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Abstract

We present a simple analysis that highlights the behaviour of commonly used time-integration
schemes when applied to mechanical systems that possess relative equilibria. Using a spring/mass
nonlinear system, we study the discrete solutions to relative equilibrium conditions of the trape-
zoidal rule, a one-parameter family of dissipative Newmark methods, the midpoint rule, the Energy-
Momentum and a new method developed by the authors, the Energy-Dissipating Momentum-
Conserving (EDMC) scheme. The simplicity of the mechanical model allows to find explicit con-
ditions on the discrete dynamics generated by each of the schemes which either prohibit or assure
the existence of discrete motions that accurately approximate relative equilibria.

1. Introduction

The dynamical system resulting from the time solution of nonlinear elastodynamics
has important qualitative features and it is desirable that the numerical schemes devised
to obtain approximate solutions capture these properties as accurately as possible. For
example, if there are no external forces to the system, the total energy or Hamiltonian as
well as the symplectic form are conserved. If the mechanical problem possesses additional
symmetries, conservation of momenta and the existence of relative equilibria are also of
relevance. These properties contain important information about the dynamics of the
system.
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Many papers have addressed the issue of conservation laws, and in particular the en-
ergy and momentum conserving method of Simo and co-workers was developed so that
energy and momenta conservation were enforced algorithmically (see e.g. SIMO & WoONG
[1991], StMO & TARNOW [1992]). But not much attention has been devoted to the study
of numerical methods for nonlinear elastodynamics in the presence of relative equilib-
ria (ARMERO & ROMERO [1999]). The motivation for this paper is to analyze in the
simplest possible setting how well some of the popular integration schemes employed for
time-integrating nonlinear elastodynamics solve relative equilibria. More specifically, we
will analyze the trapezoidal rule, a dissipative family of Newmark methods, the midpoint
rule, the energy-momentum conserving and the energy-dissipating momentum-conserving
method (EDMC from now on) recently introduced by the authors.

Relative equilibria play an important role in stability analysis of nonlinear dynamics
of Hamiltonian systems with symmetry and give important information about the long
term solution of systems with some mechanism of energy dissipation. The mathematical
analysis of a general case is complex, thus we must restrict ourselves to the example
indicated previously, the spring/mass system. The analysis of the solution to this problem
by the different methods can illustrate the behavior of these schemes in more complex
situations.

Of particular interest is the long term solution of schemes with algorithmic dissipation.
Numerical dissipation is normally introduced to damp out spurious high frequency noise
which in some cases may turn the computations unstable. Commonly used methods of
this type (see e.g. HILBER, HUGHES & TAYLOR [1977], BAzzl & ANDERHEGGEN [1982]
and CHUNG & HULBERT [1993]) couple group motions and elastic deformations hence
energy is dissipated from the system arbitrarily and conservation laws are violated . The
EDMC method effectively decouples group and internal motions and is able to conserve
momenta. Energy is only dissipated only from internal motions resulting on the first
dissipative scheme able to conserve relative equilibria if initial conditions are those of an
relative equilibrium. Moreover, energy is strictly dissipated when the system is not in a
relative equilibrium, and hence, the long term solutions for this method are always the
relative equilibria corresponding to the initial values of momenta. The limit solutions are
the ones corresponding to physically dissipative mechanical systems.

A previous numerical analysis of relative equilibria can be found in GONZALEZ &
SiMoO [1996] for the same spring/mass problem. They studied the stability of midpoint
rule and the energy-momentum method near the relative equilibrium. Their approach was
completely different to the one we follow: making use of the momentum conservation of
the two methods, they analyzed the relative equilibria in the reduced space, the phase
space modulo rotations. The reduction process is rather elaborated and the results can
not be extended to other commonly used integration schemes as we present.

