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ORIGINAL RESEARCH
PTPN2 Is a Critical Regulator of Ileal Paneth Cell Viability and
Function in Mice
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SUMMARY

PTPN2 has been associated with inflammatory bowel dis-
eases. Constitutive deletion of this gene in mice depletes
ileal Paneth cells, whereas specific deletion in intestinal
epithelial cells impairs production of the antimicrobial
peptide lysozyme.

BACKGROUND & AIMS: Loss-of-function variants in the PTPN2
gene are associated with increased risk of inflammatory bowel
disease. We recently showed that Ptpn2 is critical for intestinal
epithelial cell (IEC) barrier maintenance, IEC–macrophage
communication, and modulation of the gut microbiome in
mice, restricting expansion of a small intestinal pathobiont
associated with inflammatory bowel disease. Here, we aimed to
identify how Ptpn2 loss affects ileal IEC subtypes and their
function in vivo.

METHODS: Constitutive Ptpn2 wild-type, heterozygous, and
knockout (KO) mice, as well as mice with inducible deletion of
Ptpn2 in IECs, were used in the study. Investigation was
performed using imaging techniques, flow cytometry, enteroid
culture, and analysis of gene and protein levels of IEC markers.

RESULTS: Partial transcriptome analysis showed that expres-
sion of Paneth cell–associated antimicrobial peptides Lyz1,
Pla2g2a, and Defa6 was down-regulated markedly in Ptpn2-KO
mice compared with wild-type and heterozygous. In parallel,
Paneth cell numbers were reduced, their endoplasmic reticu-
lum architecture was disrupted, and the endoplasmic reticulum
stress protein, C/EBP-homologous protein (CHOP), was
increased in Ptpn2-KO mice. Despite reduced Paneth cell
number, flow cytometry showed increased expression of the
Paneth cell–stimulatory cytokines interleukin 22 and interferon
gþ in CD4þ T cells isolated from Ptpn2-KO ileum. Key findings
in constitutive Ptpn2-KO mice were confirmed in epithelium-
specific Ptpn2DIEC mice, which also showed impaired lyso-
zyme protein levels in Paneth cells compared with Ptpn2fl/fl

control mice.

CONCLUSIONS: Constitutive Ptpn2 deficiency affects Paneth
cell viability and compromises Paneth cell–specific antimicro-
bial peptide production. The observed effects may contribute to
the increased susceptibility to intestinal infection and dysbiosis
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in these mice. (Cell Mol Gastroenterol Hepatol 2023;16:39–62;
https://doi.org/10.1016/j.jcmgh.2023.03.009)

Keywords: Antimicrobial Peptides; TCPTP; Lysozyme; Intestinal
Epithelial Cells; Inflammatory Bowel Disease; Microbiome.

he inflammatory bowel diseases (IBDs), Crohn’s
Abbreviations used in this paper: AIEC, adherent-invasive Escherichia
coli; AMP, antimicrobial peptide; ATG, autophagy-related protein;
BLAST, basic local alignment search tool; CD, Crohn’s disease; CHOP,
C/EBP-homologous protein; Ct, cycle threshold; eIF2-a, eukaryotic
translation initiation factor 2A; ER, endoplasmic reticulum; HET, het-
erozygous; IBD, inflammatory bowel disease; IEC, intestinal epithelial
cell; IFN, interferon; IL, interleukin; KO, knockout; LC3B, microtibule-
associated protein 1 light chain 3 beta; MDP, muramyl dipeptide;
Mist1, muscle, intestine and stomach expression 1; Muc2, mucin-2;
Nod, nucleotide-binding oligomerization domain-containing protein 2;
Olfm4, olfactomedin-4; PARP, poly-(adenosine diphosphate-ribose)
polymerase; PC, principal component; PBS, phosphate-buffered sa-
line; RT-qPCR, reverse-transcription quantitative polymerase chain
reaction; STAT, signal transducer and activator of transcription;
TCPTP, T-cell protein tyrosine phosphatase; TEM, transmission elec-
tron microscopy; Tm, melting temperature; TNF, tumor necrosis fac-
tor; TUNEL, terminal deoxynucleotidyl transferase–mediated
deoxyuridine triphosphate nick-end labeling; UC, ulcerative colitis;
WT, wild type; Xbp-1s, x-box-binding protein 1.
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Tdisease (CD) and ulcerative colitis (UC), are char-
acterized by recurrent episodes of chronic inflammation of
the gastrointestinal tract. Both etiologies show increased
levels of intestinal dysplasia, placing patients at an
increased risk of developing intestinal cancer.1,2 Current
therapies include administration of broad anti-inflammatory
and immunosuppressive drugs, but the efficacy of these
approaches decreases after long-term administration.3–5 In
addition, IBD onset is multifactorial, which involves envi-
ronmental factors, alterations in the microbiome, and ge-
netic susceptibility. Individually and collectively, these
factors can initiate or worsen underlying defects in the in-
testinal epithelial barrier function. Increased intestinal
permeability is a hallmark of IBD pathogenesis that con-
tributes to intestinal fluid loss, while also permitting
translocation of microbes and microbial products from the
luminal space into the intestinal mucosa, leading to immune
cell activation and cytokine production.6,7

Genome-wide association studies have identified 240
gene loci associated with IBD to date.8 Many of these genes
are associated with modulation of immune responses,
maintenance of the epithelial barrier, autophagy, interactions
between host cells and bacteria, and production of antimi-
crobial factors, thereby emphasizing the complexity and
heterogeneity of IBD pathophysiology.9,10 Of interest, IBD-
associated single-nucleotide polymorphisms were identified
in the PTPN2 gene locus,11 which encodes T-cell protein
tyrosine phosphatase (TCPTP), a protein responsible for
inactivating several substrates, including proteins of the Janus
activated kinase family (JAK) and signal transducer and acti-
vator of transcription (STAT) proteins.12,13 A number of studies
have reported on functional roles of TCPTP in mouse models
and the physiological consequences of Ptpn2 deletion.14 With
respect to intestinal function, we and others have shown
in vitro and in vivo that Ptpn2 loss increases intestinal barrier
permeability,13,15 changes the composition of tight junction
proteins,16 modulates IEC–macrophage communication,17 and
alters the intestinal microbiota, which in turn allows the
expansion of pathobionts associated with IBD.18 In contrast,
naïve constitutive Ptpn2-heterozygous (HET) mice appear
normal with no marked physiological or morphologic alter-
ations, but display increased susceptibility to colitis and sys-
temic inflammation when challenged with dextran sulfate
sodium.19 These studies show the pivotal role Ptpn2 exerts on
intestinal homeostasis and modulation of the microbiome,
although the mechanisms by which Ptpn2 influences the in-
testinal flora are yet to be elucidated.

The intestinal barrier comprises 3 layers of protection:
the mucus layer, intestinal epithelial cell (IEC) lining, and
immune cells in the lamina propria. A healthy IEC layer
functions as a selectively permeable barrier at the
host–microbiome interface, and is essential for generating
and maintaining ion-solute concentration gradients, ab-
sorption of nutrients, sampling bacterial antigens, restrict-
ing entry of pathogens and toxins, modulating the microbial
intestinal flora by secreting antimicrobial components, and
mediating communication with immune cells.20 These
functions are accomplished by a set of specialized and
highly differentiated IEC subtypes that are located strate-
gically along the crypt–villus axis of the small intestinal
mucosa. Among them, Paneth cells normally are present
only in the small intestines, dwelling at the crypt base
intermingled with intestinal stem cells, and are critically
involved in innate immune responses. Paneth cells secrete
several antimicrobial peptides (AMPs), such as a-defensins
(cryptdins in mice), lysozyme, and phospholipase A2 group
IIA. In addition, Paneth cells are an important source of stem
cell niche factors, such as proto-oncogene wingless-type 3
(WNT3), Notch ligands, and epidermal growth factor (EGF),
which are required for intestinal stem cell function.21

