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ABSTRACT OF THE THESIS

Enhanced Road Object Detection by

Fine-Tuning You Only Look Once Version 8(YOLOv8)

by

Huarui Xie

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2024

Professor Yingnian Wu, Chair

This research focuses on improving YOLOv8 for detecting road objects from a pedestrian’s

viewpoint. It involves training three pre-trained models (YOLOv8n, YOLOv8s, YOLOv8m)

on over 10,000 images, which include both a self-collected dataset of road objects and a subset

from the COCO dataset. The study employs transfer learning to maintain the models’

proficiency in recognizing the original COCO dataset classes while integrating seven new

categories. The models’ effectiveness was gauged using metrics such as precision, recall,

mAP, and processing speed to identify the most suitable model for real-time road detection.

Ultimately, the YOLOv8m model showed superior accuracy and reasonable processing speed,

though its performance still falls short of real-world detection requirements.
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CHAPTER 1

Introduction

In the era of rapid technological advancement, the way humans live has been significantly

affected. With the help of thriving technologies, AI gradually becomes a reliable assistant

to humans in various fields, largely impacting daily activities and tasks. Like automating

complex tasks, AI’s influence extends to enhancing personal convenience and safety. AI’s

potential in auto-assistance is a prime example of how technology can serve as an extension

of human capabilities, allowing for more precise, efficient, and safer completion of tasks.

As AI continues to mature, its integration into support systems for visually impaired

individuals marks a transformative leap forward. For instance, AI can power applications

that translate visual information into audible descriptions, helping those who are visually

impaired to navigate public spaces more independently and safely. By processing real-time

data about their environment, AI can alert users to obstacles, provide route suggestions, or

even assist in complex spatial interactions, thereby enhancing their ability to interact with

the world around them. This pivotal shift not only broadens accessibility but also opens

up new avenues for inclusion and independence for the visually impaired, illustrating AI’s

role as a crucial ally in improving human life. Sample images on the road from a pedestrian

perspective are illustrated in Figure 1.1.

This dissertation focuses on advancing road object detection capabilities on mobile de-

vices through the implementation of the cutting-edge YOLOv8 algorithm, known for its

real-time object detection proficiency. The primary aim is to adapt a pre-trained YOLOv8

model to recognize seven additional road-related objects from a pedestrian perspective, en-
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(a)

(b)

Figure 1.1: Sample images on road
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Figure 1.2: YOLO detection system.

hancing navigational aids for visually impaired individuals. The YOLOv8 model excels in

quickly capturing and processing images to detect objects and estimate crowd density, which

can be crucial for pedestrian safety.

YOLO (You Only Look Once), initially introduced by Joseph Redmon et al. in 2016,

revolutionized object detection by enabling real-time detection through a single pass of the

neural network. Unlike previous methods that relied on sliding windows or region proposals,

YOLO processes the entire image at once, making it significantly faster and more efficient.

The algorithm divides the input image into a grid and predicts bounding boxes and class

probabilities for each grid cell. This approach allows YOLO to understand contextual in-

formation and improve detection accuracy. [5]. The working flow of the detection system is

shown in Figure 1.2 [4].

To achieve this, the model will be fine-tuned on a curated dataset that includes these

new objects, ensuring the model can accurately identify and localize them in various envi-

ronmental conditions. This process involves adjusting the model’s parameters to better suit

the specific features and scales of road objects as seen from pedestrian viewpoints.

Additionally, integrating the output of the YOLOv8 model with language processing and

text-to-speech technologies will enable the creation of real-time assistive messages. These

messages will inform visually impaired users about their surroundings, helping them navigate

public spaces safely and independently.

3



The subsequent chapters of this thesis will delve into the specifics of the YOLO algo-

rithm, outlining the experimental setup, the fine-tuning process, and the results obtained. A

detailed discussion will follow, analyzing how effectively the model performs and exploring

potential limitations and improvements. Finally, the thesis will conclude with a consid-

eration of the broader implications of deploying such advanced AI-driven technologies in

assistive applications, emphasizing their potential to significantly enhance the quality of life

for visually impaired individuals.
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CHAPTER 2

Methodology

2.1 YOLO

2.1.1 YOLOv1

YOLO (You Only Look Once) is an innovative algorithm that employs a single convolutional

neural network for fast and effective object detection. It processes the entire image at once

for training and testing, allowing it to detect multiple objects simultaneously and provide

bounding boxes and class probabilities. This processing approach helps YOLO capture

contextual information about object classes more effectively than many other detectors [4].