The rest of the paper is as follows: in section 2 we will describe the physical problem
of the spring/mass system and the conservation laws arising from its Hamiltonian formu-
lation. In section 3 we define the notion of discrete relative equilibrium and analyze the
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trapezoidal rule, a family of dissipative Newmark methods, the midpoint rule, the energy-
momentum and the EDMC. In section 4 we show numerical examples to illustrate the
results of section 3. Finally in section 5 we summarize the results and present conclusions.

2. Problem definition

This section examines the mathematical formulation of the equations of motion of an
elastic spring with a mass at its end. From the analysis of these equations we extract
qualitative information about the dynamics of the problem. Of most interest it is the issue
of conservation laws and relative equilibria, which we identify and prove.

2.1. The spring and mass system

Consider an elastic spring moving on 3-dimensional Euclidean space with one end
fixed to a point O and the opposite end attached to a particle of mass m. The linear
spring has elastic constant k and natural length Lo. Initial conditions on position and
momenta must be given to complete the description of the dynamical system.

Let g(t) and p(t) = mq(t) be the position and momenta of the mass m at time ¢. The
phase space P for this problem is P = {z(t) = (q(t), p(t)) € R® x R®,t € R}. This system
is Hamiltonian, and we define the potential energy V, the kinetic energy K and the total
energy (or Hamiltonian) H as:

V(g) = V(lqll)
K(p) = K(||pll) = sm™~!||p|? (2.1)

H(q,p) =V(q)+ K(p)

where || - || is the standard Euclidean norm.

Remark 2.1.
Note that the kinetic and potential energies (and hence the Hamiltonian) depend on
their arguments only through their moduli. This in a requirement of frame invariance.
It is a key property and we will use it throughout the whole analysis. O

The equations of motion of the spring/mass system are Hamilton’s equations with Hamil-
tonian (2.1.3).

. OH 1
= T = w?
. (2.2)
ﬁ__O_H___V(Q)q
dq llall
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2.2. Conservation laws of the motion

A consequence of the structure of equations (2.2) is the existence of first integrals of the
motion, quantities that are conserved in time.

Conservation of energy

Conservation of energy is a direct consequence of Hamilton’s equations for problems with
no external forces:

dH _0H, OH _0OHOH OHOH _
dt  9q? ap? ~ Bq Op Op 0q

0 (2.3)

Conservation of angular momentum

Define J = g x p the angular momentum of the spring/mass system. To verify that J is
constant along a motion we use equations (2.2) as follows

dJ . .1 V'(q)
—— =gXPpH+gXxXp=—pXp-—gX q=0 2.4
i - Tal 24

Remarks 2.2.

1. From the definition of angular momentum we deduce that q and p are perpendicular
to J at any instant. Because of conservation of angular momentum, J is a constant
vector, hence g and p must lie inside a fixed plane IT normal to J. We conclude that
the motion of the mass is restricted to that plane.

2. Conservation of angular momentum is a particular case of Noether’s theorem (see
ARNOLD [1989]) which states that for every symmetry of the Hamiltonian system
there exists a first integral of the motion. For the spring/mass system, the symmetry
group S is the special orthogonal group SO2, the set of rotations about an axis
perpendicular to I1.

Conservation of symplectic form

The spring/mass system conserves the symplectic 2-form. This property is not so im-
portant for our analysis and we refer to GONZALEZ & SIMO [1996] for a proof of the
statement.

2.3. Relative equilibria

Another consequence of the symmetry of the system is the existence of relative equilibria.
These are solutions of (2.2) which are orbits of a one-parameter subgroup of SO2, the
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symmetry group of the system. A solution of Hamilton’s equations (2.2), z(t) : RT — P,
is a relative equilibrium of the spring/mass system if it can be expressed in the form

(a®,p) = (Qt)ae, Q(1)p.) (2.5)

Where z. = (ge, pe) € P is a solution of (2.2) for t = t. and Q(t) : Rt — S02,Q(0) = 1
is a C! one-parameter subgroup of planar rotations. As noted in remark 2.2.1 both q(t)
and p(t) must always remain perpendicular to J, so Q(t) can only be a rotation about
an axis parallel to J. We can redefine the symmetry group S as a subgroup of SO3, the
group of rotations over R3, as follows

S={Q:| Q. € SO3, Q.J = J} (2.6)

Let {e1, ez, €3} be an orthonormal basis of fixed vectors with es normal to IT and e,
in the direction of g.. With that choice of basis,

J = J63
ge = {e€1
cosf, —sinfh; O (2.7)
Q: = | siné, cosfy 0], 6;: Rt — (—2m,27],00 =1
0 0 1

Remarks 2.3.

