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ABSTRACT 

We introduce the notion of network flow buffering for direct 
HTTP streaming of web-based video clips, making it a more 
viable alternative to specialized streaming protocols, and in some 
cases making it a superior approach. A network flow buffer is 

simply a remote buffer that is dynamically deployed between a 
Web client and server, and that actively or passively regulates the 
flow of streaming video data. Network flow buffering is a simple 
approach to improving the performance of Web-based streaming 
video by buffering at a location where it can operate more 
effectively, providing benefits such as supplementing client 
buffering capacity, smoothing differences between WAN and 
LAN bandwidths, regulating data flow to a client, and supporting 

personalized caching to improve restart times. Network flow 
buffering is easily implemented as a Customizer in a middleware 
architecture we have developed (and reported on in WWW02) 
called the Web Stream Customizer Architecture (WSCA). The 
WSCA has a number of desirable features for supporting network 
flow buffering, including the dynamic deployment and relocation 
of software intermediaries between clients and servers that allow 
them to customize Web transactions, an extended usage model 

that supports customization of HTTP streaming and non-HTTP 
communication, and two points of control (one at the intermediary 
and one at or near the client) which can be used to supply 
feedback on conditions at the client to improve a network flow 
buffer’s performance. 

 

 

1. INTRODUCTION 
A 1999 study of nearly 83 million HTTP accesses from thousands 
of clients at a major university in the U.S. put forth a lower bound 
of 18%-24% for the proportion of all traffic that was dedicated to 
multimedia [17], a number that has likely increased significantly 
in recent years as hardware has become more powerful and 
broadband Internet access has gained in popularity.  A follow-up 
2001 study of video traffic from thousands of clients at the same 
university found that 93% of video sessions were for videos of 
length 10 minutes or less, most being between 2.5 and 3.5 minutes 

[4]. As Web-based access to unicast streaming of pre-recorded 
video clips becomes increasingly popular, users are encountering 
a number of problems with the performance of video playback.  In 
today's Internet, under ideal conditions (e.g., a powerful desktop 
client accessing video from a high bandwidth server over a high 
bandwidth, broadband connection without congestion on the route 
from client to server), smooth video streaming is already a reality. 

However, when these conditions are not met, the user will often 
experience extended startup delays and frequent interruptions in 
playback.  Playback problems can originate anywhere along the 
path from client the server, due to inadequate client memory, 

network conditions such as wireless connection failures or 
congestion in the WAN, and servers failing or lacking adequate 
resources to maintain the required stream bandwidth.    

There exist a number of specialized video streaming protocols.  
However, HTTP-based video streaming is popular and supported 
by most video players for a number of reasons.  One reason is the 
use of HTTP proxies from behind firewalls that allow access to 
the outside world; another is the fact that it is easier for common 

Internet users to place video clips on Web sites provided by their 
ISP as they may not have direct access to a server, or they may 
lack the expertise to install and administer their own video server.  
In the former case, the video can be streamed directly over HTTP, 
or a streaming protocol can be tunneled through HTTP.  However, 
in the latter case, the server dictates that HTTP be used directly.  
Specialized streaming protocols are ideal for dedicated video 
systems such as video conferencing and video-on-demand servers.  

In this paper, we present an approach to improving the 
performance of streaming video using direct HTTP transfers, 
making it a more viable alternative to specialized streaming 
protocols when viewing Web-based video clips, and in some cases 
making it a superior approach.   
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Figure 1. Network Flow Buffering. 

 

To mitigate performance problems of HTTP streaming, we 
introduce the simple notion of network flow buffering, where a 
simple application-layer buffer is dynamically deployed between 
a Web client and server to actively or passively regulate the flow 
of streaming video data (see Figure 1).  In addition, it may also 
cache data for future access.  Network flow buffering can provide 

benefits such as reducing playback startup latency, reducing the 
frequency and duration of interruptions to video playback, and 
reducing the time window in which the application is susceptible 
to failures in the network or server. It can be used in a number of 
capacities such as supplementing the client’s memory, smoothing 
bandwidth differences between the WAN and LAN connecting 



the client and server, regulating data flow to the client, and storing 
data beyond the duration of the connection for caching purposes.  
By regulating data flow to the client, network flow buffering can 
effectively convert a normal HTTP video session between the 
server and intermediary into a specialized streaming protocol 

between the intermediary and the client. 

Normally, when an application-layer intermediary such as an 
HTTP proxy is being used, the operating system of the proxy host 
will buffer network data as it arrives on the network before it has 
been read by the application.  One might conclude that buffering 
at the application layer is therefore redundant.  However, the OS 
buffer is generally not adequate because typically, it will be too 
small to provide any benefit for large transfers, such as video clips 

of size 1 MB or more. 

Our motivation for network flow buffering arose directly from 
practical experience with commercial video players, including 
Real™, Windows Media™, and Quicktime™, and the observation 
that these players often spend significant amounts of time 
buffering data both before playback begins and when playback is 
interrupted due to underflows.  Network flow buffering is entirely 
transparent to the video player and the video server, allowing it to 

improve existing video applications as an alternative to using 
specialized streaming protocols or introducing new streaming 
protocols. 

