UC San Diego

Technical Reports

Title
Using Network Flow Buffering to Improve Performance of Video over HTTP

Permalink
https://escholarship.org/uc/item/4wz1x1vQ

Authors

Steinberg, Jesse
Pasquale, Joseph

Publication Date
2004-01-15

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4wz1x1v0
https://escholarship.org
http://www.cdlib.org/

Using Network Flow Buffering to Improve Performance of
Video over HTTP

Jesse Steinberg and Joseph Pasquale
University of California, San Diego
Department of Computer Science and Engineering
La Jolla, CA 92093 USA
(1) 858-534-8604

{jsteinbe,pasquale}@cs.ucsd.edu

ABSTRACT

We introduce the notion of network flow buffering for direct
HTTP streaming of web-based video clips, making it a more
viable alternative to specialized streaming protocols, and in some
cases making it a superior approach. A network flow buffer is
simply a remote buffer that is dynamically deployed between a
Web client and server, and that actively or passively regulates the
flow of streaming video data. Network flow buffering is a simple
approach to improving the performance of Web-based streaming
video by buffering at a location where it can operate more
effectively, providing benefits such as supplementing client
buffering capacity, smoothing differences between WAN and
LAN bandwidths, regulating data flow to a client, and supporting
personalized caching to improve restart times. Network flow
buffering is easily implemented as a Customizer in a middleware
architecture we have developed (and reported on in WWWO02)
called the Web Stream Customizer Architecture (WSCA). The
WSCA has a number of desirable features for supporting network
flow buffering, including the dynamic deployment and relocation
of software intermediaries between clients and servers that allow
them to customize Web transactions, an extended usage model
that supports customization of HTTP streaming and non-HTTP
communication, and two points of control (one at the intermediary
and one at or near the client) which can be used to supply
feedback on conditions at the client to improve a network flow
buffer’s performance.

1. INTRODUCTION

A 1999 study of nearly 83 million HTTP accesses from thousands
of clients at a major university in the U.S. put forth a lower bound
of 18%-24% for the proportion of all traffic that was dedicated to
multimedia [17], a number that has likely increased significantly
in recent years as hardware has become more powerful and
broadband Internet access has gained in popularity. A follow-up
2001 study of video traffic from thousands of clients at the same
university found that 93% of video sessions were for videos of
length 10 minutes or less, most being between 2.5 and 3.5 minutes
[4]. As Web-based access to unicast streaming of pre-recorded
video clips becomes increasingly popular, users are encountering
a number of problems with the performance of video playback. In
today's Internet, under ideal conditions (e.g., a powerful desktop
client accessing video from a high bandwidth server over a high
bandwidth, broadband connection without congestion on the route
from client to server), smooth video streaming is already a reality.

However, when these conditions are not met, the user will often
experience extended startup delays and frequent interruptions in
playback. Playback problems can originate anywhere along the
path from client the server, due to inadequate client memory,
network conditions such as wireless connection failures or
congestion in the WAN, and servers failing or lacking adequate
resources to maintain the required stream bandwidth.

There exist a number of specialized video streaming protocols.
However, HTTP-based video streaming is popular and supported
by most video players for a number of reasons. One reason is the
use of HTTP proxies from behind firewalls that allow access to
the outside world; another is the fact that it is easier for common
Internet users to place video clips on Web sites provided by their
ISP as they may not have direct access to a server, or they may
lack the expertise to install and administer their own video server.
In the former case, the video can be streamed directly over HTTP,
or a streaming protocol can be tunneled through HTTP. However,
in the latter case, the server dictates that HTTP be used directly.
Specialized streaming protocols are ideal for dedicated video
systems such as video conferencing and video-on-demand servers.
In this paper, we present an approach to improving the
performance of streaming video using direct HTTP transfers,
making it a more viable alternative to specialized streaming
protocols when viewing Web-based video clips, and in some cases
making it a superior approach.