1. The symmetry group S is commutative.
VQ1,Q2€ S, Q1Q2 = Q2Q1 (2.8)
2. The norms of the position and momenta are conserved along a relative equilibrium,

gl = Q) gell = llgell  and |lp®)]| = 1Q@)pell = lIpcll, YQ(t) € S (2.9)

3. Because the relative equilibrium is a solution of (2.2), energy is conserved. But fur-
thermore, due to special form of K and V, which depend on g and p only through
their moduli, the kinetic and potential energies are also constant along a relative
equilibrium A X

V(q() =VlQ(t)gell) = V(lgell) = V(qe)
K(p(t)) = K(1Q®)pell) = K (llpel)) = K (pe)

4. If (g*,p*) is any solution of the orbit, then any other solution of the relative equili-

brium can be expressed as (q(t), p(t)) = (Q*(t)g*, Q*(t)p*).

q(t) = Q(t)qe, ¢* = Q(t")ge = q(t) = Q()Q(t*) 'q. = Q*(t)q*
p(t) = Q(t)pe, P* = Q(t*)pe = p(t) = Q(1)Q(t*) 'pe = Q*(t)p*

These properties will play an important role is the development that follows. |

(2.10)

(2.11)
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2.3.1. Relative equilibria of the spring/mass system

We now find the expression of the position and momenta in a relative equilibrium of
angular momentum J. If suffices to find a particular solution (g, p.) to (2.5). To find
these values we substitute (2.5) in (2.2). The time derivatives are computed as follows:

dq(t) d

— = 7 Q1)) = Qt)ge = W(1)Q(1)ge = Q)W (t)g. = Q(1)2(t) X ge
d d . (2.12)
% = 2 (Q(t)pe) = Q()pe = W (1) Q(t)pe = Q)W (t)pe = Q(t)2(t) X pe

where W (t) is a skew-symmetric tensor, W = —W7T and £2 = e is the angular velocity

of the system. Using these results and eliminating Q(¢) from the equations, Hamilton’s
equations (2.2) in the relative equilibria are

1
2 xq.= 'n‘ipe
V' (llgel)

”qra“ °

(2.13)
2 X pe =

From either of this two equations we deduce that ge, p and 2 must be orthogonal. In the
basis {e1, e3, e3} we have

qe = ||gelle:
Pe = ||pclle2 (2.14)
J =||Jles

After a straightforward manipulation we obtain an implicit formula for g, in terms of the
potential energy function V and explicit expressions for §2 and p..

I1T1? = llgell*V (llgell)
qe = ||geller
1 |1J
=L (2.15)
m ||ge||
J
i
llgell

Because the relative equilibrium is of the form (2.5), we know that the value of the Hamil-
tonian at any time is

H(q(t),p(t)) = V(llgell) + K (lpell); (2.16)
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3. Discrete solutions for the relative equilibria

Once the exact relative equilibria of the spring/mass system have been identified, we
consider six numerical methods and determine how accurately they can represent those
particular solutions. These numerical schemes are: the trapezoidal rule, a one-parameter
family of dissipative Newmark’s methods, the HHT method, the midpoint rule, the energy-
momentum conserving method and the EDMC method. The second, third and last meth-
ods have some kind of high frequency numerical dissipation.

We study if the equations resulting from the time discretization of (2.2) by each of the
numerical methods admit solutions that are one parameter orbits of a discrete symmetry
group. If this type of solutions exist, we also verify if the discrete orbits lie inside the exact
ones. For methods that include high frequency numerical dissipation we investigate how
does this dissipation affect a motion of a relative equilibrium.

