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Background: Test-negative design (TND) studies have produced validated estimates of vaccine effective-
ness (VE) for influenza vaccine studies. However, syndrome-negative controls have been proposed for dif-
ferentiating bias and true estimates in VE evaluations for COVID-19. To understand the use of alternative
control groups, we compared characteristics and VE estimates of syndrome-negative and test-negative
VE controls.
Methods: Adults hospitalized at 21 medical centers in 18 states March 11–August 31, 2021 were eligible
for analysis. Case patients had symptomatic acute respiratory infection (ARI) and tested positive for
SARS-CoV-2. Control groups were test-negative patients with ARI but negative SARS-CoV-2 testing, and
syndrome-negative controls were without ARI and negative SARS-CoV-2 testing. Chi square and
Wilcoxon rank sum tests were used to detect differences in baseline characteristics. VE against COVID-
19 hospitalization was calculated using logistic regression comparing adjusted odds of prior mRNA vac-
cination between cases hospitalized with COVID-19 and each control group.
Results: 5811 adults (2726 cases, 1696 test-negative controls, and 1389 syndrome-negative controls)
were included. Control groups differed across characteristics including age, race/ethnicity, employment,
previous hospitalizations, medical conditions, and immunosuppression. However, control-group-specific
VE estimates were very similar. Among immunocompetent patients aged 18–64 years, VE was 93 % (95 %
CI: 90–94) using syndrome-negative controls and 91 % (95 % CI: 88–93) using test-negative controls.
Conclusions: Despite demographic and clinical differences between control groups, the use of either con-
trol group produced similar VE estimates across age groups and immunosuppression status. These find-
ings support the use of test-negative controls and increase confidence in COVID-19 VE estimates
produced by test-negative design studies.

Published by Elsevier Ltd.
1. Background

Since the first Emergency Use Approval (EUA) for a COVID-19
vaccine from the World Health Organization (WHO) in December
2020, there has been ongoing investigation of performance of these
vaccines in real-world settings [1]. Post-authorization evaluations
of vaccine performance help to determine vaccine effectiveness
(VE) in the context of clinical and implementation factors not fully
assessed by licensure clinical trials such as underlying medical
conditions, duration of protection, comparison of vaccine products
and types, protection against emerging variants, and diverse clini-
cal outcomes [2–5]. Vaccine effectiveness studies also address evi-
dence gaps on protection against illness progression that are
critical for evaluating diseases such as COVID-19 with an increased
risk of severe outcomes in select populations [6–8]. In considera-
tion of the unique epidemiology of COVID-19, the WHO recom-
mends the test-negative design (TND) for use in COVID-19 VE
evaluations; however, methodological challenges remain with
evaluation of COVID-19 [9].

TND is an established tool for evaluating vaccine effectiveness
in influenza and rotavirus [5,10–11]. TND combines features of
both prospective cohort and case control studies as patients with
a clinical syndrome are prospectively enrolled prior to knowledge
of disease status, and laboratory testing is used to perform post-
hoc classification of patients as cases and controls [11]. Control-
patients who present with the clinical syndrome of interest (e.g.,
acute respiratory illness [ARI]) but are not infected with the
vaccine-preventable pathogen of interest (e.g., influenza virus)
are classified as ‘‘syndrome-positive, test-negative controls” (here-
after ‘‘test-negative controls”) [12]. In contrast to TND, traditional
case-control studies include ‘‘disease-free” control-patients with-
out the clinical syndrome of interest (hereafter ‘‘syndrome-
negative controls”). TND offers two main advantages over tradi-
tional case-control studies: (1) simplified enrollment of control-
patients who are captured during the case identification process;
and (2) comparable healthcare seeking behavior between case-
and control-patients as they have the same clinical syndrome.
Due to these logistical and methodologic advantages, TND has been
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widely employed as the de facto standard for evaluating COVID-19
vaccine effectiveness during the pandemic [9,13]. Evaluations of
control groups between TND and traditional case-control designs
for influenza and rotavirus VE studies show good comparability
[14–17]. However, while theoretical comparisons between the
study designs have been detailed in the literature, empirical evi-
dence on control group comparability does not yet exist for
COVID-19 VE evaluations [18].

