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Summary
The stability of integration is essential to numerical simulations especially when solving 
nonlinear problems. In this work, a continuum damage mechanics model proposed by the first 
author is implemented with an integration method named cutting plane algorithm (CPA) to 
improve the robustness of the simulation. This integration method is one type of return mapping 
algorithm that bypasses the need for computing the gradients. We compare the current integration
method with the previous direct method, and the result shows that the cutting plane algorithm 
exhibits excellent performance under large loading rate conditions. To enhance accuracy of the 
new method, a control procedure is utilized in the implementation of the algorithm based on 
error analysis. Thereafter, the theory of poromechanics is utilized with the damage model to 
account for the effects of fluid diffusion. Laboratory tests simulated with finite element method 
illustrate distinct behaviors of shale with different loading rates and indicate the development of 
microcrack propagation under triaxial compression. Copyright © 2016 John Wiley & Sons, Ltd.

1 Introduction

Cracks are associated with rocks and other brittle materials. Continuum damage mechanics 

(CDM) is utilized to capture microcrack initialization and propagation in solids 1, 2. The initial 

idea of damage variable was first introduced by Kachanov 3 to account for the degradation of 

mechanical properties of materials under creep conditions. Then CDM has been widely used in 

brittle materials, such as concretes 4, 5 and rocks 6-8. Damage effects are analyzed at the scale of

a representative elementary volume element, which avoids to consider families of microcracks 

evolution simultaneously and makes it well suited for numerical implementation in finite element

methods (FEMs). A phenomenological model to predict damage‐induced anisotropy in rocks was

proposed by the author 9. However, to implement a non‐linear constitutive model for a material 

in FEM is always a challenge. Isotropic and anisotropic damage models proposed by different 

authors are many 7, 10-12, but successful implementations in FEM, especially with anisotropic 

damage, are rare 13, 14. The integration method used in solving nonlinear stress–strain history of

materials is commonly proposed for plasticity or viscoplasticity 15, 16. Sloan has proposed a 
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modified Euler scheme for numerical integration 17. It has been improved with automatic error 

control 18 and been utilized for unsaturated soils 19. However, the essential of the explicit 

method relies on the determination of the yield surface. The complexity of the nonlinear 

constitutive model and loading conditions increases the difficulty of this process. The implicit 

method can avoid this issue by bypassing the point or using one type of return mapping 

algorithm. Normally, trial elastic stress–strain relations are first evaluated, which are 

subsequently mapped to a suitably updated yield surface. However, this integration method is 

restricted to simple plasticity models with linear hardening and constant isotropic elastic 

moduli 20. The damage model utilized here exhibits a nonlinear elastic response, a non‐

associated damage evolution, and a complex yield criterion. If a classical integration method is 

used, the task of evaluating gradients of the hardening of the yield surface and potential surface 

is overwhelming. The strategy implemented here, named cutting plane algorithm, bypasses the 

need for computing the gradients, and it is applicable to general materials with non‐associated 

flow rules and arbitrary yield criteria.

Experimental and numerical studies on rocks show that effects of pore pressures play important 

roles on determining the strength of rocks under saturated or unsaturated conditions. The 

undrained response of rocks has been studied in references 21, 22 with triaxial compression 

experiments, while Islam and Skalle investigate shale mechanical properties through both 

drained and undrained tests 23. Pore pressures in their works are measured during tests and are 

analyzed with Skempton's coefficient 24. A more realistic representation of fluid pressures is to 

model the coupling between hydraulic and mechanical processes 25, in which the interaction 

between solid matrix and the fluid is required 26. In this work, we use the modern theory of 

poromechanics (e.g., Coussy 27) to study the effects of fluid diffusion in rocks as well as the 

damage propagation with CDM model.

The conceptual expression of CDM model is summarized in Section 2 as well as its 

implementation with the cutting plane algorithm. In Section 3, the comparison between the new 

algorithm and the previous method comes to the conclusion that the stability is improved. Errors 

due to large loading rates are estimated, and a strategy is provided in the implementation to 

increase accuracy. Section 4 simulates an axisymmetric example of a plug test with FEM and 

investigates the damage evolution in shales. Section 5 studies further the damage propagation 

with fluid diffusion effects in 3D models. Distinct loading conditions corresponding to various 

loading rates are taken into account in the simulations of laboratory experiments.