3.1. Discrete relative equilibria

Consider {(gn,Pn);n € N,(gn,pn) € P}, the solution of a numerical method to
problem (2.2). We define a discrete relative equilibria as numerical solutions of the problem
(2.2) that satisfy the discrete equivalent of (2.5), namely

(@n,Pn) = (ane, ane) (3.1)

where g, and p, are the numerical approximations for the position and momentum at
time t, = nAt, At is the time step and Q, € S, the discrete symmetry group. We define
this group as a subgroup of S

§S={Q.€S, neN} (3.2)

Remarks 3.1.
Every remark in 2.3 must have a discrete equivalent:
1. ”qn” = ”QnQe” = “qg”’ ”pn” = ”ane“A= ”pe” .
2. V(gn) =V(lgnll) = V(llgelD), K(pn) = K(llpe]l) = K(|lpell)
We introduce a discrete incremental rotation Q € S that relates the position and
momenta in two consecutive time steps.
dn+1 = QQn

e (3.3)
DPny1 = Qpn

For an interpolated vector gntqo = (1 — @)gn + @gn+1 there is also an interpolating tensor
G defined as G = (1 — a)QT + a1 such that
dntoa = GQn-H = GQQn

) (3.4)
Dnya = Gpn+1 = GQpn
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Remarks 3.2.

1. G is not a rotation, except when « is 0 or 1. Nevertheless, it commutes with the
discrete symmetry group.

2. Qn= @n R R

. ”q?+a” = ”GQQnH = HGQnQe“ = HGQe“ R

3. If 0 is the angle between g, and g,4+; then Q is of the form

w

R cos é —sin 61 0
Q= | sinf cosf 0 (3.5)
0 0 1

3.2. The generalized a-method

This 3-parameter family of methods generalizes the HHTa—method, in a way that
includes Newmark’s method and therefore the trapezoidal rule as particular cases. We
will develop the analysis in this general form and later on particularize for each of those
methods. The discrete equations of the generalized a—method for the motion of the mass
are:

0= man41 + N[qn-f-a]
1 At?
Gnt1 = Qo + Atm ™ po + == [(1 - 28)an + 28apy1 (3.6)

Pntl = DPn + mAt [(1 - 'Y)an + 7an+1]

Where a,, is the algorithmic approximation to the acceleration of the mass m at time ¢,,
dn+a = (1 - a)qn + aqn41 and

1% q
N[Qn+a] = V,(Qn+a)Qn+a = MQTL-}-OL (37)
HQn+a”
Defining
_ ALV (lgasall) _ A2 V(IGael) )
m  ||gn+all m |G|l
and evaluating (3.6.1) at times t,, and t,4; we obtain
mv
N[Qn+a] = MQn-i-a
my
N[Qn—1+a] = Kt_2q"_1+a (3_9)

ant1 = —VvAL2GQgn
a, = —-vAt2Gq,
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With the last two equations we can eliminate the acceleration field from (3.6)
(é -1)g, = m_lpnAt - mV[(% - B)1+ ,8@] Gq,

(Q - 1)m™p At = —mu[(l - 8] (3.10)
nAt = 7)1+ 7Q] Gan

Using relations (3.1), the commutativity property of rotations in $ and inserting (3.10.1) in
(3.10.2) we obtain the equations of the position and momenta along the relative equilibria.

