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Abstract 

Thermal Transport and Light Transmission in Anisotropic Nano/Micro-Grained Materials 

for High Power Laser Applications 

by 

Vivek Mishra 

Doctor of Philosophy in Engineering  Mechanical Engineering  

University of California, Berkeley 

Professor Christopher Dames, Chair 

Rare earth (RE)-doped solid state lasers have helped push the boundaries of high power 

lasers. Since lasing was first demonstrated in polycrystalline ceramic lasers, the 

possibility to dope higher concentrations of RE elements using non-equilibrium processes 

has enabled larger laser slope efficiencies. The limits in power densities in high power 

lasers are often due to thermal rollover caused by losses due to thermal lensing and 

depolarization effects, while catastrophic failures can be caused by thermal stress 

fracture. In such systems, a higher thermal conductivity of the lasing media lowers the 

thermal gradients in the lasing media, thus allowing higher lasing powers. Ceramics with 

twice the thermal conductivity of state of the art Nd:YAG lasers have been developed to 

work towards this goal, while recently visible photoluminescence was demonstrated in a 

Tb:AlN ceramic.  

In the above polycrystalline ceramics, additional scattering caused by reflection of the 

heat carrying phonons at the grain boundaries can lead to a thermal conductivity which is 

smaller than that for single crystals by more than an order of magnitude. The mean free 

path of phonons in this boundary scattering regime is typically directly proportional to 

the grain sizes. On the other hand, the slight anisotropy of the unit cell of AlN leads to the 

birefringence effect. Light propagating through grains with misaligned orientation see a 

slightly different refractive index (Δ𝜂𝑚𝑎𝑥 ~0.05 for red light). For small birefringence 

and grain sizes, when the Rayleigh-Gans-Debye approximation holds, the extinction 

coefficient of light due to scattering decreases with decreasing grain sizes. Thus, light 

transmission and thermal conductivity of these sintered ceramics scale oppositely with 

increasing grain sizes. 

This thesis is divided into three parts. First, we investigate the effect of anisotropic grains 

on light transmission and thermal conductivity for active ion doped AlN and Al2O3 

ceramics. Models to predict the transport properties are developed and verified, following 

which we use material properties from literature to predict the expected properties as a 

function of grain sizes and anisotropy. A figure of merit is proposed which can be used to 

select the microstructure that helps maximize the lasing power.  

The anisotropic microstructure of the materials is expected to result in anisotropic 

transport properties of the bulk material. To measure the anisotropic thermal conductivity 

tensor of such materials, we developed a technique based on the electrothermal 3ω 

method. This method had been previously been used to measure the thermal conductivity 
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of materials with the principal thermal conductivity directions aligned along the obvious 

surfaces of the sample. In this work, we found the solution for the general case where the 

principle axes may be aligned in any arbitrary direction. This method was verified against 

numerical FEM simulations and were demonstrated with experiments on a naturally 

occurring anisotropic mineral, mica. 

Finally, we developed easily accessible and cheap methods to measure the light scattering 

properties of thin scatterers. Three different methods were developed. Two of the 

approaches require the use of an USAF 1951 target to measure the modulation transfer 

function, MTF. Here, the MTF of the image is obtained with the sample of interest and 

the USAF target placed in between the image plane and the light source. The third 

method uses the edge spread function following very similar ideas as the MTF method. 

Two of the methods use a collimated light source while one of the MTF methods uses a 

diffuse light source.  We show experimental demonstration of the methods involving 

collimated light sources while numerical ray tracing is used to verify the method 

involving a diffuse light source. 
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Chapter 1 - Introduction 

 

Their compactness, efficiency, reliability and often low cost have made diode pumped solid state 

(DPSS) lasers prevalent in high power density applications.1,2 In DPSS lasers, typically 

transparent crystalline or amorphous glass-like materials doped with active ions are used as the 

laser gain media. Often the lasing medium size and dopant density in the case of crystalline hosts 

are limited by the synthesis method and the solubility of dopants.3 For example, the doping 

density in single crystal Nd:YAG lasers is typically restricted to ~1at%. More recently, 

polycrystalline ceramic lasing media have helped push the lasing powers up by allowing faster 

synthesis of large active lasing media with a higher density of active dopants.4 

However, the power scaling in such lasers becomes challenging because of the large heat 

generation within the active medium due to the inherent quantum defect of the lasing process. 

Unlike gas lasers, where convection by the gas flow can enhance heat dissipation ability, heat 

dissipation within the active medium in DPSS lasers is limited to conduction only. With 

inadequate heat dissipation, large thermal gradients can cause losses due to thermal lensing and 

depolarization effects, while thermal stress can cause catastrophic thermal stress fracture. 

Various methods have been used to maximize heat dissipation, which can be roughly divided 

into 3 broad groups: 

i. Implementing new lasing geometry design such as thin slab lasers5–7 with orthogonal 

pumping and heat dissipation/cooling directions.  

ii. Using novel high thermal conductivity (k) host materials such as sesquioxides,7 which 

offer a 50% increase in thermal conductivity compared to Nd:YAG lasers. 

iii. By host material microstructure design.8 Lasing has been demonstrated in polycrystalline 

anisotropic/birefringent ceramics by increasing orientation control of grains. 

In Chapter 2, we take advantage of all of the above approaches to design high power lasing 

media made of polycrystalline ceramics. The ability to orient the grains in polycrystalline 

ceramics8,9 allows for excellent light transmission in ceramics made of birefringent materials, 

which paves the way for higher thermal conductivity large bandgap materials such as Al2O3
10 

and AlN11 to be considered as host material candidates. Visible photoluminescence and lasing 

has already been demonstrated in rare earth and transition metal doped AlN12–14 and Al2O3
15–17 

ceramics and single crystals. 

In polycrystalline ceramics, an additional challenge arises due to the opposite scaling laws 

obeyed by the desirable thermal conductivity and light transmissivity of the birefringent 

polycrystalline materials as a function of the characteristic grain size. The grain boundaries 

within the polycrystals scatter the heat carrying phonons, which can result in an order of 

magnitude decrease18,19 in thermal conductivity with decreasing grain size. On the other hand, 

for high light transmission, the scattering of light at the grain boundaries needs to be minimized. 

For the small sub-10μm grain sizes that are typical in polycrystalline ceramics synthesized by the 

highly non-equilibrium spark plasma sintering process, the light transmission has been shown to 

increase with decreasing grain sizes.20 Thus, the grain size has opposite effects on the heat 
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dissipation ability (thermal conductivity) and beam quality (light transmission) for transport 

through polycrystalline birefringent material.  

The above challenge can be tackled by synthesizing ceramics with anisotropic properties that 

exploit the possibility to decouple the lasing direction from the cooling direction. In such an 

arrangement, it is essential to have good thermal transport primarily in the cooling direction, 

while excellent light transmission is required in the lasing and pumping direction. This is 

schematically shown in Figure 1-1 for a slab laser configuration.   

 

Figure 1-1 (a) Schematic of a side-pumped slab laser with orthogonal lasing and cooling directions. (b) An 

anisotropic microstructure where grain sizes along the lasing/pumping directions are small while that in the 

cooling direction are large can help achieve high lasing powers. 

As shown in Figure 1-1(b), we expect that it is possible to achieve higher laser power densities if 

the grain sizes in the direction of thermal transport, l2, are close to the intrinsic mean free paths 

for phonons, Λphonon, while the other 2 dimensions, l1 are similar or smaller than the wavelength 

of transmitting light. We verify this assumption by utilizing multiple modeling techniques in the 

second chapter of this thesis. A figure of merit is introduced, which was optimized to find the 

best combination of grain sizes and shapes, and directions for thermal and light power transport. 

In Chapters 3 and 4 of the thesis, we develop methods to measure both thermal transport and 

light transmission properties of anisotropic ceramics. We first talk about thermal conductivity 

measurement. With the general assumption that the crystallographic orientation is unknown, the 

complete thermal conductivity tensor can be described by 
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where k  has 6 independent elements since kij =kji from Onsager’s reciprocity relations.21 The 

typically nickel-sized samples are only ~1 mm thick12 and are expected to have thermal 

conductivities up to 100 W/m∙K, which makes traditional steady state techniques unsuitable for 

measuring the thermal conductivity tensor. To measure the thermal conductivity of thin isotropic 

materials, periodic heating techniques have been used to bound the heat spreading within a 

frequency dependent thermal penetration depth.22–24 This also reduces unwanted parasitic losses 

due to convection and radiation to less than a percent of the total heat spreading.22 Recently, a 

laser based technique, time-domain thermoreflectance (TDTR) was used to measure an 

arbitrarily aligned thermal conductivity tensor.25  The necessity to use specialized ultrafast lasers 

and time-consuming iterative process, make the above measurement method challenging and 

expensive. 

Instead, in this work, we developed solutions for the electrothermal-based 3ω method, where an 

alternating current source creates a fluctuating temperature field in the substrate due to Joule 

heating. This temperature fluctuation can be inferred from the change in resistance of the heater, 

and is a function of the thermal conductivity of the substrate. While there have been previous 

attempts to measure the thermal conductivity of anisotropic materials with the principal 

conductivities aligned along the sample’s orthogonal surfaces,26–28 they lack a closed form 

solution and do not consider the case of arbitrary principal axes orientation. In Chapter 3, we 

developed solutions for the 3ω problem on a substrate with an arbitrary anisotropy. Following 

this, the method was demonstrated with experiments on mica, which was machined in an off-axis 

direction to create off-diagonal elements of the k-tensor. 

Finally, in Chapter 4, we develop cheap, easily accessible and high throughput methods to 

measure the light transmission properties of thin samples. For non-absorbing material, the 

exclusive source of light attenuation is by elastic scattering of light. The light scattering property 

of a material is defined using two terms: (i) the scattering coefficient, βsca, and (ii) the angle 

dependent scattering phase function, Φ(θi,θs), where Φ is a function of the incident and the 

scattered angles, θi and θs respectively. The typical methods for characterizing the above 

properties include the use of specialized and possibly expensive optical equipment such as a laser 

source, integrating sphere, and high precision goniometer.20,29  

The methods developed in this work require inexpensive optical elements such as LEDs or light 

tables, simple scientific cameras, and resolution targets. The methods use either a collimated or a 

diffuse light source, where the light scattering properties can be inferred from comparing the 

blurriness of an imaged target with and without the presence of the sample-of-interest in the 

imaging path. These methods are sensitive to the light scattering properties over a large area of 

the sample (~10 mm2), and thus is a non-local measurement unlike laser-based technique. For 

each method, as a first step, we first calculate the point spread function as a function of the light 

scattering parameters and geometry, following which the methods are validated by experiments 

with a surface scatterer and numerical simulations with ray tracing software. 
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 Organization of the Dissertation 

This thesis is divided into 3 big topics:  

Chapter 2 - Optimizing Thermal Transport and Light Transmission in 

Anisotropically Micro-Structured Materials for High Power Laser Applications 

Ceramic lasers have helped push the limits of lasing powers, while still maintaining high beam 

quality and cost effectiveness. Power densities can be pushed up even further by reducing 

operational thermal gradients in the lasing media, achievable by synthesizing higher thermal 

conductivity (k) materials. Grain boundaries, ever-present in the typically sintered ceramics, 

scatter the heat carrying phonons, thus decreasing k. On the other hand, smaller grain sizes 

enables higher light transmission in the Rayleigh scattering regime. An optimization challenge 

arises from the opposite scaling laws governing the effect of grain boundaries on k and light 

transmission.  

In this work, we tackle this optimization problem by modeling heat transfer and light 

transmission through anisotropically microstructured columnar grained materials. Larger 

characteristic dimensions help maintain high–k in the c-axis direction for good heat dissipation, 

while preserving light transmission properties in the orthogonal lasing and pumping directions. 

Monte Carlo ray tracing simulations are carried out to model the anisotropic thermal 

conductivity in these structures. Light transmission is modeled using exact numerical simulations 

as well as approximate Rayleigh-Gans-Debye models. This will guide the synthesis of future 

state of the art high power lasers. 

Chapter 3 - A 3 Omega Method to Measure an Arbitrary Anisotropic Thermal 

Conductivity Tensor 

Previous use of the 3 omega method has been limited to materials with thermal conductivity 

tensors that are either isotropic or have their principal axes aligned with the natural cartesian 

coordinate system defined by the heater line and sample surface.  Here we consider the more 

general case of an anisotropic thermal conductivity tensor with finite off-diagonal terms in this 

coordinate system.  An exact closed form solution for surface temperature has been found for the 

case of an ideal 3 omega heater line of finite width and infinite length, and verified numerically.  

We find that the common slope method of data processing yields the determinant of the thermal 

conductivity tensor, which is invariant upon rotation about the heater line’s axis.  Following this 

analytic result, an experimental scheme is proposed to isolate the thermal conductivity tensor 

elements.  Using two heater lines and a known volumetric heat capacity, the arbitrary 2-

dimensional anisotropic thermal conductivity tensor can be measured with a low frequency 

sweep.  Four heater lines would be required to extend this method to measure all 6 unknown 

tensor elements in 3 dimensions. Experiments with anisotropic layered mica are carried out to 

demonstrate the analytical results. 

Chapter 4 - Easily accessible, low cost approaches to measure the scattering phase 

function of optically thin samples 

Cheap and easily accessible methods to measure the light scattering phase function of thin 

samples are developed using image resolution techniques. The methods can be distributed into 

two broad groups determined by the nature of the light source, (1) collimated and (2) diffuse. 

The effect of the sample on either the edge spread function (ESF) or the modulation transfer 
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function (MTF) is used to quantify its light scattering properties. For each method, first the point 

spread function is derived, following which the methods are validated with numerical 

simulations and experiments with a surface scatterer. 

 

Chapter 5 -Dissertation Summary and Conclusions 

This chapter offers a summary of all modeling and experimental results from the thesis, 

potential future work and their implications. 

 



 

 
 

6 

Chapter 2 - Optimizing Thermal Transport and Light 
Transmission in Anisotropically Micro-Structured Materials 

for High Power Laser Applications 

 Introduction 

Diode pumped solid state lasers30 have helped push the boundaries of high power lasers. Since 

lasing was first demonstrated in a polycrystalline ceramic laser,31 the ability to dope higher 

concentrations of active elements, which are rare earth elements or transition metals, into 

polycrystalline, powder-densified samples by using non-equilibrium processes has enabled larger 

laser slope efficiencies.4 The limits in power densities in high power lasers are often due to 

thermal rollover32 from thermal lensing and depolarization effects, while catastrophic failures 

can be caused by thermal stress fracture.33  A higher thermal conductivity, k, of the lasing media 

reduces the peak temperature and thermal gradients in the lasing media, thus allowing higher 

lasing powers.34  

There is an ongoing effort in the ceramic community to develop laser media with thermal 

conductivities higher than that of the current start of the art Nd:YAG lasers (k ~ 6 - 14 W/m-

K)35. Ceramic sesquioxides7 with twice the thermal conductivity of Nd:YAG have been 

developed towards achieving this goal. Ceramics of lighter elements,36 such as Al2O3 and AlN, 

have the potential to achieve much higher thermal conductivities. Single crystal thermal 

conductivity of AlN37 and Al2O3
38 are more than 30 times and 4 times higher than that of 

Nd:YAG respectively. Lasing action has already been observed in Ti and Fe doped AlN,13,14 

while Ti:sapphire (Ti doped single crystal Al2O3) lasers are ubiquitous in ultra-fast lasing 

applications.15,16 More recently, visible photoluminescence was observed in a Tb:AlN ceramic39 

with a measured thermal conductivity of more than 80 W/m-K at 300 K. Thus AlN and Al2O3 

ceramics hold great promise as the host material for high power laser media.  

In the above polycrystalline ceramics, the grain boundaries cause additional scattering of the heat 

carrying phonons, which can reduce the thermal conductivity by more than an order of 

magnitude compared to a single crystal.40,41  Maintaining high thermal conductivity therefore 

calls for increasing the grain size, at least to the extent compatible with the non-equilibrium RE 

doping process17.  On the other hand, the promising high-k materials AlN and Al2O3 are 

birefringent, so that light propagating through a polycrystal with grains of misaligned orientation 

sees a slightly different refractive index from grain to grain (e.g., the maximum refractive index 

variation is Δ𝜂~0.0542 for red light in AlN). This birefringence effect is the primary source of 

light scattering in highly dense ceramics,20 and is therefore crucial for determining the beam 

quality of the laser.   

When the refractive index variation and the grain size are both small, such that, 
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which shall turn out to be the case for nearly all of the present work, the Rayleigh-Gans-Debye 

(RGD) scattering approximation can be invoked. Here, dg is the effective diameter of the grains 

in the polycrystal and  is the lasing wavelength. Under the RGD approximation, the extinction 

coefficient of light due to grain boundary scattering decreases with decreasing grain size, which 

enables higher transmission. Thus, light transmission and thermal conductivity of these sintered 

ceramics scale oppositely with increasing grain sizes. One way to reduce the scattering of light at 

grain boundaries is by controlling the crystallographic orientation of the grains. This has been 

achieved by applying large magnetic fields to magnetically anisotropic powders8 or by sintering 

together nanocrystals9 with large shape anisotropy.  Here, we focus on ceramics synthesized 

using the later scheme. 