2 Constitutive Model and Implementation
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2.1 Continuum damage model

2.1.1 Constitutive equations of the skeleton 9, 28

The proposed anisotropic damage model named deviatoric stress‐induced damage (DSID) model

is hyperelastic, that is, the stress–strain relationship derives from the expression of a 

thermodynamic potential. The free energy utilized in this model is Gibbs free energy, whose 

general form was introduced into CDM with the concept of effective stress to account for the 

reduction of undamaged areas 29. Hayakawa and Murakami have formulated a different 

expression that is linearly dependent on damage variable Ω, and a modified stress tensor is 

proposed to represent closure effects of microcracks 11. DSID model is based on the energy 

expression Shao et al. proposed, which is similar as Hayakawa and Murakami's. But this 

equation depends on Cauchy stress tensor, so it avoids discontinuous differential in integration 

process 30.

(1)
where E0 and ν0 are the initial Young's modulus and Poisson's ratio, respectively; σ is the Cauchy 
stress; Ω is the damage tensor, defined as the second‐order crack density tensor 3; and ai are 
material parameters for the free energy. In this article, we use general mechanical sign 
convention, which means tension is positive while compression is negative. The damage driving 
force is obtained by deriving Gs by the damage tensor:

(2)
The total elastic strain ϵE is obtained by deriving Gs by the Cauchy stress σ:

(3)
and it contains two parts:

(4)
in which ϵel is the purely elastic strain, which would be recovered by unloading, and ϵed is the 
additional elastic strain induced by the degradation of stiffness. Therefore, total strain ϵ can be 
decomposed as

(5)
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ϵid is the irreversible strain, induced by residual crack openings existing in a sample after a 
release of loading stress (additional compression is needed to close the cracks and to get back to 
a state of zero deformation) 12.

2.1.2 Damage function

The expression of the damage function is written in the following form:

(6)
J∗ and I∗ are defined as

(7)

where  is a fourth‐order projection tensor defined as

(8)
where H(·) is the Heaviside distribution function, σ(p) is the pth eigenvalue of the stress 
tensor, n(p) is the vector aligned with the pth principal direction of stress, and α is a material 

parameter accounting for the aperture of the cone in the  space. The threshold k in 
Equation 6 is defined as a linear function of damage:

(9)
where C0 is the initial threshold of damage and C1 controls the damage hardening.

2.1.3 Damage potential

In order to enforce the constraint on the eigenvalues of damage tensor to be non‐negative, it is 

proposed to define the damage potential as a homogeneous function of degree one in Y:

(10)

The projection tensor, , is introduced to represent both ‘crossing’ and ‘splitting’ effects 9:

(11)

2.1.4 Flow rule

Damage evolution law is obtained by calculating

https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2563#nag2563-bib-0009
https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2563#nag2563-disp-0006
https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2563#nag2563-bib-0012


(12)
where λ is the Lagrangian multiplier accounting for the magnitude of the damage increment. 
Analytical solutions for elementary mechanical tests shows that the irreversible strain ϵid is better 
predicted when derived from a non‐associated flow rule:

(13)

2.2 Implementation

The damage model was originally implemented with the direct method (Picard method) solving 

for Lagrangian multiplier. However, convergence problems often happened. In order to solve this

issue, the new version changes the integration method to cutting plane algorithm for solving 

nonlinear equations. Through this modification, we can have a stable method to obtain results for

the simulation. All these implementations are based on the strain‐controlled strategy, which is 

typically utilized in the programming of FEM. A trial calculation is tested with a new strain 

increment based on elastic assumption. If the yield condition is reached, the cutting plane 

algorithm is utilized to drive the stress status back to the yield surface; if the yield condition is 

not reached, state variables are updated using the elastic solution.

