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SUMMARY

Large-scale sequencing efforts have been undertaken to understand the mutational landscape of the 

coding genome. However, the vast majority of variants occur within non-coding genomic regions. 

We designed an integrative computational and experimental framework to identify recurrently 

mutated non-coding regulatory regions that drive tumor progression. Applying this framework 

to sequencing data from a large prostate cancer patient cohort revealed a large set of candidate 
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drivers. We used (1) in silico analyses, (2) massively parallel reporter assays, and (3) in vivo 
CRISPR interference screens to systematically validate metastatic castration-resistant prostate 

cancer (mCRPC) drivers. One identified enhancer region, GH22I030351, acts on a bidirectional 

promoter to simultaneously modulate expression of the U2-associated splicing factor SF3A1 

and chromosomal protein CCDC157. SF3A1 and CCDC157 promote tumor growth in vivo. We 

nominated a number of transcription factors, notably SOX6, to regulate expression of SF3A1 and 

CCDC157. Our integrative approach enables the systematic detection of non-coding regulatory 

regions that drive human cancers.

Graphical Abstract

In brief

Woo et al. developed and implemented a computational and experimental platform to identify and 

characterize non-coding driver regulatory regions in metastatic prostate cancer patient data. They 

find that the enhancer region GH22I030351 acts on a bidirectional promoter that simultaneously 

regulates the previously uncharacterized genes SF3A1 and CCDC157 in a tumor-promoting 

manner.

INTRODUCTION

Non-coding DNA regions are increasingly recognized as cancer drivers.1-3 However, 

several challenges have limited our ability to systematically annotate oncogenic non-coding 
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genomic elements. First, for the coding genome, the recurrence of functional mutations 

has long been leveraged to identify cancer-relevant genes.4-6 However, the paucity of whole-

genome sequencing data relative to exome sequencing data limits the number of times 

mutations in non-coding DNA regions may be observed. This is further compounded by the 

much larger non-coding space relative to that of coding sequences. Second, while a number 

of heuristics have been developed to identify functional mutations in the coding genome 

(e.g., the ability to distinguish between sense, missense, and nonsense mutations), the 

concept of functionality in the non-coding space is more difficult to capture.7-12 Currently, 

the standard statistical approach to identify mutational hotspots in the non-coding space 

is to form a background distribution and use an appropriate set of covariates to detect 

mutational events that occur more than expected by chance above background.3,13-16 More 

recently, machine learning algorithms have been used to identify driver events in non-coding 

regions.17-20

Nevertheless, we are not aware of any study that integrates statistical techniques 

using single-base-resolution machine learning platforms with state-of-the-art experimental 

approaches to functionally capture non-coding drivers of tumor progression. Several 

recent studies have focused on primarily approaching this problem from a computational 

perspective but largely have not been able to functionally characterize noncoding driver 

regions to a significant degree.3,13 To address this gap, we developed an ensemble of 

statistical and deep learning models, trained on metastatic castration-resistant prostate cancer 

(mCRPC) genomes, to identify non-coding regulatory regions that drive prostate cancer 

progression. For this, we relied on whole-genome sequencing (WGS) and matched RNA 

sequencing (RNA-seq) data generated from our recent multi-institutional study on more 

than 100 mCRPC patients.21 Given the genetic heterogeneity and long-tail nature of driver 

mutations in mCRPC,22 using data from a large multi-institutional study is essential to 

effectively capture driver regulatory elements. We then used data generated from two 

separate experimental modalities to assess the functional impact of our computationally 

nominated regulatory elements on gene expression and tumor growth. First, we devised 

a massively parallel reporter assay (MPRA) to assess the impact of each mCRPC-

associated region on transcriptional control.23 In parallel, we leveraged CRISPR interference 

(CRISPRi) to carry out a pooled genetic screening strategy in mouse xenograft models.

By integrating data from various modules in our combined computational and experimental 

platform, we identified a recurrently mutated regulatory region, previously annotated as 

GH22I030351, that controls a bi-directional promoter driving the expression of both 

SF3A1, a U2-associated splicing factor, and CCDC157, a poorly characterized putative 

chromosomal protein. We confirmed that silencing this regulatory region in prostate 

cancer cell lines with CRISPRi reduced subcutaneous tumor growth. Our follow-up 

functional studies revealed that both SF3A1 and CCDC157 promote prostate cancer 

tumor growth in xenograft models. We also performed CLIP-seq and RNA-seq in SF3A1-

overexpressing cells and found upregulation to be linked to changes in the mCRPC 

splicing landscape. Finally, we identified multiple transcription factors, including SOX6, that 

regulate expression of SF3A1 and CCDC157 upstream of GH22I030351, and functionally 

validated SOX6 in vivo, observing increased tumor growth in xenografted mice injected 

with SOX6 knockdown cells.
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RESULTS

Identifying hotspots in non-coding regions using a regression-based model

For coding sequences, commonly used tools such as MutSigCV11 have been developed to 

assess the accumulation of mutations along the entire gene body in a given cohort to boost 

signal from observed mutations. We took a similar approach in the non-coding sequence 

space by combining counts across annotated regulatory regions in order to identify those 

that were recurrently mutated in our cohort of 101 mCRPC samples (STAR Methods). We 

fit a generalized linear regression model (GLM) using mutational density as the response 

variable and a set of covariates we defined (Figures 1A and S1A-S1D; Table S1; see 

STAR Methods for a detailed explanation). The resulting model, named MutSpotterCV 

(mutational density spotter using covariates), achieved a Pearson correlation of 0.55 between 

observed vs. predicted mutational densities across genomic regions (Figure 1B). Using 

MutSpotterCV, we observed a small subpopulation of regulatory regions with substantially 

higher observed mutational densities above that expected by chance. By systematically 

performing outlier detection analysis, MutSpotterCV flagged a total of 1,780 regions as 

a set of candidate functional regions harboring mutational hotspots (Figure 1B; Table 

S2; see STAR Methods for detection criteria), which amounted to 1.1% of all mutated 

regulatory regions. Furthermore, we found all covariates to be significantly associated with 

the response variable in the model, suggesting that they independently and significantly 

contributed to the prediction of mutational density (Figure S1D). In our previous study, 

we had identified patients in our cohort with pathogenic mutations in prostate cancer 

driver genes (see Table S5 in Quigley et al.21). Here, we observed that a number of 

our non-coding mutational hotspots were proximal to a subset of prostate cancer driver 

genes; i.e., AR, FOXA1, and TP53. We therefore asked whether any of these non-coding 

mutational outliers were more or less likely to occur in patients with known pathogenic 

mutations in coding regions of these driver genes. Interestingly, we did not find any 

such association (p = 0.39, two-sided Fisher’s exact test). In addition, among the 1,780 

mutational hotspots identified here, six of them were found to harbor non-coding driver 

hits in myeloproliferative neoplasm, melanoma, and prostate adenocarcinoma by a recent 

pan-cancer study13 on non-coding regions (Table S2).

Last, in order to confirm the robustness of our study, we also examined the consequence of 

different modifications to MutSpotterCV to assess the impact of varying covariate choices 

on the final results (Figures S1E-S1L; STAR Methods). We first considered copy number 

variation (CNV), a common genetic change in metastatic prostate cancer. To investigate 

the impact of CNV on the sensitivity of MutSpotterCV predictions, we used CNV as a 

feature in the model and examined resulting called mutational hotspots. We found that 

the identity and number of final mutational outliers were not significantly different in 

the presence or absence of CNV as a feature of the model (Figures S1E and S1F). This 

suggests that the detected mutational hotspots are mainly driven by SNVs and insertions or 

deletions, independent of CNV. To further evaluate the robustness of our GLM model and 

its sensitivity to the choice of PC3 cell line epigenetic features, we then replaced the given 

PC3 cell line epigenetic features with three other orthogonal datasets: (1) epigenetic features 

derived from mCRPC patients, 24 (2) ATAC-seq data from TCGA primary prostate cancer 
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samples,25 and (3) epigenetic features from the LNCaP cell line for the ENCODE project.26 

In each case, the updated model recaptured approximately 70% of the previously identified 

candidate mutational hotspots in non-coding regions (Figures S1G-S1L).

A multimodal convolutional neural network for accurate prediction of mutational density

We set a high threshold for detection of outliers by MutSpotterCV; however, we recognized 

that MutSpotterCV calls may still be dependent on the assumptions of our underlying 

model. Specifically, a GLM measures the linear dependence of the response variable on 

its predictors. Therefore, to ensure the robustness and reproducibility of our findings and 

capture potential nonlinear relationships among variables, we also developed a separate 

deep-learning-based model, termed DM2D (deep model for mutational density), to assess 

(1) whether it would be capable of achieving higher accuracy for predicting mutational 

density than MutSpotterCV and (2) the overlap between called putative mutational hotspots. 

DM2D is a convolutional neural network (CNN) model, which uses sequence and epigenetic 

data as multi-channel input with single-base resolution (Figure 1C; STAR Methods). Once 

trained, this CNN model performed substantially better than GLM and achieved a Pearson 

correlation of 0.85 between observed and predicted values (Figures 1D and S1O). However, 

this increase in accuracy was not accompanied by a significant change in identity of 

previously called outliers. About 90% of non-coding mutational hotspots that were detected 

by MutSpotterCV were also called by DM2D (Table S2).

In our computational methodology, we rigorously selected the most promising candidates 

for non-coding mutational hotspots using two orthogonal approaches, GLM and CNN. 

While this process enriches for regions with significant potential to harbor driver mutations, 

it should be emphasized that we primarily utilize this computational step to generate 

hypotheses, not conclusions. This computational enrichment step serves as the foundation 

for subsequent experimental steps that measure functionality.

Quantifying the regulatory functions of identified noncoding mutational hotspots

Our focus on annotated non-coding regions was based on the underlying assumption that 

these regions carry out regulatory functions in gene expression control, which, in turn, 

may play a role in driving prostate cancer progression. To test this assumption, we used 

transcriptomics data from all patients to assess the putative effects of mutations in our non-

coding mutational hotspots on gene expression. For each non-coding mutational hotspot, we 

divided our patient cohort into two groups: mutant and reference. We defined mutants as 

patients carrying mutations in that specific hotspot and references as those who do not. We 

required each non-coding hotspot to include at least four patients in the mutant category, 

and hotspots that did not satisfy this criterion were removed (Figure S1P). Specifically, we 

asked whether genes in the vicinity (within 15 kb, consistent with the input length of our 

Blue Heeler model) of these regions were significantly up- or downregulated in tumors that 

harbored mutations in cognate regions. In total, we performed differential gene expression 

analysis for 1,692 flanking genes in the vicinity of non-coding mutational hotspots.

Using DESeq2,27 we found 104 differentially expressed genes in the vicinity of 98 hotspots 

(p < 0.05; Tables S3-S5; see STAR Methods for details on selection criteria). These 98 
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hotspots, which we termed candidate driver regulatory regions (CDRRs), harbored a total 

of 885 mutations. The distribution of these mutations among tumors was scattered (Figure 

S1M), suggesting that the final CDRRs were not overly biased by a particular tumor. We 

noted that one of our CDRRs, located in the 3′ UTR of the oncogene FOXA1, was also 

identified as a non-coding driver in prostate cancer by a recent pan-cancer study.13

Next, to functionally validate these CDRRs, we used an MPRA, which allows for scalable 

measurement of enhancer activity across thousands of sequences (Figure 2A; STAR 

Methods). In our MPRA analysis, performed in biological triplicate (Figure S2A), barcodes 

assigned to 358 fragments of interest and their scrambled controls were observed at 

sufficient read counts for downstream analyses (>25 reads per barcode). Specifically, we 

included in our MPRA library the reference human genome sequences for each fragment 

as well as all mutant variants observed in our patient cohort. We used logistic regression to 

compare enhancer activity between reference and scrambled sequences. At a false discovery 

rate [FDR] of <0.01 and effect size of 1.5-fold differential expression, roughly a third of our 

fragments showed a significant effect on transcriptional activity (Figure 2B).

