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Abstract of the Dissertation

Gyrokinetic simulations of turbulence in the near-edge of fusion plasmas

by

Tom Frederik Neiser

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Frank S Jenko, Co-chair

Professor Troy A. Carter, Co-chair

The main purpose of this thesis is the validation of the gyrokinetic method in the near-

edge region of L-mode plasmas. Our primary finding is that gyrokinetic simulations are

able to match the heat-flux in the near-edge region of an L-mode plasma at ρ = 0.80 and

ρ = 0.90 within the combined statistical and systematic uncertainty σ of the experiment at

the 1.6σ and 1.3σ levels, respectively. At ρ = 0.95, gyrokinetic simulations are able to match

the total experimental heat flux with nominal experimental parameters. In the big picture,

this successful validation exercise helps push the gyrokinetic validation frontier closer to the

L-mode edge region.

In the course of this validation study, we make three secondary findings that may be

helpful to the fusion community. First, the current heuristic rules for the relevance of multi-

scale effects appear to be on the cautious side. Multi-scale simulations at ρ = 0.80 suggest

that single-scale simulations can be sufficient in a scenario when multi-scale effects are ex-

pected. This is helpful, because it could increase the realm of applicability of single-scale

simulations, which are computationally more affordable than multi-scale simulations. Sec-

ond, the effect of edge E ×B shear is found to become important already in the near-edge

(at ρ = 0.90) rather than at larger radial positions. This was unexpected and is relevant

for future simulations in the near-edge. Third, nonlinear simulations at ρ = 0.90 find a

hybrid ion temperature gradient (ITG)/ trapped electron mode (TEM) scenario, which was

ii



not obvious from linear simulations due to the stability of ITG modes. This could also be

an important result for spherical tokamaks, where ITG modes are more often linearly stable

than in conventional tokamaks.
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CHAPTER 1

Introduction

“With each decade the number and the significance of the means increase, whereby

mankind learns directly through ... physics to make nature useful for its own pur-

pose.” – Max Planck, Eight Lectures on Theoretical Physics (1909)

1.1 Motivation for Fusion Energy Research

Almost a century ago, the prospect of using nuclear fusion for energy production on earth

was first proposed in a lecture by Arthur Eddington [1]. In trying to explain the source of

thermal energy that is released by the stars, Eddington used the recently established fact∗

that the mass of Helium is 4.003 u while the mass of a Hydrogen atom is 1.008 u, where

u is the atomic mass unit. He proposed that four Hydrogen atoms combine to create one

Helium atom in the sun, with the mass difference δm ≈ 0.029 u transforming to kinetic

energy by Einstein’s mass-energy relation E = (δm)c2, where c is the speed of light. In the

same lecture, Eddington immediately recognized the potential benefit of this energy source

to mankind:

“A star is drawing on some vast reservoir of ... subatomic energy which, it is

known exists abundantly in all matter; we sometimes dream that man will one

day learn how to release it and use it for his service.” – Arthur Eddington (1920)

The actual reaction in the sun involves neutrinos and positrons, which had not been discov-

ered yet at the time of Eddington’s lecture, and the most common branched chain reaction

∗This fact was discovered by Francis W. Aston, a colleague of Eddington at Cambridge.
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in the sun can be summarized as

41
1H→4

2 He + 20
1e

+ + 2νe + 26.7 MeV . (1.1)

Note that a considerable amount of energy is released in a nuclear reaction, which dwarves

the typical change in enthalpy of a chemical reaction. For example, the combustion of a

natural gas such as methane gives

CH4 + 2O2 → CO2 + 2H2O + 8.40 eV . (1.2)

Therefore, each fusion reaction releases ∼ 106 times more energy than a typical chemical

reaction. For fission, the gain in released energy for each reaction is even higher (∼ 107),

since the electrostatic repulsion between protons in the nucleus energetically favors fission

to fusion. Therefore, while chemical energy is powering the majority of society today, the

controlled release of nuclear energy would represent a significant increase in resource effi-

ciency. Fission reactors are already in operation today and are meeting the majority of the

energy needs of three† countries, e.g. France. However, fission comes at the cost of long-

term radioactive waste, non-proliferation concerns and intrinsic criticality of fission fuel in

the simplest reactor designs. Fusion reactions, on the other hand, are intrinsically safe, do

not give rise to long-lived radioactive waste or proliferation concerns, and rely on abundant

resources. Moreover, high-energy fusion neutrons could break down and thereby “burn up”

some of the long-term radioactive waste from fission [2, 3]. Therefore, in order to establish

energy security on a planet with limited resources, nuclear fusion provides a viable long-term

alternative to fossil fuels.

†https://pris.iaea.org/PRIS/WorldStatistics/NuclearShareofElectricityGeneration.aspx; date accessed:
10/5/18
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1.2 Successes of Fusion Energy Research

While nuclear fusion is an abundant phenomenon in the universe‡, it is challenging to in-

duce the conditions necessary for fusion on earth. Currently, the conditions for a substantial

number of fusion reactions are routinely met in experiments that use one of two confinement

approaches, either inertial confinement (1016 fusion reactions/shot [5]) or magnetic confine-

ment (1019 fusion reactions/sec [6]). Inertial confinement relies on the inertia of the fusion

fuel to contain a very high, externally supplied pressure for long enough to create a substan-

tial number of fusion reactions. The magnetic confinement approach uses magnetic fields

to confine particles at relatively low pressures compared to inertial confinement, but for a

much longer time, and has so far been more successful for potential fusion energy generation

than the inertial confinement approach. The magnetic confinement approach itself benefits

from two competing designs, namely the stellarator and the tokamak design§, which both

show promise for future fusion reactors. In the following paragraphs, the major successes of

magnetic fusion energy research are highlighted.

Magnetic confinement geometry

The tokamak is presently the most successful tool in achieving sustained nuclear fusion

reactions on earth. The design is so successful, because it is able to balance the pressure

gradient with magnetic forces without much complexity. This is briefly motivated below.

In a purely toroidal magnetic field configuration the central field scales as B ∝ 1/R,

where R is the major radius. This magnetic field gradient creates a particle drift,

v∇B =
µB ×∇B

qB2
, (1.3)

where q is the electric charge of the particle, µ is the magnetic moment and B is the

purely toroidal magnetic field. Note that the above equation for the drift velocity is charge-

‡See for example big bang nucleosynthesis [4], the detonation of white dwarf stars in type Ia supernovae
due to Carbon fusion, and stellar nucleosynthesis.

§The idea for the tokamak was developed by Soviet physicists Igor Tamm, Andrei Sakharov and Oleg
Lavrentiev. ‘Tokamak’ is an acronym of the Russian words for ‘toroidal magnetic chamber’.
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Figure 1.1: Schematic diagram of a purely toroidal magnetic field (i.e. without a poloidal
magnetic field component). In the above configuration, ions drift upwards and electrons drift
downwards due to the magnetic field curvature and gradient. This creates an electric field
that leads to rapid de-confinement of the plasma via E × B drifts. Magnetic fields with
both toroidal and poloidal components, as shown in Fig. 1.2 below, are able to compensate
for these drifts. Reprinted with permission from [7].

dependent, causing the ions to drift in a vertical direction opposite to the electrons (see

Figure 1.1). This establishes a vertical electric field E that creates a secondary drift velocity,

vE =
E ×B
B2

, (1.4)

which always points radially outwards and is charge independent. Therefore a purely toroidal

magnetic field would cause rapid deconfinement of the plasma. This problem can be remedied

by adding a poloidal component to the magnetic field (Bθ), for example with a toroidal

current in the plasma (jφ). The resulting Lorentz force on current-carrying plasma can

balance the force on the plasma due to the radial thermal pressure gradient and confine the

plasma,

∇r p = jφ ×Bθ . (1.5)

This is a key principle behind magnetic confinement and has contributed to the success of

magnetic confinement fusion.

In a tokamak, the toroidal current is created by the transformer principle directly inside

the plasma. In a stellarator, the toroidal current is supplied together with the poloidal

current by external magnetic field coils, which complicates the design but allows for easier

access to steady-state operation [9]. Both the tokamak and stellarator are currently under
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(a) Tokamak. (b) Stellarator.

Figure 1.2: Schematic diagram of a tokamak and a stellarator. Figure a) shows the schematic
design of a tokamak, where the poloidal component of the magnetic field is generated by a
plasma current that is induced using the transformer principle (figure courtesy of EUROfu-
sion [8]). Figure b) shows the schematic design of a stellarator, where both the toroidal and
poloidal components of the magnetic field are supplied by currents external to the plasma
(figure courtesy of Christian Brandt and the Max Planck Institute for Plasma Physics).

active investigation as promising candidates for future fusion reactors.

Lawson criterion

In order to achieve break-even, the fusion power produced must be greater than or equal

to the power losses of the plasma, independent of the confinement method. This can be

summarized by the inequality

Pf ≥
W

τE
, (1.6)

where W = 3nT is the total energy density of the plasma, τE is the total energy confinement

time and the fusion power density is defined as

Pf = nDnT〈σv〉Ech , (1.7)

where nD and nT are the number densities of Deuterium and Tritium ions, respectively.

Moreover, 〈σv〉 is the reactivity and Ech is the energy of charged fusion products (e.g.

Deuterium-Tritium fusion produces an alpha particle with Ech = 3.5 MeV). In the optimum
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power configuration, the total number density n is made up in equal parts of Deuterium and

Tritium, nD = nT = n/2, giving

Pf =
1

4
n2〈σv〉Ech (1.8)

Solving for nτE and multiplying by T gives the following lower limit on the triple product

nTτE ≥
12T 2

〈σv〉Ech

. (1.9)

The triple product is a useful figure of merit for various tokamak designs. This is because

close to breakeven confinement time τE is empirically found to scale as τE ∝ n1/3/P
2/3
f [10]

and 〈σv〉 ∝ T 2 (or Pf ∝ n2T 2). As a result, the triple product is independent of density and

only weakly dependent on temperature, nTτE ∝ T−1/3. Therefore the triple product can be

used to compare and optimize fusion performance across various operating parameters and

tokamak designs. Using reactivities from [11, see Table VII], the lower limit of the triple

product is plotted for candidate fusion reactions in Figure 1.3. The most promising reaction

100 101 102

T [keV]
1015
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1018

nT
E
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eV
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p 11B

Figure 1.3: Triple product as a function of ion temperature for the most promising fusion
fuels. Note that D-T fusion is the favored reaction with a minimum triple product for
breakeven found at T ≈ 14 keV.

for first-generation fusion reactors is the fusion of Deuterium and Tritium (D-T fusion),

2
1D +3

1 T→4
2 He +1

0 n + 17.6 MeV . (1.10)
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The triple product as a function of temperature for D-T fusion has a minimum at T =

13.5 keV or 1.57 × 108 K. Therefore, for a D-T plasma to become self-sustaining at this

optimum temperature, the following criterion must be satisfied,

nTτE & 3× 1015 keV s

cm3
. (1.11)

This criterion is a modern version of the Lawson criterion for D-T fusion [12]. While the

Lawson criterion has not been met in a tokamak yet¶, the triple product nTτE has doubled

every 1.8 years in fusion experiments from 1970 to the early 2000s (see Fig. 1.4). This trend

has not continued as steeply after the early 2000s, mostly due to delays in the construction

of ITER. Note that ITER, currently under construction in southern France and on schedule

to achieve first plasma in December 2025, is predicted to satisfy the Lawson criterion with

D-T fusion starting in 2035.

First-generation fusion reactors are likely to employ D-T fusion for power generation.

Later generations of fusion reactors may be able to employ neutron-poor fusion reactions

such as

2
1D +3

2 He→4
2 He +1

1 p + 18.4 MeV , (1.12)

where some D-D side-reactions can produce neutrons. Even later generations of fusion

reactors could employ aneutronic reactions such as

1
1p +11

5 B→ 3 4
2He + 8.68 MeV , (1.13)

which could benefit from reduced radioactive shielding and handling requirements due to

low neutron fluxes. Aneutronic fusion could also rely on methods for direct conversion of

thermal energy to electrostatic energy [13], perhaps similar to direct conversion methods that

improve neutral beam injection (NBI) efficiency [14] (although some innovations in tokamak

divertor design will be required [15]).

¶Note the Lawson criterion has already been met on earth after dedicated research into nuclear fusion
bombs, starting with the “Ivy Mike” test of the first full-scale hydrogen bomb in 1952.
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Figure 1.4: Relative magnitude of the triple product in magnetic fusion experiments. The
triple product has doubled every 1.8 years from 1970-2000 and is predicted to satisfy the
Lawson criterion with ITER in 2035. Reprinted with permission from [16].

Energy confinement time

Particularly noteworthy throughout the entire history of fusion energy research to date are

the improvements in energy confinement time with, among other things, the successful ap-

plication of scaling laws. For example, the energy confinement time in a stellarator of minor

radius a and toroidal field strength B scales as

τE ∝ a2.33B0.85. (1.14)

This particular scaling is comparable to the Bohm-type scaling that was found in early

tokamak plasma experiments. In high-confinement operation, the more favorable gyro-Bohm

scaling has been observed. The origin of these two scaling laws are briefly described below.

In a cylindrical device with minor radius a and length L, the degradation of particle
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confinement with time is generally exponential,

τE ≈
N

dN/dt
=

nπa2L

Γ⊥2πaL
=

na

2Γ⊥
, (1.15)

where N is the number of ion-electron pairs, n is the number density and Γ⊥ is the cross-field

particle flux with diffusion coefficient D,

Γ⊥ = −D∇n . (1.16)

The normalized density gradient can be approximated to be on the order of the machine

size [17, Eq. 7.50],
∇n
n
≈ 1

a
. (1.17)

The above two equations show that the confinement time has the following proportionality

τE ∝
a2

D
. (1.18)

We can determine the diffusion constant by assuming that transport is dominated by tur-

bulence due to drift-wave instabilities. Typical drift-wave frequencies are given by [18, Eq.

21.39]

ωde ≈
k⊥
a

kBTe
eB

, (1.19)

where k⊥ is the wavenumber of turbulent fluctuations perpendicular to the magnetic field.

The turbulent diffusion constant is therefore

D ≈ ωde
k2
⊥

=
1

k⊥a

kBTe
eB

∝ 1

k⊥a

Te
B
. (1.20)

Bohm diffusion is observed when these fluctuations are on the order of the minor radius,

k⊥ ≈ 1
a
, giving

τE ∝
a2B

Te
. (1.21)

The more favorable gyro-Bohm diffusion is observed when fluctuations are caused by turbu-
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lence on the ion gyro-radius scale, k⊥ ≈ 1
ρi

. This improves the confinement time by a factor

a
ρi

& 1000,

τE ∝
a2B

Te

(
a

ρi

)
. (1.22)

Note that the increase of confinement time with an increase in magnetic field strength means

that advances in performance of high-temperature, high-current superconductors can benefit

fusion experiments in the future [19–21]. In fact, a doubling in the magnetic field strength

can cause a 16-fold increase in the fusion power as follows‖. Assuming that fusion reactors

operate at a given maximum thermal to magnetic pressure ratio due to instability limits,

β =
nkBT

B2
0/2µ0

, (1.23)

the plasma can sustain four times the temperature if the magnetic field is doubled at constant

β. Note that the fusion reaction rate 〈σv〉 is approximately proportional to the square of the

temperature at reactor relevant pressures and temperatures, 〈σv〉 ∝ T 2. Therefore this four-

fold increase in the temperature at constant β can increase the fusion power, P ∝ n2T 2, by

a factor of sixteen. Therefore, stronger magnetic fields lead to significantly improved reactor

performance, such that nuclear fusion research benefits from advances in high temperature

superconductivity [22, 23]. Scaling laws similar to the above example have been used to

instruct the design of ITER. Based on current calculations, ITER will produce 10 times

more fusion power than heating power supplied to the plasma when D-T plasma operation

commences after 2035.

Understanding of Anomalous Transport

Transport in a tokamak was initially believed to be dominated by classical transport, which

is driven by collisions. Specifically, the electrons were expected to undergo a random walk

with a step size ρe and step frequency νei, giving a diffusion constant

D = νeiρ
2
e , (1.24)

‖See a white paper by G. W. Hammett and W. Dorland, 2017; date accessed: 11/23/2018
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where ρe is the electron gyro-radius,

ρe =

√
kBTeme

eB
, (1.25)

and νei is the ion-electron collision frequency∗∗. However, the measured diffusion constant is

several orders of magnitude larger than the classical diffusion constant. Taking the effects

of magnetic field curvature into account yields larger step sizes in the so-called “neoclassical

transport” model, but still underpredicts the measured transport. The difference between

observed transport levels and neoclassical predictions is called anomalous transport. One

of the major successes of fusion energy research in the last two decades has been the iden-

tification of micro-turbulence as the likely origin of this turbulent transport (for reviews,

see [24,25]). Micro-turbulence associated with fluctuations in the electric field is called elec-

trostatic turbulence, while fluctuations in the magnetic field give rise to electromagnetic

turbulence. For instance, ion temperature gradient (ITG) [26–28], electron temperature gra-

dient (ETG) [29–31] and trapped electron modes (TEMs) [32, 33] are known examples of

electrostatic turbulence, while micro-tearing modes (MTMs) are examples of electromag-

netic turbulence often seen in tokamaks with a low aspect ratio such as NSTX-U [34]; some

of these types of turbulent modes will be discussed in more detail in the following chapter.

While anomalous transport in the core of a tokamak has been successfully modeled with

plasma simulations and compared to experiments, anomalous transport close to the edge

region of a tokamak is still poorly understood and will be discussed in the next section 1.3.

1.3 Unsolved Puzzles of Fusion Energy Research

Historically, many advances have been made in fusion energy research since its inception in

the late 1950s. However, there remain several unsolved problems on the cutting edge of both

the engineering and physics efforts. This work will focus on the physics side, namely on

advancing our understanding of micro-turbulence and transport, since this is an important

problem pertinent to the energy confinement time of fusion experiments. Modern super-

∗∗Note that the ion diffusivity is equal to the electron diffusivity due to quasi-neutrality of the plasma.
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computers today are capable of modeling turbulence with a high degree of realism that is

steadily increasing together with code and computational hardware development. Three

major unsolved problems in the study of turbulence and transport are highlighted below.

What is the mechanism for the L-H transition?

Development of a self-consistent theoretical description of the transition into a high-confinement

regime (H-mode) with an increase in heating power above a certain threshold is one of the

major remaining puzzles of fusion energy research. For a long period of time, the only op-

erational mode accessible in tokamak experiments was the so-called low-confinement mode

(L-mode). This mode is characterized by strong turbulence and a general degradation of con-

finement time with an increase in heating power. Physically, this is caused by the increase of

turbulence due to micro-instabilities that are driven by steeper temperature gradients and

pressure gradients associated with higher heating power. With an improvement in heating
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Figure 1.5: Electron temperature profiles of L-mode and H-mode phases of DIII-D discharge
#153624. The L-mode phase (data shown for t = 2400 ms) shows a relatively smooth
electron temperature profile throughout the entire confined plasma, 0.0 ≤ ρ ≤ 1.0, where
ρ = (Φ/Φedge)

1/2 is the toroidal flux radius and Φedge is the toroidal flux at the separatrix.
After transition into H-mode (data shown for t = 2560 ms), a temperature pedestal develops
in the shaded region (0.95 ≤ ρ ≤ 1.0). Due to profile consistency, the pedestal supports
∼ 50% higher core temperatures than L-mode and significantly improves future fusion reactor
performance.
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power technology, namely the introduction of neutral beam injection (NBI) and more pow-

erful ion-cyclotron heating (ICRH) systems, a high confinement regime was discovered in

1982 [35]. Paradoxically, it was found that above a certain threshold in heating power (Pth),

a transport barrier develops in the edge region that can support steep pressure and temper-

ature gradients. In the core of a tokamak, temperature and density profiles generally adopt

qualitatively similar shapes independent of heating and re-fueling of the plasma, likely due

to strong turbulent feedback mechanisms. Therefore, the top of the steep edge gradient acts

as a “pedestal” for the core profile [36]. This allows core temperatures in H-mode that are

approximately 50% higher than in L-mode (for a realistic example, see Fig. 1.5). Similarly,

the energy confinement τE is approximately twice as large in H-mode than in L-mode [37].

Therefore, the discovery of H-mode, which has since been reproduced in all major tokamaks

and is targeted in the experimental campaign of ITER [38], can be counted among one of the

great successes of experimental fusion energy research. At the same time, a self-consistent

theoretical description of the L-H transition remains one of the major unsolved problems in

the field [38–40].

The present understanding of the transition mechanism relies on the Reynold’s stress and

can be summarized as follows (for a review, see [41]). In the slab model, where x is a radial

coordinate, y is poloidal and z is toroidal, the momentum balance equation gives

∂uy
∂t

+∇x (uxuy) = −1

ρ
∇yP +

1

ρ
(j ×B)y (1.26)

After averaging over the flux surface (i.e. over the y-coordinate), the right hand side of the

momentum balance cancels, giving

∂uy
∂t

+∇x (uxuy) = 0 (1.27)

Expanding the plasma flow into an average (u0) and fluctuating component (u1) gives

u = u0 + u1 . (1.28)
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Plugging this perturbative flow into the flux-surface averaged momentum balance equation

gives
∂u0y

∂t
+∇x〈u1xu1y〉 = 0 , (1.29)

where the second term is known as the Reynold’s stress tensor Rxy = 〈u1xu1y〉. Turbulence

itself is thought to induce the correlated fluctuations with a spatial variation due to the

background gradients, ∇x〈u1xu1y〉. This term supplies the non-zero Reynold’s stress that

leads to a change in the poloidal laminar flow velocity, ∂u0y
∂t

. Therefore edge turbulence

could induce a poloidal shear flow layer with the Reynold’s stress mechanism [42–44].

Typically, a significant shear flow layer is found at ρ ≥ 0.95, where ρ = (Φ/Φedge)
1/2 is

the toroidal flux radius and Φedge is the toroidal flux at the separatrix (see also Fig. 1.5).

