
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
On peer loss: its theory and the applications to the problem of learning with noisy labels

Permalink
https://escholarship.org/uc/item/4x90p4vv

Author
Li, Xingyu

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x90p4vv
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

ON PEER LOSS: ITS THEORY AND THE APPLICATIONS TO
THE PROBLEM OF LEARNING WITH NOISY LABELS

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE AND ENGINEERING

by

Xingyu Li

June 2020

The Thesis of Xingyu Li
is approved:

Professor Yang Liu, Chair

Professor David Helmbold

Professor James Davis

Quentin Williams
Acting Vice Provost and Dean of Graduate Studies

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Acknowledgments ix

Table of Notations x

1 Introduction 1
1.1 Learning with noisy labels . 3

1.1.1 Motivation . 3
1.1.2 Description of the label noise 3
1.1.3 Problem statement: classification with noisy labels 4

1.2 Related works . 6
1.2.1 Learning with the estimate of noise rates 6
1.2.2 Learning without the estimate of noise rates 6

2 Static Analysis 8
2.1 Peer loss as a loss fucntion inspired by the truthful and proper

scoring rule . 8
2.1.1 The peer loss for binary classification 9
2.1.2 The peer loss for multiclass classification 11
2.1.3 Noise tolerance properties of peer loss 14
2.1.4 The α peer loss and a brief summary of the experiments on

benchmark image datasets 15
2.2 Peer loss as the difference between K-L divergences 17

2.2.1 Deriving the divergence form 17
2.2.2 Intuition: Two anchors, correlation regularizer 19
2.2.3 Interpretation of properties of peer loss 20

2.3 Peer loss as the correlation risk 23

iii

2.3.1 The accuracy measure, Bayes optimal classifier, population
risk and classification calibration 24

2.3.2 The correlation measure 26
2.3.3 The correlation risk and dynamical calibration 27

2.4 Chapter summary . 31

3 Dynamical Analysis 32
3.1 Assumptions . 33
3.2 Searching space geometry . 33
3.3 Preliminaries . 34
3.4 Steady states and their stability 36

3.4.1 Steady states in the interior of the hypersimplex 36
3.4.2 Steady states in the edges and vertices of the hypersimplex 37
3.4.3 Stability of the steady states 39
3.4.4 The α peer loss case . 41

4 Experiments 44
4.1 Experiments on benchmark image datasets 44

4.1.1 Baseline methods . 45
4.1.2 Image datasets with synthetic label noise 46
4.1.3 CIFAR-10 with manual-pair noise and Clothing1M 49

4.2 Experiments on synthetic dataset 50

5 Conclusion and Future Work 53

A Proofs supplementary materials 55
A.1 Proof for Lemma 1 . 55
A.2 Proof for Lemma 2 . 59
A.3 Proof for Theorem 1 . 62
A.4 Proof for Theorem 2 . 65
A.5 Proof for Propersition 2 . 66

B Experiments supplementary materials 68
B.1 Transition Matrices for MNIST Dataset and Fashion MNIST Dataset 68
B.2 Transition Matrices for CIFAR-10 Dataset 70
B.3 Other experiment results on the 2-D synthetic dataset 72

Bibliography 77

iv

List of Figures

3.1 A sketch of the hypersimplex and hy(x) as a "curve"/"point" in it. 34

4.1 Experiments on the circle dataset. Using a 3-layer fully-connected
neural network. The noise rate is 0.4. 52

B.1 Experiments on the circle dataset with uniform random noise. The
noise rate is 0.1. 72

B.2 Experiments on the circle dataset with uniform random noise. The
noise rate is 0.2. 73

B.3 Experiments on the circle dataset with uniform random noise. The
noise rate is 0.4. 73

B.4 Experiments on the circle dataset with high margin noise. The
noise rate is 0.1. 74

B.5 Experiments on the circle dataset with high margin noise. The
noise rate is 0.2. 74

B.6 Experiments on the circle dataset with high margin noise. The
noise rate is 0.4. 75

B.7 Experiments on the circle dataset with low margin noise. The noise
rate is 0.1. 75

B.8 Experiments on the circle dataset with low margin noise. The noise
rate is 0.2. 76

B.9 Experiments on the circle dataset with low margin noise. The noise
rate is 0.4. 76

v

List of Tables

4.1 Experiment results of five models: CE: Cross-Entropy, BLC: back-
ward loss-correction , FLC: forward loss-correction , and peer loss,
on MNIST, Fashion-MNIST, and CIFAR-10. In the peer loss col-
umn, we report the maximum accuracy (outside number) as well
as the (mean ± standard deviation). For other methods, we re-
port the maximum accuracy. The best performance in each row is
highlighted in bold. 47

4.2 Experiment results of CIFAR-100. For Random (0.5) and Random
(0.7) noise setting of CIFAR100, we provide BLC and FLC with
the ground truth transition matrix. 48

4.3 Results on manual-pair synthetic noise and real human-level noise.
Milestones: [20, 50, 120], α-list: [0.0, 2.0, 5.0]. 49

vi

Abstract

On peer loss: its theory and the applications to the problem of learning with

noisy labels

by

Xingyu Li

Peer loss [1] is a new family of loss functions proposed to deal with the problem

of learning with noisy labels. It claims to handle a wide range of label noise in

binary classification tasks without explicitly estimating the noise rates. Numerical

experiments demonstrate the effectiveness of peer loss. However, its extension to

the multi-class classification remains unclear, and its working mechanism is not

fully understood.

In this thesis, we study the theory of peer loss from three distinct perspectives.

Follow the original method in [1], we first consider the multi-class extension of peer

loss and investigate its noise tolerance properties. From this perspective, we see

peer loss as a class of loss functions inspired by the truthful and proper scoring

rules in the peer prediction literature. It turns out that this perspective is a

static one and cannot provide a satisfactory explanation of how peer loss works

in practical training. To gain an intuitive picture of the working mechanism, we

further develop a divergence perspective towards peer loss, expressing it as the

difference between two KL divergences. Thus, we recognize that peer loss has a

built-in regularization effect, encouraging the model to make confident predictions.

This regularization effect partially explains why peer loss works well under the

label noise, as the existence of noise often blurs the data distribution and makes the

resulting model prediction uncertain. Finally, we show that peer loss potentially

suggests a new type of risk in decision theory, i.e., the correlation risk. This new

vii

perspective helps us to understand better what the model learns when trained

with peer loss. To complete the discussion of the correlation risk perspective, we

develop a novel method to investigate the training dynamics of peer loss. This

dynamical analysis justifies that with peer loss, the resulting model tends to grasp

the positive correlations in the training datasets.

In addition to the theoretical analysis, we also carry out extensive numerical

experiments. Those experiments on benchmark image datasets demonstrate the

effectiveness of peer loss on the multi-class classification tasks under a wide range

of label noise. Our experiments on the 2-dimension synthetic dataset reveal that

the models trained with peer loss tend to produce hard decision boundaries. This

phenomenon accords with our theoretical analysis that peer loss encourages the

model to make confident predictions.

viii

Acknowledgments

First of all, I want to thank my wife, Hui Zhang. I appreciate her support and

patience during the two years when I am studying aboard.

I owe my special thanks to my supervisor, Professor Yang Liu. I’m lucky to

have a chance to work with him at UC Santa Cruz. I admire his enthusiasm and

taste in doing research. He is full of talent ideas and cares about his students. I

wish to keep collaborating with him in my future academic career.

Many thanks to Zhaowei Zhu, JiahengWei, and Jialu Wang. You are wonderful

teammates and my best friends here. Every discussion is thought-provoking, and

every party is shining in my memory.

Last, I want to express my gratitude to Professor David Helmbold and James

Davis for being my thesis committees.

ix

Table of Notations

[K] abbreviation of the set {1, 2, · · · , K}
X, Y, Ỹ random variables stand for the feature, the clean label, and the

noisy label
x, y, ỹ the values of the feature X, the clean label Y , and the noisy label

Ỹ
xn, yn, ỹn the n-th sample of the feature, the clean label, and the noisy label
ΩX the domain of the feature X
SK−1 K − 1 dimensional simplex
hy(x) the y-th component of the model prediction at x
cl(x) the prediction of the classifier cl at x
`(·) a differentiable loss function

D clean data distribution
DX ,DY marginal distributions of the feature and label of the clean data
D̃ noisy data distribution
D̃X , D̃Y marginal distributions of the feature and label of the noisy data
D empirical clean data distribution
DX , DY empirical marginal distributions of the feature and label of the clean

data
D̃ empirical noisy data distribution
D̃X , D̃Y empirical marginal distributions of the feature and label of the noisy

data
P(·) distribution of a random variable, e.g., P(X)
P (·),Q(·) probability function for a random variable, e.g., P (x)
T the transition matrix
ei noise rate of flipping into the wrong class i. It is used only in the

uniform off-diagonal noise model

x

Chapter 1

Introduction

The pioneering work of Yang and Guo [1] proposed a new class of loss functions

called peer loss functions, which claims to handle label noise without explicitly

estimating the noise rates. Peer loss is distinct from other methods dealing with

label noise through viewing denoising as an elicitation problem. It embeds the

statistical information about the correlation between features and labels in the

sampling process. We will see that peer loss suggests an extension to the popula-

tion risk, and it is possible to introduce a new framework in decision theory.

This thesis is primarily devoted to the investigation of the theory behind peer

loss. We also include numerical experiment results to support the theoretical

analysis and show its effectiveness in practical applications. Our discussions are

confined to the classification problem in the supervised learning paradigm.

We first study the properties of the optimal classifier learned using peer loss.

This is a static analysis, as it does not take into account the training process.

We shall view peer loss from three perspectives: (1) as a class of loss functions

inspired by the truthful proper scoring rules. (2) as divergence that measures the

difference between the model predictions and the training data distribution. (3) as

a new type of risk, i.e., the correlation risk, targeting a different learning objective

1

compared to the population risk. In the first perspective, we concern the exten-

sion of peer loss to the multi-class classification cases, following the method in the

original work [1]. In the divergence perspective, we prove that peer loss possesses

an equivalent form as the difference between two Kullback–Leibler (KL) diver-

gences. This abstract yet intuitive form helps to clarify the working mechanism

behind peer loss. Finally, the correlation risk perspective is the most ambitious

one. We demonstrate that the formulation of peer loss can be reinterpreted as a

new type of risk, which we call the correlation risk. This risk puts more emphasis

on the correlation in the data rather than purely focuses on prediction accuracy.

Hence, it would be preferable than the population risk when properties, such as

fairness, matter.

Static analysis alone is not the complete story since the training process is

an indispensable component of any machine learning algorithm. However, due to

the high complexity of neural network models, there exists no universal/efficient

method to analyze the training dynamics. In our dynamical analysis, we exploit

the methods from evolutionary game theory [2]. Instead of explicitly investigating

the evolution of the network function, we turn to study the stable steady states in

the searching space, which is composed of all possible network functions. In this

way, we manage to show that with the peer loss, the neural network model indeed

tends to grasp the positive correlations in the dataset. This dynamical version

of the classification-calibration argument complements our discussion about the

correlation risk in the static analysis.

Peer loss is initially proposed as a method to deal with the problem of learning

with noisy labels. Presently, this remains to be the major place of applying peer

loss. We place a brief review on the learning with noisy labels problem at the end

of this chapter to avoid disturbing the smoothness of theoretical analysis in later

2

content. The rest chapters are organized as follows: In chapter 2 and chapter 3,

we present the static and dynamical analysis, respectively. Experiment results are

summarized in chapter 4. At last, conclusion and future works are discussed in

chapter 5. Detailed proofs of theorems and propositions and additional experiment

results can be found in the appendix.

1.1 Learning with noisy labels

1.1.1 Motivation

Nowadays, supervised learning dominates in the majority of applications of

machine learning algorithms. Its great success crucially relies on the availability

of large scale quality datasets. This is an intrinsic consequence of its statistical

nature. Nonetheless, data collection inevitably suffer from noise, due to its re-

quirements of scalability, decentralization, and the imperfect process of human

annotating. One salient example is the build of ImageNet [3]. The existence of la-

bel noise degrades the resulting machine learning model, as the noise would weaken

the feature-label connection and introduce fake correlations. Furthermore, with

the vast amount of parameters, present neural network models can easily overfit

the noisy data [4], which harms the model’s generalization performance.

1.1.2 Description of the label noise

Generally speaking, with the label noise, the original clean data distribution

P(X, Y) has been transformed into a noisy distribution P(X, Ỹ). By the chain

rule, one always has

P (x, ỹ = i) =
∑
j∈[K]

P (ỹ = i|x, y = j)P (x, y = j).

3

It is convenient to introduce a transition matrix Ti,j(x) := P (ỹ = i|x, y = j),

which summarizes the label noise. We will refer to the off-diagonal terms of T (x)

as error rates in later content. Seeking a solution concerning the general label

noise is too hard. Thus we will compromise and consider the feature-independent

noise instead. Namely, we only deal with feature-independent transition matrix

Tij = P (ỹ = i|y = j). We are now ready to formally state the problem we propose

to solve using peer loss.

1.1.3 Problem statement: classification with noisy labels

Consider a multi-class classification problem, where the random variable X

denotes a high-dimensional feature, and the random variable Y indicates the label

for a particular instance of X. Let ΩX ⊆ Rd and Y ∈ {1, 2, · · · , K} be the

domains, from which X and Y take values, respectively. Here, K is the number

of classes. For simplicity, we adopt [K] := {1, 2, · · · , K} in the later content.

We further denote the joint distribution of X and Y as D. The training samples

(xn, yn) are drawn from D in an i.i.d. fashion and composes the training dataset

D := {(xn, yn)}n∈[N]. The classification task targets at learning a classifier cl :

ΩX → Y that maps an instance feature x to its label y accurately.

In practice, instead of directly searching for an optimal classifier r∗D, one min-

imizes the empirical risk with respect to some loss function ` as:

h∗D,` = arg min
h∈H

1
N

∑
n∈[N]

`(h(xn), yn), (1.1)

where h : ΩX → SK−1 is the network function specified by the underlying neural

network model. H is the collection of all possible h. SK−1 refers to a K − 1

dimension simplex. The y-th component hy(x) is interpreted as the predicted

4

probability of x being labeled as y. The corresponding classifer is normally gener-

ated by cl(x) := arg max
y∈[K]

hy(x). Commonly, for classification task the loss function

` is chosen as the Cross-Entropy (CE) loss, i.e. `(h(x), y) = − ln(hy(x)).

