6

.8

X2⇠B(.1)
.1

X4⇠B(.2)
.2

(b)

Figure 2: A smooth and decomposable PC (b) and an equivalent Bayesian network (a). The Bayesian
network is over 4 variables X = {X1, X2, X3, X4} and 2 hidden variables Z = {Z1, Z2} with
h = 2 hidden states. The feedforward computation order is from left to right;

J
are input Bernoulli

distributions,
N

are product units, and
L

are sum units; parameter values are annotated in the box.
The probability of each unit given input assignment {X1 =0, X2 =1, X3 =0, X4 =1} is labeled red.

(a) PC with fully connected layers (b) PC after pruning operation (c) PC after growing operation

Figure 3: A demonstration of the pruning and growing operation. From 3a to 3b, the red edges are
pruned. From 3b to 3c, the nodes are doubled, and each parameter is copied 3 times.

Definition 2 (Smoothness and Decomposability [11]). The scope �(n) of a PC unit n is the set of
input variables that it depends on; then, (1) a product unit is decomposable if its children have disjoint
scope; (2) a sum unit is smooth if its children have identical scope. A PC is decomposable if all of its
product units are decomposable; a PC is smooth if all of its sum units are smooth.

Decomposability ensures that every product unit encodes a well-defined factorized distribution over
disjoint sets of variables; smoothness ensures that the mixture components of every sum units are
well-defined over the same set of variables. Both structural properties will be the key to guaranteeing
the effectiveness of the structure learning algorithms proposed in the following sections.

3 Probabilistic Circuit Model Compression via Pruning

Figure 1 shows that most parameters in a large PC are very close to zero. Given that these parameters
are weights associated with mixture (sum unit) components, the corresponding edges and sub-circuits
have little impact on the sum unit output. Hence, by pruning away these unimportant components,
it is possible to significantly reduce model size while retaining model expressiveness. Figure 3b
illustrates the result of pruning five (red) edges from the PC in Figure 3a. Given a PC and a dataset,
our goal is to efficiently identify a set of edges to prune, such that the log-likelihood gap between the
pruned PC and the original PC on the given dataset is minimized.

Pruning by parameters. The parameter value statistics in Figure 1 suggest that a natural criterion
is to prune edges by the magnitude of their corresponding parameter. This leads to the EPARAM (edge
parameters) heuristic, which selects the set of edges with the smallest parameters. However, edge
parameters themselves are insufficient to quantify the importance of inputs to a sum unit in the entire
PC’s distribution. The parameters of a sum unit are normalized to be 1 so they only contain local
information about the mixture components. Specifically, ✓c|n merely defines the relative importance
of edge (n, c) in the conditional distribution represented by its corresponding sum unit n, not the
joint distribution of the entire PC. Figure 4a illustrates what happens when the edge with the smallest
parameter is pruned from the PC in Figure 2.

3

Figure 3.4: A smooth and decomposable PC (b) and an equivalent Bayesian network (a).
The Bayesian network is over 4 variables X = {X1, X2, X3, X4} and 2 hidden variables
Z = {Z1, Z2} with h = 2 hidden states. The feedforward computation order is from left
to right;

⊙
are input Bernoulli distributions,

⊗
are product units, and

⊕
are sum units;

parameter values are annotated in the box. The probability of each unit given input assignment
{X1=0, X2=1, X3=0, X4=1} is labeled red.

parameter is pruned from the PC in Figure 3.4.

However, as shown in Figure 3.5(b), pruning another edge delivers better likelihoods as it

accounts more for the “global influence” of edges on the PC’s output. This global influence is

highly related to the probabilistic “circuit flow” semantics of PCs. We will introduce circuit

flows later in this section, along with their corresponding heuristics eFlow. Before that, we

first introduce an intermediate concept based on the notion of generative significance of PCs.

Pruning by generative significance. A more informed pruning strategy needs to consider

the global impact of edges on the distribution represented by the output of the PC. To

achieve this, instead of viewing the distribution pC in a feedforward manner, we quantify the

significance of a unit or edge by the probability that it will be “activated” when drawing

samples from the PC. Indeed, if the presence of an edge is hardly ever relevant to the

generative sampling process, removing it will not significantly affect the PC’s distribution.

Algorithm 2 shows how to draw samples from a PC distribution through a recursive

implementation: (i) for an input unit n defined on variable X, the algorithm randomly

samples value x according to its input univariate distribution; (ii) for a product unit, by

28

.114

.279

.0042

0.4

0.6

.388

.02

X1⇠B(.1)X3⇠B(.2)

.9.8

X1⇠B(.7)X3⇠B(.3)

.3.7

.48

.02

0.8

0.2

0.1

1.0

X2⇠B(.6)

X4⇠B(.8)

.6

.8

X2⇠B(.1)

.1

X4⇠B(.2)

.2

(a) EPARAM removes the edge with ✓=0.1

.147

.346

.014

0.4

0.6

.48

.066

X1⇠B(.1)X3⇠B(.2)

.9.8

X1⇠B(.7)X3⇠B(.3)

.3.7

.48

.02

1.0

0.2

0.1

0.9

X2⇠B(.6)

X4⇠B(.8)

.6

.8

X2⇠B(.1)

.1

X4⇠B(.2)

.2

(b) EFLOW removes the edge with ✓=0.2

Figure 4: A case study comparing pruning heuristics (EPARAM and EFLOW) on the PC in Figure 2
given sample {X1 =0, X2 =1, X3 =0, X4 =1}. The pruned edges are dashed and parameters are
re-normalized. Compared to the likelihood computed in Figure 2, the changed likelihoods are in red,
showing that pruning by flows results in less likelihood decrease.

Algorithm 1: PC sampling
Input :a PC representing joint probability pC(X)
Output :an instance x sampled from pC

1 Function SAMPLE(n)
2 if n is a an input unit then
3 fn(X) univariate distribution of n; return sample x⇠fn(X)
4 else if n is a product unit then
5 xc SAMPLE(c) foreach c 2 in(n); return Concatenate({xc}c2in(n))
6 else n is a sum unit
7 sample an input c⇤ proportional to {✓c|n}c2in(n); return SAMPLE(c⇤)
8 return SAMPLE(r) where r is the root of PC C

However, as shown in Figure 4b, pruning another edge delivers better likelihoods as it accounts more
for the “global influence” of edges on the PC’s output. This global influence is highly related to the
probabilistic “circuit flow” semantics of PCs. We will introduce circuit flows later in this section,
along with their corresponding heuristics EFLOW. Before that, we first introduce an intermediate
concept based on the notion of generative significance of PCs.

Pruning by generative significance. A more informed pruning strategy needs to consider the
global impact of edges on the distribution represented by the output of the PC. To achieve this,
instead of viewing the distribution pC in a feedforward manner following Equation 1, we quantify
the significance of a unit or edge by the probability that it will be “activated” when drawing samples
from the PC. Indeed, if the presence of an edge is hardly ever relevant to the generative sampling
process, removing it will not significantly affect the PC’s distribution.

Algorithm 1 shows how to draw samples from a PC distribution through a recursive implementation:
(1) for an input unit n defined on variable X (line 3), the algorithm randomly samples value x
according to its input univariate distribution; (2) for a product unit (line 5), by decomposability its
children have disjoint scope, thus we draw samples from all input units and then concatenate the
samples together; (3) for a sum unit n (line 7), by smoothness its children have identical scope, thus
we first randomly sample one of its input units according to the categorical distribution defined by
sum parameters {✓c|n : c 2 in(n)}, and then sample from this input unit recursively. Besides actually
drawing samples from the PC, we can also compute the probability that n will be visited during the
sampling process. This provides a good measure of the importance of unit n to the PC distribution as
a whole, which we define as the top-down probability.
Definition 3 (Top-down Probability). The top-down probability of each unit n in a PC with parameters
✓ is defined recursively as follows, assuming alternating sum and product layers:

q(n;✓) :=

8
><
>:

1 if n is the root unit,P
m2out(n) q(m;✓) if n is a sum unit,P
m2out(n) ✓n|m · q(m;✓) if n is a product unit,

where out(n) are the units that take n as input in the feedforward computation. Moreover, the
top-down probability of a sum edge (n, c) is defined as q(n, c;✓) = ✓c|n · q(n;✓).

4

Figure 3.5: A case study comparing pruning heuristics (eParam and eFlow) on the PC
in Fig. 3.4 given sample {X1=0, X2=1, X3=0, X4=1}. The pruned edges are dashed and
parameters are re-normalized. Compared to the likelihood of the original PC, the changed
likelihoods are in red, showing that pruning by flows results in less likelihood decrease.

Algorithm 2 Sampling from a Probabilistic Circuit (PC)
1: Input: A PC representing joint distribution pC(X)
2: Output: An instance x sampled from pC
3: Sub-routine: Sample(n) recursively samples a value from the sub-PC rooted at node n

4: function Sample(n):
5: if n is an input unit then
6: fn(X)← univariate distribution of n
7: return sample x ∼ fn(X)
8: else if n is a product unit then
9: xc ← Sample(c) for each c ∈ ch(n)

10: return Concatenate({xc}c∈ch(n))
11: else # n is a sum unit
12: Sample c∗ ∈ ch(n) with probability proportional to {θc|n}c∈ch(n)

13: return Sample(c∗)
14: return Sample(r), where r is the root of PC C

decomposability its children have disjoint scope, thus we draw samples from all input units

and then concatenate the samples together; (iii) for a sum unit n, by smoothness its children

have identical scope, thus we first randomly sample one of its input units according to the

categorical distribution defined by sum parameters {θn,c : c ∈ ch(n)}, and then sample from

this input unit recursively. Besides actually drawing samples from the PC, we can also

compute the probability that n will be visited during the sampling process. This provides a

good measure of the importance of unit n to the PC distribution as a whole, which we define

as the top-down probability.

29

Definition 6 (Top-down Probability). The top-down probability of each unit n in a PC with

parameters θ is defined recursively as follows, assuming alternating sum and product layers:

q(n;θ) :=





1 if n is the root unit,

∑
m∈pa(n) q(m;θ) if n is a sum unit,

∑
m∈pa(n) θm,n · q(m;θ) if n is a product unit,

where pa(n) are the units that take n as input in the feedforward computation. Moreover,

the top-down probability of a sum edge (n, c) is defined as q(n, c;θ) = θn,c · q(n;θ).

The top-down probability of the root is always 1; a product unit passes its top-down

probability to all its inputs, and a sum unit distributes its top-down probability to its inputs

proportional to the corresponding edge weights. Therefore, the top-down probability of a

non-root unit is summing over all probabilities it receives from its outputs.

The top-down probability of all PC units and sum edges can be computed in a single

backward pass over the PC’s computation graph. Following the intuition that the top-down

probability defines the probability that units will be visited during the sampling process,

pruning edges with the smallest top-down probability constitutes a reasonable pruning

strategy.

Pruning by circuit flows. The top-down probability q(n;θ) represents the probability of

reaching unit n in an unconditional random sampling process. Despite its ability to capture

global information of PC parameters, the top-down probability is not tailored to a specific

dataset. Therefore, to further utilize the dataset information, we can measure the probability

of reaching certain units/edges in the sampling process conditioning on some instance x

being sampled. To bridge this gap, we define circuit flow as a sample-dependent version of the

top-down probability.

30

Definition 7 (Circuit Flow1). For a given PC with parameters θ and example x, the circuit

flow of unit n on example x is the probability that n will be visited during the sampling

procedure conditioned on x being sampled. This can be computed recursively as follows,

assuming alternating sum and product layers:

Fn(x) =





1 if n is the root unit,

∑
m∈pa(n) Fm(x) if n is a sum unit,

∑
m∈pa(n)

θm,n·pn(x)
pm(x)

· Fm(x) if n is a product unit.

Similarly, the edge flow Fn,c(x) on sample x is defined by Fn,c(x) = θn,c · pc(x)/pn(x) ·Fn(x).

We further define Fn,c(D) =
∑

x∈D Fn,c(x) as the aggregate edge flow over dataset D.

Effectively, we can think of θxm,n := θm,n · pn(x)/pm(x) as the posterior probability of

component n in the mixture of sum unit m conditioned on observing sample x. Then,

circuit flow is the top-down probability under this θx reparameterization of the circuit:

Fn(x) = q(n;θx) and Fn,c(x) = q(n, c;θx).

Circuit flow Fn(x) defines the probability of reaching unit n in the top-down sampling

procedure of Algorithm 1, given that the sampled instance is x. Therefore, edge flow Fn,c(x)

is a natural metric of the importance of edge (n, c) given x.

3.2.2 Bounding and Approximating the Loss of Likelihood

In this section, we theoretically quantify the impact of edge pruning on model performance.

In particular, we establish an upper bound on the log-likelihood drop ∆LL on a given dataset

D by comparing (i) the original PC C and (ii) the pruned PC C\E caused by pruning away

edges E :

∆LL(D, C, E)=LL(D, C)− LL(D, C\E). (3.1)

1Earlier work defined “circuit flow” or “expected circuit flow” in the context of parameter learning [16, 97],
without observing the connection to sampling. We contribute its more intuitive sampling semantics here.

31

We start from the case of pruning one edge (i.e., |E|=1 in Equation 3.1). In this case, the

loss of likelihood can be quantified exactly using flows and edge parameters:

Theorem 9 (Log-likelihood drop of pruning one edge). For a PC C and a dataset D, the

loss of log-likelihood by pruning away edge (n, c) is

∆LL(D, C, {(n, c)})= 1

|D|
∑

x∈D

log

(
1− θn,c

1−θn,c+θn,cFn(x)−Fn,c(x)

)
≤ −1|D|

∑

x∈D

log(1−Fn,c(x)).

Proof is provided in Section B.1.2. By computing the second term in Theorem 9, we can

pick the edge with the smallest log-likelihood drop. Additionally, the third term characterizes

the log-likelihood drop without re-normalizing parameters of {θn,c}c∈ch(n). It suggests pruning

the edge with the smallest edge flow. A key insight from Theorem 9 is that the log-likelihood

drop depends explicitly on the edge flow Fn,c(x) and unit flow Fn(x). This matches the

intuition from Section 3.2.1 and suggests that the circuit flow heuristic proposed in the

previous section is a good approximation of the derived upper bound.

Next, we bound the log-likelihood drop of pruning multiple edges.

Theorem 10 (Log-likelihood drop of pruning multiple edges). Let C be a PC and D be a

dataset. For any set of edges E in C, if ∀x∈D,∑(n,c)∈E Fn,c(x) < 1, the log-likelihood drop

by pruning away E is bounded and approximated by

∆LL(D, C, E) ≤ − 1

|D|
∑

x

log(1−
∑

(n,c)∈E

Fn,c(x)) ≈
1

|D|
∑

(n,c)∈E

Fn,c(D). (3.2)

Although it provides an upper bound to the performance drop, it cannot be used as a

pruning heuristic since the bound does not decompose over edges. Hence, finding the set of

edges with the lowest score requires evaluating the bound exponentially many times with

respect to the number of pruned edges. Therefore, we do an additional approximation step

of the bound via Taylor expansion, which leads to the third term of Equation 3.2. This

approximation matches the eFlow heuristic by a constant factor 1/|D|, which theoretically

32

(a) Comparison of heuristics ERAND, EPARAM, and
EFLOW. Heuristic EFLOW can prune up to 80% of the
parameters without much loglikelihoods decrease.

(b) Histogram of parameters before (the same as in
Figure 1) and after pruning. The parameter values
take higher significance after pruning.

Figure 5: Empirical evaluation of the pruning operation.

The top-down probability of the root is always 1; a product unit passes its top-down probability to
all its inputs, and a sum unit distributes its top-down probability to its inputs proportional to the
corresponding edge weights. Therefore, the top-down probability of a non-root unit is summing over
all probabilities it receives from its outputs.

The top-down probability of all PC units and sum edges can be computed in a single backward pass
over the PC’s computation graph. Following the intuition that the top-down probability defines the
probability that units will be visited during the sampling process, pruning edges with the smallest
top-down probability constitutes a reasonable pruning strategy.

Pruning by circuit flows. The top-down probability q(n;✓) represents the probability of reaching
unit n in an unconditional random sampling process. Despite its ability to capture global information
of PC parameters, the top-down probability is not tailored to a specific dataset. Therefore, to further
utilize the dataset information, we can measure the probability of reaching certain units/edges in the
sampling process conditioning on some instance x being sampled. To bridge this gap, we define
circuit flow as a sample-dependent version of the top-down probability.
Definition 4 (Circuit Flow2). For a given PC with parameters ✓ and example x, the circuit flow of unit
n on example x is the probability that n will be visited during the sampling procedure conditioned
on x being sampled. This can be computed recursively as follows, assuming alternating sum and
product layers:

Fn(x) =

8
><
>:

1 if n is the root unit,P
m2out(n) Fm(x) if n is a sum unit,

P
m2out(n)

✓n|m·pn(x)

pm(x) · Fm(x) if n is a product unit.

Similarly, the edge flow Fn,c(x) on sample x is defined by Fn,c(x) = ✓c|n · pc(x)/pn(x) · Fn(x).
We further define Fn,c(D) =

P
x2D Fn,c(x) as the aggregate edge flow over dataset D.

Effectively, we can think of ✓x
n|m := ✓n|m ·pn(x)/pm(x) as the posterior probability of component n

in the mixture of sum unit m conditioned on observing sample x. Then, circuit flow is the top-
down probability under this ✓x reparameterization of the circuit: Fn(x) = q(n;✓x) and Fn,c(x) =
q(n, c;✓x).

Circuit flow Fn(x) defines the probability of reaching unit n in the top-down sampling procedure of
Algorithm 1, given that the sampled instance is x. Therefore, edge flow Fn,c(x) is a natural metric
of the importance of edge (n, c) given x. Intuitively, the aggregate circuit flow measures how many
expected samples “flow” through certain edges. We write EFLOW to refer to the heuristic that prunes
edges with the smallest aggregate circuit flow.

Empirical Analysis. Figure 5a compares the effect of pruning heuristics EPARAM, EFLOW, as
well as an uninformed strategy, prune randomly, which we denote as ERAND. It shows that both
EPARAM and EFLOW are reasonable pruning strategy, however, as we increase the percentage of

2Earlier work defined “circuit flow” or “expected circuit flow” in the context of parameter learning [4, 25, 7],
without observing the connection to sampling. We contribute its more intuitive sampling semantics here.

5

Figure 3.6: Empirical evaluation of the pruning operation.

justifies the effectiveness of the heuristic. Figure 3.6 empirically compares the actual log-

likelihood drop and the quantity computed from the circuit flow heuristic (that is, the

approximate upper bound) for different percentages of pruned parameters. We see that the

approximate bound matches closely to the actual log-likelihood drop.

3.2.3 Scalable Structure Learning

The pruning operator improves two aspects of PCs. First, as shown in Fig. 3.6(b), model

parameters are more balanced after pruning. Second, pruning removes sub-circuits with

negligible contributions to the model’s distribution. If we treat PCs as hierarchical mixtures

of components, pruning can be regarded as an implicit structure learning step that removes

the “unimportant” components for each mixture. However, since pruning only decreases model

capacity, it is impossible to get a more expressive PC than the original one. To mitigate this

problem, we propose a growing operation to increase the capacity of a PC by introducing

more components for each mixture. Pruning and growing together define a scalable structure

learning algorithm for PCs.

Growing. Growing is an operator that increases model size by copying its existing compo-

nents and injecting noise. As shown in Figure 3.3, after applying the growing operation on

the original PC in Figure 3.3b, we can get a new grown PC as in Figure 3.7. Specifically,

33

n𝚗𝚎𝚠

c𝚗𝚎𝚠c

n

Figure 3.7: Growing operation. Each unit is doubled, and each parameterized edge is copied
3 times: (nnew, cnew) (orange), (nnew, c) (purple), and (n, cnew) (green).

the growing operation is applied to units, edges, and parameters respectively: (1) for units,

growing operates on every PC unit n and creates another copy nnew; (2) for edges, the sum

edge (n, c) from the original PC (Figure 3.3b) are copied three times to the grown PC

(Figure 3.7): from new parent to new child (nnew, cnew), from old parent to new child (n, cnew),

and from new parent to old child (nnew, c); product edges are added to connect the copied

version of a product unit and its copied inputs; (3) a new parameter θnewc|n is a noisy copy of

an old parameter θc|n, that is θnewc|n ← ϵ · θc|n where ϵ ∼ N (1, σ2) and σ2 controls the Gaussian

noise variance. Gaussian noise is added to the copied parameters to ensure that after we

apply the growing operation, parameter learning algorithms can find diverse parameters

for different copies. After a growing operation, the PC size is 4 times the original PC size.

Algorithm 18 in appendix shows a feedforward implementation of the growing operation.

Structure Learning through Pruning and Growing. The proposed pruning and

growing algorithms can be applied iteratively to refine the structure and parameters of an

initial PC. Specifically, since the growing operator increases the number of PC parameters

by a factor of 4, applying growing after pruning 75% of the edges from an initial PC keeps

the number of parameters unchanged. We propose a joint structure and parameter learning

algorithm for PCs that uses these two operations. Specifically, starting from an initial PC,

we apply 75% pruning, growing, and parameter learning iteratively until convergence. We

utilize HCLTs [98] as initial PC structure as it has the state-of-the-art likelihood performance.

Note that this structure learning pipeline can be applied to any PC structure.

34

Parameter Estimation. We use a stochastic mini-batch version of Expectation-Maximization

optimization [15]. Specifically, at each iteration, we draw a mini-batch of samples DB, com-

pute aggregated circuit flows Fn,c(DB) and Fn(DB) of these samples (E-step), and then

compute new parameter θnewc|n = Fn,c(DB)/Fn(DB). The parameters are then updated with

learning rate α: θt+1 ← αθnew + (1 − α)θt (M-step). Empirically this approach converges

faster and is better regularized compared to full-batch EM.

Parallel Computation. Existing approaches to scaling up learning and inference with

PCs, such as Einsum networks [132], utilize fully connected parametrized layers (Figure 3.3a)

of PC structures such as HCLT [98] and RatSPN [133]. These structures can be easily

vectorized to utilize deep learning packages such as PyTorch. However, the sparse structure

learned by pruning and growing is not easily vectorized as a dense matrix operation. We

therefore implement customized GPU kernels to parallelize the computation of parameter

learning and inference based on Juice.jl [30], an open-source Julia package for learning PCs.

The kernels segment PC units into layers such that the units in each layer are independent.

Thus, the computation can be fully parallelized on the GPU. As a result, we can train PCs

with millions of parameters in less than half an hour.

3.2.4 Experiments

We now evaluate our proposed method pruning and growing on two different sets of den-

sity estimation benchmarks: (1) the MNIST-family image generation datasets, including

MNIST [88], EMNIST [24], and FashionMNIST [183]; (2) the character-level Penn Tree Bank

language modeling task [110].

Section 3.2.5 first reports the best results we get on image datasets and language modeling

tasks via the structure learning procedure proposed in Section 3.2.3. Section 3.2.6 then

shows the effect of pruning and growing operations via two detailed experimental settings.

It studies two different constrained optimization problems: finding the smallest PC for a

35

given likelihood via model compression and finding the best PC of a given size via structure

learning.

Settings. For all experiments, we use hidden Chow-Liu Trees (HCLTs) [97] with the number

of latent states in {16, 32, 64, 128} as initial PC structures. We train the parameters of PCs

with stochastic mini-batch EM. We perform early stopping and hyperparameter search using

a validation set and report results on the test set. Please refer to Appendix B.1.3 for more

details. We use mean test set bits-per-dimension (bpd) as the evaluation criteria, where

bpd(D, C) = −LL(D, C)/(log(2) ·m) and m is the number of features in dataset D.

3.2.5 Density Estimation Benchmarks

Image Datasets. The MNIST-family datasets contain gray-scale pixel images of size

28 × 28 where each pixel takes values in [0, 255]. We split out 5% of training data as a

validation set. We compare with two competitive PC learning algorithms: HCLT [98] and

RatSPN [133], one flow-based model: IDF [64], and three VAE-based methods: BitSwap [81],

BB-ANS [168], and McBits [148]. For a fair comparison, we implement RatSPN structures

ourselves and use the same training pipeline and EM optimizer as our proposed method.

Note that EinsumNet [132] also uses RatSPN structures but with a PyTorch implementation

so its comparison is subsumed by comparison with RatSPN. All 7 methods are tested on

MNIST, 4 splits of EMNIST and FashionMNIST. As shown in Table 3.1, the best results are

bold. We see that our proposed method significantly outperforms all other baselines on all

datasets, and establishes new state-of-the-art results among PCs, flows, and VAE models.

More experiment details are in Appendix B.1.3.

Language Modeling Task. We use the Penn Tree Bank dataset with standard processing

from [117], which contains around 5M characters and a character-level vocabulary size

of 50. The data is split into sentences with a maximum sequence length of 288. We

compare with three competitive normalizing-flow-based models: Bipartite flow [170] and

36

Table 3.1: Density estimation performance on MNIST-family datasets in test set bpd.

Dataset Sparse PC (ours) HCLT RatSPN IDF BitSwap BB-ANS McBits

MNIST 1.14 1.20 1.67 1.90 1.27 1.39 1.98
EMNIST(MNIST) 1.52 1.77 2.56 2.07 1.88 2.04 2.19
EMNIST(Letters) 1.58 1.80 2.73 1.95 1.84 2.26 3.12
EMNIST(Balanced) 1.60 1.82 2.78 2.15 1.96 2.23 2.88
EMNIST(ByClass) 1.54 1.85 2.72 1.98 1.87 2.23 3.14
FashionMNIST 3.27 3.34 4.29 3.47 3.28 3.66 3.72

latent flows [197] including AF/SCF and IAF/SCF, since they are the only comparable work

with non-autoregressive language modeling. As shown in Table 3.2, the proposed method

outperforms all three baselines.

Table 3.2: Character-level language modeling results on Penn Tree Bank in test set bpd.

Dataset Sparse PC (ours) Bipartite flow [170] AF/SCF [197] IAF/SCF [197]

Penn Tree Bank 1.35 1.38 1.46 1.63

3.2.6 Evaluating Pruning and Growing

What is the Smallest PC for the Same Likelihood? We evaluate the ability of pruning

based on circuit flows to do effective model compression by iteratively pruning a k-fraction of

the PC parameters and then fine-tuning them until the final training log-likelihood does not

decrease by more than 1%. Specifically, we take pruning percentage k from {0.05, 0.1, 0.3}. As

shown in Figure 3.8, we can achieve a compression rate of 80-98% with negligible performance

loss on PCs. Besides, by fixing the number of latent parameters (x-axis) and comparing

bpp across different numbers of latent states (legend), we discover that compressing a large

PC to a get smaller PC yields better likelihoods compared to directly training an HCLT

with the same number of parameters from scratch. This can be explained by the sparsity of

compressed PC structures, as well as a smarter way of finding good parameters: learning a

better PC with larger size and compressing it down to a smaller one.

37

104 105 106

Parameters

1.1

1.2

Tr
ai

n
bp

d 0.88

0.91

0.95
0.98

mnist

105 106

Parameters

1.6

1.8 0.81

0.86

0.93
0.95

emnist_mnist

105 106

Parameters

1.6

1.8
0.81

0.91

0.93
0.97

emnist_letters

105 106

Parameters

1.6

1.8

0.81

0.91

0.93
0.97

emnist_balanced

104 105 106

Parameters

1.6

1.8

0.88

0.91

0.93
0.3

emnist_byclass

104 105 106 107

Parameters

3.2

3.4
0.88

0.91

0.96
0.97

fashionmnist
latents

16
32
64
128

Figure 3.8: Model compression via pruning and finetuning. We report the training set bpd
(y-axis) in terms of the number of parameters (x-axis) for different numbers of latent states.
For each curve, compression starts from the right (initial PC #Params |Cinit|) and ends at
the left (compressed PC #Params |Ccom|); compression rate (1 - |Ccom| / |Cinit|) is annotated
next to each curve.

What is the Best PC for the Same Size? We evaluate structure learning that combines

pruning and growing as proposed in Section 3.2.3. Starting from an initial HCLT, we

iteratively prune 75% of the parameters, grow again, and fine-tune until meeting the stopping

criteria. As shown in Figure 3.9, our method consistently improve the likelihoods of initial

PCs for different numbers of latent states among all datasets.

8 16 32 64 128
Latents

1.1

1.2

1.3

Bp
d

mnist

8 16 32 64 128
Latents

1.50

1.75

2.00
emnist_mnist

8 16 32 64 128
Latents

1.6

1.8

2.0
emnist_letters

8 16 32 64 128
Latents

1.75

2.00

emnist_balanced

8 16 32 64
Latents

1.6

1.8

2.0
emnist_byclass

8 16 32 64 128
Latents

3.2

3.4

fashionmnist
train
test

Figure 3.9: Structure learning via 75% pruning, growing and finetuning. We report bpd (y-
axis) on both train (red) and test set (green) in terms of the number of latent states (x-axis).
For each curve, training starts from the top (large bpd) and ends at the bottom (small bpd).

3.3 Latent Variable Distillation

By leveraging the computation power of modern GPUs, recently developed PC learning

frameworks [29, 119, 132] have made it possible to train PCs with over 100M parameters

(e.g., [26]). Yet these computational breakthroughs are not leading to the expected large-scale

learning breakthroughs: as we scale up PCs, their performance immediately plateaus (dashed

curves in Fig. 3.10), even though their actual expressive power should increase monotonically

with respect to the number of parameters. Such a phenomenon suggests that the existing

optimizers fail to utilize the expressive power provided by large PCs. PCs can be viewed as

38

latent variable models with a deep hierarchy of latent variables. As we scale them up, size of

their latent space increases significantly, rendering the landscale of the marginal likelihood

over observed variables highly complex.

We propose to ease this optimization bottleneck by latent variable distillation (LVD): we

provide extra supervision to PC optimizers by leveraging less-tractable yet more expressive

deep generative models to induce semantics-aware assignments to the latent variables of PCs,

in addition to the observed variables.

The LVD pipeline consists of two major components: (i) inducing assignments to a subset

of (or all) latent variables in a PC by information obtained from deep generative models and

(ii) estimating PC parameters given the latent variable assignments. For (i), we focus on a

clustering-based approach throughout this paper: we cluster training examples based on their

neural embeddings and assign the same values to latent variables for examples in the same

cluster; yet, we note that there is no constraint on how we should assign values to latent

variables and the methodology may be engineered depending on the nature of the dataset

and the architecture of PC and deep generative model. For (ii), to leverage the supervision

provided by the latent variable assignments obtained in (i), instead of directly optimizing the

maximum-likelihood estimation objective for PC training, we estimate PC parameters by

optimizing the its lower-bound shown on the right-hand side:

∑N

i=1
log p(x(i)) :=

∑N

i=1
log
∑

z
p(x(i), z) ≥

∑N

i=1
log p(x(i), z(i)), (3.3)

where {x(i)}Ni=1 is the training set and z(i) is the induced assignments to the latent variables

for x(i). After LVD, we continue to finetune PC on the training examples to optimize the

actual MLE objective, i.e.,
∑

i log p(x
(i)).

As shown in Figure 3.10, with LVD, PCs successfully escape the plateau: their performance

improves progressively as the number of parameters increases. We highlight two key advantages

of LVD: first, it makes much better use of the extra capacity provided by large PCs; second,

39

106 107 108 109

parameters

4.2

4.4

4.6

4.8

5

5.2

5.4

B
its

-p
er

-d
im

en
si

on
 (b

pd
)

ImageNet32
w/ LVD
w/o LVD

108 109

parameters

180

200

220

240

260

280

Pe
rp

le
xi

ty

WikiText-2
w/ LVD
w/o LVD

Figure 3.10: Latent variable (LV) distillation significantly boosts PC performance on chal-
lenging image (ImageNet32) and language (WikiText-2) modeling datasets. Lower is better.

by leveraging the supervision from distilled LV assignments, we can significantly speed up

the training pipeline, opening up possibilities to scale up PCs further.

We start by presenting a simple example where we apply LVD on hidden Markov models

to improve their performance on language modeling benchmarks (Sec. 3.3.1). Then, we

present the general framework of LVD for PCs (Sec. 3.3.2) and how to specialize the pipeline

for image modeling (Sec. 3.3.3).

3.3.1 Latent Variable Distillation for Hidden Markov Model

In this section, we consider the task of language modeling by hidden Markov models (HMM)

as an illustrating example for LVD. In particular, we demonstrate how we can use the

BERT model [40] to induce semantics-aware assignments to the latent variables of HMMs.

Experiments on the WikiText-2 [115] dataset show that our approach effectively boosts the

performance of HMMs compared to their counterpart trained with only random initialization.

Dataset & Model. The WikiText-2 dataset consists of roughly 2 million tokens extracted

from Wikipedia, with a vocabulary size of 33,278. Following prior works on autoregressive

language modeling [140], we fix the size of the context window to be 32: that is, the HMM

model will only be trained on subsequences of length 32 and whenever predicting the next

token, the model is only conditioned on the previous 31 tokens. In particular, we adopt

a non-homogeneous HMM model, that is, its transition and emission probabilities at each

40

X1

Z32

X2 X32

Z2Z1

(a) Graphical model representa-
tion of an HMM modeling token
sequences of length 32. Xi are
the observed variables and Zi

are the latent variables.

…

1 toy … given to the
2 day … sunny and warm
3 Alice … playing video games
4 night … cold and stormy
5 really … playing the piano

X1 X30 X31 X32

BERT

-1.032 0.845 … … 1.093

K-means

0
1
2
1
2

-1.63 … -0.05
0.43 …
 -1.61
-0.97 … -1.85
-0.18 … -0.82
-1.07 … 1.30

Z30
contextualized embeddings

 for suffixes
X30 X31 X32

⏟768 dimensional vectors⏟token sequences of length 32

(b) Pipeline for inferring values for one latent variable Z30. We feed token
sequences to the BERT model to obtain contextualized embeddings for their
suffixes X30X31X32; then we cluster all suffix embeddings into h clusters;
here h = 3 is the number of hidden states and the value for Z30 is set to the
cluster id. We repeat this procedure independently to infer values for all Zis.

Figure 3.11: Latent variable distillation pipeline for hidden Markov models.

position share no parameters; Fig. 3.11a shows its representation as a graphical model, where

Xis are the observed variables and Zis are the latent variables. To facilitate training and

evaluation, we pre-process the tokens from WikiText-2 by concatenating them into one giant

token sequence and collect all subsequences of length 32 to construct the train, validation

and test sets, respectively.

Latent Variable Distillation. Let D={x(i)}i be the training set; Figure 3.11 shows an

example on how to induce, for each training example x(i), its corresponding assignment to the

latent variable Z30. We first feed all training examples to the BERT model to compute the

contextualized embeddings for their suffixes X30X31X32. We cluster all suffix embeddings into

h clusters by the K-means algorithm [104], where h is the number of hidden states; then, we

set Z30 to be the cluster id of their corresponding suffixes, that is, suffixes in the same cluster

get the same latent variable value: the intuition is that if the BERT embeddings of some

suffixes are close to each other then the suffixes should be relatively similar, suggesting that

they should be “generated” by the same hidden state. We repeat this procedure for 32 times to

infer the values for all Zis. Now we obtain an “augmented” training set Daug = {(x(i), z(i))}i,

where z(i) are the corresponding assignments to the latent variables Z; then, as suggested by

Equation 3.3, we maximize the lower-bound
∑

i log p(x
(i), z(i)) for the true MLE objective

41

X X X

(a) Amixture of three Gaussians. (b) A PC that encodes the distribution. (c) An equivalent deterministic PC.

p1 p2 p3

0.35 0.5 0.15

X Z = 1 X Z = 2 X Z = 3
p1 p2 p3

0.50.35 0.15

Figure 3.12: A mixture-of-Gaussian distribution (a) and two PCs (b-c) that encode the
distribution.
∑

i log p(x
(i)). The parameters of the HMM that maximize

∑
i log p(x

(i), z(i)), denoted by

θ∗, can be solved in closed-form. Finally, using θ∗ as a starting point, we finetune the HMM

model via EM to maximize the true MLE objective
∑

i log p(x
(i)).

Experiments. We apply LVD to HMMs with a varying number of hidden states h = 128,

256, 512, 750, 1024 and 1250; for comparison, we also train HMMs with random initialization.

The plot on the right of Fig. 3.10 shows the test perplexity of HMMs (w/ and w/o LVD) on

WikiText-2: as the number of parameters in HMM increases, the performance of the HMMs

trained with random parameter initialization immediately plateaus, while the performance of

the HMMs trained with LVD progressively improves, suggesting that LVD effectively exploits

the express power of the larger models.

3.3.2 Latent Variable Distillation for Probabilistic Circuits

PCs can be viewed as latent variable models with discrete latent spaces [131]. Specifically,

since a sum unit in a PC can be viewed as a mixture over its input distributions, it can

also be interpreted as a simple latent variable model
∑

z p(x|z)p(z), where z decides which

input to choose from and the summation enumerates over all inputs. Fig. 3.12 shows such

an example, where the sum unit in Fig. 3.12 (b) represents the mixture over Gaussians in

Fig. 3.12 (a).

In general, the latent space for large PCs is hierarchical and deeply nested; as we scale

them up, we are in effect scaling up the size/complexity of their latent spaces, making it

difficult for optimizers to find good local optima. To overcome such bottleneck, we propose

42

n1 n2 n3

. . .
c1 c2 c3 c4

Z =1 Z =2 Z =3 Z =4

n1 n2 n3

. . .
c1 c2 c3 c4

Figure 3.13: Materializing LVs in a PC.

latent variable distillation (LVD). The key intuition for LVD is to provide extra supervision

on the latent variables of PCs by leveraging existing deep generative models: given a PC

p(X); we view it as a latent variable model
∑

zp(X,Z = z) over some set of latents Z and

assume that for each training example x(i), a deep generative model can always induce some

semantics-aware assignment Z = z(i); then, instead of directly optimizing the MLE objective
∑

i log p(x
(i)), we can optimize its lower-bound

∑
i log p(x

(i), z(i)), thus incorporating the

guidance provided by the deep generative model. The LVD pipeline consists of three major

steps, elaborated in the following:

Step 1: Materializing Latent Variables. The first step of LVD is to materialize

some/all latent variables in PCs. By materializing latent variables, we can obtain a new

PC representing the joint distribution Pr(X,Z), where the latent variables Z are explicit

and its marginal distribution Pr(X) corresponds to the original PC. Although we can assign

every sum unit in a PC an unique LV, the semantics of such materialized LVs depend heavily

on PC structure and parameters, which makes it extremely hard to obtain supervision.

Instead, we choose to materialize LVs based on subsets of observed variables defined by a

PC. That is, each materialized LV corresponds to all PC units with a particular variable

scope. For example, we can materialize the latent variable Z, which corresponds to the scope

ϕ(ni) (∀i∈ [3]), to construct the PC in Fig. 3.12(c) that explicitly represents p(X,Z), whose

marginal distribution p(X) corresponds to the PC in Fig. 3.12 (b). Algorithm 3 [131] provides

one general way to materialize latent variables in PCs, where Fig. 3.13 shows an example

where the four product units c1, . . . , c4 are augmented with input units Z = 1, . . . , Z = 4,

respectively.

43

Algorithm 3 Materializing a LV in a PC
1: Input: A PC p(X) and a variable scope W for some sum unit in p(X)
2: Output: An augmented PC p defined over {X, Z}, where Z is the materialized LV corresponding to W
3: SW ← {n : n ∈ p s.t. n is a product unit and ϕ(n) = W} ▷ Created as an ordered set
4: for j = 1 to |SW| do
5: Let nj be the jth unit in SW

6: Add an input unit c over Zi with distribution pc(zi) =

{
1 zi = j,
0 otherwise as a new child of nj

Continuing with our example in Fig. 3.12, note that after materialization, the sum unit

representing p(X,Z) in Fig. 3.12(c) is no longer a latent variable distribution: each assignment

to X,Z uniquely determines the input distribution to choose, where the other inputs give

zero probability under this assignment; we say that this sum unit is deterministic [34] (as

defined in Definition 5).

Determinism characterizes whether a sum unit introduces latent variables: by materializing

some sum units with the scope, we enforce them to become deterministic. Intuitively, more

deterministic sum units in PCs implies smaller latent spaces, which implies easier optimization;

in fact, if all sum units in a PC are deterministic then the MLE solution can be computed in

closed-form [82]. By materializing more latent variables, we make PCs “more deterministic”,

pushing the optimization procedure towards a closed-form estimation.

Step 2: Inducing Latent Variable Assignments. Latent variable materialization

itself cannot provide any extra supervision to the PC training pipeline; in addition, we also

need to leverage some existing deep generative models to induce semantics-aware assignments

for the materialized latent variables. Though there is no general guideline on how the

assignments should be induced, we focus on a clustering-based approach throughout this

paper. Recall from Section 3.3.1, where we cluster the suffix embeddings generated by the

BERT model and for each training example, we assign the latents the cluster id that its

suffixes belong to. Similarly, for image modeling, in Section 3.3.3, we will show how to induce

latent variable assignments by clustering the embeddings for patches of images. The main

take-away is that the method for inducing latent variable assignments should be engineered

depending on the nature of the dataset and the architecture of PC and deep generative model.

44

Step 3: PC Parameter Learning. Given a PC p(X; θ) with parameters θ and a

training set D = {x(i)}; in Step 1, by materializing some set of latent variables Z, we obtain

an augmented PC paug(X,Z; θ) whose marginal distribution on X corresponds to p(X; θ);

in Step 2, by leveraging some deep generative model G, we obtain an augmented training

set Daug = {(x(i), z(i))}. Note that since paug and p share the same parameter space, we can

optimize
∑N

i=1 log paug(x
(i), z(i); θ) as a lower-bound for

∑N
i=1 log p(x

(i); θ):

∑N

i=1
log p(x(i); θ) =

∑N

i=1
log
∑

z
paug(x

(i), z; θ) ≥
∑N

i=1
log paug(x

(i), z(i); θ);

we denote the parameters for paug after optimization by θ∗. Finally, we initialize p with θ∗ and

optimize the true MLE objective with respect to the original dataset D,
∑N

i=1 log p(x
(i); θ).

Summary. Here we summarize the general pipeline for latent variable distillation.

Assume that we are given: a PC p(X; θ) over observed variables X with parameter θ, a

training set D = {x(i)} and a deep generative model G:

1. Construct a PC paug(X,Z; θ) by materializing a subset of latent variables Z in p(X; θ);

note that p and paug share the same parameter space.

2. Use G to induce semantics-aware latent variable assignments z(i) for each training

example x(i); denote the augmented dataset as Daug = {x(i), z(i)}.

3. Optimize the log-likelihood of paug with respect to Daug, i.e.,
∑

i log paug(x
(i), z(i); θ);

denote the parameters for paug after optimization as θ∗.

4. Initialize p(X, θ) with θ∗ and then optimize the log-likelihood of p with respect to the

original dataset D, i.e.,
∑

i log p(x
(i); θ).

Efficient parameter learning

Another major obstacle for scaling up PCs is training efficiency. Specifically, despite recently

developed packages [29,119] and training pipelines [132] that leverage the computation power

45

. . .

Z1 =1 Z1 =M1

. . .

Z2 =1 Z2 =M2

··· ···

Figure 3.14: Distribution decomposition of an example PC with materialized LVs Z1, Z2.

of modern GPUs, training large PCs is still extremely time-consuming. For example, in our

experiments, training a PC with ∼500M parameters on CIFAR (using existing optimizers)

would take around one GPU day to converge. With the efficient parameter learning algorithm

detailed in the following, training such a PC takes around 10 GPU hours.

The most computationally expensive part in LVD is to optimize the MLE lower bound

(Eq. 3.3) with regard to the observed data and inferred LVs, which requires feeding all training

samples through the whole PC. By exploiting the additional conditional independence

assumptions introduced by the materialized LVs, we show that the computation cost of

this optimization process can be significantly reduced. To gain some intuition, consider

applying LVD to the PC in Fig. 3.12(c) with materialized LV Z. For a sample x whose

latent assignment z is 1, since the Gaussian distributions p2 and p3 are independent with this

sample, we only need to feed it to the input unit corresponds to p1 in order to estimate its

parameters. To formalize this efficient LVD algorithm, we start by introducing the conditional

independence assumptions provided by the materialized LVs.

Lemma 1. For a PC p(X), denote W as the scope of some units in p. Assume the variable

scope of every PC unit is either a subset of W or disjoint with W. Let Z be the LV corresponds

to W created by Algorithm 3. Then variables W are conditional independent of X\W given

Z.

46

Take Fig. 3.13 as an example. Define the scope of {ni}3i=1 and {ci}4i=1 as W and the

corresponding LV as Z; denote the scope of the full PC as X. Lemma 1 implies that variables

W and X\W are conditional independent given Z.

We consider a simple yet effective strategy for materializing LVs: the set of observed

variables X is partitioned into k disjoint subsets {Xi}ki=1; then for each Xi, we use Algorithm 3

to construct a corresponding LV, termed Zi. As a direct corollary of Lemma 1, the joint

probability over X and Z can be decomposed as follows: p(x, z)=p(z)
∏k

i=1p(xi|zi).

The key to speed up LVD is the observation that the MLE lower bound objective (Eq. 3.3)

can be factored into independent components following the decomposition of p(x, z):

LL(p,Daug) :=
N∑

l=1

log p(x(l), z(l)) =
N∑

l=1

k∑

i=1

log p(x
(l)
i |z(l)i) +

N∑

l=1

log p(z(l)), (3.4)

whereDaug := {(x(l), z(l))}Nl=1 is the training set augmented with LV assignments. According to

Eq. (3.4), optimize LL(p,Daug) is equivalent to performing MLE on the factorized distributions

separately. Specifically, we decompose the optimization process into the following independent

steps: (i) for each cluster i and category j, optimizing PC parameters w.r.t. the distribution

p(Xi|Zi = j) using the subset of training samples whose LV zi is assigned to category j,

and (ii) optimizing the sub-PC corresponds to p(z) using the set of all LV assignments.

Consider the example PC shown in Fig. 3.14. The subset of PC surrounded by every blue

box encodes the distribution labeled on its edge. To maximize LL(p,Daug), we can separately

train the sub-PCs correspond to the decomposed distributions, respectively. Compared to

feeding training samples to the whole PC, the above procedure trains every latent-conditioned

distribution p(Xi|Zi=j) using only samples that have the corresponding LV assignment (i.e.,

zi=j), which significantly reduces computation cost.

Recall that in the LVD pipeline, after training the PC parameters by maximizing

LL(p,Daug), we still need to finetune the model on the original dataset D. However, this

finetuning step often suffers from slow convergence speed, which significantly slows down the

47

Encoder …

Latent features

Decoder

(a) Illustration of the Masked Autoencoder model.

Cluster #1

(b) Example of image patches belonging to the same cluster.

Cluster #2 Cluster #3 Cluster #4

Figure 3.15: Extracting LVs for image data. The MAE model (a) is used to extract categorical
LVs {Zi}ki=1 that correspond to image patches {Xi}ki=1, respectively. (b) provides example
patches from the training set that belong to four randomly chosen clusters of the LV Z1.

learning process. To mitigate this problem, we add an additional latent distribution training

step where we only finetune parameters corresponding to p(Z). In this way, we only need

to propagate training samples through the sub-PCs corresponding to the latent-conditioned

distributions once. After this step converges, we move on to finetune the whole model, which

then takes much fewer epochs to converge.

3.3.3 Extracting Latent Variables for Image Modeling

This section discusses how to induce assignments to LVs using expressive generative models.

While the answer is specific to individual data types, we propose preliminary answers to the

question in the context of image data. We highlight that there are many possible LV selection

strategies and target generative models; the following method is only an example that shows

the effectiveness of LVD.

Motivated by recent advances in image-based deep generative models [47, 102], we model

images by two levels of hierarchy — the low-level models independently encode distribution

of every image patch, and the top-level model represents the correlation between different

patches. Formally, we define Xi as the variables in the ith M ×M patch of an H ×W image

(w.l.o.g. assume H and W are both divisible by M). Therefore, the image X is divided into

k = H ·W/M2 subsets {Xi}ki=1. Every Zi is defined as the LV corresponds to patch Xi.

Recall that our goal is to obtain the assignment of {Zi}ki=1, each as a concise representation

of {Xi}ki=1, respectively. Despite various possible model choices, we choose to use Masked

Autoencoders (MAEs) [61] as they produce good features for image patches. Specifically,

48

as shown in Fig. 3.15(a), MAE consists of an encoder and a decoder. During training, a

randomly selected subset of patches are fed to the encoder to generate a latent representation

for every patch. The features are then fed to the decoder to reconstruct the full image. The

simplest way to compute latent features for every patch is to feed them into the encoder

independently, and extract the corresponding features. However, we find that it is beneficial

to also input other patches as context. Specifically, we first compute the latent features

without context. We then compute the correlation between features of all pair of patches

and construct the Maximum Spanning Tree (MST) using the pairwise correlations. Finally,

to compute the feature of each patch Xi, we additionally input patches correspond to its

ancestors in the MST. Further details are given in Section B.2.2.

As shown in Section 3.3.2, LVs {Zi}ki=1 are required to be categorical. To achieve this,

we run the K-means algorithm on the latent features (of all training examples) and use the

resultant cluster indices as the LV assignments. Fig. 3.15(b) shows some example image

patches x1 belonging to four latent clusters (i.e., Z1 = 1, . . . , 4). Clearly, the LVs capture the

semantics of different image patches.

To illustrate the effectiveness of LVD, we make minimum structural changes compared

to Hidden Chow-Liu Trees (HCLTs) [97], a competitive PC structure. Specifically, we use

the HCLT structure for all sub-PCs {p(xi|Zi=j)}i,j and p(z). This allows us to materialize

patch-based LVs while keeping the model architecture similar to HCLTs.

3.3.4 Experiments

In this section, we evaluate the proposed latent variable distillation (LVD) technique on three

natural image benchmarks, i.e., CIFAR [85] and two versions of down-sampled ImageNet

(ImageNet32 and ImageNet64) [38]. On all benchmarks, we demonstrate the effectiveness of

LVD from two perspectives. First, compared to PCs trained by existing EM-based optimizers,

the proposed technique offers a significant performance gain especially on large PCs. Second,

PCs trained by LVD achieve competitive performance against some of the less tractable deep

49

Table 3.3: Density estimation performance of Tractable Probabilistic Models (TPMs) and
Deep Generative Models (DGMs) on three natural image datasets. Reported numbers are
test set bit-per-dimension (bpd). Bold indicates best bpd (smaller is better) among all four
TPMs.

Dataset
TPMs DGMs

LVD (ours) HCLT EiNet RAT-SPN Glow RealNVP BIVA

ImageNet32 4.39±0.01 4.82 5.63 6.90 4.09 4.28 3.96
ImageNet64 4.12±0.00 4.67 5.69 6.82 3.81 3.98 -
CIFAR 4.38±0.02 4.61 5.81 6.95 3.35 3.49 3.08

generative models, including variational autoencoders and flow-based models.

Baselines We compare the proposed method against three TPM baselines: Hidden Chow-

Liu Tree (HCLT) [97], Einsum Network (EiNet) [132], and Random Sum-Product Network

(RAT-SPN) [133]. Though not exhausive, this baseline suite embodies many of the recent

advancement in tractable probabilistic modeling, and can be deemed as the existing SoTA.

To evaluate the performance gap with less tractable deep generative models, we additionally

compare LVD with the following flow-based and VAE models: Glow [79], RealNVP [46], and

BIVA [109].

To facilitate a fair comparison with the chosen TPM baselines, we implement both HCLT

and RAT-SPN using the Julia package Juice.jl [29] and tune hyperparameters such as batch

size, learning rate and its schedule. We use the original PyTorch implementation of EiNet and

similarly tune their hyperparameters. For all TPMs, we train various models with number of

parameters ranging from ∼1M to ∼100M, and report the number of the model with the best

performance. For deep generative model baselines, we adopt the numbers reported in the

respective original papers.

Empirical Insights We first compare the performance of the four TPM approaches. As

shown in Fig. 3.16, for all three benchmarks, PCs trained by LVD are consistently better

than the competitors by a large margin. In particular, on ImageNet32, a ∼25M PC trained

by LVD is better than a HCLT with ∼400M parameters. Next, looking at individual curves,

50

106 107 108 109

parameters

4

4.5

5

5.5

6

6.5

7

B
its

-p
er

-d
im

en
si

on
 (b

pd
) CIFAR

LVD (ours)
HCLT
RAT-SPN
EiNet

106 107 108 109 1010

parameters

4

4.5

5

5.5

6

6.5

7

7.5

B
its

-p
er

-d
im

en
si

on
 (b

pd
) ImageNet64

LVD (ours)
HCLT
RAT-SPN
EiNet

106 107 108 109

parameters

4

4.5

5

5.5

6

6.5

7
B

its
-p

er
-d

im
en

si
on

 (b
pd

) ImageNet32
LVD (ours)
HCLT
RAT-SPN
EiNet

Figure 3.16: Generative modeling performance of four TPMs on three natural image datasets.
For each method, we report the test set bits-per-dimension (y-axis) in terms of the number
of parameters (x-axis) for different numbers of latent states.

we observe that with LVD, the test set bpd keeps decreasing as the model size increases. This

indicates that LVD is able to take advantage of the extra capacity offered by large PCs. In

contrast, PCs trained by EM immediately suffer from a performance bottleneck as the model

size increases. Additionally, the efficient LVD learning pipeline allows us to train PCs with

500M parameters in 10 hours with a single NVIDIA A5000 GPU, while existing optimizers

need over 1 day to train baseline PCs with similar sizes.

We move on to compare the performance of LVD with the three adopted DGM baselines.

As shown in Table 3.3, although the performance gap is relatively large on CIFAR, the

performance of LVD is highly competitive on ImageNet32 and ImageNet64, with bpd gap

ranging from ∼0.1 to ∼0.3. We hypothesize that the relatively large performance gap on

CIFAR is caused by insufficient training samples. Specifically, since the sub-PCs correspond

to the latent-conditioned distributions {p(xi|Zi=j)}i,j are constructed independently, and

thus every training sample xi can only be used to train its corresponding latent-conditioned

distribution, making the model extremely data-hungry. However, we note that this is not an

inherent problem of LVD. For example, by performing parameter tying of sub-PCs correspond

to different image patches, we can significantly improve sample complexity of the model. This

is left to future work.

51

Chapter 4

Scalable Learning of Probabilistic

Circuits – Systems Side

In this chapter, we develop an efficient yet flexible system termed PyJuice that covers

various training and inference tasks of PCs. As shown in Table 4.1, PyJuice is orders of

magnitude faster than previous implementations for PCs (e.g., SPFlow [119], EiNet [132],

and Juice.jl [29]) as well as Hidden Markov Models1 (e.g., Dynamax [122]). Additionally, as

we shall demonstrate in the experiments, PyJuice is more memory efficient than the baselines,

enabling us to train much larger PCs with a fixed memory quota.

Unlike other deep generative models based on neural network layers that are readily

amenable to efficient systems (e.g., a fully connected layer can be emulated by a single matrix

multiplication and addition kernel plus an element-wise activation kernel), PCs cannot be

efficiently computed using well-established operands due to (i) the unique connection patterns

of their computation graph, and (ii) the existence of log probabilities at drastically different

scales in the models, which requires to properly handle numerical underflow problems. To

parallelize PCs at scale, we propose a compilation phase that converts a PC into a compact

The contents of this chapter appeared in paper [93].
1Every HMM has an equivalent PC representation.

52

Table 4.1: Average (± stdev of 5 runs) runtime (in seconds) per epoch of 60K samples
for PyJuice and the baselines SPFlow [119], EiNet [132], Juice.jl [29], and Dynamax [122].
Using four PC structures: PD, RAT-SPN, HCLT, and HMM. All experiments ran on an
RTX 4090 GPU with 24GB memory. To maximize parallelism, we always use the maximum
possible batch size. “OOM” denotes out-of-memory with batch size 2. The best numbers are
in boldface.

PD [136]
nodes 172K 344K 688K 1.38M 2.06M
edges 15.6M 56.3M 213M 829M 2.03B
SPFlow >25000 >25000 >25000 >25000 >25000

EiNet 34.2±0.0 88.7±0.2 456.1±2.3 1534.7±0.5 OOM
Juice.jl 12.6±0.5 37.0±1.7 141.7±6.9 OOM OOM
PyJuice 2.0±0.0 5.3±0.0 15.4±0.0 57.1±0.2 203.7±0.1

RAT-SPN [133]
nodes 58K 116K 232K 465K 930K
edges 616K 2.2M 8.6M 33.4M 132M
SPFlow 6372.1±4.2 >25000 >25000 >25000 >25000

EiNets 38.5±0.0 83.5±0.0 193.5±0.1 500.6±0.2 2445.1±2.6

Juice.jl 6.0±0.3 9.4±0.3 25.5±2.4 84.0±4.0 375.1±3.4

PyJuice 0.6±0.0 0.9±0.1 1.6±0.0 5.8±0.1 13.8±0.0

HCLT [97]
nodes 89K 178K 355K 710K 1.42M
edges 2.56M 10.1M 39.9M 159M 633M
SPFlow 22955.6±18.4 >25000 >25000 >25000 >25000

EiNet 52.5±0.3 77.4±0.4 233.5±2.8 1170.7±8.9 5654.3±17.4

Juice.jl 4.7±0.2 6.4±0.5 12.4±1.3 41.1±0.1 143.2±5.1

PyJuice 0.8±0.0 1.3±0.0 2.6±0.0 8.8±0.0 24.9±0.1

HMM [139]
nodes 33K 66K 130K 259K 388K
edges 8.16M 32.6M 130M 520M 1.17B
Dynamax 111.3±0.4 441.2±3.9 934.7±6.3 2130.5±19.5 4039.8±38.3

Juice.jl 4.6±0.1 18.8±0.1 91.6±0.1 OOM OOM
PyJuice 0.6±0.0 1.0±0.0 2.9±0.1 10.1±0.2 39.9±0.1

data structure amenable to block-based parallelization on modern GPUs. Further, we

improve the backpropagation process by indirectly computing the parameter updates by

backpropagating a quantity called PC flow [17] that is more numerically convenient yet

mathematically equivalent.