YOLO is known for its good accuracy and superior speed, making it useful in real-time

applications such as autonomous driving systems, face recognition, and surveillance systems,

as shown in Figure 2.1 [5].

YOLO architecture includes 24 convolutional layers followed by 2 fully connected layers

in Figure 2.2 [4]. Each convolutional layer uses 1 x 1 reduction layers followed by 3 x 3

convolutional layers, which was inspired by the GoogleNet model [4]. The model divides

the input image into an S x S grid, in which multiple bounding boxes for objects and

their confidence scores are calculated based on predefined anchor boxes. During training, an

object may have multiple bounding boxes with different class probabilities, only the bounding

predictor with an IoU greater than a pre-defined threshold will be kept [4].
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Figure 2.1: YOLO applications

Figure 2.2: YOLOv1 architecture
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2.1.2 IoU

The IoU - Intersection Over Union between the predicted box and the ground truth is a

crucial part of the Non-Max Suppression (NMS). Non-Max Suppression is a post-processing

technique used to filter out redundant bounding boxes in object detection. When multiple

bounding boxes are predicted for the same object, NMS helps in selecting the best one.

[5]. IoU is defined as the area of overlap between the predicted and the actual bounding

boxes divided by the area encompassing both boxes, effectively measuring their overlap, as

shown in Figure 2.3 (a) [5]. The COCO benchmark evaluates object detection models by

considering various IoU thresholds, thereby assessing the models’ precision at different levels

of localization accuracy [5].

In the evaluation metrics, the mean Average Precision (mAP) at different levels of IoU

will be calculated to test the robustness and accuracy of the object detection model. This

comprehensive evaluation ensures that the model’s performance is not only based on a single

threshold but across a range of IoU values, providing a more detailed and nuanced under-

standing of its capability to localize and identify objects correctly. This method allows for

a thorough assessment of how well the model can distinguish between objects that are close

to one another and its ability to handle varying degrees of overlap between predicted and

ground truth bounding boxes.

2.1.3 YOLOv8

YOLOv8 is one of the latest versions of the YOLO family. Over each iteration, the detection

mechanism has changed and the capability becomes more stable and reliable to handle

complicated tasks with faster speed and higher accuracy. Compared to the previous version,

YOLOv8 utilizes a more complex and efficient architecture such as CSPDarknet53 backbone

to enhance feature extraction as shown in Figure 2.4 [5]. By implementing an anchor-free

approach, the model eliminates the need for predefined anchors, directly predicting bounding

7



(a) Calculation of IoU

(b) Examples of different IoU

Figure 2.3: Intersection over Union (IoU)

8



boxes based on the features extracted by the network. The usage of binary cross-entropy

for classification loss and advanced loss functions like CIoU and DFL for bounding box loss

improve the detection performance on small objects and classification tasks. Even though

the previous YOLO versions are fast, their real-time processing capabilities are still limited

by the hardware. The optimizations of YOLOv8 increase the computational efficiency and

speed, making it suitable for real-time application on mobile devices [5].

For a real-time assistive application on a mobile device, YOLOv8 is suitable for its high

accuracy, high speed, and low computational requirement. By fine-tuning the model, this

application can largely assist visually impaired people.

A similar study was done by developing a visually impaired indoor navigation system in-

tegrated with the YOLO algorithm, which utilized real-time object detection and monocular

depth estimation to assist visually impaired individuals in navigating indoor spaces safely.

Combined with monocular depth estimation and spatial audio techniques, this approach pro-

vides accurate object’ coordinates in audio format, enabling users to avoid obstacles and find

safe paths, highlighting the potential for expanding such designs into wide usage outdoors

for the visually impaired [1].