This empirical risk minimization process is closely related to the search of the

Bayes optimal classifier, which is defined as

cl∗Bayes(x) := arg max
i∈[K]

P (x, y = i),

where P (x, y) refers to the joint probability of the data distribution. Clearly,

when the model perfectly learns the data distribution, i.e. hy(x) = P (y|x), the

resulting classifier will be just the Bayes optimal classifier.

In the presence of label noise, we would face the joint distribution between

the feature X and the noisy label Ỹ , which is denoted as D̃. Correspondingly,

we will have a noisy training dataset D̃ := {(xn, ỹn)}n∈[N]. Now, minimizing the

empirical risk leads to

h∗
D̃,`

= arg min
h∈H

1
N

∑
n∈[N]

`(h(xn), ỹn).

It is well known [4] that the opitmal classifier h∗
D̃,`

can easily overfit the noisy

dataset D̃ and, thus, degrade the resulting model.

Any label noise tolerant method tries to make h∗
D̃,`

closer to h∗D,`. There exist

many different types of methods to deal with label noise, as reviewed in section 1.2.

In the present thesis, we propose to address the label noise issue through designing

a loss function (i.e., the peer loss) such that the classifier trained on noisy datasets

approximates the performance of the classifier trained over clean datasets. Under

idea situation, we expect h∗
D̃,`

and h∗D,` generate the same classifier.

5

1.2 Related works

1.2.1 Learning with the estimate of noise rates

A good number of works have been devoted to studying how to make deep

neural networks robust to label noise. This literature started with the random

classification noise model, where observed labels are flipped independently with a

certain probability [5, 6, 7, 8, 9, 10, 11]. More recent efforts focused on learning

with asymmetric noisy data (or also referred as class-conditional random classifi-

cation noise (CCN)) [12, 9, 10, 11, 13, 14].

Under the supervised learning paradigm, one popular choice is to use the

surrogate loss [9, 10, 11, 13, 14], which use the transition matrix to define unbiased

estimates of the true losses. A common difficulty in the surrogate loss methods is

the explicit estimation of the transition matrix. Often an additional clean dataset

is required to provide a reference [15, 14, 16]. Some methods exploit the transition

matrix in different ways, including to correct the loss or network outputs [17] and

re-weight the importance of training samples [16]. We also note that [18] recently

proposes an information-theoretic loss, which is robust to both symmetric and

asymmetric noise rates.

1.2.2 Learning without the estimate of noise rates

In order to avoid explicit estimation of the label noise, recent efforts try to

solve the problem of learning with noisy labels by modeling it as a semi-supervised

learning problem [19, 20, 21]. The high-level idea is to filter out the noisy samples

during training and treat them as unlabeled data, on which semi-supervised learn-

ing technique will be applied. The above procedure requires a sufficient effort on

hyperparameter tuning (e.g., deciding on whether a sample is noisy or not). Fur-

6

ther, the performance improvement is shown to be mainly due to semi-supervised

learning in the latter stages.

7

Chapter 2

Static Analysis

In this chapter, we study the theory and intuition behind peer loss from three

perspectives, emphasizing its working mechanism and the properties of the result-

ing optimal classifier. The detailed architecture of the neural network model is

ignored, with only assuming its expressivity is high enough to include the optimal

solution. This assumption is justified as, in practice, the neural network models

are typically over-parametrized [22] comparing to the scale of the underlying task.

2.1 Peer loss as a loss fucntion inspired by the

truthful and proper scoring rule

The design of peer loss [1] is inspired by the truthful and proper scoring

rules [23, 24] in the peer prediction literature, which aim at eliciting truthful

reports from agents without knowing the ground truth information. The original

work [1] focuses on the binary classification tasks and proves that peer loss is label-

noise tolerant as long as the noisy data remains informative. This section shows

that the original arguments of peer loss can be readily extended to the multi-class

8

classification situations. The difficulty lies in finding the proper constraints on

the type of label noise rather than on extending the original formulation of peer

loss.

All missing proofs in this section can be found in the appendix.

2.1.1 The peer loss for binary classification

The orignal peer loss [1] is motivated by the Correlated Agreement (CA) mech-

anism [24] from peer prediction literature, which concerns a ∆ matrix,

∆i,j := P (r = i, r′ = j)− P (r = i)P (r′ = j),

where r and r′ are two sources of reports, and i, j refer to the possible outcomes.

For example, if there are K classes then i, j can take values from 1 to K. This ∆

matrix captures the correlation between the different sources of reports.

To build a truthful and proper scoring function from CA, Liu and Guo [1]

introduce an auxiliary matrix M := sgn(∆), where the element-wise operation

sgn(x) = 1 for x > 0 and sgn(x) = 0 otherwise. Then the desired scoring function

is defined as

S(rn, r′n) := M(rn, r′n)−M(rn1 , r
′
n2),

where the subscripts n, n1 and n2 refer to three independent tasks for which the

two resources r and r′ report their outcomes. For each task n, we randomly choose

other two tasks, n1 and n2, to calculate the score.

At this point, Liu and Guo [1] make a key analogy, viewing reports r and r′

as the Bayes optimal classifier’s prediction ŷ∗ = cl∗(x) and the label ỹ from the

noisy dataset (the clean dataset can be viewed as a special case of a noisy dataset

with zero noise rates), respectively. Further, different samples in the dataset are

9

recognized as the different tasks in the peer prediction situation. In this way, a

generic peer loss is defined as

`g(cl(xn), ỹn) := (1−M(cl(xn), ỹn))− (1−M(cl(xn1), ỹn2)),

which corresponds to the negative scoring function. Note that the loss function

is defined for a general classifier cl(x), while M is determined by the ∆ matrix

between the Bayes optimal classifier cl∗(x) and the noisy label. The first term

evaluates the classifier’s prediction on xn using corresponding label ỹn, and the

second term, a.k.a. the peer term, punishes the over-agreement between the clas-

sifier’s prediction and the noisy label.

For the binary classification tasks with label noise, the freedom of the transition

matrix is reduced to 2 and can be summarised by two noise rates: e+ = P (ỹ =

−1|y = +1) and e− = P (ỹ = +1|y = −1). When e+ + e− < 1, we say the

noisy data is informative. In other word, the true signal in the noisy dataset

tends to dominate the nosiy signal. For example, let e+ = 0.1 and e− = 0.8

and assume P (y = +1) = P (y = −1) in the original clean dataset. We find

P (ỹ = +1) = 0.9P (y = +1) + 0.8P (y = −1), where the first term in the r.h.s.

corresponds to the true signal, and the second term corresponds to the noisy

signal. Clearly, the true signal clearly dominates the noisy one. It has been

proved (see [1], lemma 2) that if the noisy data is informative, then M = I2×2,

i.e., the identity matrix. With this simplification, the generic peer loss reduces to

the 0-1 peer loss:

1peer(cl(xn), ỹn) = 1(cl(xn), ỹn)− 1(cl(xn1), ỹn2),

where n, n1 and n2 are the indices of three independent random samples from the

10

training data. We call samples n1 and n2 the peer samples of sample n. Since the

0-1 loss 1(·, ·) is not differentiable, one can replace it by any other differentiable

(convex) functions `(·), and get

`peer(h(xn), ỹn) = `(h(xn), ỹn)− `(h(xn1), ỹn2).

Thus we arrived at the standard form of peer loss as proposed in [1]. Note that

argument of `peer is the model output h(x) rather than the classifier cl(x).

2.1.2 The peer loss for multiclass classification

Now, we consider the extension of peer loss to multi-class classification tasks.

Based on the above arguments, it is easy to see that the procedure of deriving

the generic peer loss is irrelevant to the number of classes. Thus, the key of the

extension is to find a new informative condition for the multi-class cases.

Following the method in [1], let’s consider the ∆ matrix between the Bayes

optimal classifier and the noisy labels in a K-class classification task, i.e. ∆ij =

P (cl∗(x) = i, ỹ = j) − P (cl∗(x) = i)P (ỹ = j). We assume the Bayes optimal

classifier is independent to the noisy label conditioned on the ture label. Since the

Bayes optimal classifier is not perfect, we can treat its predictions as noisy labels

as well and thus define the corresponding noise transition matrix T ∗ij = P (cl∗(x) =

i|Y = j). Then the ∆ matrix can be rewritten as

∆ij =
K∑
k

T ∗ik · Tjk · P (y = k)

−
K∑
l

T ∗il · P (y = l)
K∑
m

TjmP (y = m).

Above summations can be viewed as expectations over the distribution of clean

11

labels. For example, ∑K
m Tjm · P (y = m) is the average noise rate of flipping into

class j. Thus

∆ij = EY [T ∗i,Y · Tj,Y]− EY [T ∗i,Y]EY [Tj,Y].

Note in Ti,Y , we treat the second index of the subscript as a random variable

Y . In this way, we may interpret ∆ as the covariance matrix between the noise

rates of the Bayes optimal classifier and the noisy labels. Clearly, if cl∗ and the

noisy label are positively correlated in the case of flipping into the same class, i.e.,

∆ii > 0, and negatively correlated in the case of flipping into different classes, i.e.,

∆ij < 0, i 6= j, we will have M being the identity matrix IK×K . Next, we present

the following two label noise settings that satisfy the above condition.

Sparse noise model:

This setting corresponds to the disjoint pairwise noises, in which we try to

capture the settings where particular pairs of classes are easily mistaken between

each other. For instance, an image of a plane may look like a bird, while it is

unlikely to mistake a plane with a truck. One can specify this type of noise by a

pair of classes (i, j) and a pair of transition matrix elements (Tij, Tji). Formally,

suppose we have chosen C pairs, (ic, jc)c∈[C]. Generally, the transition matrix is

of the form (without losing generality, assume ic < jc, note there will be C pairs):

T =



. . .

1− Ticjc . . . Tjcic
...

Ticjc . . . 1− Tjcic
. . .


.

The off-diagonal elements Ti,j 6= 0 only if i = ic, j = jc or i = jc, j = ic.

12

Lemma 1. Let there be C pairs in the K classes. If Ticjc + Tjcic < 1 and T ∗icjc +

T ∗jcic < 1 for all c ∈ [C], then M = IK×K.

Uniform off-diagonal noise model:

More generally, we consider the case in which any clean labels can be flipped

into every other possible class. We assume that the noise rates of flipping into

a given class from other classes to be the same. Mathematically, it reads Tij =

Tik, ∀i 6= j 6= k. Note that this is different from saying the noise is uniform.

Different classes have different chances of having a wrong label (i.e., Tii 6= Tjj, i 6=

j.) Let ei = Tij,∀i 6= j, the transition matrix T takes the following form

T =



T11 e1 e1 . . . e1

e2 T22 e2 . . . e2

e3 e3 T33 . . . e3
...

eK eK eK . . . TKK


,

where the diagonal terms can be computed by the conservation of probability, i.e.

Tii = 1 − ∑j 6=i ej. Compared to the sparse noise setting, this is a much more

chaotic noise setting with high average noise rates. We believe this noise model is

more suitable for testing the robustness of our method.

If we further assume e∗i = T ∗ij = T ∗ik, ∀i 6= j 6= k and T ∗ii = 1−∑j 6=i e
∗
j for the

Bayes optimal classifier. Then, we have

Lemma 2. If ∑j∈[K] e
∗
j < 1 and ∑k∈[K] ek < 1, then M = IK×K.

We admit that none of the above-mentioned conditions are as concise and

clean as in the binary classification case. However, pending the above conditions

13

holds, we can write down the 0-1 peer loss for multi-class situations

1peer(cl(xn), ỹn) = 1(cl(xn), ỹn)− 1(cl(xn1), ỹn2),

and, similarly, the peer loss in its standard form

`peer(h(xn), ỹn) = `(h(xn), ỹn)− `(h(xn1), ỹn2). (2.1)

Not surprisingly, this is in the same form as for the binary classification case. All

the difficulties hide in finding the right informative conditions of the label noise

so that the above formulation is valid.

2.1.3 Noise tolerance properties of peer loss

Peer loss is proved to possess excellent noise tolerance properties in the bi-

nary classification tasks. We further elaborate on its noise tolerance property in

the multi-class classification case. For an arbitrary noise transition matrix, the

analysis will be intractable. Thus, we will focus on the uniform off-diagonal noise

model. We show under uniform off-diagonal noise, `peer is robust to label noise

for an arbitrary hypothesis class:

Theorem 1. The expectation of peer loss is invariant to label noise up to an affine

transformation:

ED̃[`peer(h(X), Ỹ)] =
1−

∑
j∈[K]

ej

ED[`peer(h(X), Y)]. (2.2)

This above theorem states that peer loss is invariant subject to a broad set-

ting of multi-class label noise. Therefore optimizing peer loss over noisy data is

equivalent to optimizing it over clean data. With the above, we can further prove

14

that when the classes are balanced, optimizing the 0-1 peer loss induces the Bayes

optimal classifier.

Theorem 2. When the true label Y has equal prior P (Y = k) = 1/K, ∀k ∈ [K],

we have

cl∗Bayes = arg min
cl∈F

ED̃
[
1peer(cl(X), Ỹ)

]
.

Remark 1. Unlike for the 0-1 peer loss, we do not have any clear result that

connects the optimal classifier obtained by optimizing the general peer loss `peer

and the Bayes optimal classifier. It turns out we need to adopt a new viewpoint

towards this problem, which will be elaborated in detail in section 2.3.3.

2.1.4 The α peer loss and a brief summary of the experi-

ments on benchmark image datasets

Now, we consider the practical implementation of peer loss to the learning with

noisy labels problem. In this way, we want to investigate the practical effectiveness

of peer loss under different types of label noise, not limiting to the sparse noise

and uniform off-diagonal noise mentioned in the previous subsections.

The experiments suggest that for peer loss to work in the multi-class classifi-

cation case, we need to introduce the α peer loss, which is defined as follows.