2.3 Cutting plane algorithm

The cutting plane algorithm, first proposed in Reference 31, is one type of return mapping 

algorithm and follows in a straightforward manner from the theory of operator splitting applied 

to nonlinear constitutive relations. Following the procedure of the algorithm summarized in 15, 

we can derive all the equations for DSID model. From Equation 5, the rate of the strain can be 

decomposed as

(14)
Equation 4 can be rewritten as

(15)

where  is the compliance of the material. The increment of the total elastic strain can be 
obtained by taking the derivative of Equation 15:

(16)
Therefore, the increment of the stress can be computed as
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(17)
Bring the flow rule (Equations 12 and 13) into the previous equation; the increment of the stress 
can be expressed as

(18)
Linearize the yield function at the current iteration step, we obtain

(19)
By discretizing Equation 18, we obtain

(20)
The flow rule (Equation 12) indicates that the damage increment can be discretized as

(21)
Taking Equations 18 and 21 into Equation 19, we obtain

(22)
The main algorithm for this continuum damage mechanical model is summarized in Table 1.
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Table 1. Cutting plane algorithm.

Note that this algorithm is based on a forward integration of the rate equations, which is not 

unconditionally stable in general. However, according to our implementation experience, it 

works well in all cases. The cutting plane algorithm replaces the previous direct 

method 14, 32and solves the nonlinear equations for the stress–strain relationship. Comparing 

the results between the two methods, we obtain that the same answer that proves the cutting 

plane algorithm is implemented correctly. The disadvantage of the direct method in our previous 

version 14, 32 is that when the number of loading steps is decreased (i.e., the size of the loading 

rate is increased), the computation is not convergent, or infinite loop may happen during 

iterations. These unstable issues have been resolved by the cutting plane algorithm. The accuracy

and stability of the method will be discussed in the next sections.

3 Material Model Tests
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3.1 Comparison between two methods

Deviatoric stress‐induced damage model can be used for different types of tests, such as shear, 

uniaxial compression, or uniaxial tension tests. All tests results exhibit linear elasticity and non‐

linear damaged behavior. Because different tests display similar behaviors, for simplicity, here 

we only present simulation results of uniaxial compressions. We use a deviatoric strain loading 

as the boundary loading condition in all tests, in which the total strain is −2%. The loading rate 

Δϵ33 can be different when we investigate the stability or accuracy of the computations. The 

parameters used in the simulations are listed in Table 2 from References 7, 30.

Table 2. Parameters in deviatoric stress‐induced damage model for material tests.

Elastic parameters Free energy Damage function

E0 ν0 a1 a2 a3 a4 C0 C1 α (‐)

MPa ‐ MPa−1 MPa−1 MPa−1 MPa−1 MPa MPa ‐

6.8E4 0.21 1.26E‐7 3.94E‐5 −1.26 E‐6 2.51E‐6 0.11 2.2 0.231

3.1.1 Convergent results

The uniaxial compression test is simulated with a small loading rate (Δϵ33=−0.002%) for previous

direct method and current cutting plane method, and the stress–strain curve obtained by each 

method is plotted in Figure 1. If the magnitude of the strain rate is smaller than 0.002%, the 

difference of all results are negligible. Therefore, the results obtained with Δϵ33=−0.002% by both

methods are convergent. We can also confirm that we implement the cutting plane algorithm 

correctly, and it provides the same accuracy when loading rate is quite small. As 

Figure 1 displays, when the strain accumulates to −0.135%, the damage threshold is reached, and

cracks start to open. Before the material reaches the yield point, the material is elastic, and the 

stress–strain curve is linear. After damage occurs, the material stiffness is reduced because of the 

crack opening, and the stress–strain response becomes nonlinear.
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Figure 1
Open in figure viewer  PowerPoint
Uniaxial compression test results with Δϵ33=−0.002% loading rate by two methods. [Colour 
figure can be viewed at wileyonlinelibrary.com]
Caption

3.1.2 Accuracy and stability

It is well known that, for nonlinear problems when the magnitude of the loading rate (or time 

step) is larger, the computation becomes less accurate and less stable. The number of iterations 

may increase as well because of the complexity of the nonlinear computation. Here, we apply 

two additional loading rates (Δϵ33=−0.2% and Δϵ33=−0.04%) for the uniaxial compression tests. 