This shear flow stretches the turbulent eddies in the poloidal direction and reduces their

radial size, and thus reduces the radial turbulent scale length and the associated radial

heat transport. By hampering the efficiency of turbulent heat transport, the flow shear

creates a transport barrier that can support steep pressure and temperature gradients in the

edge region. However, there is a limit to the size of the pedestal, which is dictated partly

by the pressure gradient. Above a certain pressure gradient, a ballooning mode becomes

unstable and triggers an edge localized mode (ELM) that causes rapid deconfinement of

the plasma and collapses the pedestal. Large ELMs generate potentially damaging heat

fluxes towards the plasma-facing components (PFCs) of large fusion experiments. On the

other hand, ELMs have the benefit of purifying the plasma by ‘flushing out’ impurities

imported from PFCs and the Helium ash that gradually builds up in the plasma. This

mixed blessing has led to the desire to trigger small amplitude, high-frequency ELMs that

are called “grassy” due to the shape of the plasma’s heat-flux time trace. Moreover, research

into a new confinement regime that is quiescent in ELMs has recently led to the theoretical

prediction and experimental confirmation of a “Super H-mode” [45]. Super H-mode is now

predicted to help ITER achieve its mission and could help instruct design of an improved

compact pilot plant [46]. As these examples show, there are many potential performance

improvements to be gained from studies of the L-H transition. While our understanding
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of the L-H transition has significantly improved over the years, a self-consistent theoretical

picture has not yet emerged [38,40].

When can multi-scale interactions no longer be ignored?

It has become apparent that interactions between micro-turbulent modes at large and small

scales (multi-scale effects) are sometimes important. The micro-turbulence modes usually

seen in the core are Ion Temperature Gradient (ITG), Electron Temperature Gradient (ETG)

and Trapped Electron Modes (TEM). In the past, it was thought that experimentally relevant

heat flux is mainly carried by TEM and ITG modes [25], because these modes transport en-

ergy on scales larger than the ion gyroradius (k⊥ρi . 1), while ETG modes (k⊥ρi � 1) trans-

port energy on much smaller scales. However, gyrokinetic simulations in the early 2000s by

Jenko and Dorland predicted that ETG modes can create radially elongated streamers that

can contribute experimentally relevant heat transport [29–31]. This was later demonstrated

by observations at the National Spherical Torus Experiment (NSTX) [47] and DIII-D [48].

However, it is not clear how ETG streamers interact with large-scale modes. In principle,

this can be answered by multi-scale simulations that resolve the important wavenumber

range for both ion- and electron-scale turbulence. Pioneering multi-scale simulations with a

reduced mass ratio (
√
mi/me ≈ 20) and simplified geometry have found a heuristic rule that

can gauge the relevance of the ETG-scale contribution to the overall heat transport [49–52].

More recent multi-scale simulations with realistic mass ratio and geometry have found that

the degree of instability of ITG modes is a critical parameter determining the degree of cross-

scale interactions [53–55]. These multi-scale simulations have instructed a recent model for

saturation of multi-scale turbulence by zonal flow mixing, which has given rise to another

potentially useful heuristic rule for gauging the importance of multi-scale interactions using

linear simulations [56]. Since these heuristic rules provide useful physical insight and can

save computational resources, it is helpful to validate these rules with further multi-scale

simulations.

15



What is the nature of turbulent transport in the L-mode edge?

In order to better understand the L-H transition, it is instructive to study an L-mode phase

in the near-edge region immediately preceding such a transition. The L-mode phase serves as

initial condition for the transition, and turbulence in the edge region in particular is thought

to supply the Reynold’s stress that establishes the transport barrier in the H-mode edge.

Additionally, predictions of turbulent L-mode profiles are needed for vertical stabilization of

the plasma during current ramp-up and ramp-down phases in ITER [57]. However, while

gyrokinetic simulations in the cores of both H-mode and L-mode plasmas have been suc-

cessfully validated with experimental data, and similar success has been reported just inside

the pedestal of H-mode, gyrokinetic simulations of the L-mode edge have proven difficult to

validate. For instance, several simulations of DIII-D discharges with the GYRO code [58]

have been in good agreement in the L-mode core, but have under-predicted the heat flux in

the range ρ ≥ 0.75 [59, 60]. This has raised questions on whether a systematic ‘shortfall’ in

gyrokinetic heat flux predictions exists and if gyrokinetics can accurately recover the exper-

imental heat fluxes in the near-edge region. Therefore the reasons to undertake gyrokinetic

simulations in the near-edge region of DIII-D L-mode plasmas are threefold: (i) to investi-

gate the characteristics of turbulence that could potentially lead to the proposed Reynold’s

stress mechanism that generates the flow shear and initiates the L-H transition, (ii) to better

understand the nature of micro-turbulence in the near-edge region, and (iii) as a validation

exercise of the gyrokinetic simulation method with gyrokinetic codes.

1.4 Scope of the present work

This work validates gyrokinetics and characterizes microturbulence in a DIII-D L-mode

plasma with the gyrokinetic turbulence code GENE (www.genecode.org). Specifically, it

focuses on the near-edge†† region of an L-mode plasma immediately preceding an L-H tran-

sition in order to better understand the behavior of turbulence preceding this phenomenon.

††Throughout this work, we loosely define the near-edge as 0.80 ≤ ρ ≤ 0.96.
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Figure 1.6: Global simulation of an ASDEX Upgrade plasma with GENE (figure courtesy
of the Max Planck Institute for Plasma Physics).

This study focuses on three radial locations in the near-edge, namely at ρ = 0.80, ρ = 0.90

and ρ = 0.95. In an effort to better understand the relevance of multi-scale interactions in

the near-edge region at ρ = 0.80, this work has carried out multi-scale simulations that are,

to our knowledge, the first of their kind in the near-edge. At ρ = 0.90 and ρ = 0.95, the

simulations are carried out only at large scales, i.e. only the ion scales rather than also the

electron scales. Turbulence at these scales is sufficiently strong to suggest that multi-scale

simulations, if they were computationally affordable at this location, would likely not find

significant multi-scale effects.

The primary finding of this work is that gyrokinetic simulations are able to reproduce the

heat flux observed in the experiment while changing the temperature gradient parameters

within a reasonable uncertainty of the experiment. This finding pushes the gyrokinetic

validation frontier closer to the L-mode edge region, where it may help to uncover the L-H

transition mechanism.

There are three secondary findings associated with this work. (i) Current heuristic rules

for the importance of multi-scale simulations appear to be on the cautious side. (ii) The

effect of E × B shearing rate is already important in the near-edge (at ρ = 0.90) rather

than at larger radial positions. (iii) We uncover a hybrid ITG/TEM scenario, which was

unexpected from linear simulations due to the linear stability of the ITG modes. This could

also be an important result for spherical tokamaks, where ITG modes are linearly stable
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more commonly than in conventional tokamaks due to the short connection length between

the good and bad curvature regions.

This work is structured as follows. In Chapter 2, we introduce the main turbulent modes

found in tokamak plasmas and the basic idea of the gyrokinetic method that can be used

to study them numerically. In Chapter 3, we describe the key steps in the derivation of the

gyrokinetic Vlasov equation solved by GENE. In Chapter 4, we describe the main numerical

modeling tools of the GENE code relevant for this work, where theE×B shear, the GyroLES

techniques, and the Sugama collision operator are particularly important. In Chapter 5, we

describe the main linear and nonlinear simulation results at the three radial positions and

discuss the successes and limitations of this work. Chapter 6 we summarize the main findings

and provide directions for future research.
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CHAPTER 2

Overview of turbulent transport in tokamaks

In this section we review the current understanding of turbulent transport in tokamaks and

provide a motivation for gyrokinetic theory.

2.1 Micro-Turbulence

Micro-turbulence is generally assumed to be a major contributor to anomalous heat transport

in tokamaks. Modes usually seen in the core are Ion Temperature Gradient (ITG), Electron

Temperature Gradient (ETG) and Trapped Electron Modes (TEM). These modes are also

expected in the near-edge region, in addition to resistive-ballooning modes (RBM) that

can arise due to the high collisionality here [61–63]. In the following two sub-sections the

underlying mechanism of these instabilities is summarized.

2.1.1 ITG/ETG instabilities

When the temperature gradient in a plasma is in the same direction as the magnetic field

gradient (as is the case on the low-field or “bad-curvature” side of the tokamak), then pertur-

bations in the plasma temperature can grow exponentially. This is known as the Rosenbluth-

Longmire picture [26] (see Fig. 2.1). Recall that the ∇B-drift is directly proportional to the

magnetic moment µ, which in turn is directly proportional to temperature µ = kBT/B.

This proportionality can cause charge separation when there are temperature perturbations

in a tokamak plasma as follows. The slower drift velocity of the lower temperature plasma

drift is unable to maintain charge neutrality of the high temperature plasma, such that a

net charge separation occurs on the high temperature side (see left panel of Fig. 2.1). This
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(b) E ×B-drift amplifies perturbation

Figure 2.1: Schematic illustration of the ITG-instability using the Rosenbluth-Longmire
picture. In the outboard midplane, which is in the “bad curvature” region of the plasma,
perturbations are amplified by the simultaneous action of ∇B-drift and E×B-drift. a) The
∇B-drift, which is directly proportional to temperature, causes a net charge separation on
the hot plasma side. b) The resulting electric field creates an E×B-drift that amplifies the
perturbation amplitude.

charge separation will cause E × B-drift flows that further amplify the temperature fluctu-

ation, creating a positive-feedback loop that transports hot plasma radially outwards and

cold plasma inwards (see right panel of Fig. 2.1). Fortunately, when the temperature gradi-

ent and magnetic field gradient point in opposite directions, as is the case on the high-field

or “good-curvature” side of the tokamak, the E ×B flow reduces the initial perturbation

amplitude (see Fig. 2.2).

Note that in the slab model, ion acoustic drift-waves with long wavelengths parallel

to and short wavelengths perpendicular to a uniform magnetic field can also create the

necessary charge separation to drive the ITG instability. However, the effect of the non-

uniform magnetic field illustrated above dominates the turbulent drive in a tokamak.

The electron temperature gradient driven modes are driven unstable in similar fashion

to the ITG modes. While ITG modes also create streamers, these are often short-lived due

to a predator-prey interaction with large-scale zonal flows [64].
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Figure 2.2: Toroidal representation of turbulent fluctuations in the electrostatic potential
simulated with the GENE code (arbitrary units). The ITG instability can be seen to be
most active in the outboard midplane, also known as the “bad curvature” region where the
magnetic field gradient and temperature gradient align. The ITG instability is suppressed
at the high-field side by the anti-alignment of magnetic field and temperature gradients.

2.1.2 TEM and RBM instabilities

The toroidal magnetic field gradient (Bφ ∝ 1/R) causes particles to become trapped in the

low-field side of the tokamak. This can be illustrated briefly using the conservation of energy

ε and the adiabatic invariance of the magnetic moment µ of a charged particle confined to

a flux surface in a tokamak. At the low-field side of the tokamak, the energy of a charged

particle can be written as

ε =
1

2
mv2
‖,0 +

1

2
mv2
⊥,0 =

1

2
mv2
‖,0 + µBmin(ψ) , (2.1)
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where Bmin(ψ) is the minimum field that the particle encounters at the low-field side of a

flux surface (ψ = const.). All trapped particles meet the energy condition

ε ≤ µBmax(ψ) , (2.2)

where Bmax(ψ) is the maximum magnetic field at the high-field side of a flux-surface. There-

fore, the above two equations give the condition for trapping of

v‖,0 ≤ v⊥,0

√
Bmax(ψ)

Bmin(ψ)
− 1 . (2.3)

The fraction of trapped particles can be shown to be

F =

√
1− Bmin(ψ)

Bmax(ψ)
. (2.4)

Density fluctuations in the trapped particles can cause charge separation that is localized

on the “bad-curvature” side of the tokamak. Therefore trapped electron modes (TEMs) are

particularly effective at radial heat transport [32, 33]. TEMs are stabilized by collisionality,

since collisions de-trap particles. However, TEMs are de-stabilized by higher gradients in

electron temperature, similar to ETG modes. In addition, they are destabilized by steeper

density gradients and generally oscillate in the electron diamagnetic direction.

Resistive-ballooning Modes (RBMs) are de-stabilized by higher collisionality, q-factor and

gradients and oscillate in electron diamagnetic direction [61–63]. They are most virulent in

the edge region, where the collisionality is high, and have been suspected to contribute to

heat transport even in the near-edge region. They have long wavelengths, such that they

are seen at low kyρs, and likely require global simulations [61].
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2.2 Simulation of turbulent transport in tokamaks

All models are wrong, but some are useful.

– George Box

The discovery of anomalous levels of heat transport in tokamaks has lead to the strong

need to identify the main transport mechanisms such that they may be mitigated. The fully

kinetic Vlasov equation that accurately describes the behavior of plasma has been known for

a long time. However, when applied to tokamaks its direct numerical solution with particle-

in-cell codes is prohibitive due to the large number of particles involved (a tokamak reactor

contains a few grams of D-T fuel at a time or N ∼ NA ≈ 6× 1023 particles). This provides

a key motivation for a reduced numerical and physical model that can capture the majority

of the plasma behavior with a large reduction in numerical cost.

2.2.1 Kinetic Theory

In order to provide an exact description of the behavior of collisionless fusion plasmas, in

principle the fully kinetic Vlasov equation needs to be solved. It is given by

dfj
dt

=
∂fj
∂t

+ v · ∇xfj +
qj
mj

(E + v ×B) · ∇vfj = 0 , (2.5)

where fj(x,v, t) is the distribution function of the j-th particle species. The electromagnetic

fields E and B are calculated from Maxwell’s equations,

∇ ·E =
4π

c

∑
j

qjnj , ∇ ·B = 0 (2.6)

∇×E = −1

c

∂B

∂t
, ∇×B =

4π

c

∑
j

jj +
1

c

∂E

∂t
, (2.7)
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where the particle and current densities are calculated by taking the appropriate moments

of the distribution function,

nj =

∫
fj dv , jj = qj

∫
vfj dv . (2.8)

Therefore, the electric and magnetic fields are themselves determined by the distribution

function and make the corresponding term of the Vlasov equation above a nonlinear func-

tion of the distribution function, fj. The above Vlasov-Maxwell system of equations dictates

the time evolution of the distribution function for each particle species in phase space (x,v)

that is six-dimensional. These equations can only be solved numerically, and to resolve the

relevant phase space of a typical tokamak even today’s supercomputers are not yet advanced

enough to solve the full set of equations without making simplifying approximations. For

example, in the strong magnetic field of a tokamak single-particle motion perpendicular to

the magnetic field can be divided into relatively fast circular motion and relatively slow drift

motion. Averaging over the comparably fast circular motion gives a distribution function

of “rings” of charge that is five dimensional in phase space (x, v‖, µ). Here, v‖ represents

the velocity along the field lines and µ is the magnetic moment resulting from the gyro-

averaged motion of a charge. This is a major example of several gyrokinetic approximations

that capture the evolution of the distribution function well, while also making the result-

ing gyrokinetic equations significantly more computationally tractable than the fully kinetic

equations. Solution of the gyrokinetic equations in numerical codes such as GKV [65, 66],

GEM [67,68], GYRO [58] and GENE [69] over the last two decades has contributed signifi-

cantly to our understanding of micro-turbulence in fusion plasmas.

2.2.2 Basic idea of gyrokinetic theory

The single-particle motion is divided into relatively fast circular motion and relatively slow

drift motion. The fast motion arises when charged particles undergo circular motion per-
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pendicular to the magnetic field B = Bz ẑ with gyroradius

ρj =
vj
Ωj

=

√
kBTjmj

qjBz

, (2.9)

where the angular frequency (or gyrofrequency) is independent of temperature,

Ωj =
qjBz

mj

. (2.10)

Note that the above periodic motion is associated with an adiabatic invariant, the magnetic

moment

µj =
mjv

2
⊥

2B
∝ Tj
B
. (2.11)

A relatively slower motion perpendicular to the field arises due to particle drifts. The

mathematical origin of drifts can be found from the equation of motion,

m
dv

dt
= qE + qv ×B . (2.12)

Replacing qE with a general force component F gives the general equation for drift velocities

perpendicular to the magnetic field,

v =
F ×B
qB2

. (2.13)

For example, the force can be due to an inhomogeneous magnetic field, F∇B = −µ∇B, which

gives v = µB ×∇B/qB2 (see Fig. 2.1). In the strong magnetic field of a fusion plasma the

drift velocities of charged particles are much smaller than the velocities associated with gyro-

motion, vj = ρjΩj (for an illustration, see Fig. 2.3). The mathematical and physical details

of this and other approximations are highlighted in the following section.
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Figure 2.3: Schematic diagram of the gyrokinetic approximation, where fast motion is av-
eraged out such that only the relatively slow drift motion of a “ring” of charge remains
(reprinted from [70] by permission of the author and AAS).

2.3 Summary

The main carriers of cross-field transport have been identified as electrostatic and electro-

magnetic instabilities, which have scale lengths much smaller than the machine size and are

therefore commonly called micro-instabilities. The micro-instabilities subject of this work

are ion temperature gradient (ITG) and electron temperature gradient (ETG) instabilities,

and trapped electron modes (TEMs). In order to study the contribution of these instabilities

to the overall heat flux, gyrokinetic codes have been developed. In the following section we

highlight the mathematical and numerical approximations that have led to the gyrokinetic

theory.
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CHAPTER 3

Gyrokinetic Theory

The gyrokinetic approximation reduces the six-dimensional phase space to five dimensions

by averaging over a charged particle’s gyro-motion perpendicular to the magnetic field, and

removes several phenomena on small space-time scales.

3.1 Gyrokinetic Ordering

In the following list, the various approximations employed underneath the umbrella of the

gyrokinetic theory are motivated and described:

(i) The averaging over the gyro-motion of charged particles in strong magnetic fields is

a major approximation of gyrokinetic theory. This is motivated by the fact that the

ion Larmor frequency is much larger than the frequency of microturbulence, Ωi � ω.

Averaging over the gyro-motion gives a five-dimensional distribution function,

f(X, v‖, v⊥, t) , (3.1)

where X is the position of the center of the ring of charge.

(ii) Quantities such as temperature, density, electrostatic potential and magnetic field are

assumed to have fluctuations that are small compared to their equilibrium values,

which has been corroborated by observations. For example,

T (x, t) = T0(x) + T1(x, t) , where T1 � T0 , (3.2)
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and we adopt the notation where the index 1 denotes a first-order perturbation while

the index 0 denotes the equilibrium quantity. Note that T1 varies both in space and

time while T0 forms a time-independent equilibrium quantity.

(iii) As a result of the above approximation, the gyrocenter distribution function of each

species can be split into a background Maxwellian distribution function and a small

perturbation,

f = F0 + f1 , where f1 � F0 , (3.3)

The background Maxwellian for each species is given by

F0 =

(
m

2πT0

)3/2

n0 exp

(
−

1
2
mv2
‖ + µB0

T0

)
, (3.4)

This allows us to separate the microturbulence from the macroscopic evolution of the

plasma equilibrium, while also benefiting from a reduction in computational intensity.

(iv) In the strong magnetic field of a tokamak, turbulent fluctuations develop elongated

structures along the magnetic field and short structures perpendicular to the mag-

netic field. As a result parallel wavenumbers are much smaller than perpendicular

wavenumbers,

k‖ � k⊥ . (3.5)

Note that perpendicular wavenumbers are on the order of the Larmor radius, k⊥ρi,e ∼ 1.

(v) The gradient scale lengths of the equilibrium quantities are assumed to be much larger

than the ion Larmor radius. For example,

1

LT0
=
|∇T0|
T0

∼ R , (3.6)

where R is the machine size. Note that the gradient scale lengths of the fluctuating

quantities are allowed to be on the order of the Larmor radius. For example,

∇T1

∇T0

∼ k⊥T1

T0/R
∼ k⊥R

T1

T0

∼ 1 . (3.7)
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In summary, these approximations give

ω

Ωi

∼ T1

T0

∼ n1

n0

∼ qφ1

T0

∼ |B1|
|B0|

∼ f1

F0

∼
k‖
k⊥
∼ ρe,i

R
∼ ε� 1 ∼ k⊥ρi,e . (3.8)

These approximations can now be used to derive the gyrokinetic Vlasov equation. The key

steps of the modern derivation of gyrokinetics are described below, following the review

article by Brizard & Hahm [71], and summarized in Figure 3.1.

Single-particle Lagrangian

Guiding-center one-form

Gyro-center one-form

Gyrokinetic equation of motion

Gyrokinetic Vlasov equation

Figure 3.1: Schematic diagram for the main steps of the gyrokinetic derivation.

3.2 Single-particle motion

Starting with the non-relativistic electromagnetic Lagrangian for a single particle, we get

L(x, ẋ; t) =
1

2
mẋ2 + qẋ ·A(x)− qφ(x) , (3.9)

where m is the mass of the particle, q is its charge, A(x) is the vector potential, φ(x) the

electrostatic potential. This can be written in terms of canonical variables,

L(x, ẋ; t) = p · ẋ−H(p, x) , (3.10)
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where p ≡ dL/dẋ = mẋ+qA(x) is the canonical momentum and H(p, x) = (p−qA)2/2m+

qφ(x) is the conserved energy of the particle. The above Lagrangian can be written in terms

of a compact one-form, which is defined as follows

γ ≡ L dt = p · dx−H(p, x) dt . (3.11)

This gives the following variational principle, which is useful to derive the gyrokinetic equa-

tions of motion [72],

δ

∫
L dt = δ

∫
γ = 0 . (3.12)

As discussed above, the motion of charged particles in strong magnetic fields can be divided

into a fast gyration motion around a so-called guiding center and a relatively slow drift of

the guiding center. When transforming into guiding-center coordinates and averaging over

the fast gyration motion, we obtain the guiding-center Lagrangian as described below. Note

that the guiding-center picture does not include electromagnetic fluctuations, which cause

the magnetic moment to no longer be a rigorous adiabatic invariant [71]. Capturing electro-

magnetic fluctuations requires a refined description using so-called gyrocenter coordinates

that will also be discussed below.