`p−α(h(xn), ỹn) = `(h(xn), ỹn)− α · `(h(xn1), ỹn2).

Recall that n, n1 and n2 refer to three independent random samples. n1 and n2 are

called the peer samples of sample n. The only difference with the definition (2.1)

is that we introduce a hyper-parameter α to tune the contribution of the second

term (a.k.a. the peer term). In our experiments, the α increases as the training

process progress. Initially, the α is set to 0 and gradually increases to a relatively

15

large value, say 5 or 10. We will stop increasing the α and fix its final value

throughout the remaining training process. We find such a way of tuning α works

in most situations of our experiments. To understand this behavior is one of the

main targets of the later sections in this chapter.

Besides, we would like to provide a brief summary of the experiment results

here. On the one hand, this thesis is mainly devoted to the theory of peer loss.

We do not want to disturb the theoretical analysis. On the other hand, these

experiments reveal interesting behaviors of peer loss that need to be explained in

our theoretical framework. For the details about the experiments, the readers can

refer to chapter 4. Now, we list the major observations:

1. As mentioned, we find it necessary to introduce a hyper-parameter α to con-

trol the peer term’s contribution. In addition, we usually find an increasing

α that starts from 0 will make the model work well.

2. Even though the formulation and noise tolerance properties of peer loss in

the multi-class case rely on restricted assumptions about the type of label

noise, we find the α peer loss works well in general situations, such the

Clothing1M dataset.

3. The experiments on 2-dimension synthetic datasets show that the model

trained with peer loss tend to have a hard decision boundary, i.e., the model

is confident about their predictions.

In later content, we will explore extensions of the present theory of peer loss and

provide explanations for those observations.

16

2.2 Peer loss as the difference between K-L di-

vergences

In the previous section, we discussed the multi-class extension of peer loss and

proved relevant label noise tolerance properties. The drawback of the previous

formulation is two-fold: First, the noise tolerance relies on the complete cancel-

lation of label noise, which is limited to some particular noise types and cannot

be justified easily in real-life practice. Second, our numerical experiments suggest

that one should adopt a hyper-parameter α to tune the peer term’s contribution

to make peer loss work in multi-class classification. Thus, the previous theory

cannot completely explain the success of peer loss in practice, and there should

be another way to explain the working mechanism of peer loss better.

In this section, we focus on developing an intuitive formulation that can help

us better understand why and how peer loss works in practical learning with noisy

label problems. It is worth noting that we only consider the expectation over the

data distribution D rather than the empirical distribution D.

2.2.1 Deriving the divergence form

Let’s start from the a special version of peer loss

`peer (h (xn) , yn) = `CE (h (xn) , yn)− `CE (h (xn1) , yn2) ,

where we focus on the CE loss `CE and h(·) is the output of the neural network.

The pair (xn, yn) refer to the normal training samples, while (xn1 , yn2) are the peer

samples.

Taking expectation of `peer over the training data distribution D ∼ P(X, Y),

17

one finds

ED [`peer(h(X), Y)] = ED [`CE(h(X), Y)]− EDY
[EDX

[`CE (h (X) , Y)]]

= −
∫

ΩX

dx
∑
y∈[K]

P (x, y) logQ(y|x)+

∫
ΩX

dx
∑
y∈[K]

P (x)P (y) logQ(y|x),

(2.3)

where DX and DY are the marginal distribution for the features and labels, re-

spectively. ΩX denote the domain of feature x, and [K] = {1, 2, · · · , K} refers

to the set of possible classes. In the last line, we plug in the explicit form of CE

loss and write the expectation as a sum-integration over the domain of feature

x and label y. The conditional probability Q(y|x) stands for the prediction of

the underlying neural network model, while P (x, y) and P (x)P (y) refer to the

probabilities of the joint and marginal-product of the training distribution. We

call the first sum-integration as CE term and the second as peer term.

The key observation is that P (x, y), P (x), and P (y) do not depend on the

model parameters and, thus, will not contribute to the gradient. In this sense,

we say such terms are "constant". Thus, one can add an arbitrary function of

those "constant" terms to the loss function without affecting the resulting optimal

classifier. For the CE term, we have

CE term→−
∫

ΩX

dx
∑
y∈[K]

[P (x, y) logQ(y|x)P (x)− P (x, y) logP (x, y)]

=−
∫

ΩX

dx
∑
y∈[K]

P (x, y) log Q(x, y)
P (x, y)

=DKL(Q(X, Y)‖P(X, Y)).

In the above, we used Q(x, y) = Q(y|x)P (x) as in classification task the model

prediction does not affect the feature distribution. So that optimizing the CE

18

term (i.e., the CE loss) leads to minimizing the K-L divergence between the joint

distributions of the training data and the model prediction. The global minimum

of this divergence lies at Q(X, Y) = P(X, Y), i.e., when the model prediction

completely fits the data distribution. Thus, we see intuitively the CE loss tends

to overfit to the noisy data.

Similarly, for the peer term

peer term→
∫

ΩX

dx
∑
y∈[K]

[P (x)P (y) logQ(y|x)P (x)− P (x)P (y) logP (x)P (y)]

=
∫

ΩX

dx
∑
y∈[K]

P (x)P (y) log Q(x, y)
P (x)P (y)

=−DKL(Q(X, Y)‖P(X)× P(Y)).

Because of the minus sign, minimizing the peer term pushes Q(X, Y) away from

the marginal-product P(X)×P(Y). Also, we note that there is no global minimum

in this situation. Now the expectation of the peer loss can be rewritten as

ED [`peer(f(X), Y)] = DKL(Q(X, Y)‖P(X, Y))−DKL(Q(X, Y)‖P(X)× P(Y)).

(2.4)

2.2.2 Intuition: Two anchors, correlation regularizer

Based on equation (2.4), there are two driving forces in the peer loss.

• In optimizing the CE term, the model prediction Q(X, Y) is getting closer

to the data distribution P(X, Y). Certainly, this would cause overfit. Espe-

cially in the presence of noise, the model can overfit to the noisy signal in

the training set.

19

• In the peer term, the K-L divergence measures the "distance"1 between the

marginal-product P(X) × P(Y) and the model prediction Q(X, Y). Since

the distribution P(X)×P(Y) is the least correlated one, minimizing the peer

term encourages the model prediction to encode more correlation between

X and Y .

Intuitively, we see P(X, Y) and P(X)× P(Y) as two anchors that provide a refer-

ence for our optimization. Anchor P(X, Y) is an attractor and anchor P(X)×P(Y)

is a repellent.

As the effects of the peer term are not definitive, i.e., it just encourages a

higher correlation between X and Y in the model prediction without specifying

a concrete target, we will call this term a correlation regularizer. We naturally

expect to introduce a hyper-parameter to tune the importance of the correlation

regularizer, thus resulting in the α peer loss. Putting in the divergence form, the

α peer loss reads

ED [`peer(f(X), Y)] = DKL(Q(X, Y)‖P(X, Y))−α ·DKL(Q(X, Y)‖P(X)×P(Y)),

where α is the hyper-parameter that controls the contribution of the regularizer

during the training.

In the next subsection, we will show that the above intuition is consistent with

all the properties of peer loss and experimental observations.

2.2.3 Interpretation of properties of peer loss

Label noise tolerance: The first and foremost thing is to clarify why peer loss

helps to reduce the effect of label noise. Here we assume that
1Just a metaphor, as K-L divergence is not a distance measure.

20

Adding noise will degrade the correlation between the features and the labels.

In other words, the noise should be "random" and make the data less informa-

tive2. By making this assumption, we exclude a subset of adversarial noise, which

introduces a fake correlation that can be stronger than the original true signal.

Dealing with such kinds of adversarial noise requires quite different techniques.

Pending the above assumption holds, overfitting to the noisy data (a likely

result when training using the CE loss solely) would lead to a model prediction

with less correlation between X and Y . Adding the correlation regularizer will

push the model closer to the "correct direction" (this is an ambiguous term, please

refer to the α tuning part for more discussion).

By the above discussion, we see that so long as the noise decreases the cor-

relation in the dataset, peer loss could help, not limited to particular label noise

settings, which are necessary for a complete cancellation of the noise. Thus we

can apply peer loss to much broader situations in real-life practice.

α tuning: Even though setting α = 1 could get a complete cancellation of the

uniform and sparse label noise in theory, we found in practical training that it

generally performs better when adopting an increasing α.

This observation can be readily explained in our divergence picture. We note

that the correlation regularizer is "blind", as it does involve any restriction on

optimizing direction. If we start with α = 1 from the beginning, the SGD update

might lead us to anywhere provided Q(X, Y) encodes a high correlation between

X and Y . To avoid such a situation, we need to make use of the anchor P(X, Y) to

narrow down the searching area. More precisely, we start from α = 0, letting the

model grasp the basic pattern in the dataset. Then, α is increased to regularize
2This assumption may be justified to some extent base on the Data Processing Inequality

(DPI).

21

the resulting model for suppressing the overfitting to the label noise.

Hard decision boundary: In the experiments on the two-dimension synthetic

dataset, we found when applying peer loss with large α (of course, in an increasing

manner), the decision boundary is much narrow than using CE loss or peer loss

with small α. We call such a narrow decision boundary a hard decision boundary,

which means the model is quite confident when making predictions.

This phenomenon can be understood well in our divergence picture as well.

Roughly speaking, larger α encourage higher correlation between X and Y in

model prediction, and the highest correlation corresponds to a deterministic func-

tion, i.e. P (y = i|x) ≈ 1 for some class i and 0 for the other classes. Hence, the

resulting model would be more confident with its prediction, hence possess harder

decision boundary. For example, let’s consider a binary classification problem and

assume balanced prior for label distribution, the peer term reads

peer term =
∫

ΩX

dx
∑
y∈[2]

P (x)P (y) logQ(y|x)

=1
2

∫
ΩX

dx
∑
y∈[2]

P (x) logQ(y|x)

=1
2

∫
dxP (x) [logQ(y = 1|x) + log(1−Q(y = 1|x))] .

Note the integrand is of form log t + log(1 − t), t ∈ (0, 1), which takes its mini-

mum at t→ 0 or t→ 1. This implies Q(y = 1|x)→ 0 or 1 are preferred solution,

and such case, where relation between x and y become almost deterministic, rep-

resently the higheast level correlation between X and Y .

Remark 2. The peer term could over-regularize the training, especially when

working on a clean dataset. However, we argue that, at least for image clas-

sification tasks, the peer term will not harm. This is because, in practice, the

22

distribution of images from different classes are usually well separated, i.e., it is

rare that one can not distinguish a dog from a cat. Mathematically, one may de-

fine a well-separated dataset as the one with P (y = i|x) ≈ 1 for a specific class i

and ≈ 0 otherwise.

Remark 3. The divergence formulation also indicates possible extensions to peer

loss. One option is to use a general f -divergence rather than the K-L divergence

for the correlation regularizer, i.e. Df (Q(X, Y)‖P(X) × P(Y)). This is one of

our ongoing research projects. We found that even though the intuition does not

change, the choice of f -divergence does matter. In other words, the correlation

regularizer should contribute similarly to the CE term during the training.

2.3 Peer loss as the correlation risk

From the divergence viewpoint, we can intuitively explain the working mech-

anism of peer loss in practical training. However, it is very hard to draw con-

crete conclusions on the properties of the resulting optimal classifier. This is

certainly not satisfactory. Can we do better? It turns out that peer loss can be

re-interpreted as the correlation risk, which differs from the population risk and

does not target at learning the Bayes optimal.

In this section, we will show that the trace of the Correlated Agreement (CA)

matrix ∆ provides a measure of classification performance, which puts more em-

phasis on the minor classes than the accuracy measure does. We call this new

measure the correlation measure. Correlation measure matches the correlation

risk minimization just as accuracy measure matches the population risk mini-

mization. Thus, it is possible to build a similar framework for correlation risk as

to the one for Bayes risk.

23

Let us start from a brief review of the accuracy measure and its relation to

the Bayes optimal classifier and the population risk.

2.3.1 The accuracy measure, Bayes optimal classifier, pop-

ulation risk and classification calibration

The confusion matrix C of a classifier is defined by Cij := P (ŷ = i, y = j).

We use ŷ to indicate the classifier’s output, and y to indicate the label from the

dataset. The accuracy of the classifier is the trace of the corresponding confusion

matrix, i.e., tr(C). Furthermore,

tr(C) =
∑
i∈[K]

P (ŷ = i, y = i)

=
∫

ΩX

dx
∑
i∈[K]

P (ŷ = i, y = i, x)

=
∫

ΩX

dx
∑
i∈[K]

P (ŷ = i|y = i, x)P (x, y = i)

=
∫

ΩX

dx
∑
i∈[K]

P (ŷ = i|x)P (x, y = i),

where ΩX is the domain of the feature x, and [K] = {1, 2, · · · , K} refers to the K

classes. In the last step, we use the fact that the output classifier only depends

on the input feature x. Here, we emphasize agian the distinction between the

prediction of a neural network model hy(x) and the prediction of the corresponding

classifier cl(x). hy(x) models the conditional probability of getting label y given

the feature x, which we will denote as Q(y|x). On the other hand, cl(x) only

assigns a specific label l∗ for any input x. In the above equation, P (ŷ = i|x) is

the conditional probability corresponds to cl(x) rather than hy(x). We have

P (ŷ = i|x) = δi;l∗ ,

24

namely, P (ŷ = i|x) = 1 if i = l∗ and 0 otherwise. Hence, the summation in the

above integrand becomes

∑
i∈[K]

P (ŷ = i|x)P (x, y = i) = P (x, y = l∗).

Recall that there is a special classifier called the Bayes optimal classifier, which is

defined as

cl∗Bayes(x) = arg max
i∈[K]

P (x, y = i).

The Bayes optimal classifier chooses the label with the highest probability at each

x as its prediction. The accuracy of the Bayes optimal classifier is the highest

one among all possible classifiers. In this sense, we say that the Bayes optimal

classifier matches the accuracy measure.

To learn the Bayes optimal classifier, the most direct way is to apply 0-1 loss

1[cl(x), y] :=


1, if cl(x) 6= y,

0, otherwise.