In the following, we first discuss common ways to parallelize PCs’ computation in Sec-

tion 4.1. Section 4.2 examines the key bottlenecks in PC parallelization. Section 4.3

and 4.4 explains our design in details. The open-sourced implementation can be found at

https://github.com/Tractables/pyjuice.

4.1 Related Work on Accelerating PCs

There has been a great amount of effort put into speeding up training and inference for

PCs. One of the initial attempts performs node-based computations on both CPUs [107] and

GPUs [119,138], i.e., by computing the outputs for a mini-batch of inputs (data) recursively for

every node. Despite its simplicity, it fails to fully exploit the parallel computation capability

possessed by modern GPUs since it can only parallelize over a batch of samples. This problem

53

https://github.com/Tractables/pyjuice

X1 X2 X1 X2 X3 X3X1 X2 X1 X2 X3 X3

Layering

Input layer

Product layer #1

Sum layer #1

Product layer #2

Sum layer #2

X1 X2 X1 X2

X3 X3

X1 X2 X1 X2

X3 X3

Figure 4.1: Layering a PC by grouping nodes with the same topological depth (as indicated
by the colors) into disjoint subsets. Both the forward and the backward computation can be
carried out independently on nodes within the same layer.

is mitigated by also parallelizing topologically independent nodes [29, 132]. Specifically, a PC

is chunked into topological layers, where nodes in the same layer can be computed in parallel.

This leads to 1-2 orders of magnitude speedup compared to node-based computation.

The regularity of edge connection patterns is another key factor influencing the design

choices. Specifically, EiNets [132] leverage off-the-shelf Einsum operations to parallelize

dense PCs where every layer contains groups of densely connected sum and product/input

nodes. [111] generalize the notion of dense PCs to tensorized PCs, which greatly expands the

scope of EiNets. [29] instead focus on speeding up sparse PCs, where different nodes could

have drastically different numbers of edges. They use custom CUDA kernels to balance the

workload of different GPU threads and achieve decent speedup on both sparse and dense

PCs.

Another thread of work focuses on designing computation hardware that is more suitable

for PCs. Specifically, [154] propose DAG Processing Units (DPUs) that can efficiently

traverse sparse PCs, [28] introduce an indirect read reorder-buffer to improve the efficiency

of data-dependent memory accesses in PCs, and [188] use addition-as-int multiplications to

significantly improve the energy efficiency of PC inference algorithms.

4.2 Key Bottlenecks in PC Parallelization

This section aims to lay out the key bottlenecks to efficient PC implementations. For ease of

illustration, we focus solely on the forward pass, and leave the unique challenges posed by

54

158.3ms
(37.9%) 254.6ms

(61.0%)

4.3ms
(1.1%)

Sum layers (IO)

Prod layers

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

PyJuice

Anonymous Authors1

nodes # edges

Sum layers 100K 38M
Prod layers 40K 903K

Table 1. Caption

Sum layers Prod layers

nodes 200K 815K
edges 154M 1.81M
params 154M -

Table 2. Caption

1. Introduction

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1

Sum layers
(compute)

Summary of the PC structure

Figure 4.2: Runtime breakdown of the feedforward pass of a PC with ∼150M edges. Both
the IO and the computation overhead of the sum layers are significantly larger than the total
runtime of product layers. Detailed configurations of the PC are shown in the table.

the backward pass and their solution to Section 4.4.

We start by illustrating the layering procedure deployed for PCs. Starting from the

input nodes, we perform a topological sort of all the nodes, clustering nodes with the same

topological depth into a layer. For example, in Fig. 4.1, the PC on the left side is transformed

into an equivalent layered representation on the right, where nodes of the same color belong

to the same layer. The forward pass proceeds by sequentially processing each layer, and

finally returns the root node’s output. To avoid underflow, all probabilities are stored in

the logarithm space. Therefore, product layers just need to sum up the corresponding input

log-probabilities, while sum layers compute weighted sums of input log-probabilities utilizing

the logsumexp trick.

Assume for now that all nodes in every layer have the same number of children. A

straightforward strategy is to parallelize over every node and every sample. Specifically, given

a layer of size M and batch size B, we need to compute in total M×B output values, which

are evenly distributed to all processors (e.g., thread-blocks in GPUs). We apply this idea to

a PC with the PD structure [136]. The PC has ∼1M nodes and ∼150M edges. Additionally,

all nodes within a layer have the same number of children, making it an ideal testbed for the

aforementioned algorithm.

Fig. 4.2 illustrates the runtime breakdown of the forward pass (with batch size 512). As

shown in the pie chart, both the IO and the computation overhead of the sum layers are

much larger than that of the product layers. We would expect sum layers to exhibit a higher

55

computation overhead due to (i) the number of sum edges being ∼85x more than the product

edges (see the table in Fig. 4.2), and (ii) sum edges requiring more compute compared to

product edges. However, we would not expect the gap in IO overhead to be as pronounced as

indicated in the pie chart. Specifically, with batch size 512, the ideal memory read count

of product layers should be roughly [batch size]×[#sum nodes]≈102M since all children of

product nodes are sum or input nodes (the number of input nodes is an order of magnitude

smaller and is omitted). Similarly, the number of memory reads required by the sum layers

is approximately [batch size]× [#prod nodes]+[#parameters] ≈ 571M, which is only 5.6x

compared to the product layers. The ideal memory write count of product layers should be

larger since there are about 4x more product nodes compared to sum nodes.

While the ideal IO overhead of the sum layers is not much larger than that of the product

layers, the drastic difference in runtime (over 50x) can be explained by the significant amount

of reloads of child nodes’ probabilities in the sum layers. Specifically, in the adopted PD

structure, every sum node has no more than 12 parents, while most product nodes have 256

parents.2 Recall that the parents of product nodes are sum nodes and vice versa. As a result,

each sum layer needs to reload the output of every product node multiple times. Although

this does not lead to 256x loads from the GPU’s High-Bandwidth Memory (HBM) thanks to

its caching mechanism, such excessive IO access still significantly slows down the algorithm.

The fundamental principle guiding our design is to properly group, or allocate, sum edges

to different processors to minimize the reloading of product nodes’ outputs. As an added

benefit, this allows us to interpret part of the core computation as matrix multiplications,

allowing us to harness Tensor Cores available in modern GPUs and resulting in a significant

reduction in sum layers’ computational overhead.

2Only the children of the root sum node have 1 parent.

56

m! m"

𝑛! 𝑛" 𝑛# 𝑛$

𝜃!,#: parameter w.r.t. edge (𝑚! , 𝑛#)

𝑝!! += 𝜃"," % 𝑝$! + 𝜃",% % 𝑝$"
𝑝!" += 𝜃%," % 𝑝$! + 𝜃%,% % 𝑝$"

𝑝!! += 𝜃",& % 𝑝$# + 𝜃",' % 𝑝$$
𝑝!" += 𝜃%,& % 𝑝$# + 𝜃%,' % 𝑝$$

Step #1: Step #2:

Initialize 𝑝$! = 0, 𝑝$" = 0

Figure 4.3: Illustration of block-based parallelization. A processor computes the output of 2
sum nodes, by iterating through blocks of 2 input product nodes and accumulating partial
results.

4.3 Harnessing Block-Based PC Parallelization

This section takes gradual steps towards demonstrating how we can reduce both the IO and

computation overhead using block-based parallelization. Specifically, we first utilize a fully

connected sum layer to sketch the high-level idea (Sec. 4.3.1). Consequently, we move on to

the general case, providing further details of the algorithm (Secs. 4.3.2, 4.3.3).

4.3.1 Fully Connected Sum Layers

Consider a fully connected sum layer comprised of M sum nodes, each connected to the same

set of N product nodes as inputs. Under the parallelization strategy mentioned in Section 4.2,

with a single sample, we have M processors, each computing the output of a sum node. Since

the layer is fully connected, every processor loads all N input log-probabilities, which results

in M reloads of every input.

The key to reducing excessive IO overhead is by parallelizing over blocks of nodes/edges.

Specifically, we divide the M sum nodes into blocks of KM nodes and the N product nodes

into blocks of KN nodes. We assume without loss of generality that M and N are divisible

by KM and KN , respectively. Instead of independently computing the output of every sum

node, we calculate the KM outputs of a sum node block in a single processor. To achieve this,

we iterate through every product node block to compute and accumulate the partial results

from the KM×KN edges between the corresponding sum node block and product node block.

In every step, the processor loads a block of θ ∈ RKM×KN parameters and a vector of

57

Parameter matrix:A sum layer: Compiled representation:

Group #1

Group #2

𝑚! 𝑚" 𝑚# 𝑚$ 𝑚% 𝑚&

𝑛! 𝑛" 𝑛# 𝑛$ Flattened params:𝑛% 𝑛&
𝑛! 𝑛" 𝑛# 𝑛$ 𝑛% 𝑛&

𝑚!

…

𝑚"
𝑚#
𝑚$
𝑚%
𝑚&

𝑚!

𝑚%

𝑛!
𝑛%

𝜃!
𝜃$

𝑚# 𝑛! 𝑛# 𝜃#𝜃"

𝜃!

𝜃" 𝜃#

𝜃$

𝜃"𝜃! 𝜃# 𝜃$… … …

param idsprod idssum ids

Figure 4.4: A sum layer (left) with a block-sparse parameter matrix (middle) is compiled
into two kernels (right) each with a balanced workload. During execution, each kernel uses
the compiled sum/prod/param indices to compute the outputs of m0, . . . ,m5.

pprod∈RKN input probabilities, where we (temporarily) omit the fact that all probabilities

are stored in the logarithm space. The partial outputs psum∈RKM are computed via a matrix-

vector multiplication between θ and pprod. Note that if we add a second “batch” dimension

to pprod and psum, the computation immediately becomes a matrix-matrix multiplication,

which can be computed efficiently using GPU Tensor Cores.

For example, in Fig. 4.3, define KM =KN = 2, we compute the output of m0 and m1

by first calculating the weighted sum w.r.t. the input probability of n0 and n1 in step #1,

and then accumulate the probabilities coming from n2 and n3 in step #2. With the new

parallelization strategy, every processor that computes KM output values needs to load every

input probability only once, and the number of reloads is reduced from M to M/KM .

4.3.2 Generalizing To Practical Sum Layers

Most sum layers in practical PCs are not fully connected. However, as we shall demonstrate,

they can still harness the advantages of block-based parallelization. Specifically, consider

a sum layer with M sum nodes and N product nodes as inputs. Following Section 4.3.1,

we partition the sum and the product nodes into blocks of KM and KN nodes, respectively.

For every pair of sum and product node blocks, if it is either fully connected (i.e., featuring

KM×KN edges) or unconnected (i.e., no edge between them), we call the layer block-sparse.

In the following, we focus on efficiently parallelizing block-sparse PCs (whose sum layers all

58

exhibit block-sparsity).

As an example, the layer illustrated in Fig. 4.4(left) exhibits block sparsity with block

sizes KM =KN =2. This is evident as each pair of sum and product node blocks is either

fully connected (e.g., {m2,m3} and {n0, n1}) or disjoint (e.g., {m4,m5} and {n2, n3}). In

Fig. 4.4(middle), this pattern is more discernible in the parameter matrix, where aligned 2×2

blocks display either all non-zero parameters (indicated by the colors) or all zero parameters.

Similar to the procedure outlined in Section 4.3.1, computing the outputs of a block

of KM sum nodes involves iterating through all its connected product node blocks. This

introduces two additional problems: (i) how to efficiently index the set of connected product

node blocks, which may vary for each sum node block; (ii) different sum node blocks could

connect to different numbers of product node blocks, which causes an imbalanced workload

among processors. For instance, consider the layer in Fig. 4.4. The first issue is exemplified

by the two sum node blocks {m0,m1} and {m4,m5}, both of which possess a single child

node block, albeit different ones. The second issue is illustrated by the node block {m2,m3},

which connects to two child node blocks, while the others connect to only one.

4.3.3 Efficient Implementations by Compiling PC Layers

We address both problems through a compilation process, where we assign every node an

index, and precompute index tensors that enable efficient block-based parallelization. The

first step is to partition the sum node blocks into groups, such that every node block within

a group has a similar number of connected child node blocks. We then pad the children with

pseudo-product node blocks with probability 0 such that all sum node blocks in a group have

the same number of children. The partition is generated by a dynamic programming algorithm

that aims to divide the layer into the smallest possible number of groups while ensuring that

the fraction of added pseudo-node blocks does not exceed a pre-defined threshold.

We move on to construct the index tensors for each group. In addition to assigning

every node an index, we create a vector θflat, a concatentation of all the PC parameters.

59

For every sum node block in a group with CN child node blocks, we record (i) the starting

index of the sum node block, (ii) the set of initial indices of its CN child node blocks, and

(iii) the corresponding set of CN parameter indices. These parameter indices each denote the

starting point for the KM×KN parameters of the corresponding pair of sum and product

node blocks. Let CM represent the total number of node blocks in the group. Following the

indices described above, we record the following tensors: sum_ids∈RCM containing indices

of all sum node blocks; prod_ids, param_ids∈RCM×CN , whose ith row represent the child

indices and parameter indices of the ith sum node block (i.e., the node block with the start

index sum_ids[i]), respectively.

Fig. 4.4(right) illustrates the compiled index tensors of the sum layer shown on the left.

Recall that we use the block sizes KM =KN =2. The layer is then divided into two groups:

the first group including two sum node blocks, {m0,m1} and {m4,m5}, each having one child

node block, and the second group including one sum node block, {m2,m3}, which has two

child node blocks. Take, for instance, the first group. sum_ids stores the start indices (i.e.,

m0 and m4) of the two sum node blocks. prod_ids stores the initial indices of the child

node blocks (i.e., n0 and n4) of the two sum node blocks, respectively. param_ids encodes

the corresponding initial parameter indices θ0 and θ2.

Partitioning a layer into groups with the same number of children allows us to achieve

different parallelization strategies for different groups, where the tradeoff between nodes,

edges, and samples is different, and the GPU thread blocks need to be allocated differently

in these dimensions for better performance (e.g., by ensuring high utilization).

For every group in a sum layer, the three index tensors serve as inputs to a CUDA kernel

computing the log-probabilities of the sum nodes in the group. Define lprod ∈ RN×B and

lsum∈RM×B (B is the batch size) as the set of input and output log-probabilities, respectively.

Consider a group with CM sum node blocks and CN child node blocks per sum node block.

Algorithm 4 computes the log-probabilities of the CM sum node blocks and stores the results

in the proper locations in lsum. Specifically, we also divide the B samples into blocks of size

60

Algorithm 4 Forward pass of a sum layer group
1: Inputs: log-probs of product nodes lprod, flattened parameter vector θflat, sum_ids, prod_ids, param_ids
2: Inputs: # sum nodes: M , # product nodes: N , batch size: B
3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively
4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: log-probs of sum nodes lsum
6: Kernel launch: schedule to launch CM × CB thread-blocks with m=0, . . . , CM−1 and b=0, . . . , CB−1
7: cum← (−∞)KM×KB∈ RKM×KB ▷ Scratch space on SRAM
8: bs, be← b ·KB , (b+ 1) ·KB ▷ Start and end batch index
9: for n = 0 to CN−1 do
10: ps, ns← param_ids[m, n], prod_ids[n, b]
11: Load θ←θflat[ps :ps+KM ·KN].view(KM ,KN) to SRAM
12: Load l← lprod[ns :ns+KN , bs :be]∈RKN×KB to SRAM
13: lmax ← max(l, dim=0) ∈ R1×KB ▷ Compute on chip
14: pp ← exp(l− lmax) ∈ RKN×KB

15: ps ← matmul(θ,pp) ∈ RKM×KB ▷ With Tensor Cores
16: cum← where(lmax > cum,

log(ps + exp(cum− lmax) + lmax,

log(exp(lmax − cum) · ps + 1) + cum)

17: lsum[ms :ms+KM , bs :be]←acc (where ms←sum_ids[m])

KB, leading to CB :=B/KB blocks (assume w.l.o.g. that B is divisible by KB). Algorithm 4

schedules to launch CM×CB thread-blocks, each responsible for computing KM×KB outputs

(line 6). The main loop in line 9 iterates over all CN child node blocks. In every step,

we first load the corresponding parameter matrix θ ∈RKM×KN (line 11) and input matrix

l∈RKN×KB (line 12). Since l contains log-probabilities, we apply a variant of the logsumexp

trick: we first convert l to the arithmetic space by subtracting the per-sample maximum

log-probability (lines 13-14), then compute the (partial) output probabilities from the current

set of KM×KN edges via matrix multiplication (line 15), and in line 16 aggregate the results

back to the accumulator cum defined in line 7. Finally, we store the log-probabilities to the

target locations in lsum (line 17).

4.3.4 Analysis: IO and Computation Overhead

We analyze the efficiency and IO complexity of our block-based parallelization strategy.

Specifically, we benchmark on the largest sum layer in the PD structure adopted in Section 4.2.

The layer consists of 29K nodes and 30M edges. In addition to the computation time, we

61

65.3ms

197GB

4.14GB

31.21ms

102GB

2.16ms

4.54GB

Block size (𝐾! and 𝐾")

Forward pass Backward pass w.r.t. inputs

0.64GB0.42GB

1.21ms

R
un
tim
e
(m
s)

IO
(G
B
)

2

0.94GB 1.18GB

4 8 16 32 641 2 4 8 16 32 641
Block size (𝐾! and 𝐾")

Figure 4.5: Runtime and IO overhead of a sum layer from the PD structure (with 29K nodes
and 30M edges). The results demonstrate significant performance gains from our block-based
parallelization, even with small block sizes.

record two types of IO overhead: (i) the IO between the L1/texture cache and the L2 cache,

and (ii) the reads/writes between the L2 cache and the GPU High-Bandwidth Memory

(HBM). We vary the block sizes KM and KN exponentially from 1 to 64. To ensure a fair

comparison, we implement a dedicated kernel for KM =KN =1, which directly parallelizes

over sum node/sample pairs, allowing for better workload allocation. For other block sizes,

we adjust KB and other kernel launching hyperparameters (e.g., warps per block) and report

the best runtime for every case. Results of the backward pass (w.r.t. inputs) are also reported

for completeness.

Results are shown in Fig. 4.5. As the block size increases, both the forward and the

backward pass become significantly faster. Notably, this is accompanied by a significant

drop in IO overhead. Specifically, with a large block size, the kernel consumes 2x fewer

reads/writes between the L2 cache and the HBM, and 25-50x fewer IO between the L1 and

L2 cache. This corroborates the hypothesis stated in Section 4.2 that the extensive value

reloads significantly slow down the computation.

Additionally, we note that even with small block sizes (e.g., 2 or 4), the speedup is

quite significant compared to the baseline case (KM =KN = 1), which allows us to speed

62

up sparse PCs. Specifically, with the observation that every sparse PC can be viewed as a

block-sparse PC with block size 1, we can transform a sparse PC into a block-sparse one,

and pad zero parameters to edges belonging to the block-sparse PC but not the sparse PC.

For PCs with relatively regular sparsity patterns, the speedup obtained by having a larger

block size outpaces the overhead caused by padded edges with zero parameters, which leads

to speed-ups.

4.4 Optimizing Backpropagation with PC Flows

The previous section focuses on speeding up sum layers by reducing excessive memory reloads

and leveraging Tensor Cores. However, when it comes to backpropagation, directly adapting

Algorithm 4 by differentiating lines 13-16 would lead to poor performance due to the following.

First, we need to either store some intermediate values (e.g., lmax and pp) in the forward pass

or recompute them in the backward pass. Next, since different thread-blocks could access the

same product node log-probabilities in line 12, they both need to write (partial) gradients of

it, which introduces inter-thread-block barriers that slow down the execution.

We overcome the problems by leveraging PC flows [17], which is only a factor of θn,c away

from the desired gradients (∂ log pnr(x)/∂θn,c). PC flows exhibit a straightforward recursive

definition, facilitating a seamless transformation into an efficient implementation for the

backward pass.

Definition 8 (PC flows). For a PC pnr(X) rooted at node nr and a sample x, the flow Fn(x)

of every node n is defined recursively as follows:

Fn(x) :=





1 n is the root node,

∑
m∈pa(n)

Fm(x) n is input or sum,

∑
m∈pa(n)

θm,n·pn(x)
pm(x)

·Fm(x) n is a product node,

where pa(n) is the set of parents of n. Similarly, the edge flow Fn,c(x) w.r.t. the sample x

63

(c∈ch(n)) is defined as

Fn,c(x) := θn,c · pc(x)/pn(x) · Fn(x).

While similar results have been established in a slightly different context [132], we show

the following equations for completeness:

Fn(x) =
∂ log pnr(x)

∂ log pn(x)
and Fn,c(x) = θn,c ·

∂ log pnr(x)

∂θn,c
.

Following Definition 8, we can compute Fn(x) for every node n utilizing the same set of

layers created for the feedforward pass. Specifically, we first set the flow of the root node to

1 following its definition. We then iterate through the layers in reverse order (i.e., parent

layers before child layers). While processing a layer, all flows of the nodes in the layer are

computed by the preceding layers. And our goal is to compute the (partial) flows of the child

nodes of the layer. Similar to the forward pass, we compile every layer by grouping child

node blocks with a similar number of parents, and use block-based parallelization to reduce

reloads of parent log-probabilities.

Another important design choice that leads to a significant reduction in memory footprint

is to recompute the product nodes’ probabilities in the backward pass instead of storing them

all in the GPU memory during the forward pass. Specifically, we maintain a scratch space on

GPU HBM that can hold the results of the largest product layer. All product layers write

their outputs to this same scratch space, and the required product node probabilities are

re-computed when requested by a sum layer during backpropagation. Since product layers

are extremely fast to evaluate compared to the sum layers (e.g., see the runtime breakdown in

Fig. 4.2), this leads to significant memory savings at the cost of slightly increased computation

time.

64

Table 4.2: Average (± standard deviation of 3 runs) runtime (in seconds) of the compilation
process of four PCs.

Structure HMM PD HCLT RAT-SPN
nodes 130K 1.38M 710K 465K
edges 130M 829M 159M 33.4M
Compilation time (s) 1.50±0.02 30.57±0.86 8.70±0.32 4.72±0.16

4.5 Experiments

We evaluate the impact of using PyJuice to train PCs. In Section 4.5.1, we compare PyJuice

against existing implementations regarding time and memory efficiency. Specifically, to

demonstrate its generality and flexibility, we evaluate PyJuice on four commonly used

dense PC structures as well as highly unstructured and sparse PCs. Next, we demonstrate

that PyJuice can be readily used to scale up PCs for various downstream applications in

Section 4.5.2. Finally, in Section 4.5.3, we benchmark existing PCs on high-resolution image

datasets, hoping to incentivize future research to develop better PC structures as well as

learning algorithms.

4.5.1 Faster Models with PyJuice

We first benchmark the runtime of PyJuice on four commonly used PC structures: PD [136],

RAT-SPN [133], HCLT [97], and HMM [139]. For all models, we record the runtime to

process 60,000 samples (including the forward pass, the backward pass, and mini-batch EM

updates). We vary their structural hyperparameters and create five PCs for every structure

with sizes (i.e., number of edges) ranging from 500K to 2B. We compare against four baselines:

SPFlow [119], EiNet [132], Juice.jl [29], and Dynamax [122]. Dynamax is dedicated to State

Space Models so it is only used to run HMMs; SPFlow and EiNet are excluded in the HMM

results because we are unable to construct homogeneous HMMs with their frameworks due

to the need to share the transition and emission parameters at different time steps. All

experiments are carried out on an RTX 4090 GPU with 24GB memory.

Table 4.1 reports the runtime in seconds per epoch with mini-batch EMs. PyJuice is

65

orders of magnitude faster than all baselines in both small and large PCs. Further, we observe

that most baselines exhaust 24GB of memory for larger PCs (indicated by “OOM” in the

table), while PyJuice can still efficiently train these models. Additionally, in Table 4.2, we

show the efficiency of the compilation process. For example, it takes only ∼8.7s to compile

an HCLT with 159M edges. Note that we only compile the PC once and then reuse the

compiled structure for training and inference.

In Fig. 4.6, we take two PCs to show the GPU memory consumption with different batch

sizes. The results demonstrate that PyJuice is more memory efficient than the baselines,

especially in the case of large batch sizes (note that we always need a constant-size space to

store the parameters).

Batch size

HCLT w/ 159M edges HMM w/ 130M edges

M
em
or
y
(G
B
)

16 32 64 128 256 5128
0

5

10

15

Batch size

M
em
or
y
(G
B
)

32 64 128 256 512

5

10

15

Figure 4.6: Comparison on memory efficiency. We take two PCs (i.e., an HCLT w/ 159M
edges and an HMM w/ 130M edges) and record GPU memory usage under different block
sizes.

We move on to benchmark PyJuice on block-sparse PCs. We create a sum layer with

209M edges (see Appx. C.3.1 for details). We partition the sum and input product nodes in

the layer into blocks of 32 nodes respectively. We randomly discard blocks of 32×32 edges,

resulting in block-sparse layers. As shown in Fig. 4.7, as the fraction of the removed edge

block increases, the runtime of both the forward and the backward pass decreases significantly.

This motivates future work on PC modeling to focus on designing effective block-sparse PCs.

Finally, we proceed to evaluate the runtime of sparse PCs. We adopt the PC pruning

algorithm proposed by [31] to prune two HCLTs with 10M and 40M edges, respectively. We

only compare against Juice.jl since all other implementations do not support sparse PCs.

66

Fraction of removed blocks

Backward pass

5

10

15

20

R
un
tim
e
(m
s)

2

4

6

8
Forward pass

0 0.2 0.4 0.6 0.8 1.0
Fraction of removed blocks

R
un
tim
e
(m
s)

0 0.2 0.4 0.6 0.8 1.0

Figure 4.7: Runtime of a block-sparse sum layer as the function of the fraction of kept
(non-dropped) edge blocks.

1

Fraction of sum edge pruned

R
un
tim
e
(s
)

0 0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

5

10

15

20

R
un
tim
e
(s
)

Fraction of sum edge pruned
0 0.2 0.4 0.6 0.8 1.0

HCLT w/ 40M edgesHCLT w/ 10M edges

Figure 4.8: Runtime per epoch (with 60K samples) of two sparse HCLTs with different
fractions of pruned edges.

As shown in Fig. 4.8, PyJuice is consistently faster than Juice.jl, despite the diminishing

gap when over 90% edges are pruned. Note that with sparse PCs, PyJuice cannot fully

benefit from the block-based parallelization strategy described in Section 4.3, yet it can still

successfully exploit the sparsity.

4.5.2 Better PCs At Scale

This section demonstrates the ability of PyJuice to improve the state of the art by simply

using larger PCs and training for more epochs thanks to its speed and memory efficiency.

Specifically, we take the HMM language model proposed by [192] and the image model

introduced by [100] as two examples.

HMM language models. [192] use the Latent Variable Distillation (LVD) [99] technique

to train an HMM with 4096 hidden states on sequences of 32 word tokens. Specifically,

LVD is used to obtain a set of “good” initial parameters for the HMM from deep generative

67

models. The HMM language model is then fine-tuned on the CommonGen dataset [92],

and is subsequently used to control the generation process of (large) language models for

constrained generation tasks. Following the same procedure, we use PyJuice to fine-tune two

HMMs with hidden sizes 4096 and 8192, respectively.
Table 4.3: Perplexity of HMM language models trained on the CommonGen benchmark [92].

Zhang et al. [192] PyJuice

hidden states 4096 4096 8192

Perplexity 9.78 8.81 8.65

As shown in Table 4.3, by using the same HMM with 4096 hidden states, PyJuice improved

the perplexity by ∼1.0 by running many more epochs in less time compared to the original

model. We also train a larger HMM with 8192 hidden states and further improved the

perplexity by a further 0.16.

Sparse Image Models. [100] design a PC learning algorithm that targets image data

by separately training two sets of PCs: a set of sparse patch-level PCs (e.g., 4×4 patches) and

a top-level PC that aggregates outputs of the patch-level PC. In the final training step, the

PCs are supposed to be assembled and jointly fine-tuned. However, due to the huge memory

consumption of the PC (with over 10M nodes), only the top-level model is fine-tuned in the

original paper. With PyJuice, we can fit the entire model in 24GB of memory and fine-tune

the entire model. For the PC trained on the ImageNet32 dataset [38], this fine-tuning step

leads to an improvement from 4.06 to 4.04 bits-per-dimension.

4.5.3 Benchmarking Existing PCs

We use PyJuice to benchmark the performance of the PD and the HCLT structure on

three natural image datasets: ImageNet [38] and its down-sampled version ImageNet32, and

CelebA-HQ [103].3 For all three datasets, we train the PCs on randomly sampled 16×16

patches, which results in a total of 16×16×3=768 categorical variables each with 28=256

3Code is available at https://github.com/liuanji/pyjuice-benchmarks

68

https://github.com/liuanji/pyjuice-benchmarks

Table 4.4: Density estimation performance of PCs on three natural image datasets. Reported
numbers are test set bits-per-dimension.

Dataset PD-mid PD-large HCLT-mid HCLT-large
ImageNet32 5.22 5.20 4.36 4.33
ImageNet 4.98 4.95 3.57 3.53
CelebA-HQ 4.35 4.29 2.43 2.38

possible values. As a preprocessing step, the image patches are converted losslessly into the

YCoCg color space since it is observed that such color space transformations lead to improved

density estimation performance.

We adopt two PD structures (i.e., PD-mid with 107M edges and PD-large with 405M

edges) as well as two HCLT structures (i.e., HCLT-mid with 40M edges and HCLT-large

with 174M edges). We experiment with different optimization strategies and adopt full-batch

EM as it yields consistently better performance across models and datasets. Specifically, the

computed PC flows are accumulated across all samples in the training set before doing one

EM step.

Results are shown in Table 4.4. Notably, we achieve better results compared to previous

papers. For example, [99] reports 4.82 bits-per-dimension (bpd) for HCLT on ImageNet32,

while we achieved 4.33 bpd. The performance improvements stem from more training epochs

and the ability to do more hyperparameter searches thanks to the speedup. We highlight

that the goal of this section is not to set new records for tractable deep generative models,

but to establish a set of baselines that can be easily reproduced to track the progress of

developments in PC modeling and learning.

69

Chapter 5

Applications

Do generative models with enhanced reasoning capabilities perform better on downstream

tasks? Leveraging the modeling-side improvements described in Chapter 4, this chapter

gives three examples (i.e., controlled image generation, lossless data compression, and offline

Reinforcement Learning) on how PCs can be used to achieve better performance compared

to other deep generative models in reasoning-demanding tasks.

70

5.1 Image Inpainting via Tractable Steering of Diffusion

Models

In this section, we explore the possibility of using PCs to help control the sampling process

for constrained image generation tasks such as inpainting. In the following, we first provide

the background of solving controlled image generation tasks with diffusion models as well as

the motivation of using PCs to steer the sampling process. We then describe the proposed

method in detail. Finally, we empirically evaluate the effectiveness of the proposed method.

5.1.1 Background and Motivation

Thanks to their expressiveness, diffusion models have achieved state-of-the-art results in

generating photorealistic and high-resolution images [124, 142, 146]. However, steering un-

conditioned diffusion models toward constrained generation tasks such as image inpainting

remains challenging, as diffusion models do not by design support efficient computation of the

posterior sample distribution under many types of constraints [23]. This results in samples

that fail to properly align with the constraints. For example, in image inpainting, the model

may generate samples that are semantically incoherent with the given pixels.

Prior works approach this problem mainly by approximating the (constrained) posterior

sample distribution. However, due to the intractable nature of diffusion models, such

approaches introduce high bias [23,108,191] to the sampling process, which diminishes the

benefit of using highly-expressive diffusion models.

Having observed that the lack of tractability hinders us from fully exploiting diffusion

models in constrained generation tasks, we study the converse problem: what is the benefit of

models that by design support efficient constrained generation? We present positive evidence

by showing that PCs can efficiently steer the denoising process of diffusion models towards

The contents of this section appeared in paper [96].

71

t = 0t = 249 t = 217

CoPaint

Tiramisu

t = 201 t = 0t = 249

p(x̃0|xt,x
k
0)

pTPM(x̃0|xt,x
k
0)

pDM(x̃0|xt,x
k
0)

pDM(x̃0|xt,x
k
0)

t = 100 t = 100Denoising process

TPM not used

t = 201t = 217

TPM not used

Figure 5.1: Illustration of the steering effect of the TPM on the diffusion model. The same
random seed is used by the baseline (CoPaint; [191]) and our approach. At every time step,
given the image at the previous noise level, Tiramisu reconstructs x̃0 with both the diffusion
model and the TPM, and combines the two distributions by taking their geometric mean
(solid arrows). The images then go through the noising process to generate the input for the
previous time step (dashed arrows).

high-quality inpainted images. We will define a class of constraints that includes inpainting

constraints for which we can provide the following guarantee. For any constraint c in this

class, given a sample xt at noise level t, we show that a PC trained on noise-free samples (i.e.,

p(X0)) can be used to efficiently compute p(x0|xt, c), which is a key step in the sampling

process of diffusion models. This PC-computed distribution can then be used to effectively

guide the denoising process, leading to photorealistic images that adhere to the constraints.

Fig. 5.1 illustrates the steering effect of PCs in the proposed algorithm Tiramisu (Tractable

Image Inpainting via Steering Diffusion Models). Specifically, we plot the reconstructed

image by the diffusion model (the first row of Tiramisu) and the PC (the third row) at five

time steps during the denoising process. Compared to the baselines, Tiramisu generates more

semantically coherent images with the PC-provided guidance. In summary, there are three

main contributions:

72

Denoising Diffusion Probabilistic Models A diffusion model [63, 163] defined on

variables X0 is a latent variable model of the form pθ(x0) :=
∫
pθ(x0:T)dx1:T , where x1:T are

the latent variables and the joint distribution pθ(x0:T) is defined as a Markov chain termed

the reverse/denoise process:

pθ(x0:T) := p(xT) ·
T∏

t=1

pθ(xt−1|xt). (5.1)

For continuous variables x0:T , the initial and transition probabilities of the Markov chain

typically use Gaussian distributions:

p(xT) := N (xT ;0, I), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)),

where µθ and Σθ are the mean and covariance parameters, respectively. The key prop-

erty that distinguishes diffusion models from other latent variable models such as hier-

archical Variational Autoencoders [173] is the fact that they have a prespecified approxi-

mate posterior q(x1:T |x0) :=
∏T

t=1 q(xt|xt−1). This is called the forward or diffusion pro-

cess. For continuous variables, the transition probabilities are also defined as Gaussians:

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI), where {βt}Tt=1 is a noise schedule. Training is done by

maximizing the ELBO of pθ(x0) with the variational posterior q(x1:T |x0). See [78] for more

details.

While it is possible to directly model pθ(xt−1|xt) with a neural network, prior works

discovered that the following parameterization leads to better empirical performance [63]:

pθ(xt−1|xt) :=
∑

x̃0

q(xt−1|x̃0,xt) · pθ(x̃0|xt), (5.2)

where pθ(x̃0|xt) := N (x̃0; µ̃θ(xt, t), Σ̃θ(xt, t)) is parameterized by a neural network and

q(xt−1|x̃0,xt) has a simple closed-form expression [63]. Following the definition of the

denoising process, sampling from a diffusion model boils down to first sampling from p(xT)

73

and then recursively sampling xT−1, . . . ,x0 according to pθ(xt−1|xt).

5.1.2 Guiding Diffusion Models with Tractable Probabilistic Models

Given a diffusion model trained for unconditional generation, our goal is to steer the model

to generate samples given different conditions/constraints without the need for task-specific

fine-tuning. In the following, we focus on the image inpainting task to demonstrate that

TPMs can guide diffusion models toward more coherent samples that satisfy the constraints.

The goal of image inpainting is to predict the missing pixels given the known pixels.

Define Xk
0 (resp. Xu

0) as the provided (resp. missing) pixels. We aim to enforce the inpainting

constraint Xk
0 = xk

0 on every denoising step pθ(xt−1|xt) (∀t ∈ 1, . . . , T). Plugging in Eq. (5.2),

the conditional probabilities are written as:

∀t ∈ 1, . . . , T pθ(xt−1|xt,x
k
0) =

∑
x̃0

q(xt−1|x̃0,xt) · pθ(x̃0|xt,x
k
0),

where the first term on the right-hand side is independent of xk
0. To sample coherent inpainted

images, we need to draw unbiased samples from pθ(x̃0|xt,x
k
0). Applying Bayes’ rule, we get

pθ(x̃0|xt,x
k
0) =

1

Z
· pθ(x̃0|xt) · p(xk

0|x̃0) =
1

Z
· pθ(x̃0|xt) · 1[x̃k

0 = xk
0], (5.3)

where 1[·] is the indicator function and Z is a normalizing constant. One simple strategy to

sample from Eq. (5.3) is by rejection sampling: sample unconditionally from pθ(x̃0|xt) (i.e.,

the learned denoising model) and reject samples with x̃k
0 ̸= xk

0. However, this is impractical

since the acceptance rate could be extremely low. Existing algorithms use approximation

strategies to compute or sample from Eq. (5.3). For example, [108] proposes to set x̃k
0 := xk

0

after sampling x̃0∼pθ(·|xt), leaving x̃u
0 untouched; [191] and [23] relax the hard inpainting

constraint to minx̃k
0
∥x̃k

0 − xk
0∥22 and use gradient-based methods to gradually enforce it.

This paper explores the possibility of drawing unbiased samples from pθ(x̃0|xt,x
k
0) given

74

a TPM-represented distribution pθ(x0). By applying Bayes’ rule from the other side, we have

pθ(x̃0|xt,x
k
0) =

1

Z
· q(xt|x̃0) · pθ(x̃0|xk

0) =
1

Z
·
∏

i

q(xi
t|x̃i

0) · pθ(x̃u
0|xk

0) · 1[x̃k
0 = xk

0], (5.4)

where Z is a normalizing constant, xi
t is the ith variable in xt, and the factorization of q(xt|x0)

follows the definition of the diffusion process in Section 5.1.1. Although the right-hand side

seems to be impractical to compute due to the normalizing constant, we will demonstrate

in the following sections that there exists a class of expressive TPMs that can compute it

efficiently and exactly.

From the diffusion model and the TPM, we have obtained two versions of the same

distribution p(x̃0|xt,x
k
0).1 Thanks to the expressiveness of neural networks, the distribution

approximated by the diffusion model (i.e., Eq. (5.3); termed pDM(x̃0|xt,x
k
0)) encodes high-

fidelity images. However, due to the inability to compute the exact conditional probability,

pDM(x̃0|xt,x
k
0) could lead to images incoherent with the constraint [191]. In contrast, the

TPM-generated distribution (i.e., Eq. (5.4); termed pTPM(x̃0|xt,x
k
0)) represents images that

potentially better align with the given pixels. Therefore, pDM(x̃0|xt,x
k
0) and pTPM(x̃0|xt,x

k
0)

can be viewed as distributions trained for the same task yet with different biases. Following

prior arts [57, 192], we combine both distributions by taking the weighted average of the

logits of every variable in x̃0, hoping to get images that are both semantically coherent and

have high fidelity:

p(x̃0|xt,x
k
0) ∝ pDM(x̃0|xt,x

k
0)

α · pTPM(x̃0|xt,x
k
0)

1−α, (5.5)

where α∈(0, 1) is a mixing hyperparameter. In summary, as a key step of image inpainting

with diffusion models, we compute p(x̃0|xt,x
k
0) from both the diffusion model and a TPM,

and use their weighted geometric mean in the denoising process. We note that the use of

TPMs is independent of the design choices related to the diffusion model, and thus can be

1Note that diffusion models can only approximate this distribution.

75

built upon any prior approach.

5.1.3 Practical Implementation with Probabilistic Circuits

The previous section introduces how TPMs could help guide the denoising process of diffusion

models toward high-quality inpainted images. While promising, a key question is whether

pTPM(x̃0|xt,x
k
0) (Eq. 5.4) can be computed efficiently and exactly? We answer the question

in its affirmative by showing that PCs can answer the query while being expressive enough

to model natural images.

Recall from Section 5.1.2 and Eq. (5.5) that at every denoising step, we need to com-

pute pTPM(x̃0|xt,x
k
0) with the PC. This section proposes an algorithm that computes

pTPM(x̃0|xt,x
k
0) given a PC p(x0) in linear time w.r.t. its size. Specifically, we first demon-

strate how Eq. (5.4) can be converted to a general form of queries we define as independent

soft-evidence constraints. We then establish an efficient inference algorithm for this query

class.

After closer inspection of Eq. (5.4), we observe that both q(xt|x̃0) and 1[x̃k
0 = xk

0] can be

considered as constraints factorized over every variable. Specifically, with wi(x̃
i
0) :=q(xi

t|x̃i
0) if

X̃ i
0∈X̃u

0 and wi(x̃
i
0) :=1[x̃k

0=xk
0] otherwise, pTPM(x̃0|xt,x

k
0) can be equivalently expressed as

pTPM(x̃0|xt,x
k
0) =

1

Z

∏

i

wi(x̃
i
0) · p(x̃0), where Z :=

∑

x0

∏

i

wi(x̃
i
0) · p(x̃0). (5.6)

We call wi the soft-evidence constraint of variable X i
0 as it defines a prior belief of its value.

In the extreme case of conditioning on hard evidence, wi becomes an indicator that puts all

weight on the conditioned value. Recall from Section 5.1.1 that diffusion models parameterize

pθ(x̃0|xt) as a fully-factorized distribution. In order to compute the weighted geometric mean

of pDM(x̃0|xt,x
k
0) and pTPM(x̃0|xt,x

k
0) (cf. Eq. (5.5)), we need to also compute the univariate

distributions pTPM(x̃
i
0|xt,x

k
0) for every X̃ i

0 ∈ X̃0. While this seems to suggest the need to

query the PC at least |X̃0| times, we propose an algorithm that only needs a forward and a

76

backward pass to compute all target probabilities.

The forward pass Similar to the likelihood query algorithm performed by a feedforward

pass of the PC, we traverse all nodes in postorder and store the output of every node n in

fwn. For sum and product nodes, the output is computed following Eq. (2.1); the output of

every input node n that encodes a distribution of X i
0 is defined as fwn :=

∑
xi
0
fn(x

i
0) ·wi(x

i
0),

where fn is defined in Eq. (2.1).

The backward pass The backward pass consists of two steps: (i) traversing all nodes

in preorder (parents before children) to compute the backward value bkn; (ii) computing the

target probabilities using the backward value of all input nodes. For ease of presentation, we

assume the PC alternates between sum and product layers, and all parents of any input node

are product nodes.2 First, we compute the backward values by setting bknr of the root node

to 1, then recursively compute the backward value of other nodes as follows:

bkn :=





∑
m∈pa(n)

(
θm,n · fwn/fwm

)
· bkm n is a product node,

∑
m∈pa(n) bkm n is a input or sum node,

where pa(n) is the set of parents of node n. Next, for every i, we gather all input nodes

defined on X i
0, denoted Si, and compute pTPM(x̃

i
0|xt,x

k
0) :=

1
Z

∑
n∈Si

bkn · fn(xi
0) · wi(x

i
0).

Theorem 11. For any smooth and decomposable PC p(X) and univariate weight func-

tions {wi(Xi)}i, define p′(x) = 1
Z

∏
i wi(xi) · p(x), where the normalizing constant Z :=

∑
x

∏
i wi(xi) · p(x). Assume all variables in X are categorical variables with C categories,

the above-described algorithm computes p′(xi) for every variable Xi and its every assignment

xi in time O(|p|+ |X| · C) = O(|p|).

Proof can be found in Section D.1.1.

2Every PC that does not satisfy such constraints can be transformed into one in linear time since (i)
consecutive sum or product nodes can be merged without changing the PC’s semantic, and (ii) we can add a
dummy product with one child between any pair of sum and input nodes.

77

5.1.4 Towards High-Resolution Image Inpainting

Another key factor determining the effectiveness of the PC-guided diffusion model is the

expressiveness of the PC p(X0), i.e., how well it can model the target image distribution.

Recent advances have significantly pushed forward the expressiveness of PCs [99,100], leading

to competitive likelihoods on datasets such as CIFAR [85] and down-sampled ImageNet [38],

which allows us to directly apply the guided inpainting algorithm to them. However, there is

still a gap towards directly modeling high-resolution (e.g., 256× 256) image data. While it is

possible that this could be achieved in the near future given the rapid development of PCs,

this paper explores an alternative approach where we use a (variational) auto-encoder to

transform high-resolution images to a lower-dimensional latent space. Although in this way

we lose the “full tractability” over every pixel, as we shall proceed to demonstrate, a decent

approximation can still be achieved. The key intuition is that the latent space concisely

captures the semantic information of the image, and thus can effectively guide diffusion

models toward generating semantically coherent images; fine-grained details such as color

consistency of the neighboring pixels can be properly handled by the neural-network-based

diffusion model. This is empirically justified in Section 5.1.5.

Define the latent space of the image X0 as Z0. We adopt Vector Quantized Generative

Adversarial Networks (VQ-GANs) [50], which are equipped with an encoder q(z0|x0) and

a decoder p(x0|z0), to transform the images between the pixel space and the latent space.3

We approximate pTPM(x̃0|xt,x
k
0) (Eq. 5.6) by first estimating pTPM(z̃0|xt,x

k
0) with a PC

p(Z0) trained on the latent space and the VQ-GAN encoder; this latent-space conditional

distribution is then converted back to the pixel space. Specifically, the latent-space conditional

probability is approximated via

pTPM(z̃0|xt,x
k
0) ≈

1

Z

∏

i

wz
i (z̃

i
0) · p(z̃0), where wz

i (z̃
i
0) :=

1

Zi

∑

x̃0

∏

j

wj(x̃
j
0) · q(z̃i0|x̃0), (5.7)

3We adopt VQ-GAN since it has a discrete latent space, which makes PC training easier.

78

where Z and {Zi}i are normalizing constants and q(z̃i0|x̃0) is the VQ-GAN encoder. It is safe

to assume the independence between the soft evidence for different latent variables (i.e., wz
i)

since every latent variable produced by VQ-GAN corresponds to a different image patch,

which corresponds to a different set of pixel-space soft constraints (i.e., wi). In practice, we

approximate wz
i (z̃

i
0) by performing Monte Carlo sampling over x̃0 (i.e., sample x̃0 following

∏
j wj(x̃

j
0), and then feed them through the VQ-GAN encoder). Finally, pTPM(x̃0|xt,x

k
0) is

approximated by Monte Carlo estimation of pTPM(x̃0|xt,x
k
0) := Ez̃0∼pTPM(·|xt,xk

0)
[p(x̃0|z̃0)],

where p(x̃0|z̃0) is the VQ-GAN decoder. We observe that as few as 4-8 samples lead to

significant performance gains across various datasets and mask types. See Section D.1.2 for

details of the design choices.

Another main contribution of this paper is to further scale up PCs based on [99,100] to

achieve likelihoods competitive with GPTs [8] on the latent image space generated by VQ-

GAN. Specifically, for 256× 256 images, the latent space typically consists of 16× 16 = 256

categorical variables each with 2048-16384 categories. While the number of variables is

similar to datasets considered by prior PC learning approaches, the variables are much more

semantically complicated (e.g., patch semantic vs. pixel value). We provide the full learning

details, including the model structure and the training pipeline in Section D.1.3.

In summary, similar to the pixel-space guided inpainting algorithm introduced in Sec-

tion 5.1.2, its latent-space variant also computes pTPM(x̃0|xt,x
k
0) to guide the diffusion

model pDM(x̃0|xt,x
k
0) with Eq. (5.5), except that it is approximated using a latent-space PC

combined with VQ-GAN.

5.1.5 Experiments

In this section, we take gradual steps to analyze and illustrate our method Tiramisu

(Tractable Image Inpainting via Steering Diffusion Models). Specifically, we first qualitatively

investigate the steering effect of the TPM on the denoising diffusion process (Sec. 5.1.5). Next,

we perform an empirical evaluation on three high-resolution image datasets with six large-hole

79

masks, which significantly challenges its ability to generate semantically consistent images

(Sec. 5.1.5). Finally, inspired by the fact that Tiramisu can handle arbitrary constraints that

can be written as independent soft evidence, we test it on a new controlled image generation

task termed image semantic fusion, where the goal is to fuse parts from different images and

generate images with semantic coherence and high fidelity (Sec. 5.1.5).

Analysis of the TPM-Provided Guidance

Since we are largely motivated by the ability of TPMs to generate images that better match

the semantics of the given pixels, it is natural to examine how the TPM-generated signal

guides the diffusion model during the denoising process. Recall from Section 5.1.2 that at every

denoising step t, the reconstruction distributions pDM(x̃0|xt,x
k
0) and pTPM(x̃0|xt,x

k
0) are

computed/estimated using the diffusion model and the TPM, respectively. Both distributions

are then merged into p(x̃0|xt,x
k
0) (Eq. (5.5)) and are used to generate the image at the

previous noise level (i.e., xt−1). In all experiments, we adopt CoPaint [191] to generate

pDM(x̃0|xt,x
k
0), which is independent of the design choices related to the TPM. Therefore,

qualitatively comparing the denoising process of Tiramisu and CoPaint allows us to examine

the steering effect provided by the TPM.

Fig. 5.1 visualizes the denoising process of Tiramisu by plotting the images corresponding to

the expected values of the aforementioned distributions (i.e., pDM(x̃0|xt,x
k
0), pTPM(x̃0|xt,x

k
0),

and p(x̃0|xt,x
k
0)). To minimize distraction, we first focus on image pairs of the DM- and

TPM-generated image pairs in the same column. Since they are generated from the same

input image xt, comparing the image pairs allows us to examine the built-in inductive biases

in both distributions. For instance, in the celebrity face image, we observe that the contour

of the facial features is sharper for the TPM-generated image. This is more obvious in images

at larger time steps since the guidance provided by the TPM is accumulated throughout the

denoising process.

Next, we look at the second row (i.e., p(x̃0|xt,x
k
0)) of Tiramisu. Although blurry, global

80

Table 5.1: Quantative results on three datasets: CelebA-HQ [103], ImageNet [38], and
LSUN-Bedroom [189]. We report the average LPIPS value (lower is better) [193] across 100
inpainted images for all settings. Bold indicates the best result.

Tasks Algorithms

Dataset Mask Tiramisu (ours) CoPaint RePaint DDNM DDRM DPS Resampling

CelebA-HQ

Left 0.189 0.185 0.195 0.254 0.275 0.201 0.257
Top 0.187 0.182 0.187 0.248 0.267 0.187 0.251
Expand1 0.454 0.468 0.504 0.597 0.682 0.466 0.613
Expand2 0.442 0.455 0.480 0.585 0.686 0.434 0.601
V-strip 0.487 0.502 0.517 0.625 0.724 0.535 0.647
H-strip 0.484 0.488 0.517 0.626 0.731 0.492 0.639
Wide 0.069 0.072 0.075 0.112 0.132 0.078 0.128

ImageNet

Left 0.286 0.289 0.296 0.410 0.369 0.327 0.369
Top 0.308 0.312 0.336 0.427 0.373 0.343 0.368
Expand1 0.616 0.623 0.691 0.786 0.726 0.621 0.711
Expand2 0.597 0.607 0.692 0.799 0.724 0.618 0.721
V-strip 0.646 0.654 0.741 0.851 0.761 0.637 0.759
H-strip 0.657 0.660 0.744 0.851 0.753 0.647 0.774
Wide 0.125 0.128 0.127 0.198 0.197 0.132 0.196

LSUN-Bedroom

Left 0.285 0.287 0.314 0.345 0.366 0.314 0.367
Top 0.310 0.323 0.347 0.376 0.368 0.355 0.372
Expand1 0.615 0.637 0.676 0.716 0.695 0.641 0.699
Expand2 0.635 0.641 0.666 0.720 0.691 0.638 0.690
V-strip 0.672 0.676 0.711 0.760 0.721 0.674 0.725
H-strip 0.679 0.686 0.722 0.766 0.726 0.674 0.724
Wide 0.116 0.115 0.124 0.135 0.204 0.108 0.202

Average 0.421 0.427 0.459 0.532 0.531 0.434 0.514

semantics appear at the early stages of the denoising process. For example, on the right side,

we can vaguely see two ostriches visible at time step 217. In contrast, the denoised image

at t = 217 for CoPaint does not contain much semantic information. Conditioning on these

blurred contents, the diffusion model can further fill in fine-grained details. Since the image

semantics can be generated in a few denoising steps, we only need to query the TPM at early

time steps, which also significantly reduces the computational overhead of Tiramisu. See

Section 5.1.5 for quantitative analysis. As a result, compared to the baseline, Tiramisu can

generate inpainted images with higher quality.

Comparison With the State of the Art

In this section, we challenge Tiramisu against state-of-the-art diffusion-based inpainting

algorithms on three large-scale high-resolution image datasets: CelebA-HQ [103], ImageNet

81

Left Top Expand1

Expand2 V-strip H-strip

Figure 5.2: Used masks.

[38], and LSUN-Bedroom [189]. To further challenge the ability of Tiramisu to generate

semantically coherent images, we use seven types of masks that reveal only 5-20% of the

original image since it is very likely for inpainting algorithms to ignore the given visual cues

and generate semantically inconsistent images. Details of the masks can be found in Fig. 5.2.

Methods We consider the six following diffusion-based inpainting algorithms: CoPaint

[191], RePaint [108], DDNM [180], DDRM [74], DPS [23], and Resampling [172]. Although

not exhaustive, this set of methods summarizes recent developments in image inpainting

and can be deemed as state-of-the-art. We base our method Tiramisu on CoPaint (i.e.,

generate pDM(x̃0|xt,x
k
0) with CoPaint). Please see the appendix for details on Tiramisu

(Appx. D.1.2 and D.1.3) and the baselines (Appx. D.1.4).

Quantitative and qualitative results Table 5.1 shows the average LPIPS values [193]

on all 3× 7 = 21 dataset-mask configurations. First, Tiramisu outperforms CoPaint in 18 out

of 21 settings, which demonstrates that the TPM-provided guidance consistently improves

the quality of generated images. Next, compared to all baselines, Tiramisu achieves the best

LPIPS value on 14 out of 21 settings, which indicates its superiority over the baselines. This

conclusion is further supported by the sample inpainted images shown in Fig. 5.3, which

suggests that Tiramisu generates more semantically consistent images. See Appx. D.1.5 for

more samples and Appx. D.1.5 for user studies.

Computational efficiency As illustrated in Section 5.1.5, we can use PC to steer the

denoising steps only in earlier stages. While engaging PCs in more denoising steps could lead

to better performance, the runtime is also increased accordingly. To better understand this

tradeoff, we use CelebA + the Expand1 mask as an example to analyze this tradeoff. As

82

CoPaint

Tiramisu
(ours)

RePaint

DDNM

DDRM

DPS

Left Expand1 Expand2 V-strip

Resample

Origin

CelebA-HQ
Left Expand1 Expand2 V-strip

ImageNet
Left Expand1 Expand2 V-strip

LSUN-Bedrooms

Figure 5.3: Qualitative results on all three adopted datasets. We compare Tiramisu against
six diffusion-based inpainting algorithms. Please refer to Section D.1.5 for more qualitative
results.

83

Figure 5.4: Performance and runtime.

shown in Fig. 5.4, as we use PCs in more denoising steps, the LPIPS score first decreases

and then increases, suggesting that incorporating PCs in a moderate amount of steps gives

the best performance (around 20% in this case). One explanation to this phenomenon is that

in later denoising stages, the diffusion model mainly focuses on refining details. However,

PCs are better at controlling the global semantics of images in earlier denoising stages. We

then focus on the computation time. When using PCs in 20% of the denoising steps, the

additional computational overhead incurred by the TPM is around 10s, which is only 10% of

the total computation time.

Beyond Image Inpainting

The previous sections demonstrate the effectiveness of using TPMs on image inpainting

tasks. A natural follow-up question is whether this framework can be generalized to other

controlled/constrained image generation tasks? Although we do not have a definite answer,

this section demonstrates the potential of extending Tiramisu to more complicated tasks by

showing its capability to fuse the semantic information from various input patches/fragments.

Specifically, consider the case of latent-space soft evidence constraints {wz
i}i (i.e., Eq. (5.7)).

For various recent autoencoder models such as VQ-GAN, the latent variables of size Hl ×Wl

are encoded from images of size H×W . Intuitively, every latent variable encodes the semantic

84

+ = + =

+

+

=

=

+

+

=

=

Semantic coherence Semantic coherence

+ =

+ = + =

+ = + =

+ =

Figure 5.5: CelebA-HQ qualitative results for the semantic fusion task. In every sample, two
reference images together with their masks are provided to Tiramisu. The task is to generate
images that (i) semantically align with the unmasked region of both reference images, and (ii)
have high fidelity. For every input, we generate five samples with different levels of semantic
coherence. The left-most images are the least semantically constrained and barely match the
semantic patterns of the reference images. In contrast, the right-most images strictly match
the semantics of the reference images.

of an H/Hl ×W/Wl image patch. Therefore, every wz
i can be viewed as a constraint on the

semantics of the corresponding image patch.

We introduce a controlled image generation task called semantic fusion, where we are

given several reference images each paired with a mask. The goal is to generate images

that (i) semantically align with the unmasked region of every reference image, and (ii) have

high quality and fidelity. Semantic fusion can be viewed as a preliminary task for more

general controlled image generation since any type of visual word information (e.g., language

condition) can be transferred to constraints on {wz
i}i.

Fig. 5.5 shows qualitative results of Tiramisu on semantic fusion tasks. For every set

of reference images, we generate five samples with different semantic coherence levels by

adjusting the temperature of every soft evidence function wz
i (z

i
0).

85

5.2 Lossless Data Compression

Despite extensive progress in image generation, common deep generative model architec-

tures are not easily applied to lossless compression due to the challenge of using their learned

distributions to apply common coding algorithms. To overcome this problem, this chapter

explores the possibility of using more tractable deep generative models – PCs for lossless

data compression.