Note that our approach is orthogonal to related research on video 
smoothing (discussed further in the section on related work), such 
as approaches that optimize for known video encoding 
characteristics and hard network limitations, as we take a client-
specific approach, focusing on adapting to changing network 

conditions under client constraints, while being independent of 
server behavior, and we focus only on HTTP streaming.   

Although buffering is a common approach to improving the 
performance of distributed systems and its benefits are well 
known, we make the following unique contributions:  

• We focus on streaming video clips, identifying and 

modeling a number of different scenarios in which buffering 
improves the playback of streaming video directly over HTTP, 
some of which require passive buffering and others which require 
the outward flow from the buffer to be regulated. 

• We take into consideration the location of the buffer and 

consider the fact that the buffer may need to be dynamically 
relocated to support mobile users.  

• We consider that the buffering code itself may be 

distributed into two points of control, which can be used to hone 
performance, or combine two usage scenarios to reap the benefits 

of both. 

The Web Stream Customizer Architecture (WSCA) [13] has a 
number of desirable features that make it an ideal platform for 
implementing network flow buffering. It supports the dynamic 
deployment and relocation of software intermediaries between 
Web clients and servers, allowing them to customize Web 
transactions. It also has an extended usage model that supports 
customization of HTTP streaming and non-HTTP communication.  

The WSCA is transparent to clients and servers, and provides two 
points of control, one point of control at the intermediary, and one 
point of control running on or near the client.  This client-based 
component can be used to supply feedback to a network flow 
buffer on conditions at the client to improve the application's 
performance. 

In the remainder of the paper, we describe some of the most 
common and useful network flow buffering scenarios in Section 
2.  In Section 3, we present performance evaluations of two of 
these scenarios.  In Section 4, we discuss the implementation of 
network flow buffering within the WSCA.  We review related 

work in Section 5, and present conclusions in Section 6.  

2. Network Flow Buffering Scenarios 
The optimal location for network flow buffering depends on the 
network conditions.  Ideally a network flow buffer (NFB) is 
located just beyond the “problem hop,” a boundary point where 

there is a significant change in network performance 
characteristics.   This location will often be at the LAN/WAN 
gateway, such as when the client has a low-bandwidth wireless 
connection (depicted in Figure 2).  However, when the problem is 
in a WAN hop, there may not be a suitable location for hosting an 
NFB, so the LAN/WAN gateway may serve as a practical 
alternative.   
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Figure 2. A Network Flow Buffer on the LAN/WAN Gateway. 

 

The following five scenarios highlight the benefits of network 
flow buffering.  The description of each scenario below is given in 
the context of the NFB being located at the LAN/WAN gateway, 
and is accompanied by a pair of charts depicting the data receipt 

and video playback with and without using network flow 
buffering. 

2.1 Pre-buffering 
By pre-buffering, we mean buffering that occurs before video 
playback begins.  Typically a streaming player will buffer a few 

seconds of video, even when data is arriving at a high rate, so that 
it can handle possible future network or server problems that may 
cause data to arrive late.  In addition, when the data arrives at the 
client at a rate that is lower than the video playback rate, the client 
needs to buffer more to ensure continuous playback once 
playback begins. 

Pre-buffering is especially useful when the WAN is the bottleneck 
and the client has limited memory.  In Figure 3, the video 
playback and network data rates are modeled as constants to 
simplify the example.  The limited-memory client cannot buffer 
adequately to support smooth playback without interruption, even 

though the network problems originate in the WAN.   However, 
an NFB near the client can supplement the client's buffer by 
buffering some extra video before it begins sending data to the 
client.  The client only needs to buffer enough data to sustain the 
video as though it is originating at the NFB. Conditions amenable 
to pre-buffering may occur if there is congestion in the WAN, or 
if a high bit-rate video is being played over a high-speed LAN 
such that the WAN is the bottleneck.   



Like the client, the NFB cannot predict future network conditions 
over the course of the entire video, but it may buffer based on 
current conditions, based on feedback from the client about its 
memory availability and effective bandwidth, based on user 
settings, or based on a heuristic such as using data from past 

streaming sessions to predict future performance.  Ideally, the 
player would know about the buffer and they could cooperate so 
that the player does not interpret the pre-buffering at the buffer as 
a network problem.  Instead, many players can be configured to 
wait for up to a few minutes before giving up on a server 
connection, so this would also allow for pre-buffering to occur 
even without player cooperation. 
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Figure 3. Pre-buffering. 

 

2.2 Network-Differential Buffering 
Network-differential buffering is a form of passive buffering that 
takes place during video playback, and is useful when the WAN 
bandwidth is generally higher than the LAN bandwidth. The goal 
of network-differential buffering is to take advantage of the WAN 
bandwidth to get the data from the server to the NFB as quickly as 

possible so that a WAN or server failure will not interrupt video 
playback. It is passive because the buffer fills up automatically 
due to the difference in bandwidths between the WAN and LAN.   
The NFB retrieves data from the server faster than data flows 
from the NFB to the Client.  The net effect is that when the NFB 
is being used, data leaves the server sooner to be buffered at the 
NFB. Without the NFB, the data would remain on the server due 
to the lower effective bandwidth between client and server, 
forcing the server to send data more slowly. 
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Figure 4. Network-Differential Buffering. 