In expectation over the dataset distributionD, we have ED[1[cl(x), y]] equals to 1−

tr(C). Thus, minimizing 1[cl(x), y] over D will lead to the Bayes optimal classifer.

However, an optimization problem contains 0-1 loss can not be solved easily as it

is not differentiable. To resolve this difficulty, people seeks a class of differentiable

convex surrogates which are classification-calibrated [25]. For those classification-

calibrated functions `(·, ·), minimizing its population risk ED[`(h(x), y)] leads to

Bayes optimal classifier. Normally used convex loss functions, such as − log, are

classification calibrated.

25

2.3.2 The correlation measure

The Correlated Agreement (CA) matrix ∆ is introduced by Shnayder et al. [24],

which is defined as ∆ij := P (ŷ = i, y = j) − P (ŷ = i)P (y = j). We define the

correlation measure as the trace of the ∆ matrix,

tr(∆) =
∑
i∈[K]

P (ŷ = i, y = i)− P (ŷ = i)P (y = i). (2.5)

We can further expand the above expression as

tr(∆) =
∫

ΩX

dx
∑
i∈[K]

[P (ŷ = i, y = i, x)− P (ŷ = i, x)P (y = i)]

=
∫

ΩX

dx
∑
i∈[K]

P (ŷ = i|x)[P (x, y = i)− P (x)P (y = i)],

where P (ŷ = i|x) share the same meaning as in the accuracy measure case. We

can define a correlation optimal classifier as follows

cl∗corr(x) = arg max
i∈[K]

[P (x, y = i)− P (x)P (y = i)].

This correlation optimal classifier maximize the correlation measure. In other

word, the correlation optimal classifier matches the correlation measure.

Properties of the correlation measure and its usefulness

The first term in the correlation measure is just the accuracy, while the second

term refers to a trade-off between accuracy and a balanced prediction. To see

this, let us rewrite the second term in definition (2.5) as

−
∑
i

aipi, s.t.
∑
i

ai = 1, ai ≥ 0 and
∑
i

pi = 1, pi ≥ 0.

26

We adopt ai = P (y = i) and pi = P (ŷ = i). Let amin be the minimum value of

ai. Maximizing this term alone gives

pi =


1, if ai = amin,

0, otherwise,

and the maximum value is −amin. Here, for simplicity, we assume ai does not

degenerate. We find that this term pushes the prediction to emphasize the least

populated class in the data. This tendency is contradicted to the first term, i.e.,

the accuracy.

Therefore, we conclude that compared to the accuracy measure, the correlation

measures weight more of the model performance on minor classes, and can be

useful in the fields such as fairness in machine learning. Besides, we will show in

later sections and chapter 3 that the correlation risk provides a systematic way of

maximizing the correlation measure, while there does not exist such systematic

method to maximize many other measures, say the F1 score.

2.3.3 The correlation risk and dynamical calibration

The correlation risk is inspired by the expectation of peer loss over the data

distribution, which is

ED [`peer(h(X), Y)] = ED [`CE(h(X), Y)]− EDY
[EDX

[`CE (h (X) , Y)]]

= −
∫

ΩX

dx
∑
y∈[K]

P (x, y) logQ(y|x)+

∫
ΩX

dx
∑
y∈[K]

P (x)P (y) logQ(y|x)

=
∫

ΩX

dx
∑
y∈[K]

− logQ(y|x)[P (x, y)− P (x)P (y)].

27

Comparing to the definition of the population risk, we can define the correlation

risk for a differentiable loss function ` as

Rc(`) :=Ec[`(h(x), y)]

=
∫

ΩX

dx
∑
y∈[K]

`(h(x), y)[P (x, y)− P (x)P (y)].

Note that the weight is no longer the probability P (x, y) but the correlation term

P (x, y)−P (x)P (y). Usually, the correlation term takes both positive and nega-

tive values. We find that the new risk is in the form as the difference between two

convex functions (assuming ` is convex), which breaks the proof of classification

calibration property in [25].

To justify the name of correlation risk, we need to show that optimizing this

risk will maximize the correlation measure defined in the previous subsection.

Apart from the 0-1 loss case, this property is very hard to establish using conven-

tional methods. The difficulties root in the nonconvexity nature of the objective.

To address these difficulties, we shall take a dynamic view. More specifically, we

will study the stable steady states in the searching space, through which we can

show that optimizing the correlation riks indeed encourage the model to grasp

the positive correlations in the data. We defer a full description of the dynamical

analysis to chapter 3.

For the completion of the discussion in this section, we will state several main

results from chapter 3 here for reference. Training with the correlation risk, in

the best case, for all x we have the network output to be

hy(x) =


N [P (y|x)− P (y)], if P (y|x)− P (y) > 0,

0, otherwise,

28

where N is a normalization factor. Note that this hy(x) only captures the positive

correlation between the feature x and label y. It can be shown that if we include

the negative correlation part in the above definition, then the resulting hy(x)

cannot be optimal, i.e., one can find an update ∆y(x) such that the correlation

risk decreases. For a detailed proof, please refer to chapter 3.

It is straightforward to see that the corresponding classifier of the above hy(x)

is equivalent to the correlation optimal classifier. This property validates the

name of correlation risk. For the general case, even though there are enormous

sub stable steady state, we have the following stronger conjecture

Conjecture 1. In practical training, under the dynamics induced by the Peer

Loss, the model state tends to converge to the stable steady states in the positively

correlated case.

In this conjecture, the positively correlated case refers to a specific type of hy(x).

Such hy(x) takes positive values on those x and y such that P (y|x)−P (y) > 0, and

takes value 0 otherwise. For a detailed discussion, please refer to the section 3.4.2.

Within the correlation risk framework, we can provide a more quantitative

explanation of the α tuning. We will introduce a α correlation risk

Ec;α[`(h(x), y)] =
∫

ΩX

dx
∑
y∈[K]

`(h(x), y)[P (x, y)− αP (x)P (y)],

which corresponds to the expectation of the α peer loss. Tuning α is to tune the

threshold of positive correlation. If we properly increase α during the training,

then eventually, only the label with the largest correlation can have positive weight

P (x, y) − αP (x)P (y). If the conjecture mentioned above holds, then we are

more likely to learn the largest positive correlation rather than other sub-optimal

solutions.

29

Remark 4. Note that even though we include α in the correlation risk, there is

no need to include α in the correlation measure.

Our dynamical analysis is based on the CE loss instead of the 0-1 loss; hence

it can also be viewed as a calibration argument, which we named the dynamical

calibration.

Remark 5. The correlation risk viewpoint also provides a new way to look at the

label noise tolerance property of peer loss. Actually, it is of interest to compare

with the population risk case:

• If P (x, y′) > P (x, y),∀y 6= y′ holds in both the clean and noisy distribu-

tion with the same y′, we say the order of P (x, y) is preserved. Any noise

that does not change the order of P (x, y) will not affect the Bayes optimal

classifier.

• Similarly, any noise that does not change the order of P (x, y)− P (x)P (y)

will not affect the correlation optimal classifier.

• It is possible to find a noise 3 that changes the order of P (x, y) while pre-

serving the order of P (x, y)−P (x)P (y). Likewise, one can also find a noise

that changes the order of P (x, y)−P (x)P (y) while preserving the order of

P (x, y).

Thus, we find it is hard to say which of the correlation risk and the population

risk is better in tolerating data noise in the general case. We would like to further
3As an example, let us consider a binary classification task on noisy dataset with noise rates

e+ = 0.1 and e− = 0.8. Suppose in the clean dataset P (x0, y = +1) = P (x0, y = −1) at x0.
Then, in the noisy dataset, we find

P (x0, ỹ = +1) = 0.9P (x0, y = +1) + 0.8P (x0, y = −1)

and
P (x0, ỹ = −1) = 0.2P (x0, y = −1) + 0.1P (x0, y = +1).

Thus, P (x0, ỹ = +1) > P (x0, ỹ = −1), and the order of P (x, y) has been changed.

30

ask about the difference between the types of noise that are tolerant under the

population riks and the correlation risk, respectively. This is one of our ongoing

research projects.

2.4 Chapter summary

Section 2.1 considers the extension of peer loss to the multi-class classification

tasks, emphasizing the ability to recover clean Bayes optimal classifier and the

exact cancellation of certain types of label noise. For those properties to hold

in multi-class classification, we need to make more restricted assumptions on the

label noise than in binary classification case. Furthermore, it is hard to explain

why peer loss works in practical applications within this formulation. To address

these difficulties, we developed a divergence formulation of peer loss in section 2.2,

which provides an intuitive explanation of the working mechanism of peer loss in

practice. Primarily, we recognize the peer term as a correlation regularizer that

encourages the model prediction to encodes more correlation between the features

and labels. However, there lack accurate descriptions about the properties of

the resulting optimal classifier. In other words, the divergence formulation tells

us where peer loss pushes the model but provides little information about the

optimal classifier’s concrete properties. Hence, in section 2.3, we turn to the

third viewpoint, identifying peer loss as a correlation risk. It is demonstrated

that training with peer loss, we indeed aim at a different target comparing to the

population risk. The full analysis requires techniques from the evolutionary game

theory [2], whose details are deferred to the next chapter.

31

Chapter 3

Dynamical Analysis

In the previous chapter, we discussed the extension of the original peer loss to

the multi-class classification tasks and studied the intuition and working mecha-

nism behind peer loss. Especially in section 2.3, we investigated the possibility

of interpreting peer loss as an instance of correlation risk. To complete the corre-

lation risk framework, we need a calibration property which links the correlation

risk and the optimal correlation classifier. This is the focus of the present chap-

ter. As already discussed, the nonconvex feature of the correlation prevents us

from establishing the calibration property by conventional method [25]. We will

instead adopt the method from the evolutionary game theory [2], studying the

stable steady states in the searching space. In this way, we can get a dynamical

version of the calibration property. We also emphasize that the present dynami-

cal analysis is not complete. However, we believe it provides a promising way to

understand the training dynamics using peer loss (hence, the correlation risk).

In the following, we will use the terms peer loss and correlation risk inter-

changeably, as their formulations are identical.

32

3.1 Assumptions

In this section, we only consider the correlation risk with CE loss, i.e.

Ec[`CE(h(x), y)] = −
∫

ΩX

dx
∑
y∈[K]

log hy(x)[P (x, y)− P (x)P (y)].

This can be regarded as the limit of the empirical correlation risk when the number

of samples tends to infinite. Further, we have the following three assumptions:

A1. The model capacity is infinite (i.e., it can realize arbitrary variation).

A2. The model is updated using SGD algorithm (i.e. updates follow the decreas-

ing Ec[`CE(h(x), y)] direction).

A3. The derivative of network function ∂fy(x;w)
∂wi

is smooth (i.e. the network func-

tion has no singular point).

The infinite capacity assumption is somehow justified in practice as we usually

have an over-parametrized neural network model comparing to the scale of the

underlying task.

3.2 Searching space geometry

At each feature x, the model prediction hy(x) satisfies ∑y hy(x) = 1. That is

to say, assuming there are K classes, the model preidction is a point in a (K−1)-

dimension simplex SK−1. Let ΩX denote the set of features, the whole searching

space will be ΩX × SK−1. We call this searching space a hypersimplex as shown

in figure 3.1 below.

Let IntK−1 and VK−1 denote the interior and vertices of SK−1, respectively.

The interior and veritices of the hypersimplex are defined as the union of the

33

interior and vertices of all the (K − 1)-simplex, i.e. IntΩX
K−1 := ⋃{IntK−1(x)}x∈ΩX

and V ΩX
K−1 := ⋃{VK−1(x)}x∈ΩX

. Then, the edges of the hypersimplex are defined

as the complementory set of IntΩX
K−1

⋃
V ΩX
K−1 in ΩX × SK−1.

Figure 3.1: A sketch of the hypersimplex and hy(x) as a "curve"/"point" in it.

3.3 Preliminaries

In this chapter, we investigate the training dynamics of peer loss (treating as a

special instance of the correlation risk). Thus, we care about the update rule and

the corresponding variations of hy(x) and Ec[`CE(h(x), y)]. We summarize those

quantities in this section for future reference. The full deduction can be found in

the appendix.

When referring to the update rule, we mean SGD, i.e.

δwi = −η∂Ec[`CE(h(x; w), y)]
∂wi

,

where η is the learning rate and w (and its i-th element wi) refers to the model

parameters, e.g. the weights and bias in each layer of a neural network model.

Note in the above expression, we explicitly write down the dependence of the

model prediction h on w. In later content, we will suppress this explicit depen-

34

dency when it makes no misunderstanding. Corresponding to this change in w,

the variations of hy(x) and Ec[`CE] are

δhy(x) := ∆y(x)

= hy(x) · η
∫

ΩX

dx′
∑
y′∈[K]

[P (x′, y′)− P (x′)P (y′)]
∑
i

Gi(x, y)Gi(x′, y′)

(3.1)

and

δEc[`CE] = −
∫

ΩX

dxP (x)
∑
y∈[K]

∆y(x)P (y|x)− P (y)
hy(x) , (3.2)

respectively. In equation (3.1), we have used abbreviation

Gi(x, y) = −∂gy(x)
∂wi

+
∑
y′∈[K]

hy′(x)∂gy
′(x)

∂wi
,

where gy(x) is the network output before the softmax activation, i.e. hy(x) =

exp(gy(x))/∑′y exp(gy′(x)). We will assume gy(x) and ∂gy(x)
∂wi

are smooth functions.

There is an important implication of equation (3.1), namely, if hy(x) = 0 then

corresponding ∆y(x) = 0 as well. Note that this property holds even when we

use the Cross-Entropy loss with cut-off (i.e. use − log(hy(x) + ε) rather than

− log(hy(x))).

Directly solving the evolution of the model prediction hy(x) in the searching

space is infeasible. Hence, we turn to look for those steady states, in which

δEc[`CE] = 0 for arbitrary variation ∆y(x) that satisfies ∑y∈[K] ∆y(x) = 0. In

other states, there exist an update that reduces the correlation risk Ec[`CE], and,

thus, cannot be optimal. Moreover, we are interested in the stable steady states,

which are the local minima in the hypersimplex. They are the only reachable

states in practical training.

35

3.4 Steady states and their stability

3.4.1 Steady states in the interior of the hypersimplex

Proposition 1. There is no steady state in the interior of the hypersimplex.