BUFFER
—oy) Video
CLIENT
INTERMEDIARY SERVER

Figure 1. Network Flow Buffering.

To mitigate performance problems of HTTP streaming, we
introduce the simple notion of network flow buffering, where a
simple application-layer buffer is dynamically deployed between
a Web client and server to actively or passively regulate the flow
of streaming video data (see Figure 1). In addition, it may also
cache data for future access. Network flow buffering can provide
benefits such as reducing playback startup latency, reducing the
frequency and duration of interruptions to video playback, and
reducing the time window in which the application is susceptible
to failures in the network or server. It can be used in a number of
capacities such as supplementing the client’s memory, smoothing
bandwidth differences between the WAN and LAN connecting

the client and server, regulating data flow to the client, and storing
data beyond the duration of the connection for caching purposes.
By regulating data flow to the client, network flow buffering can
effectively convert a normal HTTP video session between the
server and intermediary into a specialized streaming protocol
between the intermediary and the client.

Normally, when an application-layer intermediary such as an
HTTP proxy is being used, the operating system of the proxy host
will buffer network data as it arrives on the network before it has
been read by the application. One might conclude that buffering
at the application layer is therefore redundant. However, the OS
buffer is generally not adequate because typically, it will be too
small to provide any benefit for large transfers, such as video clips
of size 1 MB or more.

Our motivation for network flow buffering arose directly from
practical experience with commercial video players, including
Real™, Windows Media™, and Quicktime™, and the observation
that these players often spend significant amounts of time
buffering data both before playback begins and when playback is
interrupted due to underflows. Network flow buffering is entirely
transparent to the video player and the video server, allowing it to
improve existing video applications as an alternative to using
specialized streaming protocols or introducing new streaming
protocols.

Note that our approach is orthogonal to related research on video
smoothing (discussed further in the section on related work), such
as approaches that optimize for known video encoding
characteristics and hard network limitations, as we take a client-
specific approach, focusing on adapting to changing network
conditions under client constraints, while being independent of
server behavior, and we focus only on HTTP streaming.

Although buffering is a common approach to improving the
performance of distributed systems and its benefits are well
known, we make the following unique contributions:

* We focus on streaming video clips, identifying and
modeling a number of different scenarios in which buffering
improves the playback of streaming video directly over HTTP,
some of which require passive buffering and others which require
the outward flow from the buffer to be regulated.

* We take into consideration the location of the buffer and
consider the fact that the buffer may need to be dynamically
relocated to support mobile users.

* We consider that the buffering code itself may be
distributed into two points of control, which can be used to hone
performance, or combine two usage scenarios to reap the benefits
of both.

The Web Stream Customizer Architecture (WSCA) [13] has a
number of desirable features that make it an ideal platform for
implementing network flow buffering. It supports the dynamic
deployment and relocation of software intermediaries between
Web clients and servers, allowing them to customize Web
transactions. It also has an extended usage model that supports
customization of HTTP streaming and non-HTTP communication.
The WSCA is transparent to clients and servers, and provides two
points of control, one point of control at the intermediary, and one
point of control running on or near the client. This client-based
component can be used to supply feedback to a network flow
buffer on conditions at the client to improve the application's
performance.

In the remainder of the paper, we describe some of the most
common and useful network flow buffering scenarios in Section
2. In Section 3, we present performance evaluations of two of
these scenarios. In Section 4, we discuss the implementation of
network flow buffering within the WSCA. We review related
work in Section 5, and present conclusions in Section 6.

2. Network Flow Buffering Scenarios

The optimal location for network flow buffering depends on the
network conditions. Ideally a network flow buffer (NFB) is
located just beyond the “problem hop,” a boundary point where
there is a significant change in network performance
characteristics. This location will often be at the LAN/WAN
gateway, such as when the client has a low-bandwidth wireless
connection (depicted in Figure 2). However, when the problem is
in a WAN hop, there may not be a suitable location for hosting an
NFB, so the LAN/WAN gateway may serve as a practical
alternative.