 

This scenario is depicted in Figure 4. Network-differential 
buffering may be the result of an actual difference in the WAN 

and LAN capacities at the time of the streaming, or the result of 
the inability of the application to take advantage of the full 
bandwidth.  For example, the LAN bandwidth may be adequate, 

but the client has limited buffering memory available, forcing the 
data to be transferred from the server at a lower rate if no NFB is 
used. In Figure 4, when the client obtains the video stream 
directly from the server, the player detects that the bandwidth is 
adequate to sustain the video playback, so it only pre-buffers a 

moderate amount of data so as not to delay starting playback for 
too long.  However, a server failure lasts long enough to cause 
buffer underflow at the client and prevent the client from 
maintaining normal video playback.  When the NFB is used, the 
client pre-buffers the same amount.  However, the NFB receives 
the video quickly enough that it has finished downloading the 
entire video before the server failure occurs.  This allows it to 
mask the failure from the client.  Because of the high WAN 

bandwidth, the NFB does not need to pre-buffer very much, so the 
initial delay before playback starts is not much greater than what 
it would be if the client were to stream directly from the server. 

2.3 Regulated Split-Stream Buffering 
Regulated split-stream buffering allows the client to reap the 

benefits of a specialized streaming protocol even when the video 
is on a Web server.  However, it has the added benefit that it 
decreases the window of time in which the playback is susceptible 
to server or WAN failure, making it an improvement over 
specialized streaming protocols in the case where the server is not 
heavily loaded.  Regulated split-stream buffering is similar to 
network-differential buffering except that the lower data rate from 
the NFB to the client is explicitly regulated by the NFB. In effect, 

the NFB acts as a regulated buffer, downloading data as quickly 
as possible from the server and regulating the flow of data to the 
client.  This is typically implemented as a split stream, i.e., the 
Server-NFB protocol differs from the Client-NFB protocol.  This 
is especially useful when conditions at the LAN and client are 
such that a streaming protocol would be highly beneficial (e.g., 
high error rate, low memory), but conditions at the WAN would 
support a fast download by the NFB.  In this case, if the NFB can 
establish a direct HTTP connection with the server, the NFB can 

download the data at full speed while streaming the data at a 
regulated rate to the client.  The buffer will fill up quickly, 
yielding the same benefits as network-differential buffering, as 
shown in Figure 4.  Later, we will show the benefits of this 
scenario with some experimental results, comparing it to using a 
specialized streaming protocol along the entire path from client to 
server. 

2.4 Smoothing 
In the context of the NFB, smoothing refers to using the buffer to 
mask (from the client) dynamic changes in relative bandwidth 
between the WAN and LAN that cause the effective bandwidth to 
be lower than the video playback rate.  When the bandwidth is 
bursty and, on average, lower than the video rate, the client player 

will have to occasionally interrupt the playback to refill its buffer, 
even if it has adequate memory since it will be unable to predict 
the optimal pre-buffering amount (it may also determine that the 
estimated optimal pre-buffering will take longer than the user is 
likely to be willing to wait, and instead choose to intentionally 
rebuffer during playback). 

Smoothing works best when the WAN and LAN are highly 
variable relative to each other, i.e., sometimes the WAN 
bandwidth is significantly higher than the LAN bandwidth, and 
sometimes the opposite is true.  The effective bandwidth from the 
server to the client will always be limited to the minimum of the 

WAN and LAN bandwidths.  If the WAN bandwidth is higher 
than the LAN bandwidth, there is an opportunity for an NFB to 
buffer data, just as in the network-differential buffering scenario.  



If at some future time the WAN bandwidth drops below the video 
playback rate and the LAN bandwidth increases, the NFB will be 
able to send the buffered data to the client, effectively hiding from 
the client the fact that the WAN bandwidth is not high enough to 
support the video playback rate.  This can save the player from 
having to interrupt playback.  

Smoothing is depicted in Figures 5 and 6. Figure 5 shows the 

various bandwidths during the video session.  Each of the lines in 
the plot shows potential amount of data transferred over time, and 
hence the slope represents the bandwidth. Although the WAN and 
LAN have the same average bandwidth, the WAN bandwidth is 
bursty while the LAN bandwidth is smooth.  The effective 
bandwidth seen by the client is also shown (calculated as the 
minimum slope of the WAN and LAN bandwidth plots at any 
time), and has a lower average.  (The minimum slope is used 
because, again, the slope represents the bandwidth as a rate of 

data arrival over time.)  In Figure 6, the video playback is 
depicted with and without an NFB.  Without the NFB, the pre-
buffering is inadequate.  When the NFB is used, the same amount 
of pre-buffering at the client yields smooth video. 
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Figure 5. Bandwidths for Smoothing Scenario 
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Figure 6. Smoothing  

 

2.5 Personalized Caching 
Network flow buffering can easily be extended to support 
caching. Caching helps low-memory clients by reducing the 
likelihood of interruptions during playback, and decreasing the 
time it takes a player to restart playback after the user fast-
forwards, rewinds, or replays the video either by choice or as a 
result of a network outage.  Retrieving the video from the cache 

reduces the latency, and since it is less likely that a network 
problem such as congestion occurs along the data path, it can also 
reduce the pre-buffering time at the client and the likelihood of 
the client having to interrupt playback to rebuffer. 