Moreover, dysfunction of Paneth cells may play a role in
intestinal inflammation.22 For example, a subset of CD pa-
tients display reduced expression of AMPs and defective
Paneth cells, suggesting that loss of critical Paneth cell
functions alters the host–bacterial interaction in ways that
increase the risk of chronic inflammation.23–25

IEC subtypes are functionally altered in IBD, although
such impairments are dependent on IBD manifestation (CD
vs UC), genetic susceptibility, and site of disease activity.23

In CD ileitis, Paneth cell number and function are affected
whereas reduced numbers of goblet cells and a defective
mucus layer have been reported in UC.24–27 Furthermore,
studies examining IBD patient biopsy specimens and
transgenic mice show that genetic variants or deletion of
IBD-associated genes can functionally impair IEC subtypes,
thereby increasing susceptibility to intestinal infections and
promoting dysbiosis.28–31

Here, we show that constitutive Ptpn2 deficiency alters
the expression of ileal IEC markers in mice. Notably, the
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number of Paneth cells was reduced dramatically in Ptpn2-
knockout (KO) mice, negatively affecting the production of
AMPs that directly modulate the intestinal microbiota.
These findings indicate a new mechanism by which Ptpn2
loss of function might increase susceptibility to infection
and contribute to intestinal dysbiosis and disease onset.

Results
Whole-Body Ptpn2-Deficient Mice Display
Epithelial Structural Changes and Unique Gene
Expression in Isolated Ileal IECs

Our group recently showed thatwhole-bodyPtpn2-KOmice
display increased crypt depth in the cecum and proximal colon,
although no other gross alteration was present in the intestinal
epithelium.32 Here, we show that ileal villus length was
increased in Ptpn2-KO mice when compared with wild-type
(WT) and HET (Figure 1A and B). Ileal crypt depth and width
were not affected (Figure 1C and D). Increased villus length in
the Ptpn2-KO mice was accompanied by increased numbers of
proliferating cells detected by Ki-67 immunofluorescence
(Figure 1E and F). Next, to investigate whether constitutive
Ptpn2 deletion also affects IEC subtypes and their function, we
isolated ileal IECs from Ptpn2-WT, -HET, and -KO mice. Purity
of IEC samples was assessed by abundance of epithelial cell
adhesion molecule (EpCAM), mesenchymal a-smooth muscle
actin (aSMA), and immune cell (CD45) protein markers, con-
firming that samples are IEC-enriched (Figure 2A). Loss of the
Ptpn2 gene product, TCPTP, and increased phosphorylation of
downstream substrates, STAT1 and STAT3, was confirmed by
Western blot of enriched ileal IECs and immunohistochemistry
(Figure 2B and C). Partial transcriptomic analysis was per-
formed using Nanostring profiling technology (nCounter®
SPRINT Profiler, NanoString Technologies, Seattle, WA).
Results of 2 separate panels with a predefined set of targets,
AutoImmune Profiling and PanCancer Pathways, were com-
bined, with the addition of 60 customized targets comprising
IECmarkers, function and differentiation factors, host–bacteria
interaction, autophagy, immune response, and iron transport,
totaling more than 1500 targets (Supplementary Table 1).
Principal component analysis showed unique gene expression
patterns in Ptpn2-KO IECs that clustered separately from IECs
of WT or HET mice (Figure 3A, red ellipse), indicating that
genotype corresponds to 76% of the gene expression variance.
Furthermore, the same analysis showed that at least one set of
littermates clustered together when data points were
compared by this parameter, indicating that co-housing con-
tributes to gene expression variance (Figure 3A, green ellipse).
When adjusted for the littermate effect, 97 genes were dysre-
gulated markedly (false discovery rate, <0.1) of 1398 targets
with detectable levels (Supplementary Table 1). A heatmap of
pathway scores summarizes the overall effect of constitutive
Ptpn2 deletion on cellular pathways in each sample
(Figure 3B). Figure 3C lists all detected genes associated with
Paneth cell function and differentiation factors. Notably, the
Paneth cell–associated AMP genes Defa6, Lyz1, and Pla2g2a,
were down-regulated (blue) in KO IECs relative to WT, sug-
gesting that the function of Paneth cells could be impaired by
constitutive Ptpn2 deficiency.
Whole-Body Ptpn2 Deletion Depletes Paneth
Cells and AMP Production

Given the established importance of Paneth cells in
shaping host–microbial interactions in the gut,we investigated
whether whole-body Ptpn2 deficiency compromises Paneth
cell function in mice.25,33 Counting Paneth cells on H&E sec-
tions (Figure 1A), discriminated from other IECs by the pres-
ence of characteristic large cytosolic granules, showed that
their number was decreased in Ptpn2-KO mice (Figure 4A). In
parallel, immunohistochemistry staining showed a marked
reduction of Paneth cell–associated lysozyme in the ileal mu-
cosa of Ptpn2-KO mice (Figure 4B and C), a finding that was
confirmed by Western blot analysis of isolated ileal IECs
(Figure 4D and E). Moreover, immunofluorescence for another
Paneth cell–specific AMP, defensin alpha 1 (Defa1; cryptdin-1
in mice), showed a dramatic reduction of Defa1-positive Pan-
eth cells in Ptpn2-KO mice in comparison with WT and HET
mice (Figure 4F and G). To further confirm that Ptpn2-KOmice
lack Paneth cells, we assessed the presence/absence of dense
core vesicles, a cytoplasmic structure present in Paneth cells
responsible for packing and storing AMPs, by transmission
electron microscopy (TEM). Figure 5A confirmed that Ptpn2-
KO mice have fewer Paneth cells at the crypt base (delineated
by blue dashed lines), with fewer dense core vesicles (yellow
arrows). Satoh et al34 reported that large cytoplasmic vacuoles
were formedwhen dense core vesicles released their contents
into the luminal space after Paneth cell stimulation. However,
we did not observe cytoplasmic vacuole formation in any of
the constitutive Ptpn2 mouse genotypes (WT, HET, KO)
(Figure 5A). We also observed some dense core vesicles with a
surrounding low-density halo, indicated by red arrows, a
feature that has been suggested to be associated with
increased expression of the mucin-2 (Muc2) protein in Paneth
cells (Figure 5A).35,36 Muc2 staining showed a halo shape
distribution of this mucin protein in cells found at the crypt
bottom of WT mice (Figure 5B). However, although the total
number of Muc2þ cells was reduced in Ptpn2-KO mice, the
number of cells with a Muc2þ diffuse distribution in the
cytosol was unchanged between genotypes (Figure 5C). Next,
Western blot analysis indicated that muscle, intestine and
stomach expression 1 (Mist1), a protein shown to be impor-
tant in the secretory apparatus and maturation of exocrine
cells, including Paneth cells,37–39 was increased in KO mice
(Figure 5D and E). Although it is unclear why Mist1 was
induced in Ptpn2-KO mice, it could suggest an attempt to
rescue the normal secretory function of Paneth cells in these
mice. Supporting this idea, expression of transcription factor 4
(Tcf4) and Tcf7l2, regulators ofa-defensin expression,40,41 and
Mmp7, a Paneth cell–specific matrix metalloproteinase-7
(MMP7) responsible for cleavage and activation of pro–a-
defensins in mice,42 remained unchanged in the Nanostring
analysis (Figure 3C and Supplementary Table 1), indicating
that some of the Paneth cell molecular markers were retained
despite the loss of many phenotypic features of this IEC
subtype. Collectively, these data suggest that constitutive
Ptpn2 loss results in a dramatic reduction of mature Paneth
cells and depletion of Paneth cell–specific AMPs in Ptpn2-KO
mice.
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Figure 1. Intestinal morphometry and proliferation analysis in whole-body constitutive Ptpn2-KO mice. (A) H&E staining of
ileal epithelium of Ptpn2-WT, HET, and KOmice. (B) Morphometric analysis of ileal structures show that villi are longer in KOmice
in comparison with WT and HET counterparts. Ileal (C) crypt depth and (D) crypt width were similar between groups. Each data
point represents the average of a single mouse. Columns show means ± SD. One-way analysis of variance and Tukey post hoc
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IEC marker E-cadherin (green). (F) Quantification of Ki-67þ cells indicates that the number of proliferating IECs is increased in KO
mice. WT ¼ 4, HET ¼ 3, KO ¼ 3. Columns show means ± SD. One-way analysis of variance and Tukey post hoc test.
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Ptpn2-KO Mice Show Contrasting Activation of
Apoptosis Between Immune Cells and Epithelium