INTERNET

NFB
- N/ —
o VIDEO
e € SERVER
CIE WAN/LAN
GATEWAY

Figure 2. A Network Flow Buffer on the LAN/WAN Gateway.

The following five scenarios highlight the benefits of network
flow buffering. The description of each scenario below is given in
the context of the NFB being located at the LAN/WAN gateway,
and is accompanied by a pair of charts depicting the data receipt
and video playback with and without using network flow
buffering.

2.1 Pre-buffering

By pre-buffering, we mean buffering that occurs before video
playback begins. Typically a streaming player will buffer a few
seconds of video, even when data is arriving at a high rate, so that
it can handle possible future network or server problems that may
cause data to arrive late. In addition, when the data arrives at the
client at a rate that is lower than the video playback rate, the client
needs to buffer more to ensure continuous playback once
playback begins.

Pre-buffering is especially useful when the WAN is the bottleneck
and the client has limited memory. In Figure 3, the video
playback and network data rates are modeled as constants to
simplify the example. The limited-memory client cannot buffer
adequately to support smooth playback without interruption, even
though the network problems originate in the WAN. However,
an NFB near the client can supplement the client's buffer by
buffering some extra video before it begins sending data to the
client. The client only needs to buffer enough data to sustain the
video as though it is originating at the NFB. Conditions amenable
to pre-buffering may occur if there is congestion in the WAN, or
if a high bit-rate video is being played over a high-speed LAN
such that the WAN is the bottleneck.

Like the client, the NFB cannot predict future network conditions
over the course of the entire video, but it may buffer based on
current conditions, based on feedback from the client about its
memory availability and effective bandwidth, based on user
settings, or based on a heuristic such as using data from past
streaming sessions to predict future performance. Ideally, the
player would know about the buffer and they could cooperate so
that the player does not interpret the pre-buffering at the buffer as
a network problem. Instead, many players can be configured to
wait for up to a few minutes before giving up on a server
connection, so this would also allow for pre-buffering to occur
even without player cooperation.

______ SERVER TO CUSTOMIZER DATA RATE
JE— CUSTOMIZER TO GLIENTDATA RATE
VIDEO PLAYBACK RATE

USING CUSTOMIZER

PR SERVER TO GLIENT DATA RATE
VIDEO PLAYBACK RATE

DIRECT TO SERVER
PLAYBACK
VIDEO FAILURE VIDEO
SIZE

/
Lo

AMOUNT AMOUNT
OF OF CUSTOMIZER .

DATA DATA

BUFFER SIZE = >\ o{
CLIENT MEMORY L]

TIME — TIME —

GLIENT
BUFFER SIZE <
GLIENT MEMORY

Figure 3. Pre-buffering.

2.2 Network-Differential Buffering

Network-differential buffering is a form of passive buffering that
takes place during video playback, and is useful when the WAN
bandwidth is generally higher than the LAN bandwidth. The goal
of network-differential buffering is to take advantage of the WAN
bandwidth to get the data from the server to the NFB as quickly as
possible so that a WAN or server failure will not interrupt video
playback. It is passive because the buffer fills up automatically
due to the difference in bandwidths between the WAN and LAN.
The NFB retrieves data from the server faster than data flows
from the NFB to the Client. The net effect is that when the NFB
is being used, data leaves the server sooner to be buffered at the
NFB. Without the NFB, the data would remain on the server due
to the lower effective bandwidth between client and server,
forcing the server to send data more slowly.

______ SERVER TO CUSTOMIZER DATA RATE
JE— CUSTOMIZER TO GLIENTDATA RATE
VIDEO PLAYBACK RATE

PR SERVER TO CLIENT DATA RATE
VIDEO PLAYBACK RATE

VIDEO DIRECT TO SERVER VIDEO

v

A

/ \ PLAYBACK
/ FAILURE

USING CUSTOMIZER

DATA 4 CLIENT DATA
4 PRE-BUFFER
SIZE

GLIENT
PRE-BUFFER
SIZE

T
WAN TIME —jp WAN TIME —p
FAILURE FAILURE
BEGINS BEGINS

Figure 4. Network-Differential Buffering.