In this work, we investigate the potential lasing peformance of polycrystals with anisotropic 

grains by modeling the thermal conductivity and light transmission in such materials. This work 

has been divided into 3 sections. In each section, we carry out calculations on AlN (wurtzite 

structure) and Al2O3 (corundum structure) as candidates for the host material. We chose Ti as the 

dopant which substitutes the Al3+ cation, because it has been used to demonstrate lasing in both 

host materials.  

First, we first develop approximate analytical models to predict the effect of grain boundaries on 

the thermal conductivity of polycrystalline materials with anisotropically shaped grains. These 

approximate models were verified using Monte Carlo ray tracing simulations. In the next section, 

we apply the RGD scattering approach to calculate the light transmission properties, and verified 

it with numerical simulations using FEM software (COMSOL). Finally, we propose a figure of 

merit to quantify the applicability of the anisotropic polycrystals as high power laser media. We 

calculate the figure of merit as a function of anisotropic grain shapes and sizes and discuss the 

parameters that affect it.  

 Thermal Conductivity 

In large bandgap dielectric materials such as sapphire (Al2O3) and aluminum nitride (AlN), 

phonons are the primary carriers of heat. The phonon thermal conductivity can be calculated as  

 

,
3

1
 
pol

dvCk 

 (2-2) 

where Cω, vω, and Λω are the volumetric heat capacity, group velocity, and the mean free path of 

each phonon mode, and the sum is over all three phonon polarizations (2 transverse and 1 

longitudinal modes). In pure single crystals, the intrinsic phonon-phonon (umklapp) interaction 

is the primary scatterer of phonons at room temperature. In contrast, as illustrated in Figure 

2-1(a), in RE-doped polycrystals, extrinsic scattering by grain boundaries, pores, the RE dopants, 

and phase inclusions are the dominant scatterers of both the phonons and photons. Even in the 
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best case of fully dense homogenous materials, in which the effect of pores and phase inclusions 

can be ignored, scattering by grain boundaries and RE dopant are still significant.  

When multiple scattering mechanisms are important, typically Mathiessen’s rule43 is used to sum 

up the effects of the various scattering mechanisms in parallel, 
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,
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,
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,
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,

   MDbdyimpumkleff , (2-3) 

where Λumkl , Λimp, Λbdy and ΛMD are the mean free paths due to umklapp, impurity, grain 

boundary, and mass defect scattering due to active dopants. The intrinsic mean free paths, Λumkl,ω 

and Λimp,ω, can be inferred from single crystal thermal conductivity vs. temperature data from 

literature36  (See Appendix 2.6.2.1 for details). The extrinsic mean free paths, Λbdy and ΛMD, can 

vary significantly due to the properties of the sintered polycrystal, such as the quality and shape 

of the grain boundaries, and the species and density of RE dopant. We will discuss this in more 

detail in the following subsections. 

 Grain Boundary Scattering Mean Free Path 

To calculate the grain boundary scattering mean free path, Λbdy, the transmission probability of 

phonons at grain boundaries has to be known. Previous molecular dynamics simulations44–46 

suggest that the transmission probability varies inversely with the phonon frequency. Following 

this, a frequency dependent transmission probability,19,47,48  
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has been used to explain the thermal conductivity of isotropic nano-grained materials.  
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Figure 2-1 (a) The two primary scattering mechanisms affecting heat transport in the polycrystalline AlN and 

Al2O3 ceramics of present interest are grain boundaries and the active dopants. (b) We study the thermal 

transport properties of a more simplified microstructure comprising aligned hexagonal columnar grains. The 

aim is to calculate the thermal conductivity tensor elements, kab and kc. Phonon ray tracing and models are 

used to find the boundary scattering phonon mean free path for (c) ab-direction, and (d) c-direction 

transport. 

When the grain sizes are small compared to the phonon mean free paths, grain boundary 

scattering in the anisotropic nano/micro-structures studied in this work would result in a 

direction dependent thermal conductivity. Due to the incoherent nature of phonon transport at the 

length scales and temperatures of interest, the grain boundary contribution to the mean free path 

for phonon transport in such materials can be modeled by simplifying the structure into a more 

ordered form49 (see Appendix 2.6.1).  

Table 2-1: Mean free path due to scattering of phonons by grains oriented parallel and perpendicular to the 

transport direction. r = l2/l1 

Scattering type 
Boundary scattering mean free paths 

Λbdy, ab (Figure 2-1(c)) Λbdy, c (Figure 2-1(d)) 
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Similarly, for phonon transport along the ab-direction (Fig. 1c), the nano-grained structure 

simplifies to a superlattice nanowire with a rectangular cross-section (αl1 x l2), where α is a 

correction to capture the presence of the sawtooth boundaries. It was recently shown that the 

exact analytical solution50 for the boundary scattering mean free path of a rectangular nanowire 

can be approximated to within 3% by a simple logarithmic function,49 which we use here in the 

bottom-left entry of Table 2-1.  The effect of specularity is included for ΛNW calculations, by 

multiplying the corresponding diffuse value with (1+p)/(1-p), where p is the specularity 

parameter.43,51 When the aspect ratio, r, is less than 1, we use the the exact solution of McCurdy 

et al.50 
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Referring to Fig. 1c, when approximating the microscrutructure along the ab direction as a 

nanowire of rectangular cross section, the long side of the grain, l2, directly gives one side length 

of the rectangle, while defining the other length requires some thought due to the faceted 

structure.52 In the limit of perfectly diffuse boundaries, which typically holds true for grain 

boundaries,48 the sides of the rectangular nanowire can be reduced to the dimensions bounded by 

the sawtooth sides, i.e. (l1 x l2) for the case of hexagonal grains.  In the following sub-section, we 

will numerically show that this assumption for the geometry gives an acceptable prediction 

(<25% error), even when the boundaries are highly specular. 

The mean free path contributions due to the nanowire and superlattice effects for ab and c-

directions are summarized in Table 2-1. The total boundary scattering mean free path for each 

direction can be calculated by invoking Matheissen’s rule, 
111   SLNWbdy . These models are 

validated with ray tracing simulations in the following sub-section. 



 

 
 

11 

 Validation of Boundary MFP models with Monte Carlo Ray Tracing 

 

 

To check the approximate analytical expressions of Table 2-1 we used a Monte Carlo ray tracing 

code49,53 to calculate the boundary scattering mean free path for selected microstructures. Two 

different geometries (Figure 2-2(a)) were used to calculate the grain boundary mean free path in 

the orthogonal ab and c-directions. These reduced geometries exploit periodic boundary 

conditions and symmetry boundary conditions to reduce the computation time.  Therefore we 

make a distinction between external surfaces (surfaces that bound the simulation domain) 

compared to internal boundaries (surfaces/interfaces bounded within the geometry). The 

specularity of the external surfaces can either be completely specular (p=1) if they are reflection 

symmetry planes, as is the case for ab-direction in Figure 2-2(a), or have the same specularity as 

the grain boundaries they represent, which is true for c-direction transport.  

In each of these structures, over 500,000 phonons are launched from the hot surface of the 

simulation domain. For each phonon, the position and azimuthal angle are randomly chosen with 

uniform weighting over the hot surface and from 0 to 2π respectively, while the polar angle is 

randomly chosen from 0 to π/2 with a weight proportional to its emission probability, cosθsinθ. 

When the phonon hits an external surface, if the value of a generated random number is less than 

the specified specularity of the boundary, the phonon is specularly reflected. Otherwise the 

Figure 2-2 (a) and (b) show simulation domains for Monte Carlo ray tracing simulations, for transport along 

the ab- and c-directions of the microstructure, respectively. Multiple ray tracing simulations (not shown) 

were carried out with increasing number of periods of period length, lp shown above, to determine the 

boundary scattering mean free path. Contour plots for error % between mean free paths predicted by ray 

tracing simulations and the model of Table 1 are shown for (c) ab-direction and (d) c-direction, as functions 

of the grain boundary specularity and transmissivity.  These results are for an aspect ratio r= l2/l1=5. 
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phonon is diffusely reflected with polar angle and azimuthal angle randomized in a way similar 

to the emission process. At the grain boundaries, a frequency dependent transmission function, tω 

(Eq. (2-4)) determines the probability with which phonons transmit through the boundary. 

 

With the results of the ray tracing simulations for 500,000 phonons on a single geometry 

described above, the transmission coefficient,  , is calculated as the fraction of the phonons 

that make it through to the cold lead in the simulated geometry. The standard deviation of   is 

calculated by analyzing 10 subsamples in a process similar to Lee et al.49 To calculate the mean 

free path for a given set of geometry conditions (l1, l2) and grain boundary parameters (t, p), we 

first calculate   for a range of simulation domain lengths, L, where increasing L implies 

increasing number of periods (period length, lp shown in Figure 2-2 (a) and (b)) . For each length 

L, following the Landauer formalism54 the mean free path is calculated as 
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ΛL is not an intrinsic property for a given microstructure unless the simulation domain L is more 

than an order of magnitude49 larger than the mean free path value. To keep the computation 

times small, ΛL can be calculated for a range of shorter L values, such that the simulation domain 

has about 5 to 10 periods. Then the boundary scattering mean free path can be calculated as49,55 
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Now, we can quantify the error percentage between the mean free path values predicted by the 

analytical model in Table 2-1 and ray tracing calculations by the formula, 

 100% 





tracingray

tracingraydelmo
Error , (2-8)  

The error percentages are shown in Figure 2-2(b) for a microsctructure with moderate 

anisotropy, l2/l1=5. Over a wide range of specularity and boundary transmission fractions, the 

errors are less than 10% for transport in the ab-direction and below 25% for the c-direction. This 

is an acceptably small variability considering that the value of ray tracing itself varies by a factor 

of 3 over this range of parameters. Similar MC simulations were performed for l2/l1=10 and 20, 

and in all cases, the errors due to the approximations of Table 2-1 were found to be below 25%. 

Thus, for the remainder of this study we use the highly computationally efficient models of Table 

2-1. 
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 Thermal conductivity of doped AlN and Al2O3 

A typical ceramic laser gain media is doped with heavy rare earth or transition metals which are 

required for the lasing action.  Because these dissimilar dopant atoms represent defects in the 

periodic lattice of the host media, they also cause Rayleigh-like scattering56,57 of phonons.  Such 

mass-defect (MD) scattering can be described by a quadratic dependence on phonon frequency, 

 


v

AMD
MD

4
1 

, (2-9)  

where vω is the phonon group velocity and the coefficient AMD depends on the mass difference 

between the active dopant and the ceramic host material, which we calculate using the formula 

proposed by Slack.58  More details are included in Appendix 2.6.2.1. As discussed in the 

introduction, we use Ti with 1at% concentration as the dopant.  

Finally, we find the effective mean free path by combining all the major scattering mean free 

paths using Mathiessen’s rule, Eq. (2-3). The thermal conductivity is calculated using Eq. (2-2) 

for ab- and c-direction by using the respective effective mean free paths. The details for this 

calculation are included in Appendix 2.6.2. We calculate k for two different strengths of 

boundary scattering, γbdy = 1 and 5, corresponding to good and bad grain boundary transmission 

respectively. The results are compiled in the contour plots of Figure 2-3. 

 

Figure 2-3 Calculated ab- and c-direction thermal conductivity (colored contour levels) for 1at%Ti doped 

AlN (left) and Al2O3 (right). Each plot is a function of the same sweep of aspect ratios r = l2/l1 from 0.1 to 100 

and the transverse grain length parameter l1 (200 nm to 10 μm). r<1 and r>1 corresponds to disk-like and 

columnar grains respectively. Two values of grain boundary scattering parameters are shown: (i) weak 

boundary scattering, γbdy = 1 and (ii) strong boundary scattering, γbdy = 5.  
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We have carried out calculations for a wide range of aspect ratios ranging from r =0.1 to 100, 

where r<1 corresponds to disk-like grains. Since AlN has much longer mean free paths (see 

Figure 2-8(b)) than the grain sizes considered in this study, the strength of grain boundary 

scattering, γbdy, is expected to have a significant effect on its thermal conductivity. This is easily 

observed upon comparing Figure 2-3(a) and (b), where kab reduces by 25% for the smallest grain 

sizes upon increasing γbdy from 1 to 5. On the other hand, the corresponding change in kc from 

Figure 2-3(c) to (d) is less than 5%, which shows that grain boundary scattering affects kab much 

more severely compared to kc for large aspect ratio grains. Even with poor grain boundary 

transmission, it is possible to achieve high thermal conductivity in the c-direction. 

On the other hand, both grain boundaries and active dopants have a very small effect on the 

thermal conductivity of Al2O3 because of the small intrinsic mean free paths. From the mean free 

path accumulation functions in Figure 2-8(b), we expect that Λbdy of 200 nm would cause only a 

30% decrease in k of Al2O3, compared to a 70% decrease in AlN. We observe a similar effect 

when comparing Figure 2-3 panel (b) with (f) for r = 10. As the grain sizes decrease from 10μm 

to 200nm, kab decreases by more than 60% for AlN, while the corresponding decrease in Al2O3 is 

only 20%.  

In addition, in Appendix 2.6.2.1, we note that the lasing dopants can be a dominant phonon 

scattering mechanism due to the large mass difference between the typically heavy active 

dopants and the lighter atoms of AlN or Al2O3. It is critical to think deeply about the choice of 

the host material and active dopants to minimize the reduction in thermal conductivity. 

 Light Transmission 

 Light Scattering at Grain Boundaries 

It is essential to reduce energy loss due to extinction of light within a lasing media to enable high 

power lasing.59 In highly pure, dense, polycrystals composed of anisotropic large bandgap 

materials, birefringence scattering at the grain boundary interfaces20 is the primary source of 

intrinsic attenuation. The overall transparency of a slab of sintered ceramic of thickness l is often 

quantified by its real inline transmission,20 

   lscaeRRIT



2

1 , (2-10)  

where R is the reflectivity at an air-ceramic interface which can be easily calculated using the 

Fresnel relations and βsca is the extinction coefficient due to scattering. We will lay out the path 

to calculating βsca in this section. Hexagonal materials such as AlN and Al2O3 are birefringent, 

which implies a slightly different refractive index for the ordinary, ηo and the extraordinary rays, 

ηe.
20,42 The refractive indices for AlN and Al2O3 are listed in Table 2-2.  Light propagating 

through a polycrystalline ceramic with perfectly crystallographically aligned grains does not see 

any change in refractive index when crossing a grain boundary. Thus there is no light scattering. 

Table 2-2: The refractive indices used for the scattering cross-section calculations for light with λ=400nm 20,42 
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Host Material ηe ηo 

AlN 2.12 2.16 

Al2O3 1.760 1.768 

However, the misalignment of grains in a real polycrystalline material causes light scattering as 

shown in Figure 2-4(a). In this work, we define misalignment as the average angle χ between the 

c-axes of the underlying hexagonal crystal structure of individual grains in the polycrystal.  Since 

misalignments of less than 200 has been achieved by various methods such as magnetic 

alignment60 and using crystallites with shape anisotropy,9 we will limit our study to small 

misalignments. For a given misalignment χ, the change in refractive index at grain boundary 

interfaces can be calculated as61 

 

  o

eo

eo 



 




2222

22

cossin
, (2-11)  

where χ is the angle between the polarization and the c-axis, and ηe and ηo are the refractive 

indices for the extraordinary and the ordinary rays. This change in refractive index is 

independent of the light propagation direction because of the typically small birefringence 

(∆max=|ηe-ηo|) in these materials.  

 

Figure 2-4 (a) In realistic ceramics, slight differences in refractive index, 𝜟𝜼, due to the misalignment  

between columnar grains cause light scattering .  Here the green arrows represent the c-axis of the hexagonal 

crystal structure of AlN or Al2O3 (b) Faceted hexagonal shaped columnar grain structures are represented by 

cylinders of the same volume (Eq. (2-12)). (c) RGD calculation (dashed line) for representative cylinders 

agrees very well with computationally expensive Comsol simulations (red points) on hexagonal scatterers. 

Modeling parameters: λ=1μm, ∆η=0.0025 and l1=110.5nm (d) 3D view of the effective medium model 

comprising representative cylinders dispersed in a matrix with refractive index contrast, ∆η(χ). The volume 

fraction of the scattering cylinders is 0.5. 
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To calculate the extinction coefficient, we build on the approach of Apetz, et al.20 by 

approximating the polycrystal as an effective medium where cylinders of refractive index  are 

distributed within a matrix of slightly different index +∆(χ), with a volume fraction of 0.5 

(Figure 2-4(c)).  Each hexagonal crystallite is approximated as a cylinder with the same length 

and volume, corresponding to 

 .82.1 2,21,1 llandll cylcyl   (2-12) 

To calculate the scattering coefficient, βsca, first we need to calculate the scattering cross-section 

of each individual scatterer. Since we focus on grain sizes small enough such that Eq. (2-1) is 

satisfied, the RGD approximation can be applied. Then the scattered intensity due to a single 

cylinder at a large distance, ρ, can be calculated in the RGD approximation following van de 

Hulst62 as 
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where V is the volume of the scattering cylinder, and the shape factor,  

    dVe
V

R i
1

, . (2-14) 

The phase δ is the phase difference between light scattered by each point in the scatterer and a 

reference point. Then the scattering cross-section is calculated by integrating the scattered 

intensity over the entire sphere surrounding the scatterer: 
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Note that I0 and ρ  were arbitrary and therefore drop out after substituting Eq. (2-13) into Eq. (2-

15).  