3.3 Guiding-Center Coordinates

In order to reduce the single-particle Lagrangian of Eq. 3.10 to a guiding-center Lagrangian,

we follow the seminal paper by Littlejohn [72]. We start with a coordinate transformation

of (x, ẋ)→ (x,v), where mv = p− qA. This gives

L(x,v; t) = (mv + qA) · ẋ−
[

1

2
mv2 + qφ(x)

]
, (3.13)

We now divide the velocity into two mutually perpendicular components

v = v‖b̂ + v⊥ĉ , (3.14)
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where v‖ and v⊥ are the average velocities parallel and perpendicular to the averaged back-

ground magnetic field direction b̂, so accordingly ĉ is an oscillatory unit vector perpendicular

to b̂. Similarly, the position coordinates can be divided into oscillatory and average quanti-

ties, namely

x = X + ρ (3.15)

where X is the average position of the guiding center and ρ = mv⊥/qB â is an oscillatory

position vector of the particle relative to the guiding center. One can refine the definition

of the oscillatory component of the position vector with the introduction of a so-called

gyrophase angle θ, which is used as follows

â = cos θ ê1 − sin θ ê2

ĉ = − sin θ ê1 − cos θ ê2 ,
(3.16)

where â = b̂× ĉ and ê1 × ê2 = b̂. Averaging over these oscillatory positions and velocities

while keeping terms to first order in εB = ρe,i∇ lnB, we get a guiding-center Lagrangian

L(X, Ẋ; t) =
[
mẊ‖b̂ + qA(X)

]
· Ẋ +

µB(X)

Ω(X)
θ̇ −

[
µB(X) +

1

2
mẊ2

‖ + qφ(X)

]
, (3.17)

where we have used the fact that the Lagrangian is independent of θ and therefore µ =

1
2
mv2
⊥/B is an exact adiabatic invariant. This can be re-cast into a guiding-center one-form

as follows,

Γ0 = qA∗0(X) · dX +
µB(X)

Ω(X)
dθ −H0(X, Ẋ‖, µ)dt , (3.18)

where we have adopted ‘0’ indices to distinguish the quantities in the above equations from

perturbations that will be added in the next section, and we have made the following sub-

stitutions for simplicity,

A∗0(X) =
m

q
Ẋ‖b̂ + A0(X) , (3.19)

H0(X, Ẋ‖, µ) = µB(X) +
1

2
mẊ2

‖ + qφ0(X) . (3.20)
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While the above ‘guiding-center’ formalism benefits from the exact invariance of the magnetic

moment, it cannot be accurately applied to plasmas where low-frequency electromagnetic

perturbations are present with perpendicular wavelengths on the order of k⊥ρe,i ∼ 1 [71,73].

This will be addressed in the following section.

3.4 Gyrocenter Coordinates

The best method now available for deriving higher-order terms in the guiding

centre expansion is the Lie transform method.

– Robert G. Littlejohn [72]

Electromagnetic fluctuations associated with micro-turbulence (k⊥ρe,i ∼ 1) lift the exact

invariance of the magnetic moment and limit the generality of the guiding-center formalism

above [71, 73]. This is due to the fact that electromagnetic perturbations on the order of

k⊥ρe,i ∼ 1 are themselves a function of the particle position x = X + ρ(X, µ, θ) rather than

only the guiding-center position X. Mathematically, these perturbations are expressed as

follows

φ(x, t) = φ1(x, t) ,

A(x, t) = A0(X) + A1(x, t) ,
(3.21)

where the perturbations are small compared to the background quantities,

|E1⊥|
vthB0

∼ |B1|
B0

∼ ε� 1 . (3.22)

As a result, the guiding-center equations acquire the following gyroradius-scale perturbations

H = H0 +H1 = H0 + qφ1(x, t) ,

Γ = Γ0 + Γ1 = Γ0 + qA1(x, t) · dx− qφ1(x, t)dt .
(3.23)
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We can rewrite the perturbed guiding-center one-form in terms of the total derivative of

x = X + ρ(θ, µ), giving

Γ1 = qA1(x, t) ·
(
dX +

∂ρ

∂θ
dθ +

∂ρ

∂µ
dµ

)
− qφ1(x, t)dt . (3.24)

To remove the gyro-angle dependence of the above guiding-center equations of motion, we

average out the fluctuating contribution over one gyro-orbit. Mathematically, this is carried

out using the method of Lie transformations [74]. In this section we will focus mainly on the

key steps of a more systematic derivation, which can be found in the literature [71,72,75].

A Lie transformation is a coordinate transformation of the general form [75]

zα = Tzα , (3.25)

where T is a series of Lie transformations T = ...T3T2T1, and z(q,p, t) is any phase-space

coordinate system, where the index α represents the αth coordinate component. We will use

T to transform between guiding-center (z) and so-called gyro-center (z) coordinate systems,

where the overbar notation is used to identify the latter. A single Lie transformation Tn is

a near-unitary transformation [75],

Tn = exp (εnLn) ≈ 1 + εnLn , (3.26)

where ε � 1 is a small ordering parameter and Ln is the operator that carries out the

coordinate transformation [75]. The desired transformation from guiding-center to gyro-

center one-forms is given by

Γ = T−1Γ + dS , (3.27)

where Γ is the one-form in gyro-center coordinates with the gyro-angle dependence removed,

Γ is the perturbed guiding-center one-form with gyro-angle dependence, and dS is a gauge

transformation term that is used to eliminate the remaining gyro-angle dependence from the

right hand side of the above equation. Our use of the gauge term relies on the invariance of

the Euler-Lagrange equations under gauge transformations of the form Γ → Γ + dS, where

33



S(zα) is any scalar function and dS is its total derivative [75]. We can now transform the

perturbed guiding-center one-form, Γ = Γ0 + Γ1 + Γ2, to the gyro-center coordinate system.

First, we look at the Lie transform operator T−1, which is called the pull-back operator and

can be expanded to second order in ε as follows,

T−1 = exp(−ε2L2) exp(−εL1) ≈

≈
(
1− ε2L2

)(
1− εL1 +

ε2L2
1

2

)
=

= 1− εL1 + ε2
(
L2

1

2
− L2

)
.

(3.28)

Ordering terms by their dependence on εn, we get the gyro-center one-form,

Γ0 = Γ0 + dS0

Γ1 = Γ1 − L1Γ0 + dS1

Γ2 = Γ2 − L1Γ1 +

(
L2

1

2
− L2

)
Γ0 + dS2 .

(3.29)

Applying the operator Ln to a general one-form Γ gives [75]

(LnΓ)α = Gβ
n

(
∂Γα
∂zβ
− ∂Γβ
∂zα

)
, (3.30)

where Gβ
n is the generator of the Lie transformation, which will be defined in more detail

below. As a result, the αth coordinate component of Γ1 is

Γ1,α = Γ1,α −Gβ
1

(
∂Γ0,α

∂zβ
− ∂Γ0,β

∂zα

)
+
∂S1

∂zα
. (3.31)

The next key step of the gyrokinetic derivation requires identifying suitable choices of dS

and Gβ
n to eliminate the gyro-angle dependence on the right hand side of the above gyro-

center one-forms. Since Γ0 is the unperturbed one-form, we have dS0 = 0. To eliminate

θ-dependence and µ-dependence of the equations of motion, we want to find dS1 and Gβ
1

such that

Γ1,θ = Γ1,µ = Γ1,v‖ = 0 . (3.32)
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These constraints give the following generator functions [76],

GX
1 =

1

B∗0,‖

[
b̂×

(
A1 +

∇S1

q

)
+

B∗0
m

∂S1

∂v‖

]
G
v‖
1 =

Ω

B

B∗0
B∗0,‖

(
A1 − b̂〈A1,‖〉+

∇S1

q

)
Gµ

1 =
Ω

B

(
m

B
A1 · v⊥ +

∂S1

∂θ

)
Gθ

1 = −Ω

B

(
1

v⊥
A1 · â +

∂S1

∂µ

)
,

(3.33)

where B∗0 = ∇ ×A∗0 and the angled brackets indicate that we have averaged over the fast

angular motion

〈Q〉 =
1

2π

∮
Q(X + ρ) dθ . (3.34)

It remains to define the gauge terms, where we use a result from Ref. [77] that shows the

only S1-dependent term in Γ1,α that is zeroth order in ε depends on ∂S1/∂θ. We therefore

only need to find a suitable ∂S1/∂θ, which is

∂S1

∂θ
=

1

Ω

[
qφ̃1 +

b̂× Ã1

B∗0,‖
· µ∇B − qv‖

B∗0
B∗0,‖

· Ã1 −
Ω

B

(
Ã1 · v⊥

)]
, (3.35)

where we used the tilde symbol to identify fluctuating quantities, which are gyro-angle

dependent and defined as

Q̃ = Q− 〈Q〉 . (3.36)

The above definitions of the generator functions and the gauge function give two non-zero

gyro-center components, Γ1,X and Γ1,t, where the latter is simultaneously the gyro-averaged

perturbation to the Hamiltonian H1,

Γ1,X = q〈A1,‖〉b̂ ,

Γ1,t = q〈φ1〉 − q〈A1 · v⊥〉 ≡ H1 .
(3.37)

In principle, we have now found a gyrocenter description of the one-form. Before writing it

down, however, we can simplify the above expression for H1 to a more practical form. We
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pay particular attention to the averaging procedure 〈φ1〉 = 〈φ1(X + ρ)〉 with the goal of

simplifying this expression.

We first aim to split the perturbation into a guiding-center-dependent and a gyro-angle-

dependent term, which can be done in Fourier space [77]

〈φ1(X + ρ)〉 =
1

2π

∫ 2π

0

φ1(X + ρ) dθ =

=
1

(2π)4

∫ 2π

0

dθ

∫ ∞
−∞

φ̂1(k)eik·(X+ρ) d3k =

=
1

(2π)3

∫ ∞
−∞

φ̂1(k)eik·X d3k · 1

2π

∫ 2π

0

eik·ρ dθ .

(3.38)

We now compute the gyro-average of the second integral as

〈eik·ρ〉 =
1

2π

∫ 2π

0

eik·ρ dθ =
1

2π

∫ 2π

0

eik⊥ρ cos θ dθ =

=
1

2π

∫ π

0

eik⊥ρ cos θ dθ +
1

2π

∫ 2π

π

eik⊥ρ cos θ dθ =

=
1

2
J0 (k⊥ρ) +

1

2π

∫ π

0

e−ik⊥ρ cos θ′ dθ′ =

=
1

2
J0 (k⊥ρ) +

1

2
J0 (−k⊥ρ) =

= J0 (k⊥ρ) ,

(3.39)

where we have used the change of variables θ′ → θ−π and the parity of J0 (k⊥ρ) = J0 (−k⊥ρ),

where J0 (k⊥ρ) is the Bessel function of the first kind of 0th order and given by [78]

J0 (k⊥ρ) =
1

π

∫ π

0

eik⊥ρ cos θ dθ =
∞∑
n=0

(−1/4)n

(n!)2
(k⊥ρ)2n . (3.40)
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We now employ the above results in the equation for 〈φ1(X + ρ)〉,

〈φ1(X + ρ)〉 =
1

(2π)3

∫ ∞
−∞

J0 (k⊥ρ) φ̂1(k)eik·X d3k =

=
1

(2π)3

∫ ∞
−∞

∞∑
n=0

(−1/4)n

(n!)2
(k⊥ρ)2n φ̂1(k)eik·X d3k =

=
1

(2π)3

∫ ∞
−∞

∞∑
n=0

(−1/4)n

(n!)2
(−iρ∇⊥)2n φ̂1(k)eik·X d3k =

=
1

(2π)3

∞∑
n=0

(−1/4)n

(n!)2
(−iρ∇⊥)2n

∫ ∞
−∞

φ̂1(k)eik·X d3k =

= J0(−iρ∇⊥)φ1(X) = J0(λ)φ1(X) ,

(3.41)

where λ2 = −ρ2∇2
⊥. We have thus analytically computed the gyro-average for the perturbed

electrostatic potential φ1. Similarly, we get for 〈A1 · v⊥〉 [77]

〈A1 · v⊥〉 = −2µ

qλ
J1(λ)B1,‖ = −µ

q
〈B1,‖〉 , (3.42)

where J1(λ) is the Bessel function of the first kind of 1st order,

J1(λ) =
∞∑
n=0

(−1)n

n!(n+ 1)!

(
λ

2

)2n+1

. (3.43)

Therefore, the gyro-averaged Hamiltonian H1 can be analytically solved and simplified to

H1 = q〈φ1〉+ µ〈B1,‖〉 ≡ q〈ψ1〉 , (3.44)

where we have introduced an effective potential 〈ψ1〉 [76].

In summary, the gyro-center one-form is found to be

Γ = q
(
A∗0 + 〈A1,‖〉b̂

)
· dX +

µB

Ω
dθ − (H0 + q〈ψ1〉) dt . (3.45)

The above gyrokinetic one-form can now be used to find the equation of motion for Ẋ and

v̇‖, which in turn is needed to solve the gyrokinetic Vlasov equation.
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3.5 Gyrokinetic Vlasov Equation

The gyrokinetic Vlasov equation for the distribution function of gyro centers fj(Ẋ, v‖, µ)

becomes
dfj
dt

=
∂fj
∂t

+ Ẋ · ∇fj + v̇‖
∂fj
∂v‖

= 0 , (3.46)

where Ẋ and v̇‖ are defined below.

Ẋ = Ẋ‖b̂ +
B

B∗‖
(v∇B + vχ + vc) , (3.47)

where we have a ∇B0-drift

v∇B =
µ

mΩ
b̂×∇B0 , (3.48)

and an effective E ×B-drift,

vχ = − 1

B2
0

∇χ1 ×B0 , (3.49)

where we have used the effective potential

χ1j = 〈ψ1〉 − v‖〈A1‖〉 . (3.50)

Moreover, we identify an effective curvature drift as

vc =
v2
‖

Ω

(
∇× b̂

)
⊥
. (3.51)

Similarly, using the Euler-Lagrange equations we find

v̇‖ = − B∗

mB∗‖
·
(
µ∇B + q∇ψ1

)
− q

m
˙̄A1‖ . (3.52)

Therefore, we are now in principle able to solve the gyrokinetic Vlasov equation.

In practice, further simplification can be obtained by splitting the gyrocenter distribution
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function into a background Maxwellian and first-order perturbations,

fj = F0j + f1j , where f1j � F0j , (3.53)

gives the gyrokinetic distribution function

g1j ≡ f1j + v‖
qj
T0j

F0j〈A1‖〉 , (3.54)

and the non-adiabatic part of the distribution function

h1j ≡ f1j +
qj
T0j

F0j〈φ1〉 = g1j +
qj
T0j

F0jχ1j . (3.55)

3.5.1 Gyrokinetic field equations

The fluctuation potentials (φ1,A1‖) must be reformulated in terms of the gyrocenter dis-

tribution function. Starting with Maxwell’s equation for the fluctuating field components,

while neglecting the displacement current for simplicity, gives

∇ · E1 =
4π

c

∑
j

qjnj , ∇ ·B1 = 0 (3.56)

∇× E1 = −1

c

∂B1

∂t
, ∇×B1 =

4π

c

∑
j

jj . (3.57)

The fields themselves can be expressed in term of the electrostatic and scalar magnetic

potentials,

E1 = −∇φ1 −
1

c

∂A1‖

∂t
, B1 = ∇×A1‖ . (3.58)

This allows us to define Poisson’s equation and the parallel Ampère’s law,

∇2φ1 ≈ ∇2φ1⊥ = −4π

c

∑
j

qjnj , ∇2A1‖ ≈ ∇2
⊥A1‖ = −4π

c

∑
j

jj‖ . (3.59)
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3.5.2 Gyrokinetic equation solved in GENE

The gyrokinetic equation solved in GENE is given by (see Ref. 79)

∂gkj
∂t

= L [gkj] +D [gkj] +N [gkj, gkj] , (3.60)

where L represents a linear term, D a dissipation term and N a nonlinear term, and gkj is

given by

gkj = fkj + vTjv‖
qjF0j

T0j

J0kjA1‖k . (3.61)

The linear term L [gkj] can itself be written in terms of three components,

L [gkj] = LG [gkj] + LK [gkj] + L‖ [gkj] , (3.62)

where LG captures the effect due to temperature and density gradients, LK the effect due to

magnetic curvature, and L‖ the parallel effects due to magnetic trapping and linear Landau

damping. Specifically, the first linear term is

LG [gkj] = −
[
ωnj +

(
v2
‖ + µB0 − 2/3

)
ωTj
]
F0j ikyχkj , (3.63)

where ωn = ∇ lnn is the logarithmic density gradient, ωT = ∇ lnT is the logarithmic

temperature gradient, and χkj is given by

χkj = J0kjφ1k − vTjv‖J0kjA1‖k . (3.64)

Moreover, the second linear term is

LK [gkj] = −
T0j

(
2v2
‖ + µB0

)
qjB0

(Kx ikx +Ky iky)hkj , (3.65)
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where Kx and Ky are geometric factors that depend on the metric coefficients defined in Sec.

4.5.2,

Kx = −Lref

Bref

gxxgyz − gyxgxz

B2
0

∂B0

∂z
,

Ky =
Lref

Bref

gxygyz − gyygxz

B2
0

∂B0

∂z
.

(3.66)

The last of the three linear terms, L‖, is given by

L‖ [gkj] =
vTj

2B0J(z)

{
hkj
F0j

, g

}
z,v‖

, (3.67)

where the Poisson bracket represents the operation

{f, g}q,p =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (3.68)

The dissipation term contains the hyper diffusion operators, which are particularly useful

when there are no collisions,

D [gkj] =
(
ax∂

n
x + ay∂

n
y + az∂

n
z + av‖∂

n
v‖

)
hkj , (3.69)

where typically n = 4 and the coefficients ax,y,z,v‖ can be adapted to the physical problem

at hand. The nonlinear term captures the E ×B drift velocity,

N [gkj, gkj] =
∑
k′

∑
k′′

(
k′′yk

′
x − k′′xk′y

)
χk′jhk′′jδk−k′−k′′

=
∑
k′

(
kyk

′
x − kxk′y

)
χk′jh(k−k′)j

=
∑
k′

(
kyk

′
x − kxk′y

)
χk′jg(k−k′)j .

(3.70)
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3.6 Summary

The main steps necessary to follow the derivation of gyrokinetic theory have been described.

In brief, the guiding-center formalism breaks down in the presence of low-frequency electro-

magnetic fluctuations on the order of the gyroradii. Specifically, the magnetic moment µ

acquires a fluctuating component with gyro-angle dependence and therefore loses its exact

invariance. With a second coordinate transformation from guiding-center coordinates to

gyro-center coordinates, a new magnetic moment µ can be constructed that is invariant [71].

This coordinate transformation generates an appropriate gyrokinetic one-form that can be

used to find the equations of motion necessary to solve the gyrokinetic Vlasov equation.
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CHAPTER 4

The GENE Code

The GENE code has been developed by Professor Frank Jenko and his team since the

2000s [29,30]. Over time it has acquired many features that allow it to model fusion plasmas

with an increasing degree of realism. For example, it can model the plasma in both local

and global geometries [80]. In this section we only highlight the main features of the code

that have been instrumental in the success of the present work. Of particular note are

the local flux-tube approximation (allowing numerically efficient spectral methods to be

employed), the realistic implementation of E ×B shear implemented by Daniel Told [76],

the so-called GyroLES techniques implemented by Alejandro Bañón Navarro [79], and the

Sugama collision operator recently implemented by Paul Crandall into GENE.

4.1 Boundary Conditions in GENE

The spatial coordinates in GENE are defined as

x = ρ

y = (qθ − ζ)Cy

z = θ ,

(4.1)

where ρ = (Φ/Φedge)
1/2 is the toroidal flux radius and Φedge is the toroidal flux at the

separatrix, so that ρ is often considered as a flux surface label. Moreover, θ is the straight

field line angle, ζ is the toroidal angle and q(ρ) is the safety factor, which is a function of
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the flux surface. The coefficient Cy is a constant, defined as

Cy =
ρ0

q0

, (4.2)

where q0 = q(ρ0) and ρ0 = x0, which is the reference position in GENE and is typically in

the center of the radial extent of the box.

4.1.1 Boundary Conditions in the binormal direction

A tokamak is periodic in the toroidal (ζ) and poloidal (θ) directions. The toroidal periodicity

requirement translates into a boundary condition for the binormal direction (y) in GENE.

Starting with the toroidal periodicity,

f(ρ, ζ, θ) = f(ρ, ζ + 2π, θ) , (4.3)

we get the equivalent requirement in GENE coordinates,

f(x, y, z) = f(x, y − Cy2π, z) . (4.4)

Therefore, in order to cover one full toroidal turn, a simulation domain must have a binormal

extent of Ly = 2πCy. Physically, the turbulent correlation lengths are much smaller than

one full toroidal turn, such that in practice a binormal simulation domain that is an integer

fraction of a full toroidal length can be considered,

Ly =
2πCy
n0

=
2πx0

n0q0

, (4.5)

where n0 is the lowest resolved toroidal mode number. At the same time, approximate

periodicity can be assumed,

f(x, y, z) = f(x, y − Ly, z) . (4.6)
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As a consequence of this approximate periodicity, GENE models the toroidal direction in

Fourier space with the following mode numbers

ky = jky,min = j
2π

Ly
=
jn0

Cy
, (4.7)

where ky,min = 2π/Ly is the lowest resolved wavenumber and for n0 = 1 corresponds to the

lowest wavenumber of the system.