Given the dramatic defects in Paneth cell phenotype in
mice that lack whole-body Ptpn2 activity, we sought to
investigate whether the absence of Paneth cells in Ptpn2-KO
mice was owing to apoptotic cell death. Western blot anal-
ysis of IECs showed that levels of both total and activated
(cleaved) isoforms of the pro-apoptotic marker caspase-3
were increased in KO mice compared with WT and HET
(Figure 6A and B). Moreover, cleaved poly-(adenosine
diphosphate-ribose) polymerase (PARP), a critical protein
during DNA repair, was increased in IECs from KO mice,
further suggesting activation of apoptosis (Figure 6A and C).
However, there was no difference in the number of terminal
deoxynucleotidyl transferase–mediated deoxyuridine
triphosphate nick-end labeling (TUNEL)þ cells, a measure of
DNA fragmentation in the late stage of cell apoptosis, in IECs
between mouse genotypes (Figure 6D and F). In addition,
staining for cleaved caspase 3 showed no indication of
increased presence of this apoptosis marker in cells at the
ileal crypt base of Ptpn2-deficient mice (Figure 6E). Because
the few TUNELþ cells did not appear to be IECs, we char-
acterized immune cell viability in ileal tissues of these mice.
Flow cytometric analysis identified increased proportions of
dead CD3þ immune cells and this was associated with an
increased number of dead CD4þ and CD8þ T lymphocytes
(Figure 6G and I). Collectively, these data identify a quan-
tifiable increase in lymphocyte death in Ptpn2-KO mouse
ileum with no indication of caspase-dependent apoptosis
occurring in epithelial cells.
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Constitutive Ptpn2 Deficiency Increases
Abundance of Ileal Immune Cells and Production
of Paneth Cell Stimulatory Cytokines

Because whole-body Ptpn2-KO mice failed to express
several Paneth cell–associated AMPs, and were unable to form
cytosolic granules, we investigated whether the ileal mucosa
lacks stimulatory factors required for Paneth cell maturation,
expression, and secretion of AMPs by evaluating immune cell
infiltration and expression of immune cell–derived cytokines.
Flow cytometry analysis showed increased abundance of
neutrophils,macrophages, and tumor necrosis factor (TNF)-a/
interferon (IFN)-g expressing cytotoxic (CD8þ) and T-helper
(CD4þ) cells in the ileal mucosa of Ptpn2-KO mice in com-
parison with WT and HET mice (Figure 7A–D). Moreover, the
abundance of CD4þ T cells positive for IFN-g and interleukin
(IL)22 also was increased (Figure 7C–E). These data indicate
that the ileal mucosa contains abundant immune cells that
express stimulatory cytokines that can promote Paneth cell
function and stimulate secretion of AMPs. Furthermore, gene
expression of cytokine receptors, Il22ra1, Il10rb, and Ifngr1, in
IECswas unchanged (Supplementary Table 1), suggesting that
IECs were not functionally uncoupled from cytokine stimula-
tion, at least at the gene expression level. Conversely, abun-
dance of CD4þ T cells primed to express IL17 was reduced
dramatically in Ptpn2-KO mice in comparison with WT and
HET (Figure 7F), whereas no change was detected in the
abundance of ileal dendritic cells, a specialized antigen-
presenting cell that orchestrates innate and adaptive
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scores. Scores are displayed in the same scale by Z-transformation. Each column represents an individual sample. (C) KO
vs WT differential expression of ileal Paneth cell markers, differentiation factors, and function. WT ¼ 3, HET ¼ 4, KO ¼ 5.
*P value < .05 and false discovery rate (FDR) <0.1.
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immune responses43 (Figure 7G). Because proinflammatory
cytokines should exert a global response on the ileal mucosa
rather than targeting an individual IEC subtype, we analyzed
the expression of 2 AMPs that are not Paneth cell–specific,
Reg3b and Reg3g, by reverse-transcription quantitative poly-
merase chain reaction (RT-qPCR). Expression of Reg3b was
unchanged, whereas the expression of Reg3g was induced in
both Ptpn2-HET and KOmice compared with WT (Figure 7H).
Western blots of ileal IECs confirmed that the regenerating
islet-derived protein 3-gamma (REG3-g) protein level was
increased in Ptpn2-KO mice compared with WT and HET
mice (Figure 7I and J), suggesting that the deficit in the
expression of Paneth cell–specific AMPs is a selective effect on
these cells.
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40,6-diamidino-2-phenylindole (DAPI) (blue) a marker of cell nuclei.White arrows indicate Paneth cells positive for Defa1 staining.
(G) Counting and ratio of Defa1- (cryptdin-1) positive cells over the total number of IECs per crypt. WT ¼ 3, HET ¼ 3, KO ¼ 5
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Constitutive Ptpn2 Deletion Disrupts
Endoplasmic Reticulum Architecture and
Increases Levels of Endoplasmic Reticulum
Stress Without Affecting Abundance of
Autophagy Proteins

Paneth cell secretion of lysozyme is orchestrated via the
secretory autophagy pathway during bacterial infection of
the intestine, and when autophagy was disrupted in Atg16l1-
deficient mice, lysozyme secretion was hindered.44 There-
fore, we tested whether the lysozyme deficit observed in
constitutive Ptpn2-deficient mice was associated with
impaired autophagy activation and/or autophagosome for-
mation. Levels of the autophagy-related proteins Beclin-1,
autophagy-related protein 3 (ATG3), ATG5, ATG7, and
ATG12, and the product of another IBD-associated gene,
ATG16L1, were unchanged in whole-body Ptpn2-KO mice
(Figure 8). Surprisingly, we observed increased levels of
autophagosome formation as evidenced by an increased ratio
of microtubule-associated protein 1A/1B light chain 3B
(LC3B) isoforms, the lipidated LC3B-II over LC3B-I, in Ptpn2-
KO mice (Figure 8B). Although unexpected, our data suggest
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that the impairment in lysozyme production is independent
of autophagy. To identify if the endoplasmic reticulum (ER)-
driven protein secretory pathway was disrupted,45,46 we
investigated whether Paneth cells in whole-body Ptpn2-
deficient mice were undergoing ER stress. TEM images
showed that the ER architecture in Paneth cells was dis-
rupted dramatically in Ptpn2-KO mice, with ribosomes
floating in the cytosol having dissociated from ER cisternae
(Figure 9A), which is a typical feature of cells undergoing ER
stress. Protein levels of the ER stress–associated pathways,
binding-immunoglobulin protein (Bip), an endoplasmic re-
ticulum-associated chaperone, and the unfolded protein
response marker, X-box-binding protein 1 (Xbp-1s), were
variable in Ptpn2-KO and HET mice, whereas no change in
phosphorylated eukaryotic translation initiation factor
2A (eIF2-a) was observed (Figure 9B–E). Conversely, levels
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Figure 6. Measurement of epithelial apoptosis markers and immune cell viability in ileum from Ptpn2-KO mice.
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of C/EBP-homologous protein (CHOP), a downstream ER
stress marker and inducer of apoptosis, were increased in
IECs from constitutive Ptpn2-KOmice in comparison withWT
and HETmice (Figure 9B and F). In summary, Ptpn2 loss in vivo
provoked increased ER stress with compromised ER
architecture in Paneth cells. Moreover, the increased levels of
CHOP protein in IECs suggest suppression of the unfolded
protein response by increasing protein synthesis, which could
lead to cell death through oxidative stress and adenosine
triphosphate depletion.47,48
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IEC-Specific PTPN2 Deletion Impairs Lysozyme
Protein Levels Without Affecting Abundance of
Paneth Cells