In order to reveal potential active motifs embedded in these functionally active regions, 

we performed regulon analysis as well as de novo motif discovery (STAR Methods). This 

analysis revealed JunD, an AP-1 transcription factor, to be significantly associated with 

increased enhancer activity in our MPRA system (Figure S2B). This is consistent with 

the known role of AP-1 factors as foundational drivers of prostate cancer progression.28,29 

For example, it has been shown that JunD has an essential role in prostate cancer cell 

proliferation and is a key regulator for cell cycle-associated genes.30 JunD employs c-MYC 

signaling to regulate prostate cancer progression and is a coactivator for androgen-induced 

oxidative stress—a key player in prostate cancer onset and progression.31-33 In addition 

to the analysis described above, which relies on annotated binding sites, we also used 

the primary sequence of our fragments to directly perform de novo motif discovery using 

FIRE.32 As shown in Figure S2B, we discovered two motifs, one of which has similarities 

to the binding site of the transcription factor SMAD. Overall, the MPRA analysis revealed 

fragment-level readouts of transcriptional activity and the putative regulators that underlie 

their activity.

Given that, for the majority of putative regulatory regions, more than one fragment per 

mutation was included in our MPRA library, we then performed a region-level analysis 

by integrating measurements for the fragments across each region. Achieving statistical 

significance in this analysis would require concordant effects from multiple fragments in 

the same direction, highlighting the functional relevance of the identified regulatory regions 

and providing a rational approach for prioritizing their collective impact on gene expression 

(Figure S2C). Taken together, results from our endogenously controlled MPRA highlight the 

identification of multiple regulatory sequences in CDRRs associated with mCRPC.

A systematic CRISPRi screen for non-coding drivers in xenograft models

Our analyses of gene expression data from mutated and unmutated samples for each region 

of interest, coupled with a large-scale and systematic MPRA analysis, provided strong 

evidence for many of our CDRRs to have a regulatory function in gene expression control. 
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However, it remained unclear whether each of these CDRRs contributed causally to gene 

expression programs that drive prostate cancer progression. To assess this, we measured the 

impact of silencing these candidate regions on prostate cancer tumor growth in xenograft 

models using CRISPRi. To systematically target our CDRRs, we engineered an sgRNA 

library of ~1,000 sgRNAs that specifically target these regions (5 guides per region), 

including 10 non-targeting sgRNA sequences as controls (Figure 2C). We transduced 

C4-2B (a metastatic castration-resistant osteoblast derivative of LNCaP) CRISPRi-ready 

cells with this library and compared guide representation among cancer cell populations 

grown subcutaneously in vivo or grown in vitro for a similar number of doublings (Figure 

S2D). This comparison allowed us to quantify the phenotypic consequences of silencing 

each region. As shown in Figure 2D, there were a number of guides that showed significant 

association with in vivo growth. Moreover, as we had included five independent sgRNAs per 

regulatory region, we also performed an integrative analysis to combine the phenotypic 

consequences of guides targeting each region. This allowed us to assign a combined 

summary phenotypic score to each CDRR. We identified CDRRs with strong, significant, 

and specific in vivo growth phenotypes in the C4-2B prostate cancer cell line (Figure S2E). 

Similar to our MPRA measurements, this CRISPR-based phenotyping strategy highlighted 

the identification of multiple functional and driver non-coding regions among mCRPC-

associated CDRRs.

Assessing the contribution of individual mutations to CDRR activity

The MPRA and CRISPRi screens described above measured the integrated regulatory 

and phenotypic impact of hypermutated regulatory regions in mCRPC. However, the 

contributions of individual mutations to the enhancer activity of their containing CDRRs 

remained unexplored. To shed light on the effects of these mutations at base-resolution scale, 

we employed two complementary strategies: (1) we used our MPRA assay data to compare 

the regulatory activity of the reference allele vs. mutant variants and (2) we trained a deep 

learning model to learn the grammar underlying gene expression regulation in prostate 

cancer. We then used this knowledge to assess the impact of the observed mutations on the 

expression of its target genes in silico.

In the MPRA assay, in addition to reference sequences per fragment, we also included all 

observed mutant variants in our patient cohort (Figure S3A). This allowed us to functionally 

assess each mutation in CDRRs and measure their phenotypic consequences relative to 

their reference allele. As shown in Figure 3A, of the more than 350 mutations reliably 

assayed in the library, about one-third had highly significant impacts on reporter expression 

relative to the reference allele (FDR < 0.01, effect size > 1.5-fold). As indicated in Figure 

S3B, mutations in CDRRs effectively impacted the underlying regions’ activity in prostate 

cancer cells, highlighting the regulatory consequences of the observed mutations. This 

observation on its own, however, does not imply that the other two-thirds of mutations 

are phenotypically neutral. An important caveat here is that our MPRA system removes 

mutations from their endogenous context, and the functionality of some variants may be 

lost in this transition. Therefore, we also took advantage of a machine learning model as a 

complementary strategy to study these mutations within their larger endogenous context in 
silico.
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In recent years, deep learning-based models have proved successful in linking genotypic 

variation to phenotypic outcomes. As a result, a number of models have emerged that predict 

the impacts of single-base substitutions, particularly in non-coding regions, on resulting 

gene expression.34-38 We developed a base-resolution deep-learning model that learns the 

regulatory context of mCRPC in relation to the regulatory activity of promoters/enhancers. 

This model uses a 215-bp-input promoter sequence on one side and an embedding of the 

cancer cell state on the other to predict the expression of a given gene Figure S3C; STAR 

Methods). Our deep learning model, which we named Blue Heeler (BH), accomplished this 

task and predicted gene expression in mCRPC samples using promoter sequences (Figures 

3B and S3D). More importantly, it also helped us prioritize functionally relevant mutations 

and better understand their impact on gene expression control.

To take a deeper dive and better understand the sequence-function relationships we observed 

in cells, in vivo, and in silico, we integrated our results to prioritize the strongest 

mCRPC-associated regulatory regions. Through this selection process, we nominated a 

previously annotated enhancer on chromosome 22 as a driver of prostate cancer progression 

(geneHancer: GH22I030351) (Figure S3E). Specifically, GH22I030351 showed the most 

significant enhancer activity after aggregating fragment activity in our MPRA data (Figure 

S2C; see STAR Methods for aggregation details). Targeting GH22I030351 with CRISPRi 

showed the strongest impact on tumor growth in xenografted C4-2B cells, and mCRPC 

patients with mutations in this enhancer showed a significant increase in the expression of 

the genes associated previously with this enhancer (Figures 3C and 3D). In addition, in 

almost all cases, observed mutations in this regulatory region significantly increased the 

activity of this enhancer in our MPRA measurements (Figure 3E). Since this enhancer is ~20 

kb upstream of CCDC157, we used our pre-trained BH model to analyze this enhancer in 
silico. (We specifically used CCDC157 from the four gene targets because GH22I030351 

strictly falls within the range of distance from the transcription start site on which BH 

is trained.) First, as expected, we observed that feature attribution scores, as measured 

by sequence making, sequence variations, and saliency scores, identified GH22I030351 as 

an important region in regulation of CCDC157 expression (Figure 3F). Moreover, while 

in silico saturation mutagenesis experiments across the CCDC157 promoter revealed both 

loss- and gain-of-function mutations, the mCRPC patient mutations in this enhancer were 

deemed to be largely gain-of-function alterations by the model. This is consistent with our 

findings from MPRA measurements and the direction of gene expression changes in clinical 

samples. Together, these observations indicate that GH22I030351 is a strong contender as a 

non-coding driver in mCRPC by acting as a positive regulator of the expression of its targets.

SF3A1 and CCDC157 promote prostate cancer downstream of GH22I030351

To validate our results from our in vivo CRISPRi screen, we used our best-performing 

sgRNA from the CRISPRi screen to silence GH22I030351 in C4-2B cells and performed 

subcutaneous tumor growth assays. As shown in Figure 4A, consistent with the results 

from our pooled screen, we observed a significant reduction in tumor growth in xenografted 

mice in GH22I030351-silenced cells. Next, we performed quantitative real-time PCR for the 

four target genes described for this enhancer; namely, SF3A1, CCDC157, TBC1D10A, and 

RNF215. We observed a significant reduction in the expression of SF3A1 and CCDC157 
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but not TBC1D10A or RNF215 (Figures 4B and S4A). This observation implies that 

the reduction in tumor growth associated with GH22I030351 resulted from the reduced 

expression of either, or both, SF3A1 and CCDC157. Interestingly, this observation is 

consistent with results from whole-genome in vitro CRISPRi screens in isogenic LNCaP and 

C4-2B lines.39 As shown in Figure S4B, sgRNAs that targeted the promoters of SF3A1 and 

CCDC157 resulted in a significant reduction in proliferation in this dataset. However, since 

these genes share a bidirectional promoter, CRISPRi signals may very well leak from one 

gene to the other. Therefore, to identify which of these two genes promotes prostate cancer 

growth, we used inducible shRNAs to independently knock down SF3A1 and CCDC157 in 

C4-2B cells and measure proliferation and colony formation in vitro (Figures 4C and 4D). 

Interestingly, we observed that constitutive expression of shRNAs against either of these 

genes was not tolerated by prostate cancer cells, which implies that both of these genes 

may be acting as drivers. In addition, as shown in Figures 4E and 4F, overexpression at 

the GH22I030351, SF3A1, or CCDC157 locus in C4-2B cells resulted in enhanced tumor 

growth in xenografted mice. To understand the functional genetic relationship between 

GH22I030351, SF3A1, and CCDC157, we engineered a SF3A1/CCDC157 dual-knockdown 

(DKD) C4-2B line to assess whether the presence of SF3A1 and CCDC157 is necessary 

to observe this in vivo driver phenotype of GH22I030351 Figure 4G). We found that, in 

the absence of SF3A1 and CCDC157, silencing GH22I030351 did not show a phenotype, 

further suggesting that GH22I030351 is acting via SF3A1 and CCDC157 to drive tumor 

growth. These studies establish GH22I030351 as a major enhancer that simultaneously 

controls both SF3A1 and CCDC157, both of which can act as prostate cancer drivers.

SF3A1 overexpression reprograms the splicing landscape of prostate cancer cells

Reprogramming of the alternative splicing landscape is a hallmark of prostate cancer.40 

Since SF3A1 is a known splicing factor and a known component of the mature U2 small 

nuclear ribonucleoprotein particle (snRNP), our observation that SF3A1 upregulation is 

implicated in prostate cancer progression further highlights the importance of splicing 

dysregulations in mCRPC.41,42 We asked whether mutations in GH22I030351, which lead 

to increased SF3A1 expression, are accompanied by splicing landscape alterations. For this, 

we used the “mixture of isoforms” analytical package43 to calculate the percent spliced in 

(Ψ) for annotated cassette exons that are expressed in our mCRPC cohort. As shown in 

Figure 5A, we observed significant alterations in the splicing landscape of cassette exons in 

GH22I030351-mutated samples; however, this observation on its own does not necessarily 

implicate downstream SF3A1 upregulation as the immediate cause. While SF3A1 is a 

canonical component of the U2 snRNP, it also directly binds RNA and therefore may 

influence splicing directly through interactions with target RNAs.44 In order to assess this 

possibility and draw a more causal link, we decided to specifically focus on transcripts 

that are directly bound by SF3A1. We used cross-linking immunoprecipitation followed 

by sequencing (CLIP-seq) to map SF3A1 binding sites in C4-2B CRISPRi-ready cells at 

nucleotide resolution.45 We annotated roughly 40,000 binding sites across the transcriptome, 

the majority of which fell in intronic regions (Figure S5A). This extensive intronic binding 

is consistent with the role of SF3A1 as a splicing factor. More importantly, since CLIP-

seq provides base-resolution interaction maps, we used high-confidence SF3A1 binding 

sites to ask whether there were any specific sequence features preferred by SF3A1. As 
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shown in Figure 5B, systematic sequence analysis revealed a significant enrichment of 

CU-rich elements in SF3A1 sites. Interestingly, it is known that SF3A1 binding to the 

U1 small nuclear RNA is directed through an interaction with the terminal CU in the 

U1-SL4 domain.46 Cassette exons with direct SF3A1 binding also showed increased usage 

in GH22I030351-mutated tumors Figures 5C and S5B).