4.1.2 Boundary Conditions in the parallel direction

Poloidal periodicity in a tokamak demands that

f(ρ, ζ, θ) = f(ρ, ζ, θ + 2π) , (4.8)

which, in GENE coordinates, corresponds to

f(x, y, z) = f(x, y + 2πqCy, z + 2π) . (4.9)

In pseudo-spectral notation, this gives

f(x, y, z) =
∑
ky

f(x, ky, z)e
ikyy =

∑
ky

f(x, ky, z + 2π)eiky(y+2πqCy) . (4.10)

Using kyCy = jn0 from the previous section, it follows that

f(x, ky, z) = f(x, ky, z + 2π)ei2πjn0q(x) . (4.11)

This will form the boundary condition for global simulations, where periodic radial boundary

conditions are not enforced. However, in the local simulations, the artificial radial periodicity

further constrains the boundary conditions. To capture the radial dependence of q(x) we do
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a Taylor expansion,

q(x) ≈ q0 + (x− x0)
∂q

∂x
= q0

(
1 +

x− x0

x0

ŝ

)
, (4.12)

where

ŝ =
x0

q0

∂q

∂x
. (4.13)

We get

f(x, y, z) =
∑
kx,ky

f(kx, ky, z)e
ikxxeikyy

=
∑
kx,j

f(kx, ky, z + 2π)eikxxeikyyei2πjn0q(x)

(4.14)

Looking only at the exponents with radial dependence in the last line above, we get

kxx+ 2πjn0q(x) = kxx+ 2πjn0q0 + 2πjn0
q0

x0

(x− x0) ŝ

=

(
kx + 2πŝ

jn0

Cy

)
x+ 2πjn0q0(1− ŝ)

= (kx + 2πŝky)x+ 2πjn0q0(1− ŝ)

(4.15)

where we have used the relations Cy = x0
q0

and ky = jn0

Cy
. This gives the boundary conditions

to be enforced in the local simulations,

f(kx, ky, z) = f(kx, ky, z + 2π)ei(kx+2πŝky)xei2πjn0q0(1−ŝ) . (4.16)

In order resolve the modes with effective wavenumber keff = kx + 2πŝky that arise naturally

due to the parallel boundary conditions, the following condition has to be satisfied

keff,min = kx,min + 2πŝky,min = kx,min

(
1 +

2πŝky,min

kx,min

)
= kx,min (1 +N ) , (4.17)

46



where keff is an effective wavenumber present in the system and N ∈ Z+. This gives the

following constraint on the minimum radial mode number,

kx,min =
2πŝky,min

N
, (4.18)

which translates to

N =
2πŝLx
Ly

. (4.19)

4.2 Observables in GENE

The GENE code has the capabilities to analyze a variety of observables, such as density

and temperature fluctuation amplitudes and turbulence cross-phases. This work focuses

mainly on the radial heat transport, so it is instructive to review the method with which this

observable is obtained [81]. It is derived as a moment of the perturbed part of the particle

coordinate distribution function, f
(pc)
1 ,

Qj =

〈∫
d3v

1

2
mjv

2f
(pc)
1 vD · ∇x

〉
· V ′ , (4.20)

where mj is the mass of the j-th particle species, vD is the drift velocity, 〈...〉 is an average

over the flux-surface. Moreover, V ′ = ∂V/∂x is the radial gradient of the volume enclosed

by the flux-tube. The particle coordinate distribution function, f
(pc)
1 , is derived from the

gyro-center distribution function, f
(gc)
1 , with

f
(pc)
1 = f

(gc)
1 + F0j

[
qj
(
φ1 − φ1

)
+ µB1‖

T0j

]
, (4.21)

where F0j is the equilibrium Maxwellian with temperature T0j and the overbar signifies

a gyro-averaged quantity as before. Note that the above transformation from gyro-center

distribution to particle-center distribution function includes an intermediate step from gyro-

center to guiding-center and from guiding-center to particle-center distribution functions.

The steps of this coordinate transformation are qualitatively similar to the steps taken in
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the derivation of gyrokinetics in Chapter 3. For example, this transformation involves the

push-forward operator,

Tn = exp (εnLn) ≈ 1 + εnLn , (4.22)

rather than its inverse, the pull-back operator, of Eq. 3.28. Therefore, we do not elaborate

upon the detailed steps of this transformation here (for details, see [79, 82]). The drift

velocity vD represents the generalized E×B drift velocity that arises due to the fluctuating

perturbations in the potentials,

vD ≈
c

B2
0

B0 ×∇ [φ1 − v ·A1/c] , (4.23)

where φ1 is the electrostatic and A1 is the vector potential [81]. This summarizes the

computation of the radial heat transfer in the GENE code.

4.3 Treatment of Electric Field Shear

The flow shear, which is defined as the radial gradient γE ≡ ∂vE×B/∂r, can have an important

effect on turbulent heat transport. Typically, it becomes relevant when the shearing rate is

similar or larger than the maximum linear growth rate, γE & γlin [83]. The radially varying

flow can shear turbulent eddies in the poloidal direction, which increases their poloidal

correlation length and reduces their radial correlation length [84, 85]. This can lead to

experimentally relevant improvements in particle and energy confinement. The vE×B velocity

is a function of both the radial electric field and the magnetic field. The radial electric field

is given by the radial force balance equation,

Er =
∇pi
Zne

+ vθBζ − vζBθ , (4.24)

where pi is the ion pressure and vθ the poloidal velocity and vζ the toroidal velocity of the

ions. Close to the edge, the dominant terms in the above equation are those involving the

pressure gradient and the poloidal velocity. Further from the LCFS the term involving the
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toroidal velocity, which is driven by the co-injected neutral beam, dominates.

In GENE, there exist two ways to implement a flow shear that each have their strengths

and weaknesses. In the first method, one can introduce an external electrostatic potential to

the E×B-drift term, which was implemented by Tobias Görler. While the external potential

can take an arbitrary form in global simulations, periodic boundary conditions in the flux-

tube approximation mandate an external potential that is also periodic, φ(x) = φ0 sin(kxx).

This implementation has the advantage of minimal additional computational complexity,

but has the disadvantage that it is not radially uniform in the flux-tube model. In practice,

it is often used to study tertiary instabilities.

In the second method, a radially constant shear flow that varies poloidally throughout the

flux-tube was implemented by Daniel Told using a method developed by Hammett et al. [86].

In the Hammett E × B model∗, a transformation into the co-moving coordinate system of

the equilibrium flow and a discrete time evolution of the sheared radial wavenumber greatly

reduce computational intensity while maintaining acceptable numerical accuracy [86]. This

method is described in the following first in a slab picture for illustration and then for the

local flux-tube simulations.

The goal of Hammett’s model is to maintain the periodicity of the simulation domain

such that numerically efficient spectral methods can be employed while accounting for the

effects of E ×B shear. Translation into the frame moving with the flow shear gives

x′ = x

y′ = y − xγEt

t′ = t .

(4.25)

In pseudo-spectral notation, the distribution function in the moving frame has the form

f(x′, y′, t′) =
∑
k

fk(t
′)ei[kxx

′+kyy′] (4.26)

∗https://w3.pppl.gov/ hammett/refs/2006/APS06-Hammett-ExB.pdf, date accessed: Aug 2nd, 2018
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where we have ignored three dimensions (z, v‖, µ) for simplicity. Transforming back to the

stationary laboratory coordinates gives

f(x, y, t) =
∑
k

fk(t)e
i[kxx+ky(y−xγEt)]

=
∑
k

fk(t)e
i[(kx−kyγEt)x+kyy)

=
∑
k

fk(t)e
i[k∗x(t)x+kyy]

(4.27)

Therefore, this transformation introduces an effective time-dependence to the radial wave

number

k∗x(t) = kx − kyγEt . (4.28)

To avoid a costly re-initialization of many parts of the code with each time-step, the distri-

bution function and electromagnetic fields are shifted at time intervals ∆t whenever k∗x(t)

differs from kx by more than ∆kx/2, where ∆kx = 2π/Lx is the grid spacing and Lx is the

radial box size,

f(k∗x, ky)→ f(kx −∆kx, ky) . (4.29)

This discrete evolution in time is effectively 2nd order accurate and converges well [86]. These

shifts occur at a frequency of 1/∆t = 2kyγE/∆kx, such that modes with large wave numbers

experience more shifts per unit time. Moreover, note that the finite size of the simulation

box requires a definition of the boundary conditions for the flow shear. In GENE, these

are defined such that components of the distribution function that leave the domain are

discarded and those entering the domain are initially set to zero. Therefore, this method

introduces some artificial dissipation into the simulation. Convergence studies can be used to

reduce numerical artifacts associated with discrete time-stepping. Specifically, ∆kx = 2π/Lx

can be reduced by increasing the box size. Note that an increase in radial box size should

be accompanied by a proportional increase in the number of radial grid points to maintain

a similar level of radial resolution. Throughout this work, the Hammett E×B shear model

is well-suited for the near-edge region.
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The Hammett E × B model does not work well with very large shearing rates or in

environments where prohibitively large radial box resolution and size are required such as in

the edge region (ρ > 0.95). Here, steep gradients and large magnetic shear co-exist with large

flow shear. Therefore, Tobias’ E × B implementation is better suited for the edge region

as part of a global simulation in future work. Note that the rigorous implementation of a

general background field would require a different derivation of the gyrokinetic equations,

i.e. a modified background distribution function F0, which may become subject of a future

GENE feature.

4.4 Description of GyroLES Techniques

Big whirls have little whirls that feed on their velocity,

and little whirls have lesser whirls and so on to viscosity.

– Lewis F. Richardson

In order to significantly reduce the computational cost of gyrokinetic simulations while

maintaining an acceptable level of accuracy, so-called GyroLES techniques have been imple-

mented into GENE by Alejandro Bañón Navarro [79]. To properly motivate these techniques,

which were instrumental for the success of multi-scale simulations presented in this work,

we start by describing turbulence in neutral fluids following Ref. 79. Neutral fluids form a

useful starting point for two reasons: (i) Physically, neutral fluids provide a simple picture

of the general properties of plasma turbulence (with some limitations as described below),

and (ii) historically, the study of neutral fluids has first given rise to so-called “Large Eddy

Simulation (LES)” techniques that were later adapted to gyrokinetics to form “GyroLES”

techniques.

In order to highlight the general properties of neutral fluid turbulence, recall that the

Navier-Stokes equation is given by

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ νρ∇2v + f(x, t) , (4.30)
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where v(x, t) is the velocity of a fluid element at position x and time t. Moreover, ρ is the

mass density, p is the fluid pressure, ν is the kinematic viscosity, and f(x, t) represents the

external forcing. Note that the Reynold’s number is defined as the ratio between inertial

force term (v · ∇v) and the viscous force term (ν∇2v),

Re ≡ Fi

Fν

=
v · ∇v

ν∇2v
. (4.31)

Systems with a low Reynold’s number are dominated by viscous forces and show laminar

flow, while systems with high Reynold’s numbers show turbulent flow via eddies at many

different length scales. By taking the dot product of the Navier-Stokes equation with v

while assuming that the fluid is incompressible (∇ · v = 0), we get the energy conservation

equation
dEv
dt
≡ d

dt

∫
1

2
ρv2 dx =

∫
v · f dx− ν

∫
ρ (∇× v)2 dx , (4.32)

where any change of kinetic energy on the left hand side is caused by a difference in energy

input due to external forcing (usually at large scales) and viscous heat dissipation (typically

at small scales). In a turbulent steady state, the total energy in the system is constant in

time, so the forcing and viscous dissipation terms are equal,

dEv
dt

= 0→
∫

v · f dx = ν

∫
ρ (∇× v)2 dx = mε, (4.33)

where ε is the energy flux per unit mass and m is the mass of a fluid element. As mentioned

above, the forcing and dissipation ranges are separated by large scales. When there is neither

forcing nor dissipation, the transport is inertial (see Figure 4.1).

At the boundary between the inertial scales and the dissipation scales, the viscosity

becomes important. This boundary is located at the co-called transition length scale lν , also

known as the Kolmogorov scale. This transition length is proportional to the energy input

into the system ε and the viscosity ν, which invites the approximate power law

lν ∝ ναεβ . (4.34)
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The order of magnitude of lν can be determined using the following considerations. As

the viscosity becomes important, the Reynold’s number approaches unity (Re ∼ 1). This

corresponds to an inertial force term (Fi) that is approximately balanced by the viscous force

term (Fν),

v · ∇v ∼ ν∇2v . (4.35)

Using order of magnitude relations, we get

v2

lν
∼ ν

v

l2ν
. (4.36)

Solving for the transition length lν gives

lν ∼
ν

v
. (4.37)

In order to express v in terms of ε, we note that in a turbulent steady-state the energy

dissipated by the viscous force is equal to the injected energy ε,

ε ∼ Fνv ∼ ν
v2

l2ν
. (4.38)

Rearranging the above two relations and solving for the transition length lν gives

lν ∼
(
ν3

ε

)4

. (4.39)

Kolmogorov’s theory of a “cascade” of energy transport from large scales to small scales is

based on the “local hypothesis” that the energy flux is transferred most efficiently between

eddies of similar size until it begins to be dissipated at kν = 1/lν . The scaling for the

turbulent heat flux spectrum in neutral fluids can be qualitatively derived as follows. Writing

the total energy in spectral notation (setting units of mass to unity), we get

Ev = 〈v
2

2
〉V =

∫
E(k) dk . (4.40)
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Dimensionally, energy has the units [L2/T 2], while in spectral notation it has the units

[L3/T 2]. Kolmogorov assumes that the energy flux spectrum in the inertial range depends

only on the local scales k and the energy flux ε (and not on viscosity ν),

E(k) ∼ kαεβ . (4.41)

Dimensional analysis gives

[E(k)] =

[
1

L

]α [
L2

T 3

]β
=

[
L3

T 2

]
. (4.42)

where we can solve the equations β = 2/3 and 2β − α = 3 to give α = −5/3 and

E(k) ∼ k−5/3ε2/3 . (4.43)

This scaling is illustrated in Figure 4.1 and is a surprisingly accurate description of turbulent

transport spectrum in the inertial range of neutral fluids.

While not näıvely transferable to plasmas, the general features of the above model of

neutral turbulence are preserved when studying fusion plasmas. For example, an effective

“gyrokinetic inertial range” in a perpendicular free energy cascade has been identified for

ITG turbulence [87]. However, this effective inertial range is different from the inertial range

in neutral fluid turbulence, because technically a clear separation between the forcing and

the dissipative range is non-existent in plasma turbulence due to the presence of damped

modes at all wavenumbers [88]. For example, this can be due to Landau damping, which is

an additional dissipation mechanism that is unique to plasma turbulence [71, 89]. Nonethe-

less, in plasma turbulence the effective inertial range is bounded at the large scales by a net

turbulence drive from background gradients and at small scales by a net dissipation via col-

lisions. Moreover, in the numerical study of fusion plasmas, the study of turbulent transport

over the entire wavenumber range of unstable modes still poses a challenge for even the most

modern supercomputers. As a result, it sometimes becomes necessary to employ so-called

GyroLES techniques. These have been developed to replace unresolved wavenumbers with
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Figure 4.1: Illustration of the Kolmogorov scaling in the inertial range of the turbulent heat
flux spectrum. Reprinted with permission from [79].

a model and thereby avoid the unphysical build-up of free energy at the highest resolved

wavenumbers [90–92] (see Figure 4.2).

Figure 4.2: Illustration of the GyroLES method. The GyroLES tool approximates any
unresolved dissipation (purple curve) with a model, avoiding an unphysical build-up of free
energy at the highest resolved wavenumbers (red curve) and ensuring that the resolved
wavenumber domain represents reality (blue curve). Reprinted with permission from [79].

Given the above physical and practical motivation for GyroLES techniques, we now briefly

summarize its implementation. Recall that the gyrokinetic equations solved by GENE can

be expressed as (see Eq. 3.60)

∂gkj
∂t

= L [gkj] +D [gkj] +N [gkj, gkj] . (4.44)
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When we now reduce the number of grid points in the perpendicular direction (nx, ny), then

this can be thought of as a form of filter. This filter is time-independent and also commutes

with the gradient operators in the terms L and D, but not N [79]. Writing the filtered

quantities Q as Q̂, we get

∂ĝkj
∂t

= L [ĝkj] +D [ĝkj] + N̂ [gkj, gkj] , (4.45)

where N̂ still depends on the unfiltered distribution function gkj. This can now be separated

into two components

N̂ [gkj, gkj] = N [ĝkj, ĝkj] +M [ĝkj] , (4.46)

where M [ĝkj] is a model representing the unresolved nonlinear interaction using the resolved

and filtered distribution function ĝkj. This model term takes the general form

M
[
c⊥, ∆̂, ĝkj

]
= −c⊥∆̂n+1/3kn⊥ĥkj , (4.47)

where c⊥ is an effective dissipation coefficient that is proportional to the free energy flux,

ĥkj is the resolved non-adiabatic part of the distribution function (see Eq. 3.55), ∆̂ is an

effective filter width defined by the largest resolved scales in Fourier space,

∆̂ ≡ 1

k⊥,max

, (4.48)

and k⊥ is the perpendicular wavenumber of turbulent fluctuations,

k2
⊥ = gxxk2

x + 2gxykxky + gyyk2
y . (4.49)

On dimensional grounds c⊥ ∝ ε
1/3
f , where εf is the free energy flux. The free energy flux

is assumed to be constant from scale to scale in the effective gyrokinetic inertial range.

Therefore, care must be taken to choose the resolved scales k⊥,max such that they fall within

this range. The above model can be further refined to take into account anisotropies in the
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perpendicular directions,

M
[
cx, cy, ∆̂x, ∆̂y, ĝkj

]
= −

(
cx∆̂

n+1/3
x knx + cy∆̂

n+1/3
y kny

)
ĥkj . (4.50)

Note that the above implementation of LES techniques is similar to the constant 2D

hyper-viscosity terms already implemented in many gyrokinetic codes [93]. However, the

implementation in GENE by Alejandro Bañón Navarro is presently unique in that the model

term is dynamically re-calibrated throughout the simulations (e.g. every 50th timestep). This

calibration is carried out at the resolved scales as follows. During the simulation one can

estimate the free energy flux εf from scale to scale by sampling a narrower part of the heat

flux spectrum, i.e. up to k′⊥ < k⊥,max. This is equivalent to perturbatively applying a larger

filter, ∆̂ → ∆̂ + δ > ∆̂. Assuming that an effective gyrokinetic inertial range exists, where

εf is approximately conserved from scale to scale, one can calculate εf at k′⊥ and ensure that

the free energy is conserved between k′⊥ and k⊥,max by introducing the appropriate artificial

dissipation in the range k′⊥ < k⊥ ≤ k⊥,max. This ensures that the free energy does not

build up to unphysical levels at k⊥,max due to unresolved dissipation at larger wavenumbers,

k⊥ > k⊥,max. For adequate calibration, it is important that the largest resolved wavenumber

k⊥,max is well within the effective gyrokinetic inertial range. Empirically, the dynamically

calibrated GyroLES method sacrifices some physical accuracy in exchange for computational

savings by a factor of 20 [79]. As a result of these large savings in computational resources,

this thesis is able to present multi-scale simulations that resolve both electron scales and ion

scales in the near-edge of L-mode plasmas (at ρ = 0.80) for the first time.

4.5 Treatment of Geometry

GENE can model the plasma in a local (toroidal flux-tube) or a nonlocal (radial annulus)

simulation domain. The local approximation is preferred where applicable, because periodic

boundary conditions in both the radial (x) and binormal (y) directions allows us to employ

numerically efficient spectral methods.
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4.5.1 Flux-Tube Approximation

Considering only single-particle motion, we find that without collisions the particles remain

confined to motion on a flux-surface. Due to the toroidal periodicity of the magnetic field, the

electromagnetic Lagrangian is independent of toroidal angle and gives a conserved angular

momentum,

pcan = (mvφ − qAφ)R ≈ mv‖R− qψ = const. , (4.51)

where pcan is the canonical momentum, ψ is the poloidal magnetic flux and Aφ is the vector

potential contributing to the poloidal component of the magnetic field [7]. The total energy

E of each particle is another conserved quantity due to time-independence of the Lagrangian,

E =
1

2
mv2
‖ + µB = const. (4.52)

Since v‖ remains bounded by the conserved energy E and the adiabatic invariant µ, the

particle motion is bounded around a certain flux-surface ψ. This motivates the flux-tube

approximation.

Throughout a flux-tube, the physical parameters are Taylor expanded to first order

around the central coordinate r0 of the flux-tube. Parameters are therefore varying linearly

throughout a flux-tube. For example, the the safety factor q(r) is defined as

q(r) ≈ q0 +
dq

dr

∣∣∣∣
r0

(r − r0) = q0

(
1 + ŝ

r − r0

r0

)
, (4.53)

where

ŝ =
r0

q0

dq

dr

∣∣∣∣
r0

. (4.54)

4.5.2 Equilibrium geometry

The coordinate system of the magnetic field geometry presents a natural choice for the

coordinate system of gyrokinetic codes. Historically, gyrokinetic codes have initially solved

the plasma equations in simplified magnetic geometries such as slab and s−α geometry [94].
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Since then, geometries have been devised that are noncircular and able to include finite-

aspect-ratio effects [95] (as opposed to only large-aspect-ratio effects [?]). The inclusion of

realistic magnetohydrodynamic (MHD) equilibrium geometries has allowed for more accurate

simulations of both local and global effects [96]. For example, realistic magnetic geometry

has recently been used to predict the formation of internal transport barriers without velocity

shear as a result of a combination of high density gradients and a high Shafranov shift [97].

Due to the complexity of magnetic geometry in tokamaks (not to mention stellarators),

the coordinate system of choice is based on curvilinear coordinates. The basis vectors in this

system are neither orthogonal nor unit vectors, and their length and orientation can vary in

space. This can lead to interesting properties (see Appendix A). As a reduced example for

Figure 4.3: Example of a nested toroidal coordinate system. Reprinted with permission
from [80].

illustration, the metric tensor components for a nested toroidal coordinate system are given
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below [80]:

gxx = 1

gyy = (ŝz)2 +

(
q

q0

r0

r

)2

(1− 2ε cos ϑ)− 2
q

q0

ε0ŝz sin z

gzz =
1

r2
(1− 2ε cos ϑ)

gxy = gyx = ŝz − q

q0

ε0 sin z

gxz = gzx = −ε sin z

r

gyz = gzy =
1

r0

[
−ŝzε0 sin z +

q

q0

r2
0

r2
(1− 2ε cos ϑ)

]
,

(4.55)

where r0 is the radius of the reference flux surface, q0 is the magnetic shear at the reference

flux surface (see Eq. 4.53), ε is the inverse aspect ratio a/R (a is the minor radius and R

the major radius of the tokamak), ε0 is the inverse aspect ratio at the reference flux surface

r0/R, ϑ is the poloidal angle as shown in Fig. 4.3.

4.6 Treatment of Collisions

Collisional transport can contribute experimentally relevant levels of heat flux to plasma

experiments (see Fig. 4.4). GENE employs several methods to model the effect of collisions.

The two main methods are the Landau-Boltzmann collision operator and the more accurate

(but also computationally more expensive) Sugama collision operator [98] recently imple-

mented by Paul Crandall into GENE. Their main properties are briefly described below.