The primary purpose of control groups in VE studies is to pro-
vide vaccine coverage estimates among people without the infec-
tion of interest from the same population as case-patients. For
COVID-19 VE studies, controls could be patients with an ARI who
test-negative for SARS-CoV-2 (test-negative controls) or patients
without an ARI (syndrome-negative controls). An advantage of
using a test-negative control group is that case- and control-
patients exhibit the same healthcare seeking behavior for an ARI,
thereby minimizing potential selection bias stemming from differ-
ential care-seeking across vaccination status [19]. Conversely,
while the use of test-negative controls can minimize selection bias,
collider bias may be introduced in TND studies when both health-
seeking behavior and SARS-CoV-2 infections may lead to COVID-19
testing.

One advantage of using a syndrome-negative control group is
that it minimizes misclassification of case-control status. Since
control-patients do not overlap in symptoms with case-patients
(ARI or COVID-like illness), false-negative test results are less likely
to occur. This reduction can be critical during times of higher
prevalence of SARS-CoV-2 in the population, when imperfect test
sensitivity can lead to an increase in false negatives [20]. Addition-
ally, high COVID-19 prevalence itself may limit non-COVID ARIs
and thus create challenges with enrolling test-negative controls.
Conversely, while false positive test results are less common in
COVID-19 than false negatives, this type of misclassification is a
greater concern for bias in VE particularly in TND studies as true
positives may be over-represented in a test-negative control group
[4,20–22]. Thus, use of syndrome-negative controls may be more
desirable for reducing misclassification bias.
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The Centers for Disease Control and Prevention (CDC) in collab-
oration with the Influenza and Other Viruses in the Acutely Ill (IVY)
Network has conducted a series of observational studies evaluating
the effectiveness of COVID-19 vaccines against COVID-19 hospital-
ization among US adults [23]. Due to concerns about potential
biases from different control groups and lack of evidence support-
ing the use of a particular type of control in COVID-19 VE studies,
the IVY network enrolled both test-negative controls and
syndrome-negative controls. In this paper, we examine these two
control groups with regard to baseline characteristics, vaccination
coverage, and VE estimates generated from analyzing each control
group separately.
2. Methods

2.1. Setting and participants

The IVY public health surveillance network has been enrolling
adults hospitalized with COVID-19 and concurrent controls
throughout the pandemic within a 21-site consortium in the Uni-
ted States. This study included patients hospitalized between
March 11, 2021 and August 31, 2021, the period in which both
test-negative and syndrome-negative controls were enrolled.

Three groups of hospitalized adults (age � 18 years) were
enrolled based on clinical signs and symptoms and clinically avail-
able SARS-CoV-2 test results: COVID-19 cases, test-negative con-
trols and syndrome-negative controls. Cases were defined as
patients having at least one sign and/or symptom of an ARI
for �14 days in addition to a positive test (reverse transcription
polymerase chain reaction [RT-PCR] or antigen) for SARS-CoV-2
within 10 days from symptom onset. ARI signs and/or symptoms
included fever, cough, shortness of breath, loss of taste, loss of
smell, use of respiratory support for the acute illness, and new pul-
monary findings on chest imaging consistent with pneumonia.
Test-negative controls were patients with at least one sign/symp-
tom of ARI for �14 days and negative testing for SARS-CoV-2 by
RT-PCR within 10 days of symptom onset. Syndrome-negative con-
trols were patients who were admitted to hospital without ARI
signs or symptoms and without any positive SARS-CoV-2 results
from testing in the prior 14 days.

In addition to clinically obtained SARS-CoV-2 tests, enrolled
participants had upper respiratory samples collected by enrolling
staff and shipped to Vanderbilt University Medical Center for stan-
dardized, central laboratory RT-PCR testing for SARS-CoV-2.
Patients enrolled as test-negative controls who tested positive for
SARS-CoV-2 in the central laboratory were classified cases during
analysis. Patients enrolled as syndrome-negative controls who
tested positive for SARS-CoV-2 at the central laboratory were
excluded from the analysis. An enrollment ratio of 1:1 for cases
to controls was attempted at each site; controls were admitted
within two weeks of cases per protocol.