We then performed total RNA-seq in SF3A1-overexpressing C4-2B cells relative to a mock-

transduced control. As shown in Figure S5C, we observed a number of cassette exons 

that are significantly up- or downregulated upon SF3A1 overexpression. More importantly, 

we observed a significant and clear enrichment of SF3A1-bound cassette exons among 

those that are up-regulated in SF3A1 overexpressing cells (Figures S5D and S5E). Finally, 

comparing the changes in splicing caused by mutations in GH22I030351 to those caused 

by overexpression of SF3A1 showed that, while there was no correlation in alternative 

splicing patterns across all cassette exons, exons bound by SF3A1 were similarly enriched 

among the most affected exons in both cases Figure 5D). Taken together, these observations 

further highlight a direct link between SF3A1 up-regulation and subsequent RNA binding 

and changes in the prostate cancer splicing landscape.

Putative transcription factors driving GH22I030351-mediated regulation of gene 
expression

We then sought to identify the upstream transcriptional regulators of SF3A1 and CCDC157 

expression that may be impacted by observed mCRPC mutations. We hypothesized that, in 

addition to having a sequence motif match to the GH22I030351 region, given the association 

of this region with tumor progression, its regulators would also exhibit a metastasis-relevant 

property, such as increased expression specific to metastatic prostate tumors. While we 

found 34 transcription factor sequence motifs with significant enrichment at the genomic 

window intersecting the observed mutations, only 6 were associated with metastatic prostate 

tumors. We further investigated the top three candidates, SMAD2, TEAD1, and SOX6, and 

found that the sequence motif match for each of these transcription factors overlapped with 

mutations observed in our patient cohort (Figures 6A-6C and S6A). To identify potential 

changes in transcription factor binding, we performed differential motif analysis to examine 

the impact of each mutation on FIMO enrichment (Figures 6A-6C). An A > G mutation 

within the SOX6 motif decreased the motif enrichment score and the associated p value 

(Figure 6A). A T > G mutation within the TEAD1 motif had a similar impact (Figure 

6B). The A > G mutation observed within the SMAD2–4 motif, however, resulted in an 

increased motif score, even with observed negative enrichment (Figure 6C). We confirmed 

these results experimentally by performing in vitro MPRA chromatin immunoprecipitation 

sequencing (ChIP-seq) in C4-2B cells (Figure 6D); these findings, in tandem, support our 

hypothesis that functional mutations show differential binding to their cognate transcription 

factors.

To assess the regulatory potential of these transcription factors, we then performed 

CRISPRi-mediated knockdown of each and measured changes in the expression of 

SF3A1 and CCDC157. For all three transcription factors, SMAD2, TEAD1, and SOX6, 

a concomitant increase in the expression of these target genes was observed; however, 
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SOX6 silencing showed the strongest effect size for both SF3A1 and CCDC157 (Figure 

6E). Consistently, we observed that subcutaneous injection of C4-2B cells with SOX6 

knockdown resulted in increased tumor growth in xenografted mice and that this in vivo 
phenotype was dependent on GH22I030351 activity (Figure 6F). In contrast, SMAD2 and 

TEAD1 knockdown cells did not show a significant change in tumor growth (Figure S6B). 

We also observed SMAD2 as one of the transcriptional regulators of prostate cancer cells 

in our MPRA analysis (Figure S2B). Taken together, our observations implicate multiple 

transcription factors, most notably SOX6, that regulate expression of SF3A1 and CCDC157 

downstream of GH22I030351.

DISCUSSION

The oncogenic driver events in non-coding regulatory regions are increasingly gaining 

recognition, with the TERT promoter standing out as a prime example.48,49 Compared to 

driver mutations in coding sequences, our understanding of non-coding variants has been 

hindered by the much larger size of the non-coding genome, the absence of clear direct 

functional consequences of mutations in non-coding regions, and the limited availability 

of WGS data for patient cohorts. In this study, we described an integrative computational-

experimental framework to systematically identify non-coding drivers of human cancers. 

This framework combines the power of in silico machine learning models with the 

throughput of MPRAs and large-scale in vivo genetic screens and is readily generalizable to 

other cancer models as well.

During the course of our study, several independent groups have tackled this foundational 

problem as well. First, a recent pan-cancer study integrated 13 well-established driver 

discovery algorithms to nominate driver events in coding and non-coding regions in more 

than 2,600 whole genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) 

dataset across 27 tumor types, including a total of 199 prostate tumors13,50. Curiously, 

their only plausible non-coding driver hit in regulatory regions of prostate tumors was the 

promoter of the long noncoding RNA (lncRNA) gene RP5-997D16.2, having two mutations 

in their prostate cancer cohort. The authors indicated that they were unable to functionally 

characterize this non-coding driver and that there was a lack of overall support for its 

role based on other evidence. However, by restricting hypothesis testing to boost their 

statistical power, the authors were also able to find another non-coding hit in the 3′ UTR 

of the oncogene FOXA1. Interestingly, this same region was also tagged as a CDRR in our 

computational analyses (Tables S2 and S3).

More recently, another pan-cancer study of about 4,000 whole genomes on 19 tumor types 

(with a total of 341 prostate tumors) from PCAWG and the Hartwig Medical Foundation 

combined two statistical tests to nominate recurrent mutation events in coding and non-

coding regions, using a maximum resolution of a 1-kb tiling window.3 The study nominated 

driver events in the coding region, but not the non-coding region, of SF3B1 in breast, 

leukemia, and pancreas tumors. Curiously, they also found evidence of strong mutagenic 

processes, but not driver events, in the vicinity of five prostate tissue-specific genes; namely, 

ELK4, KLK3, TMPRSS2, ERG, and PLPP1. Of note, we also identified KLK3 as one of 

the flanking genes in the vicinity of one of our non-coding mutational hotspots. However, 

Woo et al. Page 11

Cell Rep. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



KLK3 did not exhibit a significant difference in gene expression levels between mutant and 

reference in our cohort, and thus we excluded this gene and the neighboring non-coding 

region from further analysis.

Although these two recent studies had 2–3 times the whole-genome sample size compared 

to that used in our study, their inability to identify any significant driver events in 

non-coding regions implies that detecting such events in non-coding regions requires a 

more comprehensive integration of computational and experimental methods. Our results 

strongly indicate that a computational prioritization fails to paint the full picture and 

that experimental tools, such as CRISPRi screens and MPRAs, should be part of the 

discovery platform rather than a final step for targeted verification of some findings. 

Our study underscores the significance of a targeted cohort with a specific cancer type. 

Moving forward, we anticipate this integrated framework to be of use for non-coding driver 

discovery in other cancer patient populations.

Limitations of the study

In computationally predicting mutational hotspots, we utilized epigenetic features derived 

from the PC3 cell line. We acknowledge the potential discrepancies between the epigenetic 

marks of the PC3 cell line and those present in prostate tumors. To address these concerns, 

we conducted validation analyses using alternative epigenetic data sources, including ATAC-

seq data from TCGA prostate cancer samples and the LNCaP cell line (STAR Methods).

RESOURCE AVAILABILITY

Lead contact

Requests for further information, resources, and reagents should be directed to and will be 

fulfilled by the lead contact, Hani Goodarzi (hani.goodarzi@ucsf.edu).

Materials availability

All unique/stable reagents generated in this study are available from the lead contact with a 

completed materials transfer agreement.

Data and code availability

• MPRA, CRISPR, and CLIP-seq screening data generated as part of this 

study were deposited into GEO and are under the reference SuperSeries ID: 

GSE274769.

• MutSpotterCV is available at github.com/goodarzilab, and the corresponding 

DOI is provided in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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STAR★METHODS

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and cell culture—C4-2B prostate cancer cell line was acquired from ATCC. 

All cells were cultured in a 37°C 5% CO2 humidified incubator. C4-2B was cultured in 

RPMI-1640 medium supplemented with 10% FBS, glucose (2 g/L), L-glutamine (2 mM), 25 

mM HEPES, penicillin (100 units/mL), streptomycin (100 mg/mL) and amphotericin B (1 

μg/mL) (Gibco). All cell lines were routinely screened for mycoplasma with a PCR-based 

assay. To select transgenic lines, puromycin was used at 8ug/mL final concentration. For 

inducible expression, doxycycline was used at 10 ng/mL.

Mouse models—Male NSG mice were purchased from Jackson Laboratory 

(Strain#005557). All animal surgeries, husbandry and handling protocols were completed 

according to University of California IACUC guidelines.

METHOD DETAILS

MutSpotterCV

Model rationale: Mutational density is highly varied and heterogeneous across the genome, 

and broadly impacted by genetic and epigenetic factors. Therefore, to identify regulatory 

regions that are mutated more than expected by chance, we first needed to generate an 

accurate model of background mutation rates for all regions of interest.

For this, we made two key assumptions: (i) the vast majority of the non-coding 

regulatory regions do not harbor driver mutations and therefore are not recurrently mutated 

significantly above background (Figure S1A), and (ii) regulatory regions with similar 

sequence and epigenetic features are more likely to have similar mutational densities. Given 

these two priors, the expected mutational density of a given region can be calculated using 

a predictive model trained on our cohort’s whole-genome sequencing data. Should such 

a model achieve high accuracy across genomic regions, its predictions can be used as a 

baseline estimate for expected background mutational density and can in turn be leveraged 

to identify significant outliers as mutational hotspots.

Since this problem is a regression analysis at its core, we took advantage of generalized 

linear models (GLM) to estimate mutational density in each regulatory region as a function 

of i) the region’s putative functional annotation, ii) sequence context, and iii) epigenetic 

features associated with the region, which are known to impact local mutation rates.51,52 To 

achieve this, we first one-hot encoded the annotated regulatory elements, generating a total 

of 728,208 non-overlapping genomic functional regions that were uniquely tagged (Figures 

S1B and S1C). This prevented heterogeneous functional annotations within a contiguous 

region and ensured that each mutation in the cohort would only be counted once even if 

it occurred in overlapping segments. Next, to capture the sequence context, we measured 

dinucleotide frequencies, which are known to be non-randomly distributed. However, since 

the 16 dinucleotides are not entirely independent and show collinearities, we performed 

principal component analysis (PCA) and chose the first seven principal components, which 

together captured ~80% of the total variance. Finally, as we did not have access to epigenetic 
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data for patients in our cohort, we used the ENCODE database and picked epigenetic factors 

from the PC3 prostate cancer cell line as input features (covariates) to our regression model 

(Table S1). Similar to sequence context, since many of these measurements were collinear, 

we used a 10-PC projection of the data to represent ~80% of variance in epigenetic space. 

Specifically, we used three sets of covariates: (i) a functional classification of each region, 

(ii) a PCA embedding of dinucleotide frequencies, and (iii) a PCA embedding of epigenetic 

signals (Figures 1A and S1D).