4.6.1 Landau-Boltzmann Operator

Recall that the distribution functions are separated into perturbed and Maxwellian back-

ground distributions,

fj = F0j + f1j , where f1j � F0j . (4.56)
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Figure 4.4: Illustration of neoclassical transport. Collisions of charged particles in a mag-
netic field with a temperature gradient contribute to thermal heat flux perpendicular to the
magnetic field. Reprinted with permission from [?].

The general Landau collision operator is a bilinear function of the full distribution functions

fj and fk, where j and k identify the colliding particle species of interest, and can be written

as [99]

Cjk(fj, fk) . (4.57)

With the splitting of the distribution functions into background and perturbed quantities,

the Landau-Boltzmann operator can be linearized into CL
jk of the following form

CL
jk(f1j, f1k) = Cjk(f1j, F0k) + Cjk(F0j, f1k) , (4.58)

where the first term Cjk(f1j, F0k) is the test-particle collision operator and the second term

Cjk(F0j, f1k) is the field-particle collision operator. The field-particle collision operator is

ignored in the following for simplicity. The test-particle collision operator is further given
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by

Cjk(f1j, F0k) = νjkD (v)λf1j + Cjkv f1j +
1

2

mj

Tk

(
1− Tk

Tj

)
1

v2

∂

∂v

[
νjk‖ (v) v5f1j

]
, (4.59)

where νjkD (v) is the collision frequency for pitch-angle scattering, λ is the pitch-angle scatter-

ing operator, νjk‖ (v) is the energy diffusion frequency, and the operator Cjkv acts on a general

function of velocity f(v) as follows

Cjkv f(v) ≡ 1

2

1

v2

[
νjk‖ (v) v4F0j

∂f(v)

F0j

]
. (4.60)

The above terms and operators are defined in more detail in Ref. [98]. The main purpose of

the above equations is to highlight the dependence of the last term in the collision operator

of Eq. 4.59 on the temperature ratio Tk/Tj. Mathematically, the linearized Landau collision

operator is no longer self-adjoint when the term containing the temperature ratio is non-

zero (i.e. when Te 6= Ti or TCarbon 6= TDeuterium). Since self-adjointness allows for a more

accurate numerical implementation of a collision model, the Sugama collision operator was

developed [98].

4.6.2 Sugama Operator

When the collisionality is very high and the temperature ratio between species is far from

unity, such as can be found in the near-edge region, the collision operator developed by

Sugama et al. can be used [98]. The Sugama collision operator, recently implemented by

Paul Crandall into GENE, is motivated by its mathematical property of self-adjointness and

its physical property of free energy conservation, in addition to the properties already present

in the Landau collision operator.

A comparison between the free-energy conservation of the two collision operators in the

near-edge (at ρ = 0.90) of a DIII-D L-mode plasma is shown in Fig. 4.5. In the simulation

with the Landau-Boltzmann collision operator the free energy grows with time. In the

simulation with a fourth-order Sugama collision operator (and otherwise identical simulation
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Figure 4.5: Comparison between the Landau-Boltzmann collision operator and the Sugama
collision operator at ρ = 0.90. When using the Landau-Boltzmann collision operator the free
energy was found to grow rather than being dissipated by collisions (green curve). This was
resolved by using the fourth-order Sugama collision operator, where free energy is dissipated
by collisions as expected (red curve).

parameters), the free energy is significantly dissipated by collisions, as expected. Collision

operators of fourth and sixth order are available to be employed as necessary to ensure

free energy dissipation. Note that the Landau collision operator is sufficiently accurate for

simulations with lower collisionality and smaller temperature ratio Ti/Te at a location further

inward in the near-edge (at ρ = 0.80) of the same L-mode plasma.

4.7 Summary

The main features of the GENE code that were employed in this work have been described

above. Of particular importance for the following results are the GyroLES techniques imple-

mented by Alejandro Bañón Navarro, the Sugama collision operator implemented by Paul

Crandall, and the E × B shear implemented by Daniel Told. Without the concomitant

resource savings of the GyroLES techniques, the multi-scale simulations presented in this

work would not have been affordable with typical supercomputer time allocations at the

National Energy Research Scientific Computing (NERSC). Moreover, the improved physical
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realism of constant E × B shear in the local flux-tube and of free energy dissipation by

the Sugama collision operator are important components of our simulation method. The

simulation results are described below.
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CHAPTER 5

Gyrokinetic GENE Simulations of DIII-D near-edge

L-mode plasmas

Large parts of the following text are from a paper accepted for publication in Physics of

Plasmas under the title “Gyrokinetic GENE simulations of DIII-D near-edge L-mode plas-

mas” by T. F. Neiser, F. Jenko, T. A. Carter, L. Schmitz, D. Told, G. Merlo, A. Bañón

Navarro, P. C. Crandall, G. McKee and Z. Yan (for an earlier version, see arXiv:1808.06607).

5.1 Abstract

We present gyrokinetic simulations with the GENE code addressing the near-edge region of

an L-mode plasma in the DIII-D tokamak. At radial position ρ = 0.80, simulations with the

ion temperature gradient increased by 40% above the nominal value give electron and ion

heat fluxes that are in simultaneous agreement with the experiment. This gradient increase is

consistent with the combined statistical and systematic uncertainty σ of the Charge Exchange

Recombination Spectroscopy (CER) measurements at the 1.6σ level. Multi-scale simulations

are carried out with realistic mass ratio and geometry for the first time in the near-edge.

These multi-scale simulations suggest that the highly unstable ion temperature gradient

(ITG) modes of the flux-matched ion-scale simulations suppress electron-scale transport,

such that ion-scale simulations are sufficient at this location. At radial position ρ = 0.90,

nonlinear simulations show a hybrid state of ITG and trapped electron modes (TEMs),

which was not expected from linear simulations. The nonlinear simulations reproduce the

total experimental heat flux with the inclusion of E × B shear effects and an increase in

the electron temperature gradient by ∼ 23%. This gradient increase is compatible with the
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combined statistical and systematic uncertainty of the Thomson scattering data at the 1.3σ

level. These results are consistent with previous findings that gyrokinetic simulations are

able to reproduce the experimental heat fluxes by varying input parameters close to their

experimental uncertainties, pushing the validation frontier closer to the edge region.

5.2 Introduction

In order to improve the energy confinement time of magnetic fusion experiments, a thorough

understanding of turbulent transport is necessary. The main carriers of cross-field transport

in tokamaks are gyroradius-scale micro-instabilities with scale lengths much smaller than the

machine size. These micro-instabilities are physically driven by electron and ion tempera-

ture gradients and density gradients. Since microturbulence is suspected to reduce energy

confinement time with an increase in heating power, its mitigation is of intrinsic interest to

the fusion community.

Paradoxically, a state of improved confinement arises together with steepened gradients

in the edge region when the heating power is increased above a certain threshold power, Pth.

This transition from low confinement mode (L-mode) to high confinement mode (H-mode)

was first discovered at the ASDEX tokamak in 1982 and has since been reproduced in all

major tokamaks [35,38]. H-mode is the favored operational regime for nuclear fusion reactors

and ITER. However, finding a self-consistent description of the L-H transition is a major

unsolved problem [38–40]. An important first step towards understanding the L-H transition

is to correctly describe L-mode in the near-edge and edge regions. This is also important

for ITER, which will be in L-mode during plasma current ramp-up and ramp-down phases;

correctly predicting the L-mode profiles is important for vertical stabilization of the plasma

during these phases [100, 101]. This motivates a study of micro-instabilities in the L-mode

near-edge just before an L-H transition.

Gyrokinetic theory provides an accurate description of microturbulence in magnetically

confined plasmas. Here, the assumptions of high background magnetic field, low frequencies

relative to the ion cyclotron frequency and small fluctuation amplitudes typically apply [102].
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Gyrokinetic codes such as GKV [65, 66], GEM [67, 68], GYRO [58] and GENE [69] have

been in good agreement with the experiment and with each other in the core of both L-

mode [59, 60, 81] and H-mode [103–105] plasmas. Similarly, the near-edge region of H-mode

plasmas has been successfully modeled [103, 104, 106]. However, these codes have been in

occasional disagreement in the near-edge of L-mode plasmas. For example, simulations have

shown an underprediction of heat transport of ∼ 7 for GYRO [59] and ∼ 2 for GENE [81]

for nominal parameters of DIII-D discharge #128913. This has raised fears of an apparent

systematic shortfall of heat flux predictions [59,60]. However, these fears have recently been

reduced [53, 54, 81, 107, 108]. For example, increasing the ion temperature gradient within

the experimental error bars has produced flux-matched simulations with GENE [81]. Recent

GYRO simulations of a different L-mode discharge, namely DIII-D #101391, have revisited

this shortfall problem and found good agreement with experiment [108]. Similarly, the

CGYRO code [109] matches the experimental heat flux of this discharge [108], as does the

GENE code. Studies with GYRO on the Alcator C-Mod tokamak have also been in good

agreement with experiment near the edge region of L-modes, with the use of multi-scale

simulations in some cases [53, 54]. These gyrokinetic validation exercises reduce fears that

the shortfall is a universal feature of near-edge L-mode plasmas. However, these fears have

not been completely removed yet. Moreover, the role of microturbulence and its interactions

on multiple scales is still poorly understood in the near-edge. Therefore, there exists a

continued need for code validation and microturbulence characterization in the near-edge of

L-mode plasmas.

As part of the above gyrokinetic simulation studies, it has become apparent that in-

teractions between microturbulent modes at large and small scales (multi-scale effects) are

sometimes important. The microturbulence modes usually seen in the core are Ion Temper-

ature Gradient (ITG), Electron Temperature Gradient (ETG) and Trapped Electron Modes

(TEM). These modes are also expected in the near-edge region, in addition to resistive-

ballooning modes that can arise due to the high collisionality here [61–63]. In the past,

it was thought that experimentally relevant heat flux is mainly carried by TEM and ITG

modes [25], because these modes transport energy on scales larger than the ion gyroradius
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(k⊥ρi . 1), while ETG modes (k⊥ρi � 1) transport energy on much smaller scales. How-

ever, gyrokinetic simulations in the early 2000s by Jenko and Dorland predicted that ETG

modes can create radially elongated streamers that can contribute experimentally relevant

heat transport [29–31]. This was later demonstrated by observations at the National Spher-

ical Torus Experiment (NSTX) [47] and DIII-D [48]. However, it is not clear how ETG

streamers interact with large-scale modes. In principle, this can be answered by multi-scale

simulations that resolve the important wavenumber range for both ion- and electron-scale

turbulence. Pioneering multi-scale simulations with a reduced mass ratio (
√
mi/me ≈ 20)

and simplified geometry have found a heuristic rule that can gauge the relevance of the

ETG-scale contribution to the overall heat transport [49–52]. More recent multi-scale sim-

ulations with realistic mass ratio and geometry in the tokamak core have found that the

degree of instability of ITG modes is a critical parameter determining the degree of cross-

scale interactions [53–55]. These multi-scale simulations have instructed a recent model for

saturation of multi-scale turbulence by zonal flow mixing, which has given rise to another

potentially useful heuristic rule for gauging the importance of multi-scale interactions using

linear simulations [56]. Since these heuristic rules provide useful physical insight and can

save computational resources, it is helpful to validate these rules with further multi-scale

simulations.

To address these issues, we present a gyrokinetic validation study of a DIII-D near-

edge L-mode plasma just before an L-H transition with the gyrokinetic turbulence code

GENE. Our primary finding is that gyrokinetic simulations are able to match the heat-flux

in the near-edge† of the L-mode plasma at ρ = 0.8 and ρ = 0.9 within the uncertainty of the

experiment at the 1.6σ and 1.3σ levels, respectively. In the course of this validation study, we

make three secondary findings. First, current heuristic rules for the relevance of multi-scale

effects appear to be on the cautious side; multi-scale simulations at ρ = 0.80 suggest that

single-scale simulations can be sufficient in a scenario when multi-scale effects are expected,

which could increase the realm of applicability of single-scale simulations. Second, the effect

†We loosely define the near-edge as 0.80 ≤ ρ ≤ 0.96, where ρ = (Φ/Φedge)
1/2 is the toroidal flux radius

and Φedge is the toroidal flux at the separatrix.

68



of edge E ×B shear is found to be already important in the near-edge at ρ = 0.90, which

was unexpected. Third, nonlinear simulations at ρ = 0.90 find a hybrid ion temperature

gradient (ITG)/ trappend electron mode (TEM) scenario, which was not obvious from linear

simulations. This successful validation exercise helps push the gyrokinetic validation frontier

closer to the L-mode edge region.

5.3 Summary of Experimental Data

Figure 5.1: Time traces of various properties of DIII-D discharge #153624. From top to
bottom in the left column, we have plotted the Dα recycling light emission, the line integrated
density, the total energy stored in the plasma, the electron cyclotron heating (ECH) power
and the NBI heating power. From top to bottom in the right column, we have plotted the
ohmic heating power, the normalized plasma beta, the toroidal magnetic field, the plasma
current and the power radiated in the lower diverter. The plots show that the plasma
undergoes three L-H transitions, the first from ECH and the second two from NBI heating.

The subject of this study is DIII-D discharge #153624. This discharge exhibits three

L-H transitions, where the first was induced with Electron Cyclotron Resonance Heating
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(ECRH) and the following two with Neutral Beam Injection (NBI) heating (see Fig. 5.1).

Note the marked variation in line integrated density and total energy stored in the plasma

as the plasma transitions three times between low and high confinement modes. Figure 5.2

shows highly resolved time-traces taken at ρ = 0.96 during the second L-H transition (since

we focus our study on t0 = 2400 ms, only data relevant to this transition is shown). Note
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Figure 5.2: Time traces of vE×B shear velocity, density fluctuation amplitude and Dα recy-
cling light emission at ρ = 0.96 during an L-H transition. This work studies the L-mode in
the near-edge, defined here as 0.80 ≤ ρ ≤ 0.96, and focuses at t = 2400 ms, before transition
times tLCO = 2436 ms and tH = 2480 ms shown by vertical dashes.

the remarkable change in density fluctuation amplitude ñ/n and divertor Dα recycling light

emission as the plasma changes its operational state from L-mode to H-mode via an extended

phase of Limit Cycle Oscillations (LCOs) [64, 110]. The E ×B velocity vE×B and density

fluctuation amplitude were obtained with the Doppler Backscattering (DBS) diagnostic [111],

which probes a wavenumber range of 0.3 . kyρs . 0.6.

The plasma is in the lower single-null shape, where the ion ∇B-drift direction is towards
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the single active X-point and the power threshold for the L-H transition is relatively low (as

compared to the upper single-null shape) [38]. Therefore, the neutral beam is deliberately

operated at a relatively low beam power of 1.1 MW, which is in the vicinity of this power

threshold. In steady-state operation, this heating power plus Ohmic heating is comparable

to the total heat flux relevant for flux-matching gyrokinetic simulations. Note that the heat

flux is typically carried by radiation losses and by radial conductive and convective transport

due to microturbulence in the electron and ion channels, which are sometimes difficult to

separate empirically at moderate to high collisionality.

This work will focus on a constant time t0 = 2400 ms, because this is when the turbulence

is still in a quasi-steady equilibrium state before the L-H transition begins (see Fig. 5.2). At

t0 the plasma has temperature and density profiles as shown below in Figure 5.3. Both the
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Figure 5.3: Experimental profiles of electron density (green), electron temperature (red)
and ion temperature (blue). This work studies the L-mode plasma in the near-edge with
nonlinear simulations at ρ = 0.80 and ρ = 0.90 as indicated by the vertical dashes.

electron temperature and density are measured by the Thomson scattering diagnostic. This

method produces highly resolved profile data for the electrons, but cannot be used effectively

for the ions. This is due to their much lower Thomson scattering cross section σt, which scales

as σt ∝ 1/m2
j , where mj is the mass of the scattered charge. Therefore, a Charge Exchange

Recombination Spectroscopy (CER) diagnostic is used for the impurity ions, which studies
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the emission lines from neutral beam injection. Specifically, the impurity ion CER diagnostic

detects predominantly charge exchange recombination radiation from fully ionized impurity

Carbon ions (C6+). The measured Carbon temperature profile is assumed to be equal to the

Deuterium ion temperature profile in this discharge.

In general, the comparatively lower detection number statistics of CER data versus Thom-

son data causes the statistical uncertainty of the ion temperature to be larger than the un-

certainty in the electron temperature (see Fig. 5.4). For instance, the statistical uncertainty

for the ion temperature gradients at ρ = 0.80 is estimated to be σITG, stat ∼ 15% (see Sec-

tion 5.4). On the other hand, the statistical uncertainty in the electron temperature gradient

(ETG) at ρ = 0.90 is estimated to be σETG, stat ∼ 8%. Moreover, the systematic uncertainty

for both electron and ion temperature gradients is estimated to be σsys ∼ 10%. Recall that

only slightly more than two thirds (68%) of normally distributed measurements fall within

1σstat, while most (95%) fall within 2σstat and nearly all (99.7%) fall within 3σstat of the

mean. Therefore, changes in temperature gradient of up to ≤ 2σstat + 1σsys can reasonably

be attributed to combined uncertainties in the measurement and model assumptions∗.

The physical parameters at four radial positions in the near-edge and edge region are

summarized in Table 5.1. The variables in the table are defined as follows. The logarithmic

gradients are defined as

ωX = − 1

X

dX

dρ
, with X ∈ {Ti, Te, n} , (5.1)

where ρ = (Φ/Φedge)
1/2 is the toroidal flux radius normalized by Φedge, which is the toroidal

flux at the separatrix. The shear parameter is given by

ŝ =
ρ

q

dq

dρ
, (5.2)

where q is the safety factor. The electron beta is defined as the ratio of thermal to magnetic

∗We conservatively add statistical and systematic errors linearly rather than in quadrature.
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Figure 5.4: Close-up view of electron (red line) and ion temperature profiles (blue line) with
experimental data from the CER (blue circles) and Thomson diagnostics (red triangles).
The data was collected in a ±20 ms time window centered at t0 = 2400 ms. The total
(systematic and statistical) uncertainty σ in the ion temperature gradient (ITG) at ρ = 0.80
is estimated to be σITG ∼ 25%. The uncertainty in electron temperature gradient (ETG) at
ρ = 0.90 is estimated to be σETG ∼ 18% (see Section 5.4). For reference, we show a 40%
increase in ITG at ρ = 0.80 (dotted line) and a 23% increase in ETG at ρ = 0.90 (dashed
line).

pressure,

βe =
neTe

B2
ref/2µ0

, (5.3)

where Bref is the magnetic field on axis and the other variables take their usual meaning.

The effective atomic number of the plasma, Zeff = ΣiZ
2
i ni/ne, is greater than that of a pure

Deuterium plasma (Z = 1) mostly due to Carbon impurities that enter the plasma from the

divertor and the wall. The electron-ion collision frequency is defined as

νei =
Zeffnee

4 ln Λ

27/2πε20m
1/2
e T

3/2
e

, (5.4)

where ln Λ is the Coulomb logarithm and other variables take their usual meaning. Con-

venient reference lengths are given by Lref =
√

Φedge/πBref and ρs =
√
Temi/e2B2

ref . For

example, we will use ρs to rescale the wavenumber of turbulent modes as kyρs. For a better

comparison with other work, a conversion from kyρs to the toroidal mode number n is useful.

73



ρ 0.80 0.85 0.90 0.95
Time/[s] 2.40 2.40 2.40 2.40

ŝ 1.41 1.98 2.98 5.18
q 2.86 3.15 3.69 4.47
ωTi 2.78 2.80 2.68 2.32
ωTe 4.69 5.62 7.32 13.51
ωne 1.34 2.21 2.91 7.05

βe /[%] 0.0557 0.0396 0.0252 0.0132
Ti /[keV] 0.360 0.320 0.281 0.244
Te /[keV] 0.148 0.119 0.0831 0.0531

ne /[1019 m−3] 2.72 2.68 2.19 2.12
Zeff 1.80 1.80 1.80 1.80

νei /[cs/Lref ] 7.28 10.9 17.8 35.21
Bref /[T] 1.70 1.70 1.70 1.70
Lref /[m] 0.770 0.770 0.770 0.770
ρs /[10−3m] 1.03 0.927 0.775 0.619
n /[kyρs] 208 224 242 264

Table 5.1: Physical parameters for radial positions in the near-edge region, with variables as
defined in the text.

The conversion factor is given by the relation [107]

n

kyρs
=
ρ

q

Lref

ρs
, (5.5)

which is evaluated numerically in the bottom row of Table 5.1.

In this work, we also take into account the effect of the E × B shearing rate, which

is a function of both the radial electric field gradient and the magnetic field geometry.

For realistic geometry, the E × B shearing rate is given by the so-called Hahm-Burrell

formalism [112],

ωE×B =
cRBθ

B

d

dr

(
Er
BθR

)
, (5.6)

where Er is the radial electric field, Bθ is the poloidal component of the magnetic field B,

and R is the major radius. Note that (Er/BθR) is constant on the flux surface, but the

factor cRBθ/B is not constant (it is larger on the outboard midplane). In the simulation

community, a flux-surface-averaged formalism for theE×B shearing rate in shaped geometry
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is often used for simplicity [113],

ωE×B ≈
r

q

d

dr

(
Er
BθR

)
, (5.7)

where the factor preceding the derivative, r/q, is now a flux function. The present work will

also employ this so-called Waltz-Miller formalism. The experimental shearing rate values

are inferred using data from the magnetic field geometry and the Doppler Backscattering

diagnostic (see Fig. 5.5).
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Figure 5.5: The Hahm-Burrell shearing rate in the edge region, as evaluated by magnetic field
geometry and the Doppler Backscattering measurements at the outboard midplane (green
triangles). A flux-surface average of the Hahm-Burrell rate is known as the Waltz-Miller rate
and commonly used in the simulation community (blue circles). The flow shear generally
increases towards the separatrix (dashed line).