Methods for classification of vaccination status and calculating
VE in this program have been detailed in prior literature [24].
Briefly, vaccination information was obtained by participant self-
report and systematic searches of clinical and public health
sources, including CDC vaccination cards, state vaccine registries,
and electronic health records. Analysis was restricted to patients
vaccinated with two doses of an mRNA COVID-19 vaccine
(BNT162b2 from Pfizer-BioNTech or mRNA-1273 from
Moderna) � 14 days prior to illness onset and unvaccinated
patients receiving no doses of any COVID-19 vaccine. VE analyses
were limited to 2 dose series of an mRNA vaccine due to small
sample sizes of patients who received other vaccine types and
the study period occurring before widespread use of third mRNA
vaccine doses.
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2.2. Statistical analysis

Participant characteristics were compared between the test-
negative and syndrome-negative control groups using the chi
square test for categorical variables and the Wilcoxon rank sum
test for continuous variables. The characteristics included vaccina-
tion status, age (continuous and by subgroups 18–64 years
and �65 years), sex, race/ethnicity (non-Hispanic White, non-
Hispanic Black or African American, Hispanic, all other non-
Hispanic), long-term care facility residence, health insurance,
employment, education, number of hospitalizations in the prior
year, number of categories of underlying medical conditions and
immunosuppression status (Supplementary Table 1). Underlying
medical conditions were grouped into seven categories (cardiovas-
cular, neurologic, pulmonary, gastrointestinal, endocrine, renal,
and hematologic). Participants were then classified by the number
of categories their conditions were grouped under (0, 1, 2 or �3).

VE estimates for a two-dose series of mRNA vaccine to prevent
COVID-19 hospitalization were calculated using each control group
separately. VE was calculated using logistic regression models with
case/control status as the outcome and vaccination status (fully
vaccinated versus unvaccinated) as the primary exposure, while
adjusting for potential confounding variables, including admission
date (biweekly periods), age (continuous), sex, self-reported race
and ethnicity, category of underlying conditions (0, 1, 2, or �3),
immunosuppression status and US Health and Human Services
region of enrolling hospital.

To evaluate VE by immunosuppressed versus immunocompe-
tent status and by age group category (18–64 years
versus �65 years), interaction terms were introduced into the
adjusted VE models. VE was then calculated according to immuno-
suppression status within each age category using regression mod-
els that included interaction terms between vaccination status, age
group, and immunosuppression status. Adjusted odds ratios (aORs)
from these models were used to calculate VE using the formula: VE
= (1 – aOR) � 100 %. Statistical differences in VE across groups was
evaluated using a standard two sample difference test, a more
powerful alternative to the overlap test [25]. We assumed a corre-
lation of 0.5 between VE results from the two control groups. Other
levels of potential correlation (0.2 and 0.8) were considered, as
well as no correlation. All analyses were performed using R (R Core
Team, version 4.0.3, 2020). Study activities were reviewed by the
CDC and conducted consistent with applicable federal law and
CDC policy (45C.F.R. part 46.102(l)(2), 21C.F.R. part 56; 42 U.S.C.
§241(d); 5 U.S.C. §552a; 44 U.S.C. §3501 et seq). These activities
were determined to be public health surveillance with waiver of
informed consent by institutional review boards at CDC and each
enrolling site.
3. Results

3.1. Participants

During the study period, 5,811 patients were identified as eligi-
ble for this analysis, including 2726 (46.9 %) COVID-19 case
patients, 1389 (23.9 %) syndrome-negative controls, and 1696
(29.2 %) test-negative controls (Table 1). Median age overall was
59 years (IQR 45–69), 52 % identified as female, 23 % were non-
Hispanic Black, 16 % Hispanic of any race, and 78 % had one or more
underlying medical condition categories. Enrollment varied across
study weeks, with case enrollment following similar trends as
overall US COVID-19 activity (Fig. 1).