Unlike traditional proxy caches, which aim to improve 
performance by caching videos that are popular among a number 
of clients, personalized caching is primarily aimed at reducing 
restart times for videos recently viewed by the user.  The cache 

can be relatively small as, not only is it targeted for a single user, 
but if the desired goal is to reduce restart times resulting from 
interruptions to playback due to wireless connection failure, the 
cache only needs to store the most recently accessed video, and 
only until the client has successfully completed viewing the video. 

An example of improving restart times with personalized caching 
is shown in Figure 7.  The LAN bandwidth is higher than the 

WAN bandwidth.  Without the NFB, after a LAN failure occurs, 
the user restarts the video, and must wait for the full server 
latency and for rebuffering based on the lower WAN bandwidth.  
With the NFB, the first time playback begins, the NFB buffers a 
little before sending to the client, and sends to the client at less 
than the maximum LAN bandwidth so that its buffer will not 
underflow.  The extra latency added by the NFB reduces the 
amount of video that is displayed before the LAN failure.  
However, the NFB is able to receive the remainder of the video 

during the LAN outage.  By the time the user restarts and fast-
forwards, the entire video is cached on the NFB.  The user sees 
only a small delay due to the NFB and to the small amount of 
rebuffering that occurs at the client.  Since the entire video is 
buffered at the NFB, the full LAN bandwidth can be used between 
the NFB and client the second time through.  In fact, other than 
compensating for jitter, buffering at the client is not even 
necessary; the client only buffers in anticipation of a potential 
failure. 
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Figure 7. Personalized Caching  

 

2.6 Combining Scenarios 
In the introduction we note that the WSCA is an idea platform for 
implementing network flow buffering for a number of reasons, 
including the fact that it supports two points of control.  This 
implementation is described in more detail in Section 4.  Having 
two points of control supports an advanced NFB model in which 
two usage scenarios can be simultaneously active, one at a remote 
location beyond the "problem hop" and one closer to the client 

such as at the LAN/WAN gateway.  For example, suppose an 
NFB is deployed just beyond a common problem area in the 
WAN near a server that is commonly accessed by the user.  This 
is an ideal location for performing network differential buffering 
because the NFB is in good position to reliably and quickly 
receive the data from the server.  However, suppose that the client 
is a low memory device and would benefit from pre-buffering at 
the NFB.  In the case of pre-buffering, the NFB should be closer 

to the client so that there is minimal latency, since the buffer is 
essentially an extension of the client's memory.  In this case, the 
ideal set-up is to have an NFB performing network-differential 
buffering at the remote location, and an NFB performing pre-
buffering closer to the client such as at the WAN/LAN gateway. 



3. EXPERIMENTS 
We performed experiments to validate the benefits of smoothing 

and regulated split- stream buffering.  The experimental setup for 
both experiments is shown in Figure 8. For the client, we used a 
notebook computer with a 500MHz Intel Pentium III processor 
running the RealOne™ Player on Windows 98.  The server was a 
P3 933MHz PC running Windows 2000.  Both an HTTP server 
and Real Helix Server™ were used.  The intermediate “gateway” 
machine used for network flow buffering was a Pentium II 
450MHz PC running FreeBSD. 
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Figure 8. Experimental Setup  

 

To simulate a network with a given bandwidth, we used 
“dummynet” in FreeBSD (IP Firewall kernel module), which 
supports the creation of pipes to control bandwidth between two 
communication endpoints. We ran dummynet on the gateway 
machine, controlling bandwidth between itself, the client, and the 
server.  We also ran tcpdump, a Unix program that logs IP packets 

and their sizes, including the amount of user data, on the gateway 
machine to track network communication.  We also ran a 
Windows version of tcpdump called windump at the client, to 
precisely track the arrival of data at the client. 

Measuring the video playback and buffering in the video player 
was a bit more difficult, as we did not have access to the internals 
of the Real Player™. Thus, we assumed a constant bitrate 
playback rate based on the attributes of the video being used, and 
we manually timed the buffering periods of the player based on 
information provided via its user interface, which indicates when 
it is buffering.  So, for example, a general way to estimate the size 

of the player's buffer is to subtract the amount of arriving data 
reported by windump from the amount of video data that has been 
displayed.  The amount of video data is calculated as the amount 
of time the video has played so far, which is displayed by the 
player, multiplied by the bitrate of the video reported by the 
player.  We used the same video clip for all experiments: it was 3 
minutes and 22 seconds in length, with a bitrate of 308Kbps (38.5 
KB/s). 

3.1 Experiment 1: Smoothing 
In this experiment, we show how a NFB (network flow buffer) 
can provide smooth playback that would otherwise be interrupted 
multiple times.  We also demonstrate that in addition to the 
performance improvement, using the NFB requires no more 
application-layer buffering than is required when streaming 

directly from server to client. In fact, in circumstances when 
smoothing works well, it is normally expected to use less.   