The convergent line is calculated with a very small loading rate by cutting plane method. 

Compared with the results of two methods, we can conclude the following:

 Stability. As Figure 2 shows, the computation with −0.2% loading rate by the direct 

method is not stable any more. It suffers from infinite iterations, and no results are obtained 

under this loading condition. However, the cutting plane method does not have this issue, 
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although the accuracy is not accurate. The direct method overestimates the stress, so the status of

the material may locate above the damage yield surface, which can be the reason of the unstable 

issue. Different from the direct method, cutting plane method underestimates the stress and 

overestimates the softness of the material, which helps the model lies below the yield surface. 

Therefore, the cutting plane algorithm is more stable than the direct method when loading rate is 

large.

 Accuracy. For the case with −0.04% loading rate, we calculated the final stress difference

between two methods and the convergent result. The error of the direct method is 1.1%while the 

error of the cutting plane method is 2.2%. The direct method is more precise than cutting plane 

method. Actually, with other loading rates, the accuracy of the direct method is always better 

than the new algorithm. Therefore, we analyze the error of the cutting plane method in the next 

section and propose a control procedure to improve the accuracy.

Figure 2
Open in figure viewer  PowerPoint
Uniaxial compression test results with different loading rates by two methods. [Colour figure can
be viewed at wileyonlinelibrary.com]
Caption
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3.2 Accuracy of CPA

In order to illustrate how the strain rate affects the accuracy of simulation results with the cutting 

plane algorithm, we launch four cases with different loading rates (Δϵ33=−1%, −0.2%, −0.02%, 

and −0.002%). All tests are simulated to a cumulative −2% deviatoric strain. Figure 3displays the

stress–strain curves obtained from these four tests and exhibits the influence of loading rates on 

the results of these tests. The main conclusions are summarized as follows:

 Smaller loading rates result in higher accuracy. The simulation result with Δϵ33=−0.02% is

close to the one with Δϵ =− 0.002%. The deviation between these two is acceptable. The loading 

rate Δϵ33=−0.002% can be considered as the convergent result. Compared with that case, the 

difference of other cases are 1.0%, 9.4%, and 29.2%, respectively.

 With larger loading rates, the accuracy of the simulation is lower, but the trend of the 

curve still keeps the same.

Figure 3
Open in figure viewer  PowerPoint
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Uniaxial compression test results with different loading rates by the cutting plane method. 
[Colour figure can be viewed at wileyonlinelibrary.com]
Caption

3.2.1 Error analysis

The error has been investigated on the stress changing for the same deviatoric strain loading. The

test result with large strain is compared with the convergent test. The normalized error is 

calculated as

(23)
where σ33 is the convergent result, while Δσ33 is the deviation from other results to σ33. The 
definition of the error is explained in Figure 4(a).

Figure 4
Open in figure viewer  PowerPoint
The error estimation during the computation. [Colour figure can be viewed at 
wileyonlinelibrary.com]
Caption

In the routine, the multiplier λ determines the irreversible rate and controls the speed of the 

iterations. Two different strain rates (Δϵ33=−2% and Δϵ33=−0.4%) and three values of λ are 

investigated here. Based on the Figure 4(b), without the control procedure, two cases with large 

loading rate (−0.4% and −2%) took fewer iterations, and the errors are large (9% and 30%, 

respectively). By using this procedure, the error can be decreased to 7%. Therefore, changing the

loading rate affects the estimation of the stress–strain relationship, and increasing the number of 

the iterations by changing the multiplier does decrease the error.

Therefore, in the program, a control procedure is utilized. When the deformation is larger than a 

certain magnitude (we use |Δϵ|=0.1% ), the multiplier λ is decreased to increase the number of 
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iterations for better accuracy. If a very precise result is required, the best way is to decrease the 

loading rate, but it will spend much longer time on the computation.