 

We first check the validity of the hexagon-to-cylindrical approximation (Eq. (2-12)) by 

comparing the scattering cross-section of a single cylinder calculated with the RGD 

approximation (Eq. (2-15)) against numerical simulation results for a corresponding hexagonal 

nanorod using the emw module of COMSOL Multiphysics. Following the simulation scheme of 

Yushanov et al.63 we calculated the scattering cross-section for unpolarized light incident on a 

hexagonal nanorod. Figure 2-4(c) shows that the scattering cross-sections calculated by the two 

methods agree very well for a sweep of aspect ratios, thus demonstrating the validity of the 

cylindrical grain approximation.  
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 Effective Medium – Independent Scattering 

Now that the scattering cross-section of individual scatterers is known, the next step is to 

combine the effects of the multiple grains in a polycrystal using the effective medium model 

described before. Due to the sub-micron size and high volume fraction (0.5) of scatterers in the 

current study, the effective single scattering cross-section of each particle can be different than 

that of individual isolated particles because of coherent interference of the scattered waves. For 

packed systems, generally when the minimum inter-particle distance, either l1 or l2, is larger than 

half a wavelength,64–66 then the scattering from each particle is independent, and the effect of the 

large number of scatterers is simply additive. In this limit, the product of the number density and 

the scattering cross-section of the scattering centers in the propation medium gives the extinction 

coefficient. To ensure the validity of independent scattering, a lasing wavelength of 400 nm 

(typical minimum wavelength accessible in a Ti-sapphire laser, ref: 

https://cohrcdn.azureedge.net/assets/pdf/Chameleon-OPO-Vis-Data-Sheet.pdf) implies that the 

minimum distance between scatterers, here l1, is restricted to be at least 200 nm. Further analysis 

in this section will be limited to these sizes. We discuss the possibility to extend the analysis for 

even smaller grain sizes in Appendix 2.6.4. 

We first consider the effects of the grain packing and alignment on the optical properties of the 

effective medium. The misalignment of crystallites can influence the scattering cross-section for 

a fixed refractive index contrast , the refractive index contrast itself along the transport 

direction (Eq. (2-11)), and the packing of the grains within the ceramic. Since RGD scattering 

assumes that each infinitesmally small volume element acts as a Rayleigh scatterer,62 the 

scattering cross-section for each scattering cylinder is proportional to the square of the refractive 

index contrast, ∆η. On the other hand, the density of scatterers in the two orthogonal directions 

for light transmission is related to the projections of the grains in those directions, i.e., cos χ and 

sin χ. In Appendix 2.6.3, we show that the relative changes in the above projections are 

negligible in comparison to changes in the refractive index contrast at the small χ values 

considered in this study. Thus we ignore the changes in packing fraction as a higher order 

correction in this work.  

With the above approximations, and considering the density of scatterers in the effective medium 

representation of Figure 2-4(d), the extinction coefficients in the orthogonal directions are 

calculated as 
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where βsca,ab and βsca,c are the extinction coefficients for light propagating in the ab and c 

directions. Csca,ab and Csca,c are the scattering cross-sections for plane unpolarized light incident 

broadside and end-on respectively on the scattering cylinders. 
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Figure 2-5 Calculated extinction coefficients for (left) AlN and (right) Al2O3 ceramics in the ab and c 

directions using the RGD approximation in the independent scattering limit for two values of the average 

grain misalignment, χ = 5° and 10° with an incident wavelength, λ = 400nm. The transparent black shaded 

region in each panel do not satisfy the criteria for RGD approximation (2π∆ηl2/λ<0.5 and 2π∆η(1.81l1) 

/λ<0.5)67 and/or independent scattering approximation (min(l1,l2)/λ > 0.5). We observe that the smallest  βsca,ab 

is achieved when r > 1, while smallest βsca,c is achieved when r < 1. 

With the above information, contour plots of scattering coefficients for anisotropic 

polycrystalline AlN and Al2O3 ceramics are plotted in Figure 2-5. The extinction coefficients in 

Al2O3 ceramics are smaller by more than an order of magnitude because of the small 

birefringence, ∆ηmax
20,42. In addition, for both materials the preferred small scattering coefficients 

are in the ab-direction (compare Figure 2-5 panel (a) with panel (c) and panel (e) with panel (h)) 

when r >1, even though the interface density is actually higher. On the other hand, βsca,ab is 

smaller when r<1, i.e, for disk-like grains, because the propagation direction with shorter grain 

dimensions switches. This is in contrast to the trends we observed for thermal conductivity in 

Figure 2-3, where a preferred higher k was observed in the direction with the greater spacing 

between grain boundaries. It is also notable that increased misalignment can lead to big 

amplifications of the extinction coefficient because of the Csca∝∆η(χ)2 scaling. 

 Discussion: Optimizing Microstructure for Maximal Lasing Power 

In the previous two sections, we found that in polycrystalline ceramics, both thermal 

conductivity, k (Figure 2-3) and light scattering coefficients, βsca  (Figure 2-5) are severely 

affected by the size and aspect ratio of the grains.  Generally smaller grains lead to a decrease in 

thermal conductivity but with better light transmission properties. We also found that the 

transport properties of heat and light are functions of direction as well. This suggests that there is 

an optimum of sizes and aspect ratios of grains, as well as the directions for heat dissipation and 

light propagation. To find this optimum, we first introduce a figure of merit, FOM, by 

considering the effects of the grain sizes on the laser’s slope efficiency and heat dissipation 

capabilities. 
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For diode pumped solid state lasers in steady state operation, the output power can often be 

described by 59,68 

  thinSout PPP   , (2-17) 

where σS is the slope efficiency, Pin the input pump power, and Pth is the threshold power for the 

lasing media. It is easily seen that a small threshold power and a large slope efficiency enable 

high lasing powers. It is well-known59,68 that this is achievable by minimizing the threshold gain 

or the optical losses within the laser,  

   extth RR
l

g  21ln
2

1
, (2-18) 

where R1 and R2 are the reflectivity values for the 2 mirrors bounding the lasing cavity, and βext is 

the total extinction coefficient due to absorption in the gain media and scattering losses. When 

the lasing cavity is long, which is typical in high power lasers, 3,69 the scattering coefficient is the 

dominating loss term. In large bandgap materials like AlN, scattering is the primary source of 

losses within the media, and thus, βext can be replaced by βsca.  

On the other hand, the thermal load is distributed throughout the laser due to quantum defect 

heating, which is a fraction of pumping power,70 leads to thermal gradients during laser 

operation. These thermal gradients are inversely proportional to the thermal conductivity of a 

uniformly doped lasing media,34,71 

  
k

P
T in .  (2-19) 

For a given lasing media, thermal rollover occurs when thermal lensing and depolarization 

losses, caused due to thermal gradients34,72,73 within the lasing media, become significant 

compared74 to the output power. Similarly, thermal stress fracture also limits the maximum 

thermal gradient in the cavity.71 From Eq. (2-19), we know that the maximum input power is 

limited by the maximum allowable thermal gradient, and is directly proportional to k. Then, by 

invoking Eq. (2-17), we find that the maximum lasing output power,  
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Often, the pumping and the heat dissipation direction can be different depending on the lasing 

geometry.75 Here, by assuming flexibility in the choice for the above 2 directions, we define a 

figure of merit that needs to be maximized for high output powers,  
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where i and j determine the directions (ab or c) for thermal transport and light transmission 

respectively.  

In Figure 2-6, we show the resulting FOM values for anisotropic polycrystalline AlN and Al2O3. 

We use a typical output mirror reflectivity, R2 of 0.9,59 high R1 of 1, and a long lasing cavity 

length of more than 10 cm, which is common for high power lasers.3,69 A conservative 

misalignment of =10° is assumed for the scattering cross-section calculations. The thermal 

conductivity values are the same as that calculated in Figure 2-3 with γbdy=5.  

 

Figure 2-6 Calculated FOMi,j for AlN and Al2O3, from evaluating Eq. (2-21) with thermal conductivity and 

scattering coefficient results from Figure 2-3 and Figure 2-5. The thermal conductivity calculations are 

carried out assuming a 1at% Ti doping and strong boundary scattering, γbdy=5 (Figure 2-3 b, d, f and h). The 

scattering coefficient calculations are carried out in the independent scattering regime assuming a 

misalignment, χ = 10° for light transmission calculations (Figure 2-5 (b, d, f and h)). An output mirror 

reflectivity, R2=0.9 and high R1=1 is chosen. Note that the plots use different color scales for their FOM. 

Similar to Figure 2-5, the opaque shaded region in each panel do not satisfy the criteria for RGD 

approximation (2π∆ηl2/λ<0.5 and 2π∆η(1.81l1)/λ<0)67 and/or independent scattering approximation 

(min(l1,l2)/λ > 0.5).  

It is easily seen that the right bottom quadrant (l1<λ and r>1) for ab-direction light transmission 

and c-direction thermal transport have the best performance, with FOMc,ab values exceeding 1 

W/K in AlN and 10 W/K in Al2O3 for the range of parameters considered. High FOMab,c values 

are achieved also when r<1, since we expect higher kab compared to kc for disk-like grains, while 

the scattering coefficient stays small in c-direction because of the small thickness of the grains. 

Thus, an anisotropic microstructure comprising hexagonal columnar grains with small cross-

section and long lengths, or disk-like grains with large cross-section and small thickness, helps 

optimize for the maximum lasing powers.  

In Al2O3, due to its small bulk mean free paths, as discussed earlier there is a smaller difference 

between kab and kc (compare panels Figure 2-3 (f) and (h)).  Thus, the calculated FOMab,ab 
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(Figure 2-6 (e)) and FOMc,ab (Figure 2-6 (g)) are very similar. This can be an important 

consideration when the choice of heat dissipation direction is not flexible. Hence, it is also 

crucial to know the spread in mean free path accumulation for the developed ceramics to predict 

the effect of grain boundaries on thermal transport.  

Even though doped polycrystalline Al2O3 has a smaller thermal conductivity than AlN, the 

achievable FOM values in Figure 2-6 can be an order of magnitude higher than AlN. This is 

because of the smaller birefringence in Al2O3, which helps maintain a high light transmission 

even at large misalignments between grains. For AlN, it is much more crucial to reduce the 

misalignment between the anisotropically shaped grains to enable high lasing power lasing. 

 Conclusion 

In this paper, we have explored the advantages of anisotropic micro-structured materials towards 

developing higher power lasers. The thermal conductivity was calculated using Eq. (2-2), where 

the effect of grain boundaries and active dopants were included in addition to intrinsic scattering. 

For light transmission, the RGD approximation was invoked and the extinction coefficient was 

calculated assuming independent scattering. The contour plots of Figure 2-3 and Figure 2-5 show 

the importance of the dimensions, orientation, and quality of the grain boundaries for both light 

transmission and thermal conductivity. We proposed a figure of merit, FOMi,j, that needs to be 

maximized to achieve high lasing powers. From the results of Figure 2-6, we found that an 

anisotropic micro/nano-structure can indeed be a means to increase lasing power. We also 

showed that it is crucial to consider the phonon mean free paths, maximum birefringence, and 

the mass of the dopants in selecting the lasing media.   
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 Appendices 

 Similar mean free paths for staggered vs aligned structures 

 
Figure 2-7 Calculated mean free paths, Λab for an aligned and staggered structure using Monte Carlo ray 

tracing.  The grains are cuboidal of size (250 nm, 50 nm, 50 nm) 

In Figure 2-1(b-d), we had proposed a simplified ordered structure to represent realistic 

nanostructured polycrystalline materials for thermal conductivity modeling. In this section, we 

show the validity of this approximation by calculating the mean free path for grain boundary 

scattering, bdy, for an aligned and an staggered  structure for through plane transport. The grain 

structure is cuboidal with a square cross-section of side l1sq=50nm and length l2=250nm. Two 

kinds of geometries are studied here: 1) The grains are aligned such that the boundaries are 

aligned right on top of each other as shown in the schematic of Figure 2-7(a), and 2) alternate 

grains are perfectly staggered (Figure 2-7(b)). We see that the results for the two cases, i.e., 

Figure 2-7(c) and (d)), are very similar for the same range of boundary transmission and 

specularity values considered in the main text (Figure 2-2).  This is expected because of the 

incoherent nature of phonon transport. Thus it is possible to find the appropriate boundary mean 

free path models by studying the simpler aligned structure of Figure 2-1(b)  

 Modeling the mean free paths and thermal conductivity of bulk AlN 
and Al2O3 

To predict the thermal conductivity of nano-grained ceramics, it is essential to know the intrinsic 

mean free paths for phonons in the corresponding bulk single crystal.  In these dielectric single 

crystals around room temperature and above, there are mean free paths associated with three 

primary scattering mechanisms54,76: (i) Umklapp scattering,  
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(ii) impurity scattering,  
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and (iii) physical boundary scattering, D.  The fitting parameters, B1, B2, A, and D are obtained 

by fitting literature data for k(T) of single crystals of AlN11 and Al2O3.
38  Broadly speaking, it is 

well-known that umklapp scattering is most important at high temperatures (room temperature 

and above), boundary scattering at low temperatures (cryogenic), and impurity scattering near 

the peak in the bulk k(T) curve.  

 

In the integration of Eq. (2-2), we first apply the common approximation of lumping76–78 the 

three acoustic branches into a single triply degenerate branch. The common sound velocity, vs for 

the branch is 

 
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where vsL and vsT are the longitudinal and transverse sound velocities values from literature. We 

use an isotropic Born-von Karman (BvK) model for the dispersion relation,  
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where k is the phonon wave vector and k0 is the Debye cutoff wave vector given by 

   3
1

2

0 6 atomsNk  . (2-26) 

Natoms is the number density of atoms, which we calculate from known density and atomic 

masses of the constituent elements. ω0 is calculated by matching the small wave-vector group 

velocity with vs. By using the average number density for all atoms instead of the number density 

of primitive unit cells, we can take the contribution of the optical phonon modes with non-

negligible group velocities79,80 in AlN and Al2O3 into account. The values of the fitted 

parameters are listed in Table 2-3.   
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Figure 2-8 Fitted results for thermal conductivity (left), and resulting mean free path accumulation functions 

(right) for  (red) AlN and (blue) Al2O3. Phonons in single crystal AlN have mean free paths more than an 

order of magnitude longer than that of Al2O3. 

In the right panel of Figure 2-8, we have also plotted the mean free path (MFP) accumulation 

functions, αΛ, which is the cumulative fraction of heat carried by phonons with mean free path 

less than Λ. This makes it intuitive to infer the grain sizes that can significantly affect the thermal 

conductivity. In AlN, the mean free paths are relatively longer, with about 50% of the heat 

carried by phonons with mean free paths longer than 1 μm, compared to less than 10% for Al2O3. 

From these mean free path accumulation plots, we expect that the sub-micron sized grain 

boundaries will have more significant effects on the thermal conductivity of AlN than Al2O3, 
which is confirmed in Figure 2-3. For example, with strong grain boundary scattering, γbdy=5, the 

ab-direction thermal conductivity of AlN decreases by 70% as l1 is reduced from 0.5 μm to 0.05  

μm, in comparison to a 50% decrease in the case of Al2O3.  

 Point Defect Scattering due to active Dopants 
We calculate the effect of active dopants, here Ti, on thermal conductivity following Slack.58 

The mass defect parameter of Eq. (2-9), AMD, is  
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Vo is the average volume of the primitive unit cell, vs is the effective sound velocity of Eq. (2-

24), fi  is the fraction of the primitive unit cells with impurity i, Mi is the mass of the primitive 

unit cell with impurity i, and Mavg is the average total mass of the primitive unit cells in the RE-

doped polycrystal. Both AlN and Al2O3 have 2 compounds in the primitive unit cell. Thus 1at% 

RE doping implies that fi =0.020 in AlN and fi =0.040 in Al2O3.  AMD values for 1 at% Ti doped 
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in AlN and Al2O3 are listed in Table 2-3, which is used for the thermal conductivity calculations 

in Figure 2-3 and Figure 2-6. 

 

Because AMD scales with the square of the mass difference (Eq. (2-28)), the mass of the RE 

dopant becomes an important consideration. For example, 1at% Tb, which has an atomic mass 

more than 5 times that of the Al atom it substitutes, results in AMD  values of 6.87⨉10-43
 s

3 and 

27.7⨉10-43
 s

3
 in AlN and Al2O3 respectively. This is more than 30 times the values reported in 

Table 2-3 for 1at% Ti, and can lead to close to an order of magnitude decrease in the calculated 

thermal conductivities. 