5.2.1 Background and Motivation

Thanks to their expressiveness, modern Deep Generative Models (DGMs) such as Flow-based

models [45], Variational Autoencoders (VAEs) [80], and Generative Adversarial Networks

(GANs) [56] achieved state-of-the-art results on generative tasks such as creating high-quality

samples [173] and learning low-dimensional representation of data [195]. However, these

successes have not been fully transferred into neural lossless compression; see [187] for a recent

survey. Specifically, GANs cannot be used for lossless compression due to their inability

to assign likelihoods to observations. Latent variable models such as VAEs rely on rate

estimates obtained by lower-bounding the likelihood of the data, i.e., the quantity which is

theoretically optimal for lossless compression; they furthermore rely on sophisticated schemes

such as bits-back coding [62] to realize these rates, oftentimes resulting in poor single-sample

compression ratios [81].

Therefore, good generative performance does not imply good compression performance for

lossless compression, as the model needs to support efficient algorithms to encode and decode

close to the model’s theoretical rate estimate. While both Flow- and VAE-based compression

algorithms [64, 81] support efficient and near-optimal compression under certain assumptions

(e.g., the existence of an additional source of random bits), we show that Probabilistic Circuits

(PCs) [14] are also suitable for lossless compression tasks. This class of tractable models has

The contents of this chapter appeared in paper [95].

86

a particular structure that allows efficient marginalization of its random variables–a property

that, as we show, enables efficient conditional entropy coding. Therefore, we introduce PCs

as backbone models and develop (de)compression algorithms that achieve high compression

ratios and high computational efficiency.

5.2.2 Tractability Matters in Lossless Compression

The goal of lossless compression is to map every input sample to an output codeword such that

(i) the original input can be reconstructed from the codeword, and (ii) the expected length

of the codewords is minimized. Practical (neural) lossless compression algorithms operate

in two main phases — learning and compression [187]. In the learning phase, a generative

model p(X) is learned from a dataset D :={x(i)}Ni=1. According to Shannon’s source coding

theorem [155], the expected codeword length is lower-bounded by the negative cross-entropy

between the data distribution D and the model distribution p(X) (i.e., −Ex∼D[log p(x)]),

rendering it a natural and widely used objective to optimize the model [64,114].

In the compression phase, compression algorithms take the learned model p and samples x

as input and generate codewords whose expected length approaches the theoretical limit (i.e.,

the negative cross-entropy between D and p). Although there exist various close-to-optimal

compression schemes (e.g., Huffman Coding [66] and Arithmetic Coding [145]), a natural

question to ask is what are the requirements on the model p such that compression algorithms

can utilize it for encoding/decoding in a computationally efficient manner? In this paper,

we highlight the advantages of tractable probabilistic models for lossless compression by

introducing a concrete class of models that are expressive and support efficient encoding and

decoding.

To encode a sample x, a standard streaming code operates by sequentially encoding every

symbol xi into a bitstream b, such that xi occupies approximately − log p(xi|x1, . . . , xi−1) bits

in b. As a result, the length of b is approximately − log p(x). For example, Arithmetic Coding

(AC) encodes the symbols {xi}Di=1 (define D := |X| as the number of features) sequentially by

87

successively refining an interval that represents the sample, starting from the initial interval

[0, 1). To encode xi, the algorithm partitions the current interval [a, b) using the left and

right side cumulative probability of xi:

li(xi) := p(Xi<xi | x1, . . . , xi−1), hi(xi) := p(Xi≤xi | x1, . . . , xi−1). (5.8)

Specifically, the algorithm updates [a, b) to the following: [a+ (b−a)·li(xi), a+ (b−a)·hi(xi)),

which is a sub-interval of [a, b). Finally, AC picks a number within the final interval that has

the shortest binary representation. This number is encoded as a bitstream representing the

codeword of x. Upon decoding, the symbols {xi}Di=1 are decoded sequentially: at iteration i,

we decode variable Xi by looking up its value x such that its cumulative probability (i.e.,

li(x)) matches the subinterval specified by the codeword and x1, . . . , xi−1 [145]; the decoded

symbol xi is then used to compute the following conditional probabilities (i.e., lj(x) for j > i).

Despite implementation differences, computing the cumulative probabilities li(x) and hi(x)

are required for many other streaming codes (e.g., rANS). Therefore, for most streaming

codes, the main computation cost of both the encoding and decoding process comes from

calculating li(x) and hi(x).

The main challenge for the above (de)compression algorithm is to balance the expressive-

ness of p and the computation cost of {li(x), hi(x)}Di=1. On the one hand, highly expressive

probability models such as energy-based models [87,143] can potentially achieve high com-

pression ratios at the cost of slow runtime, which is due to the requirement of estimating the

model’s normalizing constant. On the other hand, models that make strong independence

assumptions (e.g., n-gram, fully-factorized) are cheap to evaluate but lack the expressiveness

to model complex distributions over structured data such as images.

This paper explores the middle ground between the above two extremes. Specifically, we

ask: are there probabilistic models that are both expressive and permit efficient computation

of the conditional probabilities in Eq. (5.8)? This question can be answered in the affirmative

88

by establishing a new class of tractable lossless compression algorithms using Probabilistic

Circuits (PCs) [14], which are neural networks that can compute various probabilistic queries

efficiently. In the following, we overview the empirical and theoretical results of the proposed

(de)compression algorithm.

We start with theoretical findings: the proposed encoding and decoding algorithms enjoy

time complexity O(log(D) · |p|), where |p| ≥ D is the PC model size. The backbone of both

algorithms, formally introduced in Section 5.2.3, is an algorithm that computes the 2×D

conditional probabilities {li(x), hi(x)}Di=1 given any x efficiently, as justified by the following

theorem.

Theorem 12 (informal). Let x be a D-dimensional sample, and let p be a PC model of

size |p|. We then have that computing all quantities {li(xi), hi(xi)}Di=1 takes O(log(D) · |p|)

time. Therefore, en- or decoding x with a streaming code (e.g., Arithmetic Coding) takes

O(log(D)·|p|+D) = O(log(D)·|p|) time.

The properties of PCs that enable this efficient lossless compression algorithm will be

described in the following, and the backbone inference algorithm with O(log(D)·|p|) time

complexity will later be shown as Algorithm 5. Table 5.2 provides an (incomplete) summary

of our empirical results. First, the PC-based lossless compression algorithm is fast and

competitive. As shown in Table 5.2, the small PC model achieved a near-SoTA bitrate

while being ∼ 15x faster than other neural compression algorithms with a similar bitrate.

Next, PCs can be integrated with Flow-/VAE-based compression methods. As illustrated in

Table 5.2(right), the integrated model significantly improved performance on sub-sampled

ImageNet compared to the base IDF model.

5.2.3 Computationally Efficient (De)compression with PCs

In the previous section, we have boiled down the task of lossless compression to calculating

conditional probabilities {li(xi), hi(xi)}Di=1 given p and xi. This section takes PCs into

89

Table 5.2: An (incomplete) summary of our empirical results. “Comp.” stands for compression.

Method
MNIST (10,000 test images)

Theoretical bpd Comp. bpd En- & decoding time

PC (small) 1.26 1.30 53
PC (large) 1.20 1.24 168

IDF 1.90 1.96 880
BitSwap 1.27 1.31 904

Method
ImageNet32 ImageNet64

Theoretical bpd Theoretical bpd

PC+IDF 3.99 3.71

IDF 4.15 3.90
RealNVP 4.28 3.98
Glow 4.09 3.81

consideration and demonstrates how these queries can be computed efficiently. In the

following, we first introduce the PC-based (de)compression algorithm (Section 5.2.3). We then

empirically evaluate the optimality and speed of the proposed compressor and decompressor

(Section 5.2.5).

Efficient (De-)compression With Structured-Decomposable PCs

As a key sub-routine in the proposed algorithm, we describe how to compute marginal

queries given a smooth and (structured-)decomposable PC in O(|p|) time. First, we assign

probabilities to every input unit: for an input unit n defined on variable X, if evidence

is provided for X in the query (e.g., X = x or X < x), we assign to n the corresponding

probability (e.g., p(X = x), p(X <x)) according to fn in Eq. (2.1); if evidence of X is not

given, probability 1 is assigned to n. Next, we do a feedforward (children before parents)

traverse of inner PC units and compute their probabilities following Eq. (2.1). The probability

assigned to the root unit is the final answer of the marginal query. Concretely, consider

computing p(x1, x2, x4) for the PC in Fig. 2.1. This is done by (i) assigning probabilities to

the input units w.r.t. the given evidence x1, x2, and x4 (assign 0 to the input unit labeled X2

and ¬X4 as they contradict the given evidence; all other input units are assigned probability

1), and (ii) evaluate the probabilities of sum/product units following Eq. (2.1). Evaluated

probabilities are labeled next to the corresponding units, hence the marginal probability at

the output is p(x1, x2, x4) = 0.056.

The proposed PC-based (de)compression algorithm is outlined in Fig. 5.6. Consider

compressing an 2-by-2 image, whose four pixels are denoted as X1, . . . , X4. As discussed

90

in Section 5.2.2, the encoder converts the image into a bitstream by encoding all variables

autoregressively. For example, suppose we have encoded x1, x2. To encode the next variable

x3, we compute the left and right side cumulative probability of x3 given x1 and x2, which

are defined as l3(x3) and h3(x3) in Section 5.2.2, respectively. A streaming code then encodes

x3 into a bitstream using these probabilities. Decoding is also performed autoregressively.

Specifically, after x1 and x2 are decoded, the same streaming code uses the information from

the bitstream and the conditional distribution p(x3 | x1, x2) to decode x3.

Therefore, the main computation cost of the above en- and decoding procedures comes

from calculating the 2D conditional probabilities {li(x), hi(x)}Di=1 w.r.t. any x. Since every

conditional probability can be represented as the quotient of two marginals, it is equivalent

to compute the two following sets of marginals: F (x) := {p(x1, . . . , xi)}Di=1 and G(x) :=

{p(x1, . . . , xi−1, Xi<xi)}Di=1.

As a direct application of the marginal algorithm described in the first paragraph of this

section, for every x ∈ val(X), computing the 2D marginals {F (x), G(x)} takes O(D · |p|)

time. However, the linear dependency on D would render compression and decompression

extremely time-consuming.

We can significantly accelerate the en- and decoding times if the PC is structured-

decomposable. To this end, we introduce an algorithm that computes F (x) and G(x) in

O(log(D)·|p|) time (instead of O(D·|p|)), given a smooth and structured-decomposable PC

p. For ease of presentation, we only discuss how to compute F (x) – the values G(x) can be

computed analogously.4

Before proceeding with a formal argument, we give a high-level explanation of the

acceleration. In practice, we only need to evaluate a small fraction of PC units to compute

each of its D marginals. This is different from regular neural networks and the key to speeding

up the computation of F (x). In contrast to neural networks, changing the input only slightly

will leave most activations unchanged for structured-decomposable PCs. We make use of this

4The only difference between the computation of the ith term of F (x) and the ith term of G(x) is in the
value assigned to the inputs for variable Xi (i.e., probabilities pn(Xi=x) vs. pn(Xi<x)).

91

X1 X2
X3 X4

Pixel has been sent

Pixel being sent

Streaming code
(e.g., rANS)

Bitstream

p(x3 | x1, x2)X1 X1

X2 X2

X3 X3

X4

Image patch, e.g., 2×2

Group #1

Group #2

Group #3

All nodes in groups #1, #2, and #3 do not
need to be explicitly evaluated.

Encoder Decoder

Same PC

p(x3 | x1, x2)

X1 X2
X3 X4

Reconstructed patch

Streaming code
(e.g., rANS)

Figure 5.6: Overview of the PC-based (de)compressor. The encoder’s side sequentially
compresses variables one-by-one using the conditional probabilities given all sent variables.
These probabilities are computed efficiently using Algorithm 5. Finally, a streaming code
uses conditional probabilities to compress the variables into a bitstream. On the decoder’s
side, a streaming code decodes the bitstream to reconstruct the image with the conditional
probabilities computed by the PC.

property by observing that adjacent marginals in F (x) only differ in one variable — the ith

term only adds evidence xi compared to the (i−1)th term. We will show that such similarities

between the marginal queries will lead to an algorithm that guarantees O(log(D)·|p|) overall

time complexity.

An informal version of the proposed algorithm is shown in Algorithm 5.5 In the main loop

(lines 5-6), the D terms in F (x) are computed one-by-one. Although the D iterations seem to

suggest that the algorithm scales linearly with D, we highlight that each iteration on average

re-evaluates only log(D)/D of the PC. Therefore, the computation cost of Algorithm 5 scales

logarithmically w.r.t. D. The set of PC units need to be re-evaluated, evali, is identified

in line 4, and lines 6 evaluates these units in a feedforward manner to compute the target

probability (i.e., p(x1, . . . , xi)).

Specifically, to minimize computation cost, at iteration i, we want to select a set of PC

units evali that (i) guarantees the correctness of the target marginal, and (ii) contains the

minimum number of units. We achieve this by recognizing three types of PC units that can

be safely eliminated for evaluation. Take the PC shown in Fig. 5.6 as an example. Suppose

we want to compute the third term in F (x) (i.e., p(x1, x2, x3)). First, all PC units in Group

#1 do not need to be re-evaluated since their value only depends on x1 and x2 and hence

5See Section 5.2.4 for the formal algorithm and its detailed elaboration.

92

Algorithm 5 Compute F (x) (see Algorithm 6 for details)
1: Input: A smooth and structured-decomposable PC p, variable instantiation x
2: Output: Fπ(x) = {p(x1, . . . , xi)}Di=1
3: Initialize: The probability p(n) of every unit n is initially set to 1
4: ∀i, evali ← the set of PC units n that need to be evaluated in the ith iteration
5: for i = 1 to D do
6: Evaluate PC units in evali in a bottom-up manner and compute p(x1, . . . , xi)

remains unchanged. Next, PC units in Group #2 evaluate to 1. This can be justified from

the two following facts: (i) input units correspond to X4 have probability 1 while computing

p(x1, x2, x3); (ii) for any sum or product unit, if all its children have probability 1, it also

has probability 1 following Eq. (2.1). Finally, although the activations of the PC units in

Group #3 will change when computing p(x1, x2, x3), we do not need to explicitly evaluate

these units — the root node’s probability can be equivalently computed using the weighted

mixture of probabilities of units in evali. The correctness of this simplification step is justified

in Section 5.2.4.

The idea of partially evaluating a PC originates from the Partial Propagation (PP)

algorithm [9]. However, PP can only prune away units in Group #2. Thanks to the specific

structure of the marginal queries, we are able to also prune away units in Groups #1 and #3.

Finally, we provide additional technical details to rigorously state the complexity of

Algorithm 5. First, we need the variables X to have a specific order determined by the PC p.

To reflect this change, we generalize F (x) to Fπ(x) := {p(xπ1 , . . . , xπi
)}Di=1, where π defines

some variable order over X, i.e., the ith variable in the order defined by π is Xπi
. Next,

we give a technical assumption and then formally justify the correctness and efficiency of

Algorithm 5 when using an optimal variable order π∗.

Definition 9. For a smooth structured-decomposable PC p over D variables, for any scope

ϕ, denote nodes(p, ϕ) as the set of PC units in p whose scope is ϕ. We say p is balanced if for

every scope ϕ′ that is equal to the scope of any unit n in p, we have |nodes(p, ϕ′)| = O(|p|/D).

93

Algorithm 6 Compute Fπ(x)

1: Input: A smooth and structured-decomposable PC p, variable order π, variable instantiation x
2: Output: Fπ(x) = {p(xπ1 , . . . , xπi)}Di=1

3: Initialize: The probability p(n) of every unit n is initially set to 1
4: pdown ← the top-down probability of every PC unitn (i.e., Algorithm 7)
5: for i = 1 to D do # Compute the ith term in Fπ(x): p(xπ1 , . . . , xπi)
6: evali ← the set of PC units n with scopes ϕ(n) that satisfy at least one of the following conditions:

(i) ϕ(n)={Xπi}; (ii) n is a sum unit and at least one child c of n needs evaluation, i.e., c∈evali;
(iii) n is a product unit and Xπi ∈ϕ(n) and ∄c∈ch(n) such that {Xπj}ij=1∈ϕ(c)

7: Evaluate PC units in evali in a bottom-up manner to compute {pn(x) : n∈evali}
8: headi ← the set of PC units in evali such that none of their parents are in evali
9: p(xπ1 , . . ., xπi)←

∑
n∈headi

pdown(n) · pn(x)

Theorem 13. For a smooth structured-decomposable balanced PC p over D variables X and

a sample x, there exists a variable order π∗, s.t. Algorithm 6 correctly computes Fπ∗(x) in

O(log(D) · |p|) time.

Proof. First, note that Algorithm 6 is a detailed version of Algorithm 5. The high-level idea

of the proof is to first show how to compute the optimal variable order π∗ for any smooth

and structured-decomposable PC. Next, we justify the correctness of Algorithm 6 by showing

(i) we only need to evaluate units that satisfy the criterion in line 6 of Algorithm 6 and (ii)

weighing the PC units with the top-down probabilities (Section 5.2.4) always give the correct

result. Finally, we use induction (on D) to demonstrate Algorithm 6 computes O(log(D)·|p|)

PC units in total if π∗ is used. Please refer to Section D.2.1 for the formal proof. □

While Definition 9 may seem restrictive at first glance, we highlight that most existing

PC structures such as EiNets [132], RAT-SPNs [133] and HCLTs [97] are balanced. Once

all marginal probabilities are calculated, samples x can be en- or decoded autoregressively

with any streaming codes in time O(log(D)·|p|). Specifically, our implementation adopted

the widely used streaming code rANS [48].

5.2.4 Algorithm Details

This section provides additional technical details of Algorithm 5. Specifically, we demonstrate

(i) how to select the set of PC units evali (cf. Algorithm 5 line 5) and (ii) how to compute

p(x1, . . . , xi) as a weighted mixture of Pi (cf. Algorithm 5 line 7). Using the example in

94

Fig. 5.7, we aim to provide an intuitive illustration to both problems. As an extension to

Algorithm 5, rigorous and executable pseudocode for the proposed algorithm can be found in

Algorithm 6 and 7.

The key to speeding up the naive marginalization algorithm is the observation that we

only need to evaluate a small fraction of PC units to compute each of the D marginals in

Fπ(x). Suppose we want to compute Fπ(x) given the structured-decomposable PC shown in

Fig. 5.7(a), where , , and denote sum, product, and input units, respectively. Model

parameters are omitted for simplicity. Consider using the variable order π= (X1, X2, X3)

(Fig. 5.7(b)). We ask the following question: what is the minimum set of PC units that need

to be evaluated in order to compute p(X1=x1) (the first term in Fπ(x))? First, every PC

unit with scope {X1} (i.e., the two nodes colored blue) has to be evaluated. Next, every PC

unit n that is not an ancestor of the two blue units (i.e., “non-ancestor units” in Fig. 5.7(b))

must have probability 1 since (i) leaf units correspond to X2 and X3 have probability 1 while

computing p(X1=x1), and (ii) for any sum or product unit, if all its children have probability

1, it also has probability 1 following Eq. (2.1). Therefore, we do not need to evaluate these

non-ancestor units. Another way to identify these non-ancestor units is by inspecting their

variable scopes — if the variable scope of a PC unit n does not contain X1, it must has

probability 1 while computing p(X1 = x1). Finally, following all ancestors of the two blue

units (i.e., “ancestor units” in Fig. 5.7(b)), we can compute the probability of the root unit,

which is the target quantity p(X1=x1). At a first glance, this seems to suggest that we need

to evaluate these ancestor units explicitly. Fortunately, as we will proceed to show, the root

unit’s probability can be equivalently computed using the blue units’ probabilities weighted

by a set of cached top-down probabilities.

For ease of presentation, denote the two blue input units as n1 and n2, respectively. A key

observation is that the probability of every ancestor unit of {n1, n2} (including the root unit)

can be represented as a weighted mixture over pn1(x) and pn2(x), the probabilities assigned

to n1 and n2, respectively. The reason is that for each decomposable product node m, only

95

distributions defined on disjoint variables shall be multiplied. Since n1 and n2 have the same

variable scope, their distributions will not be multiplied by any product node. Following

the above intuition, the top-down probability pdown(n) of PC unit n is designed to represent

the “weight” of n w.r.t. the probability of the root unit. Formally, pdown(n) is defined as the

sum of the probabilities of every path from n to the root unit nr, where the probability of

a path is the product of all edge parameters traversed by it. Back to our example, using

the top-down probabilities, we can compute p(X1 = x1) =
∑2

i=1 pdown(ni) · pni
(x1) without

explicitly evaluating the ancestors of n1 and n2. The quantity pdown(n) of all PC units n can

be computed by Algorithm 7 in O(|p|) time. Specifically, the algorithm performs a top-down

traversal over all PC units n, and updates the top-down probabilities of their children ch(n)

along the process.

Therefore, we only need to compute the two PC units with scope {X1} in order to calculate

p(X1 = x1). Next, when computing the second term p(X1 = x1, X2 = x2), as illustrated in

Fig. 5.7(b), we can reuse the evaluated probabilities of n1 and n2, and similarly only need

to evaluate the PC units with scope {X2}, {X2, X3}, or {X1, X2, X3} (i.e., nodes colored

purple). The same scheme can be used when computing the third term, and we only evaluate

PC units with scope {X3}, {X2, X3}, or {X1, X2, X3} (i.e., all red nodes). As a result, we

only evaluate 20 PC units in total, compared to 3 · |p| = 39 units required by the naive

approach.

This procedure is formalized in Algorithm 6, which adds additional technical details

compared to Algorithm 5. In the main loop (lines 5-9), the D terms in Fπ(x) are computed

one-by-one. While computing each term, we first find the PC units that need to be evaluated

(line 6).6After computing their probabilities in a bottom-up manner (line 7), we additionally

use the pre-computed top-down probabilities to obtain the target marginal probability (lines

8-9).

The previous example demonstrates that even without a careful choice of variable order,

we can significantly lower the computation cost by only evaluating the necessary PC units.

96

⇥ ⇥

X1 X1

⇥ ⇥

X2 X2 X3 X3

(b) Variable order: X1à X2à X3

X1 X1X1 X1

X2 X2 X3 X3

X1 X1X1 X1

X2 X2 X3 X3

X1 X1X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3X3 X3

X1 X1

X2 X2 X3 X3X3 X3

X1 X1

X2 X2 X3 X3X3 X3

(c) Variable order: X3 à X2à X1(a)

à à

Need to evaluate 2 + 9 + 9 = 20 PC units in total.

à à

Need to evaluate 2 + 6 + 5 = 13 PC units in total.
p(X3 =x3, X2 =x2, X1 =x1)p(X3 =x3, X2 =x2)p(X3 =x3)p(X1 =x1, X2 =x2, X3 =x3)p(X1 =x1, X2 =x2)p(X1 =x1)

Ancestor units

Non-ancestor
units

Figure 5.7: Good variable orders lead to more efficient computation of Fπ(x). Consider the
PC p shown in (a). (b): If variable order X1, X2, X3 is used, we need to evaluate 20 PC units
in total. (c): The optimal variable order X3, X2, X1 allows us to compute Fπ(x) by only
evaluating 13 PC units.

Algorithm 7 PC Top-down Probabilities
1: Input: A smooth and structured-decomposable PC p
2: Output: The top-down probabilities pdown(n) of all PC units n
3: For every PC unit n in p, initialize pdown(n)← 0
4: foreach unit n traversed in preorder (parent before children) do
5: if n is the root node of p then pdown(n)← 1
6: elif n is a sum unit then foreach c ∈ ch(n) do pdown(c)← pdown(c) + pdown(n) · θn,c

7: elif n is a product unit then foreach c ∈ ch(n) do pdown(c)← pdown(c) + pdown(n)

We now show that with an optimal choice of variable order (denoted π∗), the cost can be

further reduced. Consider using order π∗ =(X3, X2, X1), as shown in Fig. 5.7(c), we only

need to evaluate 2+6+5=13 PC units in total when running Algorithm 6. This optimal

variable order is the key to guaranteeing O(log(D)·|p|) computation time. In the following,

we first give a technical assumption and then proceed to justify the correctness and efficiency

of Algorithm 6 when using the optimal variable order π∗.

5.2.5 Experiments

We compare the proposed algorithm with competitive Flow-model-based (IDF by [64]) and

VAE-based (BitSwap by [81]) neural compression algorithms using the MNIST dataset. We

first evaluate bitrates. As shown in Table 5.3, the PC (de)compressor achieved compression

rates close to its theoretical rate estimate — codeword bpds only have ∼0.04 loss w.r.t. the

corresponding theoretical bpds. We note that PC and IDF have an additional advantage:

97

Table 5.3: Efficiency and optimality of the (de)compressor. The compression (resp. decom-
pression) time are the total computation time used to encode (resp. decode) all 10,000 MNIST
test samples on a single TITAN RTX GPU. The proposed (de)compressor for structured-
decomposable PCs is 5-40x faster than IDF and BitSwap and only leads to a negligible
increase in the codeword bpd compared to the theoretical bpd.

Method # parameters Theoretical bpd Codeword bpd Comp. time (s) Decomp. time (s)
PC (HCLT, M=16) 3.3M 1.26 1.30 9 44
PC (HCLT, M=24) 5.1M 1.22 1.26 15 86
PC (HCLT, M=32) 7.0M 1.20 1.24 26 142
IDF 24.1M 1.90 1.96 288 592
BitSwap 2.8M 1.27 1.31 578 326

their reported bitrates were achieved while compressing one sample at a time; however,

BitSwap needs to compress sequences of 100 samples to achieve 1.31 codeword bpd [81].

Next, we focus on efficiency. While achieving a better codeword bpd (i.e., 1.30) compared

to IDF and BitSwap, a relatively small PC model (i.e., HCLT, M = 16) encodes (resp.

decodes) images 30x (resp. 10x) faster than both baselines. Furthermore, a bigger PC model

(M=32) with 7M parameters achieved codeword bpd 1.24, and is still 5x faster than BitSwap

and IDF. Note that at the cost of increasing the bitrate, one can significantly improve the

en- and decoding efficiency. For example, by using a small VAE model, [169] managed to

compress and decompress 10,000 binarized MNIST samples in 3.26s and 2.82s, respectively.

98

5.3 Offline Reinforcement Learning

A popular paradigm for offline Reinforcement Learning (RL) tasks is to first fit the offline

trajectories to a sequence model, and then prompt the model for actions that lead to high

expected return. In addition to obtaining accurate sequence models, this paper highlights

that tractability, the ability to exactly and efficiently answer various probabilistic queries,

plays an important role in offline RL. Specifically, due to the fundamental stochasticity

from the offline data-collection policies and the environment dynamics, highly non-trivial

conditional/constrained generation is required to elicit rewarding actions. While it is still

possible to approximate such queries, we observe that such crude estimates undermine the

benefits brought by expressive sequence models. To overcome this problem, we propose Trifle

(Tractable Inference for Offline RL), which leverages modern tractable generative models

to bridge the gap between good sequence models and high expected returns at evaluation

time. Empirically, Trifle achieves 7 state-of-the-art scores and the highest average scores in 9

Gym-MuJoCo benchmarks against strong baselines. Further, Trifle significantly outperforms

prior approaches in stochastic environments and safe RL tasks with minimum algorithmic

modifications.

5.3.1 Background and Motivation

Recent advancements in deep generative models have opened up the possibility of solving

offline Reinforcement Learning (RL) [89] tasks with sequence modeling techniques (termed

RvS approaches). Specifically, we first fit a sequence model to the trajectories provided in an

offline dataset. During evaluation, the model is tasked to sample actions with high expected

returns given the current state. Leveraging modern deep generative models such as GPTs [8]

and diffusion models [63], RvS algorithms have significantly boosted the performance on

various RL problems [1, 11].

The contents of this chapter appeared in paper [101].

99

Despite its appealing simplicity, it is still unclear whether expressive modeling alone

guarantees good performance of RvS algorithms, and if so, on what types of environments.

This paper discovers that many common failures of RvS algorithms are not caused by

modeling problems. Instead, while useful information is encoded in the model during training,

the model is unable to elicit such knowledge during evaluation. Specifically, this issue is

reflected in two aspects: (i) inability to accurately estimate the expected return of a state

and a corresponding action sequence to be executed given near-perfect learned transition

dynamics and reward functions; (ii) even when accurate return estimates exist in the offline

dataset and are learned by the model, it could still fail to sample rewarding actions during

evaluation.7 At the heart of such inferior evaluation-time performance is the fact that

highly non-trivial conditional generation is required to stimulate high-return actions [6, 129].

Therefore, other than expressiveness, the ability to efficiently and exactly answer various

queries (e.g., computing the expected returns), termed tractability, plays an equally important

role in RvS approaches.

Having observed that the lack of tractability is an essential cause of the underperformance

of RvS algorithms, this paper studies whether we can gain practical benefits from using

Tractable Probabilistic Models (TPMs) [14, 82, 136], which by design support exact and

efficient computation of certain queries? We answer the question in its affirmative by showing

that we can leverage a class of TPMs that support computing arbitrary marginal probabilities

to significantly mitigate the inference-time suboptimality of RvS approaches. The proposed

algorithm Trifle (Tractable Inference for Offline RL) has three main contributions:

Emphasizing the important role of tractable models in offline RL. This is the first paper

that demonstrates the possibility of using TPMs on complex offline RL tasks. The superior

empirical performance of Trifle suggests that expressive modeling is not the only aspect that

determines the performance of RvS algorithms, and motivates the development of better

inference-aware RvS approaches.

7Both observations are supported by empirical evidence as illustrated in Section 5.3.2.

100

Competitive empirical performance. Compared against strong offline RL baselines (including

RvS, imitation learning, and offline temporal-difference algorithms), Trifle achieves the state-

of-the-art result on 7 out of 9 Gym-MuJoCo benchmarks [51] and has the best average

score.

Generalizability to stochastic environments and safe-RL tasks. Trifle can be extended to tackle

stochastic environments as well as safe RL tasks with minimum algorithmic modifications.

Specifically, we evaluate Trifle in 2 stochastic OpenAI-Gym [7] environments and action-

space-constrained MuJoCo environments, and demonstrate its superior performance against

all baselines.

Offline Reinforcement Learning. In Reinforcement Learning (RL), an agent interacts

with an environment that is defined by a Markov Decision Process (MDP) ⟨S,A,R,P , d0⟩

to maximize its cumulative reward. Specifically, the S is the state space, A is the action

space, R : S × A → R is the reward function, P : S × A → S is the transition dynamics,

and d0 is the initial state distribution. Our goal is to learn a policy π(a|s) that maximizes

the expected return E[
∑T

t=0 γ
trt], where γ ∈ (0, 1] is a discount factor and T is the maximum

number of steps.

Offline RL [89] aims to solve RL problems where we cannot freely interact with the

environment. Instead, we receive a dataset of trajectories collected using unknown policies.

An effective learning paradigm for offline RL is to treat it as a sequence modeling problem

(termed RL via Sequence Modeling or RvS methods) [11, 49, 68]. Specifically, we first learn a

sequence model on the dataset, and then sample actions conditioned on past states and high

future returns. Since the models typically do not encode the entire trajectory, an estimated

value or return-to-go (RTG) (i.e., the Monte Carlo estimate of the sum of future rewards) is

also included for every state-action pair, allowing the model to estimate the return at any

time step.

101

5.3.2 Tractability Matters in Offline RL

Practical RvS approaches operate in two main phases – training and evaluation. In the

training phase, a sequence model is adopted to learn a joint distribution over trajectories of

length T : {(st, at, rt,RTGt)}Tt=0.8 During evaluation, at every time step t, the model is tasked

to discover an action sequence at:T := {aτ}Tτ=t (or just at) that has high expected return

as well as high probability in the prior policy p(at:T |st), which prevents it from generating

out-of-distribution actions:

p(at:T |st,E[Vt] ≥ v) :=
1

Z
·





p(at:T |st) if EVt∼p(·|st,at)[Vt] ≥ v,

0 otherwise,
(5.9)

where Z is a normalizing constant, Vt is an estimate of the value at time step t, and v is a

pre-defined scalar chosen to encourage high-return policies. Depending on the problem, Vt

could be the labeled RTG from the dataset (e.g., RTGt) or the sum of future rewards capped

with a value estimate (e.g.,
∑T−1

τ=t rτ +RTGT) [49, 68].

The above definition naturally reveals two key challenges in RvS approaches: (i) training-

time optimality (i.e., “expressivity”): how well can we fit the offline trajectories, and (ii)

inference-time optimality : whether actions can be unbiasedly and efficiently sampled from

Eq. (5.9). While extensive breakthroughs have been achieved to improve the training-time

optimality [1, 11,68], it remains unclear whether the non-trivial constrained generation task

of Eq. (5.9) hinders inference-time optimality. In the following, we present two general

scenarios where existing RvS approaches underperform as a result of suboptimal inference-

time performance. We attribute such failures to the fact that these models are limited to

answering certain query classes (e.g., autoregressive models can only compute next token

probabilities), and explore the potential of tractable probabilistic models for offline RL tasks

in the following sections.

8To minimize computation cost, we only model truncated trajectories of length K (K < T) in practice.

102

0 100 200 300 400
Average Estimated Returns

0

20

40

60

80

100
No

rm
al

ize
d

Ac
tu

al
 R

et
ur

ns

halfcheetah-MR
halfcheetah-M
walker2d-MR
walker2d-M
hopper-MR
hopper-M

0.5 0.6 0.7 0.8 0.9
Inference-time Optimality Score

0

20

40

60

80

100

No
rm

al
ize

d
Ac

tu
al

 R
et

ur
ns

halfcheetah-MR
halfcheetah-M
halfcheetah-ME
walker2d-MR
walker2d-M
walker2d-ME

walker2d-MR walker2d-M walker2d-ME

0.6

0.8

DT TT Trifle(ours)

walker2d-M hopper-M halfcheetah-M

0.6

0.8

DT TT Trifle(ours)In
fe

re
nc

e-
tim

e
Op

tim
al

ity
 S

co
re

Figure 5.8: RvS approaches suffer from inference-time suboptimality. Left: There is a strong
positive correlation between the average estimated returns by Trajectory Transformers (TT)
and the actual returns in 6 Gym-MuJoCo environments (MR, M, and ME denote medium-
replay, medium, and medium-expert, respectively), which suggests that the sequence model
can distinguish rewarding actions from the others. Middle: Despite being able to recognize
high-return actions, both TT and DT [11] fail to consistently sample such action, leading
to bad inference-time optimality; Trifle consistently improves the inference-time optimality
score. Right: We substantiate the relationship between low inference-time optimality scores
and unfavorable environmental outcomes by showing a strong positive correlation between
them.

Scenario #1 We first consider the case where the labeled RTG belongs to a (near-)optimal

policy. In this case, Eq. (5.9) can be simplified to p(at|st,E[Vt]≥ v) (choose Vt := RTGt)

since one-step optimality implies multi-step optimality. In practice, although the RTGs are

suboptimal, the predicted values often match well with the actual returns achieved by the

agent. Take Trajectory Transformer (TT) [68] as an example, Fig. 5.8 (left) demonstrates a

strong positive correlation between its predicted returns (x-axis) and the actual cumulative

rewards (y-axis) on six MuJoCo [167] benchmarks, suggesting that the model has learned the

“goodness” of most actions. In such cases, the performance of RvS algorithms depends mainly

on their inference-time optimality, i.e., whether they can efficiently sample actions with high

predicted returns. Specifically, let at be the action taken by a RvS algorithm at state st,

and Rt := E[RTGt] is the corresponding estimated expected value. We define a proxy of

inference-time optimality as the quantile value of Rt in the estimated state-conditioned value

distribution p(Vt|st).9 The higher the quantile value, the more frequent the RvS algorithm
9Due to the large action space, it is impractical to compute p(Vt|st) :=

∑
at
p(Vt|st, at) · p(at|st). Instead,

in the following illustrative experiments, we train an additional GPT model p(Vt|st) using the offline dataset.

103

samples actions with high estimated returns.

We evaluate the inference-time optimality of Decision Transformers (DT) [11] and Trajec-

tory Transformers (TT) [68], two widely used RvS algorithms, on various environments and

offline datasets from the Gym-MuJoCo benchmark suite [51]. As shown in Fig. 5.8 (middle),

the inference-time optimality is averaged (only) around 0.7 (the maximum possible value is

1.0) for most settings. And these runs with low inference-time optimality scores receive low

environment returns (Fig. 5.8 (right)).

Scenario #2 Achieving inference-time optimality becomes even harder when the labeled

RTGs are suboptimal (e.g., they come from a random policy). In this case, even estimating

the expected future return of an action sequence becomes highly intractable, especially

when the transition dynamics of the environment are stochastic. Specifically, to evaluate a

state-action pair (st, at), since RTGt is uninformative, we need to resort to the multi-step

estimate V m
t :=

∑t′−1
τ=t rτ+RTGt′ (t′>t), where the actions at:t′ are jointly chosen to maximize

the expected return. Take autoregressive models as an example. Since the variables are

arranged following the sequential order . . . , st, at, rt,RTGt, st+1, . . . , we need to explicitly

sample st+1:t′ before proceed to compute the rewards and the RTG in V m
t . In stochastic

environments, estimating E[V m
t] could suffer from high variance as the stochasticity from the

intermediate states accumulates over time.

As we shall illustrate in Section 5.3.5, compared to environments with near-deterministic

transition dynamics, estimating the expected returns in stochastic environments using in-

tractable sequence models is hard, and Trifle can significantly mitigate this problem with its

ability to marginalize out intermediate states and compute E[V m
t] efficiently and exactly.

5.3.3 Exploiting Tractable Models

The previous section demonstrates that apart from modeling, inference-time suboptimality

is another key factor that causes the underperformance of RvS approaches. Given such

104

observations, a natural follow-up question is whether/how more tractable models can improve

the evaluation-time performance in offline RL tasks? While there are different types of

tractabilities (i.e., the ability to compute different types of queries), this paper focuses on

studying the additional benefit of exactly computing arbitrary marginal/condition probabilities.

This strikes a proper balance between learning and inference as we can train such a tractable

yet expressive model thanks to recent developments in the TPM community [27,99]. Note that

in addition to proposing a competitive RvS algorithm, we aim to highlight the necessity and

benefit of using more tractable models for offline RL tasks, and encourage future developments

on both inference-aware RvS methods and better TPMs. As a direct response to the two

failing scenarios identified in Section 5.3.2, we first demonstrate how tractability could help

even when the labeled RTGs are (near-)optimal (Sec. 5.3.3). We then move on to the case

where we need to use multi-step return estimates to account for biases in the labeled RTGs

(Sec. 5.3.3).

From the Single-Step Case...

Consider the case where the RTGs are optimal. Recall from Section 5.3.2 that our goal is

to sample actions from p(at|st,E[Vt]≥ v) (where Vt :=RTGt). Prior works use two typical

ways to approximately sample from this distribution. The first approach directly trains a

model to generate return-conditioned actions: p(at|st,RTGt) [11]. However, since the RTG

given a state-action pair is stochastic,10 sampling from this RTG-conditioned policy could

result in actions with a small probability of getting a high return, but with a low expected

return [6, 129].

An alternative approach leverages the ability of sequence models to accurately estimate

the expected return (i.e., E[RTGt]) of state-action pairs [68]. Specifically, we first sample

from a prior distribution p(at|st), and then reject actions with low expected returns. Such

rejection sampling-based methods typically work well when the action space is small (in

10This is true unless (i) the policy that generates the offline dataset is deterministic, (ii) the transition
dynamics is deterministic, and (iii) the reward function is deterministic.

105

which we can enumerate all actions) or the dataset contains many high-rewarding trajectories

(in which the rejection rate is low). However, the action could be multi-dimensional and

the dataset typically contains many more low-return trajectories in practice, rendering the

inference-time optimality score low (cf. Fig. 5.8).

Having examined the pros and cons of existing approaches, we are left with the question

of whether a tractable model can improve sampled actions (in this single-step case). We

answer it with a mixture of positive and negative results: while computing p(at|st,E[Vt]≥v)

is NP-hard even when p(at, Vt|st) follows a simple Naive Bayes distribution, we can design an

approximation algorithm that samples high-return actions with high probability in practice.

We start with the negative result.

Theorem 14. Let at := {ait}ki=1 be a set of k boolean variables and Vt be a categorical variables

with two categories 0 and 1. For some st, assume the joint distribution over at and Vt

conditioned on st follows a Naive Bayes distribution: p(at, Vt|st) := p(Vt|st) ·
∏k

i=1 p(a
i
t|Vt, st),

where ait denotes the ith variable of at. Computing any marginal over the random variables is

tractable yet conditioning on the expectation p(at|st,E[Vt]≥v) is NP-hard.

The proof is given in Section D.3.1. While it seems hard to directly draw samples

from p(at|st,E[Vt]≥v), we propose to improve the aforementioned rejection sampling-based

method by adding a correction term to the original proposal distribution p(at|st) to reduce

the rejection rate. Specifically, the prior is often represented by an autoregressive model such

as GPT: pGPT(at|st) :=
∏k

i=1 pGPT(a
i
t|st, a<i

t), where k is the number of action variables and

ait is the ith variable of at. We propose to sample every dimension of at autoregressively

following:

∀i ∈ {1, . . . , k} p̃(ait|st, a<i
t ; v) :=

1

Z
· pGPT(a

i
t|st, a<i

t) · pTPM(Vt ≥ v|st, a≤i
t), (5.10)

where Z is a normalizing constant and pTPM(Vt≥v|st, a≤i
t) is a correction term that leverages

the ability of the TPM to compute the distribution of Vt given incomplete actions (i.e.,

evidence on a subset of action variables). Note that while Eq. (5.10) is mathematically

identical to p(at|st, Vt≥ v) when p= pTPM = pGPT, this formulation gives us the flexibility

106

to use the prior policy (i.e., pGPT(a
i
t|st, a<i

t)) represented by more expressive autoregressive

generative models.

As shown in Fig. 5.8 (middle), compared to using p(at|st) (as done by TT), the inference-

time optimality scores increase significantly when using the distribution specified by Eq. (5.10)

(as done by Trifle) across various Gym-MuJoCo benchmarks.

...To the Multi-Step Case

Recall that when the labeled RTGs are suboptimal, our goal is to sample from p(at:t′ |st,E[V m
t]≥

v), where V m
t :=

∑t′−1
τ=t rτ+RTGt′ is the multi-step value estimate. However, as shown in the

second scenario in Section 5.3.2, it is hard even to evaluate the expected return of an action

sequence due to the inability to marginalize out intermediate states st+1:t′ . Empowered by

PCs, we can solve this problem by computing the expectation efficiently as it can be broken

down into computing conditional probabilities p(rτ |st, at:t′)(t≤ τ < t′) and p(RTGt′|st, at:t′)

(see Section D.3.2 for details):

E
[
V m
t

]
=
∑t′−1

τ=t
Erτ∼p(·|st,at:t′)

[
rτ
]
+ ERTGt′∼p(·|st,at:t′)

[
RTGt′

]
. (5.11)

We are now left with the same problem discussed in the single-step case – how to

sample actions with high expected returns (i.e., E[V m
t]). Similar to Eq. (5.10), we add

correction terms that bias the action (sequence) distribution towards high expected returns.

Specifically, we augment the original action probability
∏t′

τ=t p(aτ |st, a<τ) with terms of the

form p(V m
t ≥v|st, a≤τ) This leads to:

p̃(at:t′|st; v) :=
∏t′

τ=t
p̃(aτ |st, a<τ ; v),

where p̃(aτ |st, a<τ ; v)∝p(aτ |st, a<τ)·p(V m
t ≥v|st, a≤τ), a<τ and a≤τ represent at:τ−1 and at:τ ,

respectively.11 In practice, while we compute p(V m
t ≥ v|st, a≤τ) using the PC, p(aτ |st, a<τ) =

11We approximate p(V m
t ≥v|st, a≤τ) by assuming that the variables {rt, . . . , rt′−1,RTGt′} are independent.

107

Est+1:τ [p(aτ |s≤τ , a<τ)] can either be computed exactly with the TPM or approximated (via

Monte Carlo estimation over st+1:τ) using an autoregressive generative model. In summary,

we approximate samples from p(at:t′|st,E[Vt]≥ v) by first sampling from p̃(at:t′ |st; v), and

then rejecting samples whose (predicted) expected return is smaller than v.

5.3.4 Practical Implementation

The previous section has demonstrated how to efficiently sample from the expected-value-

conditioned policy (Eq. (5.9)). Based on this sampling algorithm, this section further

introduces the proposed algorithm Trifle (Tractable Inference for Offline RL). The high-level

idea of Trifle is to obtain good action (sequence) candidates from p(at|st,E[V] ≥ v), and

then use beam search to further single out the most rewarding action. Intuitively, by the

definition in Eq. (5.9), the candidates are both rewarding and have relatively high likelihoods

in the offline dataset, which ensures the actions are within the offline data distribution and

prevents overconfident estimates during beam search.

Beam search maintains a set of N (incomplete) sequences each starting as an empty

sequence. For ease of presentation, we assume the current time step is 0. At every time step

t, beam search replicates each of the N actions sequences into λ ∈ Z+ copies and appends an

action at to every sequence. Specifically, for every partial action sequence a<t, we sample

an action following p(at|s0, a<t,E[Vt] ≥ v), where Vt can be either the single-step or the

multi-step estimate depending on the task. Now that we have λ ·N trajectories in total, the

next step is to evaluate their expected return, which can be computed exactly using the PC

(see Sec. 5.3.3). The N -best action sequences are kept and proceed to the next time step.

After repeating this procedure for H time steps, we return the best action sequence. The first

action in the sequence is used to interact with the environment. Please refer to Section D.3.2

for detailed descriptions of the algorithm.

Specifically, we first compute {p(rτ |st, a≤τ)}t
′−1
τ=t and p(RTGt′ |st, a≤τ), and then sum up the random variables

assuming that they are independent. This introduces no error for deterministic environments and remains a
decent approximation for stochastic environments.

108

Table 5.4: Normalized Scores on the standard Gym-MuJoCo benchmarks. The results of
Trifle are averaged over 12 random seeds (For DT-base and DT-Trifle, we adopt the same
number of seeds as [11]). Results of the baselines are acquired from their original papers.

Dataset Environment
TT TT(+Q) DT

DD IQL CQL %BC TD3(+BC)
base Trifle base Trifle base Trifle

Med-Expert HalfCheetah 95.0±0.2 95.1±0.3 82.3±6.1 89.9±4.6 86.8±1.3 91.9±1.9 90.6 86.7 91.6 92.9 90.7
Med-Expert Hopper 110.0±2.7 113.0±0.4 74.7±6.3 78.5±6.4 107.6±1.8 / 111.8 91.5 105.4 110.9 98.0
Med-Expert Walker2d 101.9±6.8 109.3±0.1 109.3±2.3 109.6±0.2 108.1±0.2 108.6±0.3 108.8 109.6 108.8 109.0 110.1

Medium HalfCheetah 46.9±0.4 49.5±0.2 48.7±0.3 48.9±0.3 42.6±0.1 44.2±0.7 49.1 47.4 44.0 42.5 48.3
Medium Hopper 61.1±3.6 67.1±4.3 55.2±3.8 57.8±1.9 67.6±1.0 / 79.3 66.3 58.5 56.9 59.3
Medium Walker2d 79.0±2.8 83.1±0.8 82.2±2.5 84.7±1.9 74±1.4 81.3±2.3 82.5 78.3 72.5 75.0 83.7

Med-Replay HalfCheetah 41.9±2.5 45.0±0.3 48.2±0.4 48.9±0.3 36.6±0.8 39.2±0.4 39.3 44.2 45.5 40.6 44.6
Med-Replay Hopper 91.5±3.6 97.8±0.3 83.4±5.6 87.6±6.1 82.7±7.0 / 100.0 94.7 95.0 75.9 60.9
Med-Replay Walker2d 82.6±6.9 88.3±3.8 84.6±4.5 90.6±4.2 66.6±3.0 73.5±0.1 75.0 73.9 77.2 62.5 81.8

Average Score 78.9 83.1 74.3 77.4 74.7 / 81.8 77.0 77.6 74.0 75.3

Another design choice is the threshold value v. While it is common to use a fixed high

return throughout the episode, we follow [44] and use an adaptive threshold. Specifically, at

state st, we choose v to be the ϵ-quantile value of p(Vt|st), which is computed using the PC.

5.3.5 Experiments

This section takes gradual steps to study whether Trifle can mitigate the inference-time

suboptimality problem in different settings. First, in the case where the labeled RTGs

are good performance indicators (i.e., the single-step case), we examine whether Trifle can

consistently sample more rewarding actions (Sec. 5.3.5). Next, we further challenge Trifle in

highly stochastic environments, where existing RvS algorithms fail catastrophically due to

the failure to account for the environmental randomness (Sec. 5.3.5). Finally, we demonstrate

that Trifle can be directly applied to safe RL tasks (with action constraints) by effectively

conditioning on the constraints (Sec. 5.3.5). Collectively, this section highlights the potential

of TPMs on offline RL tasks.

109

Comparison to the State of the Art

As demonstrated in Section 5.3.2 and Fig. 5.8, although the labeled RTGs in the Gym-

MuJoCo [51] benchmarks are accurate enough to reflect the actual environmental return,

existing RvS algorithms fail to effectively sample such actions due to their large and multi-

dimensional action space. Fig. 5.8 (middle) has demonstrated that Trifle achieves better

inference-time optimality. This section further examines whether higher inference-time

optimality scores could consistently lead to better performance when building Trifle on top

of different RvS algorithms, i.e., combining pTPM (cf. Eq. (5.10)) with different prior policies

pGPT trained by the corresponding RvS algorithm.

Environment setup The Gym-MuJoCo benchmark suite collects trajectories in 3 locomo-

tion environments (HalfCheetah, Hopper, Walker2D) and constructs 3 datasets (Medium-

Expert, Medium, Medium-Replay) for every environment, which results in 3×3 = 9 tasks. For

every environment, the main difference between the datasets is the quality of its trajectories.

Specifically, the dataset “Medium" records 1 million steps collected from a Soft Actor-Critic

(SAC) [59] agent. The “Medium-Replay" dataset adopts all samples in the replay buffer

recorded during the training process of the SAC agent. The “Medium-Expert" dataset mixes 1

million steps of expert demonstrations and 1 million suboptimal steps generated by a partially

trained SAC policy or a random policy. The results are normalized such that a well-trained

SAC model hits 100 and a random policy has a 0 score.

Baselines We build Trifle on top of three effective RvS algorithms: Decision Transformer

(DT) [11], Trajectory Transformer (TT) [68] as well as its variant TT(+Q) where the RTGs

estimated by summing up future rewards in the trajectory are replaced by the Q-values

generated by a well-trained IQL agent [84]. In addition to the above base models, we also

compare Trifle against many other strong baselines: (i) Decision Diffuser (DD) [1], which is

also a competitive RvS method; (ii) Offline TD learning methods IQL [84] and CQL [86]; (iii)

110

Imitation learning methods like the variant of BC [135] which only uses 10% of trajectories

with the highest return, and TD3(+BC) [52].

Since the labeled RTGs are informative enough about the “goodness” of actions, we

implement Trifle by adopting the single-step value estimate following Section 5.3.3, where we

replace pGPT with the policy of the three adopted base methods, i.e., pTT(at|st), pTT(+Q)(at|st)

and pDT(at|st).

Empirical Insights Results are shown in Table 5.4.12 First, to examine the benefit brought

by TPMs, we compare Trifle with three base policies, as the main algorithmic difference is

the use of the improved proposal distribution (Eq. (5.10)) for sampling actions. We can see

that Trifle not only achieves a large performance gain over TT and DT in all environments,

but also significantly outperforms TT(+Q) where we have access to more accurate labeled

values, indicating that Trifle can enhance the inference-time optimality of base policy reliably

and benefit from any improvement of the training-time optimality. See Section D.3.4 for

more results and ablation studies.

Moreover, compared with all baselines, Trifle achieves the highest average score of 83.1.

It also succeeds in achieving 7 state-of-the-art scores out of 9 benchmarks. We conduct

further ablation studies on the rejection sampling component and the adaptive thresholding

component (i.e., selecting v) in Section D.3.5.

Evaluating Trifle in Stochastic Environments

This section further challenges Trifle on stochastic environments with highly suboptimal

trajectories as well as labeled RTGs in the offline dataset. As demonstrated in Section 5.3.2,

in this case, it is even hard to obtain accurate value estimates due to the stochasticity of

transition dynamics.Section 5.3.3 demonstrates the potential of Trifle to more reliably estimate

12When implementing DT-Trifle, we have to modify the output layer of DT to make it combinable with
TPM. Specifically, the original DT directly predicts deterministic action while the modified DT outputs
categorical action distributions like TT. In the 3 unreported hopper environments, the modified DT fails to
achieve the original DT scores.

111

(a) (b)

Methods Taxi
FrozenLake

ϵ = 0.3 ϵ = 0.5 ϵ = 0.7

m-Trifle -57 0.61 0.59 0.37
s-Trifle -99 0.62 0.60 0.34
TT [68] -182 0.63 0.25 0.12
DT [11] -388 0.51 0.32 0.10
DoC [186] -146 0.58 0.61 0.23

(c)

Figure 5.9: (a) Stochastic Taxi environment; (b) Stochastic FrozenLake Environment; (c)
Average returns on the stochastic environment. All the reported numbers are averaged over
1000 trials.

and sample action sequences under suboptimal labeled RTGs and stochastic environments.

This section examines this claim by comparing the five following algorithms:

(i) Trifle that adopts Vt = RTGt (termed single-step Trifle or s-Trifle); (ii) Trifle equipped

with Vt =
∑t′

τ=t rτ + RTGt′ (termed multi-step Trifle or m-Trifle; see Section D.3.4 for

additional details); (iii) TT [68]; (iv) DT [11] (v) Dichotomy of Control (DoC) [186], an

effective framework to deal with highly stochastic environments by designing a mutual

information constraint for DT training, which is a representative baseline while orthogonal to

our efforts.

We evaluate the above algorithms on two stochastic Gym environments: Taxi and

FrozenLake. Here we choose the Taxi benchmark for a detailed analysis of whether and

how Trifle could overcome the challenges discussed in Section 5.3.3. Among the first four

algorithms, s-Trifle and DT do not compute the “more accurate” multi-step value, and

TT approximates the value by Monte Carlo samples. Therefore, we expect their relative

performance to be DT ≈ s-Trifle < TT < m-Trifle.

Environment setup We create a stochastic variant of the Gym-Taxi Environment [43]. As

shown in Fig. 5.9a, a taxi resides in a grid world consisting of a passenger and a destination.

The taxi is tasked to first navigate to the passenger’s position and pick them up, and then

drop them off at the destination.There are 6 discrete actions available at every step: (i) 4

navigation actions (North, South, East, or West), (ii) Pick-up, (iii) Drop-off. Whenever the

112

agent attempts to execute a navigation action, it has 0.3 probability of moving toward a

randomly selected unintended direction. At the beginning of every episode, the location of

the taxi, the passenger, and the destination are randomly initialized randomly. The reward

function is defined as follows: (i) -1 for each action undertaken; (ii) an additional +20 for

successful passenger delivery; (iii) -4 for hitting the walls; (iv) -5 for hitting the boundaries;

(v) -10 for executing Pick-up or Drop-off actions unlawfully (e.g., executing Drop-off when

the passenger is not in the taxi).

Following the Gym-MuJoCo benchmarks, we collect offline trajectories by running a

Q-learning agent [181] in the Taxi environment and recording the first 1000 trajectories that

drop off the passenger successfully, which achieves an average return of -128.

Empirical Insights We first examine the accuracy of estimated returns for s-Trifle, m-Trifle,

and TT. DT is excluded since it does not explicitly estimate the value of action sequences.

Fig. 5.10 illustrates the correlation between predicted and ground-truth returns of the three

methods. First, s-Trifle performs the worst since it merely uses the inaccurate RTGt to

approximate the ground-truth return. Next, thanks to its ability to exactly compute the

multi-step value estimates, m-Trifle outperforms TT, which approximates the multi-step

value with Monte Carlo samples.

We proceed to evaluate their performance in the stochastic Taxi environment. As shown

in Fig. 5.9c, the relative performance of the first four algorithms is DT < TT < s-Trifle <

m-Trifle, which largely aligns with the anticipated results. The only “surprising” result is the

superior performance of s-Trifle compared to TT. One plausible explanation for this behavior

is that while TT can better estimate the given actions, it fails to efficiently sample rewarding

actions.

Notably, Trifle also significantly outperforms the strong baseline DoC, demonstrating its

potential in handling stochastic transitions. To verify this, we further evaluate Trifle on the

stochastic FrozenLake environment. Apart from fixing the stochasticity level p = 1
3
,13 the

13When the agent takes an action, it has a probability p of moving in the intended direction and probability

113

200 100 0
Average Estimated Returns

150

100

50

0
Ac

tu
al

 R
et

ur
ns

R=0.41

s-Trifle

300 200 100 0
Average Estimated Returns

250

200

150

100

50

0

Ac
tu

al
 R

et
ur

ns

R=0.52

TT

50 25 0
Average Estimated Returns

150

100

50

0

Ac
tu

al
 R

et
ur

ns

R=0.67

m-Trifle

Figure 5.10: Correlation between average estimated returns and true environmental returns
for s-Trifle (w/ single-step value estimates), TT, and m-Trifle (w/ multi-step value estimates)
in the stochastic Taxi domain. R denotes the correlation coefficient. The results demonstrate
that (i) multi-step value estimates (TT and m-Trifle) are better than single-step estimates (s-
Trifle), and (ii) exactly computed multi-step estimates (m-Trifle) are better than approximated
ones (TT) in stochastic environments.

Table 5.5: Normalized Scores on the Action-Space-Constrained Gym-MuJoCo Variants. The
results of Trifle and TT are both averaged over 12 random seeds, with mean and standard
deviations reported.