2.2 Transfer Learning

Since the pre-trained YOLOv8 can already detect several on-road object classes such as

”person,” ”car,” and ”traffic light,” it is unnecessary to retrain the model with those classes

for computational and time concerns. Transfer learning offers an efficient solution for this

study. It seeks to enhance the performance of models in specific target domains by leveraging

knowledge acquired from different but related source domains [6]. By utilizing the trained

weights from the pre-trained YOLOv8 model, the model retains its ability to detect existing

classes. Figure 2.5 illustrates intuitive examples of transfer learning [6].

Transfer learning aims to minimize training time, costs, and the need for extensive

9



Figure 2.4: YOLOv8 architecture

10



Figure 2.5: Transfer learning examples

datasets, which are often challenging to obtain, and pre-trained models can now be effec-

tively run on edge devices like cell phones with limited processing power and training time.

[2]. In this context, freezing the backbone layers of the YOLOv8 model—which consists of

the initial layers responsible for feature extraction—allows the model to retain the learned

features from the original dataset. Then, fine-tuning the model with a combination of the

original dataset and new data specific to the additional road objects can enhance its detec-

tion capabilities without requiring extensive retraining from scratch, as shown in Figure 2.6

[2].

Incorporating transfer learning into this study can significantly reduce computational

costs and training time. It allows for the reuse of established models, thereby accelerating

the development of robust object detection systems for mobile devices. This approach not

only conserves resources but also enables the model to maintain high performance in real-

time detection tasks.
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Figure 2.6: Deep transfer learning approaches
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CHAPTER 3

Experiment

3.1 Dataset

The YOLOv8 developed by Ultralytics was trained on the public dataset COCO. More than

118,000 images of 80 classes were trained and 5,000 images were used to validate the model

accuracy. Since the potential road objects are not fully covered in the COCO dataset, more

data is needed. For this study, 7 additional classes of road objects will be added to the

training along with a subset of the original COCO data.

3.1.1 Self-Collected Data

The new classes and the number of their labels are: ”Tree”: 11,633, ”Building”: 2204,

”Stairs”: 1418, ”Street light”: 1168, ”House”: 2048, ”Waste container”: 1153 from the

Open Image Dataset V7, and ”Crossing”: 2935 from Zoned. All of them build up the

training size of 8338, the testing size of 1368, and the validation size of 1266.

3.1.2 Subset of COCO

Retraining a subset of the original COCO data can retain the model’s ability to detect the old

classes, and avoid compromising the information of the other classes. The number of COCO

data to be retrained is 2801, 600 for validation and 600 for testing separately, including all

80 original classes.

13



In total, the size of the training, testing, and validation images are 11,139, 1968, and

1896 respectively. Some of the training samples are in Figure 3.1.

3.2 Training and Evaluation

To meet the demands for speed in real-time applications, this study evaluates YOLOV8

Nano, Small, and Medium. Generally, larger models offer higher accuracy but at the cost

of reduced processing time, which can be problematic for mobile device deployment. The

selected models strike a balance, providing real-time detection capabilities with satisfactory

accuracy. By analyzing both the prediction accuracy and processing time of those models,

this study aims to determine which model outperforms in real-time detection tasks, consider-

ing the constraints of the mobile environments. The models and hyper-parameters selections

were inspired by a pothole detection project, which is a similar real-time road detection task

[3].

3.2.1 Hyper-Parameters

In this study, each input image has a size of 640 x 640 without any data augmentation, and

the first 10 backbone layers were frozen to maintain the original weights. Model training was

conducted on v100 GPU in Google Colab, the batch size was set to 64, the initial learning

rate was set to 0.01, the IoU was set to 0.6, and the number of epochs was 50 due to the

computational limit. The model testing process was conducted on the Apple M2 CPU.

3.2.2 Evaluation Metrics

The evaluation of the model focuses on several key metrics: precision, recall, mean Average

Precision at IoU 0.5, mean Average Precision at IoU from 0.5 to o.95, and the processing

time of each image (speed):

14



(a) Tree

(b) Stair

(c) Waste Container

Figure 3.1: Training Samples
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- Speed: The total processing time per image, including the time for pre-processing,

inference, and post-processing.

- Precision: This metric measures the proportion of correct positive predictions (true

positive) among all positive predictions (including both true positive and false positive). A

high precision indicates the model is accurate in detection. For instance, correctly detecting

a stair rather than mistakenly detecting a crossing can prevent a pedestrian from potential

danger.