We used dummynet to simulate highly bursty LAN and WAN 

bandwidths (over time).  The bandwidths are shown in Figure 9.  
The LAN and WAN bandwidths repeat the same 24-second 

cycles, but start at a different point within the cycle. For each, the 
bandwidth changes every 2 seconds, half of the cycle is spent 
above the video rate and half of the cycle is spent below the video 
rate.  The individual averages for the WAN and LAN for a cycle 
are 41.75 KB/s, which is above the average playback rate of 38.5 

KB/s.  However, the combined bandwidth, calculated as the lower 
of the two at any point in time, is 25 KB/s. As a result, without 
smoothing, we expect the video player to have to interrupt 
playback so that the network can catch up to the video. The 
benefits of smoothing are illustrated below.   

 

 

Figure 9. Bandwidth For Smoothing Experiment 

 

 

Figure 10. Playback With/Without Network Flow Buffering 

 

We performed two video trials.  For both trials, the NFB host was 
configured to be the HTTP proxy for the player, and the player 
was configured to stream directly over HTTP from a Web server.  
In one trial, the NFB application simply acted as a pass-through 

streaming proxy without buffering.  Going through the proxy 
simulates the data passing through a network gateway between the 
LAN and WAN, and allows the proxy host to run dummynet and 
control the LAN and WAN bandwidths.  In the second trial, the 
NFB smooths the data flow between the server and client.  It is 
implemented very simply using two threads.  One thread reads 
data from the connection to the server as it becomes available and 
writes it to a data buffer.  Another thread reads data from the 
buffer and writes to the client. Both threads use synchronous 

network I/O. When the WAN bandwidth is higher than the LAN 
bandwidth, the buffer will increase in size.  When the WAN 
bandwidth drops and the LAN bandwidth surpasses it, data will be 
available in the buffer to send to the client to compensate for the 



lack of data arriving from the server.  Figure 10 shows the video 
playback as amount of data played over time with and without 
NFB. 

When the NFB is being used, there are about 15 seconds of pre-
buffering.  Once playback begins, the video plays smoothly for its 
entirety without any additional buffering by the player. This is due 
to the smoothing effect of the buffer, which allows a higher 

average bandwidth to be sustained to the client. Without the 
buffer, the player pre-buffers for about 22 seconds.  During 
playback, it interrupts the video twice to refill its buffer: one 
buffer refill begins 54 seconds from the time that the start button 
was pressed on the player and has a 30 second duration, and the 
second interruption begins a total of 168 seconds after the start 
button was pressed and has a 35 second duration.  This sums to 65 
seconds of buffering after playback has started and 87 seconds of 
total buffering including pre-buffering, as compared to just 15 

seconds with the NFB. The extra buffering that occurs when there 
is no smoothing is required because the player's buffer is suffering 
from underflow due to the fact that the average bandwidth is 
lower than the video bit rate.  Note that even if the player had 
perfect knowledge of the future, it would have had to delay the 
start of the video by about 87 seconds to ensure smooth playback.  
Not only would this frustrate the user, it would also require a 
buffer size of roughly 3MB (87s multiplied by 38.5 KB/s).  Given 

that the player cannot anticipate the highly bursty nature of the 
network traffic, or that it may not be desirable to delay the start of 
the video for so long and force the user to wait, or to reduce 
memory consumption, the player is forced to interrupt the video 
for two periods of half a minute or more to complete the playback.   

 

 

Figure 11. Buffering During the Smoothing Experiment 

 

In Figure 11, we show the amount of buffering by the player in 

both scenarios, and we show the application-layer buffering at the 
NFB as well as the combined client and NFB buffering when the 
NFB is being used.  The line labeled "Client Without NFB" 
represents the amount of data buffered by the player over time.  
As described above, this is calculated as the difference between 
the video bit rate and the incoming data rate, taking into account 
buffering periods when the video is not playing. The first spike 
represents the pre-buffering before playback begins.  Since the 
video plays faster than the incoming data rate, the client's buffer 

steadily reduces in size until the player decides to refill the buffer 
by pausing video playback.  This occurs twice, corresponding to 
the two remaining peaks.  The maximum buffer size for the player 
is 1076886 bytes.   

The line labeled "Client + NFB" is the sum of the buffering at the 
Client and the NFB when the NFB is being used.  This is further 

broken down into its two components, the "NFB" line represents 
the buffering by the NFB, and the "Client with NFB" line 
represents the buffering at the client when the NFB is being used. 
The bursty nature of these three lines is a direct result of the 
bursty bandwidth.  The NFB buffer will increase in size when the 

WAN bandwidth is greater than the LAN bandwidth, and decrease 
in size when the LAN bandwidth is greater than the WAN 
bandwidth.  This happens approximately every 12 seconds due to 
the bandwidth schedule depicted in Figure 9.  The "Client With 
NFB" line has a slight upward trend because, when smoothing is 
active, the average bandwidth over the course of the video is 
higher than the video bit rate.  Hence, despite the burstiness, on 
average, data is arriving at the client slightly faster than it is being 

displayed on the screen.  The client buffer in this case is also 
bursty due to the burstiness of the bandwidth.  When the LAN 
bandwidth is lower than the video rate, its buffer will reduce in 
size, and when the opposite is true its buffer will grow. The 
maximum combined buffering (client + NFB) peaks at 826419 
bytes, less than the maximum buffer size at the client when the 
NFB is not used.  This is due to the fact that without the NFB the 
effective bandwidth is lower, so more buffering is required to 
compensate.  