To determine whether the impact of whole-body Ptpn2
loss on Paneth cells is a direct consequence of Ptpn2 loss in
epithelial cells, or is mediated indirectly through effects of
Ptpn2 loss in other cells, we investigated Paneth cell phe-
notypes in a tamoxifen-inducible Villin-Cre transgenic Ptpn2
deletion mouse line (Ptpn2DIEC). This mouse model does not
display the pronounced systemic inflammation shown by
whole-body Ptpn2-KO mice.32 Intestinal tissues from
Ptpn2fl/fl and Ptpn2DIEC were harvested >30 days after
recombinase induction by tamoxifen administration to
minimize any potential residual effects from estrogen-
receptor activation.32 H&E staining of ileal sections
showed that Paneth cells were present at the crypt base,
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displaying abundant cytosolic granules in both Ptpn2DIEC

mice and Ptpn2fl/fl controls (Figure 10A). The overall num-
ber of Paneth cells was not reduced by IEC-specific Ptpn2
deletion (Figure 10B). Morphometric analysis of intestinal
parameters, such as crypt depth and villus length, were
similar between both groups (Figure 10C and D). However,
when ileal sections were stained for lysozyme and Ulex
europaeus agglutinin-1, a marker of lectins and normally
used to stain Paneth cell granules, both markers were
reduced dramatically at the crypt base in Ptpn2DIEC mice
compared with controls (Figure 10A). Of note, TEM images
of the crypt bottom showed normal Paneth cell architecture
and morphology of the intracellular dense core vesicles in
both groups (Figure 10E), while Muc2 staining showed no
alteration of this mucin protein between groups
(Figure 10F).

Next, by Western blot of IECs we detected that levels of
lysozyme protein in Ptpn2DIEC mice were reduced
(Figure 11A and B), whereas Mist1 protein levels were
unchanged between groups (Figure 11A and C). We
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observed a substantial difference in the abundance of Xbp-
1s protein between males and females (higher) in
Ptpn2DIEC and Ptpn2fl/fl mice (Figure 11A). When normal-
ized by sex, levels of Xbp-1s were significantly higher in
Ptpn2DIEC compared with Ptpn2fl/fl mice (Figure 11E), indi-
cating activation of the unfolded protein response in IECs of
Ptpn2DIEC mice. Conversely, protein levels of the Paneth cell
marker matrix metalloproteinase-7, and the abundance of
ER stress proteins Bip, C/EBP-homologous protein CHOP,
eukaryotic translation initiation factor 2A and p-eIF2a, and
the autophagy activation marker LC3B-II/LC3B-I ratio, were
unchanged between groups (Figure 11D–J). Together, these
data show that epithelial Ptpn2 is critical for Paneth cell
function with respect to lysozyme protein levels, however,
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Figure 11. Analysis of ER stress and autophagy markers in intestinal epithelial-specific Ptpn2 mouse IECs. (A) Western
blot of IECs from Ptpn2fl/fl and Ptpn2DIEC mice probed for lysozyme-1, Mist1, and unfolded protein response marker Xbp-1s.
(B) Densitometry of lysozyme protein levels in IECs comparing Ptpn2fl/fl and Ptpn2DIEC. (C) Densitometry of Mist1 protein
levels in IECs comparing Ptpn2fl/fl and Ptpn2DIEC. (D) Western blot and densitometry of IECs from Ptpn2fl/fl and Ptpn2DIEC mice
probing for (E) Xbp-1s; (F) Mmp7, a Paneth cell marker; (G) downstream ER stress inducer C/EBP-homologous protein; (H)
relative ratio of eukaryotic translation initiation factor 2A isoforms p-eIF2a and total eIF2a; (I) ER stress marker Bip protein; and
(J) relative ratio of autophagy activation marker LC3B-II/LC3B-I. Columns show means ± SD. Two-tailed unpaired t test.
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loss of epithelial Ptpn2 is not sufficient to cause Paneth cell
depletion.
Constitutive Ptpn2 Deletion Does Not Affect
Expression of Small Intestinal Epithelial Stem Cell
Markers

Paneth cells play a critical role in supporting the small
intestinal stem cell niche.49 Hence, we wanted to determine
whether the abundance of intestinal stem cells was also
compromised in whole-body Ptpn2-KO mice. Immunohisto-
chemistry staining for the stem cell marker Olfactomedin-4
(Olfm4) showed abundant numbers of stem cells confined at
the crypt base in all groups (Figure 12A), while Western blot
analysis of Olfm4 in isolated IECs did not reveal alterations
in the protein levels of this intestinal stem cell marker
(Figure 12B and C). Expression of Ascl2, a gene that controls
stem cell renewal in the crypts, was unchanged
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Figure 12. Effect of Ptpn2 loss on mouse intestinal stem cell markers and enteroid growth. (A) Staining of intestinal stem
cell marker Olfm4 in ileal tissue of whole-body Ptpn2-deficient mice (n ¼ 3). (B) Western blot of ileal IECs probing for Olfm4. Per
the antibody manufacturer, Olfm4 in the small intestine typically displays 2 bands that belong to Olfm4 protein, with molecular
weight ranging from 85 to 90 and 70 kilodaltons. (C) Densitometry of both bands from Olfm4 protein level in ileal IECs.
Columns show means ± SD. WT ¼ 8, HET ¼ 8, KO ¼ 8. One-way analysis of variance and Tukey post hoc test. (D) RT-qPCR
analysis of the Ascl2 gene, which is responsible for intestinal stem cell renewal in the crypts. WT ¼ 9, HET ¼ 11, KO ¼ 10.
Columns show geometric means ± geometric SD. One-way analysis of variance and Tukey post hoc test. (E) Enteroid cultures
derived from small intestinal crypts of Ptpn2-WT and Ptpn2-KO mice showing enteroid size at days 1 and 4 after tissue
harvest: WT ¼ 2; KO ¼ 4. (F) Counting of total number of viable enteroids on day 4. (G) Enteroid diameter on day 4. (H) Total
number of budding enteroids on day 4 normalized by the number of total enteroids. Columns show means ± SD. Two-tailed
unpaired t test. (I) Ptpn2 deletion was confirmed by TCPTP staining (green), 40,6-diamidino-2-phenylindole (DAPI) (blue), and E-
cadherin (red). (J) Bright-field microscopy of Ptpn2fl/fl and Ptpn2DIEC-derived enteroids induced with tamoxifen for 48 hours. (K)
Number of budding enteroids before and 48 hours after tamoxifen induction. (L) Number of spheroids before and 48 hours after
tamoxifen induction. TMX, tamoxifen.
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(Figure 12D). In addition, gene expression of Lgr5, a marker
of intestinal stem cells, Ephb3, a marker of the intestinal
stem cell compartment, and Bmi1, a marker of quiescent
stem cells, was unaltered (Supplementary Table 1). This
indicates that the expression of the stem cell compartment
markers was not affected, even though the increased num-
ber of proliferative cells suggest higher activity of stem cells,
while markers of quiescent intestinal stem cells also
remained unchanged. We next investigated effects of Ptpn2
loss on IEC differentiation markers. Expression of fibroblast
growth factor receptor 3, Fgfr3, which is involved in the
commitment of secretory vs absorptive lineages and is
critical for Paneth cell development, was down-regulated in
whole-body Ptpn2-KO mice (Figure 3C).50,51 Conversely,
Sfrp1, which encodes secreted frizzled related protein 1, and
Ccnd1, which encodes cyclin-D1, genes with direct roles in
cell cycle and differentiation of the intestinal epithelium,
were up-regulated markedly in whole-body Ptpn2-KO mice
(Figure 3C). To test whether depletion of Paneth cells
negatively impacts intestinal stem cell function, we cultured
enteroids derived from the small intestine of Ptpn2-WT and
KO mice. Although the number of viable enteroids from
Ptpn2-KO mice was reduced dramatically, we did not
observe differences in the diameter or number of budding
enteroids, suggesting that Paneth cell depletion associated
with whole-body Ptpn2 loss negatively impacts the yield of
viable enteroids, but not the subsequent development of
successfully formed enteroids (Figure 12E–H). Of note,
ex vivo deletion of Ptpn2 by tamoxifen treatment of enter-
oids from inducible tissue-specific Ptpn2DIEC mice showed
no reduction in enteroid viability or budding (Figure 12I
and J). This suggests that epithelial Ptpn2 loss does not
compromise IEC stem cell function. Altogether, our data
suggest an imbalance in the expression of differentiation
factors associated with the Paneth cell lineage, whereas
expression of intestinal stem cell markers does not seem to
be affected.