5.4 Error analysis

In order to quantify the statistical uncertainty of the ion temperature data, a χ2 fitting

procedure is employed. As theoretical model for the temperature, we use a polynomial of

the lowest order (n = 3) that can pass through all data points within their uncertainty,
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namely

Ti,th(ρ) = a(ρ− 0.80)3 + b(ρ− 0.80)2 + c(ρ− 0.80) + Ti,0 , (5.8)

where Ti,0 is the temperature at ρ = 0.80. Note that this model does not rely on the

underlying physics that generates this profile, but rather represents a suitable functional

form. We assume that experimental temperature measurements Ti,exp(ρ) are independent

and normally distributed, inviting a χ2 statistic

χ2(θ) =
∑
i

[Ti,th(ρi)− Ti,exp(ρi)]
2

σ2
i

, (5.9)

where θ = (a, b, c, Ti,0) are the free parameters. We want to quantify the error associated
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Ti,0 [keV]
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99.7%

Figure 5.6: Illustration of the χ2 contours when only varying ωTi and Ti while keeping the
remaining free parameters fixed at their best-fit values. The shaded region corresponds to a
1σ variation around the best-fit value.

with the temperature gradient,

∇Ti,th(ρ = 0.80) = c . (5.10)
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We use Bayes’ theorem to find the probability density function (PDF) of the free parameter

c,

p(c|θ) =

∫∞
−∞ da

∫∞
−∞ db

∫∞
0

exp(−χ2/2) dTi,0∫∞
−∞ da

∫∞
−∞ db

∫∞
−∞ dc

∫∞
0

exp(−χ2/2) dTi,0
. (5.11)

This gives a best-fit value of c ≈ 1.0 ± 0.15 (stat.) keV or σITG, stat ∼ 15%. One known

weakness of the χ2 fitting procedure is that it assumes the theoretical model is correct. To

account for possible systematic errors in the model assumptions, e.g. a polynomial fit to the

data, and the experimental setup, e.g. neutral beam halo effects [114] or Zeeman splitting

of the (Carbon) impurity line used for CER [115], we allow for a systematic uncertainty of

σITG, sys ∼ 10%. This gives a total uncertainty of

σITG ∼ 25% . (5.12)

Thus the nominal experimental value of the logarithmic ion temperature gradient at ρ = 0.80

has a combined statistical and systematic uncertainty of ωTi = 2.78 ± 0.70. Note that a

gradient increase of 40% satisfies the condition of ≤ 2σITG, stat + 1σITG, sys, such that this

gradient increase may reasonably be associated with the uncertainty in the temperature

measurements alone.

The above method is also used to estimate the uncertainty in the electron temperature

gradient at ρ = 0.90. We find that a third order polynomial fits the electron temperature

data well in the range 0.33 < ρ < 1.00, which supplies a sufficiently large data set for

our error analysis. Applying equations (5.8)-(5.11) to this scenario gives a statistical un-

certainty of σETG, stat ∼ 8% for the electron temperature gradient at ρ = 0.90. However,

the temperature profile of a tokamak plasma is subject to microscopic fluctuations due to

predator-prey dynamics between gradient-driven microturbulence and zonal flows [64, 110].

While these dynamics have been observed at large scales, current experimental techniques

do not yet capture these dynamics on small scales. Therefore, a systematic uncertainty in

the temperature gradients is physically motivated. Allowing for a systematic uncertainty of
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σETG, sys ∼ 10% gives a total uncertainty of

σETG ∼ 18% . (5.13)

Therefore, an increase in the electron temperature gradient by 23% would consistent with the

combined statistical and systematic uncertainty σ of the experimental value at the ∼ 1.3σ

level. Note that this gradient increase also satisfies condition of≤ 2σETG, stat+1σETG, sys, such

that it may reasonably be associated with the uncertainty in the temperature measurements

alone.

5.5 Gyrokinetic Simulation Method

Throughout this work, we employ the gyrokinetic turbulence code GENE [69]. The gyroki-

netic approximation reduces the six-dimensional phase space to five dimensions by averaging

over a charged particle’s gyro-motion perpendicular to the magnetic field, and removes sev-

eral phenomena on small space-time scales. The resulting Vlasov equation can be coupled

self-consistently to Maxwell’s equations. GENE is a Eulerian code that solves the relevant

equations on a field-aligned coordinate system (x, v‖, µ), which minimizes the necessary

number of grid points [116, 117]. Here, v‖ represents the velocity along the field lines and µ

is the magnetic moment resulting from the gyro-averaged motion of a charge.

GENE can model the plasma in a local (toroidal flux-tube [118]) or a global (radial an-

nulus) simulation domain. The local approximation is preferred where applicable, because

periodic boundary conditions in both the radial (x) and binormal (y) directions invite nu-

merically efficient spectral methods. The local approximation holds where the turbulent

correlation lengths are smaller than the gradient scale lengths, such that the plasma param-

eters do not vary much across a typical turbulent structure. This condition appears to be

satisfied in the near-edge region of the L-mode plasma considered here, so we will use the

local approach throughout this work.

In our nonlinear simulations we consider two particle species (electrons and Deuterons),
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and thereby neglect the effect of Carbon as motivated by linear simulations presented below

in section 5.6 and 5.8. Electromagnetic effects are included in our simulations by solving for

the parallel component of Ampère’s law. Moreover, GyroLES techniques were used to model

dissipation at unresolved wavenumbers, thus avoiding the unphysical build-up of energy at

the highest resolved wavenumbers [90–92]. The flux-tube geometry is calculated with the

TRACER-EFIT interface [119]. Due to the high collisionality in the near-edge region, a

collision operator developed by Sugama et al. was used [98].

It became evident that the effects of sheared flow on turbulent heat transport can be

ignored at ρ = 0.80 but need to be included closer to the edge region at ρ = 0.90 (see Fig. 5.5).

The radial flow shear can have an important effect, because it shears turbulent eddies in the

poloidal direction, which increases their poloidal correlation length and reduces their radial

correlation length [83–85]. This can lead to experimentally relevant improvements in particle

and energy confinement. Specifically in GENE, the constant Waltz-Miller shearing rate

throughout the flux-tube is implemented using a method developed by Hammett et al. [86].

Here, a transformation into the co-moving coordinate system of the equilibrium flow and

a discrete time evolution of the sheared radial wavenumber greatly reduce computational

intensity while maintaining acceptable numerical accuracy [86].

In order to investigate the interaction between strong ETG streamers and ion-scale modes,

it is instructive to carry out multi-scale simulations resolving both ion and electron scales.

These simulations are very computationally intensive and cannot currently be carried out

resolving the full wavenumber domain of linearly unstable modes. Therefore, a reasonable

reduction in the resolved wavenumber domain is sought with nonlinear single-scale simu-

lations. For example, nonlinear electron-scale simulations with varying ky,maxρs can help

determine the reliability of GyroLES techniques; they help identify a reasonable maximum

extent of the wavenumber domain that still captures the main nonlinear turbulent transport.

A similar nonlinear scan in ky,minρs is carried out at the ion scales to determine a feasible

multi-scale simulation domain that still captures the majority of the ion-scale physics. With

this method, we are able to carry out multi-scale simulations with realistic electron-Deuteron

mass ratio and realistic geometry for the first time in the near-edge, at ρ = 0.80.
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Throughout this work, the simulation domain in velocity space extends in the parallel

direction up to v‖,max = 3vth,j, where vth,j =
√

2T0,j/mj is the thermal velocity. In the

perpendicular direction, it extends to µj = 9T0,j/Bref . Further details of the simulation

method, such as the number of grid points or the radial size of the simulation box, are

described together with the results of the relevant nonlinear simulation. Throughout this

work, the GyroLES methods, the Sugama collision operator and the inclusion of E × B

shear effects mentioned above are of particular relevance.

5.6 Results at first radial position (ρ = 0.80)

All micro-instabilities ultimately saturate due to nonlinear interactions between modes of

differing wavenumbers. Nonetheless, linear simulations often give useful insight into the

nature of the nonlinear instabilities. Generally, the distribution of linear growth rates in

wavenumber space highlights the scales of the nonlinear turbulent drive. This can inform

the size of the nonlinear simulation box. Moreover, sensitivity of these linear growth rates to

changes in physical parameters such as temperature gradients can help identify the nature of

modes encountered in nonlinear simulations. Therefore, we will first present linear simulation

results, followed by nonlinear simulation results.

5.6.1 Linear Simulations

In the following we have used the initial value solver and the eigenvalue solver in GENE to

find linear growth rates of modes at the electron and ion scales. This subsection is organized

to first cover the linear simulation results at ρ = 0.80 and subsequently interpret these

results in the context of heuristic rules for the relative importance of multi-scale effects.

The resolution for these linear simulations, which analyze each ky mode individually, is(
nx, nz, nv‖ , nµ

)
= (31, 32, 32, 24).

At ρ = 0.80, linearly unstable ion temperature gradient (ITG) modes can be identified by

the positive frequencies associated with the diamagnetic drift direction of the ions. Similarly,

trapped electron modes (TEM) and electron temperature gradient (ETG) modes are identi-
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fied by the negative frequencies associated with the electron diamagnetic drift direction (see

Fig. 5.7). The frequencies of these modes are much smaller than the ion-cyclotron frequency

such that the gyrokinetic approximation can be used to describe these modes (see Fig. 5.8).

The unstable ITG and TEM/ETG modes are separated by a stable region in wavenumber

space (0.68 < kyρs < 0.90). These separate domains allow us to clearly define ion scales

(0.05 ≤ kyρs ≤ 0.80) and somewhat overlapping electron scales (0.70 ≤ kyρs ≤ 180) for

separate nonlinear analysis.
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Figure 5.7: Linear growth rates γ (left) and absolute values of frequency |ω| (right) as a
function of poloidal wavenumber kyρs. The growth rates are separated by a stable region
(where γ < 0) at 0.68 < kyρs < 0.90. For nonlinear simulations, we define the ion scales in
the domain 0.05 ≤ kyρs ≤ 0.80 and the electron scales in the somewhat overlapping domain
0.70 ≤ kyρs ≤ 180.

It is not clear how the heat fluxes found with nonlinear ion-scale and electron-scale

simulations contribute to the collective heat flux. Generally, multi-scale simulations that

simultaneously resolve both scale ranges are necessary to answer this question. These sim-

ulations are very expensive and may not be possible in all scenarios. A heuristic rule has

emerged from pioneering work [49–52] using a reduced mass ratio (
√
mi/me = 20) and ŝ−α

geometry, with α = 0. Namely, if the ratio of maximum growth rates at the electron and
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Figure 5.8: Frequencies of the TEM/ETG modes as a fraction of the ion cyclotron frequency
at ρ = 0.80. For the validity of the gyrokinetic approximation it is necessary (but not
sufficient) that ω /Ωi � 1 for all wavenumbers.

ion scales is much larger than the square root of the mass ratio,

γmax
ETG /γmax

ITG �
√
mi /me , (5.14)

then multi-scale effects could be present. This is because the contributions by the electron-

scale turbulence to the overall heat transport could be important. Otherwise, turbulent

structures at the ion scales disrupt the efficient heat transport at the electron scales. In

our case the mass ratio is
√
mi/me ≈ 60 and the ratio between the maximum growth

rates is γmax
ETG/γ

max
ITG = 338. Therefore our linear simulations with the nominal experimental

parameters indicate that multi-scale effects could be present. For an increase in the ion

temperature gradient by ∼ 40%, we get γmax
ETG/γ

max
ITG+40% = 161, so multi-scale effects could

also be present at this point in parameter space, according to this rule-of-thumb. More

recently, a model for saturation of multi-scale turbulence by zonal flow mixing has been

proposed [56]. In this model, an important parameter is the RMS velocity of zonal flows

(VZF), which saturates at VZF = Max (γ/ky), where γ is the linear growth rate of a turbulent

mode with wavenumber ky. According to this model, multi-scale effects could be present

when

Max (γETG/ky) ≥ Max (γITG/ky) . (5.15)
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This criterion has been validated on recent multi-scale simulations using realistic mass ratio

and geometry [53,54]. For our linear simulations at ρ = 0.80, this criterion is satisfied for the

cases where the ion temperature gradient (ITG) is at its nominal value or increased by 10%;

it is also satisfied when the ITG is increased by 40%, but by a small margin (see Fig. 5.9).

Therefore, single-scale simulations are likely not sufficient for the cases considered here and
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Figure 5.9: Ratio of linear growth rates and poloidal wavenumber (γ/kyρs) as a function
of wavenumber. For cases where the ITG is nominal (blue) or increased by 10% (green),
the peak of said ratio is smaller at the ion scales than at the electron scales. For the case
where the ITG is increased by 40% (orange), the difference between the peaks is much less
pronounced.

multi-scale simulations will need to be carried out. This will be presented in the following

subsection 5.6.2.

It is not a priori clear whether impurities significantly affect turbulence in the Deuterium

plasma. The DIII-D tokamak has a Carbon divertor and wall that add Carbon as the main

impurity to the Deuterium plasma. Using the impurity ion Charge Exchange Recombination

(CER) diagnostic [120], the plasma is observed to have an effective atomic number of Zeff =

1.80 (see Table 5.1). In order to quantify the effect of this impurity, linear simulations are

carried out with three particle species, namely Deuterium and Carbon ions, and electrons.

We find that the Carbon impurity has a negligible effect on the linear growth rates of

ITG modes (see Fig. 5.10). Due to this observation, to first order in accuracy, Carbon
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Figure 5.10: Linear growth rates and frequencies for a pure Deuterium plasma (green) and
for a plasma with an added Carbon impurity species corresponding to Zeff = 1.8 (orange).
For both cases, the ITG is increased by 10%, which is above the nonlinear critical gradient
as shown in Figure 5.13. The Carbon impurity has a small effect on the linear growth rates
compared to the pure Deuterium plasma.

impurities can be neglected in our nonlinear simulations at ρ = 0.80. In summary, linear

simulations at ρ = 0.80 identify coexisting ITG and ETG modes that could engage in multi-

scale interactions.

At each wavenumber, the linear growth rates and frequencies are the imaginary and

real roots, respectively, of the linearized dispersion relation. The dependence of the linear

growth rates of ITG modes on the ion temperature gradient is illustrated in Figure 5.11.

The left panel shows that the growth rates increase with the ITG and that there are regions

where γ < 0 and γ > 0 for each linear mode (identified by wavenumber). Since the linear

mode grows exponentially when γ > 0 (only to be damped by nonlinear interactions that

are not captured in the linear model), the temperature gradient for which γ = 0 is called

the linear critical gradient. The ion temperature gradient for which all linear modes are

stable is referred to as the linear critical gradient of the entire plasma (calculated in the left

panel of Figure 5.11 to be ωTi = 1.80). There also exists a critical gradient for nonlinear

simulations, where the nonlinearly interacting modes become collectively unstable. Often

the linear critical gradient is smaller than the nonlinear critical gradients. The difference
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Figure 5.11: Critical linear ion temperature gradient at ρ = 0.80. Linear simulations find a
critical linear gradient of ωTi = 1.80. The difference between the linear and nonlinear critical
gradients quantifies the Dimits shift.

between the linear and nonlinear critical gradient is the so-called Dimits shift [121].

5.6.2 Nonlinear Ion-scale Simulations

Fully nonlinear gyrokinetic simulations can be used to diagnose experiments in the hope to

improve them in the future. When carrying out these simulations, several steps have to be

taken to accurately extract the radial heat flux of the system. After each simulation, we

ensure that the perpendicular box size (Lx, Ly) accommodates several correlation lengths of

the turbulence. This reduces the effect of boundary conditions on the turbulent structures

and avoids their end-to-end connection across the boundaries. We check the grid resolution

for convergence, (nx, ny, nz, nv‖ , nµ), by repeating a certain run with higher resolution in

certain dimensions and checking for consistency with previous runs. This is particularly

important closer to the edge, where high shear (ŝ > 2) demands high radial resolution [107].

Computational expense on the order of ten million CPU hours (MCPUh) of multi-scale

simulations presently restricts convergence tests to the single-scale simulation domain. To

ensure an accurate reading of the simulated heat flux, it is averaged over a time greatly

exceeding the turbulent correlation time.
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Nonlinear ion-scale simulations are performed with grid points

(nx, ny, nz, nv‖ , nµ) = (256, 64, 24, 32, 24) (5.16)

and perpendicular box size (Lx, Ly) = (140ρs, 126ρs). For the nominal experimental param-

eters as input we see a nonlinear quench of radial ion heat fluxes (see Fig. 5.12). This is due
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Figure 5.12: Time-traces of the ion heat flux for nonlinear ion-scale simulations with ITG
nominal (blue), ITG+10% (red) and ITG+40% (green). The experimentally measured heat
flux (grey horizontal line) and its uncertainty of ±20% (blue shaded region) are also shown.
The average heat fluxes of the simulation are shown in Fig. 5.13 below.

to the formation of a strong poloidal zonal flow (see lower inset, Fig. 5.13). Continuing the

simulation for several hundred time units (∼ 400 Lref/cs) to ensure nonlinear saturation, we

find a time average ion heat flux that indicates nonlinear “stability” of ITG modes. In this

case, the primary ITG instability leads to a secondary instability that generates a poloidal

zonal flow and quenches the radial ion heat transport to 〈Qi〉 ∼ 10 kW (see lower inset of

Fig. 5.13). Increasing the ion temperature gradient by ∼ 3.5% to ωTi ' 2.9 marks the onset

of nonlinear instability of ITG modes. This indicates a strong Dimits shift [121], defined as

the difference between the nonlinear and linear critical temperature gradients for onset of

turbulent transport. Further increasing the ion temperature gradient leads to approximately

linear increases in the electron and ion heat fluxes. These heat fluxes are carried by radially
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Figure 5.13: Nonlinear ion-scale simulations with a clear Dimits shift. The vertical black
dashed line marks the linear critical ion temperature gradient (ωTi)crit = 1.80. A strong
poloidal zonal flow is found at nominal parameters (lower inset) and large-scale turbulence
is found in the form of radially-elongated streamers at higher gradients (upper inset). The
uncertainty in the experimental heat fluxes is ±20% (shaded regions). Increasing the ITG
by ∼ 40% recovers the experimentally inferred heat fluxes of both the ions and electrons.

elongated turbulent structures (streamers) at the ion scales [118, 122] (see upper inset of

Fig. 5.13). This behavior is typical of plasmas in the core and has been used to infer the ion

temperature gradient with gyrokinetic simulations [123].

With the ion temperature gradient increased by 40% (ITG+40%), our simulations re-

cover the experimentally inferred heat fluxes for, remarkably, both the ion and electron heat

channels. This ITG+40% scenario is consistent with the uncertainty of the ion temperature

data at the 1.6σ level, where for brevity σ = σstat + σsys (see Section 5.4). Specifically, the

simulations give 〈Qi〉 = 610 kW and 〈Qe〉 = 190 kW, while the experimental values obtained

with the ONETWO transport code are 〈Qi〉 = (600 ± 120) kW and 〈Qe〉 = (164 ± 33) kW

(see Fig. 5.13).
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5.6.3 Nonlinear Electron-scale Simulations

The nonlinear electron-scale simulations are performed with resolution

(nx, ny, nz, nv‖ , nµ) = (64, 512, 16, 32, 9) (5.17)

and perpendicular box size (Lx, Ly) = (9ρs, 9ρs). Note that the box size is smaller relative to

the ion-scale simulations because the electron-scale domain is defined by linear simulations as

0.70 ≤ kyρs ≤ 180. While finite Larmor radius (FLR) effects for kyρs & 60 can be expected

to significantly damp ETG modes, note that these high-k modes are mapped to smaller

physical wavenumbers by geometric effects (encapsulated in the metric tensor). Thus, high-

k modes can contribute meaningfully to the turbulent drive and it is advisable to extend

the nonlinear electron-scale simulation domain over the entire wavenumber range of linearly

unstable TEM/ETG modes. Note that for our electron-scale simulations we include fully

kinetic ions (rather than only adiabatic ions).
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Figure 5.14: Dependence of the electron heat flux on the electron temperature gradient for
nonlinear electron-scale simulations. Experimentally relevant heat transport could be carried
at relatively large wavenumbers (kyρs ∼ 8) by streamers (inset), which motivates multi-scale
simulations.

For the nominal experimental input parameters we find a time average electron heat flux

of 〈Qe〉 = 130 kW. Increasing the electron temperature gradient, which is the main driver of
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the electron heat flux, by its experimental error of ∼ 20%, we get a flux of 〈Qe〉 = 200 kW.

This heat flux is within the experimentally inferred range of electron heat flux values obtained

with the ONETWO transport code, namely 〈Qe〉 = 164±33 kW (see Fig. 5.14). This suggests

that electron-scale heat transport could contribute to the overall heat transport, which will

need to be studied with multi-scale simulations. Physically, we find that the electron heat

flux is carried by radially elongated structures called streamers [124]. These structures are

well-defined in a contour plot of electrostatic potential fluctuations, Φ̃(x, y) (see inset in

Fig. 5.14).

5.6.4 Multi-scale Simulations

Linear and nonlinear simulations have indicated that multi-scale interactions could be present.

We have therefore carried out the first nonlinear gyrokinetic multi-scale simulations using a

realistic mass ratio and experimental input parameters in the near-edge, at ρ = 0.80. These

used on the order of 23 k processors and 10 MCPUh on NERSC supercomputers.

Resolving the full ion and electron scales is computationally prohibitive (for the full

extent of the electron and ion scales, see section 5.6.1). We therefore conducted a series

of single-scale simulations with a sequentially reduced box size. This was done to identify

an affordable domain that still resolves the main physical behavior of the plasma. For

example, at the ion scales, we found that we could increase ky,minρs = 0.05 → 0.15 while

maintaining the nonlinear heat flux to an accuracy of ∼ 10%. In the type of plot shown below

(see Fig. 5.15), adapted from Görler and Jenko [49–52], the area under the curve roughly

corresponds to the total heat flux carried at the corresponding wavenumbers. Similarly, at

the electron scales, we were able to reduce ky,maxρs = 180 → 40 with GyroLES techniques

while maintaining a similar level of accuracy (∼ 15%) in the heat flux carried at the electron

scales (see Fig. 5.16). This is significantly aided by the fact that most of the heat advection

at the electron scales is carried by modes with kyρs ≈ 7. The flux-spectrum at the electron

scales is plotted as the red dotted line in Fig.’s 5.16 and 5.17. It is evident that, while the

maximum growth rate in the linear flux spectrum is located at kyρs ≈ 50 (see Fig. 5.7), the
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Figure 5.15: Flux spectra from nonlinear ion-scale simulations at ρ = 0.80 with ITG+10%
and varying box size in binormal direction. In this type of plot, adapted from Görler and
Jenko [49–52], the heat flux carried by a range of wavenumbers is proportional to the area
under the curves. This figure illustrates that a careful reduction in box size, corresponding to
an increase in minimum resolved wavenumber ρsky,min = 0.05 → 0.15, continues to capture
the heat flux carried at the ion scales.

nonlinear heat flux is carried predominantly by streamers associated with ETG modes with

wavenumbers in the vicinity of kyρs ≈ 7. This facilitates the above reduction in the resolved

electron scales in the preparation for multi-scale simulations. At the ion scales, the heat

flux is carried predominantly by modes with kyρs > 0.15. We thus resolve both the electron

and ion scales in a carefully selected domain of poloidal wavenumbers of 0.15 ≤ kyρs ≤ 40

(see Fig. 5.17). Note that these nonlinear scans in simulation domain, while themselves

computationally intensive, reduced the resource intensity of multi-scale simulations by a

factor of & 10, bringing them into the realm of the possible.