Dataset Environment Trifle TT

Med-Expert Halfcheetah 81.9±4.8 77.8±5.4

Med-Expert Hopper 109.6±2.4 100.0±4.2

Med-Expert Walker2d 105.1±2.3 103.6±4.9

experiment design follows the DoC paper [186]. For data collection, we perturb the policy of

a well-trained DQN (with an average return of 0.7) with the ϵ-greedy strategy. Here ϵ is a

proxy of offline dataset quality and varies from 0.3 to 0.7. As shown in Fig. 5.9c, when the

offline dataset contains many successful trials (ϵ = 0.3), all methods perform closely to the

optimal policy. As the rollout policy becomes more suboptimal (with the increase of ϵ), the

performances of DT and TT drop quickly, while Trifle still works robustly and outperforms

all baselines.

Action-Space-Constrained Gym-MuJoCo Variants

This section demonstrates that Trifle can be readily extended to safe RL tasks by leveraging

TPM’s ability to compute conditional probabilities. Specifically, besides achieving high

0.5(1− p) of slipping to either perpendicular direction.

114

expected returns, safe RL tasks require additional constraints on the action or states to

be satisfied. Therefore, define the constraint as c, our goal is to sample actions from

p(at|st,E[Vt] ≥ v, c), which can be achieved by conditioning on c in the candidate action

sampling process.

Environment setup In MuJoCo environments, each dimension of at represents the torque

applied on a certain rotor of the hinge joints at timestep t. We consider action space

constraints in the form of “value of the torque applied to the foot rotor ≤ A”, where A = 0.5

is a threshold value, for three MuJoCo environments: Halfcheetah, Hopper, and Walker2d.

Note that there are multiple foot joints in Halfcheetah and Walker2d, so the constraint is

applied to multiple action dimensions.14 For all settings, we adopt the “Med-Expert” offline

dataset as introduced in Section 5.3.5.

Empirical Insights The key challenge in these action-constrained tasks is the need to

account for the constraints applied to other action dimensions when sampling the value of

some action variable. For example, autoregressive models cannot take into account constraints

added to variable ai+1
t when sampling ait. Therefore, while enforcing the action constraint is

simple, it remains hard to simultaneously guarantee good performance. As shown in Table 5.5,

owing to its ability to exactly condition on the action constraints, Trifle outperforms TT

significantly across all three environments.

14We only add constraints to the front joints in the Halfcheetah environment since the performance degrades
significantly for all methods if the constraint is added to all foot joints.

115

Chapter 6

Tractability Matters in Diffusion Models

The previous chapters offer a roadmap to building tractable generative models with PCs,

which are capable of performing a wide range of probabilistic inference tasks exactly and

efficiently. In this chapter, using diffusion models as an example, we further demonstrate that

tractability is a crucial factor determining the effectiveness of generative models. Specifically,

while discrete diffusion models have recently shown significant progress in modeling complex

data, they still require hundreds or even thousands of denoising steps to perform well. In this

chapter, we identify a fundamental limitation that prevents discrete diffusion models from

achieving strong performance with fewer steps – they fail to capture dependencies between

output variables at each denoising step. To address this issue, we provide a formal explanation

and introduce a general approach to supplement the missing dependency information by

incorporating another deep generative model, termed the copula model. Our method does not

require fine-tuning either the diffusion model or the copula model, yet it enables high-quality

sample generation with significantly fewer denoising steps. When we apply this approach to

autoregressive copula models, the combined model outperforms both models individually in

unconditional and conditional text generation. Specifically, the hybrid model achieves better

(un)conditional text generation using 8 to 32 times fewer denoising steps than the diffusion

The contents of this section appeared in paper [94].

116

The <MASK> dog <MASK> the neighbors.

The <MASK> dog <MASK> the neighbors.

Discrete Diffusion Model

In
fe
re
nc
e

scared
frightened
calmed···

0.18
0.15
0.07

puppy
barking
black ···

0.11
0.07
0.03

Copula Model

The puppy dog scared the neighbors. The puppy dog calmed the neighbors.
The barking dog scared the neighbors.

0.11

∝×

×

The puppy dog frightened the neighbors.

Note: this is
computed
implicitly in
practice.

Sample independently Sample jointly

0.07

0.03

0.18 0.15 0.07

0.09 0.12 0.79

0.47 0.49 0.04

0.44 0.39 0.17 0.150.080.10

0.22 0.20 0.04

0.230.080.07

1st likely
2nd likely

Univariate marginals

C
op
ul
a

1st likely
2nd likely

Figure 6.1: Discrete Copula Diffusion (DCD). At each denoising step, a partially
completed sequence is given as input (top-left). The diffusion model independently predicts
the univariate marginals for each masked token, which leads to the samples in the bottom
left. DCD introduces an additional copula model (top-right) to capture the inter-variable
dependencies, thereby supplementing the information missed by the diffusion model. By
combining outputs from both models in a principled way, DCD achieves better performance
than either model individually (see improved samples in the bottom-right), enabling few-step
discrete diffusion generation.

model alone. In addition to presenting an effective discrete diffusion generation algorithm,

this paper emphasizes the importance of modeling inter-variable dependencies in discrete

diffusion.

6.1 Background and Motivation

Discrete diffusion models have recently achieved significant progress in modeling complex

data such as natural languages [10, 153], protein sequences [58, 121], and graphs [65,178]. In

particular, recent discrete diffusion models for text generation [105,153,157] have matched

or even surpassed the performance of autoregressive models at the scale of GPT-2 [140].

Additionally, discrete diffusion models offer improved inference-time controllability using

guidance from auxiliary models such as classifiers [41], making them suitable for controlled

generation tasks [60, 90].

Despite these promising results, discrete diffusion models still require hundreds to thou-

sands of denoising steps to produce high-quality samples [3, 153], significantly affecting their

117

efficiency. In this paper, we identify a fundamental limitation in most discrete diffusion

models that hinders their ability to generate high-quality samples in just a few steps.

We illustrate the problem in Fig. 6.1. At each denoising step, a partially completed sample

shown in the top-left is fed into a sequence-to-sequence denoising model, which predicts

the univariate marginal distributions for each masked token independently. A new output

sequence is then sampled based on these univariate marginals before proceeding to the next

denoising step. The key issue with this process is that when multiple “edits” (i.e., replacing

masked tokens with data tokens) are made simultaneously, the model does not account for

the joint probability of these changes occurring together. As a result, the generated samples

often lack coherence, as shown in the bottom-left of Fig. 6.1. This problem is exacerbated

in few-step generation, where many tokens must be edited simultaneously. We formally

demonstrate that if the diffusion model predicts each variable independently, an irreducible

term (in addition to the data entropy) remains in the negative evidence lower bound (ELBO),

preventing the model from perfectly capturing the data distribution.

We propose using a generative model, which we refer to as the copula model, to compensate

for the missing dependency information between output variables at each denoising step.

Our method operates only at inference time and can be adapted to any discrete diffusion

model and a wide range of copula models. As illustrated on the right side of Fig. 6.1, the

input sequence is also fed into a copula model that (implicitly) produces information on inter-

variable dependencies. This information is combined with the univariate marginals predicted

by the diffusion model to produce a more accurate distribution, resulting in higher-quality

samples, shown in the bottom-right corner.

We formally show that the univariate marginals from the diffusion model and the depen-

dencies captured by the copula model can be combined in a principled way, leading to a

better approximation of the true denoising distribution under mild assumptions. Further,

finding this combined distribution reduces to solving a convex optimization problem that can

be efficiently approximated in practice.

118

By instantiating the copula model as an autoregressive deep generative model such as

GPT [140], we propose an algorithm that combines any pretrained discrete diffusion model

with an autoregressive model to form a hybrid model called Discrete Copula Diffusion

(DCD). This model is capable of producing high-quality (un)conditional samples with only

a few denoising steps. Empirical results on text and antibody generation show that DCD

significantly outperforms both of its base models. Moreover, DCD achieves comparable or

better performance using 8 to 32 times fewer denoising steps compared to the base discrete

diffusion model. In addition to proposing a discrete diffusion model capable of few-step

generation, we emphasize the importance of modeling inter-variable dependencies in discrete

diffusion models.

6.2 Preliminaries

We aim to model the joint distribution of variables X0, a set of categorical variables with C

categories. Discrete diffusion models [3] learn to sample from p(X0) by modeling the reversal

of the following noising process involving X0 and a set of auxiliary variables {Xt}Tt=1:

∀t ∈ {1, . . . , T} q(xt|xt−1) := Cat(xt;Qt ·xt−1), (6.1)

where Cat(x;p) refers to the Categorical distribution over x with class probabilities p, and Qt

is a C×C transition matrix that is applied independently to every variable xi
t−1 (denote xi

t−1

as the ith variable of xt−1) to get the corresponding categorical distribution of xi
t. Specifically,

each variable xi
t−1 is treated as a one-hot vector of size C×1, which is then multiplied by

Qt to compute the class probabilities of xi
t. The noising process is designed such that p(xT)

follows a simple distribution regardless of the data distribution.

Instead of using a fixed number of predefined time steps, we can treat t as a continuous

variable within the range [0, T]. The noising process is now defined by the rate of change

of p(xt) w.r.t. t: dp(xt)
dt

= Q ·p(xt), where Q ∈ RC×C is a transition rate matrix. For any

119

0≤s<t≤T , we have

q(xt|xs) := Cat(xt; exp((t−s)·Q)·xs),

where exp(·) denotes the matrix exponential.

Discrete diffusion models represent the reverse diffusion process as a Markov chain from

xT to x0, effectively reversing the noising process. Specifically, the reverse diffusion is modeled

as:

pθ(x0:T) := p(xT)
T−1∏

t=0

pθ(xt|xt+1).

In the discrete-time framework, the model is trained by maximizing the ELBO, which is

defined by the forward joint distribution (q(x1:T |x0)p(x0)) and the reverse joint distribution

(pθ(x0:T)) [63]. In the continuous-time framework, we can either adopt an extended ELBO

objective [194] or to learn the likelihood ratios {p(x′
t)/p(xt)}xt,x′

t
, allowing for the recovery

of p(xs|xt) (s < t) in an indirect manner [105, 113, 165]. Following the reverse diffusion

process, sampling from a diffusion model involves first sampling from the prior p(xT) and

then recursively sampling xT−1, . . . ,x0 following {pθ(xt|xt−1)}T−1
t=0 .

6.3 Challenge of Modeling Variable Dependencies

Unlike continuous diffusion models, which can produce high-quality samples with just a few

steps (e.g., [164, 196]), discrete diffusion models exhibit a strong positive correlation between

sample quality and the number of denoising steps. For instance, to generate 1024 text tokens,

a recent discrete diffusion model SEDD [105] requires 1024 steps to reach around 35 perplexity

(PPL), while with 32 denoising steps the PPL is only around 130.

We argue that the need for a large number of sampling steps in discrete diffusion models

stems from their inability to capture inter-variable dependence among the outputs. Specifically,

120

at each time step t, discrete diffusion models independently sample each variable from xt

conditioned on xt+1, i.e., p(xt|xt+1) :=
∏

i p(x
i
t|xt+1). As a result, when changing multiple

variables from xt+1 to xt, the model fails to account for the joint probability of these

modifications happening together. In the following, we first quantitatively analyze the

performance degradation caused by this independent denoising assumption. We then discuss

approaches to mitigate this issue.

Quantifying the Performance Drop. The total correlation of a distribution p(X) is

the KL-divergence between itself and the product of its univariate marginals:

DTC(p(X)) :=
∑

x

p(x) log
(
p(x)/

∏

i

p(xi)
)
.

The following result demonstrates that, under the independent denoising assumption,

there is an irreducible component in the ELBO that directly stems from ignoring inter-variable

dependencies.

Proposition 3. Assume the denoising distributions {pθ(xt|xt+1)}T−1
t=0 are fully factorized.

Let H(p(X)) denote the entropy of p(X). For any choice of denoising distributions (or

equivalently, any parameterization θ), the negative ELBO of the diffusion model is lower

bounded by

H(p(X0)) +
T∑

t=1

DTC(q(Xt−1|Xt)), where DTC(p(Y|X)) := Ex∼p

[
DTC(p(Y|x))

]
. (6.2)

Proofs of this and the following theoretical results in this chapter are provided in Sec-

tion E.1. The first term represents the entropy of the data distribution and is irreducible. The

second term additionally depends on the noising process and the chosen noise levels, which

set an upper limit on the performance of discrete diffusion models that use the independent

denoising assumption. Note that although DTC(q(Xt|Xt−1)) is zero according to the definition

of the noising process, DTC(q(Xt−1|Xt)) is not unless the data distribution is fully factorized.

Closing the Performance Gap. While increasing the number of denoising steps

121

can improve sample quality, it also introduces significant computational overhead during

inference. Our goal is to use fewer denoising steps while maintaining good sample quality. As

shown in Proposition 3, given a fixed noising strategy and the number of denoising steps, the

only way to reduce the negative ELBO lower bound in Eq. (6.2) is to relax the independent

denoising assumption. That is, in addition to modeling the univariate marginals, we must

also account for dependencies between variables.

The challenge of capturing inter-variable dependencies during each denoising step can

be addressed through adjustments during either training or inference. A direct approach

involves modeling both the univariate marginals and the inter-variable dependencies within the

diffusion model. However, this requires improving existing sequence-to-sequence architectures

(e.g., [39]) to capture dependencies between output variables directly, which is not very well

studied in the literature.

Instead, we propose an inference-time solution that complements the information missed

by the pretrained discrete diffusion model. Specifically, we aim to combine the univariate

marginals produced by the diffusion model with the inter-variable dependencies learned by

another (possibly smaller) deep generative model, which we refer to as the copula model.

The term “copula” traditionally refers to the dependencies between random variables in

statistics [123].

6.4 Modeling Variable Dependencies with Copula Models

As motivated in the previous section, our main goal is to combine the univariate marginals

produced by the diffusion model with the inter-variable dependencies captured by a copula

model. In this section, we first formalize the concept of “combining” two such distributions in

a general context (Sec. 6.4.1). We then specialize the formulation to the case of diffusion

models (Sec. 6.4.2).

122

6.4.1 Combining Univariate Marginals with Inter-Variable Depen-

dencies

In this section, we discuss how to best inject inter-variable dependence using copula models

given a target distribution ptar over X. Assume we have access to ptar through two sources:

(i) the set of all univariate marginal distributions {ptar(Xi)}i, and (ii) an estimate pest of the

target distribution coming from the copula model, which is also a generative model. Our

goal is to combine these two estimates to construct p̂ that is “closer” to the true distribution

ptar than either estimate individually.

We construct p̂ as the distribution that (i) matches the set of univariate marginals

{ptar(Xi)}i, and (ii) minimizes the KL divergence to pest. The intuition is that by ensuring p̂

has the correct univariate marginals, we can achieve a good approximation of ptar even if pest

is biased. To formalize this, we first define information projection (I-projection).

Definition 10. The I-projection of a distribution q(X) onto a set of distributions P over X

is

p∗ = argmin
p∈P

DKL(p ∥ q).

Let Pp
mar denote the set of distributions over X that share the same univariate marginals

as p. We define p̂ as the I-projection of pest onto Pptar
mar . The following proposition shows that

regardless of the initial estimate pest of ptar, the I-projection p̂ will be an improved estimate

of ptar in KL-divergence.

Proposition 4. If there exists i and xi s.t. ptar(xi) ̸= pest(xi), then DKL(ptar∥ p̂) <

DKL(ptar∥ pest).

Having now seen that p̂ is an improved estimate of ptar, we next explore whether it is

feasible to compute p̂ given {ptar(Xi)}i and pest. We start by showing that p̂ has a simple

form.

123

Proposition 5. Assume ∀x, ptar(x)>0 and pest(x)>0. Then p̂ exists and has the form

p̂(x) = pest(x) ·
∏

i

σi(xi),

where σi is a positive function that depends on xi.

Assume X consists of N categorical variables, each with C categories, we can represent the

factors {σi}i using a matrix V∈RN×C . Under this representation, the combined distribution

is

p̂(x) = pest(x) ·
∏

i

exp(V[i, xi]), (6.3)

where V[i, j] denotes the element at the ith row and jth column of V and V[i, xi]=log σi(xi).

Determining the true matrix V∗ corresponding to p̂, which is the I-projection of pest onto

Pptar
mar , can be reformulated as solving the following convex optimization problem.

Theorem 15. If V∗ minimizes the following convex objective function, then the corresponding

p̂ defined by Eq. (6.3) is the I-projection of pest onto Pptar
mar.1

L(V; ptar, pest) :=
∑

x

pest(x) ·
∏

i

exp(V[i, xi])−
N∑

i=1

C∑

xi=1

V[i, xi] · ptar(xi). (6.4)

We proceed to explain why I-projecting pest leads to a better estimate of ptar as suggested

by Proposition 4. In general, a joint distribution can be viewed as combining two independent

pieces of information: (i) a set of univariate marginal distributions and (ii) a copula describing

the association or dependence among the variables. By the classical work of [162], for

continuous variables the copula can take the form of a joint distribution with uniform margins

and can be combined quite simply with univariate marginal distributions to recover the

full joint distribution, a fact heavily exploited in statistics [123]. While the discrete case is

somewhat less straightforward, recent work of [53] has developed the fundamental notions of
1Eq. (6.4) closely resembles the matrix scaling problem [67]. See Section E.2 for details.

124

General prompt: Let’s do outdoor sports! How about < > < >?YX
Probability table:

X

Marginals + copula:
Y

alpine

scuba

skiing diving

p11p10

p01p00=0.4 =0.02

=0.08 =0.5

X
alpine

scuba
Marginals

skiing

diving
Y

=0.42p0·

Copula

Given additional suffix:… in Switzerland

copula(X, Y)

p·1

p·0

p1·=0.58

=0.48

=0.52equivalent

Use I-projection to adjust

while keeping the copula unchanged
Sample from
the new joint How about alpine skiing?

strong
dependency

ω=
p11p00

p01p10
=125

Most probable phrases:
- alpine skiing
- scuba diving

skiing

diving
Y

p·1

p·0=0.93

=0.07

p(Y)

Figure 6.2: Illustration of the decomposition of a distribution into univariate marginals and a
copula.

discrete copula modeling as well, where the information of a copula can be parameterized by

odds ratios.

Fig. 6.2 shows an example consisting of two binary variables X and Y . The probability

table on the left can be equivalently expressed using univariate marginals (i.e., p0·, p1·, p·0,

p·1) and the odds ratio (i.e., copula) ω := p00p11
p01p10

as shown in the middle of Fig. 6.2. Intuitively,

ω=125 indicates that the phrases “alpine skiing” and “scuba diving” are more likely than

others (e.g., “alpine diving”), and the marginals decide which of the two phrases appears

more frequently. The idea of representing the copula with odds ratios generalizes to the

multivariate case and is presented in Section E.3.

The following result demonstrates that, under its functional form in Eq. (6.3), I-projecting

pest onto Pptar
mar only improves the univariate marginals and leaves the copula unchanged

regardless of V.

Proposition 6. For a positive distribution p and any V∈RN×C, the distribution q(x)∝

p(x)·∏i exp(V[i, xi]) has the same copula as p.

In general, Proposition 6 holds because scaling factors (e.g., exp(V[i, xi])) cancel in odds

ratios. For example, in the 2×2 case in Fig. 6.2, scaling the top row of the probability table

by a would result in the odds ratio ω= ap00p11
ap01p10

= p00p11
p01p10

.

6.4.2 Modeling Dependence in Discrete Diffusion Models

Recall from Section 6.3 that our goal is to capture inter-variable dependencies between the

output variables at each denoising step (e.g., sampling xt from q(Xt|xt+1)). Similar to the

125

general case shown in Section 6.4.1, we first have a set of univariate marginals {pdm(X i
t |xt+1)}i

from the diffusion model. Notably, these univariate marginals are fairly accurate since for

both discrete-time and continuous-time diffusion models, if their respective training losses

are minimized, the model recovers the true univariate marginals. This is formally justified in

Section E.4.

Alongside the univariate marginals, we assume access to a copula model that encodes

a distribution over Xt. Following Section 6.4.1, combining the copula model’s distribution

with the univariate marginals from the diffusion model will lead to an improved estimate of

q(Xt|xt+1) (Prop. 4).

The performance of the augmented diffusion model hinges on two key questions: (i) how

well can the copula model capture the inter-variable dependencies in q(Xt|xt+1) (defined by

the data distribution and the noising process); (ii) given a good copula distribution, how to

effectively combine it with the univariate marginals obtained from the diffusion model, i.e.,

how to solve Eq. (6.4).

6.5 Autoregressive Models as Copula Models

This section answers the two questions above tailored to the case where the copula model

is an autoregressive model such as GPT [140] and State Space Models [33]. Specifically,

Section 6.5.1 discusses how to approximate q(Xt|xt+1) using an autoregressive model trained

on the clean data distribution p(X0) under certain noising processes. Section 6.5.2 explores

the process of performing I-projection from the (autoregressive) copula distribution onto

the set of distributions with univariate marginals {pdm(X i
t |xt+1)}i. Finally, Section 6.5.3

summarizes the sampling procedure with a discrete diffusion model and an autoregressive

copula model.

126

6.5.1 Extracting Copula Distributions from Autoregressive Models

At step t, to sample xt conditioned on xt+1, we need a copula distribution pcopula(Xt) that

closely approximates q(Xt|xt+1). While this might suggest that the copula model should also

be trained with a diffusion model objective, which brings us back to the problem of modeling

inter-variable dependencies, we show that any model trained on the clean data distribution

can serve as a copula model that indirectly approximates q(Xt|xt+1) under the absorbing

mask forward noising process.

The absorbing mask noising process gradually converts data tokens in x0∼p(X0) to a

new category denoted <MASK> through the sequence x1, . . . ,xT . Specifically, each token in x0

is independently converted to <MASK> with probabilities 0<α1<. . .<αT =1 in x1, . . . ,xT ,

respectively. This is a widely used noising strategy for discrete diffusion models. Since

this process only transforms data tokens into the mask token, it preserves the dependencies

between the remaining unmasked tokens. Therefore, we can decompose q(Xt|xt+1) as

q(xt|xt+1)=
∑

x̃t
q(x̃t|xt+1)q(xt|x̃t,xt+1), where q(x̃t|xt+1) is inuitively capturing the joint

distribution of generating all currently masked tokens, and q(xt|x̃t,xt+1) captures only the

choice of which currently masked tokens will actually be generated. Formally, define I as the

set of variables i such that xi
t+1=<MASK> and J as its complement. The auxiliary distributions

have the following form.

Proposition 7. Assume p(X0) is the clean data distribution and {q(Xt|xt−1)}Tt=1 follows the

absorbing mask noising process. Let αt be the probability of conversion to the mask state from

X i
0 to X i

t (∀i). Define X̃t as a set of auxiliary variables such that

q(x̃t|xt+1) = p(XI
0 = x̃I

t |XJ
0 = xJ

t+1) · 1[x̃J
t = xJ

t+1]. (6.5)

Then, the distribution q(Xt|x̃t,xt+1) is the following: q(Xt|x̃t,xt+1)=
∏

i q(x
i
t|x̃i

t, x
i
t+1).

– For i∈I, q(xi
t|x̃i

t, x
i
t+1) equals αt/αt+1 if xi

t=<MASK> and equals 1−αt/αt+1 if xi
t= x̃i

t.

– For i∈J , q(xi
t|x̃i

t, x
i
t+1)=1 if and only if xi

t=xi
t+1.

127

Since q(Xt|x̃t,xt+1) is fully factorized, the copula model only needs to account for inter-

variable dependencies in q(X̃t|xt+1). Following Eq. (6.5), we can transform pcopula(X0), which

estimates the clean data distribution, into pcopula(X̃t|xt+1) that approximates q(X̃t|xt+1) by

conditioning it on the unmasked tokens in xt+1 (i.e., xJ
t+1). Specifically, for autoregressive

copula models (i.e., pcopula(x) :=
∏

i pcopula(xi|x<i)), we construct pcopula(X̃t|xt+1) by condi-

tioning each variable on the corresponding preceding tokens in xJ
t+1 while enforcing x̃j

t =xj
t+1

(∀j∈J):

pcopula(x̃t|xt+1) :=
∏

i∈I

pcopula(X
i
0 = x̃i

t|X<i
0 = x̃<i

t) ·
∏

j∈J

1[x̃j
t = xj

t+1]. (6.6)

This copula distribution is biased even if the autoregressive model perfectly captures

the data distribution since it cannot condition on subsequent unmasked tokens in xt+1. In

contrast, while being able to condition on all unmasked tokens, diffusion models cannot

capture dependence between variables. Combining the two estimates in a proper way will

lead to better empirical performance.

Continuing with the example in Fig. 6.2, we assume an autoregressive copula model

encodes the probability table on the left. As shown on the right, when provided with the

suffix prompt “in Switzerland”, the copula model alone cannot adjust its probabilities, as it

can only condition on prefix prompts. However, a diffusion model that captures the strong

dependence between “Switzerland” and Y = “skiing” can, through I-projection, set the correct

marginal probabilities of Y , while keeping the copula unchanged. This allows the model to

reliably generate “how about alpine skiing.”

Lastly, we need the univariate marginals of q(X̃t|xt+1), which can be derived by renormal-

izing {q(X i
t |xt+1)}i to zero out the probability of the mask state according to the following

result.

Proposition 8. For each i and data category c ̸=<MASK>, q(X̃ i
t = c|xt+1) ∝ q(X i

t = c|xt+1).

As a result, for each i, the distribution pdm(X̃
i
t |xt+1) can be similarly obtained by

128

Algorithm 8 Draw samples from a discrete diffusion model with the help of a copula model
1: Inputs: a diffusion model pdm, a copula model pcopula, number of time steps T
2: Outputs: a sample x0 from the discrete diffusion model augmented by the copula model
3: Initialize: Sample xT from the prior noise distribution p(XT)
4: for t = T−1 to 0
5: Compute {pdm(X̃i

t |xt+1)}i and {pdm(X̃i
t |x<i

t+1)}i using the diffusion model
6: Compute V[i, x̃i

t]=log pdm(x̃i
t|xt+1)− log pdm(x̃i

t|x<i
t+1) (∀i, x̃i

t) following Eq. (6.10)
7: Sample x̃t from p̂(x̃t|xt+1)∝pcopula(x̃t|xt+1)·

∏
i exp(V[i, x̃i

t]) (pcopula is defined by Eq. (6.6))
8: Sample xt from q(Xt|x̃t,xt+1) (defined in Proposition 7)

renormalizing pdm(X
i
t |xt+1), which is directly obtained from the denoising model, to exclude

the mask state.

6.5.2 Approximate I-Projection with Autoregressive Models

Given univariate marginals {pdm(X̃ i
t |xt+1)}i and an autoregressive copula distribution

pcopula(X̃t|xt+1), both of which estimate the target distribution q(X̃t|xt+1), our goal is to

combine them following the I-projection procedure described in Section 6.4.1. Specifically,

this involves solving the convex optimization problem in Eq. (6.4), which is specialized to the

following:

∑

x̃t

pcopula(x̃t|xt+1) ·
∏

i

exp(V[i, x̃i
t])−

N∑

i=1

C∑

x̃t=1

V[i, x̃i
t] · pdm(x̃i

t|xt+1). (6.7)

Following Theorem 15, if V minimizes Eq. (6.7), then the distribution defined by

p̂(x̃t|xt+1)=pcopula(x̃t|xt+1)·
∏

i exp(V[i, x̃i
t]) is the I-projection of pcopula(x̃t|xt+1) onto the set

of distributions with the univariate marginals {pdm(X̃ i
t |xt+1)}i, which is the desired combined

distribution.

Consider initializing all coefficients in V to zero, i.e., p̂(x̃t|xt+1)= pcopula(x̃t|xt+1). For

each row i, if we only optimize the values V[i, :] and fix the rest to zero, the optimal coefficients

are

∀c, V[i, c] = log pdm(X̃
i
t = c|xt+1)− log pcopula(X̃

i
t = c|xt+1). (6.8)

129

We approximate the solution to Eq. (6.7) by applying the above update (Eq. (6.8)) to

each row in V independently, as it strikes a proper balance between efficiency and empirical

performance.

While the first term on the right-hand side of Eq. (6.8) can be acquired from the diffusion

model, the second term is not accessible through the copula model. Plug in the definition in

Eq. (6.6), the required marginal probabilities can be written as (for j∈J , pcopula(x̃j
t |xt+1)=1

iff x̃j
t =xj

t+1)

∀i∈I, pcopula(x̃i
t|xt+1) = pcopula(Xi = x̃i

t|XKi
=xKi

t+1), where Ki={j : j∈J and j<i}. (6.9)

The above probabilities cannot be computed from the autoregressive model since we need

to “marginalize out” preceding tokens that are not in Ki (i.e., those not given as evidence in

xt+1). However, these terms can be estimated using the diffusion model. Assume both the

diffusion model and the autoregressive model perfectly encode the data distribution. According

to Proposition 8, the diffusion model computes pdm(X̃
i
t |xt+1) = q(X̃ i

t |xt+1). Comparing it

to Eq. (6.9), which gives pcopula(X̃
i
t |xt+1)=q(X̃ i

t |xKi
t+1), we only need to additionally restrict

the diffusion model to only condition on preceding unmasked tokens in xt+1, since Ki is

the intersection of J and {j : j < i}. Therefore, if both models well-approximate the data

distribution, we have pcopula(x̃
i
t|xt+1) ≈ q(x̃i

t|xKi
t+1) = q(x̃i

t|x<i
t+1) ≈ pdm(x̃

i
t|x<i

t+1), where the

equality holds since all values in x<i
t+1 but not in xKi

t+1 are <MASK>, and does not “contribute to”

the distribution of X̃ i
t according to Proposition 7). Correspondingly, we update V following

∀i, c, V[i, c] = log pdm(X̃
i
t = c|xt+1)− log pdm(X̃

i
t = c|x<i

t+1). (6.10)

For denoising neural networks that are implemented with bidirectional Transformers, we

can simply apply causal attention masks to the self-attention layers to obtain {pdm(X̃ i
t |x<i

t+1)}i.

130

6.5.3 The Overall Diffusion Sampling Process

Given a diffusion model pdm and an autoregressive copula model pcopula, the sampling procedure

is outlined in Algorithm 8. First, we sample xT from the prior noise distribution p(XT)

(line 3). During each denoising step t, we compute the univariate marginals {pdm(X̃ i
t |xt+1)}i

and {pdm(X̃ i
t |x<i

t+1)}i based on the previously obtained xt+1 (line 5). These marginals are

then used to compute the entries in V (line 6), which approximates the I-projection of

pcopula(X̃t|xt+1) onto the set of distributions with univariate marginals {pdm(X̃ i
t |xt+1)}i (cf.

Sec. 6.5.2).

Afterwards, we sample x̃t from the combined distribution p̂(X̃t|xt+1) (line 7). Specifically,

following Eq. (6.6), we sample autoregressively following p̂(x̃t|xt+1) =
∏

i p̂(x̃
i
t|xt+1, x̃

<i
t),

where

p̂(x̃i
t|xt+1, x̃

<i
t) ∝ pcopula(Xi = x̃i

t|X<t = x̃<i
t) · exp(V[i, x̃i

t]) · 1[x̃i
t = xi

t+1].

Finally, we sample xt from q(Xt|x̃t,xt+1) (line 8) as defined in Proposition 7. To improve

the algorithm’s efficiency, we introduce a variant that unmasks tokens in an autoregressive

manner. Specifically, at step t, all tokens except the first (T−t)/T portion of the tokens in xt

are converted to <MASK>. Since p̂ is sampled autoregressively, this allows us to use techniques

such as KV-caching for autoregressive Transformers [137] to significantly reduce computation

cost introduced by the copula model. See Section E.5 for details and the concrete algorithm.

6.6 Experiments

We empirically validate the proposed method, Discrete Copula Diffusion (DCD), on language

modeling tasks (Sec. 6.6.1 and 6.6.2) and antibody sequence infilling tasks (Sec. 6.6.3). For

all tasks, we evaluate whether DCD can effectively reduce the number of diffusion steps while

maintaining strong performance. Specifically, since DCD combines two pretrained models:

a discrete diffusion model and an autoregressive copula model, we examine whether DCD

131

denoising steps

G
en
er
at
iv
e
Pe
rp
le
xi
ty

Figure 6.3: Generative perplexity (↓)
with different numbers of denoising
steps.

He added the United States should continue “double-in-channel media
discussions”, but stressed the importance of an agreement based on the purpose
of the dialogue. Putin said Moscow had envisaged sending navy ships from …

Among the dozens of layoffs Detroit inflicted last week in September fell to
layoffs of 243,000 workers, or just 7 percent of the city‘s 3.2 million population..

interesting is that the A+N start using enforcope thewhich Cookbook starts using
in made ay antimidesis stuff (the grow and judges 7“ And ”age goods …

Singh, who served as chief minister in charge and prime minister in charge of
the UK, had asked Russian PM to attend the Iceland meeting of 2005. …

SEDD (4 steps)

SEDD (256 steps)

DCD (4 steps)

DCD (16 steps)

Figure 6.4: Generated text from SEDDM and DCD
with different number of steps. See Section E.8 for
more.

outperforms each individual model.

6.6.1 Unconditional Text Generation

We first compare the quality of unconditional samples generated by models trained on either

WebText [140] or OpenWebText [55], which contain web content extracted from URLs shared

on Reddit with a minimum number of upvotes. We adopt the medium-sized SEDD model [105]

(SEDDM) since it is a SoTA discrete diffusion model for text generation. The GPT-2-small

model [140] (GPT-2S) serves as the copula model.

We generate samples of 128 tokens each. Following [42,60], we evaluate sample quality

using their generative perplexity, which is the perplexity of the samples when evaluated with

the GPT-2-large model. Since previous studies have observed that this metric can be affected

by distribution annealing methods such as nucleus sampling, we always sample directly from

the models. SEDDM is evaluated with 2 to 256 diffusion steps and DCD (i.e., SEDDM with

GPT-2S as the copula model) is run with diffusion steps ranging from 2 to 32. We adopt the

log-linear noise schedule suggested by the SEDD paper. See Section E.7.1 for more details.

For each configuration, we draw 10,000 samples and report the average perplexity in

Fig. 6.3. First, when fixing the number of denoising steps between 2 to 32, we observe that

DCD outperforms both SEDDM with the same number of denoising steps and GPT-2S. This

132

provides empirical validation of the effectiveness of the I-projection procedure for modeling

inter-variable dependencies.

Additionally, DCD with just 4 denoising steps achieves performance comparable to SEDDM

with 128 steps, representing a 32x reduction in the number of denoising steps. This result not

only demonstrates the efficiency of DCD but also underscores the importance of modeling

inter-variable dependencies in discrete diffusion models, particularly in few-step generation

settings.

Finally, as shown in Fig. 6.4, SEDD fails to generate fluent and meaningful sentences

given only a few diffusion steps, as too many tokens have to be generated in each step. In

contrast, by modeling the inter-variable dependencies, DCD generates smooth sentences with

only 4 denoising steps.

Efficiency. We compare the sample time and the generative perplexity of DCD

against competitive baselines in Fig. 6.5. We additionally adopt another recent discrete

diffusion baseline MDLM [153]. We adopt the autoregressive version of DCD as described in

Section 6.5.3 and Section E.5. Compared to the baselines, DCD consistently achieves better

generative perplexity given a fixed runtime constraint. It also requires less time to reach a

desired perplexity value. We defer a comprehensive study of DCD’s efficiency to Section E.6.

6.6.2 Conditional Text Generation

We now move on to conditional text generation, where certain tokens are provided in advance,

and the task is to generate the remaining tokens. As shown in the first column of Table 6.1, we

use five mask strategies, where tokens in specific prompt ranges are given (we use a sequence

length of 128). We adopt the MAUVE score [134] with the default settings to compare the

difference between the generated and original texts. See Section E.7.2 for further details.

For all methods, we use the same set of 2,000 text sequences from the validation set of

WikiText-103 [116]. After applying the prompt mask, we generate 5 samples for each prompt,

resulting in a total number of 10,000 samples.

133

Table 6.1: Evaluation of text infilling performance using the MAUVE score (↑) with 5 prompt
masks. Scores of DCD are all better than (i) SEDD with the same # denoising steps, and
(ii) GPT-2S.

Prompt ranges
(remainder is masked)

SSD-LM GPT-2S SEDDM DCD (ours)

100 500 N/A 2 4 8 16 32 2 4 8 16 32

[0.1,0.2] & [0.5,0.7] 0.057 0.083 0.079 0.013 0.051 0.122 0.152 0.201 0.158 0.187 0.185 0.195 0.211
[0.25,0.75] 0.072 0.108 0.188 0.027 0.110 0.226 0.237 0.278 0.249 0.251 0.257 0.314 0.298

[0.0,0.1] & [0.4,0.6] & [0.9,1.0] 0.333 0.681 0.928 0.827 0.940 0.972 0.980 0.979 0.962 0.976 0.979 0.982 0.983
[0.4,0.5] & [0.8,1.0] 0.436 0.565 0.914 0.896 0.944 0.978 0.978 0.980 0.963 0.975 0.975 0.976 0.981
[0.2,0.3] & [0.6,0.8] 0.041 0.054 0.069 0.016 0.056 0.128 0.207 0.215 0.171 0.178 0.215 0.217 0.403

In addition to SEDDM and GPT-2S, we compare against SSD-LM [60], which is a semi-

autoregressive diffusion model designed for text infilling. We adopt the autoregressive

unmasking variant of DCD described in the last paragraph of Section 6.5.3.

Results are presented in Table 6.1. First, DCD outperforms all three baselines in all

five tasks. Additionally, when fixing the number of denoising steps between 2 and 32, DCD

surpasses both of its base models. Notably, while both GPT-2S and the 2-step SEDDM

performs poorly on the first, the second, and the fifth tasks, combining them in a principled

way allows DCD to achieve significantly better performance using only two denoising steps.

6.6.3 Antibody Sequence Infilling

We consider the task of unguided antibody infilling, where certain complementarity deter-

mining regions (CDRs) of antibodies (i.e., sequences of amino acids) are missing and to be

generated by the model. We adopt NOC-D [58], which is a discrete diffusion model trained

on 104K antibody sequences from the Observed Antibody Space dataset [150]. We further

train a GPT model on the same dataset as the copula model. See Section E.7.3 for training

details.

We follow [58] to select the same 10 antibody seed sequences from paired OAS [126]. We

consider two infilling tasks: (i) three CDRs {HCDR1,HCDR2,HCDR3} are masked, and (ii)

two CDRs {HCDR1,LCDR1} are masked. We follow the original paper and run 64 diffusion

steps for NOS-D. For DCD (i.e., combining NOS-D with the trained GPT model as the

134

Runtime (s/sample)

G
en

er
at

iv
e

Pe
rp

le
xi

ty

Figure 6.5: Sampling time vs. generative
perplexity (the autoregressive version of DCD
is used).

Figure 6.6: Antibody sequence infilling perfor-
mance measured by sequence recovery rate (↑).
We compare DCD against its two base models
in two tasks, where amino acids at different
locations are masked. DCD outperforms both
baselines with only 4 denoising steps.

Method # steps
Task

HCDR{1+2+3} {H+L}CDR1

GPT N/A 57.21 90.28
NOS-D 64 51.56 88.82
DCD 4 58.28 91.58

copula model), we use 4 denoising steps. We measure the sequence recovery rate, i.e., the

accuracy of the infilled sequences given the ground truth sequence.

As shown in Fig. 6.6, by combining the univariate marginals from NOS-D and the

dependencies captured by the GPT model, DCD can also perform well in antibody sequence

infilling tasks.

135

Appendices

136

Appendix A

Tractable Inference with Probabilistic

Circuits

A.1 Useful Sub-Routines

This section introduces the algorithmic construction of gadget circuits that will be adopted

in our proofs of tractability as well as hardness. We start by introducing three primitive

functions for constructing circuits—Input, Sum, and Product.

• Input(lp, ϕ(p)) constructs an input unit p that encodes a parameterized function lp over

variables ϕ(p). For example, Input(JX = TrueK, X) and Input(JX = FalseK, X) represent

the positive and negative literals of a Boolean variable X, respectively. On the other hand,

Input(N (µ, σ), X) defines a Gaussian pdf with mean µ and standard deviation σ over

variable X as an input function.

• Sum({pi}ki=1, {θi}ki=1) constructs a sum unit that represents the weighted combination

of k circuit units {pi}ki=1 encoded as an ordered set w.r.t. the correspondingly ordered weights

{θi}ki=1.

• Product({pi}ki=1) builds a product unit that encodes the product of k circuit units

{pi}ki=1.

137

Algorithm 9 Support(p, cache)
1: Input: a smooth, deterministic, and decomposable circuit p over variables X and a cache

for memorization
2: Output: a smooth, deterministic, and decomposable circuit s over X encoding s(x) =

Jx ∈ supp(p)K
3: if p ∈ cache then return cache(p)
4: if p is an input unit then s← Input(Jx ∈ supp(p)K, ϕ(p))
5: else if p is a sum unit then s← Sum({Support(pi, cache)}|ch(p)|i=1 , {1}|ch(p)|i=1)

6: else if p is a product unit then s← Product({Support(pi, cache)}|ch(p)|i=1 |)
7: cache(p)← s
8: return s

A.1.1 Support circuit of a deterministic circuit

Given a smooth, decomposable, and deterministic circuit p(X), its support circuit s(X) is

a smooth, decomposable, and deterministic circuit that evaluates 1 iff the input x is in the

support of p (i.e., x ∈ supp(p)) and otherwise evaluates 0, as defined below.

Definition 11 (Support circuit). Let p be a smooth, decomposable, and deterministic PC

over variables X. Its support circuit is the circuit s that computes s(x) = Jx ∈ supp(p)K,
obtained by replacing every sum parameter of p by 1 and every input distribution l by the

function Jx ∈ supp(l)K.

A construction algorithm for the support circuit is provided in Algorithm 9. This algorithm

will later be useful in defining some circuit operations such as the logarithm.

A.1.2 Circuits encoding uniform distributions

We can build a deterministic and omni-compatible PC that encodes a (possibly unnormalized)

uniform distribution over binary variables X = {X1, . . . , Xn}: i.e., p(x) = c for a constant

c ∈ R+ for all x ∈ val(X). Specifically, p can be defined as a single sum unit with weight c

that receives input from a product unit over n univariate input distribution units that always

output 1 for all values val(Xi). This construction is summarized in Algorithm 10. It is a key

component in the algorithms for many tractable circuit transformations/queries as well as in

138

Algorithm 10 uniformCircuit(X, c)
1: Input: a set of variables X and constant c ∈ R+.
2: Output: a deterministic and omni-compatible PC encoding an unnormalized uniform

distribution over X.
3: n← {}
4: for i = 1 to |X| do
5: m← {}
6: for xi in val(Xi) do
7: m← m ∪ {Input(JXi = xiK, Xi)}
8: n← n ∪ {Sum(m, {1}|val(Xi)|

j=1)}
9: return Sum({Product(n)}, {c})

several hardness proofs.

A.1.3 A circuit representation of the #3SAT problem

We define a circuit representation of the #3SAT problem, following the construction in [75].

Specifically, we represent each instance in the #3SAT problem as two poly-sized structured-

decomposable and deterministic circuits pβ and pγ, such that the partition function of their

product equals the solution of the original #3SAT problem.

#3SAT is defined as follows: given a set of n boolean variables X = {X1, . . . , Xn} and a

CNF that contains m clauses {c1, . . . , cm} (each clause contains exactly 3 literals), count the

number of satisfiable worlds in val(X).

For every variable Xi in clause cj, we introduce an auxiliary variable Xij. Intuitively,

{Xij}mj=1 are copies of the variable Xi, one for each clause. Therefore, for any i, {Xij}mj=1

share the same value (i.e., true or false), which can be represented by the following formula β:

β ≡
n∧

i=1

(Xi1 ⇔ Xi2 ⇔ · · · ⇔ Xim).

Then we can encode the original CNF in the following formula γ by substituting Xi with

139

the respective Xij in each clause:

γ ≡
m∧

j=1

∨

i:Xi∈ϕ(cj)

l(Xij),

where ϕ(c) denotes the variable scope of clause c, and l(Xij) denotes the literal of Xi in

clause cj . Since β restricts the variables {Xij}mj=1 to have the same value, the model count of

β ∧ γ is equal to the model count of the original CNF.

We are left to show that both β and γ can be compiled into a poly-sized structured-

decomposable and deterministic circuit. We start from compiling β into a circuit pβ. Note

that for each i, (Xi1 ⇔ · · · ⇔ Xim) has exactly two satisfiable variable assignments (i.e., all

true or all false), it can be compiled as a sum unit ai over two product units bi1 and bi2 (both

weights of a are set to 1), where bi1 takes inputs from the positive literals {Xi1, . . . , Xim}

and bi2 from the negative literals {¬Xi1, . . . ,¬Xim}. Then pβ is represented by a product

unit over {a1, . . . , an}. Note that by definition this pβ circuit is structured-decomposable and

deterministic.

We proceed to compile γ into a polysized structured-decomposable and deterministic

circuit pγ. Note that in #3SAT, each clause cj contains 3 literals. Therefore, for any

j ∈ {1, . . . ,m}, ∨Xi∈ϕ(cj) l(Xij) has exactly 7 models w.r.t. the variable scope ϕ(cj). Hence,

we compile
∨

Xi∈ϕ(cj) l(Xij) into a circuit dj, which is a sum unit with 7 inputs {ej1, . . . , ej7}.

Each ejh is constructed as a product unit over variables {X1j, . . . , Xnj} that represents the

h-th model of clause cj. More formally, we have ejh ← Product({gijh}ni=1), where gijh is a

sum unit over literals Xij and ¬Xij (with both weights being 1) if i ̸∈ ϕ(cj) and otherwise

gijh is the literal unit corresponds to the h-th model of clause cj. The circuit pγ representing

the formula γ is constructed by a product unit with inputs {dj}mj=1. By construction this

circuit is also structured-decomposable and deterministic.

140

A.2 Circuit Operations

This section formally presents the tractability and hardness results w.r.t. circuit operations

summarized in Table 2.1—sums, products, quotients, powers, logarithms, and exponentials.

For each circuit operation, we provide both its proof of tractability by constructing a polytime

algorithm given sufficient structural constraints and novel hardness results that identify

necessary structural constraints for the operation to yield a decomposable circuit as output.

Throughout this paper, we will show hardness of operations to output a decomposable

circuit by proving hardness of computing the partition function of the output of the operation.

This follows from the fact that we can smooth and integrate a decomposable circuit in

polytime (Proposition 1), thereby making the former problem at least as hard as the latter.

For the tractability theorems, we will assume that the operation referenced by the theorem

is tractable over input units of circuit or pairs of compatible input units. For example,

for Theorem 2 we assume tractable product of input units sharing the same scope and for

Theorem 5 we assume that the powers of the input units can be tractably represented as a

single new unit. Note that this is generally easy to realize for simple parametric forms e.g.,

multivariate Gaussians and for univariate distributions, unless specified otherwise.

Moreover, in the following results, we will adopt a more general definition of compatibility

that can be applied to circuits with different variable scopes, which is often useful in practice.

Formally, consider two circuits p and q with variable scope Z and Y. Analogous to Definition 3,

we say that p and q are compatible over variables X = Z ∩Y if (1) they are smooth and

decomposable and (2) any pair of product units n ∈ p and m ∈ q with the same overlapping

scope with X can be rearranged into mutually compatible binary products. Note that since

our tractability results hold for this extended definition of compatibility, they are also satisfied

under Definition 3.

141

A.2.1 Sum of Circuits

The hardness of the sum of two circuits to yield a deterministic circuit has been proven

by [156] in the context of arithmetic circuits (ACs) [37]. ACs can be readily turned into

circuits over binary variables according to our definition by translating their input parameters

into sum parameters as done in [147].

A sum of circuits will preserve decomposability and related properties as the next propo-

sition details.

Proposition 9 (Closure of sum of circuits). Let p(Z) and q(Y) be decomposable circuits.

Then their sum circuit s(Z∪Y) = θ1 ·p(Z)+ θ2 · q(Y) for two reals θ1, θ2 ∈ R is decomposable.

If p and q are structured-decomposable and compatible, then s is structured-decomposable and

compatible with both p and q. Lastly, if both inputs are also smooth, s can be smoothed in

polytime.

Proof. If p and q are decomposable, s is also decomposable by definition (no new product

unit is introduced). If they are also structured-decomposable and compatible, s would be

structured-decomposable and compatible with p and q as well, as summation does not affect

their hierarchical scope partitioning. Note that if one input is decomposable and the other

omni-compatible, then s would only be decomposable.

If Z = Y then s is smooth; otherwise we can smooth it in polytime [35,160], by realizing

the circuit

s(x) = θ1 · p(z) · Jq(x|Y\Z) ̸= 0K + θ2 · q(y) · Jp(x|Z\Y) ̸= 0K

where Jq(x|Y\Z) ̸= 0K (resp. Jp(x|Z\Y) ̸= 0K) can be encoded as an input distribution over

variables Y \ Z (resp.Z \Y). Note that if the supports of p(Z \Y) and q(Y \ Z) are not

bounded, then integrals over them would be unbounded as well. □

142

A.2.2 Product of Circuits

Theorem 16 (Hardness of product). Let p and q be two structured-decomposable and

deterministic circuits over variables X. Computing their product m(X) = p(X) · q(X) as a

decomposable circuit is #P-hard.1

Proof. As noted earlier, we will prove hardness of computing the product by showing hardness

of computing the partition function of a product of two circuits. In particular, let p and q

be two structured-decomposable and deterministic circuits over binary variables X. Then,

computing the following quantity is #P-hard:

∑

x∈val(X)

p(x) · q(x). (MULPC)

The following proof is adapted from the proof of Thm. 2 in [75]. We reduce the #3SAT

problem defined in Section A.1.3, which is known to be #P-hard, to MULPC. Recall that pβ

and pγ , as constructed in Section A.1.3, are structured-decomposable and deterministic; addi-

tionally, the partition function of pβ · pγ is the solution of the corresponding #3SAT problem.

In other words, computing MULPC of two structured-decomposable and deterministic circuits

pβ and pγ exactly solves the original #3SAT problem. Therefore, computing the product of

two structured-decomposable and deterministic circuits is #P-hard. □

Theorem 17 (Tractable product of circuits). Let p(Z) and q(Y) be two compatible circuits

over variables X = Z ∩ Y. Then, computing their product m(X) = p(Z) · q(Y) as a

decomposable circuit can be done in O(|p||q|) time. If both p and q are also deterministic,

then so is m, moreover if p and q are structured-decomposable then m is compatible with p

(and q) over X.

Proof. The proof proceeds by showing that computing the product of (i) two smooth and

compatible sum units p and q and (ii) two smooth and compatible product units p and q given
1Note that this implies that product of decomposable circuits is also #P-hard, as decomposability is a

weaker condition than structured-decomposability. The hardness results throughout this paper translate
directly when input properties are relaxed.

143

the product circuits w.r.t. pairs of child units from p and q (i.e., ∀r ∈ ch(p) s ∈ ch(q), (r·s)(X))

takes time O(|ch(p)||ch(q)|). Then, by recursion, the overall time complexity is O(|p||q|).

Algorithm 11 illustrates the overall process in detail.

If p and q are two sum units defined as p(x) =
∑

i∈ch(p) θipi(x) and q(x) =
∑

j∈ch(q) θ
′
jqj(x),

respectively. Then, their product m(x) can be broken down to the weighted sum of |ch(p)|·

|ch(q)| circuits that represent the products of pairs of their inputs:

m(x) =


 ∑

i∈ch(p)

θipi(x)




 ∑

j∈ch(q)

θ′jqj(x)


 =

∑

i∈ch(p)

∑

j∈ch(q)

θiθ
′
j(piqj)(x).

Note that this Cartesian product of units is a deterministic sum unit if both p and q were

deterministic sum units, as supp(piqj)=supp(pi) ∩ supp(qj) are disjoint for different i, j.

If p and q are two product units defined as p(X) = p1(X1)p2(X2) and q(X) = q1(X1)q2(X2),

respectively. Then, their product m(x) can be constructed recursively from the product of

their inputs:

m(x) = p1(x1)p2(x2) · q1(x1)q2(x2) = p1(x1)q1(x1) · p2(x2)q2(x2) = (p1q1)(x1) · (p2q2)(x2).

Note that by this construction m retains the same scope partitioning of p and q, hence if

they were structured-decomposable, m will be structured-decomposable and compatible with

p and q. □

Possessing additional structural constrains can lead to sparser output circuits as well as

efficient algorithms to construct them. First, if one among p and q is omni-compatible, it

suffices that the other is just decomposable to obtain a tractable product, whose size this

time is going to be linear in the size of the decomposable circuit.

Corollary 1. Let p be a smooth and decomposable circuit over X and q an omni-compatible

circuit over X comprising a sum unit with k inputs, hence its size is k|X|. Then, m(X) =

p(X)q(X) is a smooth and decomposable circuit constructed in O(k|p|) time.

144

Algorithm 11 multiply(p, q, cache)
1: Input: two circuits p(Z) and q(Y) that are compatible over X = Z ∩Y and a cache for

memoization
2: Output: their product circuit m(Z ∪Y) = p(Z)q(Y)
3: if (p, q) ∈ cache then return cache(p, q)
4: if ϕ(p) ∩ ϕ(q) = ∅ then
5: m← Product({p, q}); s← True
6: else if p, q are input units then
7: m← Input(p(Z) · q(Y),Z ∪Y)
8: s← Jsupp(p(X)) ∩ supp(q(X)) ̸= ∅K
9: else if p is an input unit then

10: n← {}; s← False //q(Y) =
∑

j θ
′
jqj(Y)

11: for j = 1 to |ch(q)| do
12: n′, s′ ← multiply(p, qj, cache)
13: n← n ∪ {n′}; s← s ∨ s′

14: if s then m← Sum(n, {θ′j}|ch(q)|j=1) else m← null
15: else if q is an input unit then
16: n← {}; s← False //p(Z) =

∑
i θipi(Z)

17: for i = 1 to |ch(p)| do
18: n′, s′ ← multiply(pi, q, cache)
19: n← n ∪ {n′}; s← s ∨ s′

20: if s then m← Sum(n, {θi}|ch(p)|i=1) else m← null
21: else if p, q are product units then
22: n← {}; s← True
23: {pi, qi}ki=1 ← sortPairsByScope(p, q,X)
24: for i = 1 to k do
25: n′, s′ ← multiply(pi, qi, cache)
26: n← n ∪ {n′}; s← s ∧ s′

27: if s then m← Product(n) else m← null
28: else if p, q are sum units then
29: n← {}; w ← {}; s← False
30: for i = 1 to |ch(p)|, j = 1 to |ch(q)| do
31: n′, s′ ← multiply(pi, qj, cache)
32: n← n ∪ n′;w ← w ∪ {θiθ′j}; s← s ∨ s′

33: if s then m← Sum(n,w) else m← null
34: cache(p, q)← (m, s)
35: return m, s

Second, if p and q have inputs with restricted supports, their product is going to be sparse,

i.e., only a subset of their inputs is going to yield a circuit that does not constantly output

zero. Note that in Algorithm 11 we can check in polytime if the supports of two units to

145

be multiplied are overlapping by a depth-first search (realized with a Boolean indicator s in

Algorithm 11), thanks to decomposability. Therefore, for two compatible sum units p and q

we will effectively build a number of units that is

O(|{(pi, qj)|pi∈ch(p), qi∈ch(q), supp(pi)∩supp(qj) ̸=∅}|).

In practice, this sparsifying effect will be more prominent when both p and q are de-

terministic. This is because having disjoint supports is required for deterministic circuits.

This “decimation” of product units will be maximum if p and q partition the support in the

very same way, for instance when we have p = q, i.e., we are multiplying one circuit with

itself, or we are dealing with a logarithmic circuit (cf. Section A.2.5). In such a case, we

can omit the depth-first check for overlapping supports of the product units participating

in the product of a sum unit. If both p and q have an identifier for their supports, we can

simply check for equality of their identifiers. This property and algorithmic insight will be

key when computing powers of a deterministic circuit and its entropies (cf. Section A.3.2), as

it would suffice the input circuit p to be decomposable (cf. Section 2.4) to obtain a linear

time complexity.

A.2.3 Power Function of Circuits

Theorem 18 (Natural powers). If p is a structured-decomposable circuit, then for any α ∈ N,

its power can be represented as a structured-decomposable circuit in O(|p|α) time. Otherwise,

if p is only smooth and decomposable, then computing pα(X) as a decomposable circuit is

#P-hard.

Proof. The proof for tractability easily follows by directly applying the product operation

repeatedly.

We prove hardness for the special case of discrete variables, and by showing the hardness

of computing the partition function of p2(X). In particular, let X be a collection of binary

146

Algorithm 12 sortPairsByScope(p, q,X)
1: Input: two decomposable and compatible product units p and q, and a variable scope X.

2: Output: Pairs of compatible sum units {(pi, qi)}ki=1.
3: children_p← {pi}|ch(p)|i=1 , children_q ← {qi}|ch(q)|i=1

4: pairs← {}. // “pairs” stores circuit pairs with matched scope.
5: cmp_p← {{}}|ch(p)|i=1 , cmp_q ← {{}}|ch(q)|j=1 .

// cmp_p[i] (resp. cmp_q[j]) stores the children of q (resp. p) whose scopes are subsets
of pi’s (resp. qj’s) scope.