We defined genomic functional regions by compiling coding and non-coding genomic 

annotations-namely promoters, enhancers, promoter/enhancers, 3′UTRs, 5′UTRs, CpG 

islands, and gene bodies (both upstream and downstream of all annotated genes). Binary 

variables were created to record the affiliation of the non-overlapping genomic regions with 

each of the functional classes. We then mapped more than 1.8×106 high-confidence, single-

nucleotide variations (SNVs) and short indels present in our cohort onto these functional 

regions. About one in five regions had at least one mutation from at least one patient (Figure 

S1A). Unmutated regions were excluded from the rest of the analysis. The overall average 

mutation frequency (mutations per Mb) in functional regions was 4.1/Mb, marginally below 

the 4.4/Mb reported in an earlier study on whole-exome mCRPC.53. However, we found 

that mutational frequencies tended to be higher in shorter CpG islands (median: 4.91/Mb) 

and promoters (median: 5.60/Mb) than in longer exonic regions (median: 0.78/Mb), 

suggesting that observed mutations are distributed non-randomly and disproportionately 

with regions’ sequence length. This confirms that mutations are not uniformly distributed 

among functional regions, further supporting our choice to include ‘functional classes’ as a 

categorical covariate in our model.

Data collection and preparation for the MutSpotterCV model—The annotated data 

for the genomic functional regions were downloaded from three publicly available databases 

for hg38 as follows. 5k upstream and 2k downstream of all genes, untranslated regions, and 

CpG islands were downloaded from UCSC genome database https://genome.ucsc.edu, with 

446,983 entries. Genes were downloaded from ENSEMBL https://www.ensembl.org having 

a total number of 64,561 entries. Finally, promoters, enhancers, and promoters/enhancers 

were downloaded from GeneHancer https://www.genecards.org with 250,733 number of 

entries. These resulted in a total number of 762,277 functional genomic regions which were 

made consistent in terms of baseness, and subsequently, refined by removing duplicated 

regions and mitochondrial/unknown chromosomes and random contigs. These regions were 

further refined by removing very small (<50 bp) and very large (>10,000 bp) regions, 

resulting in a total of 674,330 annotated functional regions.

There are many overlapping segments among these regions which will bias the downstream 

analyses, as a mutation can be located in a shared segment and thus counted twice or more, 

and thus artificially overestimates the mutational density in the region. We thus fragmented 

overlapping regions using one-hot encoding technique. This technique guarantees that each 

now-fragmented segment appears only once in the downstream analyses and avoids mutation 

overcount (Figure S1B). This resulted in 728,208 one-hot encoded, non-overlapping 

genomic functional regions that are individually labeled by a nine-bit binary digit based 

on the contribution of each of the nine genomic functional regions (Figure S1B). Each bit 
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would serve as a covariate in the final regression model. Moreover, the length distribution 

of regions reveals that one-hot encoding produces functional regions with a smoother 

distribution (Figure S1C).

Next, for each one-hot encoded, non-overlapping functional region we calculated 

dinucleotide densities and GC content using KENT utility version 403 developed by 

the UCSC (http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64). We then downloaded 

17 available epigenetic features for the cell line PC3 from ENCODE (https://

www.encodeproject.org) with a total number of 18,062,440 entries in the bed format (Table 

S1). These features were then mapped onto our functional regions and subsequently each 

region was assigned a 17-bit binary number, depending on whether the epigenetic feature 

existed (1) or not (0) within the region. Each bit represents a covariate in the regression 

model. Therefore, the total number of covariates in these three classes are 9 + 17 + 17 

= 43. However, unsurprisingly, the covariates in sequence context class and GC-content 

are not independent, nor are the covariates in epigenetic features class. We thus replaced 

these two classes by their principal components (PCs). As a result, the 16 dinucleotide 

densities and GC-content were replaced by seven PCs, while 17 epigenetic features were 

replaced by 10 PCs. In both cases PCs captured ≥ 80% of variations in data. The selection 

of PCs encapsulated most of the information embedded in the dinucleotide sequence 

context. Furthermore, in selecting PCs, we aimed to avoid feature interdependence while 

simultaneously reducing the number of covariates. This procedure leaves us with a total 

of 26 new covariates. As can be seen in Figure S1D, all final covariates are statistically 

significant, meaning they independently contribute to the model prediction.

The small somatic variations, including single nucleotide variations (SNVs) and indels in 

our cohort are obtained from matched tumor-normal samples as detailed in Quigley et al.21 

Briefly, somatic variations were called by comparing matched normal-tumor samples using 

Strelka version 2.8.054 and Mutect version 1.1.7,55 filtered for PASS-designated variations. 

The total number of small variations in our cohort is 1,890,644 including 1,286,214 SNVs 

and 604,430 indels. We then cleaned up the somatic variations data by removing mutations 

on unknown/mitochondrial chromosomes, potential germline mutations (frequency >1% 

in the 1000Genome project dataset,56 and single nucleotide polymorphisms recorded in 

dbSNP.57 This left us with a total number of small variations of 1,874,951 including 

1,278,920 SNVs and 596,031 indels. These mutations were mapped onto our one-hot 

encoded, non-overlapping genomic functional regions using bedtools v2.29.2. Consequently, 

the mutational density for each functional region was calculated as the number of mutations 

divided by length to serve as the response variable in our background genomic mutation rate 

model. Functional regions with zero mutational density were excluded from the rest of the 

analysis.

Regression model—With the mutational density as the response variable and 26 

covariates, we ran the generalized linear model (GLM), using Gamma distribution for 

the error structure with the default inverse link function and a variance proportional to 

μ2 (with μ being the expected value of the response) in R version 4.0.0. We used a 

power transformation of the response variable (mutational density) to ensure that the 

residuals followed a Gamma distribution, and subsequently verified that Gamma was the 
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closest known distribution to our empirical data via a Cullen-Frey graph using the package 

fitdistrplus version 1.1–1 in R.

Statistical outlier detection—By systematically comparing the observed vs. expected 

mutational density, one can determine statistical outliers which serve as the first set of 

initial candidates for mutation hotspots in this work. Our criteria for a region to be a 

statistical outlier were i) to harbor at least three mutations ii) the deviance residual of the 

mutational density be at least one interquartile above the upper quartile.58 These criteria 

marked 1,780 functional regions as statistical outliers (Figure 1B) which served as the initial 

set of candidates of being mutational hotspots within the non-coding regulatory regions. Due 

to the exploratory nature of our analysis, we relaxed multiple testing corrections for outlier 

detection.

In our model, statistical testing looks for regions where the residuals significantly 

deviate from 0. There are a number of methods, including Studentized Residuals and 

the Interquartile Range (IQR) method. Outlier analysis is an extreme version of these 

approaches and they are far more restrictive and conservative than statistical tests. For 

instance, when we apply Studentized Residuals to our MutSpotterCV model, we pinpoint 

6,047 regions (p < 0.05). These regions account for 70% of the outliers initially identified in 

our outlier analysis, representing 1,250 out of the original 1,780 outliers.

Copy number alterations—We quantified the sensitivity of the MutSpotterCV’s 

predictions to the copy number alteration, as this feature is widely present in our cohort.21 

We performed this by adding copy number alterations as continuous predictors to the 

regression model. To do so, we took the DNA copy number variants that had been computed 

in our cohort binned into windows of 3Mbp by using Canvas version 1.28.0-O0107359 and 

Copycat (https://github.com/chrisamiller/copyCat). First, we mapped the binned windows 

into our functional regions, and then for each region we replaced the copy number variants 

by five quantiles, i.e., min, 1st quartile, median, 3rd quartile, and max. This procedure 

adds five predictors to the original regression model. Nevertheless, there was no significant 

change in the final predicted statistical outliers in the presence of copy number variations as 

extra predictors (Figures S1E and S1F).

MutSpotterCV on coding sequence—Additionally, to benchmark the MutSpotterCV, 

we evaluated it on the coding sequences in our cohort. The analysis identified 183 genes 

with potential mutational hotspots. Notably, 11 of these genes (p = 0.007, hypergeometric 

test) have been previously validated as relevant in prostate cancer and other cancer 

types,21,22,60 as indicated in Table S5.

Integration with gene expression data—To find the association of statistical outliers 

with gene expression in our cohort we first find genes in the 15k bp flanking regions 

of either ends of all regions. There are a total of 1,692 genes in the flanking regions of 

1,264 non-coding mutational hotspots. Notably, not every non-coding mutational hotspot is 

proximal to a gene. For every statistical outlier, we grouped the cohort into mutation-free 

(reference) and mutation-bearing (mutant) patients, i.e., patients who do not, or do, have 
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mutations in that non-coding mutational hotspot. Subsequently, for every flanking gene we 

performed differential gene expression analysis using DESeq2 version 1.28.1.27

We find 160 genes with significant change in their expression levels in two groups of 

patients (p < 0.05) proximal to 152 non-coding mutational hotspots. We did not perform 

multiple testing correction, as, on average, there is rarely more than one gene located in 

the vicinity of each non-coding hotspot. We then further refined the list by setting the 

minimum number of mutated patients per region to four, which resulted in 104 flanking 

genes in the vicinity of 98 non-coding regulatory regions, termed candidate driver regulatory 

regions (CDRRs), which harbor a total of 885 mutations (Tables S3 and S4). Tumor purity 

was not a major concern in our analyses as samples were isolated using laser capture 

microdissection.21

Model robustness with respect to epigenetic features—The selection of epigenetic 

features from the PC3 cell line for our computational model may raise concerns about 

how representative these features are compared to those found in situ within mCRPC 

tumors. To address these concerns and to evaluate the robustness of our model regarding 

the source of epigenetic data, we modified the model by replacing PC3 epigenetic features 

with three other orthogonal datasets: I) patient-derived epigenetic features from metastatic 

castration-resistant prostate cancer (mCRPC),24 II) ATAC-seq data from TCGA prostate 

cancer samples,25 and III) epigenetic features from the LNCaP cell line for the ENCODE 

project.26

As depicted in Figures S1G and S1L, substituting PC3 epigenetic features with those from 

any of these alternative sources does not significantly alter the model’s final predictions. 

In fact, the correlation with the PC3-based predictions remains high (R = 0.8), with at 

least 66% of the final candidate non-coding regions being consistently identified across 

different epigenetic datasets. Specifically, by replacing the PC3 cell line with mCRPC 

epigenetic features or ATAC-seq data, our updated model recaptured approximately 70% 

of the previously identified candidate non-coding regions. Among the final 98 Candidate 

Driver Regulatory Regions (CDRRs) identified originally using PC3 epigenetic features, 

67 and 65 remained significant when using mCRPC epigenetic features or ATAC-seq data, 

respectively. In both cases, our main candidate enhancer region GH22I030351 remains 

significant.

Using discrete mutation counts under negative binomial (NB)—We also modified 

our model by replacing the continuous predictor of mutational density with a discrete 

predictor of mutation counts. This adjustment aimed to identify regulatory regions with 

mutation counts significantly exceeding expected values under NB tests using the lengths 

of the regions as the offset, setting FDR <0.1. Notably, this method identified 841 regions 

that overlapped with the 1,780 outliers initially detected by our original model, capturing 

approximately 47% of these initial outliers. Nevertheless, the Pearson correlation between 

observed and predicted mutation counts per regulatory region, was only 0.36 in NB. This 

represents a significant decrease compared to our GLM and CNN models, which had 

Pearson correlations of 0.55 and 0.85, respectively, as shown in Figure 1B of the manuscript.
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DM2D and the Blue Heeler model—DM2D is a deep convolutional neural network 

to predict the mutational density values as a function of the underlying DNA sequence 

and broad functional sequence categories, namely “Gene”, “Enhancer”, ”downstream” and 

“upstream” of genes, “UTR”, “Promoter”, “CpG” island, and “PromHancer” (promoter 

or enhancer). We used a seven-channel input layer: four channels were used for one-hot 

encoding DNA sequence, and to ensure our results were not dependent on the choice of 

specifically PC3 as our prostate cancer cell line model, the other three channels were 

used for epigenetic data from LNCaP–namely, DNase hypersensitivity, H3K4me3 signal, 

and CTCF binding sites (ENCODE database). After the convolutional blocks, the resulting 

sequence and chromatin data embedding is combined with the functional category of the 

input region and passed on to a fully connected layer for mutational density prediction.