The nonlinear multi-scale simulations are performed with grid points

(nx, ny, nz, nv‖ , nµ) = (512, 512, 16, 32, 18) (5.18)

and perpendicular box size (Lx, Ly) = (75ρs, 42ρs). These simulations give the following

qualitative results. First, we find that ETG-scale streamers co-exist with a zonal flow at ion

scales when ITG modes are stable at nominal ωTi (see Fig. 5.18). Second, we find that ETG-
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Figure 5.16: Flux spectra from nonlinear electron-scale simulations at ρ = 0.80 with varying
box size in binormal direction. This figure illustrates that a careful reduction in maximum
resolved wavenumber ρsky,max = 180→ 40 continues to capture the heat flux carried at the
electron scales (particularly around kyρs ∼ 7). There is a moderate increase in the heat flux
carried at the high wavenumbers (kyρs > 20), which is due to the unresolved dissipation at
(kyρs > 40) but within acceptable limits. A further reduction ρsky,max = 180 → 20 would
not yield a physical result.

scale streamers are strongly sheared apart by ITG modes in the ITG+40% scenario (see

Fig. 5.17 and Fig. 5.19). Therefore, electron-scale transport does not contribute significantly

to the total transport when ITG modes are highly unstable, such as when ITG+40%. Thus,

the heat-flux-matching single-scale simulation in Fig. 5.13 is representative of the multi-scale

heat flux.

In summary, simulations at ρ = 0.80 reproduce both the experimental ion and electron

heat fluxes consistent with the combined statistical and systematic uncertainty of the CER

data at the 1.6σ level. Multi-scale simulations suggest that turbulent structures on the ion

scales strongly disrupt the streamers found on the electron scales.

91



10 1 100 101 102

ky s

0

20

40

60

80

100

120

k y
s

Q
e,

i
 [k

W
]

ky s Qe , Electron-scale
ky s Qi , ITG+40%, Ion-scale
ky s Qe , ITG+40%, Ion-scale
ky s Qe , ITG+40%, Multi-scale
ky s Qi , ITG+40%, Multi-scale

Figure 5.17: Nonlinear flux spectrum of multi-scale simulations (with simulation domain
bounded by the dashed lines) and single-scale simulations. The area under the curves is
proportional to the total heat flux carried at low- and high-k [50,51]. Multi-scale simulations
with ITG modes driven unstable by an increase in ITG by 40% show that electron-scale heat
flux via streamers is greatly reduced by large turbulent structures at the ion scales (see upper
inset in Fig. 5.13).

Figure 5.18: Contour of fluctuations in Φ̃(x, y) for multi-scale simulations at ρ = 0.80 and
nominal ion temperature gradient. The ITG modes are nonlinearly quenched by a strong
poloidal zonal flow. ETG-scale streamers are found to co-exist with this large ion-scale zonal
flow.
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Figure 5.19: Contour of fluctuations in Φ̃(x, y) for multi-scale simulations at ρ = 0.80 and
ITG+40%. The large structures on the order of 12ρs are associated with ITG modes and
shear apart electron-scale streamers, which have a vertical width on the order of . 1ρs.

5.6.5 Sensitivity Study

In this subsection we describe a dedicated linear sensitivity study at ρ = 0.80, which is

carried out by simultaneously changing several input parameters close to their measured

uncertainty range. The purpose of this sensitivity study is to explore whether a flux-matching

result might also be obtained without varying only ωTi , but also other gradient quantities.

It may be possible to vary several parameters over smaller uncertainty ranges than the 1.6σ

variation of ωTi . However, we find that ωTi is the most suitable parameter to vary due to

the large uncertainty of CER data and the strong physical effect of ωTi on the turbulence.

By their very nature, linear simulations do not capture nonlinear saturation of fluxes

and instead calculate fluxes that grow exponentially in time. However, the ratio of ion and

electron fluxes at every time-step and mode number remains constant due to their equal

growth rates. Comparing the ratios of electron and ion heat transport at the same time-step

of linear simulations for various input parameters provides a useful prediction of the flux

ratio found in nonlinear simulations. This quasi-linear study could guide us to a parameter

set that, if used as input for a nonlinear simulation, could give not only the experimental
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ratio but also the experimental values of the ion and electron heat fluxes.

The linear simulations for this study are performed at a constant point in wavenumber

space of kyρs = 0.20. This point was chosen, as it is in proximity of the peak in the ion-

scale energy flux spectrum of nonlinear simulations (see Fig. 5.20). We concentrate on the

dominant mode to maximize the predictive power of this study.
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Figure 5.20: Flux spectrum at ρ = 0.80 with ITG+10%. For the nonlinear simulations the
flux spectrum peaks at kyρs = 0.20 (vertical dashes), which serves as the wavenumber used
for a linear sensitivity study (see Fig. 5.21).

We seek to recover the experimental ratio of Qi/Qe = 3.68 ± 0.74. Physically, the

ratio of ion to electron heat fluxes depends primarily on logarithmic gradients ωX , but

can also depend on the temperature ratio Ti/Te. Results of the input parameter scan are

summarized in Fig. 5.21. The flux ratio Qi/Qe is plotted as a function of two variables, with

the temperature ratio on the x-axis and the variables ωX on the y-axes. We find that (i) the

flux ratio depends mostly on the ion and electron temperature gradients, as expected; (ii)

the density gradient has a comparably weak effect; (iii) the temperature ratio has a negligible

effect. We thus neglect the effect of the temperature ratio and consider only the effects of

the gradient parameters. To quantify this sensitivity, we carry out a Taylor expansion of
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Figure 5.21: Variation of the flux ratio (Qi/Qe) with logarithmic gradients ωTi , ωTe , ωn
and the temperature ratio Ti/Te. For reference, the experimental flux ratio is Qi/Qe =
3.68 ± 0.74. The dashed lines indicate the nominal values of these parameters. We find a
strong dependence of the flux ratio on ωTi and ωTe , and a weak dependence on ωn and Ti/Te.

Qi/Qe with respect to the logarithmic gradients ωX , giving

Qi/Qe ≈ Qi,0/Qe,0 +
∑
X

∂(Qi/Qe)

∂ωX

∣∣∣
ωX,0

δωX , (5.19)

where X is a variable identifying the nature of the gradient scale lengths, X ∈ {Ti, Te, n},

and the subscript 0 identifies the results for nominal experimental input parameters (e.g.

Qi,0/Qe,0 = 2.1 is the flux ratio for nominal input parameters). The linear scans quantify

the gradient terms in the Taylor expansion, which are summarized in the second column of

Table 5.2. Using equation (5.19), we choose the δωX values such that the value of Qi/Qe

X ∂(Qi/Qe)/∂ωX δωX ωX,0 δωX/ωX,0 ωX,0 + δωX
Ti 0.74 0.31 2.78 +11% 3.09
Te −0.41 −1.88 4.69 −40% 2.81
n −0.35 −0.54 1.34 −40% 0.80

Table 5.2: Quasi-linear Model: Taking only linear terms in a Taylor expansion, we get
Qi/Qe = 3.26 for the above values of δωX .
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is close to the experimentally inferred value of Qi/Qe = 3.68 ± 0.74. With changes δωX

as shown in the third column in Table 5.2, our quasi-linear study predicts Qi/Qe = 3.26

for a nonlinear simulation. To truly quantify the turbulent heat transport and to test this

prediction, nonlinear simulations are necessary.

The nonlinear simulation with the multiple-parameter variations give 〈Qi〉 = 100 kW and

〈Qe〉 = 30 kW. Therefore, the ratio of ion and electron heat fluxes is correctly predicted by

the quasi-linear study (〈Qi〉/〈Qe〉 = 3.33). However, in practice this ratio was obtained by a

reduction in the electron heat transport rather than an increase in ion heat transport. This

confirms that ITG is the dominant driver of ion-scale heat flux and supports our method of

varying only the ion temperature gradient.

5.7 Simulation Results at second radial position (ρ = 0.90)

We now direct our attention further outwards to the near-edge region at ρ = 0.90. We first

carry out linear simulations to identify the linear mode spectrum, which is dominated by

TEM/ETG turbulence. Subsequent nonlinear simulations show high sensitivity of the total

heat flux to changes in the electron temperature gradient. This could be due to a hybrid

ITG/TEM scenario that was not predicted by linear simulations. With the inclusion ofE×B

shear and an increase in the electron temperature gradient by 23%, which is consistent with

the experimental temperature data at the 1.3σ level, we are able to match the heat flux of

the experiment. These results validate our gyrokinetic method and help push the gyrokinetic

validation frontier closer to the edge region.

5.7.1 Linear Simulations

Linear simulations indicate that the main turbulent drive is carried by TEM/ETG modes at

ρ = 0.90 (see Fig.’s 5.22 and 5.23). Note that this can be explained by the increased density

gradient driving TEM turbulence closer to the plasma edge (see Fig. 5.3). Figure 5.23

shows the turbulent modes in low-wavenumber domain, which is most interesting for non-

linear simulations because the turbulent advection is most efficient at these large scales. To
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Figure 5.22: Linear growth rates and frequencies at ρ = 0.90 on linear axes for nominal
input parameters. We expect trapped electron modes (TEMs) at low-k and ETG modes at
high-k.
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Figure 5.23: Linear growth rates and frequencies of TEM/ETG modes for nominal param-
eters (red line) and with ETG increased by 23% (red circles). We also find subdominant
and stable ITG modes (blue circles). For comparison with nonlinear results below, the
vertical lines highlight the position of the kyρs = 0.15 mode (solid) and the kyρs = 0.30
mode (dashed).

identify the subdominant modes that can play a role in nonlinear simulations, we employ

the eigenvalue solver in GENE. Curiously, the subdominant mode is an ITG-type mode that

is stable over all considered wavenumbers, which can be seen by its negative growth rates

(see Fig. 5.23). Moreover, we find that an increase in electron temperature gradient by
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23% further destabilizes the TEM/ETG modes. These linear simulations indicate that the

TEM/ETG modes are likely to dominate in nonlinear simulations, with negligible effect of

ITG modes.

At ρ = 0.90, the Carbon impurity has a small effect on the linear growth rates compared

to the pure Deuterium plasma (see Figure 5.24). Therefore, to reduce computational com-
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Figure 5.24: Linear growth rates and frequencies for a pure Deuterium plasma (red) and for
a plasma with Zeff = 1.8 due to a Carbon impurity species (orange). The effect of Carbon
impurities on growth rates is small and will be neglected in nonlinear simulations.

plexity by approximately 30%, we will carry out nonlinear simulations at ρ = 0.90 with two

rather than three particle species.

When carrying out nonlinear simulations, it may sometimes be necessary to vary ex-

perimental parameters close to their experimental uncertainty in order to reproduce the

experimental heat flux (see simulations at ρ = 0.80). Therefore, it is useful to identify the

sensitivity of the linear growth rates to various changes in experimental parameters. For

example, in Figure 5.25 we study the sensitivity of the dominant TEM/ETG branch with

respect to changes in the density and electron temperature. We find that there is limited

sensitivity to changes in the density or increases in electron temperature, while there is some

sensitivity to decreases in electron temperature. This may be due to the higher collisionality

of electrons at lower temperatures and the sensitivity of TEM to collisions, which tend to
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Figure 5.25: Sensitivity study of linear growth rates and frequencies at ρ = 0.90. Growth
rates and frequencies are shown to have limited susceptibility to changes in density and
temperature. Note that the growth rates are plotted as a function of mode number in
Figure b). This is due to the dependence of the normalization parameters on Te (recall that
ρs = cs/Ωi and cs =

√
Te/mi).

de-trap electrons and therefore weaken the TEM growth rates. This further underscores the

TEM character of the dominant linear modes.

Moreover, in Figure 5.26 we investigate the sensitivity of linear growth rates to changes

in the gradient parameters such as the density gradient, and the ion temperature gradient

(in addition to the electron temperature gradient studied previously). We find relatively

little sensitivity of the growth rates to changes in the density gradient and ion temperature

gradient when compared to similarly-sized changes in the electron temperature gradient.

This further helps identify the electron temperature gradient as the most likely drive of

nonlinear turbulence.

In order to further test the sensitivity of nonlinear turbulence to simultaneous changes

in the electron temperature gradient and the density gradient, we perform a linear sensitiv-

ity study at the wavenumber that ultimately carries most of the nonlinear heat transport,

kyρ = 0.20, as will be shown below (see Fig. 5.40). We simultaneously vary the electron tem-

perature gradient and the density gradient and plot the corresponding contour of the growth

rates in Figure 5.27. The growth rate is much more sensitive to the electron temperature

gradient, so this forms the key parameter for nonlinear simulations.
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5.7.2 Nonlinear Simulations at Ion Scales

Our linear simulations have shown that the growth rates at ρ = 0.90 are sensitive to changes

in ωTe (see Fig. 5.23). This is due to the predominance of TEM/ETG-type modes with

ITG modes subdominant and stable at nominal gradients. We thus study the sensitivity of

nonlinear simulations to changes in ωTe .

The nonlinear ion-scale simulations are performed with resolution (nx, ny, nz, nv‖ , nµ) =

(512, 64, 32, 32, 18) and perpendicular box size (Lx, Ly) = (188ρs, 126ρs). Note that conver-

gence tests found that a higher resolution was required for the ion scales at ρ = 0.90 than

at ρ = 0.80. Physically, this is due to the need to resolve higher magnetic shear here (see

Table 5.1). Moreover, the radial box size was increased because the simulated plasma was

more susceptible to simulation boundary effects at ρ = 0.90 than at ρ = 0.80.

We define the ion-scale domain as 0.05 ≤ kyρs ≤ 1.60 and employ GyroLES techniques to

avoid the unphysical build-up of free energy at kyρs ' 1.60. The individual ion and electron

heat channels are difficult to distinguish experimentally with current techniques due to the

high collisionality at ρ = 0.90, so that the observable here is the total heat flux.

Nonlinear simulations with an increase in ETG by up to ∼ 30% were performed. Without

the inclusion of experimental E ×B shear, we found a saturated time-average flux of up to

〈Qtot〉 = 5 MW (see Fig. 5.28).

Interestingly, we see high sensitivity to increases in ETG between the +22% and +23%

mark. Figure 5.29 shows a contour plot of electrostatic potential fluctuations with high (but

“healthy”) levels of turbulence at large scales for the +23% scenario without E ×B shear.

The observations persisted with an increase in the radial box size (see Fig. 5.30) and an

independent numerical test of the validity of GyroLES techniques (see Fig. 5.31). This

indicates that there may be a physical origin for this high sensitivity of the heat flux to

changes in ETG.

The following analysis shows that TEM turbulence may nonlinearly destabilize the lin-

early stable ITG modes, leading to a hybrid ITG/TEM scenario in our nonlinear simula-

tions. Recall that the ITG modes are stable for all wavenumbers (see Fig. 5.23). Moreover,
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Figure 5.28: Total heat flux as a function of electron temperature gradient in nonlinear
simulations at ρ = 0.90. Small changes in gradient from +22% to +23% show large changes
in the heat flux. This sensitivity to the electron temperature gradient is investigated in the
following figures, which suggest that TEM turbulence may nonlinearly excite the linearly
stable ITG turbulence and create a hybrid ITG/TEM scenario.

Figure 5.29: Contour plot of Φ̃ at ρ = 0.90 with ETG+23%. The ion-scale structures show
high (but “healthy”) levels of turbulence.

the ETG/TEM branch with ETG increased by 23% (ETG+23%) is linearly unstable for

kyρs > 0.18. Based on these observations, we expected nonlinear simulations to show that

the majority of the heat flux is carried by electrons in the vicinity of kyρs ∼ 0.30. However,

the heat-flux spectrum of nonlinear simulations with ETG+23% shows that the majority of

the heat flux is carried by ions in the vicinity of kyρs ∼ 0.15 (see Fig. 5.32). This indicates
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(a) Too small radial box.

(b) Insufficient radial resolution.

Figure 5.30: Illustration of possible numerical errors. Figure a) shows a diagonal end-to-
end connection of turbulent structures for a simulation box that a posteriori is too small,
namely box size (Lx, Ly) = (141ρs, 126ρs) and (nx, ny, nz, nv‖ , nµ) = (512, 32, 32, 32, 18),
which can also be identified by an unphysical spike in the heat flux by a factor of three
in a short time period. Figure b) shows an example of a simulation that has a posteriori
insufficient radial resolution, namely box size to (Lx, Ly) = (282ρs, 126ρs) with grid points
as in Figure a), which causes a build-up of energy at the lowest resolved scales. The optimal
configuration is found to have grid points as in Figure a) with a 33% larger box size, namely
(Lx, Ly) = (188ρs, 126ρs).
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Figure 5.31: Test of GyroLES techniques at ρ = 0.90 with an electron temperature gradient
+30% above nominal. The left column shows the time trace of the heat flux and the hyper-
diffusion values chosen by the GyroLES tool. The right column shows that keeping the
hyper-diffusion values constant (bottom two rows) gives a qualitatively similar heat flux time
trace that saturates at a value comparable to the simulations with GyroLES (top row).
This highlights the robustness of the GyroLES technique and, together with the results of
Figure 5.30, suggests that the sensitivity of the heat flux to changes in ωTe is likely not
caused by numerical issues.

high ITG mode activity, which was not predicted by linear simulations. To test the sus-

pected ITG-dependence of the heat flux, we reduced the ion temperature gradient by 100%

and uncovered the purely TEM/ETG turbulence with electron-dominated heat flux carried

predominantly at kyρs ∼ 0.30 as originally expected (see Fig. 5.32 and 5.33).

To further identify the nature of nonlinear turbulence at ρ = 0.90, we have plotted

the frequency spectrum of electrostatic potential fluctuations (see Fig. 5.34). We find that

the modes that carry most of the heat flux (i.e. kyρs ∼ 0.15) have positive frequency

and therefore are associated with ITG turbulence. Moreover, when the ITG is reduced by

100%, the nonlinear frequencies at kyρs = 0.30 are in good agreement with linear frequencies

of the TEM/ETG branch as expected (see Fig. 5.35). This indicates that both TEM and
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Figure 5.32: Heat-flux spectra of simulations with ETG increased by 23% (ETG+23%) and
varying ITG. For nominal ITG, the majority of the heat flux is carried by the ions in the
vicinity of kyρs = 0.15 (solid line), indicating high ITG mode activity. For ITG reduced by
100%, the majority of the heat flux is carried by the electrons in the vicinity of kyρs = 0.30
(dashed line), indicating high TEM activity as originally predicted by linear simulations.
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Figure 5.33: Sensitivity of the heat flux to changes in ITG when ETG+23% at ρ = 0.90.
Reducing the ITG causes a large reduction in the ion heat flux, indicating that ITG modes
are active and dominant for nominal ITG and ETG+23%. When the ITG is reduced to zero,
the heat flux becomes electron dominated as originally predicted by linear simulations.

ITG turbulence are active in nonlinear simulations. This seems to suggest that there exists a

hybrid ITG/TEM scenario with nominal ITG and ETG+23% (even though linear simulations

did not predict this).
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Figure 5.34: Frequencies of electrostatic potential fluctuations for the scenario with nomi-
nal ion temperature gradient and ETG+23%. The positive frequency of the nonlinear mode
carrying most of the heat flux (kyρs = 0.15) indicates that ITG modes are nonlinearly unsta-
ble. This is unexpected from linear simulations, where ITG modes (blue circles) are linearly
stable. This suggests that the TEM/ETG modes (red circles), which have their nonlin-
ear turbulence onset at ETG+23%, may be driving the ITG modes nonlinearly unstable,
contributing to the high heat-flux-stiffness seen in Fig. 5.28.
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Figure 5.35: Frequencies of electrostatic potential fluctuations for the scenario with
ETG+23% and zero ITG, i.e. ITG-100%. The negative frequency of the nonlinear mode
carrying most of the heat flux (kyρs = 0.30) is consistent with linear TEM/ETG frequencies
(red circles) rather than the ITG frequencies (blue circles).
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(a) Parallel ion temperature fluctuations
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(b) Perpendicular ion temperature fluctuations

Figure 5.36: Cross-phases of ion temperature fluctuations and electrostatic potential fluctu-
ations for the scenario with nominal ITG and ETG+23%. General agreement is found be-
tween the nonlinear cross-phases and the linear cross-phases for the TEM/ETG turbulence
(red triangles) rather than the ITG turbulence (blue circles). This indicates the presence of
TEM/ETG turbulence in the nonlinear simulations. Note that temperature and potential
fluctuations are between zero and π/2 out of phase (with T̃⊥,i closer to π/2 out of phase).
This could contribute to the high ion heat flux observed in the nonlinear simulations.
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(a) Parallel electron temperature fluctuations
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(b) Perpendicular electron temperature fluctuations

Figure 5.37: Cross-phases of electron temperature fluctuations and electrostatic potential
fluctuations for the scenario with nominal ITG and ETG+23%. Agreement between linear
and nonlinear cross-phases is generally better for the subdominant ITG mode (blue cir-
cles) than for the dominant TEM/ETG modes (red triangles). This is particularly true at
wavenumbers responsible for heat transport, kyρs ∼ 0.15 (horizontal line), which indicates
a hybrid ITG/TEM scenario.
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(a) Ion heat transport in velocity space (b) Electron heat transport in velocity space

Figure 5.38: Electrostatic heat transport in velocity space for ETG+23% and ITG nomi-
nal (arbitrary units). The dotted line marks the trapped-passing particle boundary, where
trapped particles have µ & v‖. Figures a) and b) show that the heat transport of electrons
and ions is dominated by perpendicular energy. Parallel energy transport, while weaker than
the perpendicular energy transport, is relatively stronger for the electrons than for the ions.