3.2 Experiment 2: Regulated Split-Stream 

Buffering 
In this experiment, we compare regulated split-stream buffering to 
the use of a specialized streaming protocol, and demonstrate how 
regulated split-stream buffering can perform better because it can 
mask WAN and server failures from the client.  The client, NFB 
host, and server hosts are the same as in the prior experiment.  
The WAN bandwidth is set at 900 Kbits/s and the LAN 
bandwidth at 450 Kbits/s.  After 20 seconds, the WAN bandwidth 

drops to 100 Kbits/s for 25 seconds, then goes back up to 900 
Kbits/s.  This simulates a lapse in WAN or server performance. 
There were two video trials, representing streaming without the 
NFB and split-streaming with the NFB.  The same video is used 
as in the prior experiment, which has a bitrate of 308 Kbits/s.  The 
first trial shows the behavior without the NFB.   The client 
streams the video from the server using RTSP.  However, to 
simulate the network gateway and regulate the WAN and LAN 
bandwidths, the client uses a streaming RTSP proxy running on 

the intermediate FreeBSD machine.   All data passes through the 
proxy but the proxy does not do any application-layer buffering; it 
simply forwards data to and from the client.  We used a reference 
implementation of an RTSP proxy available from 
http://www.rtsp.org/2001/proxy/.   

The second trial simulates the behavior of a regulated buffer.  To 
mimic a NFB that acts as an RTSP server to the client, we split 
the functionality into separate components and used the hard disk 
as the buffer.  We installed a full-blown Real™ server on the 
FreeBSD machine.  We first start a direct HTTP retrieval of the 
video from the server to the disk on the FreeBSD machine.  We 

then immediately push play on the client video player, which 
causes the client to start streaming the video from an RTSP server 
also running on the FreeBSD machine.  The RTSP machine is 
configured to read the file from the location where the HTTP 
transfer is saving the file.  The net effect is that the file is 
downloaded at maximum speed from the server to the NFB 
Server, and streamed at approximately the video playback rate 
from the NFB Server to the client. 

Figures 12 and 13 show the results of the trials with and without 
the NFB, respectively.  In each figure, three lines are shown.  The 
lines labeled "Proxy: Incoming Data" and "Client: Incoming 



Data" show the arrival of data over time at the proxy and client 
respectively.  When the NFB is being used, the "Proxy: Incoming 
Data" line is the rate that the HTTP data arrives at the FreeBSD 
machine.  When the NFB is not being used, this line represents the 
arrival of data at the RTSP proxy on the FreeBSD machine. The 

line labeled "Video Playback" shows the amount of video data 
displayed by the video player over time in both scenarios.  It 
should be noted that the proxy receives more total data than the 
client.  This is most likely the result of the streaming protocol 
selecting what data to send to the client, unlike direct HTTP 
where all of the data is automatically downloaded.  The video may 
have been encoded with multiple quality levels so all of the data is 
not needed. 

 

 

Figure 12. Playback with Regulated Split-Stream NFB 

 

 

Figure 13. Playback without Regulated Split-Stream NFB 

 

When the NFB is used, playback is smooth.  The proxy retrieves 

the data quickly enough so that when the WAN lapse begins, there 
is enough data already cached at the proxy to maintain the full 
video rate streaming to the client.    However, without the NFB, 
the WAN lapse causes a long interruption in video playback 
because the reduction in the incoming data rate allows the video 
playback to catch up to the network.  Notice that the streaming 
protocol does not deal with the sudden drop in bandwidth very 
gracefully.  It actually slows down the streaming below 100 
Kbits/s; in fact it averages below 8 Kbits/s for roughly 75s, 

despite the lapse only lasting just 25 seconds.  Also, the proxy 
receives much more data than the client.  In fact, this gap is 
significantly larger than the corresponding difference when the 
NFB is used.  This is most likely due to the streaming protocol 

reducing the quality of the video during the WAN lapse by 
requesting that not all of the video data be sent.  

4. CUSTOMIZER IMPLEMENTATION 
In this section, we describe the Web Stream Customizer 
Architecture, a framework for implementing network flow 
buffering based on past work we reported in [13].  This is 
certainly not the only possible framework for implementation, but 
it is instructive as a guide to requirements and implementation 
strategy.  Specifically, the WSCA is an ideal platform for 
implementing network flow buffering because it meets the 
following requirements: 

• Transparency:  To promote ease of deployment, the 

use of network flow buffering does not require any changes to 
existing clients and servers.  The WSCA supports transparent 
deployment and execution of intermediaries between the client 

and server using a proxy-based approach. 