4 Finite Element Method Simulations

The material model with CPA is implemented in a FEM code, DYNAFLOW 33. A triaxial 

compression is launched to check the compatibility of the new method in FEM framework. In 

this test, we use shale as the testing material. The calibration of parameters was performed 

iteratively based on the triaxial compression tests provided by ConocoPhillips 34. The calibration

algorithm is an optimization method similar to the one used in 35, but we utilized a different 

fitness function. The optimal values of parameters were solved by minimizing the squared 

residuals of the distance, ri, between experimental data, yi, and numerical predictions, f(x,B):

(24)
where x stands for the vector of known input variables (loading conditions and boundaries) 
and B is the vector of material parameters for calibration. The method was initialized with the 
mean, minimum, and maximum values of the model parameters for a triaxial compression using 
the DSID model. The gradient method was employed to search for the optimal parameters. The 
algorithm started with the initialized vector B0 and iteratively finds the sequence B1, B2, …Bn + 1 by
solving

(25)
in which the value of the step size γn is allowed to change at each iteration. We used a series of 
compression tests, in which the same shale samples are under different confining stresses, as our 
experiment data. By using this strategy, a set of average optimal parameters is obtained, and it 
can represent all these samples' behavior. The material parameters are summarized in Table 3.
Table 3. Parameters in DSID model for FEM tests 32.
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Elastic parameters Free energy Damage function

E0 ν0 a1 a2 a3 a4 C0 C1 α (‐)

MPa ‐ MPa−1 MPa−1 MPa−1 MPa−1 MPa MPa ‐

4.6E4 0.186 7.35E‐7 1.21E‐4 −3.15 E‐5 2.39E‐6 0.01 1.18 0.399

 DSID, deviatoric stress‐induced damage; FEM, finite element method.

4.1 Axisymmetric test

A plug test is computed with FEM simulation. The size of the sample is 25.4mm ×50.8 mm 

cylinder suggested by the American Society for Testing and Materials (ASTM). For the 

efficiency of the computation, we simplify it to an axisymmetric problem (Figure 5), and we 

chose a quarter of the longitudinal section as the simulation domain. The radial deformations of 

the top surface are restricted. The left side and bottom of the domain are constrained with 

symmetric boundaries. A biased mesh generation is utilized so that the right top corner is refined 

with smaller elements. The initial confinement stress is σ0=−27.6 MPa (4000 psi). An additional 

vertical stress Δσ2=−160 MPa is applied.

https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2563#nag2563-fig-0005


Figure 5
Open in figure viewer  PowerPoint
The sketch of 2D domain for the simulation. [Colour figure can be viewed at 
wileyonlinelibrary.com]
Caption

The results are given by Figure 6 showing the distribution of vertical stress and horizontal 

damage, respectively. The fact that vertical stress is larger than horizontal stress drives cracks 

open vertically, which corresponds to horizontal damage. The maximum compression locates 

around the vertical symmetric axis, while the minimum compression is concentrated near the top 

right corner. Because of the constraints of the horizontal displacement on the top surface, the 

damage zone propagates along the 45∘ line from the right top corner where the maximum 

horizontal damage (corresponding to vertical crack) locates. Based on the results, the model with

new method can be computed under FEM framework. The simulation results can capture damage

https://onlinelibrary.wiley.com/doi/full/10.1002/nag.2563#nag2563-fig-0006
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propagation in the material (Figure 6(b)). The mechanical computation with new method does 

not result in infinite iterations and always remains stable. However, some integration points may 

have large residual force.