- Recall: This metric measures the proportion of correct positive predictions (true posi-

tive) among all actual positives (combination of true positive and false negative). High recall

ensures the model can correctly detect as many relevant objects as possible, promising the

pedestrian to avoid obstacles.

The formulas for precision and recall are listed:

Precision = TP
TP+FP

Recall = TP
TP+FN

where TP is true positive, FP is false positive, and FN is false negative.

3.3 Results

3.3.1 Evaluation Metrics on Test Data

After training, the test results for all classes of the YOLOv8 Nano, Small, and Medium

models are listed in Table 3.1. As expected, there is a clear trade-off between accuracy and

speed: as the model size increases, the prediction becomes more accurate while the processing

time increases. The mAP scores are consistent with precision and recall scores, indicating

that the larger models can be reliable across different IoU thresholds. The YOLOv8 Medium

model has the highest precision of 0.571 but the slowest processing time of 0.605 seconds

per image. These evaluation metrics check the models’ abilities in all 87 classes, while this

16



Table 3.1: Comparative Analysis of YOLO Models for All Classes

Model Precision Recall mAP:50 mAP50-95 Speed

YOLOv8n 0.479 0.4 0.382 0.268 0.137s/image

YOLOv8s 0.552 0.474 0.468 0.333 0.296s/image

YOLOv8m 0.571 0.539 0.526 0.385 0.605s/image

study aims to identify the on-road objects. So the irrelevant classes may affect the overall

accuracy since they were included in the training process.

Reviewing the evaluation metrics for specific on-road objects across the models in Tables

3.2, 3.3, and 3.4, it’s evident that the class ”Crossing” consistently outperforms well, achiev-

ing nearly perfect scores in precision and recall. In contrast, the classes ”Traffic Light” and

”Bicycle” display weaker performance metrics. This phenomenon can likely be attributed to

the uneven distribution of class labels in the training dataset. Specifically, ”Crossing” has

significantly more labels compared to ”Traffic Light” and ”Bicycle,” which are less repre-

sented in the COCO dataset subset. Surprisingly, despite having the largest number of labels

among the newly added classes, ”Tree” exhibits a low recall ratio, indicating challenges in

effectively recognizing tree features within the collected data.

This observation underscores the significance of data augmentation as a strategy to en-

hance training data quality. By correcting class imbalances and enriching class diversity

through training data, models are better equipped to accurately identify and classify a

broader range of features.

3.3.2 Training Progress

The analysis of the YOLOv8 models (n, s, m) across precision-confidence, recall-confidence,

and precision-recall curves in Figures 3.2, 3.3, and 3.4 demonstrates that YOLOv8m con-

sistently outperforms the other variants in terms of precision and recall across varying con-

17



Table 3.2: Evaluation Metrics of YOLOv8n Significant Classes

Class Precision Recall mAP:50 mAP50-95

Person 0.502 0.499 0.467 0.306

Bicycle 0.454 0.203 0.194 0.0884

Car 0.342 0.224 0.188 0.112

Traffic Light 0.355 0.0962 0.205 0.107

Tree 0.553 0.16 0.263 0.163

Building 0.594 0.157 0.271 0.198

Stair 0.591 0.458 0.514 0.283

Waste container 0.554 0.866 0.727 0.63

Crossing 0.825 0.877 0.925 0.665

Table 3.3: Evaluation Metrics of YOLOv8s Significant Classes

Class Precision Recall mAP:50 mAP50-95

Person 0.535 0.585 0.537 0.364

Bicycle 0.237 0.119 0.136 0.0638

Car 0.514 0.314 0.311 0.192

Traffic Light 0.519 0.311 0.35 0.168

Tree 0.544 0.143 0.259 0.159

Building 0.606 0.166 0.252 0.173

Stair 0.566 0.438 0.447 0.26

Waste container 0.551 0.848 0.664 0.541

Crossing 0.852 0.864 0.932 0.683

18



Table 3.4: Evaluation Metrics of YOLOv8m Significant Classes

Class Precision Recall mAP:50 mAP50-95

Person 0.577 0.63 0.594 0.412

Bicycle 0.33 0.288 0.216 0.106

Car 0.379 0.391 0.344 0.231

Traffic Light 0.443 0.423 0.385 0.211

Tree 0.593 0.177 0.297 0.192

Building 0.638 0.156 0.303 0.232

Stair 0.53 0.484 0.469 0.27

Waste container 0.625 0.866 0.763 0.654

Crossing 0.913 0.952 0.968 0.755

fidence thresholds. YOLOv8m maintains higher precision even at lower confidence levels