 
Table 2-3 Summary of calculated (ω0, vs, and AMD) and best-fit parameters (A1, B1, and B2) used for thermal 

conductivity calculations 

Host Material 
ω0/2π   
[THz] 

vs 

[m/s] 
A1  

[10-45
 s

3] 
B1 

[10-19 s/K] 
B2 

[K] 
AMD 

[10-45
 s

3] 

AlN 10.99 6084 12.53 2.23 470 18.2 

Al2O3 9.19 4753 0.10 9.24 225 72.3 

 Effect of misalignment on packing compared to Csca 

 
Figure 2-9 Relative changes in normalized scattering cross-section, refractive index contrast, and 

trigonometric identities representing packing as a function of misalignment. Changes in refractive index 

dominates over changes in packing. Geometry parameters: 2πl1/λ=0.63, r=l2/l1=6. 

 

Plots of normalized values of the scattering cross-section divided by ∆η(χ)2,  ∆η(χ)2, and cos(χ) 

show that there is only considerable change in the refractive index contrast,  ∆η(χ) for 

misalignments within 20o. Thus, changes in the packing fraction, which is described by cos(χ) 

can be ignored. Hence, the relation in Eq. (2-16) between Csca and βsca holds true for small 

misalignments. 
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 Dependent scattering 

 
Figure 2-10 (a) COMSOL setup for calculating scattering strength for an array of 23 scatterers in a 3D 

checkerboard arrangement. (b) Distances and vectors used to calculate the dependent scattering cross-section 

for the 23 scatterers in (a). l1,cyl =1.12l1,sq. (c) Effective single scattering cross-sections (total scattering cross-

section/23) calculated by COMSOL simulations match very well with calculations with RGD approximation 

carried out with modification due to dependent scattering (Eq. 2-30). λ=1000nm, ∆η=0.0025. 

As the starting powders for the sintering process get smaller, dependent scattering is expected to 

become non-negligible when the effective distance between two scatterers in the sintered 

polycrystal is smaller than half the wavelength of incident light.65,81 In this regime, it is crucial to 

understand the effects of destructive and constructive interference among waves scattered by 

each scatterer. This is accounted for by multiplying an additional scatter-angle-dependent factor 

with the scattered intensity, which was earlier calculated for an individual scatterer using the 

RGD approximation.  Following Prasher82 the contribution of each of N discrete grains is added 

up using  
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where ijr


is the displacement vector between the scatterers, N is the total number of scatterers, (, 

) are the angles of the outgoing wave in direction S


, and 0SS


 is the difference between the 

unit vectors along the incident and the scattered wave as shown in Figure 2-10(b). This angle 

modifier multiplies the angle dependent scattered intensity I(,) of Eq. (2-13), and the resulting 

scattering cross-section is calculated as  
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We show the validity of the dependent scattering approach with a calculation for a lattice of 23 

cuboids (Figure 2-10(a)) against COMSOL emw simulations in Figure 2-10(c). The two 

calculations are shown to match very well for two different values of l1,sq and a sweep of aspect 

ratios. The calculations were limited to small scatterer sizes because of the large aspect ratio. 

Further discussion of dependent scattering is beyond the scope of this paper. The foundation of 

dependent scattering calculations laid out in this paper can be used to calculate the expected 

cross-section when particles with characteristic smallest dimension of less than half a wavelength 

are used as the starting powders.  
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Chapter 3 - A 3 Omega Method to Measure an Arbitrary 
Anisotropic Thermal Conductivity Tensor 

This chapter is very closely based on our recent publication83 

V. Mishra, C. L. Hardin, J. E. Garay, and C. Dames, "A 3 Omega Method to Measure an Arbitrary 

Anisotropic Thermal Conductivity Tensor" Review of Scientific Instruments 86, 054902 (2015) 

We gratefully acknowledge support from a multidisciplinary research initiative (MRI) from the 

High Energy Lasers – Joint Technology Office (HEL-JTO) administered by the Army Research 

Office (ARO). The authors thank Sean Lubner, Geoff Wehmeyer, and Fan Yang for helpful 

discussions during the experiments. 

 Introduction 

Anisotropic materials are relevant for a wide range of applications such as thermoelectrics,84–86 

high-temperature superconductors,87 and lightweight heat spreaders.88 Often the crystallographic 

orientation of these anisotropic materials can be controlled depending on the material synthesis 

process,89–92 while in other cases the orientation is unknown or may vary.  However, the vast 

majority of thermal conductivity measurement techniques are restricted to isotropic materials, or 

anisotropic materials with principal conductivities aligned parallel with a sample’s orthogonal 

surfaces.  Very recently, Feser et al.25 developed a time-domain thermoreflectance (TDTR) 

method which can measure an arbitrarily aligned thermal conductivity tensor using offset pump 

and probe beams, although the absence of a closed form analytic solution necessitates a time-

consuming iterative fitting process. No analogous scheme has been developed for the 

electrothermal-based 3ω method,22,93 which uses simpler hardware than thermoreflectance-based 

techniques. Also, the two methods have fundamentally different heating geometries (spot vs. 

line) making it non-trivial to adapt solutions from the TDTR method. 

The 3ω method22,93 has been extensively used to measure the thermal conductivity in bulk 

substrates as well as thin films.  Briefly, an alternating current source at an angular frequency ω 

is applied along a heater line deposited on top of the substrate of interest. The resulting Joule 

heating causes a temperature field fluctuating at the 2nd harmonic.  The temperature effect on 

heater line resistance combined with the 1 current results in a voltage at 3ω.  For semi-infinite 

substrates in the low frequency limit, the slope of this 3𝜔 voltage with respect to the logarithm of 

frequency is inversely proportional to the thermal conductivity of the substrate (the “slope 

method”). The 3ω method has been extended to find the thermal conductivity of thin films using 

the differential 3 method.94,95  

For multi-layered anisotropic substrates with the materials’ principal axes aligned with the heater 

line and free substrate surface, Borca-Tasciuc et al.26 developed a general solution using integral 

Fourier transforms.96,97  They proposed an experimental scheme with multiple heater line widths 

to extract the thermal conductivity tensor elements for aligned anisotropic layers.  They showed 

that the slope of temperature versus logarithm of frequency is related to the geometric mean of 

the 2 principal thermal conductivities characteristic to the plane being probed by the 3ω line.  

Tong & Majumdar98 developed a data reduction scheme to determine the aligned anisotropy ratio 

http://dx.doi.org/10.1063/1.4918800
http://dx.doi.org/10.1063/1.4918800
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of thermal conductivity and the interfacial thermal conductance in film on substrate systems.  

Ramu & Bowers99 gave a closed form solution for surface temperature in 3experiments on an 

aligned anisotropic substrate with small anisotropy ratios.  Finite element method (FEM) 

simulations and a parallel offset thermometer line were used together to find the cross and in-

plane thermal conductivity using an iterative approach in a later work100.  

Thus, all of these previous anisotropic 3ω techniques have been restricted to the aligned case: 

samples with principal thermal conductivities aligned parallel and perpendicular to the sample 

surface and heater line. This restriction eliminates the off-diagonal terms from the thermal 

conductivity tensor and thus simplifies the analysis, but limits the scope of applicability.  An 

experimental procedure which can also identify any off-diagonal terms can also give insight into 

the orientation and symmetries of the crystal structure as a consequence of the Neumann’s 

Principle, which states that the physical properties of a material are at least as symmetric as its 

underlying atomic structure.101  

In this work, we solve the 3heating problem for the general case of a substrate with an 

anisotropic thermal conductivity tensor, which may be arbitrarily oriented with respect to the 

natural cartesian coordinate system defined by the heater line and free substrate face.  We obtain 

the solution in closed form rather than in an integral form, thereby avoiding the need for time–

intensive and potentially non-intuitive numerical fitting to extract the thermal conductivity 

tensor.  

We first derive a closed form solution for the surface temperature profile in the case of an 

infinitesimally narrow line heater on an arbitrary anisotropic substrate, and show it to be of 

similar form as that for an isotropic substrate.  The solution is extended for a finite-width heater 

line, and verified using FEM software. Experimental schemes are devised to use measurements 

of the heater line temperature in the low frequency regime to recover the complete non-diagonal 

thermal conductivity tensor.  We demonstrate these predictions with measurements on mica, a 

layered anisotropic material. 

 The Model Setup 

In a cartesian coordinate system, the heat flux vector Q is related to the thermal gradient vector 

by Fourier’s Law,  

 





j j

iji
x

T
kQ  (3-1) 

and the most general anisotropic thermal conductivity tensor is 
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k  is real and symmetric, and it is known21 that 0iik  and 
2

ijjjii kkk  . Thus there are at most 6 

independent elements for the most general anisotropic k .  We express k in cartesian coordinates 
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and require it to be independent of position, so that the analysis applies to layered materials like 

graphite, but not curved Swiss-roll topologies like a tree trunk.   

The basic 3 setup is depicted in Figure 3-1(a).  We define the z axis to lie along the centerline 

of the heater line, and the x axis as orthogonal to both the heater line and the plane of the sample 

surface.  The alternating current flowing through the heater line causes sinusoidal joule heating 

at the second harmonic, which is uniform over the heater line length and width. The magnitude 

of this heater power per unit length is defined as 'P .  With the usual assumption of an infinitely 

long heater line, there cannot be any temperature gradients in the z  direction which simplifies 

the problem to the 2-d cross-section shown in Figure 3-1(b). While it is possible to use 

Feldman’s algorithm96,97 to solve for this heating problem on a multi-layered substrate in a 

complicated integral form, following a process similar to that used by Feser et al,25  the focus 

here is instead on achieving a closed form solution for an arbitrarily anisotropic substrate.  

 

Figure 3-1 a) The 3 setup and (b) 3 heater line on an anisotropic semi-infinite substrate.  The cross-

hatching in (b) is meant to suggest angled layers of an anisotropic material such as graphite or mica. 

We first find the solution for an infinitesimally-narrow line heater deposited on such a substrate 

by using integral transform techniques. This infinitesimal line source is represented as a 

𝛿 −function heat generation at 0,0  yx . The time-periodic heat generation is represented 

using complex Euler notation, whereby the real and imaginary parts of T represent the in-phase 

and out-of-phase temperature respectively.102  

The governing equation is 

 CTyxeP
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T
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T
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where C is the volumetric heat capacity.   Since the sample is very large in the y -direction, 

suitable boundary conditions are  

 0




y

T
and 0T y@ . (3-4) 
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In the x -direction, the top surface )0( x  is insulated while the bottom surface is far away from 

the heater line, and thus  

 0@0 








x

y

T
k

x

T
k xyxx

, (3-5) 

 0




x

T
 and 0T x@ . (3-6) 

Exploiting the known 2 forcing of this linear system, the time dependence of the governing 

equation can be removed by introducing T  such that 

     tieyxTtyxT 2,,,  , (3-7) 

where 1i .  The factor of 2 arises because we follow the usual convention of defining  as 

the frequency of the electrical current, so that 2 represents the joule heating.  A series of 

integral and Fourier transforms103 are used to remove x and y derivatives from the governing 

equation.   Deferring the mathematical details to Appendix 3.7.1, Eqs. (3-28) to (3-37), the 

solution for T  is  
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where 𝐾0 is the modified Bessel function of the second kind and 

 xxxx kCiq /2  (3-9) 

Where xxq  represents the inverse of the penetration depth in the x -direction.  As a check, when 

yyxx kk   and 0xyk , the familiar isotropic solution from Cahill22 is correctly recovered.  

Figure 3-2 shows an example of the temperature field resulting from a  -function line heater, 

calculated with Eq. (3-8). The argument of Eq. (3-8) also shows that all isotherms are elliptical in 

shape and obey the relation  

 constxykkykxkk xyxxxxyyxx  2222
, (3-10) 

where const  is a constant determining the temperature of the isotherm. It can be shown that the 

major and minor axes of these ellipses are aligned along the two principal thermal conductivity 

directions (proof in Appendix 3.7.2). This result is intuitive since the isotherms are stretched in 

the direction of least resistance or maximum thermal conductivity. It is also interesting to note 

that the  -function line heater is a center of inversion symmetry in the yx   coordinate 

system.  This can also be confirmed mathematically by replacing ),( yx  by ),( yx   in the 

governing equation and the boundary conditions, which shows that the surface temperature along 

0x  is symmetric about the line heater even with the presence of cross terms in the thermal 

conductivity tensor. 
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Figure 3-2 Isothermal contours for the in-phase temperature response to a 𝜹 −function line heater on an 

anisotropic substrate.  This example uses an anisotropic material with principal thermal conductivities 1

KmW   and 5 KmW  , rotated by 
o30  in the clockwise direction so that k

KmW 













43

32  in the 

yx   coordinate system. We define an effective thermal conductivity, 
2

det xyyyxx kkkk  , with its 

characteristic thermal penetration depth, CkLc 2/det  which contains the only  dependence.  
detk  is 

the square root of the determinant of k .   A generic heat capacity of KmJC  36102 is also used. 

 Finite Heater Width and Average Heater Temperature 

The next step in this analysis is to find the surface temperature profile, )( yTsurf
, caused by a 

finite width heater, as well as the average temperature of this heater line which is what the 3 

voltage measures.  The finite width heater is represented as a superposition of  -function line 

heaters over the heater line width, leading to a convolution integral, 
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, (3-11) 

where the latter form follows from Eq. (3-8) after setting x=0 to represent the surface.  As 

mentioned after Eq. (3-8), for a  -function line heater the temperature solutions for anisotropic 

and isotropic substrates have very similar forms. It turns out that one can map the integral in Eq. 

(3-11) onto the corresponding integral for an isotropic substrate using a change of variables.  As 

detailed in Appendix 3.7.1, Eqs. (3-38) to (3-39), in this way we can obtain the surface 
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temperature for an anisotropic substrate analogous to isotropic solutions found by Duquesne et 

al.104    The result here is 
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where 
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 where 
nK  and 

nL  are 

the nth order modified Bessel function of the second kind and Struve function105 respectively.  

Similarly, the average of 
surfT  over the heater line width, T , can also be found by using a 

change of variables to adapt the known isotropic solution104 for this anisotropic problem 

(Appendix 3.7.1, Eqs. (3-40) to (3-41)).  The solution can be represented in terms of the Meijer-

G function 22

24G  as104,106  
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Equation (13) is plotted in Figure 3-3, along with low- and high-frequency asymptotic forms.  

The high-frequency limit of Eq. (3-13) is  
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'
 , (3-14) 

which is the well known 1-D planar heating result where temperature gradients are present only 

in the x -direction.  

Of particular importance is the low frequency limit, because the simplicity and accuracy of the 

low-frequency slope method of 3 data analysis is already well established for isotropic and 

aligned aniostropic substrates. Using the small argument approximation 

)2ln()ln()(0  zzK , we find the low-frequency limit of Eq. (3-13) as  
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where 5772.0  is the Euler constant.   
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Figure 3-3 Amplitude of in-phase and out-of-phase temperature oscillations of a finite-width heater line, as a 

function of heating current frequency (Eq. (3-13)).   
2

det )det( xyyyxx kkkk  k .  In the low frequency 

limit, the slope  of the in-phase temperature rise is inversely proportional to 
detk .  In the high frequency 

limit, the magnitude of both in-phase and out-of-phase temperature rise is inversely proportional to xxk .  

The dashed lines depict the asymptotic forms given in the main text (Eqs. (3-14) and (3-15)). 

 

Equation (15) is one of the major results of this paper and is used extensively in the experimental 

section below.  Its slope,   ln T , is inversely proportional to  

  kdet2  xyyyxxdet kkkk , (3-16) 

with the proportionality constant 2'P .   Importantly, we recognize kdet as the square root of 

the determinant of this 2-d thermal conductivity tensor, and as such it is invariant under rotation 

in the xy plane.  Hence, changing the orientation of heater line by rotating it around its 

longitudinal (z) axis must always give the same slope value, and thus cannot not yield any 

additional information to separate out the values of 
xxk , 

yyk  and 
xyk .  On the other hand, Eq. (3-

15) shows that the magnitude of temperature fluctuations does depend on the orientation of 

heater line.  This fact will be exploited later to extract the individual thermal conductivity tensor 

elements.   

Finally, the RMS 3ω voltage is related to the 2ω temperature oscillation by22,93  
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 TRIV   13
4

1
 . (3-17) 

Here 
1I  is the RMS value of the AC source, R  is the heater line resistance at zero current, and 

  is the temperature coffecient of resistance, all of which are easily determined experimentally 

making it straightforward to switch between 
3V  and T . 

 Numerical Validation 

To numerically validate our key analytical results, Eqs. (3-12), (3-13) and (3-15), simulations of 

a 3 heating problem in 2-d were carried out using a commercial FEM package (COMSOL).  To 

set up the heat conduction equations in the frequency domain, we used user-defined equations in 

the Coefficient Form PDE module.  As a test case we use the same k and C described in the 

caption of Figure 3-2, with additional simulation paramters mb 5  and mWP 3 .  For these 

parameters, the low frequency regime  1bqxx
 and the high frequency regime  1bqxx

 

correspond approximately to srad310  and srad5104 , respectively. 