6: for i = 1 to |ch(p)| do
7: for j = 1 to |ch(q)| do
8: if ϕ(pi) ∩X = ϕ(qj) ∩X then
9: pairs.append((pi, qj))

10: children_p.pop(pi), children_q.pop(qj)
11: else if ϕ(pi) ∩X ⊂ ϕ(qj) ∩X then
12: cmp_q[j].append(pi)
13: children_p.pop(pi), children_q.pop(qj)
14: else if ϕ(qj) ∩X ⊂ ϕ(pi) ∩X then
15: cmp_p[i].append(qj)
16: children_p.pop(pi), children_q.pop(qj)
17: for i = 1 to |ch(p)| do
18: if len(cmp_p[i]) ̸= 0 then
19: s← Sum({Product(cmp_p[i])}, {1})
20: pairs.append((pi, s))
21: for j = 1 to |ch(q)| do
22: if len(cmp_q[j]) ̸= 0 then
23: r ← Sum({Product(cmp_q[j])}, {1})
24: pairs.append((r, qj))
25: for r, s in zip(children_p, children_q) do
26: pairs.append((r, s))
27: if len(children_p) > len(children_q) then
28: for i = len(children_q) + 1 to len(children_p) do
29: pairs.append((children_p[i], children_q[1]))
30: else if len(children_p) < len(children_q) then
31: for j = len(children_p) + 1 to len(children_q) do
32: pairs.append((children_p[1], children_q[j]))
33: return pairs

variables and let p be a smooth and decomposable circuit over X, then computing the quantity

∑

x∈val(X)

p2(x) (POW2PC)

147

is #P-hard.

The proof builds a reduction from the #3SAT problem, which is known to be #P-

hard. We employ the same setting of Section A.1.3, where a CNF over n Boolean variables

X = {X1, . . . , Xn} and containing m clauses {c1, . . . , cm}, each with exactly 3 literals, is

encoded into two structured-decomposable and deterministic circuits pβ and pγ over variables

X̂ = {X11, . . . , X1m, . . . , Xn1, . . . , Xnm}.

Then, we construct circuit pα as the sum of pβ and pγ, i.e., pα(x̂) := pβ(x̂) + pγ(x̂). By

definition pα is smooth and decomposable, but not structured-decomposable. We proceed

to show that if we can represent p2α(x̂) as a smooth and decomposable circuit in polytime,

we could solve POW2PC and hence #3SAT. That would mean that computing POW2PC is

#P-hard.

By definition, p2α(x̂) = (pβ(x̂) + pγ(x̂))
2 = p2β(x̂) + p2γ(x̂) + 2pβ(x̂) · pγ(x̂), and hence

∑

x̂∈val(X̂)

p2α(x̂) =
∑

x̂∈val(X̂)

p2β(x̂) +
∑

x̂∈val(X̂)

p2γ(x̂) +
∑

x̂∈val(X̂)

pβ(x̂) · pγ(x̂).

Since pβ and pγ are both structured-decomposable and deterministic the first two summations

over the squared circuits can be computed in time O(|pβ|+ |pγ|) (see Theorem 5). It follows

that if we could efficiently solve POW2PC we could then solve the that third summation, i.e.,
∑

x̂∈val(X̂) pβ(x̂) · pγ(x̂). However, since such a summation is the instance of MULPC between

pβ and pγ reduced from #3SAT (see Theorem 1), it would mean that we could solve #3SAT.

We can conclude that computing POW2PC is #P-hard. □

Theorem 19 (Hardness of natural power of a structured-decomposable circuit). Let p be

a structured-decomposable circuit over variables X. Let k be a natural number. Then there

is no polynomial f(x, y) such that the power pk can be computed in O(f(|p|, k)) time unless

P=NP.

Proof. We construct the proof by showing that for a structured-decomposable circuit p, if we

148

could compute

∑

x∈val(X)

pk(x). (POWkPC)

in O(f(|p|, k)) time, then we could solve the 3SAT problem in polytime, which is known to

be NP-hard.

The 3SAT problem is defined as follows: given a set of n Boolean variables X =

{X1, . . . , Xn} and a CNF that contains m clauses {c1, . . . , cm}, each one containing exactly 3

literals, determine whether there exists a satisfiable configuration in val(X).

We start by constructing m gadget circuits {dj}mj=1 for the m clauses such that dj(x)

evaluates to 1
m

iff x satisfies cj and otherwise evaluates to 0, respectively.

Since each clause cj contains exactly 3 literals, it comprises exactly 7 models w.r.t. the

variables appearing in it, i.e., its scope ϕ(cj). Therefore, following a similar construction

in Section A.1.3, we can compile dj as a weighted sum of 7 circuits that represent the 7

models of cj, respectively. By choosing all weights of dj as 1
m

, the circuit dj outputs 1
m

iff cj

is satisfied; otherwise it outputs 0.

The gadget circuits {dj}mj=1 are then summed together to represent a circuit p. That is,

p = Sum({dj}mj=1, {1}mj=1). In the following, we complete the proof by showing that if the

power circuit pk (we will pick later k = ⌈max(m,n)2 · log 2⌉) can be computed in O(f(|p|, k))

time, then the corresponding 3SAT problem can be solved in O(f(|p|, k)) time.

If the original CNF is satisfiable, then there exists at least 1 world such that all clauses

are satisfied. In this case, all circuits in {dj}mj=1 will evaluate 1
m

. Since p is the sum of the

circuits {dj}mj=1, it will evaluate 1 for any world that satisfies the CNF. We obtain the bound

∑

x∈val(X)

pk(x) > m · 1
m

= 1.

In contrast, if the CNF is unsatisfiable, each variable assignment x ∈ val(X) satisfies at

149

most m − 1 clauses, so the circuit p will output at most m−1
m

. Therefore , we retrieve the

following bound

∑

x∈val(X)

pk(x) ≤ 2n
(
m− 1

m

)k

.

Then, we can retrieve a value for k to separate the two bounds as follows.

2n
(
m− 1

m

)k

< 1 ⇔ k >
log(2−n)

log m−1
m

⇔ k >
n log 2

log(m)− log(m− 1)

(a)⇔ k > m · n · log 2,

where (a) follows the fact that log
(

m
m−1

)
≤ 1

m−1
. Let l = max(m,n). If we choose k =

⌈l2 · log 2⌉, then we can separate the two bounds above.

Therefore, if there exists a polynomial f(x, y) such that the power pk (k = ⌈l2 · log 2⌉)

can be computed in O(f(|p|, k)) time, then we can solve 3SAT in O(f(|p|, k)) time since the

CNF is satisfiable iff
∑

x∈val(X) p
k(x) > 1, which is impossible unless P=NP. □

Theorem 20 (Hardness of reciprocal of a circuit). Let p be a smooth and decomposable

circuit over variables X. Then computing p−1(X)|supp(p) as a decomposable circuit is #P-hard,

even if p is structured-decomposable.

Proof. We prove it for the case of PCs over discrete variables. We will prove hardness of

computing the reciprocal by showing hardness of computing the partition of the reciprocal of

a circuit. In particular, let X = {X1, . . . , Xn} be a collection of binary variables and let p be

a smooth and decomposable PC over X, then computing the quantity

∑

x∈val(X)

1

p(x)
(INVPC)

is #P-hard.

Proof is by reduction from the EXPLR problem as defined in Theorem 22. Similarly to

Theorem 22, the reduction is built by constructing a smooth and decomposable unnormalized

150

circuit p(x) = 2n · 1 + 2ne−(w0+
∑

i wixi). The circuit p comprises a sum unit over two sub-

circuits. The first is a uniform (unnormalized) distribution over X defined as a product

unit over n univariate input distribution units that always output 1 for all values val(Xi)

(see Section A.1.2 for a construction algorithm). The second is an exponential of a linear

circuit (Algorithm 15) and encodes e−(w0+
∑

i wixi) via a product unit over n univariate input

distributions, where one of them encodes e−w0−w1x1 and the rest e−wjxj for j = 2, . . . , n. Both

sub-circuits participates in the sum with parameters 2n.

The size of the constructed circuit is linear in n, and INVPC of this circuit corresponds to

the solution of the EXPLR problem. If you can represent the reciprocal of this circuit as a

decomposable circuit, you can compute its marginals (including the partition function) which

solves INVPC and hence EXPLR. Furthermore, the circuit is also omni-compatible because

mixture of fully-factorized distributions. □

Theorem 21 (Tractable real power of a deterministic circuit). Let p be a smooth, decom-

posable, and deterministic circuit over variables X. Then, for any real number α ∈ R, its

restricted power, defined as a(x)|supp(p) = pα(x)Jx ∈ supp(p)K can be represented as a smooth,

decomposable, and deterministic circuit over variables X in O(|p|) time. Moreover, if p is

structured-decomposable, then a is structured-decomposable as well.

Proof. The proof proceeds by construction and recursively builds a(x)|supp(p). As the base case,

we can assume to compute the restricted α-power of the input units of p and represent it as a

single new unit. When we encounter a deterministic sum unit, the power will decompose into

the sum of the powers of its inputs. Specifically, let p be a sum unit: p(X) =
∑

i∈ch(p) θipi(X).

Then, its restricted real power circuit a(x)|supp(p) can be expressed as

a(x)|supp(p) =


 ∑

i∈ch(p)

θipi(x)




α

Jx ∈ supp(p)K =
∑

i∈ch(p)

θαi
(
pi(x)

)αJx ∈ supp(pi)K.

Note that this construction is possible because only one input of p will be non-zero for any

input (determinism). As such, the power circuit is retaining the same structure of the original

151

Algorithm 13 power(p, α, cache)
1: Input: a smooth, deterministic and decomposable circuit p(X), a scalar α ∈ R, and a

cache for memoization
2: Output: a smooth, deterministic and decomposable circuit a(X) encoding pα(X)|supp(p)
3: if p ∈ cache then return cache(p)
4: if p is an input unit then a← Input(pα(X)|supp(p) , ϕ(p))
5: else if p is a sum unit then a← Sum({power(pi, α, cache)}|ch(p)|i=1), {θαi }|ch(p)|i=1)

6: else if p is a product unit then a← Product({power(pi, α, , cache)}|ch(p)|i=1)
7: cache(p)← a
8: return a

sum unit.

Next, for a decomposable product unit, its power will be the product of the powers of its

inputs. Specifically, let p be a product unit: p(X) = p1(X1) · p2(X2). Then, its restricted real

power circuit a(x)|supp(p) can be expressed as

a(x)|supp(p) =
(
p1(x1) · p2(x2)

)αJx ∈ supp(p)K

=
(
p1(x1)

)αJx ∈ supp(p1)K ·
(
p2(x2)

)αJx ∈ supp(p2)K.

Note that even this construction preserves the structure of p and hence its scope partitioning

is retained throughout the whole algorithm. Hence, if p were also structured-decomposable,

then a would be structured-decomposable. Algorithm 13 illustrates the whole algorithm in

detail. □

A.2.4 Quotient of Circuits

Theorem 22 (Hardness of quotient of two circuits). Let p and q be two smooth and decom-

posable circuits over variables X, and let q(x) ̸= 0 for every x ∈ val(X). Then, computing

their quotient p(X)/q(X) as a decomposable circuit is #P-hard, even if they are compatible.

Proof. This result follows from Theorem 4 by noting that computing the reciprocal of a

circuit is a special case of computing the quotient of two circuits. In particular, let p be an

152

omni-compatible circuit representing the constant function 1 over variables X, constructed as

in Section A.1.2. Then computing the reciprocal of a structured-decomposable circuit q as a

decomposable circuit reduces to computing the quotient p/q. □

Theorem 23 (Tractable restricted quotient of two circuits). Let p and q be two compatible

circuits over variables X, and let q be also deterministic. Then, their quotient restricted to

supp(q) can be represented as a circuit compatible with p (and q) over variables X in O(|p||q|)

time. Moreover, if p is also deterministic, then the quotient circuit is deterministic as well.

Proof. We know from Theorem 5 that we can obtain the reciprocal circuit q−1 that is also

compatible with q (and by extension p) in O(|q|) time. Then we can multiply p and q−1 in

O(|p||q|) time using Theorem 2 to compute their quotient circuit that is still compatible with

p and q. If p is also deterministic, then we are multiplying two deterministic circuits and

therefore their product circuit is deterministic (Theorem 2). □

A.2.5 Logarithm of a PC

Theorem 24 (Logarithms). (Tractability) Let p be a smooth, deterministic and decom-

posable PC over variables X. Then its logarithm circuit, restricted to the support of p and

defined as

l(x)|supp(p) =





log p(x) if x ∈ supp(p)

0 otherwise

for every x ∈ val(X) can be represented as a smooth and decomposable circuit that shares

the scope partitioning of p in O(|p|) time. (Hardness) Otherwise, if p is a smooth and

decomposable PC, then computing its logarithm circuit l(X) := log p(X) as a decomposable

circuit is #P-hard, even if p is structured-decomposable.

We will provide the proofs for tractability and hardness separately below.

Proof of tractability. The proof proceeds by recursively constructing l(x)|supp(p). In the base

case, we assume computing the logarithm of an input unit can be done in O(1) time. When

153

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log p1(X)

JY ≥ δK

log p1(Y)

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y)

JX ≥ γK

×

×

supp(p2)

log θ2

Figure A.1: Building the logarithmic circuit (right) for a deterministic PC (left) whose input
units are labeled by their supports. A single sum unit is introduced over smoothed product
units and additional dummy input units which share the same support across circuits if they
have the same color.

we encounter a deterministic sum unit p(x) =
∑

i∈|ch(p)| θipi(x), its logarithm circuit consists

of the sum of (i) the logarithm circuits of its child units and (ii) the support circuits of its

children weighted by their respective weights {θi}|ch(p)|i=1 :

l(x)|supp(x) = log


 ∑

i∈ch(p)

θipi(x)


 · Jx ∈ supp(p)K =

∑

i∈|ch(p)|

log
(
θipi(x)

)
Jx ∈ supp(pi)K

=
∑

i∈|ch(p)|

log θiJx ∈ supp(pi)K +
∑

i∈|ch(p)|

li(x)|supp(pi) .

For a smooth, decomposable, and deterministic product unit p(x) = p1(x)p2(x), its

logarithm circuit can be decomposed as sum of the logarithm circuits of its child units:

l(x)|supp(x) = log (p1(x1)p2(x2)) · Jx ∈ supp(p)K

= log p1(x1)Jx ∈ supp(p)K + log p2(x2)Jx ∈ supp(p)K

= log p1(x1)Jx1 ∈ supp(p1)KJx2 ∈ supp(p2)K + log p2(x2)Jx2 ∈ supp(p2)KJx1 ∈ supp(p1)K

= l(x1)|supp(p1) Jx2 ∈ supp(p2)K + l(x2)|supp(p2) Jx1 ∈ supp(p1)K.

Note that in both case, the support circuits (e.g., Jx ∈ supp(p)K) are used to enforce

smoothness in the output circuit. Algorithm 14 illustrates the whole algorithm in detail,

showing that the construction of these support circuits can be done in linear time by caching

intermediate sub-circuits while calling Algorithm 9. Furthermore, the newly introduced

154

product units, i.e., l(x1)|supp(p1) Jx2 ∈ supp(p2)K, l(x2)|supp(p2) Jx1 ∈ supp(p1)K, and the addi-

tional support input unit log θiJx ∈ supp(pi)K share the same support of p by construction.

Fig. A.1 illustrates this property with one example. This implies that when a deterministic

circuit and its logarithmic circuit are going to be multiplied, e.g., when computing entropies

(Section A.3.2), we can check for their support to overlap in linear time (Algorithm 11). □

Proof of hardness. We will prove hardness of computing the logarithm by showing hardness

of computing the partition function of the logarithm of a circuit. Let X = {X1, . . . , Xn} be a

collection of binary variables, and p a smooth and decomposable PC over X where p(x) > 0

for all x ∈ val(X). Then computing the quantity

∑

x∈val(X)

log p(x) (LOGPC)

is #P-hard.

The proof is by reduction from #NUMPAR, the counting problem of the number parti-

tioning problem (NUMPAR) defined as follows. Given n positive integers k1, . . . , kn, we want

to decide whether there exists a subset S ⊂ [n] such that
∑

i∈S ki =
∑

i ̸∈S ki. NUMPAR is

NP-complete, and #NUMPAR which asks for the number of solutions is known to be #P-hard.

We will show that we can solve #NUMPAR using an oracle for LOGPC, which will imply

that LOGPC is also #P-hard. First, consider the following quantity SL for a given weight

function w(·):

SL :=
∑

x∈val(X)

log(σ(w(x)) + 1) =
∑

x∈val(X)

log

(
1

1 + e−w(x)
+ 1

)
=

∑

x∈val(X)

log

(
2 + e−w(x)

1 + e−w(x)

)

=
∑

x∈val(X)

log(2 + e−w(x))−
∑

x∈val(X)

log(1 + e−w(x)).

Similar to the construction in the proof of Theorem 4, we can construct smooth and decom-

posable, unnormalized PCs for 2 + e−w(x) and 1 + e−w(x) of size linear in n. Then, we can

compute SL via two calls to the oracle for LOGPC on these PCs.

155

Next, we choose the weight function w(·) such that SL can be used to answer #NUMPAR.

For a given instance of NUMPAR described by k1, . . . , kn and a large integer m, which will be

chosen later, we define the following weight function:

w(x) := −m

2
−m

∑

i

ki + 2m
∑

i

kixi.

In other words, w(x) = w0 +
∑

i wixi where w0 = −m/2 − m
∑

i ki and wi = 2mki for

i = 1, . . . , n. Here, an assignment x corresponds to a subset Sx = {i|xi = 1, xi ∈ x}. Then

the assignment 1− x corresponds to the complement S1−x = Sx. In the following, we will

consider pairs of assignments (x, 1− x) and say that it is a solution to NUMPAR if Sx and

by extension S1−x are solutions to NUMPAR.

Observe that if (x, 1 − x) is a solution to NUMPAR, then w(x) = w(1 − x) = −m/2.

Otherwise, one of their weights must be ≥ m/2 and the other ≤ −3m/2. We can then

deduce the following facts about the contribution of each pair to SL, defined as c(x, 1− x) =

log(σ(w(x)) + 1) + log(σ(w(1− x)) + 1).

If the pair (x, 1− x) is a solution to NUMPAR, then its contribution to SL is going to be:

c(x, 1− x) = 2 log(σ(−m/2) + 1).

Otherwise, we can bound its contribution as follows:

log(σ(m/2) + 1) ≤ c(x, 1− x) ≤ 1 + log(σ(−3m/2) + 1)

If there are k pairs that are solutions to the NUMPAR problem, then using the above

observations we have the following bounds on SL:

SL ≥(2n−1 − k) log (σ(m/2) + 1) + 2k log (σ(−m/2) + 1) ≥ (2n−1 − k) log (σ(m/2) + 1) ,

(A.1)

156

SL ≤(2n−1 − k)(1 + log (σ(−3m/2) + 1)) + 2k log(σ(−m/2) + 1). (A.2)

Suppose for some given ϵ > 0, we select m such that it satisfies both 1−ϵ ≤ log(σ(m/2)+1)

and log(σ(−m/2) + 1) ≤ ϵ. First, this implies that m also satisfies the following:

1 + log (σ(−3m/2) + 1)) ≤ 1 + log(σ(−m/2) + 1) ≤ 1 + ϵ.

Plugging in above inequalities to Eqs. (A.1) and (A.2), we get the following bounds on SL

w.r.t. ϵ and k:

(2n−1 − k)(1− ϵ) ≤ SL ≤ (2n−1 − k)(1 + ϵ) + 2kϵ.

We can alternatively express this as the following bounds on k:

2n−1(1− ϵ)− SL

1− ϵ
≤ k ≤ 2n−1(1 + ϵ)− SL

1− ϵ
.

The difference between the upper and lower bounds on k is equal to 2nϵ/(1 − ϵ). If this

difference is less than 1—e.g. by setting ϵ = 1/(2n + 2)—we can exactly solve for k. In

particular, it must be equal to the ceiling of the lower bound as well as the floor of the upper

bound. Moreover, the answer to #NUMPAR is given by 2k. This concludes the proof that

computing LOGPC is #P-hard. □

A.2.6 Exponential Function of a Circuit

Theorem 25 (Hardness of the exponential of a circuit). Let p be a smooth and decomposable

circuit over variables X. Then, computing its exponential exp (p(X)) as a decomposable

circuit is #P-hard, even if p is structured-decomposable.

Proof. We will prove hardness of computing the exponential by showing hardness of computing

157

Algorithm 14 logarithm(p, cachel, caches)
1: Input: a smooth, deterministic and decomposable PC p(X) and two caches for memoiza-

tion (cachel for the logarithmic circuit and caches for the support circuit).
2: Output: a smooth and decomposable circuit l(X) encoding log (p(X))
3: if p ∈ cachel then return cachel(p)
4: if p is an input unit then
5: l← Input(log

(
p|supp(p)

)
, ϕ(p))

6: else if p is a sum unit then
7: n← {}
8: for i = 1 to |ch(p)| do
9: n← n ∪ {Support(pi, caches)} ∪ {logarithm(pi, cachel)}

10: l← Sum(n, {log θ1, 1, log θ2, 1, . . . , log θ|ch(p)|, 1})
11: else if p is a product unit then
12: n← {}
13: for i = 1 to |ch(p)| do
14: n← n ∪ {Product({logarithm(pi, cachel)} ∪ {Support(pj, caches)}j ̸=i)}
15: l← Sum(n, {1}|ch(p)|i=1)
16: cachel(p)← l
17: return l

the partition function of the exponential of a circuit. Let X = {X1, . . . , Xn} be a collection

of binary variables with values in {−1,+1} and let p be a smooth and decomposable PC over

X then computing the quantity
∑

x∈val(X)

exp (p(x)) (EXPOPC)

is #P-hard.

The proof is a reduction from the problem of computing the partition function of an Ising

model, ISING which is known to be #P-complete [70]. Given a graph G = (V,E) with n

vertexes, computing the partition function of an Ising model associated to G and equipped

with potentials associated to its edges ({wu,v}(u,v)∈E) and vertexes ({wv}v∈V) equals to

∑

x∈val(X)

exp


 ∑

(u,v)∈E

wu,vxuxv +
∑

v∈V

wvxv


 . (ISING)

The reduction is made by constructing a smooth and decomposable circuit p(X) that

computes
∑

(u,v)∈E wu,vxuxv +
∑

v∈V . This can be done by introducing a sum units with

158

|E|+ |V | inputs that are product units and with weights {wu,v}(u,v)∈E∪{wv}v∈V . The first |E|

product units receive inputs from n input distributions where only 2 corresponds to the binary

indicator inputs Xu and Xv for an edge (u, v) ∈ E while the remaining n − 2 are uniform

distributions outputting 1 for all the possible states of variables X \ {Xu, Xv}. Analogously,

the remaining |V | product units receive input from n of which only one, corresponding to the

vertex v ∈ V is an indicator unit over Xv, while the remaining are uniform distributions for

variables in X \ {Xv}. □

Theorem 26 (Tractable exponential of a linear circuit). Let p be a linear circuit over variables

X, i.e., p(X) =
∑

i θi ·Xi. Then exp (p(X)) can be represented as an omni-compatible circuit

with a single product unit in O(|p|) time.

Proof. The proof follows immediately by the properties of exponentials of sums. Algorithm 15

formalizes the construction. □

Algorithm 15 exponential(p)

1: Input: a smooth circuit p encoding p(X) = θ0 +
∑n

i=1 θiXi

2: Output: its exponential circuit encoding exp (p(X))

3: e← {Input(exp (θ0 + θ1X1) , X1)}

4: for i = 2 to n do

5: e← e ∪ {Input(exp (θiXi) , Xi)}

6: return Product(e)

A.2.7 Other tractable operators over circuits

This section proves Lemma 2, which states that any operator over circuits that should yield

a decomposable and smooth circuit as output must take the form of a sum, power, logarithm

or exponential.

Lemma 2 (Atlas Completeness). Let f be a continuous function. If (1) f : R→ R satisfies

f(x + y) = f(x) + f(y) then it is a linear function β · x; if (2) f : R+ → R+ satisfies

159

f(x · y) = f(x) · f(y), then it takes the form xβ; if (3) instead f : R+ → R satisfies

f(x · y) = f(x) + f(y), then it takes the form β log(x); and if (4) f : R→ R+ satisfies that

f(x+ y) = f(x) · f(y) then it is of the form exp(β · x), for a certain β ∈ R.

Proof. The proof of all properties follows from constructing f such that we obtain a Cauchy

functional equation [71, 152].

The condition (1) exactly takes the form of a Cauchy functional equation, then it must

hold that f(x) = β · x.

For condition (2), let g(x) = log(f(exp(x))) for all x ∈ R, which is continuous because f

is. Then, it follows that

g(x+ y) = log(f(exp(x+ y))) = log(f(exp(x) · exp(y))) = log(f(exp(x))) + log(f(exp(y)))

= g(x) + g(y).

Therefore, g(x) assumes the Cauchy functional form and, as in case (1), it is equal to β · x.

β can be retrieved by solving β · x = log(f(exp(x))) for x = 1. This gives β = log(f(e)).

Applying the definition of g, we can hence write

f(exp(x)) = eg(x) = eβ·x = (ex)β

Let y ∈ R+. Using the identity y = elog(y) it follows that:

f(y) = f(elog(y)) =
(
elog(y)

)β
= yβ.

Condition (3) follows an analogous pattern. Let g(x) = f(exp(x)) for all x ∈ R, which is

continuous as f is. Once again, g satisfies the Cauchy functional form:

g(x+ y) = f(exp(x+ y)) = f(exp(x) · exp(y)) = f(exp(x)) + f(exp(y)) = g(x) + g(y).

160

Therefore, g(x) must be of the form β · x for β = f(e). Hence, f(y) = β log(y).

Lastly, for condition (4), g(x) = log(f(x)) for all x ∈ R, which is continuous if f is. Then,

we can retrieve the Cauchy functional by

g(x+ y) = log(f(x+ y)) = log(f(x) · f(y)) = log(f(x)) + log(f(y)) = g(x) + g(y).

Therefore, g(x) must be of the form β · x. Hence, f(y) = exp(β · y). □

In summary, Lemma 2 states that if we want to enlarge our atlas beyond sum and product

circuit operators, we need to focus our attention over powers, logarithms and exponentials.

At the same time, it states that no operator with a different functional form and yet yielding

a circuit made of sum and product units can be found. Extending our atlas to deal with a

new language of circuits is an interesting future research direction.

A.3 Complex Information-Theoretic Queries

This section collects the complete tractability and hardness results for the queries in Table 2.2.

Note that the tractability proofs are succinct thanks to our atlas which allows to define a

tractable model class effortlessly. Some hardness proofs also benefit from the hardness results

we provided for the simple operators in the previous section.

A.3.1 Cross Entropy

Theorem 27. Let p and q be two compatible PCs over variables X, and also let q be

deterministic. Then their cross-entropy, i.e.,

−
∫

val(X)

p(x) log(q(x))dX,

restricted to the support of q can be exactly computed in O(|p||q|) time. If q is not deterministic,

then computing their cross-entropy is #P-hard, even if p and q are compatible over X.

161

Proof. (Tractability) From Theorem 24 we know that we can compute the logarithm of q in

polytime, which is a PC of size O(|q|) that is compatible with q and hence with p. Therefore,

multiplying p and log q according to Theorem 1 can be done exactly in polytime and yields

a circuit of size O(|p||q|) that is still smooth and decomposable, hence we can tractably

compute its partition function.

(Hardness) The proof consists of a simple reduction from LOGPC from Theorem 24. We

know that computing LOGPC for a smooth and decomposable PC over binary variables X is

#P-hard. We can reduce this to computing the cross entropy between p = 1, which can be

constructed as an omni-compatible circuit (Section A.1.2), and the original PC of the LOGPC

problem. Thus, the cross-entropy of two compatible circuits is a #P-hard problem. □

A.3.2 Entropy

Theorem 28. Let p be a smooth, deterministic, and decomposable PC over variables X.

Then its entropy,2 defined as

−
∫

val(X)

p(x) log p(x) dX

can be exactly computed in O(|p|) time. If p is smooth and decomposable but not deterministic,

then computing its Shannon entropy, defined as

ent(p) := −
∑

val(X)

p(x) log(p(x))dX (ENTPC)

is coNP-hard.

Proof. (Tractability) Using Theorem 24 we can compute the logarithm of p in polytime as

a smooth and decomposable PC of size O(|p|) which furthermore shares the same support

partitioning with p. Therefore, multiplying p and log p according to Algorithm 11 can be done

in polytime and yields a smooth and decomposable circuit of size O(|p|) since log p shares the

2For the continuous case this quantity refers to the differential entropy, while for the discrete case it is the
Shannon entropy.

162

same support structure of p (Theorem 24). Therefore, we can compute the partition function

of the resulting circuit in time linear in its size.

(Hardness) The hardness proof contains a polytime reduction from the coNP-hard

3UNSAT problem, defined as follows: given a set of n Boolean variables X = {X1, . . . , Xn}

and a CNF with m clauses {c1, . . . , cm} (each clause contains exactly 3 literals), decide

whether the CNF is unsatisfiable.

The reduction borrows two gadget circuits pβ and pγ defined in Section A.1.3. They each

represent a logical formula over an auxiliary set of variables, which we denote here X′, and

thus outputs 0 or 1 for all values of X′. Moreover, by construction, pβ · pγ is the constant

function 0 if and only if the original CNF is unsatisfiable.

We further construct a circuit pα as the summation over pβ and pγ . Recall that pβ and pγ

can efficiently be constructed as smooth and decomposable circuits, and thus their sum can

be represented as a smooth and decomposable circuit in polynomial time. We will now show

that 3UNSAT can be reduced to checking whether the entropy of pα is zero.

First, observe that for any assignment x′ to X′, pα(x′) evaluates to 0, 1, or 2, because pβ

and pγ always evaluates to either 0 or 1. Moreover, if pα only outputs 0 or 1 for all values of

X′, then pβ · pγ must always be 0, implying that the original CNF is unsatisfiable. Lastly, in

such a case, the entropy of pα must be 0, whereas the entropy will be nonzero if there is an

assignment x′ such that pα(x′) = 2. This concludes the proof that computing the entropy of

a smooth and decomposable PC is coNP-hard. □

A.3.3 Mutual Information

Theorem 29. Let p be a deterministic and structured-decomposable PC over variables

Z = X ∪Y (X ∩Y = ∅). Then the mutual information between X and Y, defined as

mi(p;X,Y) :=

∫

val(Z)

p(x,y) log
p(x,y)

p(x) · p(y)dXdY,

163

can be exactly computed in O(|p|) time if p is still deterministic after marginalizing out Y as

well as after marginalizing out X.3 If p is instead smooth, decomposable, and deterministic,

then computing the mutual information between X and Y is coNP-hard.

Proof. (Tractability) From Theorem 24 we know that the logarithm circuits of p(X,Y),

p(X)Jy ∈ supp(p(Y))K, and p(Y)Jx ∈ supp(p(X))K can be computed in polytime and are

smooth and decomposable circuits of size O(|p|) that furthermore share the same support

partitioning with p(Y,Z). Therefore, we can multiply p(X,Y) with each of these logarithm

circuits efficiently according to Theorem 2 to yield circuits of size O(|p|). These are still

smooth and decomposable circuits. Hence we can compute their partition functions and

compute the mutual information between X and Y w.r.t. p.

(Hardness) We show hardness for the case of Boolean inputs, which implies hardness in

the general case. This proof largely follows the hardness proof of Theorem 28 to show that

there is a polytime reduction from 3UNSAT to the mutual information of PCs. For a given

CNF, suppose we construct pβ, pγ, and pα = pβ + pγ over a set of Boolean variables, say X,

as shown in Section A.1.2 and Theorem 28.

Let Y={Y } be a single Boolean variable, and define pδ as:

pδ := pβ × JY = 1K + pγ × JY = 0K.

That is, we first construct two product units q1, q2 with inputs {pβ, JY = 1K} and {pγ, JY = 0K},
respectively, and build a sum unit pδ with inputs {q1, q2} and weights {1, 1}. Then pδ has

the following properties: (1) pδ is smooth, decomposable, and deterministic, following from

the fact that pβ and pγ are also smooth, decomposable, and deterministic, and that q1 and

q2 have no overlapping support. (2) ent(pδ) can be computed in linear-time w.r.t. the

circuit size by Theorem 28. (3) pδ(Y = 1) and pδ(Y = 0) can be computed in linear time

3This structural property of circuits is also known as marginal determinism [14] and has been introduced
in the context of marginal MAP inference and the computation of same-decision probabilities of Bayesian
classifiers [19,128].

164

(w.r.t. size of the circuit pδ), as pδ admits tractable marginalization. (4) For any x ∈ val(X),

pδ(x) = pβ(x) + pγ(x) = pα(x).

We can express the mutual information mi(pδ;X,Y) as:

mi(pδ;X,Y) =ent(pδ)− pδ(Y =1) log pδ(Y =1)− pδ(Y =0) log pδ(Y =0)− ent(pα).

Therefore, given an oracle that computes mi(pδ;X,Y), we can check if it is equal to ent(pδ)−

pδ(Y = 1) log pδ(Y = 1)−pδ(Y = 0) log pδ(Y = 0), which is equivalent to checking ent(pα) =

0, and decide whether the original CNF is unsatisfiable. Hence, computing the mutual

information of smooth, deterministic, and decomposable PCs is a coNP-hard problem. □

A.3.4 Kullback-Leibler Divergence

Theorem 30. Let p and q be two deterministic and compatible PCs over variables X. Then,

their intersectional Kullback-Leibler divergence (KLD), defined as

DKL(p ∥ q) =
∫

supp(p)∩supp(q)
p(x) log

p(x)

q(x)
dX,

can exactly be computed in O(|p||q|) time. If p and q are not deterministic, then computing

their KLD is #P-hard, even if they are compatible.

Proof. (Tractability) Tractability of the intersectional KLD can be concluded directly from

the tractability of cross entropy and entropy (Theorem 27 and 28). Specifically, KLD can be

expressed as the difference between cross entropy and entropy:

∫
p(x) log

p(x)

q(x)
dX =

∫
p(x) log p(x) dX−

∫
p(x) log q(x) dX.

We can compute the entropy of a smooth, decomposable, and deterministic PC p in O(|p|);

and the cross entropy between two deterministic and compatible PCs p and q in O(|p||q|)

time.

165

(Hardness) The proof proceeds similarly to the hardness proof of Theorem 27. Recall

that the LOGPC problem from Theorem 24 is #P-hard for a smooth and decomposable

PC over binary variables. We can reduce this to computing the negative of KL divergence

between p = 1, which can be constructed as an omni-compatible circuit (Section A.1.2), and

q the original PC of the LOGPC problem. Thus, the KLD of two compatible circuits is a

#P-hard problem. □

A.3.5 Rényi Entropy

Definition 12 (Rényi entropy). The Rényi entropy of order α ∈ R of a PC p is defined as

1

1− α
log

∫

supp(p)

pα(x)dX.

Theorem 31 (Rényi entropy for natural α). Let p be a structured-decomposable PC over

variables X and α ∈ N. Its Rényi entropy can be computed in O(|p|α) time. If p is instead

smooth and decomposable, then computing its Rényi entropy of order α is #P-hard.

Proof. (Tractability) Tractability easily follows from computing the natural power circuit

of p, which takes O(|p|α) time according to Theorem 3.

(Hardness) We show hardness for the case of discrete inputs. The hardness of computing

the Rényi entropy for natural number α is implied by the hardness of computing the natural

power of smooth and decomposable PCs. Specifically, we conclude the proof by observing

that there exists a polytime reduction from POW2PC, defined as
∑

x∈val(X) p
2(x), a #P-hard

problem as proved in Theorem 3, to Rényi entropy with α = 2. □

Theorem 32 (Rényi entropy for real α). Let p be a smooth, decomposable, and deterministic

PC over variables X and α ∈ R+. Its Rényi entropy can be computed in O(|p|) time. If p

is not deterministic, then computing its Rényi entropy of order α is #P-hard, even if p is

structured-decomposable.

166

Proof. (Tractability) Tractability easily follows from computing the power circuit of p,

which takes O(|p|) time according to Theorem 5.

(Hardness) Similar to the hardness proof of Theorem 31, this hardness result follows

from the fact that computing the reciprocal of a structured-decomposable circuit is #P-

hard (Theorem 4). Again, this is demonstrated by a polytime reduction from INVPC (i.e.,
∑

x∈val(X) p
−1(x)) to Rényi entropy with α = −1. □

A.3.6 Rényi’s alpha divergence

Definition 13 (Rényi’s α-divergence). The Rényi’s α-divergence of two PCs p and q is

defined as

Dα(p ∥ q) =
1

1− α
log

∫

supp(p)∩supp(q)
pα(x)q1−α(x)dX.

Theorem 33 (Hardness of alpha divergence of two PCs). Let p and q be two smooth

and decomposable PCs over variables X. Then computing their Rényi’s α-divergence for

α ∈ R \ {1} is #P-hard, even if p and q are compatible.

Proof. Suppose p is a smooth and decomposable PC X representing the constant function 1,

which can be constructed as in Section A.1.2. Then pα is also a constant 1. Hence, computing

Rényi’s 2-divergence between p and another smooth and decomposable PC q is as hard as

computing the reciprocal of q, which is #P-hard (Theorem 4). □

Theorem 34 (Tractable alpha divergence of two PCs). Let p and q be compatible PCs over

variables X. Then their Rényi’s α-divergence can be exactly computed in O(|p|α|q|) time

for α ∈ N, α > 1 if q is deterministic or in O(|p||q|) for α ∈ R, α ̸= 1 if p and q are both

deterministic.

Proof. The proof easily follows from first computing the power circuit of p and q according to

Theorem 5 or Theorem 3 in polytime. Depending on the value of α, the resulting circuits will

167

have size O(|p|α) and O(|q|) for α ∈ N or O(|p|) and O(|q|) for α ∈ R and will be compatible

with the input circuits. Then, since they are compatible between themselves, their product

can be done in polytime (Theorem 2) and it is going to be a smooth and decomposable PC

of size O(|p|α|q|) (for α ∈ N) or O(|p||q|) (for α ∈ R), for which the partition function can

be computed in time linear in its size. □

A.3.7 Itakura-Saito Divergence

Theorem 35. Let p and q be two deterministic and compatible PCs over variables X, with

bounded intersectional support supp(p) ∩ supp(q). Then their Itakura-Saito divergence, defined

as

DIS(p ∥ q) =
∫

supp(p)∩supp(q)

(
p(x)

q(x)
− log

p(x)

q(x)
− 1

)
dX, (A.3)

can be exactly computed in O(|p||q|) time. If p and q are instead compatible but not deter-

ministic, then computing their Itakura-Saito divergence is #P-hard.

Proof. (Tractability) The proof easily follows from noting that the integral decomposes

into three integrals over the inner sum:
∫
supp(p)∩supp(q)

p(x)
q(x)

dX −
∫
supp(p)∩supp(q) log

p(x)
q(x)

dX

-
∫
supp(p)∩supp(q) 1 dX.. Then, the first integral over the quotient can be solved O(|p||q|)

(Theorem 23); the second integral over the log of a quotient of two PCs can be computed in

time O(|p||q|) (Theorem 23 and 24) and finally the last one integrates to the dimensionality

of |supp(p) ∩ supp(q)|, which we assume to exist.

(Hardness) We show hardness for the case of binary variables X = {X1, . . . , Xn}.

Suppose q is an omni-compatible circuit representing the constant function 1, which can be

constructed as in Section A.1.2. As such, integration in Eq. (A.3) becomes the summation
∑

val(X) p(x)−
∑

val(X) log p(x)− 2n. Hence, computing DIS must be as hard as computing
∑

val(X) log p(x), since the first sum can be efficiently computed as p must be smooth and

decomposable by assumption and the last one is a constant. That is, we reduced the problem of

168

computing the logarithm of the non-deterministic circuit (LOGPC, Theorem 24) to computing

DIS. □

A.3.8 Cauchy-Schwarz Divergence

Theorem 36. Let p and q be two structured-decomposable and compatible PCs over variables

X. Then their Cauchy-Schwarz divergence, defined as

DCS(p ∥ q) = − log

∫
x∈val(X)

p(x)q(x) dX
√∫

x∈val(X)
p2(x) dX

∫
x∈val(X)

q2(x) dX
,

can be exactly computed in time O(|p||q|+ |p|2+ |q|2). If p and q are instead structured-

decomposable but not compatible, then computing their Cauchy-Schwarz divergence is #P-hard.

Proof. (Tractability) The proof easily follows from noting that the numerator inside the

log can be computed in O(|p||q|) time as a product of two compatible circuits (Theorem 2);

and the integrals inside the square root at the denominator can both be solved in O(|p|2)

and O(|q|2) respectively as natural powers of structured-decomposable circuits (Theorem 3).

(Hardness) The proof follows by noting that if p and q are structured-decomposable,

then computing the denominator inside the log can be exactly done in |p|2 + |q|2 because

they are natural powers of structured-decomposable circuits (Theorem 3). Then DCS must be

as hard as a the product of two non-compatible circuits. Therefore we can reduce MULPC

(Theorem 1) to computing DCS. □

A.3.9 Squared Loss Divergence

Theorem 37. Let p and q be two structured-decomposable and compatible PCs over variables

X. Then their squared loss, defined as

DSL(p ∥ q) =
∫

val(X)

(p(x)− q(x))2 dX,

169

can be computed exactly in time O(|p||q|+|p|2+|q|2). If p and q are structured-decomposable

but not compatible, then computing their squared loss is #P-hard.

Proof. (Tractability) Proof follows by noting that the integral decomposes over the expanded

square as
∫
val(X)

p2(x) dX+
∫
val(X)

q2(x) dX− 2
∫
val(X)

p(x)q(x) dX and as such each integral

can be computed by leveraging the tractable power of structured-decomposable circuits

(Theorem 3) and the tractable product of compatible circuits (Theorem 2) and therefore the

overall complexity is given by the maximum of the three.

(Hardness) Proof follows by noting that the integral decomposes over the expanded

square as
∫
val(X)

p2(x) dX +
∫
val(X)

q2(x) dX − 2
∫
val(X)

p(x)q(x) dX and that the first two

terms can be computed in polytime as natural powers of structured-decomposable circuits

(Theorem 3), hence computing DSL must be as hard as computing the product of two non-

compatible circuits. Therefore we can reduce MULPC (Theorem 1) to computing DSL.

□

A.4 Expectation-based queries

This section completes the discussion around the complex queries that can be dealt with our

atlas and details the expectations briefly discussed at the end of Section 2.5.

A.4.1 Moments of a distribution

Proposition 10 (Tractable moments of a PC). Let p(X) be a smooth and decomposable

PC over variables X = {X1, . . . , Xd}, then for a set of natural numbers k = (k1, . . . , kd), its

k−moment, defined as ∫

val(X)

xk1
1 xk2

2 . . . xkd
d p(x) dX

can be computed exactly in time O(|p|).

Proof. The proof directly follows from representing xk1
1 xk2

2 . . . xkd
d as an omni-compatible

170

l1 l2

X1

0 1 l3

X2

0 1

l4 l5

X1

0 1

JX1 = 0KJX2 = 0KJX1 = 1KJX2 = 0K1JX2 = 1KJX1 = 0K1JX1 = 1K1

×××××

l1
l2

l3
l4

l5

Figure A.2: Encoding an additive ensemble of two trees over X = {X1, X2} (left) in an
omni-compatible circuit over X (right).

circuit comprising a single product unit over d input units, each encoding xki
i , and then

applying Corollary 1. □

A.4.2 Probability of logical formulas

Proposition 11 (Tractable probability of a logical formula). Let p be a smooth and decom-

posable PC over variables X and f an indicator function that represents a logical formula

over X that can be compiled into a circuit compatible with p.4 Then computing Pp [f] can be

done in O(|p||f |) time.

Proof. It follows directly from Theorem 1, by noting that Pp [f] = Ex∼p(X) [f(x)] and hence

a tractable product between p and f suffices. □

A.4.3 Expected predictions

Example 1 (Decision trees as circuits). Let F be an additive ensemble of (decision or

regression) trees over variables X, also called a forest, and computing

F(x) =
∑

Ti∈F

θiTi(x)

4E.g. by compiling it into an SDD [12,36] whose vtree encodes the hierarchical scope partitioning of p.

171

for some input configuration x ∈ val(X) and each Ti realizing a tree, i.e., a function of the

form

T (x) =
∑

pj∈paths(T)

lj ·
∏

Xk∈ϕ(pj)

Jxk ≤ δkK

where the outer sum ranges over all possible paths in tree T , lj ∈ R is the label (class or

predicted real) associated to the leaf of that path, and the product is over indicator functions

encoding the decision to take one branch of the tree in path pj if xk, the observed value for

variable Xk appearing in the decision node, i.e., satisfies the condition Jxk ≤ δkK for a certain

threshold δk ∈ R.

Then, it is easy to transform F into an omni-compatible circuit p(X) of the form

p(x) =
∑

Ti∈F ,pj∈paths(T⟩)

lj ·
∏

Xk∈ϕ(pj)

Jxk ≤ δkK ·
∏

X′
k ̸∈ϕ(pj)

1

with a single sum unit realizing the outer sum and as many input product units as paths in

the forest, each of which realizing a fully-factorized model over X, and weighted by lj. One

example is shown in Fig. A.2.

Proposition 12 (Tractable expected predictions of additive ensembles of trees). Let p be a

smooth and decomposable PC and f an additive ensemble of k decision trees over variables X

and bounded depth. Then, its expected predictions can be exactly computed in O(k|p|).

Proof. Recall that an additive ensemble of decision trees can be encoded as an omni-compatible

circuit. Then, proof follows from Corollary 1. □

Proposition 13 (Tractable expected predictions of deep regressors (regression circuits)).

Let p be a structured-decomposable PC over variables X and f be a regression circuit [75]

172

Algorithm 16 RGCtoCircuit(r, cacher, caches)
1: Input: a regression circuit r over variables X and two caches for memoization (i.e.,

cacher and caches).
2: Output: its representation as a circuit p(X).
3: if r ∈ cacher then return cacher(r)
4: if r is an input gate then
5: p← Input(0, ϕ(r))
6: else if r is a sum gate then
7: n← {}
8: for i = 1 to |ch(r)| do
9: n← n ∪ {Support(ri, caches)} ∪ {RGCtoCircuit(ri, cacher)}

10: p← Sum(n, {θi, 11, . . . , 1ch(p)}|ch(r)|i=1)
11: else if r is a product gate then
12: for i = 1 to |ch(r)| do
13: p← Product({RGCtoCircuit(ri, cacher)} ∪ {Support(rj, caches)}j ̸=i)
14: cacher(r)← p
15: return p

compatible with p over X, and defined as

fn(x) =





0 if n is an input

fnL
(xL) + fnR

(xR) if n is an AND

∑
c∈ch(n) sc(x) (ϕc + fc(x)) if n is an OR

where sc(x) = Jx ∈ supp(c)K. Then, its expected predictions can be exactly computed in

O(|p||h|) time, where h is its circuit representation as computed by Algorithm 16.

Proof. Proof follows from noting that Algorithm 16 outputs a polysize circuit representation

h in polytime. Then, computing Ex∼p(X) [h(x)] can be done in O(|p||h|) time by Theorem 2.

□

A.5 Experiments

Generated PCs All adopted PCs were generated by running Strudel [32] on the twenty

density estimation benchmarks [176]. For every dataset, we ran Strudel twice with 200

173

Table A.1: Sizes of the intermediate and final circuits as processed by the operators in the
pipelines of the Shannon and Rényi (for α = 1.5) entropies and Kullback-Leibler and Alpha
(for α = 1.5) divergences when computed for two input circuits p and q learned from 20
different real-world datasets as in [32].

Dataset p q pα q1−α r = log(q) s = p/q t = log(s) p× q p× r p× t pα × q1−α

nltcs 2779 7174 2779 7174 26155 7202 26239 7202 26183 26239 7202
msnbc 2765 6614 2765 6614 24111 6634 24171 6634 24131 24171 6634

kdd 4963 50377 4963 50377 184575 50417 184695 50417 184615 184695 50417
plants 12909 64018 12909 64018 234661 64070 234817 64070 234713 234817 64070
audio 10278 45864 10278 45864 168062 45950 168320 45950 168148 168320 45950

jester 6475 35369 6475 35369 129579 35479 129909 35479 129689 129909 35479
netflix 5068 14636 5068 14636 53571 14706 53781 14706 53641 53781 14706

accidents 3193 8183 3193 8183 29891 8299 30239 8299 30007 30239 8299
retail 4790 14926 4790 14926 54554 14994 54758 14994 54622 54758 14994
pumsb 4277 12461 4277 12461 45500 12595 45902 12595 45634 45902 12595

dna 73828 856955 73828 856955 3141981 857029 3142203 857029 3142055 3142203 857029
kosarek 5115 12988 5115 12988 47354 13106 47708 13106 47472 47708 13106
msnweb 4859 9025 4859 9025 32675 9175 33125 9175 32825 33125 9175

book 7718 12731 7718 12731 45985 12943 46621 12943 46197 46621 12943
movie 8309 11732 8309 11732 42374 11926 42956 11926 42568 42956 11926

webkb 10598 13397 10598 13397 47859 13653 48627 13653 48115 48627 13653
cr52 10912 14348 10912 14348 51094 14546 51688 14546 51292 51688 14546

c20ng 11386 14630 11386 14630 52120 14886 52888 14886 52376 52888 14886
bbc 13884 17016 13884 17016 60857 17282 61655 17282 61123 61655 17282
ad 17744 21676 17744 21676 76870 21920 77602 21920 77114 77602 21920

and 500 iterations, respectively. All other hyperparameters were selected following Dang et

al. [32].

Server specifications All our experiments were run on a server with 72 CPUs, 512G

Memory, and 2 TITAN RTX GPUs.

Implementations Code snippets for the five adopted queries (i.e., Kullback-Leibler

divergence, Cross Entropy, Entropy, Alpha divergence, and Cauchy-Schwarz divergence)

are shown in Fig. A.3. Note that they are simple compositions of the modular operators

introduced in Section 2.4.

174

Table A.2: Times in seconds to compute the Shannon entropy (ENT), the cross-entropy
(XENT), Kullback-Leibler (KLD), Alpha (for α = 1.5) divergence, Rényi entropy (RényiEnt),
and Cauchy-Schwarz divergence (CSDiv) over the circuits learned from 20 different real-world
datasets by either using the algorithm distilled by our pipelines (see Table A.1 and Fig. A.3)
compared to the custom and highly-optimized implementations of the same ENT [158] and
KLD [91] algorithms as available in Juice.jl [29].

Dataset ENT KLD XENT AlphaDiv RényiEnt CSDiv
ours Juice ours Juice ours Juice ours Juice ours Juice ours Juice

nltcs 0.143 0.001 0.830 0.207 0.422 - 0.140 - 0.013 - 0.300 -
msnbc 0.109 0.001 0.369 0.182 0.297 - 0.105 - 0.018 - 0.227 -

kdd 0.157 0.001 3.154 0.790 2.180 - 0.885 - 0.016 - 1.136 -
plants 0.679 0.005 3.983 3.909 3.739 - 1.160 - 0.088 - 1.572 -
audio 0.406 0.003 2.736 1.681 1.873 - 0.537 - 0.029 - 0.771 -

jester 0.764 0.003 1.019 0.432 0.805 - 0.351 - 0.024 - 0.476 -
netflix 0.106 0.002 0.352 0.175 0.264 - 0.100 - 0.017 - 0.201 -

accidents 0.055 0.001 0.207 0.039 0.542 - 0.091 - 0.009 - 0.124 -
retail 0.108 0.001 0.508 0.153 0.415 - 0.184 - 0.013 - 0.197 -
pumsb 0.092 0.001 0.701 0.133 0.316 - 0.119 - 0.012 - 0.214 -

dna 4.365 0.027 64.664 220.377 52.997 - 15.609 - 0.255 - 22.901 -
kosarek 0.182 0.002 0.477 0.106 0.379 - 0.139 - 0.011 - 0.735 -
msnweb 0.128 0.002 0.261 0.047 0.211 - 0.342 - 0.015 - 0.135 -

book 0.086 0.003 0.215 0.036 0.202 - 0.075 - 0.020 - 0.115 -
movie 0.272 0.002 0.443 0.063 0.373 - 0.172 - 0.015 - 0.194 -

webkb 0.138 0.003 0.241 0.031 0.164 - 0.079 - 0.023 - 0.098 -
cr52 0.141 0.004 0.260 0.035 0.188 - 0.087 - 0.031 - 0.143 -

c20ng 0.118 0.003 0.264 0.034 0.194 - 0.088 - 0.032 - 0.101 -
bbc 0.205 0.005 0.308 0.037 0.225 - 0.110 - 0.038 - 0.189 -
ad 0.193 0.007 0.346 0.046 0.281 - 0.151 - 0.031 - 0.207 -

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

function ent(p)
q = log(p)
r = product(p, q)
return -integrate(s)

end

function alphadiv(p, q, alpha =1.5)
r = real_pow(p, alpha)
s = real_pow(q, 1.0- alpha)
t = product(r, s)
return integrate(t) / (1.0- alpha)

end

function csdiv(p, q)
r = product(p, q)
s = real_pow(p, 2.0)
t = real_pow(q, 2.0)
a = integrate(r)
b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

function ent(p)
q = log(p)
r = product(p, q)
return -integrate(s)

end

function alphadiv(p, q, alpha =1.5)
r = real_pow(p, alpha)
s = real_pow(q, 1.0- alpha)
t = product(r, s)
return integrate(t) / (1.0- alpha)

end

function csdiv(p, q)
r = product(p, q)
s = real_pow(p, 2.0)
t = real_pow(q, 2.0)
a = integrate(r)
b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

function ent(p)
q = log(p)
r = product(p, q)
return -integrate(s)

end

function alphadiv(p, q, alpha =1.5)
r = real_pow(p, alpha)
s = real_pow(q, 1.0- alpha)
t = product(r, s)
return log(integrate(t)) / (1.0- alpha)

end

function csdiv(p, q)
r = product(p, q)
s = real_pow(p, 2.0)
t = real_pow(q, 2.0)
a = integrate(r)
b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))

end

1

Figure A.3: The modular operators defined in Section 2.4 can be easily composed to implement
tractable algorithms for novel query classes. Here we show the code snippet for five queries:
Kullback-Leibler divergence (kld), Cross Entropy (xent), Entropy (ent), Alpha divergence
(alphadiv), and Cauchy-Schwarz divergence (csdiv).

175

Appendix B

Scalable Learning of Probabilistic

Circuits – Algorithmic Side

B.1 Learning Sparse PCs with Pruning and Growing

B.1.1 Pseudocode

In this section, we list the detailed algorithms for pruning (Section 3.2.1), growing (Sec-

tion 3.2.3), circuit flows computation (Definition 7), and mini-batch Expectation Maximization

(Section 3.2.3).

Algorithm 17 shows how to prune k percentage edges from PC C following heuristic h.

Algorithm 18 shows show a feedforward implementation of growing operation.

Algorithm 19 computes the circuit flows of a sample x given PC C with parameters θ

though one forward pass (line 1) and one backward pass (line 2-8).

Algorithm 20 shows the pipeline of mini-batches Expectation Maximization algorithm

given PC C, dataset D, batch size B and learning rate α.

176

Algorithm 17 Prune(C, h, k)
1: Input: A non-deterministic PC C; a heuristic h to score edges (e.g., eFlow, eRand, or eParam);

percentage k of edges to prune
2: Output: A pruned PC C′
3: Initialize old2new← mapping from each node n ∈ C to its copy in the pruned PC
4: Define s(n, c)← score of edge (n, c) according to heuristic h
5: Initialize f(n, c)← false for all edges
6: Set f(n, c)← true if s(n, c) ranks in the lowest k% among edges from n

7: for each node n ∈ C in post-order (children before parents) do
8: if n is a leaf then
9: old2new[n]← n

10: else if n is a sum unit then
11: old2new[n]←⊕(

[old2new(c) for c ∈ ch(n) if ¬f(n, c)]
)

12: else
13: old2new[n]←⊗(

[old2new(c) for c ∈ ch(n)]
)

14: return old2new[nr] where nr is the root of C

B.1.2 Proofs

In this section, we provide detailed proofs of Theorem 9 (Section B.1.2) and Theorem 10

(Section B.1.2).

Pruning One Edge over One Example

Lemma 1 (Pruning One Edge Log-Likelihood Lower Bound). For a PC C and a sample x,

the loss of log-likelihood by pruning away edge (n, c) is

∆LL({x}, C, {(n, c)}) = log

(
1− θc|n

1−θc|n+θc|nFn(x)−Fn,c(x)

)
≤ − log(1−Fn,c(x)).

Proof. For notation simplicit, denote the probability of units m (resp. n) in the original (resp.

pruned) PC given sample x as pm(x) (resp. p′n(x)). As a slight extension of Definition 7, we

define Fn(x;m) as the flow of unit n w.r.t. the PC rooted at m.

The proof proceeds by induction over the PC’s root unit. That is, we first consider pruning

(n, c) w.r.t. the PC rooted at n. Then, in the induction step, we prove that if the lemma

holds for PC rooted at m, then it also holds for PC rooted at any parent unit of m. Instead

of directly proving the statement in Lemma 1, we first prove that for any root node m, the

177

Algorithm 18 Grow(C, σ2)

1: Input: A PC C; Gaussian noise variance σ2

2: Output: A new PC C′ after growing operation
3: Initialize old2new← dictionary mapping input units n ∈ C to units of the grown PC
4: for each node n ∈ C in post-order (children before parents) do
5: if n is an input unit then
6: old2new[n]← (n, deepcopy(n))
7: else
8: chs_1, chs_2← first and second copies of children:

[old2new[c][0] for c ∈ ch(n)], [old2new[c][1] for c ∈ ch(n)]

9: if n is a product unit then
10: old2new[n]←

(⊗
(chs_1),

⊗
(chs_2)

)

11: else if n is a sum unit then
12: n1, n2 ←

⊕
([chs_1, chs_2]),

⊕
([chs_1, chs_2])

13: θ|ni
← normalize([θ|n,θ|n])× ϵ, ϵ ∼ N (1, σ2) for i ∈ {1, 2}

14: old2new[n]← (n1, n2)

15: return old2new[r][0] // r is the root unit of C

following holds:

pm(x)− p′m(x) = Fn(x;m) · pm(x) ·
(

1

1− θ

Fn,c(x;m)

Fn(x;m)
− θ

1− θ

)
. (B.1)

Base case: pruning an edge of the root unit. That is, the root unit of the PC is n. In this

case, we have

pn(x)− p′n(x) =
∑

c′∈ch(n)

θc′|n · pc(x)−
∑

c′∈ch(n)\c

θ′c′|n · p′c(x),

= θc|n · pc(x) +
∑

c′∈ch(n)\c

θc′|n · pc(x)−
∑

c′∈ch(n)\c

θ′c′|n · pc(x), (B.2)

where θ′c|n denotes the normalized parameter corresponding to edge (n, c) in the pruned PC.