Figure 6
Open in figure viewer  PowerPoint
Simulation results of a plug test. [Colour figure can be viewed at wileyonlinelibrary.com]
Caption

5 Fluid Diffusion in Shale

5.1 Poromechanics

Shale is one type of sedimentary rocks in the organic matter. In general, it is saturated with the 

fluid underground. After shales are drilled out, this easily weathered rock must be kept in 

moisture environment. Therefore, samples of shales usually contain fluids inside, and the effects 

of fluid pressure must be considered in experiments and simulations. Based on the theory of 

poromechanics 27, for an isothermal saturated porous solid , stresses and pressures are governed 

by
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1. Equilibrium equations:

(26)

2. Mass balance equation:

(27)

where the Darcy flux is

(28)

3. Porosity equation:

(29)

For a slightly compressible fluid, the balance equation and the porosity equation can be 

combined to yield the following pressure equation 36:

(30)

where σ is the total Cauchy stress, σ′ is the effective stress,  is the Biot 
coefficient 37, ρ = ρS(1 − ϕ) + ρfϕ is the total mass density, ρS is the solid mass density, ρf is the 
fluid mass density, ϕ is the porosity, ϕ0 is the initial porosity, g is the body force, k is the 
permeability, μf is the fluid viscosity, qf is the Darcy flux, KS is the solid bulk modulus, and Kf is 
the fluid bulk modulus. The diffusion time is controlled by the following diffusion 
coefficient 27, 38

(31)
where λS and μS are the lame constants of solid skeleton. In our case, cf=9.154 × 10−9 m2/s. The 
time can be computed as

(32)
in which T is the time factor and H is the length of the drainage path. Based on different time 
factors, we will have different loading rates for drainage. Short time corresponds to a fast loading
(‘undrained’ test), while longer time refers to a slow loading (‘drained’ test) 39. Although the 
external loadings in both tests are the same, because of the effective stress and pore pressure, the 
responses of samples are distinct. To account for the drainage of the fluid in shales under 
loading, the top and cylindrical surfaces are constrained with zero fluid pressure (Figure 7). The 
elements on the drainage boundaries are refined for better accuracy. In these simulations, we use 
3D geometries for solving 3D problems.
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Figure 7
Open in figure viewer  PowerPoint
3D mesh used for simulations with fluid diffusion. [Colour figure can be viewed at 
wileyonlinelibrary.com]
Caption

5.1.1 Slow loading test

The time increment related to the slow loading (‘drained case’) is

(33)
The deviatoric loading is −100 MPa in this simulation. Results are displayed in Figure 8. From 
Figure 8(c), the fluid pressure is negligible compared with the magnitude of the stress σzz, so the 
effective stress σzz′ is almost equal to the total stress σzz. The result of the effective stress is close 
to the result of the dry test in Section 4.1 when it reaches −100 MPa deviatoric loading.
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Figure 8
Open in figure viewer  PowerPoint
Simulation results of the slow loading (‘drained’) test. [Colour figure can be viewed at 
wileyonlinelibrary.com]
Caption

5.1.2 Fast loading test
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Normally, the laboratory test is taken for 1 or 2h, which means that the experiment is fast loading

test (‘undrained’ test). This simulation can be launched with smaller time period. The time 

increment related to the fast loading is

(34)
The deviatoric loading is −100 MPa in this test as well. The excess fluid pressure increases to 
9MPa inside the sample (Figure 9(c)), which redistributes the stresses response of the sample and
decreases the effective stresses. Because of the drainage boundary, the gradient of the excess 
pore pressure is high near the drainage surfaces. Compared with the ‘drained case’, the total 
compressive stresses increase while the effective compressive stress decreases because of the 
effect of fluid pressure (Figure 9(b,a)).
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Figure 9
Open in figure viewer  PowerPoint
Simulation results of the fast loading (‘undrained’) test. [Colour figure can be viewed at 
wileyonlinelibrary.com]
Caption

5.1.3 Fully undrained test

One extreme case of the fast loadings is the fully undrained test, in which there is no drainage on 

the boundaries. The simulation results of the fully undrained test are plotted in Figure 10. 
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Because of the displacement constraints of the top surface, the high fluid pressure is induced 

around the top arc edge, and it spreads along 45∘ into the center of the sample (Figure 10(c)). 

However, inside the sample, the fluid pressure is compressive. This highly inhomogeneous fluid 

pressure may make the computation crash earlier than the slow and fast loading tests at higher 

external loadings.

