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Kevin A. Reed, Michael F. Wehner, Alyssa M. Stansfield,  
and Colin M. Zarzycki

Hindcast attribution simulations suggest that 
anthropogenic climate change increased the 
likelihood of Hurricane Dorian’s extreme 3-hourly 
rainfall amounts and total accumulated rainfall by 
8%–18% and 5%–10%, respectively.

Hurricane Dorian formed on 24 August 2019 from a 
tropical wave and developed into a Category 5 hur-
ricane on 1 September 2019 before making landfall 

in the Bahamas (Avila et al. 2020). The impacts on the 
Bahamas were extreme, including rainfall totals over 0.5 m 
in the region (Avila et al. 2020). This was on the heels of 
the recent damaging North Atlantic hurricanes of 2017 and 
2018, which impacted various regions with different com-
binations of hazards (Klotzbach et al. 2018a; Avila 2019).

Tropical cyclones are very costly natural disasters 
(Klotzbach et al. 2018b) due to a diverse set of impacts, 
including high winds, extreme rainfall, storm surge, and 
fresh and/or saltwater flooding. Previous work has ex-
plored the potential impact of climate change, both in 
the past and projected into the future, on these hazards 
(e.g., Knutson et al. 2010, 2019, 2020; Christensen et al. 
2013; Walsh et al. 2016). A recent review by Knutson et al. 
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(2020) estimates that the global mean near-storm rainfall increases at about 7% per 1°C. 
Significant advances have been made in attribution frameworks to help quantify the ef-
fect of climate change on individual hurricanes. Investigations of individual storms us-
ing various attribution methodologies suggest that changes in rainfall can exceed the 
Knutson et al. (2020) estimate, although there are uncertainties associated with the use 
of different rainfall metrics (e.g., Risser and Wehner 2017; van Oldenborgh et al. 2017; 
Emanuel 2017; Wang et al. 2018; Keellings and Hernández Ayala 2019). Here we apply a 
hindcast attribution methodology to Hurricane Dorian previously developed and test-
ed for Hurricane Florence (Reed et al. 2020), Typhoon Haiyan (Wehner et al. 2019), and 
numerous other tropical cyclones (Patricola and Wehner 2018) that focuses on storm 
rainfall due to confidence in the model’s ability to simulate precipitation processes.

Methods.
This work makes use of the variable-resolution configuration of the Community At-
mosphere Model version 5 (CAM5; Neale et al. 2012) with a 28-km nest over the North 
Atlantic [as in Reed et al. (2020)]. CAM5, at grid spacings of 28 km, has been used 
previously to explore tropical cyclones and rainfall at both climate (e.g., Wehner et 
al. 2014; Zarzycki and Jablonowski 2014; Wehner et al. 2015; Bacmeister et al. 2018; 
Stansfield et al. 2020a) and weather time scales (e.g., Zarzycki and Jablonowski 2015; 
Wehner et al. 2019; Reed et al. 2020). Following the methodology of Zarzycki and Jablo-
nowski (2015), short 7-day ensemble hindcasts are initialized both in advance of and 
after Hurricane Dorian’s landfall in the Bahamas at 12-h increments starting at 1200 
UTC 30 August and ending at 0000 UTC 4 September for a total of 10 initialization 
times. The CAM5 hindcasts are initialized with atmospheric and ocean surface anal-
yses from NOAA’s GDAS and OISST, respectively, to construct an ensemble under the 
“actual” climate and weather conditions. Twenty ensemble members are created at 
each initialization time by perturbing a set of three parameters (convective time scale, 
precipitation coefficient, and parcel fractional mass entrainment rate) in the Zhang 
and McFarlane (1995) deep convection parameterization [following Reed et al. (2020), 
who used the parameter ranges from He and Posselt (2015)], resulting in a 200-member 
ensemble. Note that since modifying parameters in the convective parameterization 
can modulate precipitation (e.g., Zhao et al. 2012) the ensembles are perturbed with 
the same values on a member-to-member basis across all experiments.

A “counterfactual” ensemble (20 members at each initialization time) is construct-
ed by removing the anthropogenic signal from the 3D air temperature, 3D specific hu-
midity, and 2D sea surface temperature (SST) initial conditions used for the actual 
ensemble. Following Reed et al. (2020), the anthropogenic signal is approximated by 
computing the difference between the All-Hist (with prescribed SST, sea ice, green-
house gases, and aerosols derived from observations) and Nat-Hist (with prescribed 
SST, surface ice, greenhouse gases, and aerosols boundary conditions modified to 
remove anthropogenic forcings) CAM5 simulations completed under Climate of the 
Twentieth Century (C20C+) Detection and Attribution Project protocols (available at 
portal.nersc.gov/c20c), designed for event attribution (Stone et al. 2019), for the average 
of August and September for the last 20 years (1996–2016). This results in a difference 
of SST of about 0.75°C in the Bahamas region. Dynamical fields, such as zonal and 
meridional wind, are not adjusted in the initial conditions counterfactual ensemble, 
consistent with Reed et al. (2020).