More specifically, the “sequence encoder”, with a 7-channel input (3 epigenetic signals 

and 4 one-hot encoded sequence) contained four convolution blocks, with (16, 32, 32, 

32) filters and (4,25,25,25) kernel sizes. All blocks applied batch normalization, rectified 

linear units, max pooling (window sizes of 4, 10, 10, 10), and 0.25 dropout. The resulting 

tensors were flattened, concatenated to a one-hot encoded sequence category (size 9), and 

passed on to fully connected layers with size 24, 12, and 1 respectively. All layers applied 

batch normalization, rectified linear units, and dropout (0.1). The final layer predicted the 

mutational density values. For training a Nadam optimizer was used with learning_rate = 

0.001, clip_norm = 0.5, and clip_value = 1. We used MSE as the loss function and trained 

the model for 20 epochs with a batch size of 128. 15% of samples were held-out as a 

validation set.

Our Blue Heeler (BH) model is inspired by Basenji,35 with multiple convolutional and 

dilated convolutional layers. The promoter sequence (starting ~32 kb upstream of TSS) 

is represented as a one-hot encoded 4-channel input, and then processed through a series 

of convolutional and residual dilation blocks. The resulting sequence embedding is then 

merged with the output of a cancer state encoder, which provides an embedding of the gene 

expression profile of each tumor. This cancer-state encoder is pre-trained as a variational 

autoencoder prior to transfer to the final model. The final layer of the model is a fully-

connected layer that predicts expression of a gene given its promoter sequence and the 

gene expression state of the corresponding sample. The underlying concept is that the 

convolutional blocks learn the cis-regulatory elements and the combinatorial code between 

them to predict the expression of every gene in a given sample based on the occurrence of 

these elements along the promoter sequence.

More specifically, BH contains two inputs, a one-hot encoded sequence input and a sample 

state input. The former is passed a 215 kb long sequence and the latter a 256-dimensional 

embedding. For each sample, this embedding was generated using a variational autoencoder 

with a hidden layer of size 2560, and applying batch normalization and rectified linear units 

(except for the final layer in the decoder). Expression values were pre-processed by applying 

rank-based inverse normal transformation prior to training. The Pearson correlation between 

the reconstructed gene expression values across >100 samples and their input values was 

on average 0.92. Augmentation: the training data loader, which iterates through promoter 

sequences of genes, randomly selects one of the samples and uses its embedding as input 

Woo et al. Page 18

Cell Rep. Author manuscript; available in PMC 2024 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the sample state module. Similarly, the promoter sequence, or its reverse complement 

(with a 50:50 chance) is transformed to a one-hot encoded tensor that is passed on the 

sequence encoder. Task: the model is then trained to predict the expression of the input gene 

in the context of the randomly selected sample. Convolutional blocks: four convolutional 

blocks with (64, 32, 32, 32) filters and (16,8,8,8) kernel sizes. All blocks applied batch 

normalization, Gaussian error linear units, 0.2 dropout, and max pooling of (16,8,8,8). 

Dilated convolutional blocks: four densely connected dilated layers with 32 filters and kernel 

size of 3 and dilations of 2j (where j is the dilated layer number) to increase the receptive 

field of the sequence encoder. These layers also apply GELU and batch normalization. 

Regression head: fully connected layers with 1056 and 64 hidden sizes were used to connect 

the output of the sequence and sample state encoders to the regression head. Training: an 

Adam optimizer with learning_rate = 0.001 and clip_grad_norm of 10 was used to minimize 

an MSE loss. The model was trained for 60 epochs; 10% of genes were held out as a test 

set, and 2.5% for validation. The remainder were used for training. The performance of the 

model was assessed using Pearson correlation applied to all the held-out genes across all 

samples.

Sequence motif analysis—For the MPRA data, we asked whether there were binding 

sites associated with any known transcription factors that were significantly enriched among 

the regions with regulatory activity in our MPRA system. For this, we systematically 

intersected annotated binding sites (narrowPeaks) from the ENCODE database across all 

profiled transcription factors with the population of fragments cloned in our MPRA library. 

We then used iPAGE47 to ask whether these annotated binding sites showed a significant 

association with enhancer activity.

We used FIMO (v5.3.2)61 and JASPAR database core vertebrate non-redundant 

set of motifs62 to identify all of the sequence motif matches at the genomic 

window chr22:30351638-30352714 (hg38 assembly) overlapping the 9 single nucleotide 

polymorphisms.

We performed DESeq2 (v1.28.1) differential gene expression analysis comparing metastatic 

to the primary tumors and found that 6 of the 34 transcription factors which have a sequence 

motif match to the enhancer are significantly upregulated in the metastatic tumors. These 

included SOX6, SMAD2, TEAD1, PBX3, TEAD2, and SMAD3. We chose the top 3 

(SOX6, SMAD2, and TEAD1) for in vitro validation.

Library cloning and sequencing validation—For our CRISPRi library, a library 

consisting of guides targeting 190 elements was designed and ordered from Twist 

Biosciences. The pool was resuspended to 5 ng/μL final concentration in Tris-HCl 10mM 

pH 8, and a qPCR to determine Ct to be used for downstream library amplification 

was performed (forward primer: ATTTTGCCCCTGGTTCTTCCAC, reverse primer: 

CCCTAAGAAATGAACTGGCAGC) using a 16-fold library dilution.

The library was then amplified via PCR, and ran out on a 2% agarose gel to check library 

size (expected band of 84bp). PCR product was then cleaned up using a DNA Clean and 

Concentrator kit-5 (Zymo Research Cat. #D4003), and eluted in 15μL H2O. Cleaned product 
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was digested overnight using FD Bpu1102I (Thermo Fisher Cat. #FD0094), and then further 

digested for 1hr using FD BstXI (Thermo Fisher Cat. #FD1024). Inserts were then ligated 

into pCRISPRi/a v2 backbone in a 50ng reaction with 1:1 insert:backbone ratio for 16hrs 

16C. Ligated products were then ethanol-precipitated overnight at −20C, cleaned, and then 

transformed into 100μL NEB Stables (NEB Cat. #C3040H), followed by maxiprep plasmid 

isolation.

For sequencing validation, 1μg plasmid DNA was then digested in 50μL volume for 1hr with 

FD BstXI (Thermo Fisher Cat. #FD1024). Digested plasmid DNA was then Klenow-

extended using added UMI linker (sequence: 

CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNcttg), and then cleaned up using 

a Zymo DNA Clean & Concentrator-25 kit (Zymo Research Cat. #D4033). Indexing PCR 

(forward primer: AATGATACGGCGACCACCGAGATCTacactctttccctacacgacgctc; reverse 

primer: 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTC

TTCCGATcgactcggtgccactttttc) was then performed in 30μL final volume, followed by gel 

purification (Takara Bio Cat. #740609.50). Samples were then pooled and sequenced on a 

lane of HiSeq 4000 SE50 at the UCSF Center for Advanced Technology (CAT).

Viral transductions—3 million HEK293Ts were seeded in a 15cm plate. 24hrs later, 

HEK293Ts were transfected with TransIT-Lenti (Mirus Bio Cat. #Mir6603) reagent. Viral 

supernatant was harvested, aliquoted, flash-frozen, and then stored −80C for long-term 

storage.

100K C4-2B CRISPRi cells were then seeded in a 6-well plate for viral titering. Using a 

range of 100-, 200-, and 400μL viral supernatant, cells were transduced, adding polybrene 

to 8ug/mL final concentration. 48hrs post-transduction, cells were passed through flow 

cytometry on the FACS Aria II in the UCSF CAT, and %BFP+ was recorded.

Cell preparation for subcutaneous injection—For subcutaneous growth rate 

measurements, C4-2B (CRISPRi-ready with appropriate sgRNA, CRISPRa-ready with 

appropriate sgRNA, or C4-2B expressing shRNAs) were grown in a 15cm plate and 

allowed to expand. On the day of injections, cells were harvested and resuspended to final 

concentration 1 million/50μL in 1:1 PBS/matrigel. Bilateral subcutaneous injections in 50μL 

final volume were then performed in male, 8-12 week-old age-matched male NOD scid 
gamma (NSG) mice. Tumor growth rate measurements were made every day until endpoint 

(roughly 3 weeks after injection).

For the in vivo CRISPRi screen specifically, 6 million C4-2B CRISPRi cells were seeded 

into a 15cm plate and allowed to grow overnight. On the following day, 5.55mL of lentivirus 

was added to cells (target 33% MOI), with polybrene added to final concentration 8ug/mL. 

Media was then changed 24hrs post-transduction, and puromycin was added 72 h post-

transduction to final concentration 2ug/mL.

We then partitioned into 3 arms the transduced C4-2B CRISPRi cells. Specifically, 200K 

cells were split into a 15cm plate for in vitro long-term passage (for purposes of growth 
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normalization). 200K cells were pelleted and frozen at −80C for downstream gDNA 

extraction, for ‘t0’ collection. 9 million cells were resuspended to final concentration 1 

million cells/50μL in 1:1 PBS/matrigel. Bilateral subcutaneous injections in 50μL final 

volume were then performed in male, 8-12 week-old age-matched male NOD scid gamma 

(NSG) mice (n = 3).

Tumor gDNA extraction and library preparation—Tumors were then harvested 4 

weeks post-injection and processed using Quick-DNA midiprep plus kit (Zymo Research 

Cat. #D4075). For each processed tumor, genomic DNA was digested in 15ug-scale, 50μL 

volume reactions with FD BstXI. Digested genomic DNA was then Klenow-extended using 

added UMI linker (sequence: 

CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNcttg), and then cleaned up using 

a Zymo DNA Clean & Concentrator-25 kit (Zymo Research Cat. #D4033). Indexing PCRs 

(forward primer: AATGATACGGCGACCACCGAGATCTacactctttccctacacgacgctc; reverse 

primer: 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTC

TTCCGATcgactcggtgccactttttc) were then performed in 30μL final volume, followed by gel 

purification (Takara Bio Cat. #740609.50). Samples were then pooled and sequenced on a 

lane of HiSeq 4000 SE50 at the UCSF Center for Advanced Technology (CAT).

LentiMPRA library cloning—MPRA analysis involves measuring the difference between 

enhancer activity associated with each fragment and its matched scrambled control. This 

activity is calculated by comparing the ratio of reference/scrambled in the RNA population 

to the same ratio in genomic DNA (gDNA) samples, which captures their representation in 

the original library.

LentiMPRA was performed according to Gordon et al.63 Briefly, a CRS library consisting 

of 3665 elements was designed and ordered through Twist Biosciences. A first-round PCR 

reaction was performed to add vector overhang sequence upstream and minimal promoter 

and adaptor sequences downstream of the CRSs. PCR products were then combined, and 

cleaned up using 1:1 HighPrep PCR reagent (MagBio Genomics Cat. #AC-60050), eluting 

in 50μL elution buffer. A second round of PCR was then performed to add a 15-bp barcode 

and vector overhang sequence downstream of the first-round PCR fragment. PCR products 

were then combined and ran on two 1.5% TAE-agarose gels, and the resulting band at 

419 bp was gel excised and purified using the QIAquick Gel Extraction Kit (Qiagen 

Cat. #28706X4), eluting in 50μL elution buffer. Resulting DNA was purified using 1.2:1 

HighPrep PCR reagent. pLS-SceI backbone was then digested with AgeI-HF (NEB Cat. 