Discussion
PTPN2 modulates the intestinal microbiome and re-

stricts the expansion of a mouse-specific adherent-invasive
E coli (AIEC), which has >90% genetic similarity to the
human IBD-associated AIEC, LF82.18,52 PTPN2 also is criti-
cally involved in the maintenance of intestinal barrier
function through epithelial–macrophage crosstalk.15,17 Here,
we identified a possible mechanism to explain how loss of
PTPN2 contributes to bacterial dysbiosis. We report that
ileal IECs showed dramatic down-regulation of critical genes
associated with Paneth cell function, whereas analysis of
morphologic features and molecular markers confirmed that
these cells were nearly ablated in the ileum of constitutive
Ptpn2-KO mice. Given the essential role of Paneth cells in the
first line of enteric defense by modulating the gut micro-
biome through a large spectrum of AMPs secreted into the
luminal space, the loss of AMP production by Paneth cells is
likely a critical factor in the observed changes in microbiota
composition.

Paneth cells respond to intestinal microbes by dis-
charging AMP-filled granules into the luminal space.53
Human Paneth cells abundantly express 2 a-defensin
genes, DEFA5 and DEFA6, as well as lysozyme, secretory
phospholipase A2, and regenerating islet-derived protein 3-
a (REG3A).54 DEFA5 has antibiotic activity against Gramþ

and Gram- bacteria, including Staphylococcus aureus and
Salmonella typhimurium, as shown in transgenic mice
expressing human DEFA5.55,56 DEFA6 lacks direct antimi-
crobial activity, forming nanonets that trap bacteria
instead.57 Murine Paneth cells, on the other hand, express at
least 19 different a-defensin isoforms.58,59 The expression
of these a-defensins in mice does not seem to be dependent
on bacterial stimuli, but rather is regulated by transcription
factors linked to IEC differentiation, including Tcf4 and
Tcf7l2, which are under control of the Wnt/b-catenin
pathway.41 In our study, we observed that these critical
transcription factors in the development of Paneth cells
were not affected in constitutive Ptpn2-KO mice, suggesting
that the deficit in the expression of AMPs could be con-
nected inherently to loss of Paneth cells in the ileal mucosa.
Moreover, Paneth cells are the primary source of intestinal
C-type lysozyme, encoded by the Lyz1 gene, which hydro-
lyzes the bacterial wall component peptidoglycan, common
to both Gramþ and Gram- bacteria, resulting in the release of
muramyl dipeptide (MDP), an important agonist of nucleo-
tide-binding oligomerization domain-containing protein 1
(Nod1) and Nod2.60 Unlike a-defensins, lysozyme levels are
regulated by commensal bacteria stimulation of Nod2, as
shown by germ-free and Nod2-KO mice, in which lysozyme
is rerouted from secretion to protein degradation.30

Although Lyz1-/- mice displayed expansion of the muco-
lytic bacteria Ruminococcus gnavus, a CD-associated patho-
biont, they had diminished mucosal sensing and responses
to MDP, accompanied by a reduced basal inflammatory
response, suggesting the importance of lysozyme activity in
tuning of the immune system.61 Consequently, the impact
caused by a lack of mature Paneth cells could go beyond the
impairment in the production of AMP, also affecting
lysozyme-mediated priming of the enteric immune response
to bacterial products.

Although Paneth cell–specific AMPs (Lyz, Defa6, and
Pla2g2a) were reduced, expression of AMP produced by
other IECs were either induced (Reg3g) or unchanged
(Reg3b), suggesting that the deficit in the expression of
AMPs is Paneth cell–specific. With respect to the different
effects on Reg3g and Reg3b expression, this could be owing
to a lack of IL17 stimulation, which is required for Reg3b
induction. Paneth cell stimulation by IL22 is essential for its
maturation and regulation of microbiota-dependent Il17
immune responses. IL17 and IL22 tend to act synergistically
in Paneth cells, albeit by distinct cellular mechanisms.62,63

Despite abundant IL22-expressing CD4þ cells in the ileal
mucosa, this was not sufficient to promote Paneth cell
maturation or expression of Paneth cell–specific AMPs.

Studies with IBD patient and transgenic mice have
shown that genetic variants, or deletion of IBD-associated
genes, such as ATG16L1, NOD2, and LRRK2, are detri-
mental to Paneth cell morphology and function, leading to
dysbiosis.28–31 In addition, deletion of the transcription
factor X-box binding protein-1 (Xbp1) in IECs, a marker of
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unfolded protein response, leads to Paneth cell impairment
and spontaneous enteritis.64 However, mice with constitu-
tive homozygotic Ptpn2 deficiency develop severe systemic
inflammation, dying between 3 and 5 weeks of age.65 Our
group recently showed that constitutive Ptpn2-KO mice
have increased proinflammatory cytokines (IFN-g, TNF-a,
IL6) in the serum and in large intestinal mucosa.32 Here, we
showed that immune cells primed to secrete stimulatory
cytokines (IFN-g, TNF-a, and IL22) were abundant in the
ileal mucosa of Ptpn2-KO mice, indicating that Paneth cells
seem to be extremely sensitive to inflammatory conditions.
For example, IFN-g induces potent extrusion of secretory
granules and Paneth cell nucleus expulsion, leading to
apoptosis, if stimulation by IFN-g is sustained.66,67 We also
identified that Ptpn2 deletion in IECs alone is sufficient to
impair lysozyme production without affecting overall Pan-
eth cell number, in addition to promoting activation of the
unfolded protein response. Thus, the ablation of Paneth cells
in constitutive Ptpn2-KO mice may reflect the increased
inflammatory status, and likely a contribution of non-
epithelial cells (ie, immune cells) in these mice that is not
seen in Ptpn2DIEC mice.

In our study, gene expression of Tcf4 and Tcf7l2, tran-
scription factors that control expression of a-defensins, and
Mmp7, another Paneth cell–associated gene critical in
cleaving and activating AMPs, was unaltered in ileal IECs.
This could indicate an impairment in Paneth cell maturation.
Moreover, levels of Mist1 protein were increased in Ptpn2-
KO mice compared with WT and HET counterparts. Mist1
belongs to a basic helix-loop-helix family of transcription
factors that bind DNA in several developmentally regulated
genes,68 playing a critical role in the regulation of differ-
entiation and maturation of the secretory machinery of
exocrine cells.69 Studies using Mist1-KO mice showed that
Paneth cells develop an immature phenotype with abnormal
dense core vesicles and secretory apparatus without
affecting the expression of lysozyme.37 Because Mist1 seems
to be critical in maturation of Paneth cells and in the or-
ganization of their secretory granules, this might suggest
that the increased levels of Mist1 could be an attempt to
rescue the normal secretory function of Paneth cells in
whole-body Ptpn2-deficient mice.