De = m/AL [Q -1+ 1/(% - B)G + Vﬁ@G] ge
(

~ ~ ~ ~ (3.11)
(@-1aq.+v(@-1) |3 - A1+ Q| Gac+v |1 -71+Q| Gg. =0
Defining the factors ks, k1, KT, Ko
ko =1+v(3 —28+3af+v - 2ay)
k1= —-24+v(-3aB8+ B+ gJrory)
2 (3.12)
Ko =1+ Ol,BI/
wr=v[(B-11-a)+1-1-a)
equation (3.11.2) becomes
[”2@2 + K’l@ + KTQT + K'Ol] Qng. =0 (3.13)

Q,. commutes with Q,@T and Qz_ Moreover, a rotation is never singular so we can
multiply (3.13) from the left by @Q;;* and (3.13) becomes

[£2Q% + 1@ + k1 QT + o] g. = 0 (3.14)

Replacing g. by ||ge||e1 and dividing by ||ge|| we finally obtain

[£2Q% + 11Q + K7QT + Kol] &1 = 0 (3.15)

Remarks 3.3.

1. Q = 1,v = 0 is a solution for every combination (e, 3,). This is the trivial solution,
when the mass is at rest and every consistent method should have it.

2. If a given combination (a, §,y) allows the existence of a numerical relative equilibrium,
then equation (3.15) must have a real solutions for Q and &;. Using that solution in
(3.11) and (3.8) we obtain the values of g and p.

3. Equation (3.15) can be interpreted as the sum of 4 vectors e, Qel, Qzel, QTel each
one scaled by a factor kg, k1, K2, kT respectively. |
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— Ko

Kr QTeI

FIGURE 3.1. Graphical interpretation of equation (3.15). Each
term of the equation can be viewed as a vector their vectorial sum
must vanish.

3.3. The trapezoidal rule

The trapezoidal rule corresponds to the choice (¢, 3,7v) = (1, %, %) in (3.6). Substituting
these values in (3.12) and (3.15) we obtain

v
= 14 -

Ko +4
v

K,1=—2+§

Ry = ].—l"li (316)
4

R = 0
NP v A v

0= [(1+Z)Q2+(§—2)Q+(1+Z)1} e;

2 obtain the simplified

v > 0 so we can divide (3.16.4) by 1+ % and defining n = iz

equation

(@2 +nQ+1|ei=0 (3.17)

As in the general case, (3.17) admits a graphical interpretation of three vectors of sum 0
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FIGURE 3.2. Graphical interpretation of equation (3.17). We iden-
tify each term of (3.17) as a vector, and their sum must be equal to
0.

Q is of the form (3.5), so equation (3.17) is equivalent to the system of equations

cos2§+ cosh = —1
{ 7 (3.18)

sin2«§+nsin9= 0

Equations (3.18) have a nontrivial solution n = —2cos, and this implies that the trape-

zoidal rule admits solutions which are discrete relative equilibria of the spring/mass prob-
lem. For a given q., the corresponding p. is recovered from (3.11), using n = %_——22 =
4

—2cos f:

2sinf
Pe = -A—t _ 2sinf_ 0 ge = A—t vi -1 0 0]gqe (3'19)
l-ibcosf) 0 1 0 0 1

Proposition 3.1 The discrete relative equilibria of the trapezoidal rule lie on the ezact
ones

PRrROOF: We now show that the motion generated as a one-parameter group orbit of
the form (3.1) with a given g, and a p. as in (3.19), has the same angular momentum and
energy as the exact relative equilibrium.

First note that we have already proven that for g. and p. of the form (3.19) the
solution is of the form (3.1). A consequence of this is that momentum and energy are
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conserved along this motion. The Hamiltonian has the value
H(qn,Pn) = V(ligal) + K (llpall) = V(llgel)) + & (|lpell) (3.20)

We now calculate the angular momentum. If q. = ||ge||e1, using (3.19) and (3.8),

m
Pe = Kt\/ﬁllqellez

m
J = e X Pe = =VVlgc|"es (3.21)
m2

2
112 = 1o

vligell* = mV(llgell)llgell®

Comparing (3.20) with (2.16) and (3.21) with (2.15.3) we conclude that the points of the
discrete relative equilibria of the trapezoidal rule lie over points of the exact orbit with
same energy and momentum. u