#R3552S) and SbfI-HF (NEB Cat. #R3642S) overnight, and then purified using 0.65:1 

HighPrep PCR reagent. Linearized pLS-SceI and insert DNA was then recombined using 

NEBuilder HiFi DNA Assembly Master Mix (NEB Cat. #E2621L) for 60 min at 50C, and 

resulting product purified using 0.65:1 HighPrep PCR reagent. Undigested vector was then 

cut using I-SceI for 1 h, and resulting DNA purified using 1.8:1 HighPrep PCR reagent, 

eluting in 20μL elution buffer.

For electroporation, 100ng of recombination product was then added to 100μL of NEB 

10-beta electrocompetent cells (NEB Cat. #C3020K). Electroporation was conducted in a 
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Gemini X2 electroporator and cells were shocked with 2.0kV voltage; 200 Ω resistance; 

25 μF capacitance; 1 pulse; 1 mm gap width. Cells were then grown in 1mL fresh Stable 

Outgrowth Medium for 1 h 37C with agitation, and 2μL of bacteria were diluted in 400μL 

LB medium +100 mg/mL carbenicillin for colony counting. Undiluted bacteria were plated 

onto other carbenicillin plates and grown at 37C overnight. 8 colonies were chosen from the 

dilution plate and sent for Sanger sequencing. 5mL LB media was added to each plate for 

scraping using a cell lifter, and plasmid was purified using the Qiagen Plasmid Plus Midi 

Kit.

LentiMPRA CRS-barcode association sequencing—PCR to add P5 flow cell 

sequence and the sample index sequence upstream and P7 flow cell sequence downstream 

of the CRS-barcode fragment was performed using primers pLSmP-ass-i741 and pLSmP-

ass-gfp. PCR products were then combined and gel extracted (470bp) under blue light, 

followed by purification using QIAquick Gel Extraction Kit. DNA was then purified using 

1.8X HighPrep PCR reagent, and DNA was sequenced using a MiSeq v2 (15 million reads) 

kit using custom primers pLSmP-ass-seq-R1 (CRS upstream forward), pLSmP-ass-seq-R2 

(CRS downstream reverse), pLSmP-ass-seq-ind1 (Barcode forward), and pLSmP-rand-ind2 

(sample index) as described previously.

Lentivirus packaging—10 million 293T cells were seeded into a 15-cm plate and 

incubated for 2d. Transfection was then carried out as described previously, using 60μL 

EndoFectin (GeneCopoeia Cat. #EF001), 10 μg plasmid library, 6.5 μg psPAX2, and 3.5 μg 

pMD2.G. Cells were incubated for 14 h and then media was replaced with 20mL DMEM 

supplemented with 40μL ViralBoost (AlStem Cat. #VB100) reagent, and incubated for 48 

h. GFP expression was confirmed using fluorescence microscopy and viral supernatant 

was then filtered using a 0.45μm filter. Supernatant was concentrated using 1/3 volume 

Lenti-X concentrator reagent (Takara Cat. #631232), centrifuging for 1500g 45 min 4C and 

resuspending the resulting lentivirus pellet in 600μL DPBS.

Lentivirus titration—100K C4-2B cells were seeded into wells of a 6-well plate. To 

calculate viral titer, lentiviral library was then infected in a 2-fold upwards range (0, 1, 2, 4, 

8, 16, 32, 64μL), gDNA was extracted, and qPCR was performed to determine MOI for each 

lentiviral library condition.

Lentivirus infection and library preparation—Using a target of 100 integrations 

per barcode, 1.1 million C4-2B cells were seeded in a 10cm plate, in three biological 

replicates. Cells were incubated overnight and culture media was refreshed with polybrene 

at 8 μg/mL final concentration. 87μL virus was then added to plates and culture media was 

refreshed with no polybrene the following day. GFP fluorescence was confirmed 2d after, 

and culture media was removed. Cells were washed 3 times with DPBS and the AllPrep 

DNA/RNA Mini Kit (Qiagen Cat. #80204) was used to simultaneously extract DNA/RNA 

from plates, eluting DNA/RNA fractions in 30μL Buffer EB/RNAase-free H20 respectively. 

RNA samples were then treated with DNAse and reverse-transcription (RT) reactions were 

performed in 8-strip PCR tubes. These reactions add a 16-bp UI and P7 flowcells sequence 

downstream of the barcode, using low-complexity amounts as previously described.
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DNA samples were then diluted to 120 ng/μL final concentration. 100μL of DNA or RT 

products respectively (for 12 μg DNA or entire RT product) were then used for a first-round 

PCR reaction to add the P5 flow cell sequence and sample index sequence upstream and a 

16-bp UMI and P7 flow cell sequence downstream of the barcode. DNA was then purified 

using 1.8X HighPrep PCR reagent and eluted in 60μL elution buffer. A preliminary qPCR 

reaction was set up to find the number of PCR cycles required for the subsequent second-

round PCR reaction with P7 and P5 primers. 23 cycles were then used for the second-round 

PCR reaction, DNA was purified in a 1.8X HighPrep PCR reagent clean-up, and sample run 

on 1.8% w/v agarose gel. The band at 162 bp was excised and purified using the QIAquick 

Gel Extraction Kit and purified 1.8X. DNA and RNA samples were then pooled in a single 

LoBind tube with 1:3 ratio, and final sequencing library sent out to the Center for Advanced 

Technology (CAT) at UCSF for sequencing on two HiSeq 4000 lanes.

CLIP-seq of SF3A1 in C4-2B CRISPRi cells

UV-crosslinking: Six 15cm plates of C4-2B CRISPRi cells were seeded for a total of 3 

biological replicates. Cells were then harvested 48 h later and then were crosslinked on a 

254nm UV crosslinker set to 400 mJ/cm2, transferred to 15mL tubes, spun at 1500xg 4C for 

2 min, and then frozen as dry pellets at −80C for long term storage.

Bead preparation—For bead preparation, 60μL Protein A beads were then washed 2X 

in low salt wash buffer (1X PBS, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% IGEPAL 

CA-630), adding 2μg anti-SF3A1 (Proteintech Cat. #15858-1-AP) and then rotating at 4C 

for 1hr. For cell lysis, cells were then resuspended in 600μL cold low salt wash buffer + 6μL 

SuperaseIN (Invitrogen Cat. #AM2696) + 1X protease inhibitor cocktail (Thermo Fisher 

Cat. #78425) and incubated on ice for 10 min.

RNase treatment and immunoprecipitation—Cells were then equally divided and 

treated with either 20μL RNase high mixture (RNase A 1:3,000 + RNaseI 1:10) or 20μL 

low mixture (RNase A 1:15,000 + RNaseI 1:500) and incubated at 37C for 5 min, and 

then combined and spun at 4C max speed for 20 min. Clarified supernatant was added to 

prepared beads and rotated end-over-end at 4C, for 2 h. Beads were collected on magnet 

and washed 2X with 1mL cold low salt wash buffer, 2X with 1mL high salt wash buffer 

(5X PBS, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% IGEPAL CA-630), and then 2X with 

1mL cold PNK buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl2).

RNA dephosphorylation—For RNA dephosphorylation, 2.5μL 10X PNK buffer 

(500mM Tris pH6.8, 50mM MgCl2, 50mM DTT), 2μL 10X T4 PNK (NEB Cat. #M0201L), 

0.5μL SuperaseIN, 20μL nuclease free water was added per reaction, and incubated at 37C 

for 20 min in a thermomixer (mix 1350 rpm 15s/5 min rest). Beads were then washed 1X 

with 1mL PNK buffer, 1X with 1mL high salt wash buffer, and 2X with 1mL PNK buffer.

PolyA-tailing, N3-dUTP end labeling, and dye labeling—RNP complexes were then 

polyA-tailed by addition of 0.8μL yeast PAP (Jena 600U/ul), 4μL 5X yeast PAP buffer, 1μL 

10 mM ATP (unlabeled), 0.5μL SuperaseIN, 13.7μL nuclease free water, and incubated at 

22C for 5 min in thermomixer (shake 1 × 15s 1350 rpm). After 5 min incubation, beads were 
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washed 2X with 500μL cold high salt buffer, then 2X 500μL cold PNK buffer. Samples were 

then N3-dUTP labeled with 0.4μL yeast PAP, 2μL 5X yeast PAP buffer, 0.25μL SuperaseIN, 

2μL 10mM N3-dUTP, 5.35μL nuclease free water, and incubated for 20 min at 37C in 

a thermomixer with intermittent shaking (15s/5 min rest, 1350 rpm). Samples were then 

washed with 2X 500μL cold high salt wash buffer, then 2X with 200μL cold 1X PBS. For 

dye labeling of N3-labeled RNA, 20μL 1mM 800CW DBCO in PBS was then added, and 

incubated in a thermomixer protected from light at 22C for 30 min with intermittent shaking 

(15s/5 min rest, 1350 rpm). Beads were then washed 1X with 500μL high salt wash buffer, 

then 1X with 500μL PNK buffer and then resuspended in 20μL loading buffer (1X NuPAGE 

loading buffer +50 mM DTT diluted in PNK buffer), and then heated at 75C for 10 min 

shaking at 1000 rpm, protected from light. Supernatants were transferred to clean microfuge 

tubes.

PAGE and transfer—Samples were then run on a 12-well Novex NuPAGE 4–12% Bis-

Tris gel (1mm thick) at 180V for 90 min along with IR-labeled protein standard in 1X 

MOPS running buffer at 4C, light-protected. Gel was then transferred to protran BA-85 

nitrocellulose membrane in Novex X-cell apparatus using 1X NuPAGE transfer buffer with 

15% EtOH for 75 min at 30V. Membrane was then rinsed in PBS, and imaged with a Licor 

Odyssey instrument.

Proteinase K digest and RNA capture—Nitrocellulose membrane was excised at 

the expected range size (140-150kDa) for SF3A1, to capture RNA-protein complexes. 

Membrane was placed into a clean microfuge tube, and 200μL Proteinase K digestion 

buffer (100mM Tris-HCl pH 7.5,100nM NaCl, 1mM EDTA, 0.2% SDS), 12.5μL Proteinase 

K, was added. Samples were then incubated at 55C for 45 min in a thermomixer at 1100 

rpm. Samples were spun and the supernatant was transferred to clean microfuge tubes, 

and the final solution was adjusted to ~500mM NaCl by adding 19μL 5M NaCl and 

11μL nuclease free water. Salt-adjusted solution was then added to pre-washed oligo-dT 

dynabeads, incubating for 20 min at 25C in a thermomixer with intermittent shaking (1350 

rpm, 10s/10 min, 300 rpm remainder of time). Beads were then washed 2X with 100μL cold 

high salt wash buffer, 2X with 100μL cold PBS. Samples were eluted from beads with 8μL 

of TE buffer (20 mM Tris-HCl pH 7.5, 1mM EDTA), heated at 50C for 5 min, and 7.5μL of 

supernatant was transferred into a clean PCR tube on ice.

cDNA synthesis and PCR—For annealing, to 7.5μL eluted RNA 2.5μL smRNA mix 1 

(Takara Cat. #635031) and 1μL 10μM UMI RT primer (seq: 

CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTG

CTCTTCCGATCTTTTTTTTTTTTTTT) were added, heated at 72C 3 min in a 

thermocycler, and then placed on ice for 5 min 9mL RT mix (6.5μL smRNA Mix 2, 0.5μL 

RNAse inhibitor (Invitrogen Cat. #AM2696), 2μL PrimeScript RT (200U/ul)) was then 

added to samples on ice, and the following program was run: 42C 60 min, 70C 10mins, 4C 

hold.

For indexing PCR, 78μL PCR mix (24μL H20, 50μL 2X SeqAmp CB PCR buffer 

(Takara Cat. #638526), 2μL SeqAmp DNA polymerase ((Takara Cat. #638509), 2μL 

10μM universal reverse primer (seq: CAAGCAGAAGACGGCATACGAG)) was added 
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to each cDNA sample, followed by 2μL of 10μM indexed forward primer (seq: 

AATGATACGGCGACCACC). The following program was run for: 98C 1 min, [98C 10s, 

60C 5s, 68C 10s, repeat 18X], 4C hold. Product was size selected 1.1X using a Zymo 

Select-a-Size Magbead Kit (Zymo Cat. #D4085), and the final product was eluted in 16μL 

H20. Samples were quantified via Agilent Tapestation 4200 and submitted for sequencing on 

a lane of HiSeq 4000 SE 50.