The percentage of participants vaccinated in the syndrome-
negative control group (57 %) and test-negative control group
(58 %) was similar (P = 0.708). However, control groups differed



Table 1
Participant characteristics of COVID-19 cases, syndrome-negative controls and test-negative controls enrolled by the IVY Network, March 11–August 31, 2021.

Characteristic, no. (%) expect where otherwise
stated

Case-
patients

Syndrome-negative
Controls

Test-negative
Controls

P Value, syndrome-negative vs test-negative
control

Total enrolled 2726 1389 1696
Vaccinated (2 mRNA COVID-19 vaccine doses) 483 (17.7) 790 (56.9) 976 (57.5) 0.708

Age group
Median age in years (IQR) 55 [42–67] 60 [46–71] 63 [50–72] <0.001
�65 years 805 (29.5) 566 (40.7) 758 (44.7) 0.028

Sex
Female 1312 (48.1) 668 (48.1) 840 (49.5) 0.427

Race/Ethnicity
White, non-Hispanic 1321 (48.5) 888 (63.9) 1025 (60.4) 0.033
Black, non-Hispanic 677 (24.8) 277 (19.9) 361 (21.3)
Any race, Hispanic 545 (20.0) 167 (12.0) 212 (12.5)
All other races, non-Hispanic 131 (4.8) 39 (2.8) 81 (4.8)
Unknown 52 (1.9) 18 (1.3) 17 (1.0)
Residence in long-term care facility 64 (2.4) 50 (3.8) 114 (6.9) <0.001
Has health insurance 2463 (90.4) 1298 (93.4) 1606 (94.7) 0.143
Employed 952 (44.3) 382 (32.5) 342 (23.6) <0.001
Employed as a health care worker 134 (6.2) 59 (5.0) 62 (4.3) 0.365
Attended some college or more 921 (50.9) 576 (55.3) 675 (52.1) 0.129
�1 hospital admission in past year 714 (28.5) 652 (49.5) 925 (57.6) <0.001

Number of categories of underlying medical conditions
0 categories of underlying conditions 819 (30.0) 285 (20.5) 189 (11.1) <0.001
1 categories of underlying conditions 748 (27.4) 421 (30.3) 383 (22.6)
2 categories of underlying conditions 635 (23.3) 348 (25.1) 510 (30.1)
�3 categories of underlying conditions 524 (19.2) 335 (24.1) 614 (36.2)

Specific underlying medical conditions
Cardiovascular Disease 1454 (53.3) 850 (61.2) 1224 (72.2) <0.001
Hypertension 1338 (49.1) 754 (54.3) 1032 (60.8) <0.001
Endocrine Disease (Including Diabetes) 880 (32.3) 485 (34.9) 698 (41.2) <0.001
Diabetes 754 (27.7) 389 (28.0) 599 (35.3) <0.001
Pulmonary Disease 588 (21.6) 279 (20.1) 636 (37.5) <0.001
COPD 214 (7.9) 145 (10.4) 336 (19.8) <0.001
Renal Disease 318 (11.7) 216 (15.6) 363 (21.4) <0.001
Hematologic Disease 255 (9.4) 174 (12.5) 272 (16.0) 0.006
Neurological Disease 215 (7.9) 123 (8.9) 195 (11.5) 0.016
Gastrointestinal Disease 114 (4.2) 120 (8.6) 181 (10.7) 0.058
BMI-based obesity (�30 kg/m2) 1504 (55.9) 526 (38.3) 741 (43.9) 0.002
Immunosuppressed 426 (15.6) 260 (18.7) 441 (26.0) <0.001

Fig. 1. Counts of participants enrolled by the IVY Network, March 11–August 31, 2021 by week and enrollment group (cases, syndrome-negative (SN) controls, test-negative
(TN) controls).
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across a range of other baseline characteristics including age, race/
ethnicity, residence in long term care facility, employment, one or
more previous hospitalization in the past year, number of cate-
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gories of and specific medical conditions, and immunosuppression.
Test-negative controls, compared to syndrome-negative controls,
were older (median age 63 versus 60 years, P=<0.001), and more
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likely to be a resident of a long-term care facility (7 % versus 4 %,
P < 0.001), have had at least one hospitalization within the past
year (58 % versus 50 %, P < 0.001), have one or more categories
of underlying medical conditions (89 % versus 79 %, P < 0.001),
and more likely to be immunosuppressed (26 % versus 19 %,
P < 0.001) (Table 1).