• Flexibility of Location and Dynamic Deployment: 
The best location for network flow buffering depends on a number 

of factors, such as where the likely problem areas in the network 
may occur and the location of the user. In the case of mobile 
devices, the location of the user is not known in advance. It also 
may be useful to relocate the buffer as the user moves.  In the 
WSCA, Customizers are deployed dynamically and can be 
dynamically relocated. 

• Two Points of Control:  Network flow buffering 

benefits from knowledge of conditions at the client, such as 
available memory and bandwidth. Knowledge of the client's LAN 
bandwidth can be a factor in determining how much data to buffer 

at the intermediary.  Client feedback is supported by the WSCA, 
while maintaining transparency by providing a Customizer with 
two points of distributed control.  Having two points of control 
also allows for combining usage scenarios as described in Section 
2.6. 

4.1 Architecture Overview 
The WSCA expands upon the notion of fixed Web proxies by 
using a limited form of mobile code to allow dynamic deployment 
of customization modules called Customizers to a host server 
called a Customizer Server (CS).  Figure 14 presents an overview 
of the WSCA, with two Customizers running on a single CS.  The 
node labeled CIS is the Client Integration Server.  This provides a 
service running on or near the client that allows client Web 
requests to be forwarded to a Customizer using the HTTP proxy 

mechanism.  However, Customizers are not limited only to 
handling of HTTP transfers.  A Customizer with network 
privileges can use the initial web request that starts a non-HTTP 
communication to set itself up as a proxy for the requested 
service. 

WEB 

BROWSER

CLIENT WEB SERVER
CS

CUSTOMIZER 1

CUSTOMIZER 2

Client Integration 

Server (CIS)

CA 1

CA 2

 

Figure 14. The WSCA. 

 

One of the important features of the WSCA is that it supports two 
points of control.  For each active Customizer, the CIS hosts a 
helper module called a Customizer Assistant (CA). The CA 



cooperates with a Customizer by providing functionality that must 
be at or near the client, such as for compression/decompression, 
encryption/decryption, and feedback to the Customizer on 
conditions at the client, such as available memory and bandwidth. 

Network flow buffering can be implemented by having the 
Customizer do the buffering at a dynamically chosen location, 
while the CA provides bandwidth and memory feedback to help 
the Customizer make buffering decisions. 

4.2 Customizer Deployment 
The CIS integrates the Web browser with the WSCA by acting as 
an HTTP proxy that can intercept all of the browser's requests.  
Once the browser is configured to use a CIS as its proxy, the user 
can load Customizers by clicking on special hyperlinks in Web 

pages. A Customizer is first made available by placing it on a 
Web server, and creating a separate Customizer Meta File (CMF), 
which is also placed on a Web server. 

When the hyperlink is clicked, the Customizer is seamlessly 
loaded by the CIS.  The CIS gets all the information it needs to 
load the Customizer from the CMF.  This information includes: 

• The hostname of the machine running a CS that will run the 
Customizer 

• The name and location of the Customizer and CA. 

• Initial configuration parameters for the CA and Customizer 

• The Domain of Applicability, which specifies the sites (part 
of the URL) to be acted upon by the Customizer 

• Optionally, a URL for the Customizer’s configuration page. 
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Figure 15. Customizer Loading. 

 

Figure 15a shows a web page with links to CMFs.  Figure 15b 
shows the process of loading a Customizer by clicking on a 
hyperlink to a CMF.  When the link is clicked, the CIS intercepts 
the request and retrieves the CMF from the Web server.  Once the 
CIS has received the CMF, it can contact the CS, which will 
download the Customizer and CA, and then send the CA to the 
CIS.  The CIS then sends a message to the browser to inform the 
user that the Customizer was loaded. 

Note that in this example, the CMF and Customizer are 
collocated, but this is not required.  

4.3 Customizing Streams 
Once a Customizer is loaded, the CIS will forward HTTP 
requests, from the browser to the Customizer, that fall within the 
Domain of Applicability specified in the CMF used to load the 
Customizer.  The basic Customizer usage model allows 
Customizers to act on HTTP requests.  In the basic model, the CS 
handles all HTTP communication and uses a callback API to pass 
buffers to the Customizer, which it can modify.  This model uses 

soft state, in that the CS is not required to maintain session state, 
or even actual Customizers, in between separate HTTP 
transactions. However, this model does not allow direct streaming 
from the Customizer. For applications such as network flow 
buffering, there is the extended model, which allows Customizers 
to handle arbitrary network communication that is initiated from 
within a Web page, such as video streaming.  To enable this, 
Customizers that are trusted by a CS are given privileged access 

to resources that are persistent across multiple HTTP transactions, 
including memory for data, hard disk storage, and threads of 
execution.   The Customizer must also have network I/O 
privileges.   

For example, for an NFB Customizer to act on a video stream, 
either the video player can be configured to use the CIS as its 
HTTP proxy, so that its HTTP requests for videos will go through 
the Customizer, or the Customizer can be used to intercept the 
request before the video player is loaded as follows. When a Web 
server replies to a request with a page linking to a stream or a 
request for a metafile specifying the location of a multimedia file, 

the Customizer modifies the location of the video stream.   It 
replaces the identity of the source of the video with itself, so that 
the client's video application tries to retrieve the video stream 
from the Customizer.  The Customizer then acts as a proxy for the 
video streaming.  The Customizer appears to the video server to 
be the video client, while the client sees the Customizer as the 
video server.  This allows the Customizer to buffer the video data.  