Binding analysis—We used 10nt-long sequences flanking thousands of SF3A1 binding 

sites to identify sequence preferences for this RBP. To generate a background set of 

sequences, we also scrambled each binding site while maintaining its dinucleotide content.

Cell growth assays—For assaying cell proliferation, CellTiter-Glo 2.0 Cell Viability 

Assay (Promega Cat. #G9241) was used. 1K C4-2B cells were seeded per well in 3 separate 

opaque 96-well plates for luminescence measurement at days 1, 2, and 3. 6 wells were 

seeded per cell condition in 100μL volume media. 24h after seeding, media was replaced 

with fresh media containing doxycyclineat 10 ng/mL final concentration. Cells were then 

harvested according to manufacturer’s protocol. Briefly, CellTiter-Glo 2.0 Reagent and cell 

plates were equilibrated to RT 30 min prior to use. 100μL CellTiter-Glo 2.0 Reagent was 

then added via multichannel to each well and mixed at 300 rpm for 2 min at RT; the 

plate was incubated for 10 min at RT, covered. Plate luminescence was then recorded on a 

SpectraMax iD5 multiplate reader.

For colony formation assay, 2.5K C4-2B cells were seeded in triplicate in a 6-well plate. 

24h after seeding, media was replaced with media containing doxycycline at 5 ng/mL 

final concentration. 8 days after doxycycline induction, colonies were stained and imaged. 

Briefly, media was removed and cells were washed with 1mL PBS at RT. Cells were then 

fixed in 4% PFA (Alfa Aesar Cat. #43368-9L) for 10 min at RT, and then stained in 0.1% 

crystal violet (Sigma-Aldrich Cat. #V5265-250ML) for 1h at RT. Wells were then washed 

3X with ddH20 at RT until colonies were visible. Colonies were imaged on an Azure c200 

and counted.

ChIP-seq

ChIp: For the in vitro ChIP-seq done in C4-2B, 100K C4-2B parental cells were seeded 

in triplicate in 6-well format, 36 wells total. 18 wells were then transduced with 32μL 

concentrated virus of lentiMPRA library and expanded for 48h. Pellets were then collected 

for all conditions and frozen in −80C.

Pellets were then used as input to the Pierce Magnetic ChIP kit (Thermo Fisher Cat. 

#26157). To shear gDNA as input to IP, a 21g needle was used to resuspend the sample 

10X, followed by resuspension with a 28g needle 10X. For MNase treatment, 2μL of a 1:40 

dilution of the provided MNase stock solution was used for each sample. For the IP, 4μL 

JunD antibody (Thermo Fisher Cat. #720035), 4μL SMAD2 antibody (Thermo Fisher Cat. 

#51-1300), 1μL SOX6 antibody (Thermo Fisher Cat. #PA5-30599), or 5μL TEF1 antibody 

(Thermo Fisher Cat. #PA5-66495) was added to each sample in triplicate and allowed to 

rotate for 48 h at 4C. For binding, samples were incubated with Protein A/G beads for 2 h.
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Library preparation—For preparing sequencing libraries, a first-round PCR amplifying 

the enhancer region of interest was performed with 200μL PCR reaction split into 4 50μL 

tubes (100μL NEB Ultra II Q5 master mix (NEB Cat. #M0544L), 50μL DNA sample, 1μL 

100μM forward primer (seq: GGGGAACTCGGAGCAATTCC), 1μL 100μM reverse primer 

(seq: CCACCTCAGATAGAATGGGC), 48μL ddH20) with the following program: 98C 30s, 

[98C 10s, 66C 75s, repeat 25X], 72C 5mins. Samples were then re-pooled and then cleaned 

up 1.24X using a Zymo Select-a-Size Magbead Kit (Zymo Cat. #D4085), eluted in 25μL 

ddH20, and then used as input into a second-round PCR adding Illumina sequencing primer 

sites (50μL NEB Ultra II Q5 master mix, 25μL DNA sample, 0.5μL 100μM forward primer 

(seq: 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGGGAACTCGGAGCAATTCC), 

0.5μL 100μM reverse primer (seq: 

CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTCCACCTCAGATAGAATGGG

C), 24μL ddH20), with the following program: 98C 30s, [98C 10s, 66C 75s, repeat 6X], 72C 

5mins. Samples were then cleaned up 1.24X using a Zymo Select-a-Size Magbead Kit and 

eluted in 25μL ddH20. A final indexing PCR was done with 100μL PCR reaction (50μL 

NEB Ultra II Q5 master mix, 25μL DNA sample, 0.5μL 100μM forward primer (seq: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

CT), 0.5μL 100μM reverse primer 

(seq:CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGT

GTGCTCTTCCGATCT), 24μL ddH20), with the following program: 98C 30s, [98C 10s, 

66C 75s, repeat 6X], 72C 5mins. Samples were cleaned up 1.24X using a Zymo Select-a-

Size Magbead Kit, eluted in 15μL ddH20, quantified via an Agilent Tapestation 4200, and 

then submitted for sequencing on a lane of NovaSeq X PE100 at the UCSF CAT.

RNA-seq—RNA-seq was done on SF3A1 over-expression and control cell lines. RNA 

was extracted from samples by column clean up using Zymo Quick-RNA Microprep 

Kit (Zymo Cat. #R1050). RNA-seq libraries were prepared from these samples using the 

SMARTer Stranded Total RNA-Seq Kit v3 - Pico Input Mammalian (Takara Cat. #634485) 

kit according to manufacturer’s instructions. Sequencing was performed on an Illumina 

NextSeq 5000.

QUANTIFICATION AND STATISTICAL ANALYSIS

All software used was described in the main text or the appropriate methods section. 

Statistical tests, as well as statistical comparisons between groups, for each figure were 

denoted in the corresponding figure legend. p-values for each statistical test were noted in 

each figure panel, and (adjusted) p-values of 0.05 or lower were considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Development of an integrated platform to identify non-coding driver regions 

of cancer

• GH22I030351 acts on a bidirectional promoter to modulate expression of 

SF3A1 and CCDC157

• SF3A1 and CCDC157 promote tumor growth in vivo

• SOX6 binding to GH22I030351 limits tumor growth
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Figure 1. Regression and deep learning models effectively predict the background mutational 
density in regulatory regions
(A) Genomic regions have a background mutation rate that is a function of their sequence 

context, functional annotation classes, and underlying epigenetic features. We developed 

an outlier detection model based on a generalized linear regression model (GLM), termed 

MutSpotterCV, to use such features to estimate the expected mutational density in a given 

region.

(B) The scatterplot of observed vs. predicted mutational density values (normalized) 

generated by the MutSpotterCV achieved a Pearson correlation of 0.55. We used the 

predictions of this model to perform an outlier analysis to identify regulatory regions that are 

mutated at a substantially higher rate than expected by chance. The resulting outlier regions 

are marked in red.

(C) We also tested the ability of models with increased complexity to perform this prediction 

task. One of our best-performing models was a deep convolutional neural network (CNN). 

The input to this model is a multilayered encoding of sequence and epigenetic signals.

(D) This model, named DM2D, achieved a Pearson correlation of 0.85, far exceeding that 

of MutSpotterCV. Nevertheless, the identities of final outliers identified by both models 

were virtually the same. Therefore, we deemed these regions regulatory elements that are 

hypermutated in mCRPC samples. The same outliers are colored in (B) and (D).

See also Figure S1 and Tables S1-S5.
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Figure 2. Regulatory and fitness consequences of mCRPC-associated non-coding regulatory 
regions
(A) Schematic of the MPRA used to assess the enhancer activity of regulatory sequences 

hypermutated in mCRPC and their scrambled control as background.

(B) A volcano plot showing the measured enhancer activity for each regulatory segment 

(wild-type sequence) relative to its scrambled control.

(C) Schematic of our in vivo CRISPRi strategy designed to identify regulatory regions that 

contribute to subcutaneous tumor growth in xenografted mice.

(D) In vivo fitness consequences of expressing sgRNAs targeting mCRPC hypermutated 

regulatory regions. The x axis shows the calculated fitness scores (Rho), where positive 

values denote increased tumor growth upon sgRNA expression, and negative values denote 

the opposite. The y axis represents −log10 of the p value associated with each enrichment.

See also Figure S2.
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Figure 3. Base-resolution in vitro and in silico assays reveal the functional consequences of 
mCRPC-associated mutations
(A) A volcano plot demonstrating the impact of individual mutations relative to their 

reference allele on enhancer activity.

(B) The overall performance of our Blue Heeler (BH) model in predicting gene expression 

for held-out instances.

(C) Comparison of mutational impact on the expression of downstream genes and the 

overall impact of the mutated regulatory regions based on our in vivo screen. A previously 

annotated enhancer (geneHancer: GH22I030351) shows a strong phenotype in xenografted 

mice, and patients with mutations in it show generally increased expression in downstream 

genes.
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(D) Comparing the expression of genes associated with GH22I030351 in mCRPC patient 

samples with and without mutations in this enhancer. The combined p value shows the 

overall effect of mutations across all these genes.

(E) In four of five cases, measuring the impact of mutations observed in our cohort shows 

a general increase in regulatory activity of GH22I030351 in our MPRA measurements. p 
value calculated comparing mutation to WT sequence.

(F) The CCDC157 (ENSG00000187860) promoter sequence, which is immediately 

downstream of GH22I030351, was used to dissect the impact of mutations in silico based 

on feature attribution scores from our BH model. Top: the results of an in silico saturation 

mutagenesis experiment, in which the impact of every mutation upstream of CCDC157 
on its expression was measured. We observed both gain-of-function and loss-of-function 

mutations. The regulatory region of interest is shown as a box, and the mutations observed in 

patients are marked by dashed lines. We have also reported saliency scores for this promoter. 

We further zoomed in on saturation mutagenesis results for our regulatory region of interest 

to show (1) the distribution of impact scores for types of mutations, (2) the importance score 

for loci mutated in patients with the exact mutation shown as a bounded box, and (3) the 

saliency score associated with each mutated locus.

See also Figure S3.
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Figure 4. GH22I030351 promotes prostate cancer growth through modulation of SF3A1 and 
CCDC157 expression
(A) Subcutaneous tumor growth in CRISPRi-ready C4-2B cells expressing a non-targeting 

control or sgRNAs targeting GH22I030351. Two-way ANOVA was used to calculate the 

reported p value. Also shown is the size of extracted tumors at the conclusion of the 

experiment (day 18 post injection); The p values were calculated using one-tailed t test (n = 

8 and 7, respectively). Data are represented as mean ± SEM.

(B) SF3A1 and CCDC157 mRNA levels, measured using qPCR, in control and 

GH22I030351-silenced C4-2B cells (n = 3). The p values are based on a one-tailed Mann-

Whitney U test.

(C) Comparison of proliferation rates, as measured by the slope of log-cell count measured 

over 3 days, for control as well as SF3A1 and CCDC157 knockdown cells (n = 6 per shRNA 

condition). Hairpin RNAs were induced at day 0, and cell viability was measured at days 

1, 2, and 3. The p values were calculated using least-square models comparing the slope of 

each knockdown to the control wells.
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(D) Colony formation assay for SF3A1 and CCDC157 knockdown cells in the C4-2B 

background. Hairpin RNAs were induced at day 0, and colonies were counted at day 8. The 

p values were calculated using one-tailed Mann-Whitney U tests.