and exhibits a slower decline in recall as confidence increases, indicating its robustness in

identifying relevant objects without sacrificing accuracy. The precision-recall curves further

illustrate that YOLOv8m has the best balance between precision and recall, with the high-

est area under the curve (AUC), suggesting it is the most reliable model for applications

requiring high detection accuracy. While YOLOv8n and YOLOv8s show lower performance,

they might still be suitable for scenarios where computational efficiency is more critical.

Figure 3.5 is the training results, including the loss of training and validation dataset.

The loss curves of different models tell the story that all models show a decreasing trend

in both training and validation losses over the epochs, indicating good model convergence.

The loss curves are smooth without any fluctuations and flatten out as the epochs progress,

suggesting that additional training beyond 40 epochs might yield diminishing returns in

terms of loss reduction. Clearly, as the model complexity increases from n to m, there is a

significant improvement in all evaluation metrics, meaning that the additional computational

cost in the complex model is justified by the performance gains.

19



(a) YOLOv8n

(b) YOLOv8s

(c) YOLOv8m

Figure 3.2: Precision curves of YOLOv8 models
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(a) YOLOv8n

(b) YOLOv8s

(c) YOLOv8m

Figure 3.3: Recall curves of YOLOv8 models
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(a) YOLOv8n

(b) YOLOv8s

(c) YOLOv8m

Figure 3.4: Precision-Recall curves of YOLOv8 models
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(a) YOLOv8n

(b) YOLOv8s

(c) YOLOv8m

Figure 3.5: Training results of YOLOv8 models
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3.3.3 Testing Examples

Based on the test images presented in Figures 3.6 and 3.7, several direct observations can

be made about the performance of the YOLOv8 models:

YOLOv8n: This model performs the fastest among the three but sacrifices some accu-

racy. For instance, in Figure 3.6(a), it correctly detects multiple ”person” instances and a

”bench” but misses other objects like ”car” or ”backpack”. Similarly, in Figure 3.7(a), it

identifies ”person”, ”parking meter”, and ”car” but with lower confidence scores compared

to the other models.

YOLOv8s: Striking a balance between speed and accuracy, YOLOv8s demonstrates a

more consistent performance. As seen in Figure 3.6(b), it detects ”person”, ”car”, ”back-

pack”, and ”bench” with higher confidence levels compared to YOLOv8n. Figure 3.7(b)

also shows a similar trend, where YOLOv8s identifies ”person”, ”car”, ”parking meter”, and

”street light” with moderate confidence, reflecting its ability to maintain a good trade-off

between detection speed and accuracy.

YOLOv8m: This model excels in detection accuracy but requires more processing time.

In Figure 3.6(c), YOLOv8m not only detects all the objects identified by YOLOv8s but also

recognizes additional items such as ”waste containers” with higher confidence. Similarly, in

Figure 3.7(c), YOLOv8m detects ”person”, ”car”, ”parking meter”, and ”street light” with

the highest confidence scores among the three models.

Overall, while YOLOv8m provides the most accurate detection results, its longer pro-

cessing time might be a limitation for real-time applications. YOLOv8s offers a balanced

approach, with a great trad-off between accuracy and speed. YOLOv8n, though the fastest,

may miss some objects or detect them with lower confidence, making it less reliable for

critical detection tasks.
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(a) YOLOv8n (b) YOLOv8s

(c) YOLOv8m

Figure 3.6: Test Images of YOLOv8 models
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(a) YOLOv8n (b) YOLOv8s

(c) YOLOv8m

Figure 3.7: Test Images of YOLOv8 models
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CHAPTER 4

Discussion

4.1 Conclusion

Among the models evaluated, YOLOv8m stands out with the highest recall of 0.539 and

a precision of 0.571, demonstrating superior performance in object detection. Despite a

processing speed of 0.605 seconds per image, this rate remains within acceptable limits and

suggests potential for improvement with more advanced processors. These results highlight

YOLOv8m’s efficiency and effectiveness, making it a reliable option for real-time applications

that demand both high accuracy and reasonable processing speeds. Further enhancements

in hardware could enhance its applicability in various practical scenarios, ensuring robust

performance across diverse environments.