Figure 10
Open in figure viewer  PowerPoint
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Simulation results of the fully undrained test. [Colour figure can be viewed at 
wileyonlinelibrary.com]
Caption

5.1.4 Discussion and error estimation

The external loadings versus vertical strains of samples are plotted in Figure 11 for the slow and 

fast loading cases as well as the fully undrained case and the simulated result with calibrated 

material parameters. During the laboratory experiment setup, the sample is sitting for a while 

with initial confinements, so the excess pore pressure is assumed to be dissipated after this sitting

time. The simulation results indicate that the initial response of samples is close to the slow 

loading (which is especially clear when cumulative strain from −0.1% to −0.2%). At the 

deviatoric loading step, the rate of loading is fast (Δϵ33=0.001%/s), so the fluid does not drain out 

instantly. When the loading increases, excess fluid pressures are induced in the sample. 

Therefore, at this stage, the sample behavior is close to the response of fast loading case. The 

fully undrained case predicts higher strength than the other cases, and the response is also 

distinct compared with the others.
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Figure 11
Open in figure viewer  PowerPoint
The stress–strain curves of the calibrated experiment, fast loading, slow loading tests, and 
undrained test. [Colour figure can be viewed at wileyonlinelibrary.com]
Caption

Damage is associated with the effective stress sustained by rock matrix. In Figure 8(c) for the 

slow loading case, the vertical effective stresses is close to the total one, so the magnitude of 

horizontal damage Ωyy is as high as the dry case. However, the vertical effective stress obtained in

Figure 9(c) for the fast loading test is less than slow loading test, which redistributes the 

horizontal damage on the vertical drainage boundary. Finally, in Figure 10(c) for the fully 

undrained test, since the extremely high excess pore pressure is induced, the vertical effective 

stress reduces to a low level, and the magnitude of horizontal damage is one order smaller than 

the others.
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The fast loading and slow loading are compared with the fully undrained case by the equation

(35)
where σf/s is the stress given by the fast loading or the slow loading test and σud is the stress 
obtained by the fully undrained test. As obtained in Figure 12, the errors for both fast and slow 
loadings decrease from 25% to 10%. Compared the fast loading with the slow loading from 
Figure 12, the error at the starting point is large, then it reduces at the middle of the test. The 
initial error is because of the disturbing of the loading imposed by experiment instruments, 
which is not easy to remove from the calibration for laboratory tests. This error decreases when 
the loading increases. After the middle point, because of the aggregation of the excess pore 
pressure, the sample behaviors like under ‘undrained’ condition (fast loading case). 
Consequently, the difference between the slow loading and fast loading increases.

Figure 12
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Open in figure viewer  PowerPoint
The errors with respect to the undrained case for slow and fast loadings. [Colour figure can be 
viewed at wileyonlinelibrary.com]
Caption

6 Conclusion

A proposed procedure has been implemented with cutting plane algorithms to solve the nonlinear

equations for the continuum damage model. The accuracy of the new method has been 

investigated, and the results indicate that the new version improves the stability of the 

computation of the constitutive model. The new procedure is proved to be capable to incorporate 

with FEM codes to solve geomaterial problems. A 2D axisymmetric representation of a plug test 

for shale is simulated with the damage model. Because of the constraints of the top horizontal 

displacements, the concentration of the vertical stress is found near the top edge of the sample, 

where the horizontal damage is generated as well. The high damage propagation zone is inclined 

at 45∘.

Because shale is usually saturated with fluids underground, the sample of shale is moisturized. 

The fluid diffusion in shale experiments has been investigated in 3D meshes with various loading

rates and drainage boundaries, such as the slow loading, fast loading, and fully undrained tests. 

The results illustrate at the beginning that the response of the experiments is close to the slow 

loading, then it changed to the behavior under the fast loading condition. Because of the high 

excess pore pressure, the vertical effective stresses are reduced so that the horizontal damage also

decreases.

Further studies will be dedicated to the coupled effects of hydraulic, mechanical, and damage 

effects on rock properties such as permeability and bulk modulus. This research work is expected

to bring new insights in hydromechanical damage modeling in rocks, for possible applications on

geomechanic problems.
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