(E) Subcutaneous tumor growth in C4-2B cells overexpressing SF3A1 and CCDC157 ORFs 

in a lentiviral construct. Tumors were measured using calipers at ~3 weeks post injection, 

and p values were calculated using a one-tailed Student’s t test.

(F) Size of extracted tumors in subcutaneous tumor growth in CRISPRa-ready C4-2B cells 

expressing a non-targeting control or sgRNAs targeting GH22I030351 at the conclusion of 

the experiment (day 22 post injection); the p values were calculated using one-tailed t test (n 
= 8 and 8, respectively).

(G) Subcutaneous tumor growth in CRISPRi-ready C4-2B cells expressing non-targeting 

(CTRL) sgRNAs, C4-2B cells expressing shRNAs against SF3A1 and CCDC157 (DKD), 

or CRISPRi-ready C4-2B cells expressing sgRNAs targeting GH22I030351, and the DKD 

lentiviral construct (sgGH22I030351 + DKD). Tumors were measured using calipers at ~3 

weeks post injection, and p values were calculated using a one-tailed Student’s t test.

See also Figure S4.
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Figure 5. SF3A1 upregulation results in splicing alterations similar to those observed in 
GH22I030351-mutated tumors
(A) A volcano plot comparing cassette exon usage (percent spliced in [Ψ]) between tumors 

with mutations in GH22I030351 relative to other samples in our cohort. Marked are cassette 

exons with a larger than 10% change in Ψ (ranging between −1 and 1) and p < 0.01.

(B) SF3A1 CLIP-seq in C4-2B lines allowed us to identify, at base resolution, high-

confidence binding sites of SF3A1 by mapping crosslinking-induced deletions. We used 

FIRE32 to discover the most significant sequence motif, and here we report its associated 

mutual information (MI) and Z score.

(C) The enrichment of cassette exons bound by SF3A1 among those with higher Ψ in 

samples with mutations in GH22I030351. For this analysis, we ordered all annotated 

cassette exons based on their ΔΨ values from −1 (left) to +1 (right). We then grouped 

them into equally populated bins and assessed the non-random distribution of SF3A1-bound 

cassette exons across these measurements using MI.47 Individual bins are colored based on 

their hypergeometric p value as well.

(D) Comparison of changes in Ψ values in GH22I030351-mutant and SF3A1 overexpression 

samples. We observed a significant enrichment of SF3A1 binding among cassette exons that 

are simultaneously upregulated in both GH22I030351-mutant and SF3A1 overexpression 

samples. It should be noted that unbound cassette exons do not show a correlation between 

these two sets of comparisons.

See also Figure S5.
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Figure 6. Putative transcription factors that regulate gene expression through GH22I030351
(A) Mutations in GH22I030351 alter transcription factor binding. Left: sequence motif of 

SOX6. Shown is the mutation observed in DTB_176_BL compared to the reference genome. 

Center: bar plot showing the FIMO enrichment score of the SOX6 motif for the reference 

genome (green) and the patient’s sequence (red). Right: bar plot showing the difference in 

motif score (red) and difference in −log10 p value (blue) of motif enrichment in the patient 

harboring the mutation with respect to the reference genome.

(B and C) Similarly, shown for a SMAD2–4 and TEAD1 motif.

(D) In vivo MPRA ChIP-seq assay for TEAD1, SOX6, and SMAD2. The x axis shows the 

log2 relative enrichment of the mutant allele with respect to the reference allele.

(E) Changes in the expression of SF3A1 and CCDC157 in response to silencing 

transcription factors we hypothesized to regulate their expression. The p values were 

calculated using a one-tailed Welch’s t test.

(F) Subcutaneous tumor growth in SOX6 knockdown and control cells in xenografted mice 

(n = 8). The p values were calculated using two-way ANOVA using time as a covariate.

Data are represented as mean ± SEM. See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-JunD Thermo Fisher Cat#720035; RRID 
AB_2532791

Rabbit anti-SMAD2 Thermo Fisher Cat#51-1300; 
RRID 
AB_2533896

Rabbit anti-SOX6 Thermo Fisher Cat#PA5-30599; 
RRID 
AB_2548073

Rabbit anti-TEF1 Thermo Fisher Cat#PA5-66495; 
RRID 
AB_2662748

Bacterial and virus strains

NEB Stable Competent Cells New England 
Biolabs

Cat#C3040I

MegaX DH10B Electrocompetent Cells Thermo Fisher Cat#C6400-03

NEB 10-beta Electrocompetent E. coli New England 
Biolabs

NEB Cat. 
#C3020K

Chemicals, peptides, and recombinant proteins

Doxycycline Ready-Made Solution Sigma-Aldrich Cat#D3072-1ML

Penicillin-Streptomycin-Glutamine (100X) Thermo Fisher Cat#10378016

Amphotericin B Thermo Fisher Cat#30-003-CF

FD BstXI Thermo Fisher Cat#FD1024

FD Bpu1102I Thermo Fisher Cat#FD0094

TransIT-Lenti Mirus Bio Cat#Mir6603

Corning Matrigel Basement Membrane Matrix, LDEV-free Corning Cat#354234

Polybrene MilliporeSigma Cat#TR-1003-G

AgeI-HF New England 
Biolabs

Cat#R3552S

SbfI-HF New England 
Biolabs

Cat#R3642S

NEBuilder HiFi DNA Assembly Master Mix New England 
Biolabs

Cat#E2621L

NEB 10-beta electrocompetent cells New England 
Biolabs Cat. 
#C3020K)

Cat#C3020K

EndoFectin GeneCopoeia Cat#EF001

ViralBoost AlStem Cat#VB100

Lenti-X Concentrator Reagent Takara Cat#631232

SuperaseIN Invitrogen Cat#AM2696

T4 PNK New England 
Biolabs

Cat#M0201L

smRNA mix 1 & 2 Takara Cat#635031

RNAse inhibitor Invitrogen Cat#AM2696)

SeqAmp CB PCR buffer Takara Cat#638526

SeqAmp DNA polymerase Takara Cat#638509
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REAGENT or RESOURCE SOURCE IDENTIFIER

4% PFA Alfa Aesar Cat#43368-9L

0.1% crystal violet Sigma-Aldrich Cat#V5265-250ML

NEB Ultra II Q5 MM New England 
Biolabs

Cat#M0544L

HighPrep PCR reagent MagBio 
Genomics

Cat#AC-60050

Protease Inhibitor Cocktail Thermo Fisher Cat#78425

Critical commercial assays

DNA Clean and Concentrator kit-5 Zymo Research Cat#D4003

Zymo DNA Clean & Concentrator-25 kit Zymo Research Cat#D4033

NucleoSpin Gel and PCR Clean-Up Takara Cat#740609.50

Quick-DNA midiprep plus kit Zymo Research Cat#D4075)

QIAquick Gel Extraction kit Qiagen Cat#28706X4

AllPrep DNA/RNA Mini Kit Qiagen Cat#80204

SMARTer smRNA-Seq Kit for Illumina Takara Cat#635031

CellTiter-Glo 2.0 Cell Viability Assay Promega Cat#G9241

Pierce Magnetic ChIP kit Thermo Fisher Cat#26157

Zymo Quick-RNA Microprep Kit Zymo Research Cat#R1050

SMARTer Stranded Total RNA-Seq Kit v3 - Pico Input Mammalian Takara Cat#634485

Deposited data

in vivo sgRNA library screen endpoint This paper SuperSeries: 
GSE274679
SubSeries: 
GSM8454559-65

CLIP-seq This paper SuperSeries: 
GSE274696
SubSeries: 
GSM8455197; 
GSM8455198

LentiMPRA data This paper SuperSeries: 
GSE274698
SubSeries: 
GSM8455205-11

Experimental models: Cell lines

C4-2B ATCC Cat#CRL-3315

C4-2B dCas9-KRAB (CRISPRi) This paper N/A

C4-2B dCas9-KRAB sgGH22I030351 This paper N/A

C4-2B shSF3A1 This paper N/A

C4-2B shCCDC157 This paper N/A

C4-2B SF3A1 OE This paper N/A

C4-2B CCDC157 OE This paper N/A

C4-2B shSF3A1 shCCDC157 This paper N/A

C4-2B dCas9-KRAB sgGH22I030351 shSF3A1 shCCDC157 This paper N/A

C4-2B VPR (CRISPRa) This paper N/A

C4-2B VPR sgGH22I030351 This paper N/A

C4-2B VPR sgCTRL This paper N/A

C4-2B dCas9-KRAB sgCTRL This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

C4-2B shCTRL This paper N/A

C4-2B dCas9-KRAB sgSOX6 This paper N/A

C4-2B dCas9-KRAB sgGH22I030351 sgSOX6 This paper N/A

C4-2B dCas9-KRAB sgSMAD2 This paper N/A

C4-2B dCas9-KRAB sgTEAD1 This paper N/A

Experimental models: Organisms/strains

Male NSG mice, NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ Jackson 
Laboratory

Strain#005557

Oligonucleotides

CRISPRi library val-For: ATTTTGCCCCTGGTTCTTCCAC Integrated 
DNA 
Technologies 
(IDT)

N/A

CRISPRi library val-Rev: CCCTAAGAAATGAACTGGCAGC Integrated 
DNA 
Technologies 
(IDT)

N/A

UMI linker: CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNcttg Integrated 
DNA 
Technologies 
(IDT)

N/A

CRISPRi library index-For: AATGATACGGCGACCACCGAGATCTacactctttccctacacgacgctc Integrated 
DNA 
Technologies 
(IDT)

N/A

CRISPRi library index-Rev: 
CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATcgactcggtgccactttttc

Integrated 
DNA 
Technologies 
(IDT)

N/A

CLIP-Seq UMI RT primer: 
CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTTTTTTTTTTTTT

Integrated 
DNA 
Technologies 
(IDT)

N/A

CLIP-Seq Universal Rev: CAAGCAGAAGACGGCATACGAG Integrated 
DNA 
Technologies 
(IDT)

N/A

CLIP-Seq Indexed For: AATGATACGGCGACCACC Integrated 
DNA 
Technologies 
(IDT)

N/A

ChIP-Seq For: GGGGAACTCGGAGCAATTCC Integrated 
DNA 
Technologies 
(IDT)

N/A

ChIP-Seq Rev: CCACCTCAGATAGAATGGGC Integrated 
DNA 
Technologies 
(IDT)

N/A

ChIP-Seq For-1: ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGGGAACTCGGAGCAATTCC Integrated 
DNA 
Technologies 
(IDT)

N/A

ChIP-Seq Rev-1: CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTCCACCTCAGATAGAATGGGC Integrated 
DNA 
Technologies 
(IDT)

N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

ChIP-Seq For-2: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT Integrated 
DNA 
Technologies 
(IDT)

N/A

ChIP-Seq Rev-2: CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT Integrated 
DNA 
Technologies 
(IDT)

N/A

Recombinant DNA

pLS-SceI Ahituv Lab 
(University of 
California, San 
Francisco)

N/A

pCRISPRi/a v2 Gilbert Lab 
(University of 
California, San 
Francisco)

N/A

pLKO.1 shSF3A1 This paper N/A

pLKO.1 shCCDC157 This paper N/A

pLKO.1 shSF3A1 shCCDC157 This paper N/A

pCRISPRi/a v2 sgSOX6 This paper N/A

pCRISPRi/a v2 sgTEAD1 This paper N/A

pCRISPRi/a v2 sgSMAD2 This paper N/A

dCas9-VPR (JKNp64) (CRISPRa) Gilbert lab 
(University of 
California, San 
Francisco)

N/A

pLKO.1 shCTRL This paper N/A

dCas9-VPR (JKNp64) (CRISPRa) sgCTRL This paper N/A

pCRISPRi/a v2 sgCTRL This paper N/A

Software and algorithms

MutSpotterCV github.com/
goodarzilab

https://doi.org/
10.5281/
zenodo.13363225
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