3.2. Vaccine effectiveness

VE estimates for a two-dose mRNA vaccine series to prevent
COVID-19 hospitalization were similar when the test-negative
and syndrome-negative control groups were used separately in
this analysis (Fig. 2). Among immunocompetent patients aged
18–64 years, VE was 93 % (95 % CI: 90–94) with syndrome-
negative controls and 91 % (95 % CI: 88–93) with test-negative con-
trols. For immunocompetent patients aged �65 years, VE with
syndrome-negative controls was 88 % (95 % CI: 84–91), and with
test-negative controls was 84 % (95 % CI: 80–88). For immunosup-
pressed patients aged 18–64 years, VE was 59 % (95 % CI: 36–73)
with syndrome-negative controls and 64 % (95 % CI: 48–75) with
test-negative controls. VE among immunosuppressed patients
aged 65 years and older was 53 % (95 % CI: 14–74) with
syndrome-negative controls and 53 % (95 % CI: 22–72) with test-
negative controls. Formal statistical tests assuming a true correla-
tion assumption of 0.5 failed to reject the estimates being equal (all
P > 0.05) with the exception of the eldest immunosuppressed
group (P = 0.04). Tests using other correlation values showed sim-
ilar results (Supplementary Table 2). Examination of point esti-
mates among immunosuppressed patients aged 65 years and
older does not suggest clinically important differences in VE
estimates.
4. Discussion

Our results demonstrate that using hospitalized patients with
ARI who test negative for SARS-CoV-2 (test-negative controls)
and hospitalized patients without ARI (syndrome-negative con-
trols) as control groups to estimate COVID-19 vaccine effectiveness
produced very similar estimates of VE. Despite demographic and
clinical differences between control groups, control-group-
specific VE estimates were similar within age and immunosuppres-
sion status subgroups. Given comparable results with either con-
Fig. 2. Vaccine effectiveness against COVID-19 hospitalization for a two-dose series of CO
control group (syndrome-negative control versus test-negative control) of enrolled pati
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trol group, the IVY network did pool both controls to improve
precision for subgroup analyses (product specific VE, age groups,
immunosuppressed, chronic medical conditions) in prior publica-
tions. However, since October 2021, the IVY Network dropped
additional enrollment of syndrome-negative controls based on
logistical considerations and currently conducts VE analyses using
only test-negative controls [23,24,26,27].

Among age and immunosuppression status subgroups, most
statistical tests aligned with expert clinical thinking that VE esti-
mates from the syndrome-negative control group and test-
negative control group fail to reject the null hypothesis of equal
estimates. However, the immunosuppressed patients aged 65 years
and older yield VE estimates which indicate differences in results
between the two control groups. The small sample size of these
subgroups may contribute to these results.

Our findings on VE are consistent with other observational
studies that evaluated outcomes of severe disease, including hos-
pitalization and death [28,29]. However, while over 100 COVID-
19 vaccine effectiveness studies to date have utilized TND, few
have utilized two control groups [13]. To our knowledge, only
one study has directly compared demographic characteristics
and VE estimates using different control groups; however, all
control groups met an eligibility requirement of symptomatic
infection [30].