Specifically, we have

∀m ∈ ch(n)\c, θ′m|n =
θm|n∑

c′∈ch(n)\c θc′|n
=

θm|n

1− θc|n
.

178

Algorithm 19 CircuitFlow(C,θ,x)
1: Input: PC C with parameters θ; sample x
2: Output: Circuit flow flow[n, c] for each edge (n, c) and flow[n] for each node n

3: For all n ∈ C, compute marginal probability p[n]← pn(x)
4: Set root flow: flow[nr]← 1

5: for each node n ∈ C in post-order do
6: flow[n]←∑

g∈pa(n) flow[g]

7: if n is a sum node then
8: for each child c ∈ ch(n) do
9: flow[n, c]← θc|n · p[c]

p[n] · flow[n]
10: else
11: for each child c ∈ ch(n) do
12: flow[n, c]← flow[n]

Algorithm 20 StochasticEM(C,D;B,α)

1: Input: PC C; dataset D; batch size B; learning rate α
2: Output: Estimated parameters θ from D
3: Initialize θ ← random values
4: Set root flow: flow[nr]← 1

5: while not converged or early stopped do
6: Sample mini-batch: D′ ← B random samples from D
7: Compute batch flow: flow←∑

x∈D′ CircuitFlow(C,θ,x)
8: for each sum unit n and child c do
9: θnew

c|n ←
flow[n,c]
flow[n]

10: Update: θc|n ← α · θnew
c|n + (1− α) · θc|n

For notation simplicity, denote θ := θc|n. Plug in the above definition into Equation B.2, we

have

pn(x)− p′n(x) = θc|n · pc(x) +
∑

c′∈ch(n)\c

θc′|n · pc(x)−
1

1− θ

∑

c′∈ch(n)\c

θc′|n · pc(x),

= θc|n · pc(x)−
θ

1− θ

∑

c′∈ch(n)\c

θc′|n · pc(x),

= θc|n · pc(x)−
θ

1− θ
(pn(x)− θc|npc(x)),

=
1

1− θ
· θc|n · pc(x)−

θ

1− θ
· pn(x),

(a)
=

1

1− θ
· pn(x) ·

Fn,c(x;n)

Fn(x;n)
− θ

1− θ
· pn(x),

179

= Fn(x;n) · pn(x) ·
(

1

1− θ

Fn,c(x;n)

Fn(x;n)
− θ

1− θ

)
, (B.3)

where (a) follows from the fact that Fn(x;n) = 1 and Fn,c(x;n) = θc|npc(x)/pn(x).

Inductive case #1: suppose Equation B.1 holds for m. If product unit d is a parent of m,

we show that Equation B.1 also holds for d:

pd(x)− p′d(x) =
∏

n′∈ch(d)

pn′(x)−
∏

n′∈ch(d)

p′n′(x),

= (pm(x)− p′m(x))
∏

n′∈ch(d)\m

pn′(x),

(a)
= Fn(x;m) · pm(x) ·

(
1

1− θ

Fn,c(x;m)

Fn(x;m)
− θ

1− θ

)
·

∏

n′∈ch(d)\m

pn′(x),

(b)
= Fn(x; d) · pd(x) ·

(
1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
,

where (a) is the inductive step that applies Equation B.3; (b) follows from the fact that (note

that d is a product unit) Fn(x;m) = Fn(x; d) and Fn,c(x;m) = Fn,c(x; d).

Inductive case #2: for sum unit d, suppose Equation B.1 holds for m, where m ∈ A iff

m ∈ ch(d) and m is an ancester of n and c. Assume all other children of d are not ancestoer

of n, we show that Equation B.1 also holds for d:

pd(x)− p′d(x) = θm|d · (pm(x)− p′m(x))

= θm|d · Fn(x;m) · pm(x) ·
(

1

1− θ

Fn,c(x;m)

Fn(x;m)
− θ

1− θ

)
,

= θm|d · Fn(x;m) · pm(x) ·
(

1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
,

= θm|d · Fn(x; d) ·
∑

m′∈ch(d) θm′|dpm′(x)

θm|dpm(x)
· pm(x) ·

(
1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
,

180

= Fn(x; d) ·
(∑

m′∈ch(d)

θm′|dpm′(x)

)
·
(

1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
,

= Fn(x; d) · pd(x) ·
(

1

1− θ

Fn,c(x; d)

Fn(x; d)
− θ

1− θ

)
.

Therefore, following Equation B.1 for root r, we have

pr(x)− p′r(x)

pr(x)
=

1

1− θ
Fn,c(x; r)−

θ

1− θ
Fn(x; r),

⇔ p′r(x)

pr(x)
= 1 +

θ

1− θ
Fn(x; r)−

1

1− θ
Fn,c(x; r).

Therefore, we have

∆LL({x}, C, {(n, c)}) = log pr(x)− log p′r(x),

=
1

|D|
∑

x∈D

log

(
1− θc|n

1−θc|n+θc|nFn(x; r)−Fn,c(x; r)

)
,

(a)

≤ − log(1− Fn,c(x)),

where (a) follows from the fact that Fn,c(x) ≤ Fn(x). □

Theorem 9 follows directly from Lemma 1 by noting that for any datasetD, ∆LL(D, C, {(n, c)}) =
1
|D|∆LL({x}, C, {(n, c)}).

Pruning Multiple Edges

Proof. Similar to the proof of Lemma 1, we prove Theorem 10 by induction. Different from

Lemma 1, we induce a slightly different objective:

pm(x)− p′m(x) ≤
∑

(n,c)∈E∩des(m)

Fn(x;m) · pm(x) ·
(

1

1− θc|n

Fn,c(x;m)

Fn(x;m)
− θc|n

1− θc|n

)
, (B.4)

where des(n) is the set of descendent units of n.

Base case: the base case follows directly from the proof of Lemma 1, and lead to the

181

conclusion in Equation B.3.

Inductive case #1: suppose for all children of a product unit d, Equation B.4 holds, we

show that Equation B.4 also holds for d:

pd(x)− p′d(x) =
∏

m∈ch(d)

pm(x)−
∏

m∈ch(d)

p′m(x),

=
∏

m∈ch(d)

pm(x)−
∏

m∈ch(d)

(
pm(x)− (pm(x)− p′m(x))

)
,

≤
∑

m∈ch(d)

(
pm(x)− p′m(x))

)
·

∏

m′∈ch(d)\m

pm′(x),

(a)

≤
∑

m∈ch(d)

∑

(n,c)∈E∩des(m)

Fn(x; d) · pd(x) ·
(

1

1− θc|n

Fn,c(x;m)

Fn(x;m)
− θc|n

1− θc|n

)
,

≤
∑

(n,c)∈E∩des(d)

Fn(x; d) · pd(x) ·
(

1

1− θc|n

Fn,c(x; d)

Fn(x; d)
− θc|n

1− θc|n

)
,

where (a) uses the definition that pd(x) =
∏

m∈ch(d) pm(x).

Inductive case #2: suppose for all children of a sum unit d, Equation B.4 holds, we show

that Equation B.4 also holds for d:

pd(x)− p′d(x) =
∑

m∈ch(d)∩(d,m) ̸∈E

θm|d ·
(
pm(x)− p′m(x)

)
+

∑

m∈ch(d)∩(d,m)∈E

θm|d ·
(
pm(x)− p′m(x)

)
,

(a)
=

∑

m∈ch(d)∩(d,m)̸∈E

θm|d ·
(
pm(x)− p′m(x)

)
,

+
∑

m∈ch(d)∩(d,m)∈E

θm|d · Fn(x;m) · pm(x) ·
(

1

1− θc|n

Fn,c(x;m)

Fn(x;m)
− θc|n

1− θc|n

)
,

where (a) follows from the base case of the induction. Next, we focus on the first term of the

above equation:

∑

m∈ch(d)∩(d,m)̸∈E

θm|d ·
(
pm(x)− p′m(x)

)
,

≤
∑

m∈ch(d)∩(d,m)̸∈E

∑

(n,c)∈E∩des(m)

θm|d ·
(
pm(x)− p′m(x)

)
,

182

≤
∑

m∈ch(d)∩(d,m)̸∈E

∑

(n,c)∈E∩des(m)

θm|d · Fn(x;m) · pm(x) ·
(

1

1− θc|n

Fn,c(x;m)

Fn(x;m)
− θc|n

1− θc|n

)
,

≤
∑

(n,c)∈E∩des(d)

Fn(x; d) · pd(x) ·
(

1

1− θc|n

Fn,c(x; d)

Fn(x; d)
− θc|n

1− θc|n

)
,

where the derivation of the last inequality follows from the corresponding steps in the proof

of Lemma 1.

Therefore, from Equation B.4, we can conclude that

∆LL(D, C, E) ≤ − 1

|D|
∑

x

log(1−
∑

(n,c)∈E

Fn,c(x)).

Finally, we prove the approximation step in Equation 3.2. Let ϵ(·) =∑(n,c)∈E Fn,c(·) ∈

[0, 1). We have,

RHS = −
∑

x∈D

log(1− ϵ(x)) = −
∑

x∈D

∞∑

k=1

−ϵ(x)k

k
(Taylor expansion) ≤

∑

x∈D

∞∑

k=1

ϵ(x)k,

=
∑

x∈D

ϵ(x)

1− ϵ(x)
=

1

1− ϵ

∑

x∈D

ϵ(x) =
1

1− ϵ

∑

(n,c)∈E

∑

x∈D

Fn,c(x) =
1

1− ϵ

∑

(n,c)∈E

Fn,c(D).

□

B.1.3 Experiments Details

Hardware specifications All experiments are performed on a server with 32 CPUs, 126G

Memory, and NVIDIA RTX A5000 GPUs with 26G Memory. In all experiments, we only use

a single GPU on the server.

Datasets

For MNIST-family datasets, we split 5% of training set as validation set for early stopping.

For Penn Tree Bank dataset, we follow the setting in [117] to split a training, validation, and

test set. Table B.1 lists the all the dataset statistics.

183

Table B.1: Dataset statistics including number of variables (#vars), number of categories for
each variable (#cat), and number of samples for training, validation and test set (#train,
#valid, #test).

Dataset n (#vars) k (#cat) #train #valid #test

MNIST 28×28 256 57000 3000 10000
EMNIST(MNIST) 28×28 256 57000 3000 10000
EMNIST(Letters) 28×28 256 118560 6240 20800
EMNIST(Balanced) 28×28 256 107160 5640 18800
EMNIST(ByClass) 28×28 256 663035 34897 116323
FashionMNIST 28×28 256 57000 3000 10000

Penn Tree Bank 288 50 42068 3370 3761

Learning Hidden Chow-Liu Trees

HCLT structures. Adopting hidden chow liu tree (HCLT) PC architecture as in [98], we

reimplement the learning process to speed it up and use a different training pipeline and

hyper-parameters tuning.

EM parameter learning We adopt the EM parameter learning algorithm introduced

in [18], which computes the EM update target parameters using circuit flows. We use a

stochastic mini-batches EM algorithm. Denoting θnew as the EM update target computed

from a mini-batch of samples, and we update the targeting parameter with a learning rate

α: θt+1 ← αθnew + (1 − α)θt. α is piecewise-linearly annealed from [1.0, 0.1], [0.1, 0.01],

[0.01, 0.001], and each piece is trained T epochs.

Hyper-parameters searching. For all the experiments, the hyper-parameters are searched

from

• h ∈ {8, 16, 32, 64, 128, 256}, the hidden size of HCLT structures;

• γ ∈ {0.0001, 0.001, 0.01, 0.1, 1.0}, Laplace smoothing factor;

• B ∈ {128, 256, 512, 1024}, batch-size in mini-batches EM algorithm;

184

• α piecewise-linearly annealed from [1.0, 0.1], [0.1, 0.01], [0.01, 0.001], where each piece is

called one mini-batch EM phase. Usually the algorithm will start to overfit as validation

set and stop at the third phase;

• T = 100, number of epochs for each mini-batch EM phase.

The PC size is quadratically growing with hidden size h, thus it is inefficient to do a grid

search among the entire hyper-parameters space. What we do is to fist do a grid search

when h = 8 or h = 16 to find the best Laplace smoothing factor γ and batch-size B for each

dataset, and then fix γ and B to train a PC with larger hidden size h ∈ {32, 64, 128, 256}.

The best tuned B is in {256, 512}, which is different for different hidden size h, and the best

tuned γ is 0.01.

Details of Section 3.2.5

Sparse PC (ours). Given an HCLT learned in Section B.1.3 as initial PC, we use the

structure learning process proposed in Section 3.2.3. Specifically, starts from initial HCLT, for

each iteration, we (1) prune 75% of the PC parameters, and (2) grow PC size with Gaussian

variance ϵ, (3) finetuing PC using mini-batches EM parameter learning with learning rate

α. We prune and grow PC iteratively until the validation set likelihood is overfitted . The

hyper-parameters are searched from

• ϵ ∈ {0.1, 0.3, 0.5}, Gaussian variance in growing operation;

• α, piecewise-linearly annealed from [0.1, 0.01], [0.01, 0.001];

• T = 50, number of epochs for each mini-batch EM phase;

• for γ and B, we use the tuned best number from Section B.1.3.

HCLT. The HLCT experiments in Table 3.1 are performed following the original pa-

per (Code https://github.com/UCLA-StarAI/Tractable-PC-Regularization), which is

different from the leaning pipeline we use as our inital PC (Section B.1.3).

185

https://github.com/UCLA-StarAI/Tractable-PC-Regularization

SPN. We reimplement the SPN architecture ourselves following [133] and train it with the

same mini-batch pipeline as HCLT.

IDF. We run all experiments with the code in the GitHub repo provided by the authors.

We adopt an IDF model with the following hyperparameters: 8 flow layers per level; 2 levels;

densenets with depth 6 and 512 channels; base learning rate 0.001; learning rate decay 0.999.

The algorithm adopts an CPU-based entropy coder rANS.

BitSwap. We train all models using the following author-provided script: https://github.

com/fhkingma/bitswap/blob/master/model/mnist_train.

BB-ANS. All experiments are performed using the following official code https://github.

com/bits-back/bits-back.

McBits. All experiments are performed using the following official code https://github.

com/ryoungj/mcbits.

Details of Section 3.2.6

For all experiments in Section 3.2.6, we use the best tuned γ and B from Section B.1.3 and

hidden size h ranging from {16, 32, 64, 128}. For experiments “What is the Smallest PC for

the Same Likelihood?”, the hyper-parameters are searched from

• k ∈ {0.05, 0.1, 0.3}, percentage of parameters to prune each iteration;

• α, piecewise-linearly annealed from [0.3, 0.1], [0.1, 0.01], [0.01, 0.001];

• T = 50, number of epochs for each mini-batch EM phase;

For experiments “What is the Best PC Given the Same Size?”, we use the same setting as in

Section B.1.3.

186

https://github.com/fhkingma/bitswap/blob/master/model/mnist_train
https://github.com/fhkingma/bitswap/blob/master/model/mnist_train
https://github.com/bits-back/bits-back
https://github.com/bits-back/bits-back
https://github.com/ryoungj/mcbits
https://github.com/ryoungj/mcbits

B.2 Latent Variable Distillation

B.2.1 Proofs

In this section, we provide detailed proofs of Lemma 1.

Proof of Lemma 1

Proof. Define Y :=X\W. To prove that variables W is conditional independent with Y given

Z, it is sufficient to show that ∀w∈val(W), z∈val(Z),y∈val(Y), we have p(w|z)=p(w|z,y).

Define Ssum
p,W and Sprod

p,W as the set of sum and product units with scope W, respectively.

∀n∈Ssum
p,W, since the scope of n does not contain variables Y, we can immediately conclude

that pn(w|z)=p(w|z,y). In order to show that this equation also holds for the root PC unit,

we only need to show that for each PC unit n in p, if all its children (whose scope contains

W) satisfy this equation, then n also does. The reason is that the root unit nr of p must be

an ancestor unit of every unit in Ssum
p,W.

We start with the case that n is a product unit. Since the PC is assumed to be decompos-

able, only one child, denoted m, satisfies W ⊆ ϕ(m). Therefore, the distribution of n can be

written as

pn(x) = pm(x) ·
∏

c∈ch(n),c ̸=m

pc(x)
(a)
= pm(x) ·

∏

c∈ch(n),c ̸=m

pc(y),

where (a) holds because ∀c ∈ ch(n), c ̸= m, we have ϕ(c) ∩W = ∅. Therefore, we have

pn(w|z) = pm(w|z) and pn(w|z,y) = pm(w|z,y). Taking the two equations together and

use the assumption from the induction step: pm(w|z) = pm(w|z,y), we conclude that

pn(w|z)=pn(w|z,y).

Define nz as the product unit in Sprod
p,W that is augmented with input unit Z = z by

Algorithm 3. Before proving the main result, we highlight that ∀n whose scope contains W,

pn(x) can be written as pnz(w) · gn(y), where gn(y) is independent with w. This is because

187

∀m ∈ Sprod
p,W and m ̸= nz, pm(w, z) = 0(∀w ∈ val(W)).

Next, assume n is a sum unit whose scope contains W. Using the above result, we know

that every child c of n satisfies the following: pc(x) = pnz(w) · gc(y). Thus, we have

pn(x) =
∑

c∈ch(n)

θc|n · pnz(w) · gc(y) = pnz(w) ·
(∑

c∈ch(n)

θc|n · gc(y)
)
.

Since pnz(w|z)=pnz(w|z,y), we have pn(w|z)=pn(w|z,y).

Taking the above two inductive cases (i.e., for sum and product units, respectively), we

can conclude that for the root unit nr, pnr(w|z)=pnr(w|z,y). □

B.2.2 Details for Latent Variable Distillation

This section provides additional details for latent variable distillation (LVD), including

description of the adopted EM algorithm and details of the LV extraction step.

Parameter Estimation

We adopt a stochastic mini-batch version of the Expectation-Maximization algorithm. Specif-

ically, a mini-batch of samples are drown from the dataset, and the EM algorithm for

PCs [16, 29] is used to compute a set of new parameters θnew, which is updated with a

learning rate α: θt+1 ← α·θnew + (1− α)·θt.

Details of the MAE-based LV Extraction Step

We use the official code (https://github.com/facebookresearch/mae) to train MAE mod-

els on the adopted datasets (i.e., CIFAR, ImageNet32, and ImageNet64). At each training

step, the percentage of masked patches is chosen uniformly from 10% to 90%. After training,

the LV extraction step follows the description in Section 3.3.3.

188

https://github.com/facebookresearch/mae

B.2.3 Experiment Details

In this section, we describe experiment details of all four TPMs adopted in Section 3.3.1 and

Section 3.3.4.

Hardware specification All experiments are run on servers/workstations with the

following configuration:

• 32 CPUs, 128G Mem, 4 × NVIDIA A5000 GPU;

• 32 CPUs, 64G Mem, 1 × NVIDIA GeForce RTX 3090 GPU;

• 64 CPUs, 128G Mem, 3 × NVIDIA A100 GPU.

HMM The HMM models are trained with varying hidden states h = 128, 256, 512, 750,

1024 and 1250, with and without LVD. All HMM models are trained with mini-batch EM

(Section B.2.2) for two phases: in phase 1, the model is trained with learning rate 0.1 for 20

epochs; in phase 2, the model is trained with learning rate 0.01 for 5 epochs. Note that for

HMM models with hidden states ≥ 750, we train for 30 epochs in phase 1. The number of

epochs are selected such that all model converges before training stops.

LVD For every subset Xi, the number of hidden categories, i.e., {Mi}ki=1 are set to

values in {8, 16, 32, 64, 128, 256}. For the latent-conditioned distribution {p(Xi|Zi = j)}i,j,

we adopt HCLTs with hidden size 16, and for the latent distribution p(Z), a HCLT with

hidden size Mi is adopted. When optimizing the model with the MLE lower bound, we adopt

mini-batch EM (Section B.2.2) with learning rate annealed linearly from 0.1 to 0.01. In the

latent distribution training step (Section 3.3.2), we anneal learning rate from 0.1 to 0.001.

HCLT We use the publicly available implementation of HCLT at https://github.com/

Juice-jl/ProbabilisticCircuits.jl/blob/master/src/structures/hclts.jl. The hid-

den size is chosen from {16, 32, 64, 128, 256, 512, 1024}. We anneal the EM learning rate from

0.1 to 0.01 and train for 100 epochs, and then anneal the learning rate from 0.01 to 0.001

and train for another 100 epochs.

RAT-SPN We adopt the publicly available implementation at https://github.com/

Juice-jl/ProbabilisticCircuits.jl/blob/master/src/structures/rat.jl. num_nodes_region,

189

https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/src/structures/hclts.jl
https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/src/structures/hclts.jl
https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/src/structures/rat.jl
https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/src/structures/rat.jl

num_features, and num_nodes_leaf are set to the same value, which is chosen from

{16, 32, 64, 128, 256, 512, 1024}.

Learning rate schedule is same with HCLTs.

EiNet We use the official implementation on GitHub: https://github.com/cambridge-mlg/

EinsumNetworks. We use the PD structure provided in the codebase. We select hyperparam-

eter delta from {4, 6, 8} and select num_sums from {16, 32, 64, 128, 256}. Learning rate is set

to 0.001.

B.2.4 Efficiency Analysis

This section provides the breakdown of the runtime for each stage of the LVD algorithm

for the PC that achieves 4.38 bpd on ImageNet32. The PC has 836M parameters. All

experiments are done on a single NVIDIA A5000 GPU.

For this PC, training all latent conditioned distributions {p(xi|Zi = j)}i,j take ∼8 hours,

and training the latent distribution p(z) takes ∼ 0.5 hours. Finally, the fine-tuning stage

takes ∼1 hour.

As shown in the above computation time breakdown, the most time-consuming part is to

train the latent conditioned distributions. However, we note that this is not a fundamental

problem of LVD: we are training every latent conditioned distributions independently, while

there could be massive structure/parameter sharing among such distributions. We left this

to future work.

B.2.5 Additional Ablation Studies

To better understand the effectiveness of LVD as a general PC learning approach, this section

conducts ablation studies on various components of the LVD pipeline.

190

https://github.com/cambridge-mlg/EinsumNetworks
https://github.com/cambridge-mlg/EinsumNetworks

Architecture of the Deep Generative Model

In addition to the MAE model, we apply LVD using LV assignments generated by a pretrained

VQ-VAE model [175]. Specifically, the encoder of the adopted VQ-VAE transforms every

4× 4 image patch directly into a discrete latent code. The discrete codes are used directly

as LV assignments by LVD. On ImageNet32, with 256 categories for each latent variable

(same with the best adopted MAE model), VQ-VAE + LVD achieved 4.44 bpd. This is

significantly better than the performance of the best TPM/PC without LVD, and is only

slightly worse than the MAE + LVD. This result shows that LVD works well across different

deep generative model architectures.

Different Patch Sizes

In the original experiments, we select a patch size 4 for the MAE model. That is, every 4× 4

patch is materialized as a LV Z. To study the influence caused by the number of materialized

LVs, we perform LVD using two new MAE models with patch sizes 2 and 8, respectively. The

results are shown in the table below.

Patch size 2 4 8

ImageNet32 bpd 4.57 4.39 4.44

We observe that with patch size 8, the performance becomes slightly worse and with

patch size 2 the performance becomes much worse. However, we highlight that the inferior

performance of the patch-size-2 model is not because of the use of more materialized latent

variables. The reason is that the sub-PCs suffer from worse likelihood since the receptive

field is limited to 2× 2. In addition, the 2× 2 patch MAE is harder to train and has a larger

RMSE compared to its 4× 4 variant. Therefore, the performance of LVD is also determined

by the deep generative model and the strategy to choose LVs.

191

Appendix C

Scalable Learning of Probabilistic

Circuits – System Side

C.1 Algorithm Details

In this section, we provide additional details of the design of PyJuice. Specifically, we

introduce the layer partitioning algorithm that divides a layer into groups of node blocks with

a similar number of children in Section C.1.1, and describe the details of the backpropagation

algorithm in Section C.1.2.

C.1.1 The Layer Partitioning Algorithm

The layer partitioning algorithm receives as input a vector of integers nchs where each

number denotes the number of child node blocks connected to a node block in the layer.

It also receives as input the maximum number of groups to be considered (denoted G) and

a sparsity tolerance threshold tol∈ (0, 1]. Our goal is to search for a set of n (at most G)

groups with capacities g1, . . . , gn, respectively. Every number in nchs is then placed into the

group with the smallest capacity it can fit in. Every number in nchs must fit in a group.

Assume there are ki numbers assigned to group i, the overhead/cost w.r.t. a partitioning

192

Algorithm 21 Partition a layer into groups
1: Inputs: a list of child node (block) counts of the current layer nchs∈ZN (N is the number of node blocks in the

layer)
2: Inputs: the maximum number of groups G, the sparsity tolerance threshold tol∈(0, 1]
3: uni_nchs, counts← unique(nchs, sorted = True) (get the unique values and their appearance counts; we require

the numbers in uni_nchs to be sorted in ascending order)
4: L← length(uni_nchs)

5: target_overhead← ⌈sum(uni_nchs ∗ counts) ∗ (1.0 + tol)⌉ (get the target overhead)
6: cum_counts← cumsum(counts)

7: dp, backtrace← (0)L×G+1 ∈ RL×G+1, (0)L×G+1 ∈ ZL×G+1

8: for i = 0 to L− 1 do
9: dp[i, 1]← uni_nchs[i] ∗ cum_counts[i]
10: # Main DP algorithm
11: target_n_group← G

12: for n_group = 2 to G do
13: dp[0, n_group]← uni_nchs[0] ∗ cum_counts[0]

14: backtrace[0, n_group]← 0
15: for i = 1 to L− 1 do
16: min_overhead, best_idx← inf,−1
17: for j = 0 to i− 1 do
18: curr_overhead← dp[j, n_group− 1] + uni_nchs[i] ∗ (cum_counts[i]− cum_counts[j])
19: if curr_overhead < min_overhead then
20: min_overhead, best_idx← curr_overhead, j

21: dp[i, n_group], backtrace[i, n_group]← min_overhead, best_idx

22: if dp[−1, n_group] <= target_overhead then
23: target_n_group← n_group

24: # Backtrace
25: group_sizes← (0)target_n_group ∈ Ztarget_n_group

26: i← L− 1
27: for n = target_n_group to 1 do
28: group_sizes[n− 1]← i

29: i← backtrace[i, target_n_group]
30: return group_sizes

{g1, . . . , gn} is defined as
∑

i∈[n] ki·gi. Our goal is to find a partitioning with overhead smaller

than sum(nchs)·(1+tol).

We use a dynamic programming algorithm that is based on the following main idea. We

first sort the numbers in nchs in ascending order. Denote L as the size of nchs, we maintain a

scratch table of size L× G whose ith row and jth column indicates the best possible overhead

achieved by the first i numbers in nchs when having in total at most j partitions. The update

formula of the DP table is

dp[i, j]← min
k∈[i−1]

dp[k, j − 1] + nchs[i] · (i− k), (C.1)

where we try to find the best place (k) to put a new group/partition. By simultaneously

193

maintaining a matrix for backtracking, we can retrieve the best partition found by the

algorithm.

The algorithm is shown in Algorithm 21. A practical trick to speed it up is to coalesce

the identical values in nchs as done in line 3. Lines 7-9 initialize the buffers, and lines 11-23

are the main loop of the DP algorithm. Finally, the result partitioning is retrieved using lines

25-29.

Theoretical guarantee. Algorithm 21 is guaranteed to find an optimal grouping given

a pre-specified number of groups, and is fairly efficient in practice. We formally state the

problem in the following and provide the proof and analysis as follows.

As described in Appendix A.1, the grouping algorithm essentially takes as input a list

of “# child node blocks” for each parent node block in a layer, and the goal is to partition

all parent node blocks into K groups such that we minimize the following cost: the sum

of the cost of each group, where the cost of a group is the maximum “# child node blocks”

in the group times the number of parent node blocks in the group. In the following, we

first demonstrate that the proposed dynamic programming (DP) algorithm (Algorithm 2)

can retain the optimal cost for every K. We then proceed to analyze the time and space

complexity of the algorithm.

To simplify notations, we assume the input is a vector of integers [n1, . . . , nN]. We assume

without loss of generality that the numbers are sorted because if not, we can apply any sorting

algorithm. The main idea of the DP algorithm is to maintain a table termed dp of size N times

K, where dp[i, j] indicates the optimal cost when partitioning the first i integers into j groups.

For the base cases, we can set dp[i, 1] = ni(∀i) and dp[1, j] = n1(∀j). For the inductive case,

we have Eq. (C.1). It is straightforward to verify that when dp[k, j − 1](∀k ∈ [1, i− 1]) are

optimal, dp[i, j] is also optimal. Therefore, for any K, Algorithm 21 computes the optimal

grouping strategy for K groups.

Efficiency. We then focus on the runtime. Given N and K, Algorithm 21 requires

O(KN2) runtime and O(KN) memory, which is undesired for large N (in practice, we set

194

Algorithm 22 Backward pass of a sum layer group w.r.t. parameters
1: Inputs: log-probs of product nodes lprod, log-probs of sum nodes lsum, flows of sum nodes fsum, flattened

parameter vector θflat, sum_ids, prod_ids, param_ids

2: Inputs: # sum nodes: M , # product nodes: N , batch size: B
3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively
4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: flows of params fparams

6: Kernel launch: schedule to launch CM × CN thread-blocks with m=0, . . . , CM−1 and n=0, . . . , CN−1
7: cum← (0)KM×KN∈ RKM×KN ▷ Scratch space on SRAM
8: ms, me← sum_ids[m], sum_ids[m] +KM

9: ns, ne← prod_ids[m, n], prod_ids[m, n] +KN

10: for b = 0 to CB−1 do
11: bs, be← b ·KB , (b+ 1) ·KB ▷ Start and end batch index
12: Load f s←fsum[ms :me, bs :be] ∈ RKM×KB and ls← lsum[ms :me, bs :be] ∈ RKM×KB to SRAM
13: Load lp← lprod[ns :ne, bs :be]∈RKN×KB to SRAM
14: log_nf← log(f s)− ls

15: log_nf_max← max(log_nf, dim=0) ∈ R1×KB ▷ Compute on chip
16: log_nf_sub← exp(log_nf− log_nf_max) ∈ RKM×KB

17: scaled_emars← transpose(exp(pp + log_nf_max)) ∈ RKB×KN

18: partial_flows← matmul(log_nf_sub, scaled_emars) ∈ RKM×KN ▷ With Tensor Cores
19: cum← cum+ partial_flows

20: ps, pe← param_ids[m, n], param_ids[m, n] +KM ·KN

21: fparams[ps :pe]← fparams[ps :pe] + θflat[ps :pe] ∗ cum.view(KM ∗KN)

K to be smaller than 10). However, as demonstrated in Algorithm 21 (line 3), we only

need to enumerate through the unique values in [n1, . . . , nN], which could potentially lower

the computation cost significantly. Even when we are dealing with highly non-structured

PCs, we can always round the numbers up to a minimum integer that is divisible by a small

integer such as 10. This allows us to achieve a decent approximated solution with much less

computation time.

C.1.2 Details of the Backpropagation Algorithm for Sum Layers

We compute the backward pass with respect to the inputs and the parameters of the

sum layer in two different kernels as we need two different layer partitioning strategies to

improve efficiency. In the following, we first introduce the backpropagation algorithm for the

parameters since it reuses the index tensors compiled for the forward pass (i.e., sum_ids,

prod_ids, and param_ids).

195

The algorithm is shown in Algorithm 22. In addition to the log-probabilities of the

product nodes (i.e., lprod), the log-probabilities of the sum nodes (i.e., lsum), and the flattened

parameters (i.e., θflat), the algorithm takes as input the flows fsum computed for the sum

nodes. Following Definition 8, we can compute the flow w.r.t. the sum parameters as

Fn,c(x) := θn,c · pc(x)/pn(x) · Fn(x).

Similar to Algorithm 4, we partition the sum nodes, product nodes, and samples into

blocks of size KM , KN , and KB, respectively. We schedule to launch CM×CN thread-blocks,

each responsible for computing the parameter flows for a block of KM ×KN parameter

flows. The main loop (line 10) iterates through blocks of KB samples. In every iteration,

we first load the log-probabilities (i.e., ls and lp) and the sum node flows (i.e., f s) to

compute the partial flow pc(x)/pn(x) · Fn(x) for the block of samples (note that this equals

Fn,c(x)/θn,c. The partial flows are accumulated in the matrix cum initialized in line 7.

After processing all blocks of samples, we add back the parameter flows by accumulating

cum ∗ [the corresponding parameters] in line 21.

As elaborated in Section 4.4, if we use the same set of index tensors used in the forward

pass, we have the problem of different thread-blocks needing to write (partial) flows to

the same input product node blocks. Therefore, we do a separate compilation step for the

backward pass. Consider a sum layer with sum node blocks of size KM and child product node

blocks of size KN . We first partition the CN children into groups such that every child node

block in a group has a similar number of parents. This is done by the dynamic programming

algorithm described in Section C.1.1.

Similar to the compilation procedure of the forward pass, for a group with CN child

node blocks (assume every block has CM blocks of parents), we generate three index tensors:

ch_ids∈ZCN and par_ids, par_param_ids∈ZCN×CM . ch_ids contains the initial index

of all CN child node blocks belonging to the group. For the ith node block in the group

196

(i.e., the product node block with the initial index ch_ids[i]), par_ids[i, :] encode the start

indices of its parent sum node blocks, and par_param_ids[i, :] represent the corresponding

initial parameter indices.

The main algorithmic procedure is very similar to Algorithm 4. Specifically, the kernel

schedules to launch CN×CB thread-blocks each computing a block of KN×KB product node

flows. In the main loop (line 9), we iterate through all CM parent node blocks. In lines 13-16,

we are essentially computing θn,c/pn(x) ·Fn(x) (notations inherited from Definition 8) for the

block of KN×KB values using the logsumexp trick. Finally, we store the results back to fprod.

Algorithm 23 Backward pass of a sum layer group w.r.t. inputs
1: Inputs: log-probs of product nodes lprod, log-probs of sum nodes lsum, flows of sum nodes fsum, flattened

parameter vector θflat, ch_ids, par_ids, par_param_ids

2: Inputs: # sum nodes: M , # product nodes: N , batch size: B
3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively
4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: flows of inputs fprod
6: Kernel launch: schedule to launch CN × CB thread-blocks with n=0, . . . , CN−1 and b=0, . . . , CB−1
7: cum← (−∞)KN×KB∈ RKN×KB ▷ Scratch space on SRAM
8: bs, be← b ·KB , (b+ 1) ·KB

9: for m = 0 to CM−1 do
10: ps, pe← par_param_ids[n, m]

11: Load f s←fsum[ms :me, bs :be] ∈ RKM×KB and ls← lsum[ms :me, bs :be] ∈ RKM×KB to SRAM
12: Load θ←transpose(θflat[ps :pe].view(KM ,KN))∈RKN×KM to SRAM
13: log_nf← log(f s)− ls

14: log_nf_max← max(log_nf, dim=0) ∈ R1×KB ▷ Compute on chip
15: log_nf_sub← exp(log_nf− log_nf_max) ∈ RKM×KB

16: partial_flows← matmul(θ, log_nf_sub) ∈ RKM×KN ▷ With Tensor Cores

17:

cum← where(log_nf_max > cum,

log(partial_flows+ exp(cum− log_nf_max) + log_nf_max,

log(exp(log_nf_max− cum) · partial_flows+ 1) + cum)

18: ns, ne← ch_ids[n], ch_ids[n] +KN

19: fprod[ns :ne, bs :be]← exp(cum+ lprod[ns :ne, bs :be])

C.1.3 PCs with Tied Parameters

Formally, PCs with tied parameters are PCs containing same sub-structures in different

parts of its DAG. Although the nodes in these sub-structures could have different semantics,

they can have shared/tied parameters. For example, in homogeneous HMMs, although the

transition probabilities between different pairs of consecutive latent variables are represented

197

by different sets of nodes and edges in the PC, they all have the same set of probability

parameters.

PyJuice can be readily adapted to PCs with tied parameters. For the forward pass, we

just need the compiler to assign the same parameter indices in param_ids. Similarly, we

only need to slightly change the compilation procedure of par_param_ids. One notable

difference is that in the backward pass w.r.t. the parameters, multiple thread-blocks would

need to write partial flows to the same memory addresses, which leads to inter-thread-block

barriers. We implemented a memory-IO tradeoff by letting the compiler create new sets of

memory addresses to store the parameter flows when the number of thread-blocks writing to

the same address is greater than a predefined threshold (by default set to 4).

C.2 Additional Technical Details

C.2.1 Block-Sparsity of Common PC Structures

Most commonly-adopted PC structures such as PD [136], RAT-SPN [133], and HCLT [97]

have block-sparse sum layers because one of the key building blocks of the structure is a

set of sum nodes fully connected to their inputs. Therefore, every sum layer must contain

multiple fully-connected blocks of sum and product nodes, and hence they are block sparse.

C.2.2 Relation Between PC Flows and Gradients

We first show the equality for the node flows:

Fn(x) =
∂ log pnr(x)

∂ log pn(x)
. (C.2)

We do the proof by induction. As a base case, we have by definition that Fnr(x) =

∂ log pnr(x)/∂ log pnr(x) = 1.

Next, suppose n is a sum or an input node, and for all its parents m, we have Eq. (C.2)

198

is satisfied by induction. Since all parents of n are product nodes, we have

Fn(x) =
∑

m∈pa(n)

Fm(x) =
∑

m∈pa(n)

∂ log pnr(x)

∂ log pm(x)
=

∑

m∈pa(n)

∂ log pnr(x)

∂ log pn→m(x)
=

∂ log pnr(x)

∂ log pn(x)
,

where pn→m(x) denotes the probability carried by the edge from n to m.

Finally, suppose n is a product node and thus all its parents are sum nodes. We have

Fn(x) =
∑

m∈pa(n)

θm,n · pn(x)
pm(x)

· Fm(x) =
∑

m∈pa(n)

θm,n · pn(x)
pm(x)

· ∂ log pnr(x)

∂ log pm(x)
, (C.3)

=
∑

m∈pa(n)

θm,n · pn(x) ·
∂ log pnr(x)

∂pm(x)
. (C.4)

Denote pn→m(x) = θm,n · pn(x) as the probability carried on the edge (m,n). Since pm(x) =
∑

n′∈ch(m) pn′→m(x), we have

∀n ∈ ch(m),
∂ log pnr(x)

∂pm(x)
=

∂ log pnr(x)

∂pn→m(x)
.

Plug in the above equation on Fn(x), this results in

Fn(x) =
∑

m∈pa(n)

pn→m(x) ·
∂ log pnr(x)

∂pn→m(x)
=

∑

m∈pa(n)

∂ log pnr(x)

∂ log pn→m(x)
=

∂ log pnr(x)

∂ log pn(x)
. (C.5)

We move on to demonstrate the following relation:

Fn,c(x) = θn,c ·
∂ log pnr(x)

∂θn,c
=

∂ log pnr(x)

∂ log θn,c
,

where n is a sum node and c is one of its children. We reuse the results derived in Eqs. (C.4)

and (C.5), where we replace n with c and m with n:

Fn,c(x) =
θn,c · pc(x)

pn(x)
· Fn(x) = θn,c · pc(x) ·

∂ log pnr(x)

∂pn(x)
=

∂ log pnr(x)

∂ log pc→n(x)
=

∂ log pnr(x)

∂ log θn,c
.

199

C.3 Experimental Details

C.3.1 The Adopted Block-Sparse PC Layer

The PC layer contains 200 independent fully-connected sets of nodes. Every connected subset

consists of 1024 sum nodes and 1024 product nodes. When compiling the layer, we divide

the layer into blocks of size 32. When dropping 32×32 edge blocks from the layer, we ensure

that every sum node has at least one child.

C.3.2 Details of Training the HMM Language Model

Following [192], we first fine-tune a GPT-2 model with the CommonGen dataset. We then

sample 8M sequences of length 32 from the fine-tuned GPT-2. After initializing the HMM

parameters with latent variable distillation, we fine-tune the HMM with the sampled data.

Specifically, following [192], we divide the 8M samples into 40 equally-sized subsets, and run

full-batch EM on the 40 subsets repeatedly. Another set of 800K samples is drawn from the

fine-tuned GPT as the validation set.

C.3.3 Details of Training the Sparse Image Model

Following [100], we fine-tune the model with an equivalent batch size of 6400 and a step size

of 0.01 in the mini-batch EM algorithm. Specifically, suppose θ are the current parameters,

θnew are the new set of parameters computed by the EM update. Given step size α, the

update formula is θ ← (1− α)θ + αθnew.

C.3.4 Additional Benchmark Results

Hyperparameters of the adopted HCLTs. We adopt two HCLTs [97] with hidden sizes

256 and 512, respectively. The backbone CLT structure is constructed using 20,000 randomly

selected training samples.

200

Table C.2: Average (± standard deviation of 5 runs) runtime (in seconds) per
training epoch of 60K samples for PyJuice and the baselines on five RAT-SPNs [133] with
different sizes. All other settings are the same as described in Section 4.5.1.

nodes 58K 116K 232K 465K 930K
edges 616K 2.2M 8.6M 33.4M 132M
EiNet 60.29±0.30 136.85±0.13 282.58±0.27 690.73±0.08 1936.28±0.26

Juice.jl 4.41±0.21 11.57±0.07 32.74±1.86 121.25±0.43 331.98±2.87

PyJuice 1.53±0.07 3.11±0.07 6.47±0.08 13.62±0.37 30.69±0.19

Hyperparameters of the adopted PDs. Starting from the set of all random variables,

the PD structure recursively splits the subset with product nodes. Specifically, consider

an image represented as a H×W×C (H is the hight; W is the width; C is the number of

channels), the PD structure recursively splits over both the height and the width coordinates,

where every coordinate has a set of pre-defined split points. For both the height and the

width coordinates, we add split points with interval 2. PD-mid has a hidden dimension of

128 and PD-large has 256.

Benchmark results on WikiText-103. Table C.1 illustrates results on WikiText-103.

We train the model on sequences with 64 tokens. We adopt two (homogeneous) HMM models,

HMM-mid and HMM-large with hidden sizes 2048 and 4096, respectively.

Table C.1: Density estimation performance of PCs on the WikiText-103 dataset. Reported
numbers are test set perplexity.

Dataset HMM-mid HMM-large

WikiText-103 146.59 167.65

C.4 Additional Experiments

C.4.1 Runtime on Different GPUs

In addition to the RTX 4090 GPU adopted in the experiments in Table 4.1, we compare the

runtime of PyJuice with the baselines on an NVIDIA A40 GPU. As shown in the following

table, PyJuice is still significantly faster than all baselines for PCs of different sizes.

201

C.4.2 Runtime on Different Batch Sizes

As a supplement to Table 4.1, we report the runtime for a RAT-SPN [133] with 465K nodes

and 33.4M edges using batch sizes {8, 16, 32, 64, 128, 256, 512}. To minimize distractions, we

only record the time to compute the forward and backward process, but not the time used

for EM updates. Results are shown in the table below.

Table C.3: Average (± standard deviation of 5 runs) runtime (in seconds) per
training epoch (excluding EM updates) of 60K samples for PyJuice and the baselines
on a RAT-SPNs [133] with 465K nodes and 33.4M edges. All other settings are the same as
described in Section 4.5.1. OOM denotes out-of-memory.

Batch size 8 16 32 64 128 256 512

EiNet 332.87±0.21 OOM OOM OOM OOM OOM OOM

Juice.jl 1045.04±0.06 853.15±0.03 775.87±0.02 642.54±0.04 324.23±0.02 163.68±0.02 80.57±0.01

PyJuice 43.09±0.04 18.63±0.02 7.38±0.01 4.58±0.01 3.50±0.01 3.04±0.01 2.76±0.03

202

Appendix D

Applications

203

D.1 Image Inpainting via Tractable Steering of Diffusion

Models

D.1.1 Proof of Theorem 11

The proof contains two main pairs: (i) shows that the forward pass computes
∑

x0

∏
i wi(x

i
0) ·

p(x0), and (ii) demonstrates the backward pass computes the conditional probabilities

pTPM(x̃
i
0|xt,x

k
0).

Correctness of the forward pass We show by induction that the forward value fwn of

every node n computes
∑

x0

∏
i∈ϕ(n) wi(x

i
0) · p(x0).

• Base case: input nodes. By definition, for every input node defined on variable X i
0 := ϕ(n),

its forward value is
∑

x0
wi(x

i
0) · pn(x0).

• Inductive case: product nodes. For every product node n, assume the forward value of its

every child node c satisfies fwc =
∑

x0

∏
i∈ϕ(c) wi(x

i
0) · pm(x0). Note that the forward value of

product nodes is computed according to Eq. (2.1), we have

fwn =
∏

c∈ch(n)

fwc,

=
∏

c∈ch(n)

∑

x0

∏

i∈ϕ(c)

wi(x
i
0) · pc(x0),

(a)
=
∑

x0

∏

c∈ch(n)

∏

i∈ϕ(c)

wi(x
i
0) · pc(x0),

(b)
=
∑

x0

∏

i∈ϕ(n)

wi(x
i
0)
∏

c∈ch(n)

pc(x0),

(c)
=
∑

x0

∏

i∈ϕ(n)

wi(x
i
0) · pn(x0),

where (a) follows from the fact that scopes of the children ϕ(c) are disjoint, and the child

PCs {pc(x0)}c are defined on disjoint sets; (b) follows from the fact that ϕ(n) =
⋃

c∈ch(n) ϕ(c);

(c) follows the definition in Eq. (2.1).

204

• Inductive case: sum nodes. Similar to the case of product nodes, for every sum node n, we

assume the forward value of its children satisfies the induction condition. We have

fwn =
∑

c∈ch(n)

θn,c · fwc,

=
∑

c∈ch(n)

θn,c
∑

x0

∏

i∈ϕ(c)

wi(x
i
0) · pc(x0),

(a)
=
∑

x0

∏

i∈ϕ(n)

wi(x
i
0) ·

∑

c∈ch(n)

ϕn,c · pc(x0),

(b)
=
∑

x0

∏

i∈ϕ(n)

wi(x
i
0) · pn(x0),

where (a) holds since ∀c ∈ ch(n), ϕ(c) = ϕ(n), and (b) follows from Eq. (2.1).

Therefore, the forward value of every node n is defined by fwn =
∑

x0

∏
i∈ϕ(n) wi(x

i
0) ·

pm(x0).

Correctness of the backward pass We first provide an intuitive semantics for the

backward value bkn of every node: for every node n, if its forward value fwn were to set to

fw′n (the other inputs of the PC remains unchanged), the value at the root node nr would

change to (1 − bkn) · fwnr + bkn · fwnr · fw′n/fwn. In the following, we prove this result by

induction over the root node.

• Base case: the PC rooted at n. Denote bknr
n as the backward value of node n w.r.t. the PC

rooted at nr. Since by definition bknn = 1, we have that when the value of n is changed to

fw′n, the root node’s value becomes

(1− bknn) · fwnr + bknn · fwn · fw′n/fwn = fw′n.

• Inductive case: sum node. Suppose the statement holds for all children of a sum node

m. Define bkmn,c as the backward value of edge (n, c) for the PC rooted at m. Following the

definition of the backward values, we have
∑

c∈ch(m) bk
m
n,c = bkmn . When the value of n is

205

changed to fw′n, the value of m becomes:

∑

c∈ch(m)

θm,c · fw′c =
∑

c∈ch(m)

θm,c ·
[
(1− bkcn) · fwc + bkcn · fwc · fw′n/fwn

]
,

=
∑

c∈ch(m)

θm,c · fwc
︸ ︷︷ ︸

fwm

+
∑

c∈ch(m)

θm,c · bkcn · fwc ·
(
fw′n/fwn − 1

)
,

= fwm +
∑

c∈ch(m)

θm,c ·
(
bkmn,c ·

fwm

θm,c · fwc

)

︸ ︷︷ ︸
bkcn

·fwc ·
(
fw′n/fwn − 1

)
,

= fwm +
∑

c∈ch(m)

bkmn,c

︸ ︷︷ ︸
bkmn

·fwm ·
(
fw′n/fwn − 1

)
,

= (1− bkmn) · fwm + bkmn · fwm · fw′n/fwn,

• Inductive case: product node. Suppose the statement holds for all children of a product

node m. Thanks to decomposability, at most one of m’s children can be an ancestor of n.

Denote this child as c′. When the value of n is changed to fw′n, the value of m becomes:

∏

c∈ch(m),c ̸=c′

fw′c =
∏

c∈ch(m),c ̸=c′

fwc ·
[
(1− bkc

′
n) · fwc′ + bkc

′
n · fwc′ · fw′n/fwn

]
,

(a)
=

∏

c∈ch(m),c ̸=c′

fwc ·
[
(1− bkmn) · fwc′ + bkmn · fwc′ · fw′n/fwn

]
,

(b)
= (1− bkmn) · fwc′ + bkmn · fwc′ · fw′n/fwn,

where (a) holds since bkmn = bkc
′
n and (b) follows from the definition of product nodes in

Eq. (2.1).

Next, assume that the input nodes are all indicators in the form of 1[Xi = xi]. In fact,

any discrete univariate distribution can be represented as a mixture (sum node) of indicators.

By induction, we can show that the sum of backward values of all input nodes corresponding

to a variable Xi is 1, since sum nodes only “divide” the backward value, and product nodes

206

preserve the backward value sent to them. By setting the value of the input node 1[Xi = xi],

we are essentially computing
∏

j ̸=i wj(xj) · 1[Xi = xi] · p(x). Therefore, the backward values

of these input nodes are proportional to the target conditional probability pTPM(x̃
i
0|xt,x

k
0).

We are left with proving that the sum of backward values of all input nodes corresponding

to variable Xi equals 1. To see this, consider the subset of nodes whose scope contains Xi.

This subset of nodes represents a DAG with the root node as the only source node and input

nodes of variables Xi as the sink. Consider the backward algorithm as computing flows in

the DAG. For every node non-sink node, the amount of flow it accepts equals the amount it

sends. Specifically, product nodes send all their flow to their only child node (according to

decomposability, at most one child of a product node contains Xi in its scope); for every sum

node n, the sum of flows sent to its children equal to the flow it receives. Since the flow sent

by all source nodes equals the flow received by all sink nodes, we conclude that the backward

values of the input nodes for variable Xi sum up to 1. □

D.1.2 Design Choices for High-Resolution Guided Image Inpainting

In all experiments, we compute wz
i (z̃

i
0) by first drawing 4 samples from 1

Z

∏
j wj(x̃

j
0), and then

feed them to the VQ-GAN’s encoder. For every sample, we get a distribution over variable Z̃i
0.

wz
i (z̃

i
0) is then computed as the mean of the four distributions. In the following decoding phase

that computes pTPM(x̃0|xt,x
k
0) := Ez̃0∼pTPM(·|xt,xk

0)
[p(x̃0|z̃0)], we draw 8 random samples from

pTPM(·|xt,x
k
0) to estimate pTPM(x̃0|xt,x

k
0).

In the following, we describe the hyperparameters of the adopted VQ-GAN for all three

datasets:

Table D.1: Hyperparameters of the adopted VQ-GAN models for Tiramisu.

CelebA-HQ ImageNet LSUN-Bedroom

latent variables 16× 16 16× 16 16× 16
Vocab size 1024 16384 16384

207

Additional hyperparameters of Tiramisu For the distribution mixing hyperparameter

α (cf. Section 5.1.2), we use an exponential decay schedule from a to b with a temperature

parameter λ. Specifically, the mixing hyperparameter at time step T is

(b− a) · exp(−λ · t/T) + a. (D.1)

We further define a cutoff parameter tcut such that when t ≤ tcut, the TPM guidance is not

used. In all experiments, we used the first three samples in the validation set to tune the

mixing hyperparameters. Hyperparameters are given in the following table. In all settings,

we have T = 250.

Table D.2: Mixing hyperparameters of Tiramisu.
CelebA-HQ ImageNet LSUN-Bedroom

a 0.8 0.8 0.8
b 1.0 1.0 1.0
λ 2.0 2.0 2.0
tcut 200 235 235

D.1.3 PC Learning Details

The EM Parameter Learning Algorithm

When performing a feedforward evaluation (i.e., Eq. (2.1)), a PC takes as input a sample

x and outputs its probability pn(x). Given a dataset D, our goal is to learn a set of PC

parameters (including sum edge parameters and input node/distribution parameters) to

maximize the MLE objective:
∑

x∈D log pn(x). The Expectation-Maximization algorithm is

a natural way to learn PC parameters since PCs can be viewed as latent variable models with

a hierarchically nested latent space [131]. There are two interpretations of the EM learning

algorithm for PCs: one based on gradients [132] and the other based on a new concept called

circuit flows [16]. We use the gradient-based interpretation since it is easier to understand.

Note that the feedforward computation of PCs is differentiable and can be modeled by a

208

computation graph. Therefore, after computing the log-likelihood log pn(x) of a sample x,

we can efficiently compute its gradient with respect to all PC parameters via the backpropa-

gation algorithm. Given a mini-batch of samples, we use the backpropagation algorithm to

accumulate gradients for every parameter. Take sum parameters as an example. Define the

cumulative gradient of θn,c as gn,c, the updated parameters {θn,c}c∈ch(n) for every sum node n

is given by:

θn,c ← (1− α) · θn,c + α · gn,c · θn,c∑
m∈ch(n) gn,m · θn,m

,

where α ∈ (0, 1] is the step size. For input nodes, since we only use categorical distributions

that can be equivalently represented as a mixture over indicator leaves (i.e., a sum node

connecting these indicators), optimizing leaf parameters is equivalent to the sum parameter

learning process.

Details of the PC Learning Pipeline

PC structure We adopt a variant of the original PD structure proposed in [136]. Specifically,

starting from the whole image, the PD structure gradually uses product nodes to horizontally

or vertically split the variable scope into half. As a result, the scope of every node represents

a patch (of variable size) in the original image. We use categorical input nodes in accordance

with the VQ-GAN’s latent space. We treat the set of parameters belonging to nodes with the

same scope as the parameters of the scope. Based on the original structure, we further tie the

parameters representing every pixel and every 2× 2 patch. Since the marginal distribution of

every latent variable should be similar thanks to the spatial invariance of images.

Parameter learning This paper uses the latent variable distillation (LVD) technique

[99,100] to initiate the PC parameters before further fine-tuning them with the EM algorithm

described in Section D.1.3. Intuitively, LVD provides extra supervision to PC optimizers

through semantic-aware latent variable assignments extracted from deep generative models.

209

We refer readers to the original papers for more details.

After initializing PC parameters with LVD, we further fine-tune the parameters with EM

with the following hyperparameters:

Table D.3: Hyperparameters of EM fine-tuning process.

Name Value

Step size 1.0
Batch size 20000

Pseudocount 0.1
iterations 200

D.1.4 Details of the Main Experiments and the Baselines

Pretrained Models For all inpainting algorithms, we adopt the same diffusion model

checkpoint pretrained by [108] (for CelebA-HQ) and OpenAI (for ImageNet and LSUN-

Bedroom; https://github.com/openai/guided-diffusion). The links to the checkpoints

for all three datasets are listed below.

• CelebA-HQ: https://drive.google.com/uc?id=1norNWWGYP3EZ_o05DmoW1ryKuKMmhlCX

• ImageNet: https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_

diffusion.pt and https://openaipublic.blob.core.windows.net/diffusion/jul-2021/

256x256_classifier.pt.

• LSUN-Bedroom: https://openaipublic.blob.core.windows.net/diffusion/jul-2021/

lsun_bedroom.pt.

Data For CelebA-HQ and LSUN-Bedroom, we use the first 100 images in the validation

set. We adopt the validation split of CelebA-HQ following [166]. For ImageNet, we use a

random validation image for the first 100 classes.

210

https://github.com/openai/guided-diffusion
https://drive.google.com/uc?id=1norNWWGYP3EZ_o05DmoW1ryKuKMmhlCX
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt

Table D.4: User study results. We report the vote difference (%), i.e., [percentage of votes to
Tiramisu] - [percentage of votes to the baseline]. The higher the vote difference value, the
more the annotators prefer images generated by Tiramisu compared to the baseline.

Tasks Algorithms

Dataset Mask Tiramisu (ours) CoPaint RePaint DPS

CelebA-HQ Expand1 Reference 22 34 14
Wide Reference 26 30 22

ImageNet Expand1 Reference 32 20 24
Wide Reference 14 6 12

LSUN-Bedroom Expand1 Reference 18 2 8
Wide Reference 4 6 -6

D.1.5 Additional Experiments

User Study

Since image inpainting is an ill-posed problem and LPIPS alone may not be sufficient to

indicate the performance of each algorithm, we recruited human evaluators to evaluate the

quality of inpainted images. Specifically, for every baseline method, we sample inpainted

image pairs from the baseline and Tiramisu using the same inputs (source image and mask).

For every image pair, the evaluator is provided with both inpainted images and is tasked

to select the better one based on the following criterion: images that visually look more

natural and without artifacts (e.g., blurry, distorted). A screenshot of the interface is shown

in Fig. D.1.

The user study is conducted on the three strongest baselines based on their overall LPIPS

scores: CoPaint [191], RePaint [108], and DPS [23]. We use two mask types for comparison:

“expand1” and “wide”. For every comparison, we report the vote difference (%), which is the

percentage of votes to Tiramisu subtracted by that of the baseline. A positive vote difference

value means images generated by Tiramisu are preferred compared to the baselines, while a

negative value suggests that the baseline is better than Tiramisu.

We adopt the three most competitive baselines, i.e., CoPaint, RePaint, and DPS, based

on their average LPIPS scores (Table 5.1). For all three datasets, we conduct user studies

211

Figure D.1: User study interface.

on two types of masks: “expand1” and “wide”. Results are shown in Table D.4. The vote

difference scores are mostly high, indicating the superior inpainting performance of Tiramisu.