3.4. A dissipative Newmark scheme

Newmark’s method corresponds to the generalized a—method with parameters a = 1
and 0 < gB,v < 1. The trapezoidal rule was a particular case of this method, but now we
are interested in a more general class, namely the one with

3<7<1, B=(v+3)*/4 (3.22)

For linear problems of elastodynamics, this 1-parameter family of methods is first order
accurate, unconditionally stable and has artificial numerical dissipation in the high fre-
quencies, controlled by the parameter . Substituting @ = 1 in (3.12) we obtain

ko= 1+v(z+6-7)
k1= —2+v(=28+1+47)
ko= 14+vp3

K,T=0

(3.23)

Inserting this parameters in (3.15) and dividing by 1+ v(8 — v + 3) (which is always
positive if 8= (v + 3)%/4, 3 <7 < 1) we get

-2+ (3 +7-20)
1+v(B—v+13)
_. (Q+py (3.24)
P v+ L)
[772@24'771@-1-1] e =0

m =
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FIGURE 3.3. Graphical interpretation of equation (3.24.3). Each of
the terms represented by a vector. A necessary condition for their sum

to be zero is that the vertical components of €; and a2Q61 are equal
and opposite. This implies as = 1.

From figure 3.3 we deduce that a necessary condition for (3.24) to have solution is that
72 = 1. But defining e = v — %, € > 0 it is easy to see that 7, is strictly greater than 1 for

every v > 0
1+ By

2= 1+ fv —ve

>1 (3.25)

This implies that (3.24) does not have a solution and hence, this dissipative family of
Newmark’s method can not have solutions which are relative equilibria of the problem.

3.5. The Hilber-Hughes-Taylor method

The HHT methods correspond to equations (3.6) with parameters

(2-0a)? (3-2a)
4 72

(@, B,7) = (a, ) 0L7<a<1 (3.26)

It is a second order accurate method very widely used in linear structural dynamics for
its good dissipative properties. To see if it can have solutions which are discrete relative
equilibria, we do as before, substituting the values of (a, 8,7) in (3.12) and trying to solve
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22 T T T T

1 1 1 1L 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o

FIGURE 3.4. HHT method. max, |cosf| for 0.2 < a < 1. If
| cos 9] < 1, we must restrict @ t0 0.35 < a <1

(3.15). The values of the parameters x; are

ko= 14 Z—a(3a2 — 6a + 4)

Ki=—2+ %(—305” +90? — 8 + 4)

(3.27)
ke = 1+ -Z—a(2 —a)?
v
KT = Zaz(l - a)

If we introduce (3.27) in (3.15), where Q is of the form (3.5), we obtain the following
system of equations:

ks c0s(20) + (k1 + K1) cos@ + kg = 0 (3.28)
kg sin(20) + (k1 — K1) sinf =0 '
From (3.28.2) we get
cosf = L1 (3.29)

2/‘.‘,2

In figure 3.4 we have plotted the maximum cosf as a function of o. For a given a this

maximumn is attained as v — oo. In order to have ’—"—Tzz—:l < 1 for any value of v, we must

restrict o > 0.35. But the HHT only considers a > 0.7. Introducing (3.29) in (3.28.1) we
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obtain

1
K,T(RT—K,l)-}-K,z(Iio—K,z) =0« Z(a—l)azyz =0 (3.30)

This equation is satisfied in three cases: when v = 0 (the mass is stopped), @ = 1 (in
this case the HHT method reduces to the trapezoidal rule) and o = 0. This last case
can not be taken into account because we have the restriction o > 0.7. We conclude that
there is no dissipative HHT scheme able to represent a discrete relative equilibrium of the
spring/mass system.