For both the actual and counterfactual ensembles, the TempestExtremes software 
package (Ullrich and Zarzycki 2017) is used to detect and track the simulated storms 
and extract storm-related rainfall using the approach of Stansfield et al. (2020b), which 
specifies storm rainfall to be within an outer radius defined by a 8 m s–1 threshold of 
the azimuthally averaged azimuthal wind speed. Hurricane Dorian’s observed rainfall 
estimates from NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG; https://
pmm.nasa.gov/data-access/downloads/gpm) are used to calculate the maximum 3-hourly 
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rainfall amount, while recognizing that there are substantial uncertainties associated 
with heavy tropical cyclone rainfall in satellite estimates (e.g., underestimating storm 
rainfall over land; Chen et al. 2013).

Given resolution limitations, this work focuses on characterizing changes in the 
precipitation associated with Hurricane Dorian in the CAM5 hindcasts simulations. It 
is well known that intensity can influence storm rainfall and that numerical simula-
tions at these grid spacings are limited in their ability to represent intensity (i.e., max-
imum surface wind; Davis et al. 2018). Furthermore, the work of Patricola and Wehner 
(2018) demonstrated, using a comparable hindcast attribution framework with the 
Weather Research and Forecasting (WRF) Model, that while the simulated intensity 
(i.e., maximum wind speed) of hurricanes is underestimated at 27-km grid spacing 
compared to 3-km grid spacing, changes in storm rainfall due to warming are relative-
ly insensitive to this resolution difference. The CAM5 actual ensemble simulates an 
average intensity bias at a lead time of 72 h (120 h) of approximately 47 hPa (39 hPa), 
which is comparable to the intensity errors for the 27-km grid spacing simulation of 
other category 5 hurricanes in Patricola and Wehner (2018) and consistent with other 
operational numerical weather prediction for an intensifying major hurricane. While 
imperfect, CAM5 hindcasts of tropical cyclones have demonstrated skill in represent-
ing storm rainfall (Reed et al. 2020) and tracks comparable to forecasts from operation-
al numerical weather prediction (Zarzycki and Jablonowski 2015).

Results.
Comparing 3-hourly rainfall amounts and total accumulated rainfall across the ac-
tual and counterfactual ensembles allows for an analysis of the potential impact of 
observed climate change on Hurricane Dorian. The ensemble mean accumulated pre-
cipitation throughout the lifetime of the simulated storms at all initialization times is 
shown in Fig. 1. The spatial ensemble mean rainfall patterns suggest that there are 
similarities in the simulated tracks for the actual and counterfactual ensembles for 
a given initialization time, allowing for direct comparison. However, there are varia-
tions in the simulated tracks across different initialization times (Fig. ES1), consistent 
with real-time operational forecasts. Furthermore, additional analysis shows that the 
average CAM5 hindcast track error at a lead time of 72 h (120 h) is 144 km (230 km), 
which is within range of track errors associated with the official operational models 
used by the National Hurricane Center. When comparing the magnitude of the ensem-
ble mean accumulated rainfall at individual initialization times between the actual 
and counterfactual ensembles, Fig. 1 indicates that many areas experience increased 
precipitation in the actual ensemble compared to the counterfactual. This is also true 
in the region near the Bahamas (defined to be 25.5°–29.5°N, 76°–80°W; outlined in Fig. 
1) where the most extreme rainfall accumulations were observed to occur (Fig. ES2), 
providing some evidence that the model represents extreme rainfall sufficiently well 
in the region. The Bahamas region is simulated to experience the highest rainfall ac-
cumulations in the ensembles during the initializations between 0000 UTC 31 August 
and 1200 UTC 2 September.