Additionally, we observe that Tiramisu generally performs better with the “expand1” mask

(with larger to-be-inpainted regions), which suggests that Tiramisu may be more helpful in

the case of large-hole image inpainting.

Additional Qualitative Results

Please refer to Figs. D.2 to D.4 for additional qualitative results on all three adopted datasets.

D.1.6 Details of the Semantic Fusion Experiment

The mixing hyperparameters are the same as described in Section D.1.2.

212

The VQ-GAN encoder first generates an embedding e for every latent variable Z̃i
0, and it

is then discretized with the VQ codebook by selecting the ID in the codebook that has the

minimum L2 distance with e. We soften this process by setting wz
i (j) = exp(−∥e− ej∥2/λsf),

where ej is the jth embedding in the codebook, and λsf is the temperature that controls

the semantic coherence level of the generated images. The closer λsf is to 0, the higher the

coherence level.

213

CoPaint TiramisuRePaintDDNMDDRMDPSResampleImage

Left

Top

Expand1

Expand2

V-strip

H-strip

Figure D.2: Additional qualitative results on CelebA-HQ with six mask types.

214

CoPaint TiramisuRePaintDDNMDDRMDPSResampleImage

Left

Top

Expand1

Expand2

V-strip

H-strip

Figure D.3: Additional qualitative results on ImageNet with six mask types.

215

CoPaint TiramisuRePaintDDNMDDRMDPSResampleImage

Left

Top

Expand1

Expand2

V-strip

H-strip

Figure D.4: Additional qualitative results on LSUN-Bedroom with six mask types.

216

D.2 Lossless Data Compression

D.2.1 Proof of Theorem 13

As hinted by the proof sketch given in the main text, this proof consists of three main parts —

(i) construction of the optimal variable order π∗ given a smooth and structured-decomposable

PC, (ii) justify the correctness of Algorithm 6, and (iii) prove that Fπ∗(x) can be computed

by evaluating no more than O(log(K)·|p|) PC units (i.e., analyze the time complexity of

Algorithm 6).

Construction of an optimal variable order For ease of illustration, we first transform

the original smooth and structured-decomposable PC into an equivalent PC where every

product node has two children. Fig. D.5 illustrates this transformation on any product

node with more than two children. Note that this operation will not change the number of

parameters in a PC, and will only incur at most 2·|p| edges.

We are now ready to define the variable tree (vtree) [82] of a smooth and structured-

decomposable PC. Specifically, a vtree is a binary tree structure whose leaf nodes are labeled

with a PC’s input features/variables X (every leaf node is labeled with one variable). A PC

conforms to a vtree if for every product unit n, there is a corresponding vtree node v such

that children of n split the variable scope ϕ(n) in the same way as the children of the vtree

node v. According to its definition, every smooth and structured-decomposable PC whose

product units all have two children must conform to a vtree [82]. For example, the PC shown

in Fig. D.6(a) conforms to the vtree illustrated in Fig. D.6(b). Similar to PCs, we define the

scope ϕ(v) of a vtree node v as the set of all descendent leaf variables of v.

We say that a unit n in a smooth and structured-decomposable PC conforms to a node v

in the PC’s corresponding vtree if their scopes are identical. For ease of presentation, define

φ(p, v) as the set of PC units that conform to vtree node v. Additionally, we define φsum(p, v)

and φprod(p, v) as the set of sum and product units in φ(p, v), respectively.

217

Next, we define an operation that changes a vtree into an ordered vtree, where for each

inner node v, its left child has more descendent leaf nodes than its right child. See Fig. D.6(c-d)

as an example. The vtree in Fig. D.6(b) is transformed into an ordered vtree illustrated in

Fig. D.6(c); the corresponding PC (Fig. D.6(a)) is converted into an ordered PC (Fig. D.6(d)).

This transformation can be performed by all smooth and structured-decomposable PCs.

We are ready to define the optimal variable order. For a pair of ordered PC and ordered

vtree, the optimal variable order π∗ is defined as the order the leaf vtree nodes (each

corresponds to a variable) are accessed following an inorder traverse of the vtree (left child

accessed before right child).

Correctness of Algorithm 6 Assume we have access to a smooth, structured-decomposable,

and ordered PC p and its corresponding vtree. Recall from the above construction, the

optimal variable order π∗ is the order following an inorder traverse of the vtree.

We show that it is sufficient to only evaluate the set of PC units stated in line 6 of

Algorithm 6. Using our new definition of vtrees, we state line 6 in the following equivalent

way. At iteration i (i.e., we want to compute the ith term in Fπ(x): p(xπ1 , . . . , xπi
)), we need

to evaluate all PC units that conform to any vtree node in the set Tp,i. Here Tp,i is defined as

the set of vtree nodes v that satisfy the following condition: Xπi
∈ ϕ(v) and there does not

exist a child c of v such that {Xπj
}ij=1 ∈ ϕ(c). For ease of presentation, we refer to evaluate

PC units φ(p, v) when we say “evaluate a vtree node v”.

First, we don’t need to evaluate vtree units v where Xπi
̸∈ ϕ(v) because the probability of

these PC units will be identical to that at iteration i−1 (i.e., when computing p(xπ1 , . . . , xπi−1
)).

Therefore, we only need to cache these probabilities computed in previous iterations.

Second, we don’t need to evaluate vtree units v where at least one of its children c

satisfy {Xπj
}i−1
j=1 ∈ ϕ(c) because we can obtain the target marginal probability p(xπ1 , . . . , xπi

)

following lines 7-9 of Algorithm 6. We proceed to show how this is done in the following.

Denote the “highest” in Tp,i as vr,i (i.e., the parent of vr,i is not in Tp,i). According to the

218

n1 n2

n3

nk

. . .

. . .

n1 n2 n3 nk

n 1

n 2

n 3

n k

. .
.

Figure D.5: Convert a product unit with k children into an equivalent PC where every
product node has two children.

variable order π∗, vr,i uniquely exist for any i ∈ [D]. According to Algorithm 7, the top-down

probabilities of PC units is defined as follows

• pdown(nr) = 1, where nr is the PC’s root unit.

• For any product unit n, pdown(n) =
∑

m∈par(n) pdown(m) · θm,n, where par(n) is the set of

parent (sum) units of n.

• For any sum unit n, pdown(n) =
∑

m∈par(n) pdown(m), where par(n) is the set of parent

(product) units of n.

We now prove that

p(xπ1 , . . . , xπi
) =

∑

n∈φsum(p,v)

pdown(n) · pn(x) (D.2)

holds when v = vr,i.

• Base case: If v is the vtree node correspond to nr, then φsum(p, v) = {nr} and it is easy

to verify that

p(xπ1 , . . . , xπi
) = pdown(nr) · pnr(x) =

∑

n∈φsum(p,v)

pdown(n) · pn(x)

• Inductive case: Suppose v is an ancestor of vr,i and the parent vtree node vp of v satisfy

219

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

(a) (b)

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

(c) (d)

X1 X1

X2 X2 X3 X3

Figure D.6: (a-b): An example structured-decomposable PC and a corresponding vtree. (c-d):
Converting (b) into an ordered vtree. (d) The converted ordered PC that is equivalent to (a).

Eq. (D.2). We have

p(xπ1 , . . . , xπi
) =

∑

m∈φsum(p,vp)

pdown(m) · pm(x),

=
∑

m∈φsum(p,vp)

∑

n∈ch(m)

pdown(m) · θm,n · pn(x),

(a)
=

∑

n∈φprod(p,vp)

∑

m∈par(n)

pdown(m) · θm,n

︸ ︷︷ ︸
pdown(n)

· pn(x),

=
∑

n∈φprod(p,vp)

pdown(n) · pn(x),

(b)
=

∑

n∈φprod(p,vp)

∑

o∈{o:o∈ch(n),{Xj}ij=1∈ϕ(o)}

pdown(n) · po(x),

(c)
=

∑

o∈φsum(p,v)

∑

n∈par(o)

pdown(n)

︸ ︷︷ ︸
pdown(o)

· po(x),

=
∑

o∈φsum(p,v)

pdown(o) · po(x),

where (a) reorders the terms for summation; (b) holds since ∀n ∈ φprod(p, vp), pn(x) =

220

∏
o∈ch(n) po(x) and ∀o ∈ ch(n) such that {Xj}ij=1 ∩ ϕ(o) = ∅, po(x) = 1;1 (c) holds because

⋃

n∈φprod(p,vp)

{o : o ∈ ch(n), {Xj}ij=1 ∈ ϕ(o)} = φsum(p, v).

Thus, we have prove that Eq. (D.2) holds for v = vr,i, and hence the probability

p(xπ1 , . . . , xπi
) can be computed by weighting the probability of PC units φsum(p, vr,i) (line 8

in Algorithm 6) with the corresponding top-down probabilities (line 9 in Algorithm 6).

Efficiency of following the optimal variable order We proceed to show that when

using the optimal variable order π∗, Algorithm 6 evaluates no more than O(log(D)·|p|) PC

units.

According to the previous paragraphs, whenever Algorithm 6 evaluates a PC unit n w.r.t.

vtree node v, it will evaluate all PC units in φ(p, v). Therefore, we instead count the total

number of vtree nodes need to be evaluated by Algorithm 6. Since the PC is assumed to be

balanced Definition 9, for every v, we have φ(p, v) = O(|p|/D). Therefore, we only need to

show that Algorithm 6 evaluates O(D · log(D)) vtree nodes in total.

We start with the base case, which is PCs correspond to a single vtree leaf node v. In

this case, Fπ∗(x) boils down to computing a single marginal probability p(xπ∗
1
), which needs

to evaluate PC units φ(p, v) once.

Define f(x) as the number of vtree nodes that need to be evaluated given a PC that

corresponds to a vtree node with x descendent leaf nodes. From the base case, we know that

f(1)=1.

Next, consider the inductive case where v is an inner node that has x descendent leaf

nodes. Define the left and right child node of v as c1 and c2, respectively. Let c1 and c2

have y and z descendent leaf nodes, respectively. We want to compute Fπ∗(x), which can be

1This is because the scope of these PC units does not contain any of the variables in {Xπj
}ij=1.

221

broken down into computing following two sets of marginals:

Set 1:
{
p(xπ∗

1
, · · · , xπ∗

i
)
}y
i=1

, Set 2:
{
p(xπ∗

1
, · · · , xπ∗

i
)
}y+z

i=y+1
.

Since π∗ follows the in-order traverse of v, to compute the first term, we only need to evaluate

c1 and its descendents, that is, we need to evaluate f(y) vtree nodes. This is because the

marginal probabilities in set 1 are only defined on variables in ϕ(c1). To compute the second

term, in addition to evaluating PC units corresponding to c2 (that is f(z) vtree nodes in

total),2 we also need to re-evaluate the PC units φ(p, v) every time, which means we need to

evaluate z more vtree nodes. In summary, we need to evaluate

f(x) = f(y) + f(z) + z (y ≥ z, y + z = x)

vtree nodes.

To complete the proof, we upper bound the number of vtree nodes that need to be

evaluated. Define g(·) as follows:

g(x) = max
y∈{1,...,⌊x

2
⌋}
y + g(y) + g(x− y).

It is not hard to verify that ∀x∈Z, g(x) ≥ f(x). Next, we prove that

∀x ∈ Z (x ≥ 2), g(x) ≤ 3x log x.

First, we can directly verify that g(2) ≤ 3·2 log2 2 ≈ 4.1. Next, for x ≥ 3,

g(x) = max
y∈{1,...,⌊x

2
⌋}
y + g(y) + g(x− y),

2As justified in the second part of this proof, all probabilities of PC units that conform to descendents of c1
will be unchanged when computing the marginals in set 2. Hence, we only need to cache these probabilities.

222

≤ max
y∈{1,...,⌊x

2
⌋}
y + 3y log y + 3(x− y) log(x− y)︸ ︷︷ ︸

h(y)

,

(a)

≤ max

(
1 + 3(x− 1) log(x− 1),

⌊x
2

⌋
+ 3

⌊x
2

⌋
log
⌊x
2

⌋
+ 3

(
x−

⌊x
2

⌋)
log
(
x−

⌊x
2

⌋))
,

≤ max

(
1 + 3(x− 1) log(x− 1),

⌊x
2

⌋
+ 3(x+ 1) log

x+ 1

2

)
,

≤ 3x log x,

where (a) holds since according to its derivative, h(y) obtains its maximum value at either

y = 1 or y =
⌊
x
2

⌋
.

For a structured-decomposable PC with D variables, g(D) ≤ 3D logD vtree nodes need

to be evaluated. Since each vtree node corresponds to O(|p|
D
) PC units, we need to evaluate

O(log(D)·|p|) PC units to compute Fπ∗(x).

HCLTs, EiNets, and RAT-SPNs are Balanced

Consider the compilation from a PGM to an HCLT (Section 3.1). We first note that each

PGM node g uniquely corresponds to a variable scope ϕ of the PC. That is, all PC units

correspond to g have the same variable scope. Please first refer to Section D.2.2 for details

on how to generate a HCLT given its PGM representation.

In the main loop of Algorithm 24 (lines 5-10), for each PGM node g such that var(g) ∈ Z,

the number of computed PC units are the same (M product units compiled in line 9 and M

sum units compiled in line 10). Therefore, for any variable scopes ϕ1 and ϕ2 possessed by some

PC units, we have |nodes(p, ϕ(m))| ≈ |nodes(p, ϕ(n))|. Since there are in total Θ(D) different

variable scopes in p, we have: for any scope ϕ′ exists in an HCLT p, nodes(p, ϕ′) = O(|p|/D).

EiNets and RAT-SPNs are also balanced since they also have an equivalent PGM repre-

sentation of their PCs. The main difference between these models and HCLTs is the different

variable splitting strategy in the product units.

223

D.2.2 Methods and Experiment Details

Learning HCLTs

Computing Mutual Information As mentioned in the main text, computing the pairwise

mutual information between variables X is the first step to compute the Chow-Liu Tree. Since

we are dealing with categorical data (e.g., 0-255 for pixels), we compute mutual information

by following its definition:

I(X;Y) =

CX∑

i=1

CY∑

j=1

P (X = i, Y = j) log2
P (X = i, Y = j)

P (X = i)P (Y = j)
,

where CX and CY are the number of categories for variables X and Y , respectively. To lower

the computation cost, for image data, we truncate the data by only using 3 most-significant

bits. That is, we treat the variables as categorical variables with 23 = 8 categories during the

construction of the CLT. Note that we use the full data when constructing/learning the PC.

Training pipeline We adopt two types of EM updates — mini-batch and full-batch. In

mini-batch EM, parameters are updated according to a step size η: θ(k+1)←(1−η)θ(k)+ηθ(new),

where θ(new) is the EM target computed with a batch of samples; full-batch EM updates the

parameters by the EM target computed using the whole dataset. In this paper, HCLTs are

trained by first running mini-batch EM with batch size 1024 and η changing linearly from 0.1

to 0.05; full-batch EM is then used to finetune the parameters.

Generating PCs Following the HCLT Structure

After generating the PGM representation of a HCLT model, we are now left with the final

step of compiling the PGM representation of the model into an equivalent PC. Recall that

we define the latent variables {Zi}4i=1 as categorical variables with M categories, where M is

a hyperparameter. As demonstrated in Algorithm 24, we incrementally compile every PGM

node into an equivalent PC unit though a bottom-up traverse (line 5) of the PGM. Specifically,

224

Algorithm 24 Compile the PGM representation of a HCLT into an equivalent PC
1: Input: A PGM representation of a HCLT G (e.g., Fig. 3.1(c)); hyperparameter M
2: Output: A smooth and structured-decomposable PC p equivalent to G
3: Initialize: cache← dict() a dictionary storing intermediate PC units
4: Sub-routines: PC_leaf(Xi) returns a PC input unit of variable Xi; PC_prod({ni}mi=1) (resp.

PC_sum({ni}mi=1)) returns a product (resp. sum) unit over child nodes {ni}mi=1.

5: foreach node g traversed in postorder (bottom-up) of G do
6: if var(g) ∈ X then cache[g]←

[
PC_leaf

(
var(g)

)
for i = 1 : M

]
7: else # That is, var(g) ∈ Z
8: chs_cache←

[
cache[c] for c in children(g)

]
#children(g) is the set of children of g

9: prod_nodes←
[
PC_prod

([
nodes[i] for nodes in chs_cache

])
for i = 1 : M

]
10: cache[g]←

[
PC_sum

(
prod_nodes

)
for i = 1 : M

]
11: return cache[root(G)][0]

leaf PGM nodes corresponding to observed variables Xi are compiled into PC input units of

Xi (line 6), and inner PGM nodes corresponding to latent variables are compiled by taking

products and sums (implemented by product and sum units) of its child nodes’ PC units

(lines 8-10). Leaf units generated by PC_leaf(X) can be any simple univariate distribution

of X. We used categorical leaf units in our HCLT experiments. Fig. 3.1(d) demonstrates the

result PC after running Algorithm 24 with the PGM in Fig. 3.1(c) and M = 2.

Implementation Details of the PC Learning Algorithm

We adopted the EM parameter learning algorithm introduced in [18], which computes the

EM update targets using expected flows. Following [97], we use a hybrid EM algorithm, which

uses mini-batch EM updates to initiate the training process, and switch to full-batch EM

updates afterwards.

• Mini-batch EM: denote θ(EM) as the EM update target computed with a mini-batch of

samples. An update with step-size η is: θ(k+1) ← (1− η)θ(k) + ηθ(EM).

• Full-batch EM: denote θ(EM) as the EM update target computed with the whole dataset.

Full-batch EM updates the parameters with θ(EM) at each iteration.

In our experiments, we trained the HCLTs with 100 mini-batch EM epochs and 20 full-

batch EM epochs. During mini-batch EM updates, η was annealed linearly from 0.15 to

0.05.

225

Details of the Compression/Decompression Experiment

Hardware specifications All experiments are performed on a server with 72 CPUs, 512G

Memory, and 2 TITAN RTX GPUs. In all experiments, we only use a single GPU on the

server.

IDF We ran all experiments with the code in the GitHub repo provided by the authors. We

adopted an IDF model with the following hyperparameters: 8 flow layers per level; 2 levels;

densenets with depth 6 and 512 channels; base learning rate 0.001; learning rate decay 0.999.

The algorithm adopts an CPU-based entropy coder rANS. For (de)compression, we used

the following script: https://github.com/jornpeters/integer_discrete_flows/blob/

master/experiment_coding.py.

BitSwap We trained all models using the following author-provided script: https://

github.com/fhkingma/bitswap/blob/master/model/mnist_train.py. The algorithm adopts

an CPU-based entropy coder rANS. And we used the following code for (de)compression:

https://github.com/fhkingma/bitswap/blob/master/mnist_compress.py.

BB-ANS All experiments were performed using the following official code: https://

github.com/bits-back/bits-back.

Details of the PC+IDF Model

The adopted IDF architecture follows the original paper [64]. For the PCs, we adopted

EiNets [132] with hyperparameters K = 12 and R = 4. Instead of using random binary trees

to define the model architecture, we used binary trees where “closer” latent variables in z

will be put closer in the binary tree.

Parameter learning was performed by the following steps. First, compute the average

log-likelihood over a mini-batch of samples. The negative average log-likelihood is the loss we

use. Second, compute the gradients w.r.t. all model parameters by backpropagating the loss.

226

https://github.com/jornpeters/integer_discrete_flows/blob/master/experiment_coding.py
https://github.com/jornpeters/integer_discrete_flows/blob/master/experiment_coding.py
https://github.com/fhkingma/bitswap/blob/master/model/mnist_train.py
https://github.com/fhkingma/bitswap/blob/master/model/mnist_train.py
https://github.com/fhkingma/bitswap/blob/master/mnist_compress.py
https://github.com/bits-back/bits-back
https://github.com/bits-back/bits-back

Finally, update the IDF and PCs using the gradients individually: for IDF, following [64],

the Adamax optimizer was used; for PCs, following [132], we use the gradients to compute

the EM target of the parameters and performed mini-batch EM updates.

227

D.3 Offline Reinforcement Learning

D.3.1 Proof of Theorem 14

To improve the clarity of the proof, we first simplify the notations in Theorem 14: define X

as the boolean action variables at := {ait}ki=1, and Y as the variable Vt, which is a categorical

variable with two categories 0 and 1. We can equivalently interpret Y as a boolean variable

where the category 0 corresponds to F and 1 corresponds to T. Dropping the condition on st

everywhere for notation simplicity, we have converted the problem into the following one:

Assume boolean variables X := {Xi}ki=1 and Y follow a Naive Bayes distribution:

p(x, y) := p(y) · ∏i p(xi|y). We want to prove that computing p(x|E[y] ≥ v), which is

defined as follows, is NP-hard.

p(x|E[y] ≥ v) :=
1

Z





p(x) if Ey∼p(·|x)[y] ≥ v,

0 otherwise.
(D.3)

By the definition of Y as a categorical variable with two categories 0 and 1, we have

Ey∼p(·|x)[y] = p(y = T|x) · 1 + p(y = F|x) · 0 = p(y = T|x).

Therefore, we can rewrite p(x|E[y] ≥ v) as

p(x|E[y] ≥ v) :=
1

Z
· p(x) · 1[p(y = T|x) ≥ v],

where 1[·] is the indicator function. In the following, we show that computing the normalizing

constant Z :=
∑

x p(x) ·1[p(y = T|x) ≥ v] is NP-hard by reduction from the number partition

problem, which is a known NP-hard problem. Specifically, for a set of k numbers n1, . . . , nk

(∀i, ni ∈ Z+), the number partition problem aims to decide whether there exists a subset

228

S ⊆ [k] (define [k] := {1, . . . , k}) that partition the numbers into two sets with equal sums:
∑

i∈S ni =
∑

j ̸∈S nj.

For every number partition problem {ni}ki=1, we define a corresponding Naive Bayes

distribution p(x, y) with the following parameterization: p(y = T) = 0.5 and3

∀i ∈ [k], p(xi = T|y = T) =
1− e−ni

eni − e−ni
and p(xi = T|y = F) = eni · 1− e−ni

eni − e−ni
.

It is easy to verify that the above definitions lead to a valid Naive Bayes distribution.

Further, we have

∀i ∈ [k], log
p(xi = T|y = T)

p(xi = T|y = F)
= ni and log

p(xi = F|y = T)

p(xi = F|y = F)
= −ni. (D.4)

We pair every partition S in the number partition problem with an instance x such that

∀i, xi = T if i ∈ S and xi = F otherwise. Choose v = 2/3, the normalizing constant Z can be

written as

Z =
∑

x∈val(X)

p(x) · 1
[
p(y = T|x) ≥ 2/3

]
. (D.5)

Recall the one-to-one correspondence between S and x, we rewrite p(y = T|x) with the

Bayes formula:

p(y = T|x) = p(y = T)
∏

i p(xi|y = T)

p(y = T)
∏

i p(xi|y = T) + p(y = F)
∏

i p(xi|y = F)
,

=
1

1 + e
−

∑
i log

p(xi|y=T)

p(xi|y=F)

,

=
1

1 + e−(
∑

i∈S ni−
∑

j ̸∈S nj)
,

3Note that we assume the naive Bayes model is parameterized using log probabilities.

229

where the last equation follows from Eq. (D.4). After some simplifications, we have

1
[
p(y = T|x) ≥ 2/3

]
= 1

[∑

i∈S

ni −
∑

j ̸∈S

nj ≥ 1
]
.

Plug back to Eq. (D.5), we have

Z =
∑

S⊆[k]

p(x) · 1
[∑

i∈S

ni −
∑

j ̸∈S

nj ≥ 1
]
,

=
1

2

∑

S⊆[k]

p(x) · 1
[∑

i∈S

ni −
∑

j ̸∈S

nj ̸= 0
]
,

where the last equation follows from the fact that (i) if x satisfy
∑

i∈S ni −
∑

j ̸∈S nj ≥ 1

then x̄ has
∑

i∈S ni −
∑

j ̸∈S nj ≤ −1 and vise versa, and (ii)
∑

i∈S ni −
∑

j ̸∈S nj must be an

integer.

Note that for every solution S to the number partition problem,
∑

i∈S ni −
∑

j ̸∈S nj = 0

holds. Therefore, there exists a solution to the defined number partition problem if Z < 1
2
. □

D.3.2 Algorithm Details of Trifle

This section provides a detailed description of the algorithmic procedure of Trifle with

single-/multi-step value estimates.

Adopted PC Structure And Parameter Learning Algorithm

For all tasks/offline datasets, we adopt the Hidden Chow-Liu Tree (HCLT) PC structure

proposed by [97] as it has been shown to perform well across different data types.

Following the definition in Eq. (2.1), a PC takes as input a sample x and outputs

the corresponding probability pn(x). Given a dataset D, the PC optimizer takes the PC

parameters (consisting of sum edge parameters and input node/distribution parameters) as

input and aims to maximize the MLE objective
∑

x∈D log pn(x). Since PCs can be deemed

as latent variable models with hierarchically nested latent space [131], the Expectation-

230

Maximization (EM) algorithm is usually the default choice for PC parameter learning. We

adopt the full-batch EM algorithm proposed in [136].

Before tuning the parameters with EM, we adopt the latent variable distillation (LVD)

technique proposed in [99] to initialize the PC parameters. Specifically, the neural embeddings

used for LVD are acquired by a BERT-like Transformer [39] trained with the Masked Language

Model task. To acquire the embeddings of a subset of variables ϕ, we feed the Transformer

with all other variables and concatenate the last Transformer layer’s output for the variables

ϕ. Please refer to the original paper for more details.

We use the same quantile dataset discretized from the original Gym-MuJoCo dataset as

done by TT [68], where each raw continuous variable is divided into 100 categoricals, and

each categorical represents an equal amount of probability mass under the empirical data

distribution.

Trifle with Single-/Multi-Step Value Estimates

Similar to other RvS algorithms, Trifle first trains sequence models given truncated trajectories

{(st, at, rt,RTGt)}t. Specifically, we fit two sequence models: an autoregressive Transformer

following prior work [68] as well as a PC, where the training details are introduced in

Section D.3.2.

During the evaluation phase, at time step t, Trifle is tasked to generate at given s≤t

and other relevant information (such as rewards collected in past steps). As introduced in

Section 5.1.3, Trifle generally works in two phases: rejection sampling for action generation

and beam search for action selection. The main algorithm is illustrated in Algorithm 25,

where we take the current state st as well as the past trajectory τ<t as input, utilize the

specified value estimate fv as a heuristic to guide beam search, and output the best trajectory.

Note that fv is a subroutine of our algorithm that uses the trained sequence models to

compute certain quantities, which will be detailed in subsequent parts. After that, we extract

the current action at from the output trajectory to execute in the environment.

231

At the first step of the beam search, we perform rejection sampling to obtain a candidate

action set at (line 4 of Algorithm 25). The concrete rejection sampling procedure for s-Trifle

is detailed in Algorithm 26. The major modification of m-Trifle compared to s-Trifle is the

adoption of a multi-step value estimate instead of the single-step value estimate, which is

also shown in Algorithm 27. Specifically, Algorithm 27 is used to replace the value function

fv shown in Algorithm 25.

Algorithm 25 Trifle with Beam Search
1: Input: past trajectory τ<t, current state st, beam width N , beam horizon H, scaling ratio λ, sequence modelM,

value function fv ▷ fv = E[Vt] for s-Trifle and E[V m
t] for m-Trifle

2: Output: The best action at

3: Let xt ← concat(τ<t, st).reshape(1,−1).repeat(N, dim = 0) ▷ Batchify the input trajectory

4: Perform rejection sampling to obtain at using Algorithm 26 ▷ cf. Algorithm 26

5: Initialize X0 = concat(xt,at)

6: foreach t = 1, ..., H

7: Xt−1 ← Xt−1.repeat(λ, dim = 0) ▷ Scale the number of trajectories from N to λN

8: Ct ← {concat(xt−1, x) | ∀xt−1 ∈ Xt−1, sample x ∼ pM(· | xt−1)} ▷ Candidate next-token prediction

9: Xt ← topkX∈Ct
(fv(X), k =N) ▷ keep N most rewarding trajectories

10: Xm ← argmaxX∈XH
fv(X)

11: return at in Xm

Algorithm 26 Rejection Sampling with Single-step Value Estimate
1: Input: past trajectory τ<t, current state st, dimension of action k, rejection rate δ > 0

2: Output: The sampled action a1:k
t

3: Let xt ← concat(τ<t, st)

4: for i = 1, ..., k do

5: Compute pGPT(a
i
t | xt, a

<i
t) Note that a<1

t = ∅.

6: Compute pTPM(Vt | xt, a
<i
t) =

∑
ai:k
t

pTPM(Vt, a
i:k
t | xt, a

1:k
t) ▷ The marginal can be efficiently computed by

PC in linear time.

7: Compute vδ = maxv{v ∈ val(Vt) | pTPM(Vt ≥ v | xt, a
<i
t) ≥ 1− δ}, for each ai

t ∈ val(Ai
t)

8: Compute p̃(ai
t | xt, a

<i
t ; vδ) =

1
Z
· pGPT(a

i
t | xt, a

<i
t) · pTPM(Vt ≥ vδ | xt, a

≤i
t) ▷ Apply Eq. (5.10)

9: Sample ai
t ∼ p̃(ai

t | xt, a
<i
t ; vδ)

10: return a1:k
t

232

Algorithm 27 Multi-step Value Estimate
1: Input: τ≤t = (s0, a0, ..., st, at), sequence modelM, terminal timestep t′ > t, discount γ

2: Output: The multi-step value estimate E
[
V m
t

]
3: Sample future actions at+1, ..., at′ from M
4: Compute pTPM(rh | τ≤t, at+1:h) =

∑
st+1:h

pTPM(rh, st+1:h | τ≤t′) for h ∈ [t+ 1, t′] ▷ Marginalize over

intermediate states st+1:h

5: Compute pTPM(RTGt′ | τ≤t, at+1:t′) =
∑

st+1:t′
pTPM(RTGt′ | τ≤t′)

6: Compute

E
[
V m
t

]
=

t′∑
h=t

γh−tErh∼pTPM(·|τ≤t,at+1:h)

[
rh

]
+ γt′+1−tERTGt′∼pTPM(·|τ≤t,at+1:t′)

[
RTGt′

]

7: return E
[
V m
t

]

Computing Multi-Step Value Estimates

In this section, we present an efficient algorithm that computes Eq. (5.11). From the decompo-

sition of Eq. (5.11), we can calculate E [V m
t] if we have the probabilities p(rτ |st, at:t′)(t≤τ <t′)

and p(RTGt′ |st, at:t′). A simple approach would be to compute each of the t′−t+1 proba-

bilities separately by computing marginal probabilities (recall that conditional probabilities

are a quotient of the corresponding marginal probabilities). However, this approach has an

undesired time complexity that scales linearly with respect to t′−t+1.

Following [96], we describe an algorithm that can compute all desired quantities using a

single feedforward and a backward pass to the PC.

The forward pass. The forward pass is similar to the one described in Section 2.1.

Specifically, we set the evidence as st, at:t′ and execute the forward pass.

The backward pass. The backward pass consists of two steps: (i) traverse all nodes

parents before children to compute a statistic termed flow for every node n: flown; (ii)

compute the target probabilities using the flow of all input nodes. Recall that we assume

without loss of generality that PCs alternate between sum and product layers. We further

assume that all parents of input nodes are product nodes. We define the flow of the root node

as 1. The flow of other nodes is defined recursively as (define pn as the forward probability of

233

node n):

flown :=





∑
m∈pa(n) (θm,n · pn/pm) · flowm n is a product node,

∑
m∈pa(n) flowm n is a input or sum node,

where pa(n) is the set of parents of node n.

Next for every variable X ∈ {Rt, . . . , Rt′−1,RTGt′}, we first collect all input nodes defined

on X. Define the set of input nodes as S. We have that

p(x|st, at:t′) :=
1

Z

∑

n∈S

flown · fn(x),

where fn is defined in Eq. (2.1) and Z is a normalizing constant.

D.3.3 Inference-time Optimality Score

We define the inference-time optimality score as a proxy for inference-time optimality. This

score is primarily defined over a state-action pair (st, at) at each inference step. In Fig. 5.8

(middle) and Fig. 5.8 (right), each sample point represents a trajectory, and the corresponding

inference-time optimality score is defined over the entire trajectory by averaging the scores of

all inference steps.

The specific steps for calculating the score for a given inference step t, given st and a

policy p(at | st), are as follows:

1. Given st, sample at from pTT(at | st), pDT(at | st), or pTrifle(at | st).

2. Compute the state-conditioned value distribution ps(Vt | st).

3. Compute Rt := EVt∼pa(RTGt|st,at)[Vt], which is the corresponding estimated expected

value.

4. Output the quantile value St of Rt in ps(Vt | st).

234

To approximate the distributions ps(Vt | st) and pa(Vt | st, at) (where Vt = RTG ∗ t) in

steps 2 and 3, we train two auxiliary GPT models using the offline dataset. For instance, to

approximate ps(Vt | st), we train the model on sequences (s ∗ t− k, Vt−k, . . . , st, Vt).

Intuitively, ps(Vt | st) approximates p(Vt | st) :=
∑

at
p(Vt | st, at) · p(at | st). Therefore, St

indicates the percentile of the sampled action in terms of achieving a high expected return,

relative to the entire action space.

D.3.4 Additional Experimental Details

Gym-MuJoCo

Sampling Details. We take the single-step value estimate by setting Vt = RTGt and

sample at from Eq. (5.10). When training the GPT used for querying pGPT(a
i
t|st, a<i

t), we

adopt the same model specification and training pipeline as TT or DT. When computing

pTPM(Vt ≥ v|st, a≤i
t), we first use the learned PC to estimate p(Vt|st) by marginalizing out

intermediate actions at:t′ and select the ϵ-quantile value of p(Vt|st) as our prediction threshold

v for each inference step. Empirically we fixed ϵ for each environment and ϵ ranges from 0.1

to 0.3.

Beam Search Hyperparameters. The maximum beam width N and planning horizon

H that Trifle uses across 9 MuJoCo tasks are 15 and 64, respectively.

Comparison with Value-Based Algorithms. To shed light on how Trifle compares

to methods that directly optimize the Q values while filtering actions by conditioning

on high returns (as done in RvS algorithms), we compare Trifle with Q-learning Decision

Transformer [185], which incorporates a contrastive Q-learning regime into the RvS framework.

As shown in the table below, Trifle outperforms QDT in all six adopted MuJoCo benchmarks:

235

Table D.5: Normalized Scores of QDT and Trifle on Gym-MuJoCo benchmarks

Dataset Environment Trifle QDT

Medium Halfcheetah 49.5±0.2 42.3±0.4

Med-Replay Halfcheetah 45.0±0.3 35.6±0.5

Medium Hopper 67.1±4.3 66.5±6.3

Med-Replay Hopper 97.8±0.3 52.1±20.3

Medium Walker2d 83.1±0.8 67.1±3.2

Med-Replay Walker2d 88.3±3.8 58.2±5.1

Stochastic Taxi Environment

Hyperparameters. Except for s-Trifle, the sequence length K modeled by TT, DT, and m-

Trifle is all equal to 7. The inference algorithm of TT follows that of the MuJoCo experiment

and DT follows its implementation in the Atati benchmark. Notably, during evaluation, we

condition the pretrained DT on 6 different RTGs ranging from -100 to -350 and choose the

best policy resulting from RTG=-300 to report in Fig. 5.9c. Beam width N = 8 and planning

horizon H = 3 hold for TT and m-Trifle.

Additional Results on the Taxi benchmark. Besides the episode return, we adopt

two metrics to better evaluate the adopted methods: (i) #penalty: the average number of

executing illegal actions within an episode; (ii) P (failure): the probability of failing to

transport the passenger to the destination within 300 steps.

236

Table D.6: Results on the stochastic Taxi environment. All the reported numbers are averaged
over 1000 trials.

Methods Episode return # penalty P (failure)

s-Trifle -99 0.14 0.11

m-Trifle -57 0.38 0.02

TT -182 2.57 0.34

DT -388 14.2 0.66

DoC -146 0 0.28

dataset -128 2.41 0

Ablation Study Regarding Action Filtering. In an attempt to justify the effective-

ness/necessity of exact inference, we compare Trifle with value-based action filtering/value

estimation in the following:

To begin with, we implemented the traditional Policy Evaluation algorithm on the Taxi

offline dataset described in Section 5.3.5 of the paper. The policy evaluation algorithm is

based on the Bellman update:

Q(st, at)← Q(st, at) + α
[
rt+1 + γQ(st+1, at+1)−Q(st, at))

]

Then we use the obtained Q function, denoted Qtaxi, to perform the following ablation

studies. We still choose TT as our base RvS model. Recall that given st, TT first samples at

from its learned prior policy pTT (at|st), which are subsequently fed to a beam search procedure

that uses the learned value function pTT (Vt|st, at) to select the best action. Therefore, we

consider ablations on two key components of TT: (i) the prior policy pTT (Vt|st, at) used to

sample actions, and (ii) the value function pTT (Vt|st, at) used to evaluate and select actions.

1. TT + Qtaxi action filtering: weigh the prior policy pTT (at|st) with each action’s

exponentiated Qtaxi value (i.e., exp(Qtaxi(st, at))), but still adopt TT’s value estimation.

237

In other words, in this experiment, we only use Qtaxi to improve the sampling quality

as s-Trifle does.

2. TT + Qtaxi value estimation: replace pTT (Vt|st, at) with Qtaxi(st, at) for action

evaluation and selection, but still use TT’s prior policy pTT (at|st).

3. TT + full Qtaxi: simultaneously use exp(Qtaxi(st, at)) for action filtering and Qtaxi(st, at)

for action evaluation.

We present the results of these ablation studies as follows:

Method Score

TT -182

TT + Qtaxi action filtering -157

TT + Qtaxi value estimation -147

TT + full Qtaxi -138

m-Trifle -58

s-Trifle -99

From these results, we draw the following conclusions:

• m-Trifle and s-Trifle achieve the best performance.

• The rank of scores: TT + full Qtaxi > TT + Qtaxi value estimation > TT + Qtaxi action

filtering > TT suggests that using Qtaxi for both action filtering and value estimation

is beneficial; combining the two leads to the best performance.

• Specifically, the fact that s-Trifle outperforms the Qtaxi based action filtering demon-

strates that our filtration with exact inference is much more effective. The superior

performance of m-Trifle also provides strong evidence that explicit marginalization over

future states leads to better value estimation.

238

D.3.5 Additional Experiments

Ablation Studies on Rejection Sampling and Beam Search

The key insight of Trifle to solve challenges elaborated in Scenario #1 is to utilize tractable

probabilistic models to better approximate action samples from the desired distribution

p(at|s0:t,E[Vt] ≥ v). We highlight that the most crucial design choice of our method for

this goal is that: Trifle can effectively bias the per-action-dimension generation process of

any base policy towards high expected returns, which is achieved by adding per-dimension

correction terms pTPM(Vt ≥ v|st, a≤i
t) (Eq. (2) in the paper) to the base policy.

While the rejection sampling method can help us obtain more unbiased action samples

through a post value(expected return)-estimation session, we only implement this component

for TT-based Trifle (not for DT-based Trifle) for fair comparison, as the DT baseline doesn’t

perform explicit value estimation or adopt any rejection sampling methods. Therefore,

the success of DT-based Trifle strongly justifies the effectiveness of the TPM components.

Moreover, the beam search algorithm also comes from TT. Although it is a more effective

way to do rejection sampling, it is not the necessary component of Trifle, either.

Table D.7: Ablations over Beam Search Hyperparameters on Halfcheetah Med-Replay. (a)
With H = 1, the beam search degrades to naive rejection sampling (b) With W = 1, the
algorithm doesn’t perform rejection sampling. It samples a single action and applies it to the
environment directly.

Table D.8: Varying Planning Horizon

Horizon H Width W TT TT-based Trifle

5 32 41.9±2.5 45.0±0.3

4 32 40.1±2.0 43.1±1.0

3 32 41.6±1.3 42.6±1.6

2 32 39.7±2.5 42.8±0.5

1 (w/ naive rej sampling) 32 33.6±3.0 39.6±0.7

Table D.9: Varying Beam Width

Horizon H Width W TT TT-based Trifle

5 32 41.9±2.5 45.0±0.3

5 16 42.5±1.9 42.6±1.6

5 8 42.9±0.4 43.5±0.3

5 4 38.7±0.3 43.4±0.3

5 1 (w/o rej sampling) 31.2±3.4 36.7±1.8

For TT-based Trifle, we adopted the same beam search hyperparameters as reported in

the TT paper. We conduct ablation studies on beam search hyperparameters in Table D.7 to

239

investigate the effectiveness of Trifle’s each component. From Table D.7, we can observe that:

• Trifle consistently outperforms TT across all beam search hyperparameters and is more

robust to variations of both planning horizon and beam width.

• (a) Trifle w/ naive rejection sampling » TT w/ naive rejection sampling (b) Trifle w/o

rejection sampling » TT w/o rejection sampling. In both cases, Trifle can positively

guide action generation.

• Trifle w/ beam search > Trifle w/ naive rejection sampling > Trifle w/o rejection

sampling » TT w/ naive rejection sampling. Although other design choices like rejection

sampling/beam search help to better approximate samples from the high-expected-

return-conditioned action distribution, the per-dimension correction terms computed

by Trifle play a very significant role.

Computational Efficiency Analysis

Since TPM-related computation consistently requires 1.45s computation time across different

horizons, the relative slowdown of Trifle is diminishing as we increase the beam horizon.

Specifically, in the Gym-Mujuco benchmark, the time consumption for one step (i.e., one

interaction with the environment) of TT and Trifle with different beam horizons are listed

here (Fig. D.7 (left) also plots an inference-time scaling curve of Trifle vs TT with varying

horizons):

Table D.10: The one-step inference runtime of the Gym-MuJuCo benchmark

Horizon TT Trifle

5 0.5s 1.5s

15 1.2s 1.8s

Moreover, Fig. D.7 (right) shows that Trifle’s runtime (TPM-related) scales linearly w.r.t.

240

Figure D.7: Scaling Curves of Inference Time. (Fix beam width = 32)

the number of action variables, which indicates its efficiency for handling high-dimensional

action spaces.

Trifle is also efficient in training. It only takes 30-60 minutes (20s per epoch, 100-200

epochs) to train a PC on one GPU for each Gym-Mujuco task (Note that a single PC model

can be used to answer all conditional queries required by Trifle). In comparison, training the

GPT model for TT takes approximately 6-12 hours (80 epochs).

Ablation Studies on the Adaptive Thresholding Mechanism

The adaptive thresholding mechanism is adopted when computing the term pTPM(Vt ≥

v|st, a≤i
t) of Equation (2), where i ∈ {1, . . . , k}, k is the number of action variables and ait is

the ith variable of at. Instead of using a fixed threshold v, we choose v to be the ϵ-quantile

value of the distribution pTPM(Vt|st, a<i
t) computed by the TPM, which leverage the TPM’s

ability to exactly compute marginals given **incomplete** actions (marginalizing out ai:kt).

Specifically, we compute v using v = maxr{r ∈ R|pTPM (Vt ≥ r|st, a<i
t) ≥ 1− ϵ}. Empirically

we fixed ϵ for each Gym-MuJoCo environment and ϵ = 0.2 or 0.25, which is selected by

running grid search on ϵ ∈ [0.1, 0.25].

241

Table D.11: Comparison of Adaptive and Fixed Thresholding Mechanisms

Table D.12: Ablations over Adaptive
Thresholding (Varying ϵ) on Halfcheetah
Med-Replay

Method Score

TT 41.9±2.5

TT-based Trifle (ϵ = 0.25) 45.0±0.3

TT-based Trifle (ϵ = 0.2) 44.2±0.4

TT-based Trifle (ϵ = 0.15) 44.4±0.3

TT-based Trifle (ϵ = 0.1) 42.6±1.6

Table D.13: Performance of Fixed Thresh-
olding (Varying v)

v Halfcheetah Med-Replay Walker2d Med-Expert

adaptive 45.0±0.3 109.3±0.1

90 44.8±0.3 109.1±0.2

80 39.5±2.8 108.9±0.2

70 44.9±0.3 108.4±0.4

60 42.6±1.6 105.8±0.3

50 41.4±2.0 107.5±1.5

40 42.6±1.6 107.5±1.4

30 44.0±0.4 98.3±5.4

We report the performance of TT-based Trifle with variant ϵ vs TT on Halfcheetah

Med-Replay benchmark in Table D.12. We can see that Trifle is robust to the hyperparameter

ϵ and consistently outperforms the base policy TT.

We also conduct ablation studies comparing the performance of the adaptive thresholding

mechanism with the fixed thresholding mechanism on two environments in Table D.13.

Specifically, given that Vt is discretized to be a categorical variable with 100 categoricals

(0-99), we fix v to be 90,80,70,60,50,40,30 respectively.

The table shows that the adaptive approach consistently outperforms the fixed value

threshold in both environments. Additionally, the performance variation of fixing v is larger

compared to fixing ϵ as different v can be optimal for different states.

242

Appendix E

Tractability Matters in Diffusion Models

E.1 Proof of the Theoretical Results

Proof of Proposition 3. Following [63, 163], the negative ELBO L can be decomposed as

follows:

L = Eq

[
− log p(xT)−

T∑

t=1

log
pθ(xt−1|xt)

q(xt|xt−1)

]
,

= Eq

[
− log p(xT)−

T∑

t=1

log
pθ(xt−1|xt) · q(xt−1)

q(xt−1|xt) · q(xt)

]
,

= Eq

[
− log

p(xT)

q(xT)
−

T∑

t=1

log
pθ(xt−1|xt)

q(xt−1|xt)
− log p(x0)

]
,

= DKL(q(xT) ∥ p(xT)) + Eq

[
T∑

t=1

DKL(q(xt−1|xt) ∥ pθ(xt−1|xt))

]
+H(x0). (E.1)

The first term equals 0 as we assume the noise distribution p(XT) is consistent in the noising

and the denoising processes. Given the independent denoising assumption, when the denoising

distribution are optimal, we have

∀t ∈ {1, . . . , T}, pθ(xt−1|xt) =
∏

i

q(xi
t−1|xt).

243

Plug in Eq. (E.1) and using the definition of total correlation, we have:

L = DKL(q(xT) ∥ p(xT)) + Eq

[
T∑

t=1

DKL(q(xt−1|xt) ∥
∏

i

q(xi
t−1|xt))

]
+H(x0)

= DKL(q(xT) ∥ p(xT)) +
T∑

t=1

DTC(q(Xt−1|Xt)) + H(p(X0))

≥ H(p(X0)) +
T∑

t=1

DTC(q(Xt−1|Xt)).

□

Proof of Proposition 4. According to Pythagoras’ triangle-inequality theorem, if p̂ is the I-

projection of pest onto Pptar
mar , and Pptar

mar is convex (this can be shown by applying the definition

of a convex set), the following holds for any p′∈Pptar
mar :

DKL(p
′ ∥ pest) ≥ DKL(p

′ ∥ p̂) + DKL(p̂ ∥ pest). (E.2)

Choosing p′=ptar, we have

DKL(ptar ∥ p̂) ≤ DKL(ptar ∥ pest)−DKL(p̂ ∥ pest) < DKL(ptar ∥ pest),

where the last inequality holds since DKL(p̂ ∥ pest)>0 if the set of univariate marginals of pest

and ptar are different (as assumed in the proposition).

□

Proof of Proposition 5. Following the definition of p̂, we write down the constrained opti-

mization problem as follows

minimize
p′

DKL(p
′ ∥ pest)

s.t. ∀i ∈ {1, . . . , N}, xi ∈ {1, . . . , C},
∑

x\i

p′(x\i, xi) = ptar(xi).

244

To incorporate the constraints, we use the method of Lagrange multipliers. The Lagrangian

for this problem is

L(p′, {λi}Ni=1) =
∑

x

p′(x) log
p′(x)

pest(x)
+

N∑

i=1

C∑

xi=1

λi(xi) ·


∑

x\i

p′(x\i, xi)− ptar(xi)


 ,

where the Lagrange multipliers {λi}Ni=1 enforce the univariate marginal constraints.

To minimize the Lagrangian with respect to p′(x), we take the partial derivative of

L(p′, {λi}Ni=1) with respect to p′(x) and set it to 0:

∂L(p′, {λi}Ni=1)

∂p′(x)
= log

p′(x)

pest(x)
+ 1 +

∑

i

λi(xi) = 0.

Simplifying this equation gives

p′(x) = pest(x) · exp
(
−1−

∑

i

λi(xi)

)
.

Defining σi(xi) :=exp(−λi(xi)− 1/N) gives p′(x) = pest(x)
∏

i σi(xi).

Existence of the solution follows from the fact that (i) the objective function is convex

and bounded (since probability values are in [0, 1]), and (ii) the set of constraints is feasible

(e.g., p′(x)=
∏

i ptar(xi) or p′(x)=ptar(x)).

□

Proof of Theorem 15. We show that for any V∗ that minimizes the objective function

L(V; ptar, pest), the corresponding p′ defined by p′(x) = pest(x) ·
∏

i exp(V[i, xi]) belongs

to the set Pptar
mar . Specifically, for any V that minimizes the objective, the partial derivative of

L(V; ptar, pest) with respect to any V[i, xi] should be 0:

∂L(V; ptar, pest)

∂V[i, xi]
= exp(V[i, xi])

∑

x\i

pest(x\i, xi)
∏

j ̸=i

exp(V[j, xj])− ptar(xi) = 0.

245

Plug in the definition of p′, we have

0 =
∑

x\i

p′(x\i, xi)− ptar(xi) = p′(xi)− ptar(xi). (E.3)

Since Eq. (E.3) holds for all (i, xi) pairs, we have that every minimizer of L(V; ptar, pest)

corresponds to a distribution p′ in Pptar
mar . Since L(V; ptar, pest) is convex, we can also argue

the converse: if a distribution p′ with the above-defined form belongs to Pptar
mar , then the

corresponding V is a minimizer of L(V; ptar, pest).

According to Proposition 5, the solution to the following I-projection exists and its solution

p̂ has the same form as p′.

p̂ = argmin
p′∈Pp

mar

DKL(p
′ ∥ pest).

Since p̂ has the same form as p′ (by Prop. 5) and belongs to Pptar
mar , it is the a minimizer of

L(V; ptar, pest). □

Proof of Proposition 6. The copula of p is shown to be invariant under rescalings of the form

q(x) ∝ p(x) ·∏i exp(V[i, xi]) for any V ∈ RN×C by using the parameterization of a discrete

copula by conditional odds ratios (Definition 14). The scaling factors cancel in the ratios as

shown, e.g. by [149, Theorem 12.3]. □

Proof of Proposition 7. We start by writing the probability q(xt|xt+1) using the Bayes’ rule:

q(xt|xt+1) = q(xt+1|xt) ·
q(xt)

q(xt+1)
,

=
∑

x0

1

q(xt+1)
· q(xt+1|xt) · q(xt|x0) · p(x0), (E.4)

where the last equality follows from q(xt)=
∑

x0
q(xt|x0)·p(x0). Recall from the proposition

that I is defined as the set of variables i such that xi
t+1=<MASK> and J is the complement of

I.

246

First, we must have xj
t = xj

t+1 for j ∈ J since for any other value of Xj
t , we have

q(xt+1|xt)=0 in Eq. (E.4). As a result, q(xt|xt+1) is also zero.

We then move our attention to the variables in I. We first consider the probability

q(X i
t =<MASK>|xt+1) for any i∈I. Following Eq. (E.4), we have

q(X i
t = <MASK>|xt+1) =

∑

x0

∑

x
\i
t

1

q(xt+1)
· q(xt+1|xt) · q(xt|x0) · p(x0),

=
∑

x
\i
t

1

q(xt+1)
· q(xt+1|xt) · q(xt),

=
q(X i

t+1 = <MASK>|X i
t = <MASK>) · q(X i

t = <MASK>)
q(X i

t+1 = <MASK>)
,

=
q(X i

t = <MASK>)
q(X i

t+1 = <MASK>)
=

αt

αt+1

. (E.5)

We then focus on XI
t =xI

t , where none of the value in xI
t is <MASK>. Note that we also need

to have XJ
t =xJ

t+1.

q(xt|xt+1) ∝
∑

x0

q(xt+1|xt) · q(xt|x0) · q(x0),

(a)
= q(xt+1|xt) · q(X0 = xt),

=

(
αt+1 − αt

1− αt

)|I|

· q(X0 = xt),

∝ q(X0 = xt), (E.6)

where p(X0) is the data distribution; (a) follows from the fact that no value in xt is <MASK>,

hence x0=xt; αt+1−αt

1−αt
is the probability of transitioning into the mask state from time t to

time t+1.

Denote X̃t as a set of variables with the same configuration and semantics as Xt, with

the only difference that the category <MASK> is excluded. By following Eq. (E.6) and apply

247

normalization, we conclude that

q(x̃t|xt+1) = p(XI
0 = x̃I

t |XJ
0 = xJ

t+1) · 1[x̃J
t = xJ

t+1]. (E.7)

This matches the definition in Eq. (6.5).

Finally, we verify the correctness of the distribution q(Xt|x̃t,xt+1) defined in the proposi-

tion by verifying the following for any xt

q(xt|xt+1) =
∑

x̃t

q(x̃t|xt+1) · q(xt|x̃t,xt+1). (E.8)

Denote K as the set of variables i such that xt=<MASK> and L as its complement. First, if

L ⊆ J (i.e., I ⊆ K), then both the left-hand side (LHS) and the right-hand sides (RHS) are

zero. Specifically, the RHS is zero since according to the definition, ∀i∈J & i∈K, we have

q(xi
t|x̃i

t, x
i
t+1)=0.

Next, if K ⊆ I, we can decompose q(xt|xt+1) as follows

q(xt|xt+1) = q(x
I\K
t |xt+1) ·

∏

i∈K

q(xi
t|xt+1) ·

∏

j∈J

q(xj
t |xt+1). (E.9)

For any j∈J , if xj
t ̸=xj

t+1 then both the LHS and the RHS of Eq. (E.8) are zero. Otherwise

we always have q(xj
t |xt+1)=1. Therefore, Eq. (E.9) can be further simplified as

q(xt|xt+1) = q(x
I\K
t |xt+1) ·

∏

i∈K

q(xi
t|xt+1). (E.10)

We then proceed to simplify the RHS of Eq. (E.8):

∑

x̃t

q(x̃t|xt+1) · q(xt|x̃t,xt+1),

=
∑

x̃K
t

q(x̃K
t , x̃

I\K
t |xt+1) ·

(
αt

αt+1

)|K|

·
(
αt+1 − αt

αt+1

)|I|−|K|

,

248

(a)
=
∑

x̃K
t

q(x̃K
t , x̃

I\K
t |xt+1) ·

(
αt+1 − αt

αt+1

)|I|−|K|

·
∏

i∈K

q(xi
t|xt+1),

= q(x̃
I\K
t |xt+1) ·

(
αt+1 − αt

αt+1

)|I|−|K|

·
∏

i∈K

q(xi
t|xt+1),

(b)∝ p(X
I\K
0 = x̃

I\K
t ,XJ

0 = x̃J
t) ·

∏

i∈K

q(xi
t|xt+1),

(c)∝ q(X
I\K
t = x̃

I\K
t |xt+1) ·

∏

i∈K

q(xi
t|xt+1), (E.11)

where (a) follows from Eq. (E.5), (b) applies the definition in Eq. (E.7), and (c) is a result of

applying Eq. (E.6) to the case where x̃L
t ={x̃I\K

t , x̃J
t } are not <MASK>.

By combining Eqs. (E.10) and (E.11), we conclude that the LHS and the RHS of Eq. (E.8)

are proportional to each other. Since they are both properly-normalized distributions, they

must also match exactly.

□

Proof of Proposition 8. We first state a more detailed version of the proposition: for each

variable i and data category c (c ̸=<MASK>), we have

q(X̃ i
t = c|xt+1) =

1

Z
· q(X i

t = c|xt+1), where Z =
∑

c ̸=<MASK>

q(X i
t = c|xt+1).

According to the proof of Proposition 7, Eq. (E.8) holds for all xt. Therefore, we have that

for each i and each data category xi
t ̸=<MASK>,

q(xi
t|xt+1) =

∑

x̃t

q(x̃t|xt+1) · q(xi
t|x̃t,xt+1). (E.12)

If i∈J , then both the LHS of the above equation and q(xi
t|x̃t,xt+1) equals one if and only if

xi
t=xi

t+1. Therefore, the result holds trivially.

249

Next, if i∈I, denote I\i :=I\{i}, Eq. (E.12) is simplified to

q(xi
t|xt+1) =

∑

x̃t

q(x̃t|xt+1) · q(xi
t|x̃t,xt+1),

=
∑

x̃i
t

∑

x̃
I\i
t

q(x̃i
t, x̃

I\i
t |xt+1) · q(xi

t|x̃i
t, x

i
t+1),

= q(X̃ i
t = xi

t|xt+1) · q(xi
t|X̃ i

t = xi
t, x

i
t+1),

= q(X̃ i
t = xi

t|xt+1) ·
αt+1 − αt

αt+1

.

Therefore, we have

q(X̃ i
t = xi

t|xt+1) =
1

Z
· q(X i

t = xi
t|xt+1), where Z =

∑

xi
t ̸=<MASK>

q(X i
t = xi

t|xt+1).

□

E.2 Relation Between the Copula Objective and Matrix

Scaling

The matrix scaling problem gives a matrix A as input and asks for diagonal ‘scaling’ matrices

X and Y such that XAY is doubly stochastic (its row and column sums are all one).

More generally, target row and column sum vectors r and c are provided and need not

contain only ones. The solvability of this problem for positive matrices was established

by [161], and its algorithms (sometimes called iterative proportional fitting), generalizations,

and numerous applications have been studied thoroughly [2, 72, 151]; see [67] for a review.

Taking the multidimensional generalization of the problem and interpreting the tensor as a

(unnormalized) probability distribution yields the connection to our problem, with the target

sums being the univariate marginal distributions.