 

Figure 3-4 FEM validation of closed form analytic solutions (Eqs. (3-12), (3-13) and (3-15)) for a general 

anisotropic sample.  The figures compare analytical (lines) and FEM (points) results for (a) surface 

temperature at an intermediate frequency, 
srad4102

, and (b) average heater line temperature 

over a wide frequency range. The dashed lines in (b) represent the low frequency limit of Eq. (3-13).  Joule 

heating frequency is 2 .   k and C as in Figure 3-2, with other parameters
mb 5

 and 
mWP 3'

. 

The validation is carried out in two steps.  First, to check Eq. (3-12) in the most general case, we 

choose a mid-frequency regime (penetration depth comparable to heater line width: bqxx
1, 

corresponding to srad4102  and =0.8), rather than either extreme frequency limit.  To 

eliminate the effects of the far-field boundary conditions of the original semi-infinite problem in 

a finite-sized FEM domain, care is taken to ensure the sample extents in + x  and  y  directions 

are much larger than the thermal wavelengths, confirmed by verifying that the same simulation 

results are obtained for both adiabatic and isothermal far-field boundary conditions. Figure 

3-4(a) shows the comparison of surface temperatures obtained from our analytical solution (Eq. 
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(3-12): lines) and FEM simulations (points).  The agreement is excellent, including the detailed 

profile near and within the heater line itself.   

Second, to validate our solutions for T  at arbitrary frequency, Eq. (3-13), and in the low 

frequency limit, Eq. (3-15), we performed FEM simulations spanning a wide frequency range.  

As shown in Figure 3-4(b), the results from FEM simulations (points) again agree very well with 

both analytical results (solid and dashed lines), thus further validating the analytical solutions.   

 Experimental Schemes and Proof-of-Concept  

In this section we present two experimental schemes to use the low frequency solution of Eq. (3-

15) to measure the thermal conductivity tensor of a substrate.  The underlying focus is on the 

closed form solution to avoid nonlinear numerical fitting processes.  Both approaches begin 

using the slope method (Eq. (3-15), Figure 3-3) to find the thermal conductivity determinant in 

the natural yx   coordinate system defined by the heater line and sample surface.  Since rotation 

of the heater line around its longitudinal axis will give exactly the same measured slope, the 

schemes described below also use the magnitude of T  to separate out the components of 
ijk . 

 

 

 

Figure 3-5 (a) Process to determine 
xxk  from the in-phase 3ω voltage measurements in the low frequency 

regime.  The slope method gives 
2

det xyyyxx kkkk  , which is used along with the in-phase magnitude and 

the sample’s heat capacity to determine 
xxk .  (b) Effect of changing  

xxk  while keeping 
detk  constant.  For the 

in-phase curve at low frequency, the fixed determinant ensures constant slope while the magnitude depends 

on 
xxk .  Simulation parameters as in Figure 3-4. 

Scheme 1 
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Thus 
detk  from the slope method can be used with C to calculate 

xxk  from the low frequency 

temperature response.  This relationship is further clarified in Figure 3-5 (b): if 
xxk  is varied 

while keeping the determinant constant, then the magnitude of the in-phase T  varies while its 

low-frequency slope remains constant.   

 

Figure 6 shows an example layout of heater lines to determine the elements of k .  Heater lines 1 

and 2 can be used to characterize the yx   plane.  In the low frequency limit, T  for both heater 

lines will give the same slope value (determinant) but different magnitudes.  Combining this 

information with C allows 
xxk  and 

yyk  to be calculated.  It is then possible to extract the 

magnitude of the off-diagonal term, || xyk  from the determinant.  

 

 

Figure 3-6 (a) To measure the thermal conductivity tensor for the yx   plane of a given substrate, low 

frequency measurements from heater lines 1 and 2 can be used.  (b) As shown in the flowchart, both lines will 

give the same slope )ln( T , while their T  magnitudes depend on the orientation of the heater line 

as well as C.  Similarly, low frequency 3ω measurements from heater lines 1-4 on orthogonal faces in (a) can 

give the full 3-d thermal conductivity tensor.  These approaches determine the magnitude though not sign of 

the off-diagonal terms such as kxy (see text).         

To determine the sign of 
xyk , a third non-co-planar heater line can be used.  Such a line is labeled 

  in Figure 3-7, deposited on a face tilted by some angle   with respect to face 1.  Low 

frequency 3ω measurements from line   will yield  
''xxk , which can be related to the tensor 

elements in the yx   coordinate system through standard tensor rotation rules ,  

 )(sin)2sin()(cos 22

''  yyxyxxxx kkkk  . (3-18) 
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Using Eq. (3-18), 
xyk now can be determined from the values of 

xxk , 
yyk , and 

''xxk  which are 

known from heater lines 1, 2, and   respectively.  Note that lines 1 and 2 need not be on 

orthogonal faces for this method. Any set of parallel (z-oriented) heater lines on 3 non-co-planar 

surfaces will give a complete set of equations to solve for the 3 elements of the 2-d k  tensor. A 

line at 
o45  would maximize the sensitivity to 

xyk . Finally, multiple heater lines 1-4 on 

orthogonal faces will be required to find the full 3-d thermal conductivity tensor (Figure 3-6(a)) 

if only the magnitudes of the off-diagonal terms are needed, while additional heater lines on non-

co-planar surfaces similar to line   in Figure 3-7 can be used to determine their signs.  

 

 

Figure 3-7 To fix the sign of 
xyk  after determining 

xyk  from Figure 3-6, an additional heater line   is 

required on a surface at some other angle.   is defined as the angle between the 'x  and x  axes, measured 

in the counter-clockwise direction as shown. Using transformation rules (Eq. (3-18)), the effect of 
xyk is seen 

in 
''xxk  in the new '' yx   coordinate system. 

''xxk  can be measured using this new heater line, following the 

approach outlined in Figure 3-5. 

Scheme 2 

The second scheme is differential and eliminates the heater line width and substrate heat capacity 

from the calculation, as long as their values are identical from sample to sample.  Manipulating 

Eq. (3-15) and taking b and C as constant gives  
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and 
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where )ln(





 nline

n

T
, with n  identifying the heater line orientation as per Figure 3-6.  

Here n refers to any particular frequency used for the corresponding heater line’s voltage, and 

for convenience one might use 321   .  Since the thermal conductivity determinants in Eq. 
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(3-20) are already known from slope measurements, it is now a direct calculation to find the ratio 

yyxx kk  using lines 1 & 2, and zzxx kk  using lines 1 & 3.   

Note that this second scheme does not directly yield the off-diagonal elements of k, but they can 

be found using additional heater lines at different orientations.  For example, using the 

differential scheme between heater lines 1 and   in Figure 3-7 measures the ratio  

 )(sin)2sin()(cos 22'' 
xx

yy

xx

xy

xx

xx

k

k

k

k

k

k
 . (3-21)  

Combining this additional information with the known values of detk  and 
xxyy kk , it is 

straightforward algebra to obtain all three of xxk  , 
yyk , and 

xyk .  

 Experiments with Mica 

 Concept 

 

Figure 3-8 Schematics of the (a) aligned and (b) angled samples used for experiments. 
k  is an effective 

thermal conductivity normal to the heater line, as defined in (Eq. (3-22)).  In our experiments, the four 

different heater line orientations are:  0000 1204,303,902,01  .          

To demonstrate the major analytical results above, a self-consistency check was carried out with 

experiments on muscovite mica sheets, which was chosen for its moderate thermal conductivity 

anisotropy ratio at room temperature.107 To facilitate sample fabrication we chose 0.25” thick 

sheets (McMaster-Carr, product ID 8779K52). According to the vendor, the mica layers used to 

make these sheets are shaved directly from the natural mineral, layered horizontally, and then 

pressed into the required thickness. Mica is a silicate with a monoclinic crystal structure that is 

characterized by layered basal planes stacked in the c-axis direction of the unit cell. Thermal 

conductivity experiments107,108 on muscovite mica sheets usually presume an isotropic thermal 

conductivity in the ab plane, which is consistent with elastic moduli109–111 measurements that 

show a very weak or non-existent anisotropy in the ab plane of the silicate layers. Therefore, we 

assume the principal thermal conductivities Kab, Kab, and Kc, along the a-, b-, and c-axis 

directions, respectively. As shown in Figure 3-8, we aim to characterize a cross-section of the 

layered material, and prepare two samples accordingly.  The first sample is the aligned case 
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(Figure 3-8(a)), with cK  and abK  aligned perpendicular and parallel to the surface, and the 3 

experiments involve measuring these two principal values. 

The second sample is angled, to represent an arbitrary orientation rotated around the z axis.  We 

introduce off-diagonal elements by machining orthogonal faces at angles   and o90  to the c 

direction (Figure 3-8 (b)).  For simplicity in presenting results from multiple orientations, for the 

rest of this section it shall prove convenient to refer to the new coordinate system )','( yx  as 

)90,( 0   .  Since   is measured with respect to the c-axis of the material, for a surface of any 

 the corresponding ''xxk  value is given straightforwardly by Eq. (3-18) with kxy=0.  In the 

notation of the present section we denote ''xxk  by k  and have 

 

22 sincos abc KKk  . (3-22) 

Similarly, we shall denote the off-diagonal term 
'' yxk  as 

 ok
90

, which is easily shown to be 

   
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cossin
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 cab KKk o . (3-23) 

Thus for any rotated )','( yx  coordinate system, the new k  tensor is expressed as 
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90
. The measured kij values in this coordinate system should match those 

calculated from Eqs. (3-22) and (3-23).  In our experiments 
o30 .  To determine the off-

diagonal term in the )90,( 0    coordinate system, we exploit the heater lines in the aligned 

configuration of Figure 3-8(a) by following the scheme described in Figure 3-7.  The heater lines 

1 and 2 in Figure 3-8(a) now correspond to parallel but non-co-planar heater lines at angles -30o 

and 60o  in the )','( yx  system of Figure 3-8(b). We can use either of these 2 lines now to 

measure the full thermal conductivity tensor in the )','( yx  or )90,( 0    coordinate system.  

 Results 

All mica surfaces were polished using diamond lapping tools. A total of 16 heater lines were 

then deposited on several different samples, always at one of the four angles indicated in Figure 

3-8, with the labeling  0000 1204,303,902,01  . Gold heater lines nominally mm5.1

long, m60 wide, and nm200  thick, with a nm10  chromium adhesion layer, were patterned by 

evaporation through a shadow mask.  The temperature coefficient of resistance was calibrated 

separately for every line.  The 3 measurements were performed in ambient air at a temperature 

of 27  3 oC.    

Invariance of the determinant.  We first check the major theoretical prediction from (Eq. (3-15)) 

that the slope method for all heater lines should give the square root of the thermal conductivity 

determinant, 
detk , which is expected to be a constant for all heater orientations since 

determinants are invariant upon rotation.  This prediction is verified in Figure 3-9.  For each 

orientation we measured between 3 and 5 independent heater lines, with the resulting slope-
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values of thermal conductivity shown by the gray columns.  The average for each orientation is 

indicated by the four blue solid lines.  These averages indeed give nearly the same value, with a 

range from 0.79 to 0.86 W/m-K, in good agreement with the average from all 16 independent 

experiments (dashed line) of 0.81 W/m-K.  This confirms the determinant is independent of 

heater line rotations about its axis.  We also note that the overall standard deviation of 0.10 

W/m-K, and standard error of the mean of 0.02 W/m-K (where SEM = SD/ N ), are much 

smaller than the observed differences between Kab and Kc as discussed later and shown in Figure 

3-10.  

 

Figure 3-9 Experimental confirmation of the invariance of thermal conductivity determinant, obtained using 

the slope method.  Each column represents the measured 
detk  of a different microfabricated heater line 

(N=16 total), grouped into four heater orientations. The aligned sample had 
o0 and 

o90  while the 

angled sample which exercises an arbitrary anisotropy had 
o30 and 

o120 .   The average value for each 

orientation is depicted by the solid blue line, with the mean  SE-Mean values given on the plot.  Finally, the 

average of all 16 measurements is given by the dashed black line.  The agreement between the four 

orientations (range 0.79 - 0.86 W/m-K) is within the overall scatter of 0.10 W/m-K (S.D.), confirming the 

constancy of the determinant to within noise.   

Scheme 1: k elements.  We now evaluate the individual tensor elements for both the aligned and 

angled samples.  The first scheme (depicted in Figure 3-5 and Figure 3-6) requires the volumetric 

heat capacity cC  , which was calculated using the measured gravimetric c (using differential 

scanning calorimetry: TA Instruments, Model Q20) and density  (using a geometric calculation 

of volume, confirmed by a water displacement method).  The measured  of %5.12200 3 mkg  

is 18% lower than literature112, which may be due to imperfect pressing of the individual shaved 

layers in these industrial samples.  The measured c is %2.2804  KkgJ (average of 5 samples 
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 SE-Mean), which is around 8% lower than reported for a single crystal specimen113 (

KkgJ 876 ); since we see no reason why c should have been affected by the sample 

manufacturing process, we use the average of these two values.  The resulting volumetric C is 

KmJ  361085.1  at room temperature, which is around 20-25% lower than reported 

previously for a single crystal specimen112–114 due mainly to the lower density. The low-

frequency 3 voltage data gives the thermal conductivity perpendicular to the heater line, 
k .  

The resulting measurements are shown in Figure 3-10.  

 

Figure 3-10 Effective thermal conductivity as a function of direction in mica samples.  Blue circles show 

directly measured k -tensor elements. cK  and abK  are the principal values measured in the aligned 

samples, while 030
k , 0120

k and 0012030
k  are measured in the angled samples.  The calculated values (orange 

diamonds) for the angled sample are found by applying the tensor transformation rules of Eqs. (3-22) and (3-

23) to the measured cK  and abK .   Error bars represent standard error of the mean, evaluated using 

measurements from multiple heater lines.   

The first two values in Figure 3-10 are the measured principal thermal conductivities, cK  and 

abK , extracted from heater line orientations 1 and 2, respectively.  Using these principal values 

and the transformation rules of Eqs. (3-22) and (3-23), the tensor elements for the angled sample 

can be estimated, as shown by the orange diamonds.  These are checked against direct 

measurements using heater lines 3 and 4 which give the diagonal elements, ok
30

 and 
ok

120
, 

respectively (blue circles). Lines 3 and 4 can only measure 012030ok  following the flowchart in 

Figure 3-6(b), and removing the sign ambiguity requires another additional line as noted in 

Figure 3-7. Here we report the average of values obtained from the 2 sets of 3 non-co-planar 

heater line configurations, namely  4,3,1  and  4,3,2  of Figure 3-8.  Figure 3-10 shows that the 
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calculated values of all three tensor elements for the angled sample are in good agreement with 

the directly measured elements, well within the standard errors of the means.  

We see significant scatter in the thermal conductivity values reported in Figure 3-10.  One 

obvious potential source of uncertainty is sample-to-sample variability since these are industrial 

grade samples synthesized from the natural mineral.  We also note some more fundamental 

sensitivity issues which are intrinsic to this method, where the sensitivity of 3V  to a parameter 

  is defined following Gundrum et al.,115   

 
 
 




ln

ln 3






V
S . (3-24) 

Consider this sensitivity to the various experimental parameters in the low frequency regime.  

Evaluation of Eq. (3-15) shows that 3V  is just as sensitive to C as it is to 
k , and twice as 

sensitive to b as to 
k .  These samples exhibit a b variation of around 10% which may be 

attributed to the simple shadow masked patterning process.  We also note that the sensitivity of 

the slope to detk  is always 1, but over the frequency range of interest the sensitivity of 3V  to 

k  is only around 0.2; therefore it would not be surprising if the scatter (SE-Mean) in Figure 

3-10 were up to ~5 times larger than in Figure 3-9.   

 

Scheme 2: Ratios.  Finally, to bypass the uncertainties in heater line width and heat capacity, we 

consider the second experimental scheme which uses a differential approach and deals in 

conductivity ratios. From the 7 lines deposited on the 2 aligned surfaces (heater line orientations 

1 and 2), Eq. (3-20) gives 48.064.4 cab KK . Following this, we do two consistency checks. 

We first compare 
oo kk

30120
 measured directly by the differential method on the angled sample 

(Figure 3-8(b)) with the expected value of 
oo kk

30120
 from applying tensor transformation rules to 

cab KK  which gives  
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yielding the estimate 07.095.1
30120

oo kk .    This compares favorably (14% difference) with 

the ratio measured directly by the differential method (Eq. (3-20)) on heater lines 3 and 4, which 

is 25.022.2
30120

oo kk .    

 

Similarly, for the off-diagonal element of the angled sample, tensor algebra gives  
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which using the measured cab KK  predicts 06.082.0
3012030

ooo kk .  This again compares 

favorably with the directly measured value 21.081.0
3012030

ooo kk , which is the average value 

obtained by applying Eq. (3-21) to the set of lines {1,3,4} and {2,3,4}.   