This scenario is depicted in Figure 4. Network-differential
buffering may be the result of an actual difference in the WAN
and LAN capacities at the time of the streaming, or the result of
the inability of the application to take advantage of the full
bandwidth. For example, the LAN bandwidth may be adequate,

but the client has limited buffering memory available, forcing the
data to be transferred from the server at a lower rate if no NFB is
used. In Figure 4, when the client obtains the video stream
directly from the server, the player detects that the bandwidth is
adequate to sustain the video playback, so it only pre-buffers a
moderate amount of data so as not to delay starting playback for
too long. However, a server failure lasts long enough to cause
buffer underflow at the client and prevent the client from
maintaining normal video playback. When the NFB is used, the
client pre-buffers the same amount. However, the NFB receives
the video quickly enough that it has finished downloading the
entire video before the server failure occurs. This allows it to
mask the failure from the client. Because of the high WAN
bandwidth, the NFB does not need to pre-buffer very much, so the
initial delay before playback starts is not much greater than what
it would be if the client were to stream directly from the server.

2.3 Regulated Split-Stream Buffering

Regulated split-stream buffering allows the client to reap the
benefits of a specialized streaming protocol even when the video
is on a Web server. However, it has the added benefit that it
decreases the window of time in which the playback is susceptible
to server or WAN failure, making it an improvement over
specialized streaming protocols in the case where the server is not
heavily loaded. Regulated split-stream buffering is similar to
network-differential buffering except that the lower data rate from
the NFB to the client is explicitly regulated by the NFB. In effect,
the NFB acts as a regulated buffer, downloading data as quickly
as possible from the server and regulating the flow of data to the
client. This is typically implemented as a split stream, i.e., the
Server-NFB protocol differs from the Client-NFB protocol. This
is especially useful when conditions at the LAN and client are
such that a streaming protocol would be highly beneficial (e.g.,
high error rate, low memory), but conditions at the WAN would
support a fast download by the NFB. In this case, if the NFB can
establish a direct HTTP connection with the server, the NFB can
download the data at full speed while streaming the data at a
regulated rate to the client. The buffer will fill up quickly,
yielding the same benefits as network-differential buffering, as
shown in Figure 4. Later, we will show the benefits of this
scenario with some experimental results, comparing it to using a
specialized streaming protocol along the entire path from client to
server.

2.4 Smoothing

In the context of the NFB, smoothing refers to using the buffer to
mask (from the client) dynamic changes in relative bandwidth
between the WAN and LAN that cause the effective bandwidth to
be lower than the video playback rate. When the bandwidth is
bursty and, on average, lower than the video rate, the client player
will have to occasionally interrupt the playback to refill its buffer,
even if it has adequate memory since it will be unable to predict
the optimal pre-buffering amount (it may also determine that the
estimated optimal pre-buffering will take longer than the user is
likely to be willing to wait, and instead choose to intentionally
rebuffer during playback).

Smoothing works best when the WAN and LAN are highly
variable relative to each other, i.e., sometimes the WAN
bandwidth is significantly higher than the LAN bandwidth, and
sometimes the opposite is true. The effective bandwidth from the
server to the client will always be limited to the minimum of the
WAN and LAN bandwidths. If the WAN bandwidth is higher
than the LAN bandwidth, there is an opportunity for an NFB to
buffer data, just as in the network-differential buffering scenario.

If at some future time the WAN bandwidth drops below the video
playback rate and the LAN bandwidth increases, the NFB will be
able to send the buffered data to the client, effectively hiding from
the client the fact that the WAN bandwidth is not high enough to
support the video playback rate. This can save the player from
having to interrupt playback.