At a specific x0, the summation in the integrand of equation (3.2) reads

F (x0) :=
∑
y∈[K]

∆y(x0)P (y|x0)− P (y)
hy(x0) . (3.3)

Let us split the labels y into the following two sets (without loss of generality, we

ignore the P (y|x0)− P (y) = 0 cases):

Yx0;− = {y : P (y|x0)− P (y) < 0}

and

Yx0;+ = {y : P (y|x0)− P (y) > 0}.

Now, by assigning ∆y(x0) = ay < 0,∀y ∈ Yx0;− and ∆y(x0) = by > 0,∀y ∈ Yx0;+,

one finds F (x0) > 0 since hy(x0) > 0 for interior states. To accommodate the

constraint ∑y ∆y(x0) = 0, we can multiply every by a normalization factor Nb so

that ∑
y∈Y−

ay +Nb ·
∑
y∈Y+

by = 0,

which is always possible. Let Bε(x0) be a ε-neighbourhood of x0. Because hy(x)

is continuous, we can set1 ∆y(x) = 1
2(1 + cos π‖x−x0‖

ε
)∆y(x0),∀x ∈ Bε(x0) and 0

otherwise. This choice will lead to δEc[`CE] < 0.

The above argument demonstrates the existence of a variation ∆y(x), which

leads to a decrease in Ec[`CE] for all interior states of the hypersimplex. Under
1The coefficient 1

2 (1 + cos π‖x−x0‖
ε) is added so that the continuity of hy(x) preserves.

36

the assumption of infinite model capacity, SGD is always able to discover such an

update. The trajectory of the model state will approach the edges and vertices of

the hypersimplex under the dynamics induced by peer loss.

3.4.2 Steady states in the edges and vertices of the hyper-

simplex

As the model state approaches the edges and vertices of the hypersimplex,

there must be at least one x0, at which hy(x0) → 0 for some y. Equation (3.1)

tells us

Proposition 2. For any (x, y), hy(x) = 0 implies ∆y(x) = 0.

Thus, the model state can never escape from an edge nor vertex after arriving

at it, as the corresponding component hy(x) = 0 will always be 0. In this way, the

effective dimensionality of the simplex at x0 is reduced. Now, if in this simplex

P (y|x)−P (y) still has both positive and negative values, then we can repeat the

argument in section 3.4.1 and conclude that the state is not stable. Such process

can be performed recurrently until for all x ∈ ΩX either P (y|x) − P (y) < 0 or

P (y|x)− P (y) > 0 for all y such that hy(x) 6= 0.

More rigorously, we define the set of nonzero components of the model predic-

tion at x

Yx := {y|hy(x) 6= 0}.

Then, one can distinguish the following three cases of states in the hypersimplex

that can support steady states:

1. For all x ∈ ΩX , P (y|x) − P (y) > 0,∀y ∈ Yx, which is called the positively

correlated case.

37

2. For all x ∈ ΩX , P (y|x)− P (y) < 0,∀y ∈ Yx, which is called the negatively

correlated case.

3. This case is the mixture of the case 1 and 2, namely for some x one has

P (y|x)−P (y) > 0,∀y ∈ Yx, while for the other x one has P (y|x)−P (y) <

0,∀y ∈ Yx. We call this the mixed case.

Next, we give the explicit expression of the steady states in the above three

cases. At any x, we have a special assignment for hy(x)

hy(x) =


N|P (y|x)− P (y)|, ∀y ∈ Yx

0, otherwise,

where N is the normalization factor that ensures hy(x) summed to 1. By equa-

tion (3.3), it is straightforward to see F (x) = 0,∀x ∈ ΩX for arbitrary ∆y(x).

Hence, δEc[`CE] = 0 for arbitrary ∆y(x). Based on the above arguments, these

are all the possible steady states in the hypersimplex.

Remark 6. Since P (y|x)−P (y) represent the correlation between x and y relative

to the average label distribution. We will call those y with P (y|x) − P (y) > 0

positively correlated labels and those y with P (y|x)−P (y) < 0 negatively correlated

labels.

Remark 7. These three cases include both the steady states on the edges as well

as the vertices. This is because we only require P (y|x)−P (y) have the same sign

for y ∈ Yx, thus, Yx may not include all the positively/negatively correlated labels.

Remark 8. It is possible to relate the correlation optimal classifier to the Bayes

optimal classifier. We know that the uniform off-diagonal noise preserves the order

38

of the correlation term P (x, y)− P (x)P (y), i.e.,

P (x, ỹ)− P (x)P (ỹ) =
(

1−
∑
`

e`

)
[P (x, y)− P (x)P (y)].

At the best situation of the positively correlated case, the classifier hy(x) will

fully capture the positive correlation in the dataset. Then, one can successfully

recover the label with the largest correlation by prediction rule

y∗x = arg max
y∈[K]

hy(x).

Further, when the clean prior is balanced, the order of correlation P (x, y) −

P (x)P (y) is the same as the joint probability P (x, y). Thus, we recover the

Bayes optimal classifier.

3.4.3 Stability of the steady states

The positively correlated case: In this case, all the nonzero components

of the model prediction correspond to the positively correlated labels. On such

edges of the hypersimplex, the situation is much similar to the conventional Cross-

Entropy loss case. It follows these steady states are stable. Recall the assignment

hy(x) =


N|P (y|x)− P (y)|, ∀y ∈ Yx

0, otherwise,

Particularly, in the best situation, where Yx includes all the positively correlated

labels for all x ∈ ΩX , we see the stable steady state reflects the CA apart from

all the negative values are cut off. In this sense, arg max
y

hy(x) will give the

component corresponding to the maximum correlation, i.e., being the correlation

39

optimal classifier.

We also need to look at the value of the correlation risk, which is

Ec[`CE] =
∫

ΩX

dxP (x)

− ∑
y∈[K]

[P (y|x)− P (y)] log hy(x)

 . (3.4)

Easiely, one find at such stable steady state Ec[`CE]→ −∞.

Remark 9. In the above argument, we treat ∞ as a normal number so that even

when Ec[`CE] → −∞ the model state can continue evolving and approach the

steady state at the edge. This is somehow justified as, in practice, we usually use

log(x + ε) in computing the loss. Hence, one would get a negative value with a

large magnitude rather than −∞. We will adopt this convention for all arguments

in the present subsection.

The negatively correlated case: This case only differs from the positively

correlated case by a minus sign. It almost changes everything. Now the steady

state is a maximum on edge and thus is not stable. The model state will tend to

converge to a vertex of the edge. Mathematically, this means for all x ∈ ΩX

hy(x) =


1, for one y∗ such that P (y∗|x)− P (y∗) < 0

0, otherwise.

Note that y∗ will depend on the details of the training process, such as the ini-

tialization. Note that Ec[`CE]→∞ even for the above solution. We conclude the

negatively correlated case will not be favored during practical training.

The mixed case: To analyse this case, we must rely on equation (3.4), i.e. the

explicit expression for Ec[`CE]. Now, at different x, the integrand may contribute

40

∞ as well −∞. We observe that only when the contribution from the positively

correlated part dominates, the equation (3.4) gives Ec[`CE]→ −∞. Those are all

the steady states that could be reached during practical training. (Similar to the

local minima)

It may be argued that the mixed case is not as favorable as the positively

correlated case in practice. This is because we need a delicate balance between

the positively correlated part and the negatively correlated part so that the steady

states in the mixed case can be reachable

More concretely, let’s consider a training process that just begins. The model

state will gradually approach the edges. Let x0 be the first point such that

hy0(x0) = 0. We claim P (y0|x0) − P (y0) < 0, since otherwise the integrand

of equation (3.4) at x0 will contribute a ∞ and cause a significant increase in

Ec[`CE]. From a different viewpoint, to make P (y0|x0) − P (y0) > 0 possible, we

must have at least another hy1(x1) = 0 for which P (y1|x1) − P (y1) < 0, so that

their contributions to the integrand in equation (3.4) can be balanced and, thus,

give rise to a decreasing Ec[`CE]. Such coincidences would be less possible. Hence,

we have the following conjecture:

Conjecture 1. In practical training, under the dynamics induced by peer loss, the

model state tends to converge to the stable steady states in the positively correlated

case.

3.4.4 The α peer loss case

The above arguments can be extended to the α peer loss, which corresponds

to the α correlation risk. In that case, the correlation term is defined as P (x, y)−

αP (x)P (y). The definition of the positively correlated case also need to be up-

dated as for all x ∈ ΩX , P (x, y) − αP (x)P (y) > 0,∀y ∈ YX . A similar update

41

applies to the definition of the negative correlation.

We note that the arguments in this section are not affected as long as P (x, y)−

αP (x)P (y) can still take both positive and negative values at any x. This provides

a rough guide to the upper bound of the magnitude of α:

α < min
x,y

P (x, y)
P (x)P (y) .

Also, we see that tuning α is to tune a threshold, which determines the labels

that can be considered as positively correlated. In the extreme case, for any x

there is only one y being positively correlated, and the magnitudes of the positive

values are small compared to those negative values. We argue that, in this extreme

situation, the mixed case is less possible. This is because the negative values in the

term P (x, y)− αP (x)P (y) are now dominant, making it harder to get a balance

between the positively correlated part and the negatively correlated part. Even if

the model indeed converges to the mixed case, it will be positively correlated at

most of the x. We thus can expect the model tends to grasp the highest correlated

label in the data distribution.

Remark 10. We note the above mentioned upper bound is not a hard condition

on the magnitude of α in practice. In practical training, there are many other

factors that matter, e.g., the learning rate. Even if we have the α exceed the upper

bound, as long as the learning rate is low enough, the resulting model will not be

affected much. Thus, we would like to see such upper bound as guidance for us to

tune the hyper-parameter α.

Remark 11. As an example of the suggested upper bound of α, let us consider

a well-separated dataset of 10 classes. We further assume the label distribution

is balanced. By well-separated, we refer to the data distribution whose probability

42

satisfies P (y|x) ≈ 1 for only one y and ≈ 0 otherwise. In this case, we see that

the upper bound is approximately 10.

43

Chapter 4

Experiments

In this chapter, we collectively present all the relevant experimental results.

The first section on benchmark image datasets is included to show the effectiveness

of peer loss in multi-class classification tasks with label noise. It is demonstrated

that peer loss outperforms other state-of-the-art methods in almost all situations

of our experiments. In section 4.2, we consider the experiments on the 2-dimension

synthetic dataset, which endows a clear visualization of the decision boundary. We

see that training with peer loss will encourage the model to learn a harder decision

boundary.

4.1 Experiments on benchmark image datasets

In this section, we implement the multi-class peer loss to image classifica-

tion with noisy labels tasks on MNIST [26], Fashion-MNIST [27], CIFAR-10 and

CIFAR-100 [28], and Clothing1M [29]. Those are five standard datasets for image

classification, whose contents range from small scale hand-written digits to huge

scale real-life clothes. Different types of noise settings are considered, including

the sophisticated synthetic noise for both label-independent and label-dependent

44

cases and the real-life human-level noise (feature-dependent). The robustness and

advantages of the proposed peer loss are verified via testing on those noise settings

and by comparing with other benchmark methods. Throughout the experiments,

we adopt the CE loss for ` in peer loss. We now explain the details.

4.1.1 Baseline methods

Our experiments focus on the comparison with three baseline methods: Cross-

Entropy (CE), theBackward (BLC) and Forward Loss Correction (FLC)

method as introduced in [17], and the determinant-based mutual information

(DMI) method introduced in[18]. The forward and backward loss correction

method is introduced in [17], which relies on the estimation of the transition

matrix T . Thus the accuracy of estimating matrix T , which is restricted by the

size of the dataset, could be a bottleneck of performance and robustness. DMI

[18] implements an information-theoretic function into deep neural networks. Its

implementation builds on the estimates of the joint distribution of classifier output

and the noisy labels. For [18] and [17], we use the codes shared by the authors

and adopt their reporting best parameters for performance comparison. 1

It is reported that both the loss correction method [17] and DMI [18] work

well when the noise in labels is reasonably low and sparse. In our experiments,

we further test relatively dense noise settings for their frameworks.
1Some other recent approaches, e.g., [20, 19, 21], provide semi-supervised learning based

solution which requires engineering efforts at different parts of the learning pipeline. We compare
with the method that focuses on loss functions and believe the performance can be further
enhanced by combining our loss function with appropriate pipeline designs, which is beyond the
scope of this paper and left for future works.

45

4.1.2 Image datasets with synthetic label noise

In synthesizing noisy labels, we consider three different types of transition

matrix T , i.e., sparse noise matrix, the uniform off-diagonal noise matrix, and

random noise matrix. The first two types correspond to the label noise models

mentioned in section 2.1.3, while in the last one, we flip the label of each sample

to a randomly chosen one from all possible classes with a constant probability.

The original clean labels are flipped according to those transition matrices. All

the transition matrices can be found in the appendix. Note that we will reserve

20% randomly selected samples from the noisy training data for validation if a

stand-alone validate dataset is not provided.

It is worth pointing out that, compared with the noise settings in [17] and

[18], our noise settings are more disturbing to the learning problem. On the one

hand, [17, 18] primarily considered sparse transition matrices with low overall

noise rates, while we take the uniform off-diagonal noise into consideration. Note

in this case Ti,j 6= 0 holds for every element in T now.

Furthermore, our sparse noise setting is potentially harder to handle compared

to the ones documented in the state-of-the-arts results, e.g., [17, 18]. This is

because we test cases where there is no class with clean labels (every class is

contaminated with noisy labels), while the transition matrices considered in [17,

18] have a good number of classes containing only clean labels.