 

Lastly, using the measured ooo kk
3012030

 and 
oo kk

30120
from the differential scheme, and the 

average detk  from Figure 3-9, we can evaluate the complete thermal conductivity tensor in the 

 oo 120,30  coordinate system: 

 k KmW 









45.153.0

53.065.0
 (3-27) 

These tensor elements are systematically smaller than those obtained from the first scheme (last 

3 blue circles of Figure 3-10).  The square root of the thermal conductivity tensor determinant, 

2

1203012030det oooo kkkk   in Figure 3-10  is KmW  29.005.1 , which is higher than kdet 

predicted from the slope method in Figure 3-9. This indicates possible errors in b and C, and the 

relatively low sensitivity to the thermal conductivity tensor elements in the first scheme as 

compared to the sensitivity to detk  in the slope method. On the other hand, the differential 

scheme which is independent of b and C works around uncertainties in measurements, thus 

confirming its advantage over the first scheme. This leads to a tighter scatter in the ratios 

reported by the differential method, which has inherently better sensitivity.  Measuring detk from 

the slope method, and the k-tensor element ratios from the differential scheme, ensures good 

sensitivity at each step, and should yield the most accurate final results for the individual kij. 

 

 Summary 

We report an analytic closed form solution for the 3heating problem on a substrate with 

arbitrary anisotropy in cartesian coordinates.  The major analytical results are Eq. (3-13) and 

especially its low-frequency limit, Eq. (3-15).  The extension of the familiar slope method gives 

the square root of the determinant of the thermal conductivity tensor, which is invariant upon 

rotation around the axis of the heater line.  The magnitude of the in-phase temperature rise 

depends on this determinant as well as the effective thermal conductivity perpendicular to heater 

line, xxk in Figure 3-1 or k in Figure 3-8(b).  The analytical solutions have been validated 

using FEM.   

Two experimental schemes were devised to isolate the thermal conductivity tensor elements 

using multiple heater lines on orthogonal faces, and demonstrated with experiments on industrial 

mica sheets.  The first scheme can measure all the tensor elements, though it requires the 

volumetric heat capacity and gives only the absolute value of the off-diagonal elements.  The 

second scheme is differential and does not need the heat capacity or heater line width, and gives 
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anisotropy ratios.  One additional heater line deposited on a non-orthogonal face (as in Figure 

3-7) is required to fix the sign of the off-diagonal elements in the first scheme, and the specific 

tensor values rather than ratios in the second scheme.  For our data set of 16 heater lines at 4 

orientations, the first scheme over-predicts the thermal conductivity tensor elements, attributed to 

uncertainties in C and b values, while the differential scheme works around these issues.   

To best combine the strengths and sensitivities of the various schemes, we recommend using the 

slope method to measure detk  and the differential scheme to measure kij ratios, information 

which can be combined to specify the complete and arbitrary tensor k. 

 

 Appendices 

 

 Closed form solution for the 3 problem on an anisotropic substrate 

Delta-Function heater line 

We present the details of the derivation beginning from Eq. (3-7).  The equations are simplified 

by introducing the ratios 
xxyyyy kk  and 

xxxyxy kk .  Following a standard approach,103 we 

remove the y derivative by using the Fourier transform pairs 



 ')',(),(

~ ' dyyxTexT yi  and  
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),( .  After applying this transform and Eq. (3-7) to the governing Eq. 

(3-3) we have  
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where Ckxxxx /  is the thermal diffusivity in the x direction.  Next, the first-order x-

derivative in Eq. (3-28) can be removed by introducing 
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leading to 
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Similarly transforming the boundary conditions leads to  
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Note that for the boundary condition at 0x for this transformed temperature, the eigenfunction 

for the homogenous heat conduction problem is )cos( x .   

 

The next step is to remove the x-derivatives using another pair of integral transforms: 
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 dxxw .  Thus the solution in 

terms of transform variables is 
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After performing the required inverse transforms, the integral form in terms of x and y is 
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with xxxx kCiq /2  defined in Eq. (3-9).   

 

An important check of Eq. (3-34) is to simplify it for an isotropic sample and verify it recovers 

the well-known closed-form solution given by Cahill in 1990.22   Setting 1yy  and 0xy , we 

see that this is indeed true, 
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where 0K is the modified Bessel function of the second kind, and the integrals were evaluated 

using symbolic math software (MAPLE).  

 

Returning to the full solution of Eq. (3-34), it is fruitful to make the substitutions 
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Thus, after this transformation the anisotropic problem’s integral of Eq. (3-36) is now formally 

equivalent to the isotropic problem’s integral of Eq. (3-35).  Therefore the solution to Eq. (3-36) 
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follows immediately, and returning to the original (untransformed) variables, we have the 

solution for the  -function line heater as 
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which is equivalent to Eq. (3-8) in the main text.  

 

Finite-width heater line  

We now obtain solutions for the finite heater-width case, including the surface temperature field 

and average temperature of the heater line.  Through suitable substitutions, we can again 

transform the anisotropic problem into an equivalent isotropic one, thereby exploiting the exact 

analytical solutions obtained by Duquesne et al.104 for the isotropic case.   

 

We begin here from Eq. (3-11) of the main text.  Scale b, y, and y’ such that for any variable  , 

its scaled counterpart is  
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We have again succeeded in converting the relevant integral from an anisotropic to isotropic 

formulation.  An equivalent isotropic integral was formulated in Fourier space by Cahill in 

1990,22 though it was 20 years before the analytical solution was first obtained by Duquesne et 

al.104  We can adapt their isotropic solutions directly.  Thus, the closed form solution for surface 

temperature caused by a finite -width heater line on an anisotropic substrate is written down 

directly as Eq. (3-12). 

 

Proceeding similarly for the average temperature of the heater line on the anisotropic substrate, 

we write 
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After scaling u, v and b using Eq. (3-38), we again obtain an integral formally identical to one 

solved by Duquesne et al.,104 
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Finally, after suitably rewriting the isotropic result,104 the average heater line temperature for our 

anisotropic substrate can be expressed in terms of the Meijer-G function, resulting in Eq. (3-13) 

of the main text.   

 Major axes orientation of elliptical isotherms 

We consider the temperature field caused by a -line heater on an arbitrarily anisotropic 

substrate, given by Eq. (3-37). The locus for isothermal lines was recognized in Eq. (3-10), 

which is reminiscent of the general form of an ellipse inclined at an angle   from the x axis, 

given by 
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Matching the coefficients of 
2x ,

2y , and xy  in Eqs. (3-10) and (3-39) gives 3 equations, 
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which can be solved for a , b and : 
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This expression for   is exactly the same as the known result116 for the angle between the 

principal conductivity of a material and the surface normal (the x direction in Figure 3-1).  

Thus, this result proves that the isotherms for a -line heater on a semi-infinite substrate are 
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ellipses whose major and minor axes are exactly aligned with the principal thermal 

conductivities of the material, regardless of the rotation of the free surface around the z axis.   
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Chapter 4 - Easily accessible, low cost approaches to measure 
the scattering phase function of optically thin samples 

 

 Introduction 

The light scattering phase function of a material is a crucial performance metric in various 

applications such as transparent ceramics,20 photography,117 and water turbidity.118 The optical 

and geometric thickness of the scattering media can range from large, such as underwater 

photography, to thin scatterers, such as lasing media and papers.119 Newly developed ceramic 

lasing materials, which need to be screened for their optical properties, are often thin when 

manufactured by sintering. Usual methods for characterizing the light transmission include the 

use of specialized and possibly expensive optical equipment such as a laser source, integrating 

spheres, and high precision goniometers.20,29 The need for such measurements in a large array of 

research and engineering topics necessitates a high throughput and cost effective method to do 

so. In view of this, image resolution-based techniques have been used to measure the scatter 

function of imaging media for photography applications and water quality detection118.  

Most of the resolution-based techniques use a metric called the modulation transfer function, 

MTF, which describes the contrast observed while imaging a target with periodic lines of dark 

and white/ transparent stripes. The MTF is defined as 
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II
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


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where Imax and Imin are the maximum and minimum intensities in the image captured. An MTF of 

1 indicates that the lines are perfectly resolvable, and vice versa for 0 MTF. The change in MTF, 

in the presence of a sample-of-interest in the imaging path, can be related to its scattering 

properties. Such techniques have been developed for optically thick media118,120 and for thin 

scatterers117 with highly anisotropic scattering properties.  

Similar to the MTF, the edge spread function, ESF, in the presence of thin scatterers has also 

been used to find the optical properties of photographic papers,119 using computationally 

intensive Monte Carlo approaches, and in human tissues,121–123 using analytical methods that do 

not consider effects of refraction and reflection.  In the ESF based methods, the scattering sample 

is placed in between an illuminated knife edge and a detector screen. The spread of illumination 

into the region of the detector screen obscured by a knife edge is a function of the scattering 

phase function and the fraction of the rays transmitted unscattered through the sample.  

In this work, we focus on measuring the forward scattering property of thin samples using both 

MTF and ESF approaches. Two kinds of setups are studied here with the primary difference 

being the nature of the source, i.e. collimated vs a diffuse source. Both methods require the thin 

scatterer assumption, which implies that: 
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i. most of the light suffers at most one scattering event while traversing through the 

material, and  

ii. the thickness of the sample is much smaller than the other dimensions in the model.  

We develop semi-analytical solutions for the ESF and MTF within the thin scatterer 

approximation for both setups. Then, experiments are carried out to demonstrate the above 

techniques for a surface scatterer. Finally, we compare the strengths, weaknesses, and the scope 

of applicability for the proposed methods. 

Methods 

 Collimated Light source 

We first discuss two methods that require a collimated light source. Both methods require the 

following four sequentially placed optical elements, as shown in Figure 4-1: 

i. a collimated light source, 

ii. resolution test target: (a) Knife edge for edge spread function, or (b) USAF 1951 target 

for modulation transfer function, 

iii. the scattering sample, and 

iv. detector screen.  

 
Figure 4-1 The setup for measuring scattering properties with a collimated light source. A knife edge is used 

as the target for the ESF approach, while a USAF 1951 target (not shown) is used for the MTF approach. 

All the above optical elements need not be specialized scientific equipment and are easily 

procured. For example, a LED light source placed far away from the experimental setup can 

serve as a collimated source. A fine paper (here card stock) functions as the detector screen, 

which is imaged by a camera. It is helpful if the camera sensor has a linear response to the 

incident intensity. Otherwise, proper care should be taken to calibrate for the camera sensor’s 

non-linear response. 
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In the setup, collimated light is incident on the target which selectively lets light pass through 

either through alternating strips (MTF-based method) or like a Heaviside step function (ESF-

based method). Two different sets of measurements are taken at this point. One set of 

measurements omits the scattering sample in between the target and the detector screen, while 

the other set of measurements includes the scattering sample, located at a variable distance d 

from the detector screen. Since the light source is collimated, the distance between the target and 

the sample does not matter for the analysis. A comparison of the detected pattern with and 

without the presence of the scattering sample will be used to find the scattering properties of the 

sample in this study. 

As demonstrated in the schematic of Figure 4-1, the scattering sample scatters and spreads a 

fraction of the incident light, while another fraction transmits through unscattered. The total 

forward transmitted light (forward scatter + unscattered transmission) is also reduced due to front 

and backside reflection at the surfaces of the sample and back-scatter within the sample. For 

either ESF or MTF-based approaches, the first step to finding the effect of scattering on the 

detected pattern is to find the point spread function, PSF, of the system. The relation between 

this point spread function and the scattering properties of the sample is described in the 

following subsection.  

 Theory 

The scattering property of the sample is defined using two terms: (i) the scattering coefficient, 

βsca, and (ii) the angle dependent scattering phase function, Φ(θi,θs), which is defined as follows: 

When a ray of light of power P is incident on a scattering medium of thickness ds at polar angle 

θi (measured from the normal of the scattering surface) the power scattered into a differential 

solid angle dΩ in direction θs is given by: 
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Equation 4-2 holds true when the product βscads << 1. While the scattering phase function can be 

a function of azimuthal angles  in general, for clarity this work is limited to axisymmetric 

samples. Removing this assumption is straightforward in principle, but can be computationally 

expensive.  Now that the scattering properties of the sample are defined, we can proceed to 

finding the scattering PSF for the setup of Figure 4-1.  
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Figure 4-2: Detailed view of the scattering process. (a) Zoomed out view where effects of refraction are 

excluded. (b) Refraction changes the apparent scattering angle visible outside the medium, while also altering 

the solid angle subtended by the differential area dA from a point (x,y) on the sample. 

Figure 4-2(a) shows a more detailed view of the scattering phenomena without including the 

effects of refraction. It will be easier to include the effects of refraction when we are further 

along in the derivation. Consider the incident collimated light carrying a power per unit area P’’ 

[W/m2] incident on an area dA on the sample at co-ordinate (x,y). After reflection at the front 

surface, a fraction of the power,  

     dAPR ''01 1  , (4-3) 

continues into the sample. R1(θ) is the reflection loss for incidence angle θ (here, =0) that can 

be calculated from the well-known Fresnel relations. As the light propagates through the sample, 

a fraction of the light transmits through unscattered and unabsorbed, and is incident on the 

detector at a point (Xs=x,Ys=y) after suffering another reflection loss (R2(0°)) at the sample’s 

backside.  The power thus incident at point (x,y) on an area dA in the detector is given by 

             dAPdsRRyYxXdP scass ''exp0101, 210   , (4-4) 

where βsca and α are the scattering and absorption coefficients of the sample, and ds is its 

thickness.  The subscript 0 indicates this is due to unscattered rays.   
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Next, we consider the effects of scattering of light within the sample, which redistributes a 

fraction of the incident power. By invoking Eq. (4-2), we find that the power scattered to the 

point (Xs, Ys) on an area dA is 
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where the term dAcos3θ/d2 is the solid angle, dΩs,app subtended by the area dA at point (Xs,Ys) to 

the point (x,y).  Also R2(θs,app) is the loss due to reflection calculated again using Fresnel 

relations, and 
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We have used the subscript, app, implying apparent for the angle θs,app, since θs,app represents the 

apparent scatter angle without taking refraction effects into account (see Figure 4-2(b)). In 

actuality, the ray has to be scattered at an angle,  
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within the sample, so that after refraction, the rays land at the point (Xs,Ys). η is the refractive 

index of the sample. In addition, due to refraction, the solid angle subtended by the area dA, in 

the region within the sample dΩs, can be calculated with respect to the solid angle outside the 

sample, dΩs,app, by conserving etendue at the backside surface,29  
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After including the effects of refraction, Eq. (4-5) becomes  
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 (4-9) 

where the angles θs have replaced θs,app in two of the terms and the subtended solid angle has 

been modified.  
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At this stage we can define the point spread function: PSF(x,y:Xs,Ys) iss the detected intensity at 

position (Xs,Ys) on the detector screen in response to a δ-function point source incident at a point 

(x,y) on the sample. This is found by dividing the incident powers in Eqs. (4-4) and (4-9) by 

P’’(dA)2, yielding 
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where the first and second terms represent the contributions due to unscattered and scattered light 

respectively. Since the analysis of Figure 4-2 is translationally invariant in the x and y directions, 

the PSF(x,y:Xs,Ys) is a function of only the relative displacement between the incident point and 

the detector point, (∆X=|x-Xs|) and (∆Y=|y-Ys|). We will henceforth use the notation, PSF(∆X, 

∆Y).  

 Modulation Transfer Function and Edge Spread Function 

Finally to get to the MTF or the ESF, first the line spread function, LSF, is calculated by 

integrating the point spread function over a line source,  

    




 )'(', YdYXPSFXLSF , (4-11) 

Then the MTF is the spatial Fourier transform of the normalized LSF,  

    }{ sXLSFFfMTF  . (4-12) 

The modulation transfer function is always 1 at zero spatial frequency, f, and goes down with 

increasing spatial frequency depending on the imaging system. The measured modulation 

transfer function in an experiment includes contribution due to scattering by the sample, defined 

as MTFscatt, as well as imperfections in the imaging system, MTFsetup.  In the Fourier domain, the 

total MTF for a linear system can be calculated simply as120  

 setupscatttot MTFMTFMTF  . (4-13) 

In Section 4.2.2.2 MTFtot and MTFsetup are measured by post-processing the images captured in 

the presence and absence of the scattering sample. At that point, we can find the best fit solutions 

for βsca and Φ that yields the MTFscatt satisfying Eq. (4-11). 

Similarly, the EFS measured in the presence of the scattering sample includes contributions from 

spreading due to imaging setup imperfections as well as the scattering sample itself. The final 
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edge spread function with a scatterer, ESFtot, is the convolution of that without scatterer, ESFsetup, 

and the scattering LSF, 

  




 '')'()( sssscattssetupstot dXXXLSFXESFXESF , (4-14) 

As before, we can fit for values of βsca and Φ, that gives the total ESF upon carrying out the 

convolution of Eq. (4-14). 