250

E.3 Parameterizing Discrete Copulas by Odds Ratios

We start by formally defining odds ratios.

Definition 14 ([149]). Let p be a distribution over variables X each taking values in {0, 1}.

For a partition of X into sets A and B, the conditional odds ratio of variables A conditioned

on the assignment B = b is

CORp(A|B = b) =

∏
a∈s p(a, b)∏
a∈d p(a, b)

,

where s is the set of assignments to A whose parity is the same as the number of variables in

A, and d is the set of assignments whose parity is different.

In the case of more than two categories per variable, CORp(A|B = b) can generalized

further to be a set of similarly defined ratios (see, e.g., [149]). Together the set of all conditional

odds ratios CORp(A|B = b) for partitions of X into sets A and B with |A| ≥ 2, completely

specifies the association among the variables in the joint distribution p, as established by the

following theorem.

Theorem 1 ([149]). Let q and r be positive probability distributions on a the set of variables

X each taking values in {0, 1, . . . , k}. Then there exists a unique probability distribution p

such that p has the same univariate marginal distributions as q, that is, for all i

p(xi) = q(xi),

and p has the same copula as q, that is for all partitions of X into sets A and B with

|A| ≥ 2,

CORp(A|B = b) = CORr(A|B = b).

Proof. This follows from [149, Theorem 10.2] by taking the descending set to contain the

empty set and all singletons (and the ascending set, its complement). □

251

Theorem 1 shows how any distribution p can be viewed as combining independent marginal

distributions (i.e., from r) and odds ratios (i.e., from q). Such a combination has desirable

properties. For example, in the case of two variables with possibly many categories, it has

been shown that among all distributions with the same margins as r, the distribution p

minimizes the KL-divergence to q [53, Theorem 6.2], i.e. that p is the information projection

of q onto the set of distributions with the margins of r.

E.4 Unbiased Univariate Marginals from Discrete Diffu-

sion Models

In this section, we show that when their respective training losses are minimized, discrete-time

and continuous-time discrete diffusion models recover the true univariate marginals.

Discrete-Time Diffusion Models. Discrete-time diffusion models [3] are trained to

maximize the ELBO between the forward joint distribution p(x0)q(x1:T |x0), where p(x0) is

the data distribution, and the reverse joint distribution pθ(x0:T). The ELBO can be simplified

to

Eq

[
log

p(xT)

q(xT)
+

T∑

t=1

log
pθ(xt−1|xt)

q(xt−1|xt)
+ log p(x0)

]
.

Assume that pθ(xt−1|xt) encodes fully-factorized distribution, the above objective can be

simplified as

T∑

t=1

∑

i

q(xi
t−1|xt) log

pθ(x
i
t−1|xt)

q(xi
t−1|xt)

+ Eq

[
log

p(xT)

q(xT)
+ log p(x0)

]
,

where the second term is independent to pθ. From the first term of the above formula, we

can conclude that the ELBO objective is maximized when pθ(x
i
t−1|xt)=q(xi

t−1|xt) for every t

and every i.

252

Continuous-Time Diffusion Models. As described in Section 6.2, many continuous-

time diffusion models learn to approximate the likelihood ratio (defined as sθ(xt,x
′
t; t)) at all

noise levels t∈ [0, T]:

sθ(xt,x
′
t; t) :=

q(Xt = x′
t)

q(Xt = xt)
.

Specifically, [105,113] directly parameterize a neural network to approximate the likelihood ra-

tios, and [165] approximates the likelihood ratios with the conditional distributions pθ(X i
t |x\i

t)

(∀i, t).

For each xt, since there are exponentially many possible x′
t, it is infeasible to have a

neural network to directly model the likelihood ratio for all pairs of (xt,x
′
t). Instead, they

focus on (xt,x
′
t) pairs where xt and x′

t are only different in one single variable, i.e., their

Hamming distance is one. For example, in [105], they represent sθ as sθ(xt, y
i
t; t, i), which

computes the likelihood ratio between xt and x′
t={x\i

t , y
i
t}. sθ is trained by minimizing the

following objective:

Et,xt∼q(Xt)


∑

i

∑

yit ̸=xi
t

wt

(
sθ(xt, y

i
t; t, i)−

q(Xt = {x\i
t , y

i
t})

q(Xt = xt)
log sθ(xt, y

i
t; t, i)

)
 ,

where {wt}t are positive weights. When the above objective is minimized, sθ recovers the

correct likelihood ratios:

∀i, t, sθ(xt, y
i
t; t, i) =

q(Xt = {x\i
t , y

i
t})

q(Xt = xt)
. (E.13)

At inference time, continuous-time discrete diffusion models select a list of time steps

0< t0 < · · ·< tk = T to sample from: first sample from the prior p(Xtk) and then sample

recursively from {pθ(xti−1
|xti)}ki=1, where pθ(xti−1

|xti) is obtained from sθ(xt, y
i
t; t, i) in an

253

denoising steps

R
un
tim
e
(m
s)

Figure E.1: Sampling time of DCD and its two base models with 2 to 128 denoising steps.

indirect manner. Specifically, assume dp(xt)
dt

=Q·p(xt), we have1

q(xti−1
|xti) = q(xti |xti−1

) · q(xti−1
)

q(xti)
,

= q(xti |xti−1
) ·
(∑

x

exp(−∆t·Q)(xti−1
,x) · q(Xti = x)

q(Xti = xti)

)
,

where ∆t := ti−ti−1 and exp(−∆t·Q)(xti−1
,x) denotes the product of exp(−∆t·Q)(xj

ti−1
, xj),

the xj
ti−1

-th row and xj-th column of exp(−∆t·Q).

Plug in Eq. (E.13), we can compute the marginal of xj
ti−1

(i.e., pθ(xj
ti−1
|xti)) following

q(Xj
ti−1

= y|xti) ∝ q(xti|xti−1
) ·
(∑

y′

exp(−∆t·Q)(y, y′) · sθ(xti , y
′; ti, j)

)
,

= exp(∆t·Q)(y, xj
ti) ·

(∑

y′

exp(−∆t·Q)(y, y′) · sθ(xti , y
′; ti, j)

)
.

Therefore, if sθ perfectly learns the likelihood ratios between inputs with Hamming distance

at most one, then the correct marginals q(xj
ti−1
|xti) can be computed using sθ.

E.5 Implementation Details of DCD

We describe details about the “autoregressive” version of DCD introduced in Section 6.5.3.

According to Section 6.5.3, the first (T−t−1)/T portion of the tokens in xt+1 are unmasked.

At step t, we only need to additionally unmask the tokens spanning the (T−t−1)/T to

1This argument largely follows Theorem 4.1 in [105]. We include it for the sake of completeness.

254

Algorithm 28 DCD with Autoregressive Copula Models and Using Autoregressive Sampling
1: Inputs: a diffusion model pdm, an autoregressive model par, number of time steps T , sequence length L
2: Outputs: a sample x0 from the discrete diffusion model augmented by the autoregressive model
3: Initialize: Sample xT from the prior noise distribution p(XT)
4: for t = T−1 to 0
5: imin, imax=

L
T
·(T−t−1), L

T
·(T−t) (w.l.o.g. assume L is divisible by T)

6: Compute {pdm(X̃i
t |xt+1)}i and {pdm(X̃i

t |x<i
t+1)}i for each i ∈ [imin, imax) using the diffusion model

7: Compute V[i, x̃i
t]=log pdm(x̃i

t|xt+1)− log pdm(x̃i
t|x<i

t+1) (∀i ∈ [imin, imax), x̃
i
t)

8: xt ← xt+1

9: for i = imin to imax − 1
10: Sample xi

t from p̂(xi
t) ∝ par(x

i
t|x<i

t) ·∏i exp(V[i, xi
t]) and store it to xt

(T−t)/T fraction of the sequence xt. We do this by caching the keys and values generated by

the attention layers of tokens generated in previous denoising steps. So at step t, we will have

the KV-caches of the first (T−t−1)/T fraction of tokens. As a result, the computational cost

for running the autoregressive Transformer is independent of the number of denoising steps.

Additional Runtime Analysis. Fig. E.1 displays the generation time per sample for

SEDDM, GPT-2S, and DCD. When the number of denoising steps is small, the computation

cost of running GPT-2S dominates the total runtime of DCD. However, as the number

of denoising steps increases, this cost is amortized because, with KV-caching, the total

computation cost for running GPT-2S stays constant.

E.6 Additional Unconditional Generation Experiments

To better understand the relation between quality (measured by generative perplexity),

diversity (measured by sentence entropy2), and speed for DCD and its baselines. Specifically,

we run the more efficient version of DCD described in the last paragraph of Section 6.5.3

and Section E.5 to generate text sequences of lengths 128 and 1024. In addition to SEDD

and GPT2, the two base models used by DCD, we compare them with MDLM [153], a more

recent discrete diffusion model that is more efficient than SEDD. Note that DCD can use any

2The sentence entropy of a sequence is the entropy of its token frequency distribution. The reported
number is averaged across all samples.

255

Sequence length 128 Sequence length 128

Sequence length 1024 Sequence length 1024

Figure E.2: Comparison between generative perplexity (↓), diversity (measured by sentence
entropy; ↑), and runtime (↓) of DCD with baselines.

discrete diffusion model as its base model.

First, we compare the sample time and the generative perplexity (the second and the

fourth sub-plot in Fig. E.2). Compared to SEDD, GPT, and MDLM, DCD consistently

achieves better generative perplexity given a fixed runtime constraint. It also requires less

time to achieve a desired perplexity value.

Additionally, we compare the perplexity and diversity of the generated text sequences.

Following community standards, we adopt the sentence entropy to measure the diversity

of generated text. Specifically, the entropy of each text sequence is the entropy of its

token frequency distribution, and the final sentence entropy is the average entropy over all

generated sequences. The desired behavior is to have low generative perplexity and high

sentence entropy (which means high diversity). Results are shown in the table below and

Fig. E.2’s first and third sub-plot. Compared to the two discrete diffusion models (SEDD and

MDLM), DCD achieves better generative perplexity under the same entropy, which offers a

256

better perplexity-diversity tradeoff. Compared to the autoregressive GPT model, although

the entropy of DCD is lower, it achieves better generative perplexity with slightly worse

entropy.

E.7 Additional Experimental Details

This section provides additional details of the experiments.

E.7.1 Unconditional Text Generation

SEDD. We adopt the SEDD-medium model with 320M non-embedding parameters trained

on OpenWebText. The model is accessed through HuggingFace: https://huggingface.

co/louaaron/sedd-medium. We follow the original paper [105] and use the log-linear noise

schedule σ(t)=− log(1−(1−ϵt)), which leads to the forward transition probabilities (0≤s<

t≤T):

q(xt|xs) := Cat(xt; exp(σ(t− s) ·Q) · xs).

The absorbing mask forward noising process is used. The corresponding transition rate matrix

is

Q :=




−1 0 · · · 0 0

0 −1 · · · 0 0

...
...

...

0 0 · · · −1 0

1 1 · · · 1 0




,

where the last category is <MASK>.

GPT. The GPT-2-small model is obtained from HuggingFace: https://huggingface.

257

https://huggingface.co/louaaron/sedd-medium
https://huggingface.co/louaaron/sedd-medium
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2

co/openai-community/gpt2.

DCD. We implement DCD by combining SEDDM and GPT-2S following the steps in

Algorithm 8. In line 8, instead of masking tokens independently, we group chunks of 8 tokens

together and mask/unmask them with the same probability given the noise schedule (i.e.,

αt/αt+1 as shown in Prop. 7).

E.7.2 Conditional Text Generation

MAUVE Score. We adopt the MAUVE implementation available in the Python package

evaluate. We use the default hyperparameters established by the original paper [134], which

is also the default used by the package. We found that the number of samples and the number

of samples given a fixed prompt influenced the score. Therefore, we randomly selected the

2,000 prompts and generated 5 samples for each prompt for all methods.

Detailed Runtime Analysis. As shown in Algorithm 8, in each denoising step of

DCD, we need to run the discrete diffusion model twice: first to compute {p(X̃ i
t |xt+1)}i and

next to compute {p(X̃ i
t |x<i

t+1)}i by applying causal attention masks to the same denoising

neural network given that it is based on the Transformer architecture. Next, as discussed

in Section E.5, the total runtime consumed by the autoregressive model remains constant

across different numbers of denoising steps thanks to the KV-caching mechanism. Therefore,

the runtime of DCD will be dominated by the computation cost of the autoregressive model

with only a few denoising steps. As the number of denoising steps increases, the runtime of

the autoregressive model will be amortized and the total computation cost will be dominated

by the cost to evaluate the diffusion model.

SSD-LM. SSD-LM [60] is a semi-autoregressive model that uses techniques from

discrete diffusion models to predict/denoise chunks of sequences in an autoregressive manner.

Specifically, given a predefined chunk size, SSD-LM diffuses tokens in each chunk one by one

conditioned on all previous chunks. As a result, the model is semi-autoregressive and cannot

see suffix prompts.

258

https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2

While the official implementation on GitHub (https://github.com/xhan77/ssd-lm)

only allows conditioning on tokens in previous prompts, we improved their code to also allow

conditioning on tokens in the current chunk that is being diffused. Specifically, we replace

the diffusion model’s input corresponding to the prompt tokens with the ground truth token

embeddings.

We followed the original paper to choose a chunk size of 32 and use top-p sampling with

p=0.95. The remaining hyperparameters are kept as default.

E.7.3 Antibody Sequence Infilling

Detailed Task Description. The adopted antibodies with an immunoglobulin G (IgG)

format, which comprises a heavy (H) chain and a light (L) chain. Each chain has three

complementarity determining regions (CDRs) that are crucial toward the binding affinity to

the target antigen.

Training NOS-D. We use the training script as well as the dataset provided in the

official GitHub repo of NOS-D (https://github.com/ngruver/NOS). The model is trained

with 50 epochs using the default settings (e.g., learning rate and its schedule).

Training GPT. We use the same dataset provided in the repository of NOS-D and

use the GPT implementation from https://github.com/karpathy/nanoGPT/tree/master.

The GPT model has 6 layers, an embedding size of 512, and 16 attention heads. The model

is trained for 10 epochs with the default settings in the nanoGPT repository.

DCD. When implementing DCD for the antibody sequence infilling task, we add an

additional scaling factor to the coefficients in V. That is, V is updated in line 6 of Algorithm 8

following

∀i, x̃i
t, V[i, x̃i

t] = β ·
(
log pdm(x̃

i
t|xt+1)− log pdm(x̃

i
t|x<i

t+1)
)
,

where we set β=0.1 for this task. We note that β=1 works well for the language modeling

259

https://github.com/xhan77/ssd-lm
https://github.com/ngruver/NOS
https://github.com/karpathy/nanoGPT/tree/master

tasks. The need to choose a smaller β in this task may be caused by the fact that the dataset

and the models are much smaller and are more prone to overfitting.

E.8 Additional Text Samples

We provide randomly selected unconditional samples in Figs. E.3 and E.4 and conditional

samples in Figs. E.5 and E.6.

260

…, DHHS, Dion Todd of Detroit, Detroit Tigers team players Marcus Johnson of Detroit
Lions, Minnesota Vikings team players Troy Polamalu of Detroit Tigers, mellow lines for
opposing teams, but they do not share a common mentality.

“At the end of the day, if you‘re just grouping me but you also come for the tram stop,
everybody plays by the rules,” Kalim said of Johnson. “If you start to play offense, you’re
going to make mistakes. We don‘t just give them time because we don’t think they‘re
going to win. We don’t just teach them how to take care …

Both 1-2 range panels are available for 3 hours of ongoing use (25 burning power
consumption plus periodic gas combustion cycle). Also included moisture protection from
agricultural insects and biological spills of greenhouse gases due to different costs of
livestock sit idle in the energy cycle of so many nations.

The high yield yields from large, agricultural biofuels rely entirely on larger projections
placed together by country by government into 2020. Such predictions assume an 1 billion
tonne increase in capacity to 5 billion tonnes per year six billion years from now then
consumption for nearly all full-time, undertaking- Stage 3 + 2.0 exponential growth.

… acquisition jack. Add this to the negotiations, and the place starts going down. Veteran
grocers like State Farm have halted stocking their own toll booths and warnings because
they fear getting squeezed out by major retailers. Meanwhile, stores like Wal-Mart have
reduced shelf space by as much as 8.6 percent. Wal-Mart Stores Canada has been the most
profitable Wal-Mart store chain in Canada (green grocer WalMart Stores Canadian now
accounts for nearly a third of sales, up from just 1 percent in 1996). Meanwhile Wal-Mart
continues to aggressively sell Canadian goods. Since 1995, Wal-Mart Stores Canada has
more than tripled the volume and …

I find myself divided. Like I was growing up in this world. I saw my dad constantly being
obsessed about faith, constantly being remembered in my mind his name. My dad thought
that I wasn't going to grow up to say myself, if I tried to make my family happy they
wouldn't believe me anymore. Every time I looked in my eyes I thought I was crazy, but I
thought I was my brother. I was worried I would always feel jealous of my father and
slowly, I started to think about family. I found a family where everyone ruled me alone
towards the end, in hell. Family was always there, it was

flap: Now you can lay your hands on a wavy pattern without touching the nerves, or if you
fancy you can lay your arms on an occluded specialty? Any hypothesis relied from those
vainly generalized action.[303] Reconciling the patient‘s single hairs with multiple llings
stipulated that a single story could be shortened in half, but in fact lengthened in less
flexible forms. If, however, little succeeded at the scholarly step, that compromise was
subtlety in his notes, provided he lacked enough hairs to lie straight down. He could even
weave rings for his harp—especially wheat—but there was …

Figure E.3: Randomly selected unconditional samples from DCD (SEDDM + GPT-2S) with 4
denoising steps.

261

March if they can overcome federal complaints.

Farmers say they have acquiesced to pressure from U.S. agribusiness giants to cut back on
pesticides, while environmentalists say regulators allege a lack of oversight by officials.

"We won't tolerate anything bad," said Rutko Guerra, spokesman for Cornell University
Extension. "It's a clear conflict of interest."

Cornell University Extension estimates about 400 pesticides are sold through the city each
year in violation of the Public Health Act and other state laws, prompting over $49 million
in fines — the largest ever levied by a public university.

Each time components are created a buffer is created. This buffer holds the components
and should be updated whenever they touch on the screen. The buffer foundation passes
every buffer value from the component to the component's buffer.

After the component has been created a markers is placed inside the marker stating which
colors are used in the new paint direction. During the paint direction there are three modes:
launch to draw pixels, around draw so baccarat will appear misaligned, and lowdraw so
baccarat will appear perfectly aligned.

… in on their autobiographical stories of realizing happiness.The Stimulant Prophecy was
an important spiritual awakening that occurred during the 1950s, 1960s and 1970s. It
awakened believers to cultivate spiritual fortitude as well as resolve conflicts and lead to
more successful relationships.According to Tages Jephzei (The Stimulant Prophecy), this
event ultimately caused Muslims to develop compassion for one another by their
communal experiences.It also fueled support for incongruity in mainline Muslim societies
and gave hope for physical cleansings.In 1976, Tages Jephzei published his book The
Stimulant Prophecy: Understanding Muslims …

…would proper address regulations affecting this country." He recalled how he supported
Deputy Minority Leader Nancy Pelosi's (D-Calif.) efforts to explore Russian meddling in
the 2016 election: "When Nancy Pelosi [D-Calif.] spoke to me, he wanted to consider
Russian interference in our election." Kennedy also added that he believes a new law
requiring commercial polluters to disclose their emissions during emissions tests will help
clean up the air: "[I] hope that the EPA will follow through with two years of programs
that are going to reduce [during gas] emissions in some form or another," Kennedy told
reporters.

Figure E.4: Randomly selected unconditional samples from DCD (SEDDM + GPT-2S) with
32 denoising steps.

262

… are hear the exhortations “We ask of everyone to speak the voice of God” and “we ask
to be loved for the game and what they wanted to do next for the series.” In fact, PS3
announcement executives confirmed this month that Sony Pictures Entertainment plans to
release PS Vita versions of Sony PlayStation Classics PlayStationGS, The Last of Us,
Ratchet, Square did not come up with the “ revolutionary ” idea that would warrant a
new entry for the PlayStation 3. Speaking in an interview, it was revealed that Square
Enix felt Square Enix could not offer a few new plugins without seeing Square Enix make
Square Enix‘s “ visionary Battle …

… in the American version, and Warner Bros. added Nobuo Ukiura of Miyazaki
Animation to directing on character design. A large team of writers handled the script.
The game‘s story was developed by Kouki Watanabe in Chouki no Namco Europe, and
Fujikyo Pictures Entertainment released it theatrically on May 25, 1999 in North America,
followed with an expanded edition in November of that year. It was also adapted into
manga and an original video animation series. Due to low sales, Warner Bros. suffered
widespread cancellation due to lack of revenue. Warner Bros. also shut it down due to its
failure to …

They save as many enemies as you can through Chrono Trigger Online missions, unlock
quests in missions missions, unlock special quests, having a higher difficulty than those
found in the rest of the game. These include boss & combat objectives. Chrono Trigger
Online contains one Chrono Trigger EP with unlockable Chrono Trigger ARC girls.

This is the first patch which implements the PTZ system, is carried over directly from
Valkyira Chronicles. During missions, players select each unit using a top @-left
position. They determine their unit type, which determines their ability and the size of
their field of vision. They can only activate …

The Final Fantasia in Japanese / Media.Vision for the PlayStation Portable. Released
in January 2011 in Japan, it debuted as a novel while on hold in the North East Stand. It
garnered reviews for its breathtaking narrative, disappointing plot, and creepy characters.
A fourth graphic novel is in the first game and follows the " Nameless ", a penal
military unit serving the nation of Gallia during the Second Europan War.

… scenery was was composed in short animation. When the game ended early on Mikami
Sakura was drawn by Makoto Masui.. A large team of writers handled the script. The
game‘s soundtrack lasted around 12 hours and Sugiyama Shogarashi, Makoto Masuyama
and Kyoko Takamura included Takme Ibara. The music theme was originally released in
2009, with an expanded edition in November of that year. It was also adapted into
manga and an original video animation series. Due to low sales, the game release was
delayed to three weeks in spring 2011. Following its final release on May 23rd 2013. …

Figure E.5: Randomly selected conditional samples from DCD (SEDDM + GPT-2S) with 4
denoising steps. Prompt texts are bolded and in blue.

263

… every character has. You can choose combat situation best suit the character. To learn
Battle Potentials, each character has a unique skills makes them invaluable. One of
Potentials best suit the character is Point squirrel on the map, the character Leda can use
skills like “ Star Wars Matchmaker”, the character Jaden can activate “ Direct
Command ” and move around the battlefield without depleting his Action Point
gauge, the character Reila can shift to melee objects to send morgues (so more reliable),
Mira can change her story situation to battle nweire battle to ward strategise, a
“ Command Pointcher ” is …

… this State building institution. We could be build a defensive system to the United
States Arsenal in this city (Little Rock). This system seem really feasible and good.
The name of the City that would to this scenario go by the Rocky Mountain Sound as the
Academy as well is MADISON FIREWRIGHT NASHA ROCK. -John M Harrel
Telegram, January 31, 1861
The item was intended simply as a piece of news, but it also served as an “opportunity”
for the U.S. Fortresses on Little Rock. Setting aside the exception of the
basisicks‘ menansi slogan, it was all …

… on the air at the end of those years run in early 1923. An original design for the
society called The Darling of the American for Being Unnamed was put forth on the air
at the end of those years held early 1925. The unnamed pursuits of the American were
previously documented by History Magazine called St. Luke's Society for the
Propagation of the Gospel in its November 1919 exhibition.
Religious @-@ themed books include The Red Book, The Hidden Voyage, an opera

which was written on behalf of John Ford and produced under the contract of the
Protestant revival organization, The Evangelical Fund (without Contemplation) …

letter to city Evans noted in more details reminded Christine Barker to supervise the
household, and to give both her mother and sister complete authority to their
development. (See Evansdone & Sullivan) 79. Christine Barker continued her adult life
but when she reached ends of age, during which time her big sister Ruth had died
unexpectedly of a heart attack. Barker was unable to pursue her art to any significant
extent following her sister's death, as all of her parents perished and she lacked the
discipline, learning needed to be as a professional age. (See Evanssic) 80. Although
moving art was a lifetime profession for Christine Barker, bear …

Pool : At Mumbai airport Shivaji Park. Women Technical girls under @-@ 17 women's
team competed in Confederation of Asian Football’s premier youth competition. 2011
year-13 results : :U 13 medal : NW15 qualification : A pool order : Of the 155 young
women, five girls had to be narrowed from an initial pool of 49 young women. Two
girls from the SOS Children ’ s Village Bakoteh were chosen for the USC and two girls
from the Meijer ’s Village Bakoteh. The remaining Meijer girl was selected for the
opening ceremony. After the AU’s teams

Figure E.6: Randomly selected conditional samples from DCD (SEDDM + GPT-2S) with 32
denoising steps. Prompt texts are bolded and in blue.

264

Bibliography

[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and

Pulkit Agrawal. Is conditional generative modeling all you need for decision making?

In The Eleventh International Conference on Learning Representations, 2022.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Much faster

algorithms for matrix scaling. In 2017 IEEE 58th Annual Symposium on Foundations

of Computer Science (FOCS), pages 890–901. IEEE, 2017.

[3] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van

Den Berg. Structured denoising diffusion models in discrete state-spaces. Advances in

Neural Information Processing Systems, 34:17981–17993, 2021.

[4] Francis R Bach and Michael I Jordan. Thin junction trees. In NIPS, volume 14, pages

569–576, 2001.

[5] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model

Checking, pages 305–343. Springer, 2018.

[6] David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan

Bruna. When does return-conditioned supervised learning work for offline reinforcement

learning? Advances in Neural Information Processing Systems, 35:1542–1553, 2022.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

265

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. Advances in neural information processing

systems, 33:1877–1901, 2020.

[9] Cory J Butz, Jhonatan S Oliveira, André E Santos, André L Teixeira, Pascal Poupart,

and Agastya Kalra. An empirical study of methods for spn learning and inference. In

International Conference on Probabilistic Graphical Models, pages 49–60. PMLR, 2018.

[10] Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligian-

nidis, and Arnaud Doucet. A continuous time framework for discrete denoising models.

In Proceedings of the 36th International Conference on Neural Information Processing

Systems, pages 28266–28279, 2022.

[11] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,

Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Rein-

forcement learning via sequence modeling. Advances in neural information processing

systems, 34:15084–15097, 2021.

[12] Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling probabilistic graphical

models using sentential decision diagrams. In European Conference on Symbolic and

Quantitative Approaches to Reasoning and Uncertainty, pages 121–132. Springer, 2013.

[13] Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. Tractable learning for

structured probability spaces: A case study in learning preference distributions. In

Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI),

volume 2015, pages 2861–2868, 2015.

[14] Y Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying

framework for tractable probabilistic models. UCLA. URL: http://starai. cs. ucla.

edu/papers/ProbCirc20. pdf, page 6, 2020.

266

[15] YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic

modeling with latent fair decisions. arXiv preprint arXiv:2009.09031, 2020.

[16] YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic

modeling with latent fair decisions. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 35, pages 12051–12059, 2021.

[17] YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic

modeling with latent fair decisions. In Proceedings of the 35th AAAI Conference on

Artificial Intelligence, Feb 2021.

[18] YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic

modeling with latent fair decisions. In Proceedings of the 35th AAAI Conference on

Artificial Intelligence, Feb 2021.

[19] YooJung Choi, Adnan Darwiche, and Guy Van den Broeck. Optimal feature selection

for decision robustness in bayesian networks. In IJCAI, pages 1554–1560, 2017.

[20] YooJung Choi, Golnoosh Farnadi, Behrouz Babaki, and Guy Van den Broeck. Learning

fair naive bayes classifiers by discovering and eliminating discrimination patterns.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages

10077–10084, 2020.

[21] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A

unifying framework for tractable probabilistic models, oct 2020.

[22] CKCN Chow and Cong Liu. Approximating discrete probability distributions with

dependence trees. IEEE transactions on Information Theory, 14(3):462–467, 1968.

[23] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul

Ye. Diffusion posterior sampling for general noisy inverse problems. arXiv preprint

arXiv:2209.14687, 2022.

267

[24] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist:

Extending mnist to handwritten letters. In 2017 International Joint Conference on

Neural Networks (IJCNN), pages 2921–2926. IEEE, 2017.

[25] Alvaro Correia, Robert Peharz, and Cassio P de Campos. Joints in random forests.

Advances in Neural Information Processing Systems, 33:11404–11415, 2020.

[26] Alvaro HC Correia, Gennaro Gala, Erik Quaeghebeur, Cassio de Campos, and Robert

Peharz. Continuous mixtures of tractable probabilistic models. arXiv preprint

arXiv:2209.10584, 2022.

[27] Alvaro HC Correia, Gennaro Gala, Erik Quaeghebeur, Cassio de Campos, and Robert

Peharz. Continuous mixtures of tractable probabilistic models. In Proceedings of the

AAAI Conference on Artificial Intelligence, pages 7244–7252, 2023.

[28] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. Towards general purpose

acceleration by exploiting common data-dependence forms. In Proceedings of the 52nd

Annual IEEE/ACM International Symposium on Microarchitecture, pages 924–939,

2019.

[29] Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck.

Juice: A julia package for logic and probabilistic circuits. In Proceedings of the 35th

AAAI Conference on Artificial Intelligence (Demo Track), 2021.

[30] Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck.

Juice: A julia package for logic and probabilistic circuits. In Proceedings of the 35th

AAAI Conference on Artificial Intelligence (Demo Track), 2021.

[31] Meihua Dang, Anji Liu, and Guy Van den Broeck. Sparse probabilistic circuits via

pruning and growing. Advances in Neural Information Processing Systems, 35:28374–

28385, 2022.

268

[32] Meihua Dang, Antonio Vergari, and Guy Broeck. Strudel: Learning structured-

decomposable probabilistic circuits. In International Conference on Probabilistic

Graphical Models, pages 137–148. PMLR, 2020.

[33] Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient

algorithms through structured state space duality. In International Conference on

Machine Learning (ICML), 2024.

[34] Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of

the ACM (JACM), 50(3):280–305, 2003.

[35] Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge university

press, 2009.

[36] Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge

bases. In Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

[37] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of

Artificial Intelligence Research, 17:229–264, 2002.

[38] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer vision

and pattern recognition, pages 248–255. Ieee, 2009.

[39] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-

training of deep bidirectional transformers for language understanding. In NAACL-HLT

(1). Association for Computational Linguistics, 2019.

269

[41] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis.

In Proceedings of the 35th International Conference on Neural Information Processing

Systems, pages 8780–8794, 2021.

[42] Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin,

Pierre H Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al.

Continuous diffusion for categorical data. arXiv preprint arXiv:2211.15089, 2022.

[43] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function

decomposition. Journal of artificial intelligence research, 13:227–303, 2000.

[44] Wenhao Ding, Tong Che, Ding Zhao, and Marco Pavone. Bayesian reparameterization

of reward-conditioned reinforcement learning with energy-based models. arXiv preprint

arXiv:2305.11340, 2023.

[45] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent

components estimation. arXiv preprint arXiv:1410.8516, 2014.

[46] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real

nvp. In International Conference on Learning Representations, 2016.

[47] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition

at scale. arXiv preprint arXiv:2010.11929, 2020.

[48] Jarek Duda. Asymmetric numeral systems: entropy coding combining speed of huffman

coding with compression rate of arithmetic coding. arXiv preprint arXiv:1311.2540,

2013.

270

[49] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is

essential for offline rl via supervised learning? In International Conference on Learning

Representations, 2021.

[50] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-

resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 12873–12883, 2021.

[51] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl:

Datasets for deep data-driven reinforcement learning, 2020.

[52] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning

without exploration. In International conference on machine learning, pages 2052–2062.

PMLR, 2019.

[53] Gery Geenens. Copula modeling for discrete random vectors. Dependence Modeling,

8(1):417–440, 2020.

[54] Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics.

International statistical review, 70(3):419–435, 2002.

[55] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.

io/OpenWebTextCorpus, 2019.

[56] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-

jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances

in neural information processing systems, 27, 2014.

[57] Aditya Grover and Stefano Ermon. Boosted generative models. In Proceedings of the

AAAI Conference on Artificial Intelligence, 2018.

[58] Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien

Lafrance-Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson.

271

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Protein design with guided discrete diffusion. In Proceedings of the 37th International

Conference on Neural Information Processing Systems, pages 12489–12517, 2023.

[59] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie

Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic

algorithms and applications. arXiv preprint arXiv:1812.05905, 2018.

[60] Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive

simplex-based diffusion language model for text generation and modular control. In

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 11575–11596, 2023.

[61] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.

Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 16000–16009, 2022.

[62] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by

minimizing the description length of the weights. In Proceedings of the sixth annual

conference on Computational learning theory, pages 5–13, 1993.

[63] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.

Advances in neural information processing systems, 33:6840–6851, 2020.

[64] Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, and Max Welling. Integer discrete

flows and lossless compression. Advances in Neural Information Processing Systems,

32:12134–12144, 2019.

[65] Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based on

discrete graph structures for molecular graph generation. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 37, pages 4302–4311, 2023.

272

[66] David A Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, 1952.

[67] Martin Idel. A review of matrix scaling and sinkhorn’s normal form for matrices and

positive maps. arXiv preprint arXiv:1609.06349, 2016.

[68] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one

big sequence modeling problem. Advances in neural information processing systems,

34:1273–1286, 2021.

[69] Robert Jenssen, Jose C Principe, Deniz Erdogmus, and Torbjørn Eltoft. The

cauchy–schwarz divergence and parzen windowing: Connections to graph theory and

mercer kernels. Journalof the Franklin Institute, 343(6):614–629, 2006.

[70] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the

ising model. SIAM Journal on computing, 22(5):1087–1116, 1993.

[71] Wolfgang B Jurkat. On cauchy’s functional equation. Proceedings of the American

Mathematical Society, 16(4):683–686, 1965.

[72] Bahman Kalantari and Leonid Khachiyan. On the rate of convergence of deterministic

and randomized ras matrix scaling algorithms. Operations research letters, 14(5):237–

244, 1993.

[73] Kittipat Kampa, Erion Hasanbelliu, and Jose C Principe. Closed-form cauchy-schwarz

pdf divergence for mixture of gaussians. In The 2011 International Joint Conference

on Neural Networks, pages 2578–2585. IEEE, 2011.

[74] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion

restoration models. Advances in Neural Information Processing Systems, 35:23593–

23606, 2022.

273

[75] Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck.

On tractable computation of expected predictions. In Advances in Neural Information

Processing Systems, pages 11169–11180, 2019.

[76] Pasha Khosravi, Yitao Liang, YooJung Choi, and Guy Van den Broeck. What to expect

of classifiers? reasoning about logistic regression with missing features. In IJCAI, pages

2716–2724, 2019.

[77] Pasha Khosravi, Antonio Vergari, YooJung Choi, Yitao Liang, and Guy Van den Broeck.

Handling missing data in decision trees: A probabilistic approach. In Proceedings of

The Art of Learning with Missing Values, Workshop at ICML, 2020.

[78] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion

models. Advances in neural information processing systems, 34:21696–21707, 2021.

[79] Diederik P Kingma and Prafulla Dhariwal. Glow: generative flow with invertible

1× 1 convolutions. In Proceedings of the 32nd International Conference on Neural

Information Processing Systems, pages 10236–10245, 2018.

[80] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[81] Friso Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap: Recursive bits-back coding

for lossless compression with hierarchical latent variables. In International Conference

on Machine Learning, pages 3408–3417. PMLR, 2019.

[82] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic

sentential decision diagrams. In Proceedings of the 14th international conference on

principles of knowledge representation and reasoning (KR), pages 1–10, 2014.

[83] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and

techniques. MIT press, 2009.

274

[84] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with

implicit q-learning. arXiv preprint arXiv:2110.06169, 2021.

[85] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images, 2009.

[86] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning

for offline reinforcement learning. Advances in Neural Information Processing Systems,

33:1179–1191, 2020.

[87] Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aurelio Ranzato, and Fu Jie Huang.

A tutorial on energy-based learning. Predicting structured data, 2006.

[88] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT

Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[89] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforce-

ment learning: Tutorial, review, and perspectives on open problems. arXiv preprint

arXiv:2005.01643, 2020.

[90] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto.

Diffusion-lm improves controllable text generation. In Advances in Neural Information

Processing Systems, 2022.

[91] Yitao Liang and Guy Van den Broeck. Towards compact interpretable models: Shrinking

of learned probabilistic sentential decision diagrams. In IJCAI 2017 Workshop on

Explainable Artificial Intelligence (XAI), August 2017.

[92] Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula,

Yejin Choi, and Xiang Ren. Commongen: A constrained text generation challenge for

generative commonsense reasoning. In Findings of the Association for Computational

Linguistics: EMNLP 2020, pages 1823–1840, 2020.

275

[93] Anji Liu, Kareem Ahmed, and Guy Van Den Broeck. Scaling tractable probabilistic

circuits: A systems perspective. In International Conference on Machine Learning,

pages 30630–30646. PMLR, 2024.

[94] Anji Liu, Oliver Broadrick, Mathias Niepert, and Guy Van den Broeck. Discrete copula

diffusion. In The Thirteenth International Conference on Learning Representations,

2025.

[95] Anji Liu, Stephan Mandt, and Guy Van den Broeck. Lossless compression with

probabilistic circuits. In Proceedings of the International Conference on Learning

Representations (ICLR), 2022.

[96] Anji Liu, Mathias Niepert, and Guy Van den Broeck. Image inpainting via tractable

steering of diffusion models. arXiv preprint arXiv:2401.03349, 2023.

[97] Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. In

Advances in Neural Information Processing Systems 35 (NeurIPS), dec 2021.

[98] Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. In

Advances in Neural Information Processing Systems 34 (NeurIPS), 2021.

[99] Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits

by latent variable distillation. In The Eleventh International Conference on Learning

Representations, 2022.

[100] Xuejie Liu, Anji Liu, Guy Van den Broeck, and Yitao Liang. Understanding the

distillation process from deep generative models to tractable probabilistic circuits. In

International Conference on Machine Learning, pages 21825–21838. PMLR, 2023.

[101] Xuejie Liu, Anji Liu, Guy Van den Broeck, and Yitao Liang. A tractable inference

perspective of offline rl. Advances in Neural Information Processing Systems, 37:70953–

70980, 2024.

276

[102] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and

Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

10012–10022, 2021.

[103] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes

in the wild. In Proceedings of International Conference on Computer Vision (ICCV),

December 2015.

[104] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information

theory, 28(2):129–137, 1982.

[105] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimat-

ing the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2024.

[106] Daniel Lowd and Jesse Davis. Learning markov network structure with decision trees.

In 2010 IEEE International Conference on Data Mining, pages 334–343. IEEE, 2010.

[107] Daniel Lowd and Amirmohammad Rooshenas. The libra toolkit for probabilistic models.

Journal of Machine Learning Research, 16:2459–2463, 2015.

[108] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and

Luc Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 11461–11471, 2022.

[109] Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: a very deep

hierarchy of latent variables for generative modeling. In Proceedings of the 33rd

International Conference on Neural Information Processing Systems, pages 6551–6562,

2019.

277

[110] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large

annotated corpus of english: The penn treebank. Computational Linguistics, 1993.

[111] Antonio Mari, Gennaro Vessio, and Antonio Vergari. Unifying and understanding

overparameterized circuit representations via low-rank tensor decompositions. In The

6th Workshop on Tractable Probabilistic Modeling, 2023.

[112] Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite mixture models.

Annual review of statistics and its application, 6:355–378, 2019.

[113] Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching:

Generalized score matching for discrete data. Advances in Neural Information Processing

Systems, 35:34532–34545, 2022.

[114] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van

Gool. Practical full resolution learned lossless image compression. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 10629–10638,

2019.

[115] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel

mixture models. arXiv preprint arXiv:1609.07843, 2016.

[116] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel

mixture models. In International Conference on Learning Representations, 2022.

[117] Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, and Stefan

Kombrink. Subword language modeling with neural networks. preprint

(http://www.fit.vutbr.cz/imikolov/rnnlm/char.pdf), 2012.

[118] Thomas P. Minka. Expectation propagation for approximate bayesian inference. In

UAI, pages 362–369. Morgan Kaufmann, 2001.

278

[119] Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani,

Nicola Di Mauro, Pascal Poupart, and Kristian Kersting. Spflow: An easy and extensible

library for deep probabilistic learning using sum-product networks. arXiv preprint

arXiv:1901.03704, 2019.

[120] Serafín Moral, Rafael Rumí, and Antonio Salmerón. Mixtures of truncated exponentials

in hybrid bayesian networks. In ECSQARU, volume 2143 of Lecture Notes in Computer

Science, pages 156–167. Springer, 2001.

[121] Alex Morehead, Jeffrey Ruffolo, Aadyot Bhatnagar, and Ali Madani. Towards joint

sequence-structure generation of nucleic acid and protein complexes with se (3)-discrete

diffusion. arXiv preprint arXiv:2401.06151, 2023.

[122] Kevin Murphy, Scott Linderman, Peter G Chang, Xinglong Li, Aleyna Kara, Giles

Harper-Donnelly, and Gerardo Duran-Martin. Dynamax, 2023.

[123] Roger B Nelsen. An introduction to copulas, 2006.

[124] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion proba-

bilistic models. In International Conference on Machine Learning, pages 8162–8171.

PMLR, 2021.

[125] Frank Nielsen. Closed-form information-theoretic divergences for statistical mixtures.

In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012),

pages 1723–1726. IEEE, 2012.

[126] Tobias H Olsen, Fergus Boyles, and Charlotte M Deane. Observed antibody space: A

diverse database of cleaned, annotated, and translated unpaired and paired antibody

sequences. Protein Science, 31(1):141–146, 2022.

[127] Manfred Opper, Ole Winther, and Michael J Jordan. Expectation consistent approxi-

mate inference. Journal of Machine Learning Research, 6(12), 2005.

279

[128] Umut Oztok, Arthur Choi, and Adnan Darwiche. Solving PPPP-complete problems

using knowledge compilation. In Proceedings of the 15th International Conference on

Principles of Knowledge Representation and Reasoning (KR), pages 94–103, 2016.

[129] Keiran Paster, Sheila McIlraith, and Jimmy Ba. You can’t count on luck: Why decision

transformers and rvs fail in stochastic environments. Advances in Neural Information

Processing Systems, 35:38966–38979, 2022.

[130] Robert Peharz, Robert Gens, and Pedro Domingos. Learning selective sum-product

networks. In LTPM workshop, volume 32, 2014.

[131] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent

variable interpretation in sum-product networks. IEEE transactions on pattern analysis

and machine intelligence, 39(10):2030–2044, 2016.

[132] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin

Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum

networks: Fast and scalable learning of tractable probabilistic circuits. In International

Conference on Machine Learning, pages 7563–7574. PMLR, 2020.

[133] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin

Trapp, Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A

simple and effective approach to probabilistic deep learning. In Uncertainty in Artificial

Intelligence, pages 334–344. PMLR, 2020.

[134] Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck,

Yejin Choi, and Zaid Harchaoui. Mauve: measuring the gap between neural text

and human text using divergence frontiers. In Proceedings of the 35th International

Conference on Neural Information Processing Systems, pages 4816–4828, 2021.

[135] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances

in neural information processing systems, 1, 1988.

280

[136] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architec-

ture. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV

Workshops), pages 689–690. IEEE, 2011.

[137] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,

Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling

transformer inference. Proceedings of Machine Learning and Systems, 5:606–624, 2023.

[138] Andrzej Pronobis, Avinash Ranganath, and Rajesh PN Rao. Libspn: A library for

learning and inference with sum-product networks and tensorflow. In Principled

Approaches to Deep Learning Workshop, 2017.

[139] Lawrence Rabiner and Biinghwang Juang. An introduction to hidden markov models.

ieee assp magazine, 3(1):4–16, 1986.

[140] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

Language models are unsupervised multitask learners, 2019.

[141] Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. Cutset networks: A

simple, tractable, and scalable approach for improving the accuracy of chow-liu trees.

In Machine Learning and Knowledge Discovery in Databases: European Conference,

ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part II 14,

pages 630–645. Springer, 2014.

[142] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchi-

cal text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125,

2022.

[143] Marc’Aurelio Ranzato, Y-Lan Boureau, Sumit Chopra, and Yann LeCun. A uni-

fied energy-based framework for unsupervised learning. In Artificial Intelligence and

Statistics, pages 371–379. PMLR, 2007.

281

[144] Alfréd Rényi et al. On measures of entropy and information. In Proceedings of the

Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:

Contributions to the Theory of Statistics. The Regents of the University of California,

1961.

[145] Jorma J Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal of

research and development, 20(3):198–203, 1976.

[146] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.

High-resolution image synthesis with latent diffusion models. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695,

2022.

[147] Amirmohammad Rooshenas and Daniel Lowd. Learning sum-product networks with

direct and indirect variable interactions. In International Conference on Machine

Learning, pages 710–718. PMLR, 2014.

[148] Yangjun Ruan, Karen Ullrich, Daniel Severo, James Townsend, Ashish Khisti, Arnaud

Doucet, Alireza Makhzani, and Chris J Maddison. Improving lossless compression rates

via monte carlo bits-back coding. In International Conference on Machine Learning,

2021.

[149] Tamás Rudas. Lectures on categorical data analysis. Springer, 2018.

[150] Jeffrey A Ruffolo, Lee-Shin Chu, Sai Pooja Mahajan, and Jeffrey J Gray. Fast, accurate

antibody structure prediction from deep learning on massive set of natural antibodies.

Nature communications, 14(1):2389, 2023.

[151] Ludger Ruschendorf. Convergence of the iterative proportional fitting procedure. The

Annals of Statistics, pages 1160–1174, 1995.

282

[152] Prasanna K Sahoo and Palaniappan Kannappan. Introduction to functional equations.

CRC Press, 2011.

[153] Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin,

Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked

diffusion language models. arXiv preprint arXiv:2406.07524, 2024.

[154] Nimish Shah, Laura Isabel Galindez Olascoaga, Shirui Zhao, Wannes Meert, and Marian

Verhelst. Dpu: Dag processing unit for irregular graphs with precision-scalable posit

arithmetic in 28 nm. IEEE Journal of Solid-State Circuits, 57(8):2586–2596, 2021.

[155] Claude Elwood Shannon. A mathematical theory of communication. The Bell system

technical journal, 27(3):379–423, 1948.

[156] Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic

circuits of probabilistic models. In Proceedings of the 30th International Conference on

Neural Information Processing Systems, pages 3943–3951. Citeseer, 2016.

[157] Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified

and generalized masked diffusion for discrete data. In Advances in Neural Information

Processing Systems, 2024.

[158] Andy Shih and Stefano Ermon. Probabilistic circuits for variational inference in discrete

graphical models. In NeurIPS, 2020.

[159] Andy Shih, Dorsa Sadigh, and Stefano Ermon. Hyperspns: Compact and expres-

sive probabilistic circuits. In Advances in Neural Information Processing Systems 34

(NeurIPS), 2021.

[160] Andy Shih, Guy Van den Broeck, Paul Beame, and Antoine Amarilli. Smoothing

structured decomposable circuits. Advances in Neural Information Processing Systems,

32:11416–11426, 2019.

283

[161] Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly

stochastic matrices. The annals of mathematical statistics, 35(2):876–879, 1964.

[162] M Sklar. Fonctions de répartition à n dimensions et leurs marges. In Annales de l’ISUP,

volume 8, pages 229–231, 1959.

[163] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-

supervised learning using nonequilibrium thermodynamics. In International conference

on machine learning, pages 2256–2265. PMLR, 2015.

[164] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In

International Conference on Machine Learning, pages 32211–32252. PMLR, 2023.

[165] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based

continuous-time discrete diffusion models. In The Eleventh International Conference

on Learning Representations, 2022.

[166] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii

Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor

Lempitsky. Resolution-robust large mask inpainting with fourier convolutions. In

Proceedings of the IEEE/CVF winter conference on applications of computer vision,

pages 2149–2159, 2022.

[167] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-

based control. In 2012 IEEE/RSJ international conference on intelligent robots and

systems, pages 5026–5033. IEEE, 2012.

[168] James Townsend, Thomas Bird, and David Barber. Practical lossless compression

with latent variables using bits back coding. In International Conference on Learning

Representations, 2018.

284

[169] James Townsend, Thomas Bird, Julius Kunze, and David Barber. HiLLoC: lossless

image compression with hierarchical latent variable models. In International Conference

on Learning Representations, 2019.

[170] Dustin Tran, Keyon Vafa, Kumar Agrawal, Laurent Dinh, and Ben Poole. Discrete

flows: Invertible generative models of discrete data. In Advances in Neural Information

Processing Systems 32 (NeurIPS), 2019.

[171] Linh Tran, Maja Pantic, and Marc Peter Deisenroth. Cauchy-schwarz regularized

autoencoder. arXiv preprint arXiv:2101.02149, 2021.

[172] Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina

Barzilay, and Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones

in 3d for the motif-scaffolding problem. arXiv preprint arXiv:2206.04119, 2022.

[173] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder.

arXiv preprint arXiv:2007.03898, 2020.

[174] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. On the

tractability of shap explanations. In Proceedings of the 35th Conference on Artificial

Intelligence (AAAI), 2021.

[175] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete rep-

resentation learning. In Proceedings of the 31st International Conference on Neural

Information Processing Systems, pages 6309–6318, 2017.

[176] Jan Van Haaren and Jesse Davis. Markov network structure learning: A randomized

feature generation approach. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 26, 2012.

285

[177] Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A

compositional atlas of tractable circuit operations for probabilistic inference. Advances

in Neural Information Processing Systems, 34:13189–13201, 2021.

[178] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and

Pascal Frossard. Digress: Discrete denoising diffusion for graph generation. In The

Eleventh International Conference on Learning Representations, 2022.

[179] Eric Wang, Pasha Khosravi, and Guy Van den Broeck. Probabilistic sufficient explana-

tions. arXiv preprint arXiv:2105.10118, 2021.

[180] Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising

diffusion null-space model. In The Eleventh International Conference on Learning

Representations, 2022.

[181] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292,

1992.

[182] Bo Wei and Jerry D Gibson. Comparison of distance measures in discrete spectral

modeling. Master’s thesis, Citeseer, 2001.

[183] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[184] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A

semantic loss function for deep learning with symbolic knowledge. In ICML, volume 80

of Proceedings of Machine Learning Research, pages 5498–5507. PMLR, 2018.

[185] Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision

transformer: Leveraging dynamic programming for conditional sequence modelling in

offline rl. In International Conference on Machine Learning, pages 38989–39007. PMLR,

2023.

286

[186] Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of

control: Separating what you can control from what you cannot. arXiv preprint

arXiv:2210.13435, 2022.

[187] Yibo Yang, Stephan Mandt, and Lucas Theis. An introduction to neural data compres-

sion. arXiv preprint arXiv:2202.06533, 2022.

[188] Lingyun Yao, Martin Trapp, Karthekeyan Periasamy, Jelin Leslin, Gaurav Singh, and

Martin Andraud. Logarithm-approximate floating-point multiplier for hardware-efficient

inference in probabilistic circuits. In The 6th Workshop on Tractable Probabilistic

Modeling, 2023.

[189] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction

of a large-scale image dataset using deep learning with humans in the loop. arXiv

preprint arXiv:1506.03365, 2015.

[190] Zhe Zeng, Paolo Morettin, Fanqi Yan, Antonio Vergari, and Guy Van den Broeck.

Scaling up hybrid probabilistic inference with logical and arithmetic constraints via

message passing. In ICML, volume 119 of Proceedings of Machine Learning Research,

pages 10990–11000. PMLR, 2020.

[191] Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi Jaakkola, and Shiyu Chang.

Towards coherent image inpainting using denoising diffusion implicit models. arXiv

preprint arXiv:2304.03322, 2023.

[192] Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable

control for autoregressive language generation. In International Conference on Machine

Learning, pages 40932–40945. PMLR, 2023.

[193] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The

unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 586–595, 2018.

287

[194] Lingxiao Zhao, Xueying Ding, Lijun Yu, and Leman Akoglu. Improving and unifying

discrete&continuous-time discrete denoising diffusion. arXiv preprint arXiv:2402.03701,

2024.

[195] Zhilin Zheng and Li Sun. Disentangling latent space for vae by label relevant/irrelevant

dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 12192–12201, 2019.

[196] Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang.

Score identity distillation: Exponentially fast distillation of pretrained diffusion models

for one-step generation. In International Conference on Machine Learning, 2024.

[197] Zachary Ziegler and Alexander Rush. Latent normalizing flows for discrete sequences.

In Proceedings of the 36th International Conference on Machine Learning (ICML),

2019.

288

	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Tractable Inference with Probabilistic Circuits
	Background on Probabilistic Circuits
	Structural Properties of (Probabilistic) Circuits
	A Compositional Atlas of Tractable Circuit Operations
	From Simple Circuit Transformations…
	… to Complex Compositional Queries
	Experiments

	Scalable Learning of Probabilistic Circuits – Algorithmic Side
	Hidden Chow-Liu Trees – A General-Purpose Architecture
	Learning Sparse PCs with Pruning and Growing
	Probabilistic Circuit Model Compression via Pruning
	Bounding and Approximating the Loss of Likelihood
	Scalable Structure Learning
	Experiments
	Density Estimation Benchmarks
	Evaluating Pruning and Growing

	Latent Variable Distillation
	Latent Variable Distillation for Hidden Markov Model
	Latent Variable Distillation for Probabilistic Circuits
	Extracting Latent Variables for Image Modeling
	Experiments

	Scalable Learning of Probabilistic Circuits – Systems Side
	Related Work on Accelerating PCs
	Key Bottlenecks in PC Parallelization
	Harnessing Block-Based PC Parallelization
	Fully Connected Sum Layers
	Generalizing To Practical Sum Layers
	Efficient Implementations by Compiling PC Layers
	Analysis: IO and Computation Overhead

	Optimizing Backpropagation with PC Flows
	Experiments
	Faster Models with PyJuice
	Better PCs At Scale
	Benchmarking Existing PCs

	Applications
	Image Inpainting via Tractable Steering of Diffusion Models
	Background and Motivation
	Guiding Diffusion Models with Tractable Probabilistic Models
	Practical Implementation with Probabilistic Circuits
	Towards High-Resolution Image Inpainting
	Experiments

	Lossless Data Compression
	Background and Motivation
	Tractability Matters in Lossless Compression
	Computationally Efficient (De)compression with PCs
	Algorithm Details
	Experiments

	Offline Reinforcement Learning
	Background and Motivation
	Tractability Matters in Offline RL
	Exploiting Tractable Models
	Practical Implementation
	Experiments

	Tractability Matters in Diffusion Models
	Background and Motivation
	Preliminaries
	Challenge of Modeling Variable Dependencies
	Modeling Variable Dependencies with Copula Models
	Combining Univariate Marginals with Inter-Variable Dependencies
	Modeling Dependence in Discrete Diffusion Models

	Autoregressive Models as Copula Models
	Extracting Copula Distributions from Autoregressive Models
	Approximate I-Projection with Autoregressive Models
	The Overall Diffusion Sampling Process

	Experiments
	Unconditional Text Generation
	Conditional Text Generation
	Antibody Sequence Infilling

	Appendices
	Tractable Inference with Probabilistic Circuits
	Useful Sub-Routines
	Support circuit of a deterministic circuit
	Circuits encoding uniform distributions
	A circuit representation of the #3SAT problem

	Circuit Operations
	Sum of Circuits
	Product of Circuits
	Power Function of Circuits
	Quotient of Circuits
	Logarithm of a PC
	Exponential Function of a Circuit
	Other tractable operators over circuits

	Complex Information-Theoretic Queries
	Cross Entropy
	Entropy
	Mutual Information
	Kullback-Leibler Divergence
	Rényi Entropy
	Rényi's alpha divergence
	Itakura-Saito Divergence
	Cauchy-Schwarz Divergence
	Squared Loss Divergence

	Expectation-based queries
	Moments of a distribution
	Probability of logical formulas
	Expected predictions

	Experiments

	Scalable Learning of Probabilistic Circuits – Algorithmic Side
	Learning Sparse PCs with Pruning and Growing
	Pseudocode
	Proofs
	Experiments Details

	Latent Variable Distillation
	Proofs
	Details for Latent Variable Distillation
	Experiment Details
	Efficiency Analysis
	Additional Ablation Studies

	Scalable Learning of Probabilistic Circuits – System Side
	Algorithm Details
	The Layer Partitioning Algorithm
	Details of the Backpropagation Algorithm for Sum Layers
	PCs with Tied Parameters

	Additional Technical Details
	Block-Sparsity of Common PC Structures
	Relation Between PC Flows and Gradients

	Experimental Details
	The Adopted Block-Sparse PC Layer
	Details of Training the HMM Language Model
	Details of Training the Sparse Image Model
	Additional Benchmark Results

	Additional Experiments
	Runtime on Different GPUs
	Runtime on Different Batch Sizes

	Applications
	Image Inpainting via Tractable Steering of Diffusion Models
	Proof of Theorem 11
	Design Choices for High-Resolution Guided Image Inpainting
	PC Learning Details
	Details of the Main Experiments and the Baselines
	Additional Experiments
	Details of the Semantic Fusion Experiment

	Lossless Data Compression
	Proof of Theorem 13
	Methods and Experiment Details

	Offline Reinforcement Learning
	Proof of Theorem 14
	Algorithm Details of Trifle
	Inference-time Optimality Score
	Additional Experimental Details
	Additional Experiments

	Tractability Matters in Diffusion Models
	Proof of the Theoretical Results
	Relation Between the Copula Objective and Matrix Scaling
	Parameterizing Discrete Copulas by Odds Ratios
	Unbiased Univariate Marginals from Discrete Diffusion Models
	Implementation Details of DCD
	Additional Unconditional Generation Experiments
	Additional Experimental Details
	Unconditional Text Generation
	Conditional Text Generation
	Antibody Sequence Infilling

	Additional Text Samples