We now study the cross-phases between fluctuations in the ion temperature T̃i and elec-

trostatic potential Φ̃ (see Fig. 5.36). We find that the nonlinear cross-phases are approxi-

mately in agreement with the linear cross-phases of the TEM/ETG modes. Moreover, the

phase differences between the ion temperature and electrostatic potential fluctuations are

between 0 and π/2. At wavenumbers relevant for electrostatic heat transport (kyρs = 0.15),

the nonlinear cross-phases of T̃⊥,i and Φ̃ are close to π/2, which is characteristic of high

electrostatic heat transport (see Fig. 5.36). This suggests that heat transport mostly affects

perpendicular energy and is therefore associated with trapped particles (see Fig. 5.38).

Similarly, we now study the cross-phases between fluctuations in the electron temperature

T̃e and electrostatic potential Φ̃ (see Fig. 5.37). For the wavenumbers carrying most of the

heat flux, kyρs ∼ 0.15, the nonlinear cross-phases generally agree with the linear cross-phases

of the ITG modes. Moreover, at kyρs ∼ 0.15, the nonlinear cross-phases are out of phase

by approximately π/2, which is characteristic of significant electrostatic heat transport. For

higher wavenumbers, the nonlinear cross-phases agree with the linear cross-phases of ITG

modes rather than TEM/ETG modes. A similar hybrid ITG/TEM scenario was previously

found in Ref. 107, with the difference that both the dominant TEM and subdominant ITG

modes were linearly unstable. Our results indicate a hybrid ITG/TEM scenario, with linearly

subdominant and stable ITG modes carrying most of the heat flux. This scenario could also

be relevant to spherical tokamaks, where ITG modes are more often linearly stable than in
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conventional tokamaks due to the lower aspect ratio [125].

One possible explanation for this scenario could be that the turbulent fluctuations of

TEM turbulence nonlinearly excite the linearly stable ITG modes. This is reasonable by

elimination, as there is insufficient linear drive and no alternative nonlinear drive for the

ITG modes other than the TEM turbulence. Therefore, it appears that ETG+23% is the

critical gradient not only for TEM turbulence, but for hybrid ITG/TEM turbulence. This

could explain the high heat-flux stiffness in our simulations at ρ = 0.90 (see Fig. 5.28). To

further test this hypothesis directly (rather than indirectly as we have done), one could trace

the nonlinear transfer of energy from one linear mode to another using the methods of proper

orthogonal decomposition (POD), which have been pioneered and implemented into GENE

by David Hatch [88]. This analysis is beyond the scope of the present work.

We now introduce electric field shear due to the L-mode Er-well present in the edge region

of most tokamaks. Generally, Er-wells are much more pronounced in H-mode configurations,

but are also present in L-mode plasmas [38] (see Fig. 5.5). We find that a value of ωE×B =

0.5 cs/Lref, which is in the middle of the experimentally inferred range, is able to reduce the

total heat flux approximately to the experimentally inferred values (see Fig. 5.39). Therefore,
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Figure 5.39: Effect ofE×B shear on the total heat flux. Inclusion of the experimentalE×B
shearing rate as a simulation parameter at ρ = 0.90 helps match the experimental heat flux
with ETG+23%. This indicates that the radial electric field is an important parameter of
nonlinear simulations in the edge region.
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the E×B shearing rate may be an important simulation parameter to accurately model the

heat flux in the edge region of L-mode plasmas. The flux spectrum of nonlinear simulations

with E×B shear peaks at kyρs = 0.20 rather than kyρs = 0.15 for simulations without shear

(see Fig. 5.40). This supports the notion that E×B shear is effective at mitigating transport

at large scales. We conclude that we are able to reproduce the total experimental heat flux

at ρ = 0.90 with an increase of ωTe by ∼ 23%. This increase is within the experimental

uncertainty of the Thomson scattering data at the 1.3σ level (see Fig. 5.4).

Lastly, multi-scale effects may be present at ρ = 0.90, but their investigation is compu-

tationally too expensive to fit within the scope of this work. Based on our experience with

highly unstable ITG modes at ρ = 0.80, we predict that the effect of electron-scale streamers

would likely be strongly reduced by the highly unstable ITG/TEM turbulence found at the

ion scales at ρ = 0.90.
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Figure 5.40: Flux spectrum at ρ = 0.90 with ETG+23%. For the nonlinear simulations
with E × B shear, the flux spectrum peaks at kyρs = 0.20 rather than at kyρs = 0.15
for simulations without shear. This supports the notion that E × B shear is effective at
mitigating transport at large scales in the near-edge and edge regions.

110



5.7.3 Sensitivity to the ion temperature gradient

Given the above evidence for a hybrid ITG/TEM scenario when ETG+23%, we now turn

our attention to sensitivity of the ITG modes to changes in ITG when ETG is nominal.

Linear simulations show that linear growth rates of ITG modes are unstable when

ITG+50% and ITG+80% (see Fig. 5.41). A systematic search finds that the critical lin-

ear gradient for ITG modes occurs at ITG+36% (see Fig. 5.42). This suggests that ITG

modes are linearly stable to a relatively high degree. Since nonlinear critical gradients are

typically higher than linear critical gradients, nonlinear simulations will be carried out with

increases in ITG that are higher than the linear critical gradient of ITG+36%. Therefore,

our study of the linear critical gradient has helped constrain the parameter space for non-

linear simulations. We will now test the sensitivity of the nonlinear heat flux to increases in

ion temperature gradient.
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Figure 5.41: Sensitivity of linear growth rates and frequencies to changes in ITG at ρ = 0.90.
Relatively large changes in ITG are required to drive ITG modes linearly unstable.

Nonlinear simulations at ρ = 0.90 show large changes in total heat flux with relatively

small changes in ITG from ITG+38% to ITG+50% (see Fig. 5.43). This behavior is not

entirely unexpected given our experience with the sensitivity of the heat flux to changes in

ETG in the previous section. For instance, for the ITG+38% case we see very little heat

flux as expected from to the proximity to the linear critical gradient of ITG+36%. However,
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Figure 5.42: Determination of the critical linear ion temperature gradient at ρ = 0.90. The
critical gradient is found to be ITG+36%, which is useful for constraining the parameter
space for nonlinear simulations.

when increasing the ITG further to ITG+50%, we find that the ITG modes become highly

unstable and drive heat flux up to 10 MW. This heat flux is predominantly carried in the

ion channel, as expected from ITG modes. Moreover, the heat flux spectrum shows that

the heat flux is carried predominantly at wavenumbers associated with the ion scales, i.e.

kyρs = 0.15-0.20 (see Fig. 5.44). However, it may be interesting to investigate whether the

ITG modes could also be nonlinearly exciting TEM/ETG modes, which were previously

found to be nonlinearly stable at nominal ETG. Such an investigation would proceed in

a similar manner in the previous section (i.e. it would carry out indirect tests for the

coexistence of TEM/ETG and ITG modes) and could also involve POD, which is beyond

the scope of the present work.

As before, with the introduction of the experimentally inferred E ×B shearing rate as

a simulation parameter, the high sensitivity to the temperature gradient is tempered (see

Fig. 5.43). This indicates that the radial electric field is an important parameter of nonlinear

simulations in the edge region. Note that the ratio of heat fluxes is ∼ 4 and therefore

consistent with the experimentally observed ratio of Qi/Qe = 3.68 ± 0.74. Note that in

nonlinear simulations with and without E × B shear effects this ratio is self-consistently

preserved.
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Figure 5.43: Sensitivity of the heat flux to changes in ITG at ρ = 0.90. Nonlinear simulations
show large changes in heat flux with small changes in ITG, namely from +38% to +50%
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nominal, with all nonlinear simulations performed above this gradient. The experimentally
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Figure 5.44: Flux spectra at ρ = 0.90 for ITG+50% with and without E × B shear. As
expected, the electric field shear reduces the efficiency of turbulent heat transport at large
scales (low wavenumbers). As for the ETG+23% case, the shear shifts the peak in the flux
spectrum to a larger wavenumber and reduces the area under the curves, albeit to a greater
degree than for the ETG+23% case.
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5.8 Simulation Results at third radial position (ρ = 0.95)

We will now focus our attention further out to the edge region of a DIII-D L-mode plasma.

Due to the high levels of uncertainty associated with the experimental temperature profile

data of DIII-D shot #153624, we have used data from DIII-D shot #140426, which is a very

similar L-mode plasma with improved profile data (see left panel of Fig. 5.45). This particular
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(a) Experimental temperature data.
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Figure 5.45: a) Experimental temperature data of DIII-D discharge #140426 at t = 1260 ms.
b) Linear mode spectrum at ρ = 0.95. Growth rates and frequencies show a prominent
TEM/ETG branch and a sub-dominant ITG branch that is stable. This is comparable to
the mode spectrum at ρ = 0.90 of discharge #153624.

shot uses a similar geometry to #153624 and was therefore chosen as the preferred candidate

for further edge studies (a competing candidate DIII-D #171482 was also considered). The

high spatial resolution of the Carbon CER diagnostic throughout the near-edge and edge

region is particularly useful for constraining simulation parameters (see Fig. 5.45).

Linear simulations show a linear mode spectrum that has a prominent TEM/ETG branch

and a sub-dominant ITG branch that is stable (see right panel of Fig. 5.45). This is remark-

ably similar to the mode spectrum at ρ = 0.90 of DIII-D shot #153624. An important dis-

tinction is that the TEM/ETG branch is peaked in the low-k domain, namely at kyρs = 0.50.

Moreover, the TEM/ETG branch is unstable for kyρs > 0.13 (rather than kyρs > 0.18 at

ρ = 0.90 of the previous shot). Nonetheless, we again expect dominant TEM/ETG turbu-
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lence at the ion scales in nonlinear simulations.

Recall that nonlinear ion-scale simulations at ρ = 0.80 and ρ = 0.90 did not capture

significant heat transport for nominal input parameters. To recover the experimental heat

flux we increased the ion temperature gradient by ∼ 40% at ρ = 0.80 and the electron

temperature gradient by ∼ 23% at ρ = 0.90. Remarkably, nonlinear simulations at ρ =

0.95 produce significant levels of turbulence for nominal experimental input parameters (see

Fig. 5.46). Without taking into account the effect of electric field shear, the heat flux
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Figure 5.46: Nonlinear simulation results at third radial position (ρ = 0.95). Simulations
are able to match the experimental heat flux with the inclusion of E×B shear and nominal
ETG. The approximately linear dependence on ETG suggests that high heat flux stiffness
is not a general feature of nonlinear turbulence in the near-edge region.

exceeds the experimentally observed heat flux by a large factor. However, taking the effect

of electric field shear as measured by the DBS diagnostic into account†, we are able to recover

the experimental heat flux with nonlinear simulations at ρ = 0.95.

Moreover, the high degree of heat flux stiffness that has been observed at ρ = 0.90 is not

found at ρ = 0.95. To study the heat flux stiffness, we have gradually reduced the electron

temperate gradient to ETG−25% and ETG−50%. The heat flux responds approximately

linearly to these changes in electron temperature gradient (see Fig. 5.46). These results

†We assume for simplicity that the E ×B shear at ρ = 0.95 of shot #140426 is similar to the shear at
the same radial position of shot #153624 (see Fig. 5.5), namely ωE×B = 0.50 cs/Lref.
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indicate that the turbulence is TEM/ETG dominated as expected from linear simulations.

Therefore, high heat flux stiffness is not a general feature of nonlinear turbulence in the

near-edge region.

The heat flux spectrum for nominal experimental parameters with and without E ×B

shear is shown in Fig. 5.47. For both simulation scenarios, the heat flux is dominated by

electrons, which confirms our prediction from linear simulations of significant TEM/ETG

turbulence. For simulations without E×B shear, the heat flux is carried predominantly by

a mode at kyρs = 0.18, but there also appears to be a secondary mode active at kyρs = 0.32,

as indicated by a sub-dominant peak in the heat flux spectrum there. For simulations with

E ×B shear, the heat flux spectrum has a single peak at kyρs = 0.27.

Future work could investigate whether the subdominant mode is an ITG mode in a

similar method as described in the previous section. This study is beyond the scope of the

present work. We tentatively conclude that the nonlinear behavior of turbulent modes is less

predictable in the near-edge than in the core, and may involve multiple modes acting (and

interacting) at the ion scales.
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Figure 5.47: Heat flux spectrum at third radial position, ρ = 0.95. TEM/ETG modes
dominate, with a hint of two very active nonlinear modes, namely at kyρs = 0.18 (solid line)
and kyρs = 0.32 (dashed line).
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5.9 Discussion

To address an apparent shortfall problem [59, 60], recent validation exercises studying L-

mode plasmas in Alcator C-Mod, ASDEX Upgrade, and DIII-D tokamaks have reduced

fears that the shortfall is a universal feature of near-edge L-mode plasmas [53, 54, 81, 107]

(see section 5.2). The results presented here are consistent with previous work that has been

able to reproduce the experimental heat flux by changing input parameters close to their

experimental uncertainty [81,107].

Results from multi-scale simulations with realistic Deuteron-electron mass ratio and ge-

ometry at ρ = 0.80 have been presented. An early heuristic rule, found with pioneering

multi-scale simulations [49–52], has suggested that ETG-modes can contribute experimen-

tally relevant heat flux if γmax
ETG /γmax

ITG �
√
mi/me. This rule of thumb was found using

a reduced mass ratio and simplified geometry in the core, and is not expected to apply

universally. Nevertheless, this rule appears to hold in recent multi-scale simulations using

more realistic parameters with the GKV code [65, 66] and GYRO [55, 126]. In the present

work, an example of the limit of applicability of this rule may have been found. Recall that

linear simulations give γmax
ETG

/
γmax

ITG+40% = 161 (see section 5.6.1). However, multi-scale sim-

ulations have qualitatively found very little ETG contribution to the overall heat flux with

an increase in ITG by 40% (see section 5.6.2). Physically, large-scale turbulent structures

of ITG-modes are able to shear ETG streamers apart. Thus, when ITG modes are highly

unstable, they strongly reduce the flux carried by high-k modes. More recently, the condi-

tion Max (γETG/ky) ≥ Max (γITG/ky) has been identified as a simple test to predict possible

multi-scale effects [56]. This test has been validated with recent multi-scale simulations

and seems to be less conservative than using only the ratio of maximum growth rates. For

our linear simulations at ρ = 0.80, this linear condition is only marginally satisfied for the

ITG+40% scenario; namely, we get Max (γETG/ky) /Max (γITG/ky) = 1.16 > 1 (see Fig. 5.9).

Since this linear test is intended as a heuristic rule and not a hard-and-fast rule, our results of

negligible multi-scale effects are not significantly at odds with this linear test. We therefore

conclude that the recently proposed test appears to be more useful than relying only the
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ratio of maximum linear growth rates to instruct whether multi-scale simulations might be

necessary.

There are several limitations associated with our study. First, it became necessary to

include the E×B shear for nonlinear simulations at ρ = 0.90. As mentioned in section 5.5,

the realistic shear in real geometry is given by the Hahm-Burrell formalism, which is not a

flux function. For the purposes of our study, we assume that the flux-surface-average shear

given by the Waltz-Miller formalism is representative of the total shear effect. This is a

common assumption in the simulation community [113]. The more accurate Hahm-Burrell

formalism has not been implemented in GENE yet. Nevertheless, our simplifying assumption

does not affect the generality of our finding that E ×B shear from the L-mode Er-well is

already important for simulations at ρ = 0.90. Second, we have carried out multi-scale

simulations in the near-edge for the first time. These simulations would not be possible

without simplifying assumptions. For instance, we have relied on GyroLES techniques to

replace unresolved dissipation with a model. Moreover, we have relied on a large number of

single-scale simulations to empirically determine the validity of our multi-scale simulation

parameters. However, multi-scale convergence tests may be helpful to test the sensitivity

of multi-scale effects to simulation parameter changes. Since these are computationally

expensive they are beyond the scope of the present work. Third, note that particularly the

ion temperature data used for this work has a large uncertainty associated with it, likely due

to low Carbon density (see Fig. 5.4). We have estimated the relevant statistical uncertainties

for the flux-matching temperature gradients to be σITG, stat ∼ 15% and σETG, stat ∼ 8% (see

Section 5.4). We have estimated reasonable systematic uncertainties as σsys ∼ 10%. As

a result of these error estimates, we find that our flux-matching gradients of ITG+40%

and ETG+23% both fall within ≤ 2σstat + 1σsys. It is worth repeating here that only

slightly more than two thirds (68%) of normally distributed measurements fall within 1σstat,

while most (95%) fall within 2σstat and nearly all (99.7%) fall within 3σstat. Therefore,

our deviations from the experimental measurements of ≤ 2σstat +1σsys are acceptable from a

purely statistical perspective and sufficient for gyrokinetic validation. Nonetheless, there may

be limitations in our validation method that exclude some relevant physics. For example,
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we are only considering a local flux-tube domain for our simulations and we are assuming

a purely Maxwellian background distribution. While we have ruled out multi-scale effects,

using a global model or including non-Maxwellian fast-ions could contribute sufficient missing

physics to affect our conclusions. Including these phenomena is beyond the scope of the

present work.
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CHAPTER 6

Summary and Outlook

6.1 Summary

We have presented results from a study of a DIII-D L-mode plasma in the near-edge. At

ρ = 0.80, the radial ion flux is quenched by strong poloidal zonal flows for nominal input

parameters. In the ITG+40% scenario, nonlinear single-scale simulations give remarkable

agreement with both the ion and electron heat fluxes of the experiment. This change in

gradient is compatible with the combined statistical and systematic uncertainty in the ion

temperature gradient at the 1.6σ level (see Fig. 5.4). At the electron-scales, radially elon-

gated streamers are found to carry significant electron heat flux that is comparable to the

experiment. This motivates multi-scale simulations, which were carried out for the first time

in the near-edge with realistic mass ratio and geometry. Results suggest that the highly

unstable ITG modes in the flux-matched ion-scale simulations strongly suppress turbulent

transport at the electron-scales. Therefore, single-scale simulations are sufficient to match

the experimentally inferred heat flux by changing the ion temperature gradient within the

uncertainty of the experiment at ρ = 0.80. At ρ = 0.90, nonlinear simulations uncover a hy-

brid ITG/TEM scenario, which was not predicted by linear simulations. Moreover, nonlinear

simulations are able to match the total experimental heat flux in the ETG+23% scenario

when E ×B flow shear (as evaluated from Doppler Backscattering measurements) is taken

into account. This is consistent with the combined statistical and systematic uncertainty in

the electron temperature measurements at the 1.3σ level. At ρ = 0.95 of a similar L-mode

plasma, we find linear results qualitatively similar to the previous radial position in the pre-

vious plasma. Remarkably, nonlinear simulations are able to match the experimental heat
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flux with the inclusion of E ×B shear and nominal temperature gradients. Therefore, our

primary conclusion is that gyrokinetic simulations are able to match the heat-flux in the

near-edge of the L-mode plasma by varying input parameters close to their experimental

uncertainties at ρ = 0.80, ρ = 0.90 and ρ = 0.95.

6.2 Outlook

The present work invites several avenues for future research. For instance, future work could

study the nature of multi-scale effects for the ITG+3.5% scenario at ρ = 0.80: When ITG

modes are marginally unstable, previous multi-scale simulations in the core have found that

(i) ETG streamers can contribute experimentally significant transport at small scales [53,54]

and (ii) ETG streamers can dampen poloidal zonal flows and enhance ion-scale transport [55].

Similar effects might be found with our simulations in the near-edge when ITG modes are

brought close to marginal stability. Building upon the results presented here, future work

could quantify the effect of multi-scale interactions in the near-edge of L-mode plasmas.

The main ion temperature profile is often assumed to be equal to the impurity ion temper-

ature measured with the CER diagnostic (see section 5.3). This could introduce systematic

errors. However, recent diagnostic development at DIII-D is now able to extract the main

ion temperature directly and is currently quantifying this known source of uncertainty [127].

A main ion CER (MICER) diagnostic has been developed to study the Deuterium ion (D+)

charge exchange signal. In order to test the conclusions of this work, future work could study

a similar L-mode discharge using data from the more precise and more accurate MICER di-

agnostic currently under development at DIII-D [127].

Closer to the edge region, global simulations are likely required because the shearing rate

changes substantially within a narrow radial region just inside the last closed flux surface.

Resistive ballooning modes can also be expected to potentially contribute to thermal edge

transport [61–63]. Future work could extend the local simulations of the near-edge of the

present work to global simulations of the plasma edge just before an L-H transition [64,110].
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Appendix A

A.1 Properties of Curvilinear Coordinates

The coordinate system of choice for the study of tokamak plasmas is based on curvilinear

coordinates. The basis vectors in this system are neither orthogonal nor unit vectors, and

their length and orientation can vary in space. This can lead to non-trivial properties. For

example, curvilinear coordinates can be expressed in two bases (see Ref. 128 for details)

v = v1e1 + v2e2 + v3e3

= v1e
1 + v2e

2 + v3e
3 ,

(A1)

where

ei · ej = δij . (A2)

The variables with an index in the superscript are called contravariant, while variables with

an index in the subscript are called covariant. The contravariant basis vectors are defined as

ei = ∇qi , (A3)

while the covariant basis vectors are defined as

ei =
∂r

∂qi
, (A4)

where r is the position vector in these coordinates (i = 1, 2, 3). The metric coefficients can

be defined in terms of these basis vectors as follows,

gij = ei · ej

gij = ei · ej .
(A5)
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The contravariant metric tensor elements can be obtained from the covariant metric tensor

elements with the following inversion operation,

[gij] = J2


gyygzz − (gyz)2 gxzgyz − gxygzz gxygyz − gxzgyy

gxzgyz − gxygzz gxxgzz − (gxz)2 gxygxz − gxxgyz

gxygyz − gxzgyy gxygxz − gxxgyz gxxgyy − (gxy)2

 , (A6)

where

J2 =
1

det [gij]
= det [gij] (A7)

This allows any geometry to be represented in curvilinear coordinates assuming the metric

tensor is given. In GENE, the metric tensor is provided from MHD equilibrium codes such

as the TRACER-EFIT model.
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or

reflect those of the United States Government or any agency thereof.
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