 

 Validation Experiments with a Surface Scatterer: Engineered Diffuser 

 Edge Spread Function Method 

In this section, we demonstrate the above two methods with experiments on an engineered 

diffuser (Thorlabs part no: ED1-C20). The engineered diffuser is designed to have no significant 

unscattered transmission which eliminates the first part of Eq. (4-10). The diffuser is specified to 

uniformly redistribute a fraction of the incident light over a nominally 10°-half-angle cone in the 

forward direction. Thus the diffuser functions as an infinitesimally thin scattering sheet, and we 

do not have to consider the effects of refraction in Eq. (4-10). Since the scattering surface of the 

engineered diffuser is an array of micro-lenses, the Fresnel laws of reflection for a flat slab are 

not directly applicable. Here, we absorb the effect of reflection into the scattering phase function, 

and define the PSF as 
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where we assume the following top hat function for the scattering phase function, 
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∆θdiff  is the cone angle in radians. The aim in this experiment is to characterize the cone angle 

∆θdiff  of the diffuser. 

A mounted LED (Thorlabs MWWHL3) with an aspheric lens (Thorlabs ACL5040U-A) and a 

red filter was used as the collimated light source, while a thin metal sheet functions as a knife 

edge. While the LED light source itself could have functioned as a collimated source when 

placed far away from the setup, the collimation adapter can be placed right behind the target, 

thus resulting in a compact setup. We used a high density paper (card stock) to function as the 

detector screen, and finally a camera placed behind the detector takes an image of the detector. 

We used cage setups to hold the detector screen and the scattering diffuser aligned with each 

other throughout the experiment. If the forward scattering property of the detector screen paper is 

independent of the incident light angle, then the spatial intensity profile detected by the camera is 

directly proportional to the total light power incident at the corresponding position on the 
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detector screen. We verified this by shining a light from a pen laser at various incidence angles to 

the detector screen. The intensity profile detected by the camera behind the screen was constant 

for a wide range of incidence angles. This eliminated the need for further calibration. 

After calibrating the pixel position in the camera to the physical position on the detector screen 

itself, an average intensity profile is extracted by taking an average of multiple profiles over a 

rectangular section of the image (see inset corresponding to d=4mm in Figure 4-3(a)). As 

described in Section 4.2.1.1, we first measured the edge spread function without any scatterer in 

between the knife edge and detector screen. This is the baseline measurement, ESFsetup, and the 

corresponding normalized intensity profile is shown by the blue dots in Figure 4-3(a). The 

normalized intensity is given by 
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where Ibright and Idark are the bright and dark intensity values recorded far away from the knife 

edge. Following this, we carried out successive measurements with the diffuser at multiple 

distances, d =4mm to 20mm, from the detector screen (red dots in Figure 4-3(a)). As is intuitive, 

with increasing distance between the diffuser and the detector, the image becomes blurrier and 

thus the spread in the intensity profiles increases.  

 
Figure 4-3 (a) Normalized intensity values detected at the image screen without a diffuser and with diffuser at 

d = 4mm , 12mm, and 20mm from the screen. The model fits the data very well. The 10% uncertainty bounds 

are found by perturbing the extracted ∆θdiff by ± 10% for each intensity profile. (b) The fitted value for ∆θ is 

repeatable over multiple d values. (c) The top hat profile fit by our model well describes the more featured 

scatter phase function measured by a goniometer setup, which requires additional equipment such as 

function generator, laser diode, laser controller, photodetector, and a lock-in amplifier. 

For the ESF method, the normalized intensity profile corresponding to each d value is a different 

experiment, and ∆θdiff  was calculated for each of the profiles. The fitted ESFtotal (solid red lines 
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in Figure 4-3(a)) match up with the experimental points. We also show in Figure 4-3(b) that the 

fitted ∆θdiff  values are repeatable within 6% (std. dev.) for the range of d values studied.  

To confirm the validity of the ESF experiments, we compared the results with that from a more 

traditional experiment, where a modulated laser light is incident on the sample fixed at the center 

of a rotation stage. A photodetector is placed on a cantilever beam such that it revolves around 

the sample when the stage is rotated. A lock-in amplifier synced to the laser modulator is used to 

measure the angle dependent scatter phase function. The normalized scattering phase function of 

the diffuser is plotted in Figure 4-3(c). We see that Φ(θ) extracted from the rotation stage setup 

resembles a top-hat function, and agrees well with the normalized profile obtained using Eq. (4-

15) with a ∆θdiff  averaged over all the values shown in Figure 4-3(b).  

From the width of the ±10% uncertainty bounds shown in Figure 4-3(a), we can infer that the 

sensitivity of I*(Xs) to ∆θdiff is much higher at larger distances, d. This can be explained by the 

larger spatial spread of the point spread function with increasing d. On the other hand, the 

normalization process of Eq. (4-17) requires the saturated bright and dark intensity information 

collected far away from the nominal knife edge shadow line, which may not be possible for large 

d values because of the finite sample size. The measured scatter phase function is most precise 

when the d values are chosen such that the complete edge spread function is captured while 

maximizing the spatial spread of the PSF. In addition, it is necessary to ensure the alignment of 

the center line for each of the captured edge spread functions with and without the scattering 

sample, so that the convolution of Eq. (4-14) is valid. The involved data analysis and the 

stringent alignment requirements can be relaxed by using the modulation transfer function 

method we discuss in the next subsection. 

 Modulation Transfer Function Method 
In this method, we replace the knife edge of the previous experiment with a USAF 1951 target, a 

standard for specifying the resolution of imaging systems. In this experiment, we restrict the 

measurements to group -2, which has lines with spatial frequencies ranging from 0.25 lines/mm 

to 0.445 lines/mm. The typical image obtained looks like the inset images in Figure 4-4(a). The 

MTF is calculated by simply applying Eq. (4-1) on line cuts taken across the imaged line pairs 

(Figure 4-4(b)).  
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Figure 4-4 (a) For the MTF experiments using collimated light, the knife edge of Figure 4-1 is replaced by a 

USAF 1951 test target.  (b) Captured images for a pattern with spatial frequency 0.315 line pairs per mm 

(lp/mm) corresponding to Gr-3 El 3 of the target. The images become blurrier as the distance d increases. (c) 

Average cutline measured across the imaged line pairs corresponding to images from (b). The dark level 

increases while the bright level decreases with increasing d. (c) Measured and modeled MTF values for line 

pairs with spatial frequencies 0.250, 0.315, 0.397 and 0.445 lp/mm respectively. The 10% uncertainty bounds 

are found by perturbing the extracted ∆θdiff by ±10%. 

For the modulation transfer experiments, the baseline MTFsetup is found by processing the image 

with the scattering diffuser at d = 0 mm, i.e. in contact with the detector screen. Following this, 

successive MTF measurements are carried out for increasing d, as shown in Figure 4-4(c). In this 

case each series of MTF(d) measurements for a given spatial frequency is considered a separate 

experiment to extract the scattering phase function. This is in contrast with the ESF method 

where a single shot edge spread function at a single d is sufficient to extract the scattering 

properties. 

Table 4-1: Fitted values of ∆θ for the four spatial frequencies studied in Figure 4-4 above. 

Spatial frequency, f [lp/mm] Fitted  ∆θdiff[°] 

0.315 11.0 

0.353 13.5 

0.397 14.1 

0.445 13.6 

The fitted lines with ±10% uncertainty bounds shown in Figure 4-4(c) agree well with the 

measured MTF values, and the corresponding extracted ∆θdiff  values are listed in Table 4-1. ∆θdiff  

is also close to the average value measured by the ESF method of 13.1°, thus demonstrating the 

applicability of the MTF method as well. From the width of the 10% bounds, we see that the 

measurement is again more sensitive to the scatter phase function as d increases. The MTF 

method, while slightly more expensive than the ESF method due to the need for a USAF test 
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target, has significant advantages of easier data analysis, and no requirements for alignment 

between successive measurements.  

 Diffuse Light source  

Sometimes a large diffuse light source such as a light table is more readily available than a 

collimated light source. We take advantage of this in the current method, where a diffuse source 

is placed in physical contact with a USAF 1951 test target as shown in the schematic of Figure 

4-5(a). The diffuse source also necessitates the use of focusing to get enough intensity on a 

screen located far away from the light source.  The sample-of-interest is placed between a USAF 

target back-illuminated by the diffuse light source, and a camera focused on the USAF target. 

Since the light source is placed in contact with the USAF target, they can be considered one and 

the same. The distance between the source and sample, d, is much smaller than the distance 

between the camera and sample, L. Similar to the previous section, the measured MTF in the 

presence of the scattering sample can be used to extract its scattering properties, and we 

formalize this relation in the following sub-sections. 

 

Figure 4-5 MTF method using a diffuse light source. (a) The measurement setup, and (b) Ray schematic. 

Objective is represented by a single lens in (b). The scattered rays represented by yellow/orange rays appear 

to come from the point (xs,ys) on the source plane as viewed from the lens. (Camera image source: Canon) 

 Theory 

To estimate the MTF due to scattering by the sample, we first have to calculate the point spread 

function, PSF, for the imaging setup of Figure 4-5. We start by considering the smearing of 

image in the presence of the scattering sample in response to light emission from an arbitrary 

point (x0,y0) and area, dA0 on the screen. It is assumed that the light source has a generalized non-
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lambertian emission profile, such that the light power emitted into a solid angle, dΩ, in a 

direction at a polar angle, θ is 

 ddAI n

00 cos  , (4-18) 

where I0 is a constant carrying the units of intensity [W/(m2sr)] and the exponent n quantifies the 

spread in the source emission profile. A separate measurement is required to determine n if the 

value is not provided by the manufacturer. 

When the camera objective’s aperture is small compared to the distance between the 

source/scatterer and the camera, i.e. both L and L+d are larger than the aperture size, a small 

angle approximation can be invoked. Under this assumption, un-scattered light from the source 

reaching the camera travels effectively in the same direction within an extremely narrow cone 

(subtended solid angle ~Alenscos3(θ0)/(L+d)2). This has been schematically shown by the red cone 

in Figure 4-5. Using the easily measured magnification, M, of the imaging system, it is known 

that the unscattered power will be incident on an area, dAimg=M2dA0 on the image screen, 

centered around the point,  

    0000 ,, yxMYX  . (4-19) 

The unscattered power that transmits through the sample and is incident on point (X0, Y0) is 

  
 2

0

3

0

0

0000

cos

)cos(

)(
expcos,

dL

A
dA

ds
IYXdP lensscan










 







 . (4-20) 

In the presence of a scattering sample, a fraction of the light power emitted in a different 

direction (θ,  ), is scattered within the area, dAs, towards the aperture, as shown by yellow rays 

in Figure 4-5(b). To the camera, this scattered ray appears to come from the position (xs,ys) in the 

object plane. Again, invoking the small angle approximation, this scattered power is incident 

around the point (X,Y)=M(xs,ys), with magnitude, 
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 (4-21) 

To compare the powers of the unscattered and the scattered rays, the respective incident areas on 

the image screen have to be consistent. To produce an image on an area, dAimg=M2dA0 in the 

image plane, the scattered rays must be scattered by area, dAs = dA0/(1+d/L) on the sample of 

interest. The factor of (1+d/L) arises because the sample is closer to the camera compared to the 

screen.  

Traditionally, the point spread function is the response on the image X-Y plane to an impulse on 

the object x-y plane. In this method, we want to calculate the MTF on the image plane, which 
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implies that the line spread function (Eq. 4-11) on the image plane should be normalized so that 

the integration of LSF over the image plane is 1. This ensures that the MTF is 1 at spatial 

frequency f=0. Thus, the PSF we will show next needs to be normalized while carrying out the 

numerical evaluations from Eqs. 4-12 to 4-13. For this purpsose, it is essential to make sure the 

ratio of the unscattered and scattered contributions is correct, while the exact magnitude is not 

required to be known. 

With the above discussion in mind, we calculate a PSF by including the scattered and unscattered 

contributions divided by 2

imgdA  or 
2

0

2dAM , so that the arbitrarily chosen differential areas dA0 or 

dAs in the above equations fall out. The resulting PSF is 
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where, θ0, θ and θs are related to (X0, Y0) and (X, Y) by the relations: 

      

      .tan

tan

,tan

22

2
0

2
0

2
0

2
0

/1//1/1

/1//1/1

)(
1

0

ML
LdYLdX

s

Md
YLdYXLdX

dLM
YX

and






























 (4-23) 

The data analysis is simpler when the PSF is spatially invariant in the x-y directions, and hence, 

it is sufficient to calculate a single PSF for a source located at the optical axis, (x0,y0)=(0,0). We 

can show that the PSF is spatially invariant when 

 dL   and pairlinedL  , (4-24) 

holds true. In this limit, from Eqs. 4-23, we know that the angle θ is only a function of relative 

displacement on the image screen, i.e. X-X0 or Y-Y0, and not the absolute position itself. In 

addition, when Eq. (4-24) is valid, θ0 and θs both tend to 0. In this limit, with the above 

approximations, a spatially invariant PSF can be found,  
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 Effect of Reflection and Refraction 

 
Figure 4-6 Magnified detail of Figure 4-5to exaggerate the effects of refraction. The angle through which light 

is actually scattered inside the sample, θ→ θs, is different from the angles through which it appears to scatter, 

θapp→θs,app.  In addition, the subtended solid angle changes as light travels from one medium to another. 

When the refractive index η of the sample is dissimilar from the environment, the effects of 

forward and backward surface reflection, as well as refraction needs to be taken into account.29 

Two angles, θapp and θs,app, are introduced which correspond exactly to θ and θs in Eq. 4-23. Due 

to refraction, the corresponding angles within the sample, θ and θs, are shallower as shown in 

Figure 4-6, and can be calculated using Snell’s law of refraction. In addition, due to refraction, 

the solid angle subtended by the lens to the scattered area, in the region within the sample dΩs, 

can be calculated with respect to the solid angle outside the sample, dΩs,app, by conserving 

etendue at the backside interface,  
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This factor is exact under the assumption that θs~0, which is valid when d/L~0. The final form of 

the spatially invariant PSF is 

 

       
 

 

     
 

,
4

)0,(

/1

cos

cos
)(exp1011

)()(
)(exp

0101','

2242

3

21

222100


















































LdLdM

ds
RR

YX
dLM

ds
RRMyYYMxXXPSF

app

n

sca

sca

sca
app

sca
ssscatt

 (4-27) 

where R1 and R2 are the front and back Fresnel reflection coefficients with the corresponding 

incoming angles of incidence in parentheses.  

The usual experiment for this method will result in a MTFtot(d) or a MTFtot(f) curve. To infer the 

scattering phase function, following Section 4.2.1.1, the MTFscatt calculated for a given geometry 

setup and scattering properties using the PSF of Eq. (4-27) can be compared with experimental 
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results. As we noted in the previous section, the MTF is obtained as a Fourier transform of the 

normalized line spread function, 
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We did not demonstrate this method with experiments on the diffuser since the diffuser is 

designed for normal incidence of light. However, since the derivation for the point spread 

function Eq. 4-27 involved several approximations, we verify its validity in the next sub-section 

with numerical ray tracing simulations.  

  Numerical verification with Ray Tracing Simulation 

We used Zemax OpticStudio, a commercial ray tracing software to validate the spatially 

invariant PSF in Eq. (4-26). A non-sequential model is created to simulate this work’s proposed 

physical setup, where an extremely small circular lambertian (n=1) source acts like a point 

source for photons emitted from the object plane (x=0,y=0). At a distance d=20mm away from 

the sample, a 1 mm thick rectangular volume of refractive index η=1.5 encloses a thin scattering 

sheet at its center. Since the scattering is limited to a sheet, the angle dependent scatter fraction 

of Eq. (4-27), 

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dssca  is replaced by a constant, which is the specified scatter fraction 

in the simulated setup, here 0.2.  

At a distance L+d=1m away from the light source, a thin bi-convex lens is created with refractive 

index η = 3.5, radius 200 mm, and a small 2.5 mm aperture, such that the focal length is 40 mm. 

A detector is placed at the focused location, as determined by the lens equation. The detector has 

square pixels with size 5μm which is large enough to capture the aberrations in the ray tracing 

setup. The high refractive index and the small aperture of the lens helps limit lens aberration so 

that a perfect lens can be simulated. Figure 4-7 shows the simulated PSF for the above setup in 

the presence of a sample with Gaussian scattering, 
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for two different values for the coefficient, σ, 0.1 and 1. The simulated PSF is in excellent 

agreement with the analytical PSF.  
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Figure 4-7 Ray tracing validation with Zemax OpticStudio for Eq. (4-27). The figure compares analytical 

(solid line), and ray tracing results (red dots) for the PSF obtained at the image screen for a sample with 

refractive index, η=1.5, scatter fraction of 0.2, and a Gaussian scattering phase function with σ= 0.1 and 1. 