MNIST, Fashion-MNIST and CIFAR-10

We test all three types of synthetic noise settings on these three datasets. Each

type includes a high-level noise setting and a low-level noise setting. The noise

rates of low-level sparse and uniform noise are both about 0.2. The noise rates

of high-level sparse and uniform noise are about 0.4 and 0.55, respectively. The

46

Dataset Noise CE (%) BLC†(%) FLC†(%) DMI‡(%) Peer loss (%)

MNIST

Sparse, Low 97.21 95.23 97.37 97.76 98.82 (98.76 ± 0.04)
Sparse, High 48.55 55.86 49.67 49.61 97.34 (97.14 ± 0.25)
Uniform, Low 97.14 94.27 95.51 97.72 98.73 (98.69 ± 0.01)
Uniform, High 93.25 85.92 87.75 95.50 98.41 (98.37 ± 0.04)

Fashion
MNIST

Sparse, Low 84.36 86.02 88.15 85.65 87.74 (87.63 ± 0.10)
Sparse, High 43.33 46.97 47.63 47.16 78.40 (77.81 ± 0.35)
Uniform, Low 82.98 84.48 86.58 83.69 87.25 (87.10 ± 0.13)
Uniform, High 79.52 78.10 82.41 77.94 83.50 (83.25 ± 1.09)

CIFAR-10

Sparse, Low 87.20 86.01 87.83 89.50 91.72 (91.67 ± 0.04)
Sparse, High 61.81 49.39 54.63 84.50 88.94 (88.59 ± 0.34)
Uniform, Low 85.68 84.80 87.78 86.26 89.29 (89.24 ± 0.25)
Uniform, High 71.38 68.19 81.33 72.98 82.84 (82.69 ± 0.06)
Random, Low 78.40 72.49 77.12 79.57 83.74 (83.64 ± 0.06)
Random, High 68.26 37.44 68.68 71.97 74.16 (73.96 ± 0.16)

† use a fully-connected network for MNIST and Fashion MNIST; ResNet-32 for CIFAR10.
‡ use a self-defined convolutional neural network for MNIST and Fashion MNIST; ResNet-18 for
CIFAR10.

Table 4.1: Experiment results of five models: CE: Cross-Entropy, BLC: back-
ward loss-correction , FLC: forward loss-correction , and peer loss, on MNIST,
Fashion-MNIST, and CIFAR-10. In the peer loss column, we report the maximum
accuracy (outside number) as well as the (mean ± standard deviation). For other
methods, we report the maximum accuracy. The best performance in each row is
highlighted in bold.

random noise is generated by randomly flipping a class to one of 10 classes w.p.

0.5 (low-level) or 0.7 (high-level).

We have carried out experiments on MNIST and Fashion-MNIST datasets

using LeNet [26], the convolutional neural network used in DMI [18] as well as the

fully-connected neural network used in loss-correction [17]. All the experiments

are performed with batch size 128 and an initial learning rate of 1e-4. For LeNet

and DMI’s convolutional neural network, Adam [30] with default parameters is

used as the optimizer, while for loss-correction’s fully-connected neural network

case we use AdaGrad [31] in order to be consistent with their works.

For CIFAR-10 dataset, ResNet-18 [32] is used as the backbone. In the exper-

iments, stochastic gradient descent (SGD) is used as the optimizer with a weight

decay of 1e-4. The batch size is set at 128. The learning rate starts at 0.1. For

47

Dataset Noise CE†(%) BLC‡(%) FLC‡(%) DMI†(%) Peer loss†(%)

CIFAR-100

Uniform 63.87 51.40 60.04 63.08 67.94 (67.73 ± 0.13)
Sparse 40.45 36.57 43.39 38.54 56.36 (56.13 ± 0.24)

Random (0.2) 65.84 61.21 61.52 66.03 69.17 (68.96 ± 0.15)
Random (0.5) 56.92 22.21 55.88 57.27 60.90 (60.72 ± 0.15)
Random (0.7) 40.80 4.06 43.16 41.27 48.53 (48.36 ± 0.12)

† use PreResNet-18. ‡ use ResNet-50.

Table 4.2: Experiment results of CIFAR-100. For Random (0.5) and Random
(0.7) noise setting of CIFAR100, we provide BLC and FLC with the ground truth
transition matrix.

every 40 epochs, it decays by a factor of 0.1. In all experiments for other methods,

we use the best set of hyper-parameters they provided in similar settings.

We document the best performance for our baseline competitors, but we also

take the average of peer loss’s performance over five runs and record the standard

variance. From Table 4.1, we observe that peer loss ranked as the best performing

method for the majority of the time (except for one setting, where peer loss ranks

as the second-best one). What of particular interests is that peer loss is robust

across different noise models and noise rates, and looks particularly robust in high

noise regime. For instance, in the MNIST dataset, with high sparse noise, the best

performance of the rest baselines is about 55.86%, nonetheless peer loss is able to

achieve 97.34% in accuracy.

CIFAR-100

For CIFAR-100 [28], all three types of synthetic noise are tested as well. We

do not distinguish high- and low-level settings as the number of classes are large.

The uniform type refers to the uniform off-diagonal noise defined previously, with

an average noise rate of 0.25. The sparse label noise is generated by randomly

dividing 100 classes into 50 pairs, and the flipping probability (Tji, Tij) in each

pair is randomly choosing from (0.05, 0.75), (0.1, 0.70), (0.15, 0.65), (0.2, 0.6). The

48

Dataset Noise CE (%) BLC (%) FLC (%) DMI (%) Peer loss (%)
CIFAR-10 Manual Pair 47.02 58.82 78.08 77.55 88.13 (87.93 ± 0.16)
Clothing1M Human Noise 68.94 69.13 69.84 72.46 72.60

Table 4.3: Results on manual-pair synthetic noise and real human-level noise.
Milestones: [20, 50, 120], α-list: [0.0, 2.0, 5.0].

random noise is synthesized by randomly flipping each class to one of 100 classes

w.p. 0.2, 0.5, or 0.7.

We use an 18-layer PreAct Resnet [33] and train it using SGD with a momen-

tum of 0.9, a weight decay of 0.0005, and a batch size of 128. For uniform noise

and random noise, we train the network with CE as a warm-up for 100 epochs 2,

then apply peer loss with a learning rate of 0.0001 and α = 0.95. For sparse noise,

we adopt the following setting for α: Milestones: [10, 30, 100, 150]. α-list [0.0,

2.0, 10.0, 20.0].

Table 4.2 compares performance with different methods under different noise

settings. We do observe that, again, peer loss consistently achieves the best per-

formance. Since it is hard for BLC and FLC to achieve good performance with

estimated transition matrix under the Random (0.5) and Random (0.7) noise

setting of CIFAR-100, we use the ground truth transition matrix to train BLC

and FLC which is calculated according to clean training labels and noisy training

labels.

4.1.3 CIFAR-10 with manual-pair noise and Clothing1M

We are also very interested in the performance of peer loss on datasets with

human-level noise. Hence, we defined manual-pair noise. Unlike the sparse label

noise, we flip only within elaborately chosen pairs in the manual-pair noise case.

Each pair contains two “similar” classes that are likely to be wrongly labeled by
2The learning rate starts at 0.1 and decays by a factor of 10 after 60 epochs.

49

humans, such as cat vs. dog, horse vs. deer. Besides, we are also interested

in the performance of the proposed method with human-level label noise. For a

more sophisticated test, we also carry out experiments on the Clothing1M dataset.

Clothing1M [29] is a large-scale dataset with real-world noisy labels, which consist

of one million noisy training images collected from online shopping websites.

We use the same setting as basic experiments for CIFAR-10, and use a ResNet-

50 with ImageNet pre-trained weights for Clothing1M. Table 4.3 shows that peer

loss works reasonably well in both of the manual-pair noise and the feature-

dependent human-level noise.

4.2 Experiments on synthetic dataset

The experiments on the benchmark image datasets support the effectiveness

of peer loss when applying to problems of learning with noisy labels. However,

it is not clear how the resulting classifiers differ from the ones trained using con-

ventional CE loss. Knowing such differences can help us to understand how and

why peer loss works. In order to achieve a clear visualization, we carry out exper-

iments on a binary-class synthetic dataset, which we call the circle dataset [34]3.

The circle datasets contain 1000 points, 500 for each class. We adopt a 3-layer

fully-connected neural network, which is trained using the Adam [30] optimizer,

and the initial learning rate is set to be 0.1. We adopt the following settings for

α: Milestones: [20, 40, 50, 100]. α-list = [0.0, 1.0, 2.0, 5.0].

We have tested three types of random noise: the uniform random noise, the

high margin noise, and the low margin noise. For detailed settings, please refer

to appendix B.3. Because the resulting conclusions are similar, here we only

include one characteristic case of the uniform random noise, where each sample’s
3We thanks Prof. Manfred K. Warmuth for suggesting this dataset.

50

label is flipped independently according to the noise rate. For the other results,

please refer to the appendix. Figure 4.1 summarizes our findings. It is clear from

the figures that with label noise, the model trained with CE loss becomes quite

uncertain with its predictions, while the model trained with peer loss can still

learn a hard decision boundary and retain the performance almost the same as in

the clean case. We actually expect this phenomenon as peer loss will encourage

the model to make more confident predictions. For detailed analysis, please refer

to the section 2.2.3.

51

(a) Decision boundary trained with CE
loss using clean data.

(b) Decision boundary trained with CE
loss under uniform random label nois.

(c) Decision boundary trained with peer
loss under uniform random label nois.

Figure 4.1: Experiments on the circle dataset. Using a 3-layer fully-connected
neural network. The noise rate is 0.4.

52

Chapter 5

Conclusion and Future Work

In this thesis, we first present the multi-class extension of the original peer

loss [1] and investigate its noise tolerance properties. Further, we explore two

distinct and novel views toward a better understanding of peer loss’s working

mechanism. In the first one, we demonstrate that peer loss can be formulated as

the difference between two KL divergence. This provides us an intuitive expla-

nation of the peer term in peer loss; namely, it encourages the model to encode

more correlation between the feature and the label. The second view is more

profound than the first one. We show that peer loss is related to a new risk called

the correlation risk rather than the normally used population risk. Even though

presently incomplete, this potentially provides us a different framework in the

decision theory. We also analyzed the training dynamics of peer loss, exploiting

the methods from the evolutionary game theory. This dynamical analysis comple-

ments our discussion about the correlation risk. In addition to those theoretical

investigations, we also carry out numerical experiment studies that empirically

demonstrate the effectiveness of peer loss in dealing with the learning with noisy

label problem. Further, they also reveal interesting behaviors of the Peer Loss

that help to guides our theoretical reasoning.

53

In the future, we plan to focus on developing the correlation risk framework.

The present method and results are promising yet incomplete. Specifically, we

have two primary directions:

1. We need both theoretical and experimental justifications about the useful-

ness of the correlation measure to motivate the use of correlation risk. We

can probably find some clues in the field of fairness in machine learning.

2. We need to develop a firm theoretical description of the training dynamics

with the correlation risk, For example, proving the conjecture 1. In other

words, we need stronger results that guarantee the model will be able to

grasp the positive correlations in the data distribution.

54

Appendix A

Proofs supplementary materials

A.1 Proof for Lemma 1

Lemma 1. Suppose in the sparse noise setting there are C disjoint pairs, (ic, jc)c∈[C],

whose corresponding error rates are (Ticjc , Tjcic). If Ticjc + Tjcic < 1 and T ∗icjc +

T ∗jcic < 1,∀c ∈ [C], then M = IK×K.

Proof. First, we observe that there exists a permutation matrix that transforms

T into a block diagonal matrix. Without losing generality, we assume ic > jc.

Focusing on a specific pair c, the transition matrix looks like

T =



. . .

1− Ticjc . . . Tjcic
...

Ticjc . . . 1− Tjcic
. . .


.

55

Note there are C pairs in total. By the construction of the sparse noise, we have



Ticm = 0 unless m = ic or m = jc,

Tjcm = 0 unless m = jc or m = ic,

Tnic = 0 unless n = ic or n = jc,

Tnjc = 0 unless n = jc or n = ic.

Thus, by permuting rows {1, jc} and rows {2, ic} as well as permuting columns

{1, jc} and columns {2, ic}, we can put the original T into the following form:



1− Ticjc Tjcic 0 · · · 0

Ticjc 1− Tjcic 0 · · · 0

0 0
...

... T ′

0 0


,

where T ′ is a smaller transition matrix that contains the remaining pairs. We

can apply permutation to T ′ and put it into a similar form. Clearly, repeating

this procedure will result in a block diagonal matrix, whose block is of size 2× 2

and has the form 1− Ticjc Tjcic

Ticjc 1− Tjcic

 ,∀c ∈ [C].

Note that along the way to achieve this block diagonal matrix, we apply a series

of permutations, which can be combined as a permutation matrix. Denote this

permutation matrix as P . We then show matrix ∆ can be put into a block diagonal

form by applying the same permutation P as well.

56

Recall that

∆ij =
K∑
k

T ∗ik · Tjk · P (y = k)

−
K∑
l

T ∗il · P (y = l)
K∑
m

TjmP (y = m).

Let’s introduce two new symbols

M =



P (y = 1) 0 · · · 0

0 P (y = 2) · · · 0
...

...

0 0 · · · P (y = K)


and v =



P (y = 1)

P (y = 2)
...

P (y = K)


,

with which we can rewrite the above expression for ∆ in the following matrix

form

∆ = T ∗MTT − T ∗vvTTT.

The same permutation can also be applied to ∆, i.e.,

P∆PT = PT ∗PTPMPTPTTPT − PT ∗PTPvvTPTPTTPT

= (PT ∗PT)(PMPT)(PTPT)T − (PT ∗PT)Pv(Pv)T(PTPT)T,

where we use the fact: PTP = IK×K . We see that T ∗, T , andM undergo the same

row and column permutations as for T , v undergoes the same row permutation

as for T . Let ∆′ = P∆PT, T ∗′ = PT ∗PT, T ′ = PTPT, M′ = PMPT, and

v′ = Pv. We know from the previous discussion that T ′ is a block diagonal

matrix. Additionally, it is easy to seeM′ remains a diagonal matrix.

Assume T ∗ share the same structure as T , i.e., the off-diagonal elements T ∗ij 6= 0

only if i = ic, j = jc or i = jc, j = ic, ∀c ∈ [C]. Then T ∗′ will be a block diagonal

57

matrix of the same structure as T ′. With this assumption, ∆′ will be a block

diagonal matrix as well and the corresponding block for pair index c reads

∆′c = T ∗c
′McT

′T
c − T ∗c

′v′cv
′
c
T
T ′

T
c .