Loss-of-function PTPN2 variants impair autophagosome
formation in human colonic carcinoma T84 epithelial cells
and the human monocytic cell line THP-1 in response to the
bacterial wall component MDP, or the inflammatory cyto-
kines IFN-g and TNF in vitro.70,71 However, we did not
observe changes in the levels of autophagy proteins, or in
autophagosome formation in isolated IECs from Ptpn2-KO
mice, indicating that the lysozyme deficit in Paneth cells is
not caused by autophagy impairment. We have shown that
AIECs replicate and survive in macrophages lacking Ptpn2
activity, however, autophagosome formation was rescued
after stimulation with rapamycin, showing that the defective
autophagy present in Ptpn2-deficient macrophages in vivo
can be bypassed by stimulatory factors.72 One possible
explanation for the different effects on autophagy in whole-
body vs macrophage-specific loss of Ptpn2 is that the increased
ER stress could be the stimulus to activate autophagy in
whole-body Ptpn2-KO mice because there is extensive cross-
talk between these 2 cellular processes.73 Constitutive Ptpn2-
deletion resulted in disruption of the ER architecture in Paneth
cells, indicating ER stress that could compromise correct
protein processing and folding. Of note, we did not observe
increased phosphorylation of eIF2-a, which normally is
increased during ER stress. IFN-g induces potent phosphory-
lation of eIF2-a at serine 51 in exocrine cells.74 However, in
agreement with our findings, PTPN2 knockdown in HT-29
IECs showed no change in eIF2-a phosphorylation after
tunicamycin-induced ER stress.75 Moreover, we observed a
dramatic increase in the levels of CHOP, which plays an
essential role in inducing cell-cycle arrest and apoptosis during
ER stress.48,76 CHOP promotes cell death by growth arrrest
and DNA damage-induceble protein 34 (GADD34)-mediated
dephosphorylation of eIF2-a,48 thus stimulating protein syn-
thesis under ER stress, increasing oxidative stress, and aden-
osine triphosphate depletion, which collectively culminates in
apoptosis.47 In addition, Bettaieb et al77 reported that Ptpn2
knockdown in MIN6 cells mitigated ER stress–induced phos-
phorylation of eIF2-a. Consequently, it is possible that Ptpn2
deficiency could promote cell death by sustaining ER stress
instead of inhibiting it. This provides an interesting mecha-
nistic hypothesis that will require further investigation to
address whether Ptpn2-deficient Paneth cells undergo ER
stress–mediated cell death.

TUNEL staining did not detect substantial differences in
the number of apoptotic cells between genotypes. Although
unexpected, our data align with previous findings showing
that Ptpn2-KO mice displayed no increase in intestinal
permeability to rhodamine B isothiocyanate-70 kilodaltons
of dextran (RD70), a molecular probe for the unrestricted
permeability route associated with epithelial loss or dam-
age.17,32 Despite the lack of functional evidence of epithelial
loss as reported previously, or immunostaining for TUNEL
(Figure 6D and F) or cleaved caspase 3 (Figure 6E), we did
observe an apparent increase in cleavage of caspase-3 and
PARP by Western blot (Figure 6A–C). Given the more robust
confirmation of immune cell death as detected by flow
cytometry (Figure 6G–I), we suspect that the increased
caspase 3 and PARP cleavage in Western blot samples is
owing to immune cell contamination of IEC isolates, which is
indicated by the presence of the CD45 immune cell marker
(Figure 6A). Collectively, our data indicate a more rapid
turnover of ileal IECs without causing nonspecific defects in
epithelial barrier permeability.

IEC lineage tracing studies, and mouse models of dextran
sulfate sodium colitis, have identified that Paneth cells
possess some level of cell plasticity, and can reacquire in-
testinal stem cell characteristics to repopulate the intestinal
stem cell compartment depleted of leucine-rich repeat-
containing G-protein coupled receptor 5 (Lgr5)þ stem
cells.78,79 Thus, we hypothesized that depletion of Paneth
cells could be owing to their ability to dedifferentiate and
repopulate the stem cell zone, shifting to a stem-like cell
state. Consistent with our Nanostring data set showing that
gene expression of intestinal stem cell markers, Lgr5 and
Olfm4, were not altered significantly, protein levels of Olfm4
were unchanged while its localization was restricted to the
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bottom of the crypt. In addition, gene expression of the stem
cell compartment marker (Ephb3) and of intestinal stem cell
renewal activity (Ascl2), were not altered significantly.
Moreover, gene expression of a quiescent intestinal stem
cell marker, Bmi1, was unchanged, suggesting that quiescent
cells remained dormant.80 Therefore, it seems unlikely that
depletion of Paneth cells in Ptpn2-deficient mice is the result
of a phenotypic shift to rescue/repopulate the stem cell
zone.

In conclusion, the present study shows that Ptpn2 is a
regulator of ileal intestinal epithelial cell homeostasis and a
critical mediator of Paneth cell viability and antimicrobial
protein expression in mice. Collectively, our data suggest
that the ileal mucosa of Ptpn2-deficient mice undergoes
rapid turnover, likely affecting the maturation of Paneth
cells. Conversely, the remnant Paneth cells undergo ER
stress that potentially could lead to cell death. Thus, our
study identifies that loss of Ptpn2 activity causes Paneth cell
dysfunction, which may explain the intestinal dysbiosis and
pathobiont expansion observed in Ptpn2-deficient mice and
IBD patients carrying PTPN2 loss-of-function variants.

Materials and Methods
Animals

All animal experiments were performed according to,
and approved by, the Institutional Animal Care and Use
Committee at the University of California, Riverside, under
protocol A20190032E. Mice colonies were held in a
specific–pathogen free facility with free access to food and
water.

BALB/c mice with constitutive Ptpn2 deficiency were
provided by Michel Tremblay (McGill University). Tissues
were harvested when mice reached 21 days old because
whole-body homozygotic Ptpn2-deficient mice die between
4 and 5 weeks of age as a result of systemic inflammation.65

Inducible tissue-specific Ptpn2-KO mice were generated
as previously described.32,81 Briefly, a mouse line in
which critical Ptpn2 exons were flanked by LoxP sites
(Ptpn2tm1a[EUCOMM]Wtsi), with a transgenic mouse line
expressing the Cre recombinase enzyme under the villin-1
promoter (Tg[Vil-cre/ERT2]23Syr). Recombinase activity
was induced by tamoxifen administration intraperitoneally
(50 mg/kg body weight) for 5 consecutive days.

Imaging
Distal ileal segments were excised and fixed in 4%

paraformaldehyde overnight at 4ºC. Tissues then were
rinsed with phosphate-buffered saline (PBS) and dehy-
drated with increasing concentrations of ethanol washes
using Shandon Excelsior ES Tissue Processor (Thermo
Fisher Scientific, Kalamazoo, MI). Paraffin embedding was
performed using Histoplast LP (Richard-Allan Scientific,
Kalamazoo, MI) in a Tissue-Tek station set (Miles Scientific,
Naperville, IL). Paraffin blocks were sectioned in a rotary
microtome (RM2235; Leica, Nussloch, Germany) 5-mm wide
and placed on a charged slide (Fisher Scientific, Pittsburg,
PA). Slides were deparaffinized, rehydrated, and stained
with H&E. Similarly, goblet cells were visualized using the
periodic acid–Schiff kit (procedure no. 395; Sigma) per the
manufacturer’s guidelines. Slides were visualized and im-
ages were acquired with a Leica microscope (model
DM5500B) coupled with a DFC450C camera (Leica).