4.2 Limitation

Although YOLOv8m is the most capable of the three models in terms of detection, its

precision and recall levels still fall short of practical, real-world detection tasks. There are

several factors that could contribute to why deploying this model might be inadequate:

1. Data Collection Given that the study focuses on detecting on-road objects, the

ability of the models to identify irrelevant items such as food is not essential and can be

disregarded. Consequently, there is no necessity to retrain all classes from the original

dataset to maintain the models’ ability to recognize these unrelated objects, which
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causes computational limits. Meanwhile, the amount of each new class is different,

such as 11,633 trees but 1153 waste containers. The imbalance of classes will likely

lead to biases in the model’s predictions, where it may perform well in detecting and

recognizing more frequent classes like trees, but poorly on rarer classes like waste

containers.

2. Computational Limits Training three models on over 10,000 images across 87 classes

requires substantial energy, and all training sessions were carried out on Google Colab,

which limits GPU usage. As a result, the number of training epochs was reduced to

50 from the planned 100 and the hyper-parameters weren’t tuned.

4.3 Future Work

To enhance the model’s detection capabilities and address the limitations of training on a

platform like Google Colab, the following strategies can be considered:

1. Optimized Data Selection Focus on a curated subset of relevant classes from the

dataset, prioritizing on-road objects over irrelevant ones like food and animals. This

targeted approach reduces computational demands and helps avoid over-fitting non-

essential features.

2. Class Balance Addressing class imbalance by augmentation helps ensure the model

learns to detect less frequent objects as effectively as more common ones. Augmen-

tation techniques such as rotation, blur, and cutout on specific classes can bolster

the robustness of the model, equipping the model to handle real-world variability and

improving its overall detection accuracy across all classes.

3. Hyper-Parameters Tuning Optimizing hyper-parameters with adequate computa-

tional support significantly enhances the model’s ability to accurately identify features

across various classes. Fine-tuning elements such as the learning rate, the number of
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epochs, and the batch size help in addressing issues like under-fitting or over-fitting.

Additionally, making adjustments to the frozen layers in the context of this transfer-

learning scenario allows the model to adapt and learn new features more effectively.

The hyper-parameters tuning process is crucial for the model in specific tasks to im-

prove its overall performance.

By optimizing the data selection and addressing the imbalance issue, the constraints

of computational resources can be resolved, thus promising the following hyper-parameter

tuning to maximize the model’s effectiveness and enhance its practical deployment for real-

world tasks.

4.4 Applications

Designed for real-time detection, YOLO opens new dimensions in how we interact with the

world. With advancements in language models, a fine-tuned YOLO model can collaborate

with these models to serve as an innovative road assistant. This system uses YOLO’s output

- coordinates and classes of objects - to inform a language model about the location of

nearby objects, thus generating assistive messages to the users. Moreover, this message

can be converted into spoken words through a text-to-speech model, enhancing situational

awareness for the visually impaired. Such technology is particularly suited for devices like

Vision Pro glasses, offering the visually impaired safety outdoors and freedom.

The success of the visually impaired indoor navigation system provides a promising con-

cept that distance calculation can also be considered in outdoor applications. An indoor

navigation example is illustrated in Figure 4.1 [1].

Utilizing the YOLO algorithm for object detection, combined with monocular depth

estimation techniques, can significantly enhance outdoor navigation for visually impaired

individuals. By implementing these technologies, the system can accurately detect and

locate objects in the outdoor environment, calculate distances, and provide real-time audio
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Figure 4.1: Example of indoor navigation system with distance
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feedback to the user. This approach leverages YOLO’s ability to quickly and efficiently

identify objects, making it feasible to develop a robust and reliable navigation aid that

ensures safety and independence for visually impaired people in diverse and dynamic outdoor

settings.
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