More specifically,

∆′c =

1− T ∗icjc T ∗jcic

T ∗icjc 1− T ∗jcic


P (y = jc) 0

0 P (y = ic)


1− Ticjc Ticjc

Tjcic 1− Tjcic



−

1− T ∗icjc T ∗jcic

T ∗icjc 1− T ∗jcic


P (y = jc)P (y = jc) P (y = jc)P (y = ic)

P (y = ic)P (y = jc) P (y = ic)P (y = ic)


1− Ticjc Ticjc

Tjcic 1− Tjcic

 .

By setting T ∗icjc = e∗+1, T
∗
icjc = e∗−1 and Ticjc = e+1, Ticjc = e−1, we effectively

recover the noise settings for binary classification discussed in [1]. According to

lemma 2 in [1], we have for the block ∆′c that, if Ticjc +Tjcic < 1 and T ∗icjc +T ∗jcic < 1

then sgn(∆′c) = I2×2. Similar conditions can be applied to the other blocks in ∆′.

We can conclude:

If Ticjc + Tjcic < 1 and T ∗icjc + T ∗jcic < 1, ∀c ∈ [C], then sgn(∆′) = IK×K .

Finally, since the operations of permutation and taking the matrix element’s

sign are commutable, we have

sgn(∆′) = IK×K = sgn(P∆PT) = Psgn(∆)PT,

thus

sgn(∆) = PTIK×KP = IK×K .

58

By the definition M = sgn(∆), we thus have proved Lemma 1.

A.2 Proof for Lemma 2

Lemma 2. Assume Tij = Tik = ei, ∀i 6= j 6= k and T ∗ij = T ∗ik = e∗i , ∀i 6= j 6= k. If∑
j∈[K] e

∗
j < 1 and ∑k∈[K] ek < 1, then M = IK×K.

Proof. Recall that M = sgn(∆) and

∆ij = P (h∗(x) = i, ỹ = j)− P (h∗(x) = i)P (ỹ = j). (A.1)

For simplicity, we will use h∗ instead h∗(x) in the following proof. Note by our

assumption and the conservation of probability, we have

T ∗ii = 1−
∑
i 6=j

e∗j and Tii = 1−
∑
i 6=j

ej.

The terms in the r.h.s of equation (A.1) read

P (h∗ = i, ỹ = j) =
K∑
l=1

P (h∗ = i|y = l)P (ỹ = j|y = l)P (y = l)

=
K∑
l=1

T ∗ilTjlP (y = l)

and

P (h∗ = i)P (ỹ = j) =
K∑
l=1

P (h∗ = i|y = l)P (y = l)
K∑
m=1

P (ỹ = j|y = m)P (y = m)

=
K∑
l=1

T ∗ilP (y = l)
K∑
m=1

TjmP (y = m).

In the above equations, we have used the conditional independence assumption

59

between the Bayes optimal classifier and the noisy label. Next, we will investigate

the behavior of diagonal and off-diagonal elements of ∆ separately.

Case 1: The diagonal terms, i.e. i = j.

P (h∗ = i, ỹ = i) = T ∗iiTiiP (y = i) +
K∑

l=1;l 6=i
T ∗ilTilP (Y = l)

=
1−

∑
j 6=i

e∗j

1−
∑
k 6=i

ek

P (y = i) +
K∑

l=1;l 6=i
e∗i eiP (y = l)

=
1−

∑
j

e∗j

(1−
∑
k

ek

)
P (y = i)

+ e∗i

(
1−

∑
k

ek

)
P (y = i) + ei

1−
∑
j

e∗j

P (y = i)

+ e∗i ei.

In the last step, we used the identity ∑K
l=1 P (y = l) = 1. Likewise, for the second

term

P (h∗ = i)P (ỹ = i) =
K∑
l=1

T ∗ilP (y = l)
K∑
m=1

TimP (y = m)

=
1−

∑
j

e∗j

P (y = i) +
K∑
l=1

e∗iP (y = l)


×
[(

1−
∑
k

ek

)
P (y = i) +

K∑
m=1

eiP (y = m)
]

=
1−

∑
j

e∗j

(1−
∑
k

ek

)
P (y = i)P (y = i)

+ e∗i

(
1−

∑
k

ek

)
P (y = i) + ei

1−
∑
j

e∗j

P (y = i)

+ e∗i ei.

60

Hence, we have

∆ii = P (h∗ = i, ỹ = i)− P (h∗ = i)P (ỹ = i)

=
1−

∑
j

e∗j

(1−
∑
k

ek

)
P (y = i)(1− P (y = i)).

We conclude ∆ii > 0 if ∑j e
∗
j < 1 and ∑k ek < 1.

Case 2: The off-diagonal terms, i.e. i 6= j.

P (h∗ = i, ỹ = j) = T ∗iiTjiP (y = i) + T ∗ijTjjP (y = j) +
K∑

l=1;l 6=i;l 6=j
T ∗ilTjlP (y = l)

= ej

1−
∑
n6=i

e∗n

P (y = i) + e∗i

1−
∑
m6=j

em

P (y = j)

+
K∑

l=1;l 6=i;l 6=j
e∗i ejP (y = l)

= ej

(
1−

∑
n

e∗n

)
P (y = i) + e∗i

(
1−

∑
m

em

)
P (y = j) + e∗i ej

Similarly, for the second term

P (h∗ = i)P (ỹ = j) =
[(

1−
∑
n

e∗n

)
P (y = i) + e∗i

] [(
1−

∑
m

em

)
P (y = j) + ej

]

=
(

1−
∑
n

e∗n

)(
1−

∑
m

em

)
P (y = i)P (y = j)

+ ej

(
1−

∑
n

e∗n

)
P (y = i) + e∗i

(
1−

∑
m

em

)
P (y = j)

+ e∗i ej

61

As a result, we find

∆ij = P (h∗ = i, ỹ = j)− P (h∗ = i)P (ỹ = j)

= −
(

1−
∑
n

e∗n

)(
1−

∑
m

em

)
P (y = i)P (y = j).

We thus conclude ∆ij < 0 if ∑n e
∗
n < 1 and ∑m em < 1.

Based on above results and the definition M = sgn(∆), we conclude that

lemma 2 has been proved.

A.3 Proof for Theorem 1

Theorem 1. Under the uniform off-diagonal noise setting, the expected peer loss

is invariant to label noise up to an affine transformation:

ED̃[`peer(f(X), Ỹ)] =
1−

∑
i∈[K]

ei

ED[`peer(f(X), Y)].

Proof. Recall that D and D̃ refer to the joint distribution over (X, Y) and (X, Ỹ),

respectively. We further denote the marginal distributions of X, Y , and Ỹ by

DX , DY , and D̃Y , respectively. Let Xp ∼ DX , Ỹp ∼ D̃Y be the random variables

corresponding to the peer samples. The peer loss function is defined as

`peer(f(xn), ỹn) = `(f(xn), ỹn)− `(f(xp,n), ỹp.n). (A.2)

where (xn, ỹn) is a normal training sample pair, xp,n and ỹp,n are corresponding

peer samples.

62

Taking expectation for (A.2) yields

ED̃[`peer(f(X), Ỹ)] = ED̃[`(f(X), Ỹ)]− ED̃Y

[
EDX

[`(f(X), Ỹ)]
]
. (A.3)

The first term in (A.3) is

ED̃[`(f(X), Ỹ)]

=
∑
j∈[K]

∑
i∈[K]

TjiP(Y = i)ED|Y=i[`(f(X), j)]

=
∑
j∈[K]

TjjP(Y = j)ED|Y=j[`(f(X), j)] +
∑

i∈[K],i 6=j
TjiP(Y = i)ED|Y=i[`(f(X), j)]


=
∑
j∈[K]

1−
∑

i 6=j,i∈[K]
Tij

P(Y = j)ED|Y=j[`(f(X), j)]+

∑
i∈[K],i 6=j

TjiP(Y = i)ED|Y=i[`(f(X), j)]


Noting that Xp and Ỹp are independent, the second term in (A.3) is

ED̃Y

[
EDX

[`(f(X), Ỹ)]
]

=
∑
j∈[K]

P(Ỹp = j)EDX
[`(f(Xp), j)]

=
∑
j∈[K]

∑
i∈[K]

TjiP(Yp = i)EDX
[`(f(X), j)]

=
∑
j∈[K]

TjjP(Yp = j)EDX
[`(f(X), j)] +

∑
i∈[K],i 6=j

TjiP(Yp = i)EDX
[`(f(X), j)]


=
∑
j∈[K]

1−
∑

i 6=j,i∈[K]
Tij

P(Yp = j)EDX
[`(f(X), j)]+

∑
i∈[K],i 6=j

TjiP(Yp = i)EDX
[`(f(X), j)]



63

In this case, we have ei = Tij,∀j ∈ [K], j 6= i. The first term becomes

ED̃[`(f(X), Ỹ)]

=
∑
j∈[K]

1−
∑

i 6=j,i∈[K]
ei

P(Y = j)ED|Y=j[`(f(X), j)]+

∑
i∈[K],i 6=j

ejP(Y = i)ED|Y=i[`(f(X), j)]


=
∑
j∈[K]

1−
∑
i∈[K]

ei

P(Y = j)ED|Y=j[`(f(X), j)]+

∑
i∈[K]

ejP(Y = i)ED|Y=i[`(f(X), j)]


=
1−

∑
i∈[K]

ei

ED[`(f(X), Y)] +
∑
j∈[K]

ejEDX
[`(f(X), j)]

The second term becomes

ED̃Y

[
EDX

[`(f(Xp), Ỹp)]
]

=
∑
j∈[K]

1−
∑

i 6=j,i∈[K]
ei

P(Yp = j)EDX
[`(f(X), j)]+

∑
i∈[K],i 6=j

ejP(Yp = i)EDX
[`(f(X), j)]


=
∑
j∈[K]

1−
∑
i∈[K]

ei

P(Yp = j)EDX
[`(f(X), j)]+

∑
i∈[K]

ejP(Yp = i)EDX
[`(f(X), j)]


=
1−

∑
i∈[K]

ei

EDY
[EDX

[`(f(Xp), Yp)]] +
∑
j∈[K]

ejEDX
[`(f(X), j)].

64

Comparing the above two terms we have

ED̃[`peer(f(X), Ỹ)] =
1−

∑
i∈[K]

ei

ED[`peer(f(X), Y)].

A.4 Proof for Theorem 2

Theorem 2. Under the uniform off-diagonal noise setting, when the true label Y

has equal prior, i.e. P (y = k) = 1/K, ∀k ∈ [K], we have

cl∗Bayes = arg min
cl∈F

ED̃
[
1peer(f(X), Ỹ)

]
.

Proof. When the true label Y has equal prior P(y = k) = 1/K, ∀k ∈ [K], we have

ED[1peer(f(X), Y)] = ED[1(f(X), Y)]− EDY
[EDX

[1(f(X), Y)]]

= ED[1(f(X), Y)]− 1
K

∑
i∈[K]

EDX
[1(f(X), i)]

(A.4)

For the 0-1 loss, we have

∑
i∈[K]

EDX
[1(f(Xp), i)] = K − 1.

Therefore, in the case of uniform off-diagonal noise, Theorem 1 can be further

extended as

ED̃[1peer(f(X), Ỹ)] =
1−

∑
i∈[K]

ei

(ED[1peer(f(X), Y)]− K − 1
K

)
,

65

which indicates

cl∗Bayes = arg min
f∈F

ED̃
[
1peer(cl(X), Ỹ)

]
.

A.5 Proof for Propersition 2

Proposition 2. For any pair (x0, y0), if hy0(x0) = 0 then ∆y0(x0) = 0.

Proof. We need to take into account the actual form of activation function, i.e., the

softmax function, as well as the SGD algorithm to demonstrate the correctness

of this proposition. The variation ∆y0(x0) is caused by the change in network

parameters {wi}, i.e.,

∆y0(x0) =
∑
i

∂hy0(x0)
∂wi

δwi,

where δwi are determined by the SGD algorithm

δwi =− η∂E
peer
D [`CE]
∂wi

=η
∑∫
x,y

P (x, y)− P (x)P (y)
hy(x)

∂hy(x)
∂wi

.

Plugging back to the expression for ∆y0(x0), we have

∆y0(x0) = η
∑∫
x,y

P (x, y)− P (x)P (y)
hy(x)

∑
i

∂hy0(x0)
∂wi

∂hy(x)
∂wi

.

To proceed further, we need to expand ∂hy(x)
∂wi

in detail. Taking into account the

activation function, one has

hy(x) = e−fy(x)∑
y′ e
−fy′ (x) ,

66

where fy(x) refers to the network output before passed to the activation function.

Recall that, by our assumption, derivatives ∂fy(x;w)
∂wi

are not singular. Now we have

∂hy(x)
∂wi

=∂e
−fy(x)

∂wi

1∑
y′ e
−fy′ (x) + e−fy(x) ∂

∂wi

(
1∑

y′ e
−fy′ (x)

)

= −e−fy(x)∑
y′ e
−fy′ (x)

∂fy(x)
∂wi

+ e−fy(x)(∑
y′′ e

−fy′′ (x)
)2
∑
y′
e−fy′ (x)∂fy′(x)

∂wi

=hy(x)
−∂fy(x)

∂wi
+
∑
y′
hy′(x)∂fy

′(x)
∂wi

 .
For simplicity, we can rewrite the above result as

∂hy(x)
∂wi

= hy(x)Gi(x, y),

where

Gi(x, y) = −∂fy(x)
∂wi

+
∑
y′
hy′(x)∂fy

′(x)
∂wi

is a smooth function.

Combine all the above together, the ∆y0(x0) reads

∆y0(x0) = hy0(x0) · η
∑∫
x,y

[P (x, y)− P (x)P (y)]
∑
i

Gi(x0, y0)Gi(x, y).

Now, it is straightforward to see ∆y0(x0) = 0 if hy0(x0) = 0.

67

Appendix B

Experiments supplementary

materials

B.1 Transition Matrices for MNIST Dataset and

Fashion MNIST Dataset
Sparse-low noise matrix:



0.7 0.2 0. 0. 0. 0. 0. 0. 0. 0.

0.3 0.8 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0.7 0.2 0. 0. 0. 0. 0. 0.