 Summary 

We analyzed two types of light sources, collimated and diffuse, to measure the light scattering 

properties of thin scatterers using two image resolution techniques, ESF and MTF. For each 

method, first the PSF was formulated as a function of the setup geometry and the scattering 

properties of the sample. We carried out experiments with a surface scatterer to demonstrate the 

methods involving collimated light sources. The results showed good agreement with 

measurements using the traditional but more complicated goniometer setup involving a laser 

source. The experimental setup for the case of ESF measurements has more stringent alignment 

requirements when compared to the MTF approach. In addition, the image processing and 

subsequent data analysis for the MTF approach is simpler. We also numerically verified the 

point spread for the geometry setup with a diffuse light source described in Figure 4-5(b), using a 

commercial ray tracing software, Zemax OpticStudio. In Table 4-2, we list the relative strengths 

and weakness of each of the discussed methods. Low cost and simple methods such as the ones 

described above can make light scattering measurements more accessible, thus making it easier 

to evaluate the optical quality of samples in high throughput. 

Method Theory 
Experiments 

Cost Setup complexity Data Analysis 

Collimated source 

ESF 
Straightforward 

Eq. 4-14 

Cost effective (No USAF 

target).  Requires collimated 

source (can be LED) 

Stringent alignment 

requirements 

Convolution of actual 

experimental data is required. 

MTF 
Straightforward 

Eq. 4-13 

Needs USAF target and 

collimated source 

Less stringent 

alignment requirements 

Easy: Each measurement is 

independent, and simple 

algebraic division 

Diffuse source 

MTF 

Light focusing 

makes it tougher 

Eq. 4-27 

Easier and cost effective to 

buy diffuse source 

Less stringent 

alignment requirements 

Easy: Each measurement is 

independent, and simple 

algebraic division. 

 

Table 4-2 Qualities of the methods - Accessibility and expense.  
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Chapter 5 - Dissertation Summary and Conclusions 
 

In this thesis, I studied several aspects that go into designing and evaluating the performance of 

active ions doped polycrystalline ceramics as a candidate for high power lasing media. First, in 

Chapter 2, the various considerations that go into designing the microstructure (grain size and 

shapes) so that an ideal combination of high thermal conductivity and light transmission can be 

achieved was discussed. Following this, methods were developed to measure the above two 

properties for synthesized ceramics. For thermal conductivity, in Chapter 3, a modified version 

of the well-known 3 omega method was develop to measure the anisotropic thermal conductivity 

tensor of arbitrarily oriented substrates. Finally, in Chapter 4, easily accessible and cost-effective 

high throughput methods were developed using image resolution techniques to measure the 

properties describing light transmission through thin light scattering samples. 

In this Chapter, I will reiterate selected highlights for each of the above three topics, and also 

discuss related implications and future work. 

 Chapter 2 - Optimizing Thermal Transport and Light Transmission 
in Anisotropically Micro-Structured Materials for High Power 
Laser Applications 

In Chapter 2, I used various modeling techniques to design the microstructure of active ion 

doped polycrystalline ceramics for high power lasing applications. A figure of merit (Sub-section 

2.4), 
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was introduced. For a given output mirror coupling/reflectivity, R2 (typically R2~0.9, R1~1), to 

maximize the figure of merit, FOMi,j, it is essential to maximize the thermal conductivity in the 

cooling direction, ki, while also maintaining a very small extinction coefficient due to scattering 

in the lasing direction, βsca, j. This is challenging due to the opposite ways in which the grain 

boundaries, ever-present in the sintered polycrystalline ceramics, affect the desirably high 

thermal conductivity and the desirably low light scattering coefficient in the high thermal 

conductivity birefringent materials, AlN and Al2O3, under study here.  This challenge was 

tackled in this work by proposing an anisotropic microstructure. I discuss the key highlights for 

this work under three broad categories: 1) Thermal conductivity, 2) Light scattering, and 3) 

Figure of Merit. 
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 Thermal Conductivity 

I looked at the effect of grain shapes and sizes, and active ions on the thermal conductivity of 

polycrystalline ceramics. Following are the key conclusions in this work: 

1. Grain boundary scattering: To calculate the effect of grain boundaries, first a simplified 

microstructure with columnar rod-like grains are assumed with an anisotropy ratio, r, is 

introduced. This simplification is possible because the grain sizes we study here are much 

bigger than the typical thermal phonon wavelengths (~<5nm). For this simplified 

structure, boundary scattering mean free path models were proposed in Table 2-1, which 

matched within 25% of highly computationally expensive Monte Carlo ray tracing 

simulations.  

2. Scattering due to active ions: Active ions, such as transition metals and rare earth 

elements, is where the lasing action occurs and are hence unavoidable. Unfortunately, 

these dopants are typically heavy compared to the host lattice elements, and can hence be 

very strong Rayleigh-like scattering centers. While most of the thermal conductivity 

calculations were carried out assuming the transition element, Ti, as the active dopant, we 

also showed in sub-section 2.6.2.1, that heavier elements such as Tb can significantly 

reduce the thermal conductivity (the calculated thermal conductivity of single crystal 

1%Tb:AlN is ~80% lower than that of single crystal 1%Ti:AlN ). 

3. Thermal conductivity of doped polycrystalline materials, AlN and Al2O3: Finally, the 

thermal conductivity is calculated in section 2.2.3 as a function of grain shapes and sizes. 

Following are the key conclusions: 

a. In the grain boundary scattering dominated regime, the anisotropic microstructure 

results in an anisotropic thermal conductivity in the polycrystalline material. This 

anisotropy in thermal conductivity is more pronounced when the grain boundary 

scattering is stronger. Since the grain boundaries perpendicular to the direction of 

phonon transport are more effective in scattering phonons, the thermal 

conductivity is higher in the direction of the longer grains, i.e. in the c-direction 

for the case of columnar rod-like grains (aspect ratio, r>1) and in the ab-direction 

for disk-like grains (r<1). 

b. It is essential to consider the mean free path distribution of the host materials 

during the material selection process. Since Al2O3 has smaller intrinsic mean free 

paths than AlN, the impact of sub-micron grain sizes on Al2O3 is less pronounced.   

c. When the active ions are heavy, e.g. Tb instead of Ti, the effect of grain 

boundaries are less pronounced since the ions become the dominant scatterers of 

phonons. 

4. Future work:  

a. Often the polycrystalline ceramics synthesized by the non-equilibrium methods 

also have pores and second phase inclusions, such as aluminum oxynitride 

(AlON) in the case of AlN. Future efforts can be directed towards understanding 

the effects of the above defects on the thermal conductivity. The effect of 

dispersed pores can be calculated by carrying out ray tracing simulations on 

realistic porous structures. Modeling techniques such as molecular dynamics124 

can be used to calculate the phonon transmission probability at the interface 

between dissimilar phases.  
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b. To model the effect of rare earth elements, I used Rayleigh-like56,57 scattering 

models that take the mass difference into account. Mass defect parameter, AMD 

calculations in sub-section 2.6.2.1 with Tb as the dopant show that the thermal 

conductivity should be dramatically reduced. On the other hand, previous 

calculations with Tb:AlN41 show a smaller reduction in thermal conductivity. This 

contradicts with the thermal conductivity predicted in this work. Future efforts 

need to be directed to fully understand the effect of heavy rare earth dopants on 

the thermal conductivity of the host material. One such way would be to use 

density functional theory to calculate the mass defect phonon scattering rates 

without any free parameters. Such calculations have previously been carried out 

for Be-VI compounds and GeC,125 but not yet for rare earth element dopants. 

 Light Transmission 

To calculate light transmission, I assumed that the materials in the study were fully dense, and 

had negligibly small light absorptivities due to the typically large bandgaps. The primary loss in 

light energy on top of reflection is due to the scattering of light at grain boundaries caused by the 

birefringence effect. I used an effective medium model, where the polycrystalline material is 

assumed to be made up of aligned cylinders uniformly distributed in a matrix of slightly different 

refractive index. The key points are: 

1. Cause of light scattering: The light scattering is due to the birefringence effect, and 

occurs when the crystallographical axes of the grains are misaligned, which we define 

here with the angle χ. 
 

2. Light scattering cross-section, Csca: The light scattering cross-section of each cylinder is 

calculated under the RGD approximation. The assumption that faceted grains can be 

approximated as cylinders is verified against COMSOL electromagnetic wave 

simulations. The scattering cross-section depends on the direction of light incidence. 

 

3. Extinction coefficient due to scattering, βsca: Finally, the extinction coefficient is 

calculated for the effective medium by multiplying Csca with the number density of 

scatterers.  

a. At this point, it is observed that as expected, even for anisotropically shaped 

scatterers, βsca is smaller in the direction where the grain sizes are smaller. Thus 

the smaller grain sizes are preferred for lasing. This is in contrast to the thermal 

conductivity, where the desirable high k values are achieved in the direction with 

larger grain sizes.  

b. In addition, it essential to minimize the refractive index contrast, Δ𝜂  between 

grains since βsca scales with Δ𝜂2.  This is achieved by maintaining a small 

misalignment, χ between grains, which becomes especially important in highly 

birefringent materials such as AlN. 

 

4. Future Work: In this thesis, the βsca calculations could not be carried out for the smallest 

grain sizes because dependent scattering becomes an important consideration when the 

grain sizes are smaller than half the wavelength of light. In sub-section 2.6.4, we started 
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to address this problem, by laying out the foundation to calculate βsca in such regimes. 

Since the dependent scattering cross-section is a strong function of the arrangement of the 

scattering centers, future work can focus on applying the above described techniques to 

realistic grain structures obtained from high resolution micrographs of the sample. 

 Figure of Merit 

I finally introduced the figure of merit of Eq. (5-1), and showed that indeed there is an advantage 

to synthesizing polycrystalline materials with an anisotropic microstructure. When the 

microstructure is made up of aligned columnar grains (aspect ratio, r>1), FOMc,ab, i.e. cooling in 

c-direction and lasing in ab-direction gives the highest values when the column-shaped grains 

have the smallest diameters and large aspect ratios (Figure 2-6 (c) and (g)). On the other hand, 

with disk-like grains (aspect ratio, r<1), FOMab,c, i.e. cooling in ab-direction and lasing in c-

direction gives the highest values when the disk-shaped grains have the large diameters and 

small aspect ratios (Figure 2-6 (b) and (f)). With various modeling techniques, I discuss the 

importance of the strength of grain boundary scattering and misalignment in the chapter. This is 

the first time that the advantages of an anisotropic mictostructure has been proposed for high 

power lasing applications. The work has far-reaching potential to direct future research 

initiatives into using the polycrystalline forms of high thermal conductivity but birefringent 

materials AlN and Al2O3 as polycrystalline host materials for solid state lasers. 

 Chapter 3 - A 3 Omega Method to Measure an Arbitrary 
Anisotropic Thermal Conductivity Tensor 

In this chapter, I implemented the electrothermal 3 omega method for anisotropic materials. 

While previous works have used numerical integrations to find the solution for the 3 omega 

heating problem on aligned anisotropic substrates, here I focused on finding a closed form 

analytical solution for a general case where the principal axes maybe aligned in any arbitrary 

direction. On top of making the data analysis easier and faster, closed form solutions have the 

additional advantage of offering more physical intuition. The following are the key takeaway 

points from this chapter. 

1. The solution to the 3 omega heating problem: I started with solving for the time periodic 

temperature profile for an infinitesimally narrow line heater on top of an anisotropic 

substrate, by applying a series of Fourier transforms and inversions. The average heater 

line temperature was calculated by convolving the effect of a line heater over the width of 

the heater line. As is physically intuitive, the isothermal contours within the sample are 

stretched along the high thermal conductivity direction. 

 

2. Validation with COMSOL simulation: I was able to use the coefficient form PDE module 

of Comsol to numerically carry out high throughput calculation of the heater line 

temperature in the frequency domain. This modification makes the calculation of the 

temperature profile in time periodic problems highly accessible. The analytical solutions 

developed in this chapter agreed very well with the COMSOL calculations. 
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3. Demonstration with experiments on mica: To demonstrate the method, experiments were 

carried out with mica, which has a moderate anisotropy. I cut mica at 30° and 60° planes 

to exercise an arbitrary anisotropy, so that the thermal conductivity tensor has off-

diagonal terms. Two different methods are used at this point to measure the thermal 

conductivity tensor. In each method, to calculate the off-diagonal terms, it is essential to 

use 2 heater lines on two non-coplanar surfaces of the sample. In each method, the 

traditional slope method gives the determinant of the thermal conductivity tensor in 2D 

for the plane being probed. The methods are as follows: 

a. k elements: In this method, a separate measurement of the volumetric heat 

capacity is used to directly measure the thermal conductivity tensor elements. For 

aligned uniaxial substrates such as mica, where the anisotropic tensor can be 

represented with a diagonal matrix comprising 2 unique elements, only one heater 

line is required to measure the full thermal conductivity tensor. The relatively low 

sensitivity of this method to the cross-plane thermal conductivity necessitates 

precise knowledge of the temperature coefficient of resistance of the heater lines, 

the volumetric heat capacity, and the heater line width. 

b. k Ratio: This approach is differential in nature, where at least 2 heater lines are 

required to identify the thermal conductivity tensor elements even in the case of 

aligned uniaxial materials. The difference in the temperature rise detected by the 2 

heater lines is related to the ratio of the thermal conductivity values cross-plane to 

the heater lines. The benefit of using this method is that knowledge of the 

volumetric heat capacity and heater line width is not required, as long as the 

values are expected to be constant from measurement to measurement.  

A combination of the above 2 methods as described in the summary of the Chapter 3 

maximizes the sensitivity and the strengths of the two schemes. In thin samples, often 

heater lines can only be deposited on the larger surfaces. For such samples, only the first 

method is applicable. 

 Chapter 4 - Easily accessible, low cost approaches to measure the 
scattering phase function of optically thin samples 

In this chapter, I described cheap and easily accessible methods to measure the light scattering 

phase function of geometrically and optically thin samples using image resolution techniques. 

The methods were divided into two broad groups determined by the nature of the light source, 

(1) collimated and (2) diffuse. The effect of the sample on either the edge spread function (ESF) 

or the modulation transfer function (MTF) is used to quantify its light scattering properties. The 

first step to calculating the MTF or the ESF involved calculating the point spread function, PSF, 

which is a function of the source type, geometry and the sample’s scattering properties. The 

salient points and advantages of the two methods are as follows: 

1. Collimated light source: In this method, a collimated light source is used to illuminate 

the setup. The big advantage of the method is the relatively easy theory when 

compared to methods using a diffuse light source. In addition, focusing of light is not 

required. I looked at two different methods that use a collimated light source 

a. ESF method: Here the spread in the edge spread function in the presence of a 

scattering sample is used to calculate the scattering properties of the sample. 
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While this method has the advantage of having an easily obtainable edge, 

there are more stringent alignment requirements so that each successive ESF 

measurement fall right on top of each other. This decreases the number of free 

parameters by one, and makes it possible to directly convolve the scattering 

point spread function, PSFscatt with the ESF for a setup with no scatterer.  

b. MTF method: The MTF method required an additional USAF 1951 resolution 

target which has multiple patterns made of alternating opaque and transmitting 

lines. The rewards gained by the relaxed alignment requirements and the ease 

of data analysis makes the method attractive. 

Both methods were demonstrated with experiments on an engineered diffuser which 

is designed as a surface scatterer with a top-hat profile. The results agreed very well 

with measurements taken by a goniometer setup involving specialized equipment 

such as a modulated laser source, a photodetector, rotation stage, and a lock-in 

amplifier to measure the intensity.  

 

2. Diffuse light source: In this method, a more easily available diffuse light source is 

used for illumination purposes. Because of the diffuse nature of the light, the setup 

and requirements for this method are different from collimated light source 

techniques described above. These differences are: 

a. It is now necessary to know the angle dependent emission profile of the 

diffuse source. This can require an additional measurement if the emission 

profile is not provided by the manufacturer. 

b. To simplify the data analysis (i.e. for small angle scattering  to be valid), the 

detector has to be placed far away from the scattering sample, compared to the 

distance between the sample and the USAF target. This makes the setup less 

compact. 

c. Because of the large distance between the source and the detector, and the 

diffuse nature of the light source, an objective is required to focus the light on 

to a detector. It is necessary for the data analysis to know the magnification of 

the setup. 

The PSF derived for this method was validated with numerical ray tracing techniques. 

 

3. Considerations and Future work: 

a. A unique feature of the above methods compared to the traditional methods 

involving collimated lasers, is that the measurements are sensitive to a large 

area of the sample. Thus, the measurements yield average scattering properties 

for the sample, thus eliminating the need to take multiple measurements at 

different spatial positions on the sample. 

b. Because of the non-local nature of the measurements, the methods can have 

limitations due to the finite size of sources and samples, especially in the case 

of the collimated methods (infinite area is ideal). This can be worked around 

by choosing the distance between the sample and the detector screen so that 

most of the scattered rays are captured. 

c. The methods can only measure the light transmission properties for light 

transmission through a large flat surface. It is not possible to measure the light 
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transmission through the curved circumferential surface of disk-shaped 

samples. This can be required for edge-pumped lasing configurations. 

d. Even though the techniques involving collimated light source have been 

demonstrated for a surface scatterer, to evaluate lasing media, it is essential to 

demonstrate the technique for thin volumetric scatterers. To exercise this, well 

known standard scattering samples such as nearly index matched microsphere 

films126 and opal glasses can be used. 
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