Heat-induced antigen retrieval was performed for 20
minutes at approximately 96ºC, with appropriate buffer
depending on the primary antibody/epitope. In short,
endogenous peroxide was quenched with 3% hydrogen
peroxide in PBS for 10 minutes. Nonspecific antigens were
blocked with blocking buffer (2% normal donkey serum, 1%
bovine serum albumin, 0.1% Triton-X (Thermo Fisher Sci-
entific Cat No. BP151), 0.05% Tween-20 (Thermo Fisher
Scientific Cat No. BP337), and 0.05% sodium azide
(Research Products Internation Cat No. S24080-250) in
PBS) for 30 minutes at room temperature. Primary anti-
bodies were incubated for 1 hour at room temperature in
PBS with 5% normal donkey serum. Detection was per-
formed using the biotin–streptavidin detection system. For
immunohistochemistry, horseradish peroxidase signal was
developed by 3,30-diaminobenzidine tetra hydrochloride
incubation according to the manufacturer’s protocol, and
incubation time was optimized for each protein target
(#8059; Cell Signaling Technology, Beverly, MA). Sections
were counterstained with hematoxylin. Slides were moun-
ted with Permount (Electron Microscopy Sciences Cat No.
17986-01) and visualized on a Leica microscope (model
DM5500B with a DFC450C camera). For immunofluores-
cence, Prolong Gold with 40,6-diamidino-2-phenylindole was
applied to the slides according to the manufacturer’s
guidelines (Invitrogen Cat. no. P36936). Antibody concen-
tration, manufacturer, and antigen retrieval method are
listed in Table 1. Confocal images were acquired on an
inverted Zeiss 880 microscope. Cryptdin-1 (Defa1) mono-
clonal antibody was generated and kindly provided by
Tokiyoshi Ayabe and assayed as previously described.66

Intestinal cross-sections were used for morphometric
measurements. Only well-oriented intestinal structures (ie,
crypt and villi) with bottom-to-top axis visibility were used
in the analysis. The straight-line tool from FIJI software was
calibrated using the scale bar from the image being
measured.82 A straight line was drawn to measure crypt
depth, villus length, and crypt width. All data points from
each parameter were averaged per mouse. A minimum of 4
measurements per parameter was set as a cut-off value to
provide a more accurate representation of the mouse. For
cell counting, the total number of IECs per crypt was
counted using the Cell Counter tool on FIJI software. Paneth
cells were counted at the crypt base as cells with cytosolic
granules and they were differentiated by the presence of
lysozyme staining. The ratio of Paneth cells/total IECs per
crypt then was calculated and averaged to represent a single
mouse.

Ileal sections were excised, cut open longitudinally, and
fixed in 1.25% glutaraldehyde and 4% paraformaldehyde in
0.1 mol/L cacodylate buffer for 5–6 hours at room tem-
perature. Samples then were processed at the Facility for
Advanced Microscopy & Microanalysis at the University of
California, Riverside using an established protocol.35 Sam-
ples embedded and plasticized in Spurr’s resin were
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sectioned into 80-nm, gold-colored sections, with a surface
area of approximately 0.25 mm2. Images were acquired
using a Tecnai T12 transmission electron microscope (FEI,
Hillsboro, OR). Imaging was performed on Paneth cells
localized at the bottom of the intestinal crypts focusing at
the dense core vesicles and the endoplasmic reticulum.
Linear adjustments (brightness and contrast) were per-
formed in original images in its entirety using FIJI software
to enhance the visibility of cell organelles.
Intestinal Epithelial Cell Isolation
Distal ileal segments were excised, cut open longitudi-

nally, and immersed in 500 mL Cell Recovery Solution
(#354253; Corning) for 2 hours on ice, and then shaken
with forceps to release the intestinal crypts/villi into the
solution. Samples were centrifuged at 1.5 � g for 10 mi-
nutes at 4ºC. The supernatant was aspirated and IECs were
washed with PBS (�2). The solution with IECs then was
split: 70% of the IEC suspension was centrifuged and cells
were lysed using RIPA buffer (150 mmol/L NaCl, 5 mmol/L
EDTA, 50 mmol/L Tris, 1% NP-40, 0.5% sodium-
deoxycholate, and 0.1% sodium dodecyl sulfate) supple-
mented with protease inhibitor cocktail (Roche, Man-
nheim, Germany), 2 mmol/L sodium fluoride, 1 mmol/L
phenylmethylsulfonyl fluoride, 2 mmol/L sodium ortho-
vanadate, and phosphatase inhibitor cocktails 2 and 3
(P5726 and P0044, respectively; Millipore Sigma, Israel)
and stored at -80ºC; the remaining 30% was centrifuged,
200 mL of RNAlater solution (#AM7020; Invitrogen,
Lithuania) was added to the pelleted cells according to the
manufacturer’s guidelines, and stored in -80ºC. The purity
of IEC samples was assessed by evaluating the abundance
of non-IEC markers a-smooth muscle actin and CD45
(Figure 2).
Western Blot
Frozen IEC samples in RIPA buffer were thawed on ice

and lysed using a sonicator (model Q125; QSONICA, New-
town, CT) with the following settings: 30% amplitude for a
total time of 40 seconds with 10-second intervals. Lysates
were centrifuged at 13,000 rpm for 10 minutes at 4ºC and
Table 1.Antibodies and Reagents for Immunohistochemistry an

Antibody Company Cat. n

Lysozyme Abcam ab108

Ki-67 Abcam ab166

UEA1-649 Vector Labs DL-10

Tunel Millipore S711

E-cadherin R&D Systems AF74

Phosphorylated STAT3 Cell Signaling Technology 914

Muc2 GeneTex GTX100

Cleaved caspase 3 Cell Signaling Technology 966

Olfm4 Cell Signaling Technology 3914

UEA-1, Ulex europaeus agglutinin-1.
the supernatant was transferred to new tubes. The total
amount of protein was estimated by a Pierce BCA assay (cat
no. 23225; Thermo Scientific, Rockford, IL). Equal amounts
of protein were loaded on polyacrylamide gels, and after
separation by gel electrophoresis was transferred onto
polyvinylidene difluoride membranes. Nonspecific epitopes
were blocked with 5% milk in Tris-buffered saline with
0.1% Tween-20 added for 1 hour at room temperature.
Membranes were incubated overnight with primary anti-
body at 4ºC, washed (�3) with Tris-buffered saline with
0.1% Tween-20, and incubated with horseradish-perox-
idase–conjugated secondary antibody antiprimary species
for 1 hour at room temperature. Antibody information is
listed in Table 2. Immunoreactive proteins were detected
with x-ray films (Labscientific, Inc, Highlands, NJ) using the
SuperSignal West Pico PLUS chemiluminescence detection
kit (cat. no. 34580; Thermo Fisher Scientific).

RNA Extraction, Complementary DNA Synthesis,
and RT-qPCR

Total RNA was isolated using the RNeasy Mini Kit (cat.
no. 74106; Qiagen, Venlo, The Netherlands), according to
the manufacturer’s instructions. The RNA concentration
was quantified by measuring the absorbance at 260 nm
and 280 nm using a NanoDrop 2000 spectrophotometer
(Thermo Scientific, Wilmington, DE). Complementary DNA
synthesis was performed using the qScript cDNA SuperMix
(cat. no. 95048; Quantabio, Beverly, MA) following the
manufacturer’s instructions. Real-time qPCR was per-
formed using iQ SYBR Green Supermix (Bio-Rad, Hercules,
CA) on a C1000 Thermal cycler (Bio-Rad) equipped with a
CFX96 Real-Time PCR system using Bio-Rad CFX Manager
3.1 software following the manufacturer’s protocol. Each
PCR target was assayed in triplicate. Tbp was used as a
reference gene. All primers were designed using NCBI
Primer-BLAST, and the specificity and optimal annealing
temperature were tested empirically. RT-qPCR contained
an initial enzyme activation step (3 minutes, 95�C) fol-
lowed by 45 cycles consisting of denaturing (95�C, 10
seconds), annealing (53�C–60�C, 10 seconds), and exten-
sion (72�C, 10 seconds) steps. The primers are listed in
Table 3. Results were analyzed by the DDCT method and
d Immunofluorescence

o. Antigen retrieval buffer Primary concentration

508 Na-citrate pH 6 1:3000

67 Na-citrate pH 6 1:400

68 Na-citrate pH 6 1:500

0 Proteinase K Data sheet manufacturer

8 Na-Citrate pH 6 1:200

5 Tris-EDTA pH 9 1:50

664 Na-Citrate pH 6 1:800

4 Na-Citrate pH 6 1:800

1 Na-Citrate pH 6 1:400



Table 2.Antibodies and Reagents for Western Blot

Antibody Company Cat. no.