Figure 2a shows the probability distribution of the 3-hourly rainfall amounts asso-
ciated with the simulated storm over its lifetime for all ensembles. The results suggest 
that there is a shift toward higher 3-hourly rainfall amounts in the actual ensemble 
with climate change. The likelihood of 3-hourly precipitation above the IMERG esti-
mated maximum of 0.136 m increases from approximately 0.145% in the counterfactu-
al ensemble to about 0.168% in the actual ensemble, representing an increase of 16% 
(95% confidence interval: 14%–18%) in the likelihood of such events. It is worth noting 
that a Dorian-like storm with rainfall at or above the IMERG estimated 3-hourly max-
imum is a 99.8th percentile event across the 200-member CAM5 ensemble, which is 
indeed a rare event at the tail of the simulated distribution, suggesting that the model 
framework has some skill in reproducing the extreme rainfall rates observed for Hurri-
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Fig. 1. Total accumulated ensemble mean storm-related rainfall (m) over the entire forecast period (excluding the first 12 h) 
for each initialization time (as labeled) of the counterfactual and actual realizations of Hurricane Dorian. Each initialization 
time contains 20 ensemble members. The Bahamas region is denoted (black outline) for the initialization times used for the 
region-specific analysis.
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cane Dorian. Given that the IMERG maximum is an estimate, we performed a sensitivi-
ty analysis by repeating the calculation for a maximum 3-hourly rainfall amount of 0.1 
and 0.17 m (representing a ±25% change from the estimated maximum), and the per-
centage increase ranges from 8% to 13% in the likelihood of such events. Analysis of 
the maximum 3-hourly rainfall amounts (Fig. 2c) in each ensemble reveals an increase 
in the maximum precipitation of 2% (95% confidence interval: −1% to 4%). Figure 2b 
shows the same probability distribution but for the Bahamas region (outlined in Fig. 
1) associated with the initialization times that produce large rainfall amounts in the 
region. The results again suggest that there is a shift toward higher 3-hourly rainfall 
amounts in the actual ensemble with climate change, particularly at the highest rain 
rates. The maximum 3-hourly rainfall in the Bahamas region (Fig. 2d) is simulated to 
have increased by 2% (95% confidence interval: 1%–3%) due to climate change, while 
the likelihood of 0.136 m amounts increases marginally (<1%).

A more integrated measure of rainfall associated with Hurricane Dorian is the sum 
of all accumulated precipitation during the simulated storms, in which CAM5 demon-
strates some skill in reproducing the accumulated amounts and spatial distribution 
(Fig. 1) when compared to IMERG estimates (Fig. ES2). For the full ensemble there is a 
clear increase in the total accumulated precipitation of 7% (95% confidence interval: 
5% to 10%) and in the subset ensemble in the Bahamas region of 3% (95% confidence 
interval: −1% to 7%). Note that for all analysis in this section the 95% confidence inter-
val is derived from a bootstrap analysis of 1000 samples.

Fig. 2. Probability distributions of the (a),(b) 3-hourly rainfall amounts and (c),(d) maximum 3-hourly rainfall 
amounts associated with Hurricane Dorian in the actual and counterfactual ensembles. Results are shown for (left) 
rainfall at all initialization times throughout the domain and (right) the six subset initialization times and Baha-
mas region only (see Fig. 1). The vertical line in (a),(b) represents observed maximum 3-hourly rainfall amount as 
estimated by IMERG.
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Conclusions.
The work explores the potential impact of climate change on the rainfall associated 
with Hurricane Dorian using the CAM5 hindcast attribution framework. The analysis 
indicates the likelihood of 3-hourly rainfall accumulations above 0.136 m (observed) 
increases by 16%, while the maximum 3-hourly rainfall amount increases by 2% due 
to climate change. When focusing on the extreme accumulations of rainfall that oc-
curred over multiple days, the analysis reveals the total accumulated rainfall over the 
area of the simulated storm increased by 7%. This work provides additional evidence 
that climate change has increased the magnitude and probability of extreme rainfall 
associated with recent devastating hurricanes (Risser and Wehner 2017; van Olden-
borgh et al. 2017; Emanuel 2017; Wang et al. 2018; Trenberth et al. 2018; Keellings and 
Hernández Ayala 2019; Reed et al. 2020) and is consistent with projected changes in 
tropical cyclone–related precipitation under future climate change scenarios (e.g., Vil-
larini et al. 2014; Knutson et al. 2020; Stansfield et al. 2020a). Depending on the rain-
fall metric used the simulated change presented here for Hurricane Dorian is closer to, 
or below, the theoretical Clausius–Clapeyron scaling of ~4% to 6% (given the 0.75°C 
SST change). However, differences in metrics and methodologies, including sensitiv-
ities to model resolution which will be the focus of future work, among the various 
hurricane precipitation attribution studies are critical to the interpretation of these 
numbers. As global SSTs continue to warm, rainfall accumulations associated with 
storms like Hurricane Dorian will undoubtedly continue to increase.
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SC19K0717, the NSF Research Traineeship (NRT) program (1633299), and the Regional 
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