0. 0. 0.3 0.8 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.7 0.2 0. 0. 0. 0.

0. 0. 0. 0. 0.3 0.8 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.7 0.2 0. 0.

0. 0. 0. 0. 0. 0. 0.3 0.8 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.7 0.2

0. 0. 0. 0. 0. 0. 0. 0. 0.3 0.8



68

Sparse-high noise matrix:



0.3 0.2 0. 0. 0. 0. 0. 0. 0. 0.

0.7 0.8 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0.3 0.2 0. 0. 0. 0. 0. 0.

0. 0. 0.7 0.8 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.3 0.2 0. 0. 0. 0.

0. 0. 0. 0. 0.7 0.8 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.3 0.2 0. 0.

0. 0. 0. 0. 0. 0. 0.7 0.8 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.3 0.2

0. 0. 0. 0. 0. 0. 0. 0. 0.7 0.8



Uniform-low noise matrix:



0.258 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

0.075 0.253 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075

0.09 0.09 0.268 0.09 0.09 0.09 0.09 0.09 0.09 0.09

0.085 0.085 0.085 0.263 0.085 0.085 0.085 0.085 0.085 0.085

0.07 0.07 0.07 0.07 0.248 0.07 0.07 0.07 0.07 0.07

0.082 0.082 0.082 0.082 0.082 0.26 0.082 0.082 0.082 0.082

0.077 0.077 0.077 0.077 0.77 0.077 0.255 0.077 0.077 0.077

0.091 0.091 0.091 0.091 0.91 0.091 0.091 0.269 0.091 0.091

0.092 0.092 0.092 0.092 0.92 0.092 0.092 0.092 0.27 0.092

0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.258



Uniform-high noise matrix:



0.58 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.045 0.0575 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

0.047 0.047 0.577 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.055 0.055 0.055 0.585 0.055 0.055 0.055 0.055 0.055 0.055

0.053 0.053 0.053 0.053 0.583 0.053 0.053 0.053 0.053 0.053

0.022 0.022 0.022 0.022 0.022 0.552 0.022 0.022 0.022 0.022

0.068 0.068 0.068 0.068 0.068 0.068 0.598 0.068 0.068 0.068

0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.584 0.054 0.054

0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.586 0.056

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.55



69

B.2 Transition Matrices for CIFAR-10 Dataset
Sparse-low noise matrix:



0.7 0.1 0. 0. 0. 0. 0. 0. 0. 0.

0.3 0.9 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0.7 0.1 0. 0. 0. 0. 0. 0.

0. 0. 0.3 0.9 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.7 0.1 0. 0. 0. 0.

0. 0. 0. 0. 0.3 0.9 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.7 0.1 0. 0.

0. 0. 0. 0. 0. 0. 0.3 0.9 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.7 0.1

0. 0. 0. 0. 0. 0. 0. 0. 0.3 0.9



Sparse-high noise matrix:



0.4 0.2 0. 0. 0. 0. 0. 0. 0. 0.

0.6 0.8 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0.4 0.2 0. 0. 0. 0. 0. 0.

0. 0. 0.6 0.8 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0.4 0.2 0. 0. 0. 0.

0. 0. 0. 0. 0.6 0.8 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.4 0.2 0. 0.

0. 0. 0. 0. 0. 0. 0.6 0.8 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.4 0.2

0. 0. 0. 0. 0. 0. 0. 0. 0.6 0.8



70

Uniform-low noise matrix:



0.82 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.03 0.83 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

0.01 0.01 0.81 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.023 0.023 0.023 0.823 0.023 0.023 0.023 0.023 0.023 0.023

0.017 0.017 0.017 0.017 0.817 0.017 0.017 0.017 0.017 0.017

0.022 0.022 0.022 0.022 0.022 0.822 0.022 0.022 0.022 0.022

0.021 0.021 0.021 0.021 0.021 0.021 0.821 0.021 0.021 0.021

0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.818 0.018 0.018

0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.819 0.019

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.82



Uniform-high noise matrix:



0.46 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.07 0.48 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

0.04 0.04 0.45 0.04 0.04 0.04 0.04 0.04 0.04 0.04

0.05 0.05 0.05 0.46 0.05 0.05 0.05 0.05 0.05 0.05

0.06 0.06 0.06 0.06 0.47 0.06 0.06 0.06 0.06 0.06

0.04 0.04 0.04 0.04 0.04 0.45 0.04 0.04 0.04 0.04

0.06 0.06 0.06 0.06 0.06 0.06 0.47 0.06 0.06 0.06

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.48 0.07 0.07

0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.49 0.08

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.48



Manual Pair noise matrix:

0.4 0. 0.2 0. 0. 0. 0. 0. 0. 0.

0. 0.4 0. 0. 0. 0. 0. 0. 0. 0.2

0.6 0. 0.8 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0.4 0. 0.2 0. 0. 0. 0.

0. 0. 0. 0. 0.4 0. 0. 0.2 0. 0.

0. 0. 0. 0.6 0. 0.8 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.4 0. 0.2 0.

0. 0. 0. 0. 0.6 0. 0. 0.8 0. 0.

0. 0. 0. 0. 0. 0. 0.6 0. 0.8 0.

0. 0.6 0. 0. 0. 0. 0. 0. 0. 0.8



71

B.3 Other experiment results on the 2-D syn-

thetic dataset

We carry out experiments on three types of label noise. (1) uniform random

noise. Each sample’s label is flipped according to the noise rate. (2) high margin

noise. Only those samples that are far away 1 from the boundary can be noisy.

Their labels are flipped according to the noise rate. (3) low margin noise. Only

those samples that are close 2 to the boundary can be noisy. Their labels are

flipped according to the noise rate. We consider three noise rates: 0.1, 0.2, and

0.4 in our experiments. The results are summarised in the figures below.

(a) Trained with the CE loss. (b) Trained with the Peer Loss.

Figure B.1: Experiments on the circle dataset with uniform random noise. The
noise rate is 0.1.

1Within a distance of 0.03r from the center or the outmost circle, where r is the radius of
the outmost circle.

2Within a distance of 0.03r from the margin, where r is the radius of the outmost circle.

72

(a) Trained with the CE loss. (b) Trained with the Peer Loss.

Figure B.2: Experiments on the circle dataset with uniform random noise. The
noise rate is 0.2.

(a) Trained with the CE loss. (b) Trained with the Peer Loss.

Figure B.3: Experiments on the circle dataset with uniform random noise. The
noise rate is 0.4.

73

(a) Trained with the CE loss. (b) Trained with the Peer Loss.

Figure B.4: Experiments on the circle dataset with high margin noise. The
noise rate is 0.1.

(a) Trained with the CE loss. (b) Trained with the Peer Loss.

Figure B.5: Experiments on the circle dataset with high margin noise. The
noise rate is 0.2.

74

(a) Trained with the CE loss. (b) Trained with the Peer Loss.

Figure B.6: Experiments on the circle dataset with high margin noise. The
noise rate is 0.4.

(a) Trained with the CE loss. (b) Trained with the Peer Loss.

Figure B.7: Experiments on the circle dataset with low margin noise. The noise
rate is 0.1.

75

(a) Trained with the CE loss. (b) Trained with the Peer Loss.

Figure B.8: Experiments on the circle dataset with low margin noise. The noise
rate is 0.2.

(a) Trained with the CE loss. (b) Trained with the Peer Loss.

Figure B.9: Experiments on the circle dataset with low margin noise. The noise
rate is 0.4.

76

Bibliography

[1] Y. Liu and H. Guo, “Peer loss functions: Learning from noisy labels without
knowing noise rates,” 2019.

[2] D. Friedman and B. Sinervo, Evolutionary Games in Natural, Social, and
Virtual Worlds, ser. OUP Catalogue. Oxford University Press, 2016, no.
9780199981151.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[4] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding
deep learning requires rethinking generalization,” pp. 1–15, nov 2016.

[5] T. Bylander, “Learning linear threshold functions in the presence of classifica-
tion noise,” in Proceedings of the seventh annual conference on Computational
learning theory. ACM, 1994, pp. 340–347.

[6] N. Cesa-Bianchi, E. Dichterman, P. Fischer, E. Shamir, and H. U. Simon,
“Sample-efficient strategies for learning in the presence of noise,” Journal of
the ACM (JACM), vol. 46, no. 5, pp. 684–719, 1999.

[7] N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir, “Online learning of noisy
data,” IEEE Transactions on Information Theory, vol. 57, no. 12, pp. 7907–
7931, 2011.

[8] S. Ben-David, D. Pál, and S. Shalev-Shwartz, “Agnostic online learning.” in
COLT 2009.

[9] C. Scott, G. Blanchard, G. Handy, S. Pozzi, and M. Flaska, “Classification
with asymmetric label noise: Consistency and maximal denoising.” in COLT,
2013, pp. 489–511.

[10] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, “Learning with
noisy labels,” in Advances in neural information processing systems, 2013,
pp. 1196–1204.

77

[11] C. Scott, “A rate of convergence for mixture proportion estimation, with
application to learning from noisy labels.” in AISTATS, 2015.

[12] G. Stempfel and L. Ralaivola, “Learning svms from sloppily labeled data,”
in International Conference on Artificial Neural Networks. Springer, 2009,
pp. 884–893.

[13] B. Van Rooyen, A. Menon, and R. C. Williamson, “Learning with symmet-
ric label noise: The importance of being unhinged,” in Advances in Neural
Information Processing Systems, 2015, pp. 10–18.

[14] A. Menon, B. Van Rooyen, C. S. Ong, and B. Williamson, “Learning from
corrupted binary labels via class-probability estimation,” in International
Conference on Machine Learning, 2015, pp. 125–134.

[15] H. Ramaswamy, C. Scott, and A. Tewari, “Mixture proportion estimation via
kernel embeddings of distributions,” in International Conference on Machine
Learning, 2016, pp. 2052–2060.

[16] T. Liu and D. Tao, “Classification with noisy labels by importance reweight-
ing,” IEEE Transactions on pattern analysis and machine intelligence,
vol. 38, no. 3, pp. 447–461, 2015.

[17] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu, “Making
deep neural networks robust to label noise: A loss correction approach,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[18] Y. Xu, P. Cao, Y. Kong, and Y. Wang, “L_dmi: An information-theoretic
noise-robust loss function,” NeurIPS, arXiv:1909.03388, 2019.

[19] J. Li, R. Socher, and S. C. Hoi, “Dividemix: Learning with noisy labels as
semi-supervised learning,” in International Conference on Learning Repre-
sentations, 2020.

[20] D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen, L. Beggel,
and T. Brox, “Self: Learning to filter noisy labels with self-ensembling,” arXiv
preprint arXiv:1910.01842, 2019.

[21] Y. Kim, J. Yim, J. Yun, and J. Kim, “Nlnl: Negative learning for noisy
labels,” in Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 101–110.

[22] L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou, “Empirical
analysis of the hessian of over-parametrized neural networks,” 2017.

78

[23] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction, and
estimation,” Journal of the American Statistical Association, vol. 102, no.
477, pp. 359–378, 2007.

[24] V. Shnayder, A. Agarwal, R. Frongillo, and D. C. Parkes, “Informed truthful-
ness in multi-task peer prediction,” EC 2016 - Proceedings of the 2016 ACM
Conference on Economics and Computation, pp. 179–196, 2016.

[25] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, “Convexity, classification,
and risk bounds,” Journal of the American Statistical Association, vol. 101,
no. 473, pp. 138–156, 2006.

[26] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[27] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms,” 2017.

[28] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[29] T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from massive
noisy labeled data for image classification,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2015, pp. 2691–2699.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

[31] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” COLT 2010 - The 23rd Conference on
Learning Theory, vol. 12, pp. 257–269, 2010.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[33] ——, “Identity mappings in deep residual networks,” in European conference
on computer vision. Springer, 2016, pp. 630–645.

[34] E. Amid, M. K. Warmuth, R. Anil, and T. Koren, “Robust bi-tempered
logistic loss based on bregman divergences,” 2019.

[35] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-Weight-
Net: Learning an Explicit Mapping For Sample Weighting,” no. NeurIPS,
pp. 1–23, 2019.

79

[36] S. Sukhbaatar and R. Fergus, “Learning from noisy labels with deep neural
networks,” arXiv preprint arXiv:1406.2080, vol. 2, no. 3, p. 4, 2014.

[37] S. Jenni and P. Favaro, “Deep bilevel learning,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018, pp. 618–633.

[38] K. Yi and J. Wu, “Probabilistic end-to-end noise correction for learning with
noisy labels,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

80

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Table of Notations
	Introduction
	Learning with noisy labels
	Motivation
	Description of the label noise
	Problem statement: classification with noisy labels

	Related works
	Learning with the estimate of noise rates
	Learning without the estimate of noise rates

	Static Analysis
	Peer loss as a loss fucntion inspired by the truthful and proper scoring rule
	The peer loss for binary classification
	The peer loss for multiclass classification
	Noise tolerance properties of peer loss
	The peer loss and a brief summary of the experiments on benchmark image datasets

	Peer loss as the difference between K-L divergences
	Deriving the divergence form
	Intuition: Two anchors, correlation regularizer
	Interpretation of properties of peer loss

	Peer loss as the correlation risk
	The accuracy measure, Bayes optimal classifier, population risk and classification calibration
	The correlation measure
	The correlation risk and dynamical calibration

	Chapter summary

	Dynamical Analysis
	Assumptions
	Searching space geometry
	Preliminaries
	Steady states and their stability
	Steady states in the interior of the hypersimplex
	Steady states in the edges and vertices of the hypersimplex
	Stability of the steady states
	The peer loss case

	Experiments
	Experiments on benchmark image datasets
	Baseline methods
	Image datasets with synthetic label noise
	CIFAR-10 with manual-pair noise and Clothing1M

	Experiments on synthetic dataset

	Conclusion and Future Work
	Proofs supplementary materials
	Proof for Lemma 1
	Proof for Lemma 2
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Propersition 2

	Experiments supplementary materials
	Transition Matrices for MNIST Dataset and Fashion MNIST Dataset
	Transition Matrices for CIFAR-10 Dataset
	Other experiment results on the 2-D synthetic dataset

	Bibliography