Lysozyme Abcam ab108508

b-actin SIGMA A 5316

TCPTP Cell Signaling Technology 58935

Caspase 3 Cell Signaling Technology 14220

Cleaved caspase 3 Cell Signaling Technology 9664

C/EBP-homologous protein (CHOP) Cell Signaling Technology 2895

PARP Cell Signaling Technology 9542

Bip Cell Signaling Technology 3117

Xbp-1s Cell Signaling Technology 40435

a-Smooth muscle actin SIGMA A 2547

CD45 Cell Signaling Technology 72787

Epithelial cell adhesion molecule (EpCAM) Cell Signaling Technology 42515

Mist1 Santa Cruz sc-80984

Reg3-g Abcam ab198216

eIF2-a Cell Signaling Technology 5324

Phosphorylated eIF2-a Cell Signaling Technology 3398

Olfm4 Cell Signaling Technology 39141

STAT1 Cell Signaling Technology 14994

Phosphorylated STAT1 Cell Signaling Technology 9167

STAT3 Cell Signaling Technology 9139

Phosphorylated STAT3 Cell Signaling Technology 9145

Beclin-1 Cell Signaling Technology 3495

LC3B Cell Signaling Technology 2775

Atg3 Cell Signaling Technology 3415

Atg5 Cell Signaling Technology 12994

Atg7 Cell Signaling Technology 8558

Atg12 Cell Signaling Technology 4180

Atg16l1 Cell Signaling Technology 8089

Mmp7 Abcam ab232737
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graphs display geometric means ± SD of the geometric
mean in a log10 scale.
Nanostring Analysis
Total RNA was extracted as described earlier. Esti-

mation of total RNA was determined by a Qubit 2.0
Fluorometer (Thermo Fisher Scientific) and sample purity
was determined by a NanoDrop 2000 spectrophotometer
by measuring the 230/260 and 260/280 ratios. Samples
were diluted to 10 ng/mL with RNAse-free water. A hy-
bridization reaction was performed following the manu-
facturer’s guidelines using 50 ng total RNA from each
sample. In short, gene expression was explored by using
the PanCaner Pathways Panel and the AutoImmune
Profiling Panel, totaling more than 1500 targets. Samples
were hybridized with a reporter and capture probe for 18
hours at 65ºC. The reaction was ramped down to 4ºC, 12
mL RNAse-free water was added to each sample and
immediately pipetted into a cartridge and processed by
the nCounter SPRINT Profiler (NanoString Technologies).
Data sets were normalized by nSolver Analysis Software
4.0 (NanoString Technologies) for each panel separately,
and then combined using the advanced analysis tools. The
a-value was set at .05 and the false-discovery rate was
calculated by the Benjamini–Yekutieli method, setting a
cut-off value at 10% (Q ¼ 0.1) for multiple-comparisons
testing.
Flow Cytometry
For flow cytometry of immune cells, lamina propria

immune cells were isolated as described.83 For analysis of
myeloid immune cells, the cells were washed in PBS,
incubated with FcR blocking antibody (Miltenyi Biotec,
Bergisch Gladbach, Germany) for 10 minutes, and stained
with anti-CD45–Pacific Blue, anti-CD3–BV650, anti-
NK1.1–BV650, anti-B220–BV650, anti-CD11b–BV605,
anti-CD11c–PECy7, anti-Ly6C–PerCPCy5.5, anti-F4/
80–APC, anti-CD64–PE, and anti–MHC-II–AF700 (all from
BioLegend, San Diego, CA) for 15–30 minutes. ZOMBI-NIR
live dead stain (BioLegend) was used for discrimination
between live and dead cells. For cytokine staining, the
cells were incubated with ionomycin and PMA in the



Table 3.PCR Primers (Mus musculus)

Gene Primer sequence GC, % Length
Melting

Temperature (C) Amplicon Reference Sequence

Ascl2 F: TCTTGGGGCTTAAGGGCTGA
R: GTCAAGGTGTGCTTCCATGC

55
55

20
20

59 192 NM_008554.3

Reg3b F: GAATATACCCTCCGCACGCA
R: TCTTTTGGCAGGCCAGTTCT

55
50

20
20

60 119 NM_011036.1

Reg3g F: TGCAAGGTGAAGTTGCCAAG
R: GGTTCATAGCCCAGTGTCGG

50
60

20
20

60 274 NM_011260.2

Tbp (HK) F: CCTTGTACCCTTCACCAATGAC
R: ACAGCCAAGATTCACGGTAGA

50
47

22
21

61 119 NM_013684.3

F, forward; R, reverse.
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presence of Brefeldin A for 3.5 hours before surface
staining with anti-CD25–AlexaFluor700, anti-
CD3–PerCPCy5.5, anti-CD4–BV510, and anti-CD8–BV570
for 15 minutes. Cells then were fixed with the FoxP3
staining kit (eBioscience) according to the manufacturer’s
instructions, stained with anti-FoxP3–Pacific Blue, anti-
–IFN-g–PECy7, anti-IL17–APC, anti-TNFa–BV650, and
anti-IL22–PE for 30 minutes, washed in PermWash buffer
(eBioscience), samples were acquired on an LSRII cytom-
eter (BD, Franklin Lakes, NJ), and analyzed using FlowJo
(Tree Star, Inc, Ashland, OR). Gating strategy for T and
myeloid cells was performed as described previously.32
Small Intestinal Crypt Isolation and Enteroid
Culture

Small intestines were excised from 21-day-old Ptpn2-WT
and KO mice, washed with cold Dulbecco’s PBS (#8662;
Sigma), and cut open longitudinally into 2-cm fragments.
The tissues were placed in chelation buffer (10 mmol/L
EDTA in DPBS) and incubated on a rocker for 45 minutes at
4ºC. Intestines then were moved to a tube with cold DPBS
and shaken vigorously for 3 minutes to release crypts. The
supernatant then was filtered through a 70-mm cell strainer
and centrifuged at 300 � g for 5 minutes. Pellets were
resuspended in phenol red–free Matrigel (#356230; Corn-
ing), seeded in small 50-mL domes in 24-well plates, and
incubated at 37ºC for 20 minutes to allow Matrigel to
polymerize. Enteroid expansion complete media composed
of advanced Dulbecco’s modified Eagle medium/F12
(#12634-028; Invitrogen) with 100 U/mL Penicillin-Strep-
tomycin (#15140-122; Invitrogen), 2 mmol/L GlutaMAX
(35050-079; Invitrogen), and 10 mmol/L HEPES (#15630-
56; Invitrogen) supplemented with R-Spondin-1 condi-
tioned media (#3710-001-01; R&D Systems), Noggin
conditioned media (#6997-NG; R&D Systems), 1� B-27
(#17504-044; Invitrogen), 1.25 mmol/L N-acetylcysteine
(#9165; Sigma), 125 mg/mL primocin (#ant-pm-1; Inviv-
oGen), 0.5 mg/mL epidermal growth factor (#236-EG-01M;
R&D Systems), Wnt3a conditioned media (ATCC #CRL-
2647), 1� gastrin (#64149; AnaSpec), 50 mmol/L A83
(#2939; Tocris), and 10 mmol/L SB202190 (#1264; Tocris).
After 1 week, enteroids were dissociated mechanically by
pipetting and seeded in 50-mL domes in 24-well plates
and 10-mL in 4-well chambers for staining (Nunc
LabTek Chamber Slide #177399; Thermo Scientific).
Genetic recombination was induced by 1 mmol/L
4-hydroxytamoxifen (#T176; Millipore) added to the media
for 48 hours.
Statistics
Data sets were tested for 2 parameters: normality

(Shapiro–Wilk test) and variance homogeneity
(Brown–Forsythe F test) using GraphPad Prism 9.0.0 soft-
ware by Dotmatics. Statistical and post hoc tests were
chosen according to these parameters and are indicated on
the respective Figure legends. In general, the 2-tailed Stu-
dent t test was applied when comparing 2 groups and or-
dinary 1-way analysis of variance was applied for
comparison of 3 experimental groups. The critical signifi-
cance level was set at a ¼ .05. Data are expressed as means
± SD for n independent observations per group unless
stated otherwise. Outliers were identified using robust
regression and outlier removal (ROUT) method, with Q set
at 1% and excluded when appropriate.

All authors had access to the study data and reviewed
and approved the final manuscript.
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