Four factors warrant consideration when interpreting these
findings. First, when using test-negative controls, imperfect accu-
racy of diagnostic tests may lead to misclassification of case-
control status which can, in turn, underestimate VE [17,21]. How-
ever, as SARS-CoV-2 RT-PCR tests used in the US are now highly
sensitive and specific for samples collected early after ARI symp-
tom onset, misclassification of SARS-CoV-2 status among
syndrome-positive, test-negative control-patients is reduced
[31,32]. Additionally, IVY defines eligible patients as those with
testing within 10 days of symptom onset, reducing the likelihood
of misclassification due to persistent positivity. Additionally,
potential misclassification of the exposure due to ambiguity of
onset of vaccine effect was further minimized in IVY by restricting
vaccinated patients to those receiving both mRNA doses �14 days
prior to illness onset. Syndrome-negative control groups are likely
to be more important for illnesses without highly accurate diag-
nostic tests, as well as for evaluations of diseases with less severe
outcomes.
VID-19 mRNA vaccine, by age group and immunocompromised status, stratified by
ents from IVY Network, March 11–August 31, 2021.
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Second, VE studies are typically conducted among patients who
seekhealthcare; for example, in the IVY studies, VEof COVID-19vac-
cines is estimated using patients who presented to a hospital and
were admitted. Differences in healthcare seeking behavior, such as
the propensity to present to a hospital, between cases and controls
can bias estimates of VE [5,15,33]. Differential healthcare seeking
behavior is suspected to be less severe for test-negative controls
than syndrome-negative controls because, like cases, test-negative
controls presented to the hospital for symptoms of an ARI. In con-
trast, syndrome-negative controls constitute a large and heteroge-
nous pool of patients with different medical conditions, each of
whichmay have different patterns for healthcare-seeking behavior.
Additionally, these patterns may vary over time as nonpharmaceu-
tical COVID-19 interventions (e.g., social distancing, masking) are
lessened, leading to a resurgence of other respiratory infections
(e.g., influenza, respiratory syncytial virus) [18].

Third, the logistical challenges of enrolling controls are impor-
tant for timely reporting of VE. Enrolling adequate sample size and
collecting high quality data that accurately captures potential con-
founders, vaccine history, and laboratory outcomes is a time inten-
sive endeavor. Test-negative controls ease logistical challenges of
enrollment because they are enrolled in the same process of identi-
fying case-patients through ARI surveillance. Thus, necessary infor-
mation is likely routinely collected for test-negative controls, easing
the overall cost, identification, and enrollment of such patients.
Identifying syndrome-negative controls is further complicated by
the large pool of potential patients, which might introduce certain
selection biases and site-specific variability if not selected randomly
(e.g., enrollment of patients from a specialty ward).

The findings in this report are subject to several limitations. The
reported findings are most relevant for COVID-19 VE studies enrol-
ling hospitalized adults. These findings may not generalize to other
settings, such as to VE studies of other pathogens or studies in the
outpatient environment. Second, control group selection for VE
studieswasonly evaluated againstCOVID-19hospitalization; there-
fore, studies assessing different outcomes (e.g., infection or death)
may not be informed by our results. Third, test-negative controls
were not tested for other viruses in this study. It is possible that
patients positive for other viruses could offer additional advantages
than virus-negative ARI controls.[34] Fourth, enrolling sites were
academic medical centers, which tend to have patients with a high
burden of chronic medical conditions and findings may not fully
generalize to populations with lower burden of chronic disease.
Fifth, this study was conducted during time periods of SARS-CoV-2
AlphaandDelta variant predominance.DifferencesbetweenVEesti-
mates obtained using test-negative and syndrome-negative control
groups may be greater during periods of circulating variants associ-
ated with higher disease prevalence and/or lower clinical severity.
5. Conclusion

In this analysis, similar results were found for VE estimates for
mRNA vaccines against COVID-19 hospitalization using test-
negative and hospital-based syndrome-negative controls despite
demographic and clinical differences between the two control
groups. Imperfect diagnostic accuracy for SARS-CoV-2 tests does
not appear to be introducing substantial bias into VE estimates
against severe COVID-19 generated with the test-negative design
and hospital-based controls with ARIs enrolled within two weeks
of illness onset and tested within 10 days. These findings plus a
large body of experience and evidence supporting test-negative
controls for rotavirus and influenza VE studies suggest that use
of test-negative controls in a test-negative design is a valid
approach to estimating VE against severe COVID-19 resulting in
hospitalization.
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