3.6. The midpoint rule

The midpoint rule can be put into the form (3.6) by selecting the parameters (a, 3, v) =
(3,%,1). After reordering we obtain the usual form for this method:

dn+1 —qn 1
At mPnt}
Pnt1— P : (3:31)
n n
fntl = Fn N
AL 4, 1]

With this choice of parameters, and defining as for the trapezoidal rule n = fi;;, equations
(3.12) and (3.15) become
ko= 1+v(z+B8-17)
k1 =—-2+v(-28+1+79)
k= 1+uvp (3.32)
RT = 0
[Qz+n@+1] e1 =0

which is precisely (3.17). We have already showed that this equation has a solution n =
—2cos @ and hence the midpoint rule has solutions which are discrete relative equilibria.

Remark 3.4.
Even though equations (3.32) and (3.17) are the same, their solutions are different

because the numerical value of 7 in each case is different. In both cases n = -E%% but
4
the definition of v is different in the two methods. Recall their definitions
_ AV (llgal))
Vtrapez = —— — 1
m “in|
St 3.33
) a2 V(g , 1D (3.33)
midpoint =~
m q 1
fa, 11

that difference turns out to be important as we now show.
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Proposition 3.2 The discrete relative equilibria of the midpoint rule depend on the time
step.

PROOF: Because (3.32) is identical to (3.17) we can use the same arguments as in
the proof of Proposition 3.1, with the appropriate redefinition of the parameter v. For a
given angular momentum J there exists a unique discrete relative equilibria of the form
(3.1) satisfying:

H(gn,pn) = V(lgell) + K (llpel)

ge = HQe”el

m
De = _\/17”3”2

At m (3.34)
J=qe Xpe= _A—E\/;”(Iellze.?

m? V'(IGq.ll)
J|=—v Rk LA 4

191 = Tl =m0 g,

Note the difference between (3.34.5) and (3.21.3). In the expression of the midpoint rule
the matrix G enters the definition of the relative equilibria. This matrix depends on the

time step At and
1Ggell = %\/ 1+ cosf (3.35)

where 6 is the angle between two consecutive positions g, and g,4;. The larger the time
step we pick for our calculations, the larger 6§ will be. We conclude that the relative
equilibria depend on the time step we select for the calculations.

3.7. The energy-momentum method

The equations of the energy-momentum conserving method for the problem at hand

are )
Qn+1 —dn =—p 1
At m- nt+3
- - (3.36)
Pn+1 — Pn _ __V(||Qn+1“) —V(lgnl)  gn+1+gn
At lgnsall = llgnll  llgnsall + llgnll
For the limit ||gn+1]| = |lg=|| equation (3.36) is well defined
Pn+1 — Pn — __V/ (HQn+1” + ”‘bl“) Gn+1 +an (3.37)
At 2 lgn+all + ”(In”

It is this last equation the one we should use for our analysis because in relative equilibrium
llgn+1ll = llgnll- We proceed as with the midpoint rule obtaining the same equations as
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(3.31)
~ At
(Q-1)gn = —Gpns1
m
51 myG (3.38)
(Q-1)p, = At dn+1
Once more, the definition of the parameter ¢ is crucial. For this method
_ A2 TG (lgall + lgnnil)) 539
m 3(llgnll + lgn+1l))
which for the case of a relative equilibrium simplifies to
At2 V(|| ge
_ A2 (lacl) .40

m llgell

If we proceed with the analysis, as in the case of the midpoint rule, equations (3.38) will
lead to (3.32) but now ¢ has the same value as in the trapezoidal rule, so equations (3.38)
have solutions which are the exact relative equilibrium.

Remark 3.5.

The equations of the trapezoidal rule and the energy-momentum method are the
same if the motion of the spring/mass system is a relative equilibria, and moreover, their
solution lies on the exact trajectory. This means that if the initial conditions of position
and momenta are such that the exact motion of the system is in relative equilibrium, both
numerical methods will give the same result, coinciding in the discrete points on the exact
trajectory. But if the initial conditions are not of this kind the solutions of both methods
would be different. This two methods are only equal in the relative equilibria and in the
trivial case. O

3.8. Energy dissipative, momentum conserving method

The same authors have recently presented a new method for nonlinear elastodynamics
with controllable numerical dissipation in the high frequency range. The equations of the
EDMC scheme for our problem are:

(Gnt1—qn 1 X [|Prs1ll = ol
n+1 = Gn 1 1
n+-2'

At m 4][pntall + Ipal

Q Pn+1 = Pn _ _V(llgns1l) = V(llgal) + XDV gny1 +an (3.41)
At llgn+1ll — lignll llgn+1ll + llgnll

\ DY = 3(V(lIgn+1ll) + V(llgnl)) = V(3 (Ign41ll + llgal)))

with x a parameter that controls the amount of numerical dissipation. For the relative
equilibrium case, DY = 0, the method reduces to the energy-momentum and has no
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numerical dissipation. The dissipative energy-momentum is the only dissipative method
that has solutions which are discrete relative equilibria.

4. Numerical simulations

In this section we show numerical examples to illustrate the results of section 3.
Consider a spring/mass system with point mass m = 1, spring of natural length Ly = 10
and quadratic potential energy:

V(llal) = k(llgll - Lo)* (4.1)

where k = 2 is the elastic constant. We choose the following initial conditions:

g(0) = 10.18907153978086

(4.2)

p(0) = 1.96288738595216
One can verify that (4.2) correspond to the solution of (2.15) with angular momentum
J = 20 and Hamiltonian H = 1.9622115 and hence the motion of the mass would be a
relative equilibrium.

In the following plots we show the solutions to this problem using the trapezoidal
rule, a dissipative Newmark of the type (3.22) with v = 0.51, the HHT with o = 0.8, the
midpoint rule, the energy momentum and the EDMC with x = 0.05. For all the examples
we have used a time increment of At = 1 and we have run 1000 time steps. From the plots
it is easy to see which methods conserve the relative equilibria: those whose solutions have
constant energy, momentum and radius.

5. Summary and conclusions

We have analyzed the numerical solutions to the spring and mass system by several
commonly used time integration schemes. We started by defining a discrete relative equi-
librium, a discrete motion along which relative distance between points on the moving
solid remain constant. The results obtained show that the HHT and dissipative New-
mark schemes can not have discrete relative equilibrium solutions. The trapezoidal rule,
the energy-momentum conserving and the EDMC method have identical solutions when
the initial conditions correspond to a relative equilibria. This solution is a discrete rela-
tive equilibria and lies inside the exact trajectory of a relative equilibrium. Finally, the
midpoint rule has discrete relative equilibria but they do not lie inside the exact trajectory.

We confirmed numerically the analytical results and observed that, given initial con-
ditions in relative equilibrium, the long term solution of all the dissipative algorithms
except the EDMC is the static solution. The solution for this last method is the relative
equilibrium orbit.
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FIGURE 4.1. Trapezoidal rule solution for initial conditions on rela-
tive equilibrium. Momentum and energy are conserved and the length
of the spring is constant.
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FIGURE 4.2. Dissipative Newmark method solution for initial condi-
tions on relative equilibrium. Energy is dissipated, angular momentum
and spring length decrease. The limit solution is the static solution.
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FIGURE 4.3. HHT solution for initial conditions on relative equi-
librium. The dissipation is smaller than for the dissipative Newmark
scheme, nevertheless still the limit solution is the static one.
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FIGURE 4.5. Energy-momentum method for initial conditions on
relative equilibrium. Momentum and energy are conserved and the
length of the spring is constant. The method has a discrete relative
equilibrium that lies on the exact one.
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FIGURE 4.6. Energy-momentum dissipative for initial conditions
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length of the spring is constant. The discrete trajectory lies on the
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The conclusions obtained here are not definitive because of the simplicity of the system
analyzed. Nevertheless, the analysis gives some insight into the numerical properties of
commonly used time integration schemes and identifies desirable properties for nonlinear
dynamics integrators. In this sense, the recently proposed scheme EDMC seems a valuable
tool for the solution of nonlinear elastodynamics. In ARMERO & ROMERO [1999] most of
this aspects are further analyzed in more general settings.
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