4.4 Dynamic Relocation 
Since being presented at WWW02, the WSCA has been expanded 
to support dynamic Customizer relocation [14]. Due to the soft-
state model of Customizer execution, Customizer relocation can 
be achieved by dynamically reloading the Customizer at a new 
CS.  Customizers using the extended execution model may require 

the user to re-initiate the most recent session after the relocation.  
To support dynamic relocation, there is a special type of CS, 
called the Personal Customizer Management Server (PCMS), 
which can be run on a user-owned host or a host on which the user 
has an account (such as a desktop at work or at home).  The 
PCMS serves as a central repository for the user's Customizers 
and can act as a control point for managing Customizer 
deployment and dynamic reloading of a Customizer to a new 
location.  For example, as the user of a mobile device moves, the 

NFB could follow the user to remain near the current wireless 
gateway being used by the device. 

5. RELATED WORK 
There is a large body of research on smoothing compressed video 
streams by sending frames to the client buffer ahead of their 

playback time to reduce the burstiness of bandwidth requirements.  
In this approach, a video transmission schedule is calculated at the 
server based on the bit rate over the course of the video, the server 
bandwidth, and the amount client memory available for buffering.  
Here we discuss two notable contributions.  In [10], the smoothing 



takes into account the possibility of having multiple intermediary 
buffers (such as proxies) along the path between server and client, 
and considers bandwidth limitations of network hops among the 
intermediary buffers, the client, and the server.  In [5], the 
constraint of minimizing peak server bandwidth is relaxed to keep 

the client and server in closer synchronization, which better 
supports interactive functionality such as fast-forward and rewind.   

The above techniques are based on static measurements; they take 
into account known video, network, and host characteristics and 
calculate a bandwidth schedule.  Optimal smoothing can be 
approximated for live video by calculating the transmission 
schedule over a window of time based on the currently available 
video data in conjunction with predictive techniques [12].  
However, we are attempting to solve a different problem, of 
dynamic changes in network performance and availability as a 
result of such factors as wireless network variability and 

congestion, for HTTP streaming.  Our approach is transparent to 
the server so it does not require existing servers to change.   

Another area of video research involves using intermediaries, 
either fixed or dynamically deployable, to improve video 
streaming using techniques such as transcoding and protocol 
adaptation for unicast or multicast [2, 3, 6, 7, 8, 9].  These 
approaches differ from ours in that network flow buffering does 
not do any transcoding of the video data.  This type of 
functionality is more CPU intensive than buffering, which is I/O 
bound.  Certainly, CPU intensive approaches such as transcoding 
can be used in conjunction with network flow buffering.   If the 

CPU is powerful enough, and enough CPU cycles are available to 
the NFB, data can be transcoded as it is removed from the buffer 
before being sent to the client.   

Another approach to improving video performance is to use proxy 
caching, where proxies cache all or part of commonly accessed 
videos to improve performance for a group of clients.  A number 
of approaches perform partial caching of video streams to 
improve performance, while reducing resource consumption at the 
proxy [11, 16, 18].  Other approaches use cooperative caches to 
improve hit rates as well as reduce server load and WAN 
bandwidth utilization [1, 15]  

Whereas proxy caching benefits a client that requests a video that 
is popular enough among multiple clients to remain in the cache, 

our approach is more client-specific in that it is deployed on 
behalf of a particular client and does not depend upon cache hits 
to be effective. Furthermore, our approach can be used in 
conjunction with proxy caching to improve streaming 
performance between the proxy and the client in cases where the 
proxy is not at the LAN/WAN gateway. 

6. CONCLUSIONS 
We have presented network flow buffering, a simple technique 
that can significantly improve the performance of direct HTTP 
streaming of pre-recorded web-based video clips. Network flow 
buffering can smoothen differences in WAN and LAN bandwidth, 
supplement the client's buffer, regulate data flow to the client 
while masking WAN and server failures, and support personalized 
caching to reduce latency and restart times.  To implement 

network flow buffering, the Web Stream Customizer Architecture 
is especially useful, as it supports dynamic deployment and 
relocation, as well as two points of control. 

Many network flow buffering usage scenarios aim to mask server 
and WAN failures from the client by obtaining data from the 
server as quickly as possible. Traditionally, this was not a 
practical approach due to the cost and limited availability of client 

memory. Today's desktops have enough combined memory and 
disk space to efficiently buffer large video streams, and in such 
cases the client capabilities may not be a consideration for what 
type of protocol to use for streaming.  Our approach provides 
additional buffering near the client for those client devices that 

lack adequate memory to support an HTTP-based streaming 
model.  With network flow buffering, client constraints do not 
force a server to regulate bandwidth when it is not heavily loaded, 
even when the client is a low-memory device.  This makes direct 
HTTP streaming a viable alternative to specialized streaming 
protocols, and in some cases, such as regulated split-stream 
buffering when the server is not heavily loaded, it is superior to 
using these protocols. 
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