Smoothing is depicted in Figures 5 and 6. Figure 5 shows the
various bandwidths during the video session. Each of the lines in
the plot shows potential amount of data transferred over time, and
hence the slope represents the bandwidth. Although the WAN and
LAN have the same average bandwidth, the WAN bandwidth is
bursty while the LAN bandwidth is smooth. The effective
bandwidth seen by the client is also shown (calculated as the
minimum slope of the WAN and LAN bandwidth plots at any
time), and has a lower average. (The minimum slope is used
because, again, the slope represents the bandwidth as a rate of
data arrival over time.) In Figure 6, the video playback is
depicted with and without an NFB. Without the NFB, the pre-
buffering is inadequate. When the NFB is used, the same amount
of pre-buffering at the client yields smooth video.

______ WAN BANDWIDTH
LAN BANDWIDTH

TIME —4.

Figure 5. Bandwidths for Smoothing Scenario

______ SERVER TO CUSTOMIZER DATA RATE
PR CUSTOMIZER TO GLIENTDATA RATE
VIDEO PLAYBACK RATE

USING CUSTOMIZER

J— SERVER TO GLIENT DATA RATE
VIDEO PLAYBACK RATE

PLAYBACK
VibEo DIRECT TO SERVER FAILURE VIDEO
SIZE

GLIENT
BUFFER
SIZE

TIME —»

Figure 6. Smoothing

2.5 Personalized Caching

Network flow buffering can easily be extended to support
caching. Caching helps low-memory clients by reducing the
likelihood of interruptions during playback, and decreasing the
time it takes a player to restart playback after the user fast-
forwards, rewinds, or replays the video either by choice or as a
result of a network outage. Retrieving the video from the cache
reduces the latency, and since it is less likely that a network
problem such as congestion occurs along the data path, it can also
reduce the pre-buffering time at the client and the likelihood of
the client having to interrupt playback to rebuffer.

Unlike traditional proxy caches, which aim to improve
performance by caching videos that are popular among a number
of clients, personalized caching is primarily aimed at reducing
restart times for videos recently viewed by the user. The cache

can be relatively small as, not only is it targeted for a single user,
but if the desired goal is to reduce restart times resulting from
interruptions to playback due to wireless connection failure, the
cache only needs to store the most recently accessed video, and
only until the client has successfully completed viewing the video.

An example of improving restart times with personalized caching
is shown in Figure 7. The LAN bandwidth is higher than the
WAN bandwidth. Without the NFB, after a LAN failure occurs,
the user restarts the video, and must wait for the full server
latency and for rebuffering based on the lower WAN bandwidth.
With the NFB, the first time playback begins, the NFB buffers a
little before sending to the client, and sends to the client at less
than the maximum LAN bandwidth so that its buffer will not
underflow. The extra latency added by the NFB reduces the
amount of video that is displayed before the LAN failure.
However, the NFB is able to receive the remainder of the video
during the LAN outage. By the time the user restarts and fast-
forwards, the entire video is cached on the NFB. The user sees
only a small delay due to the NFB and to the small amount of
rebuffering that occurs at the client. Since the entire video is
buffered at the NFB, the full LAN bandwidth can be used between
the NFB and client the second time through. In fact, other than
compensating for jitter, buffering at the client is not even
necessary; the client only buffers in anticipation of a potential
failure.

VIDEO DIRECT TO SERVER VIDEO USING CUSTOMIZER
SIZE ;

——— SERVER TO GLIENT DATA RATE
VIDEO PLAYBACK RATE

AMOUNT
OF
DATA

TIME —» — TIME —4
! /N enuren

LAN USER \ FALUR
FAlURE meSTanrs LATENOY REBUFFER AR tency

VIDEO AND. L
FAST FORWARDS SEAVER S, CUSTOMIZER

FAST FORWARDS

Figure 7. Personalized Caching

2.6 Combining Scenarios

In the introduction we note that the WSCA is an idea platform for
implementing network flow buffering for a number of reasons,
including the fact that it supports two points of control. This
implementation is described in more detail in Section 4. Having
two points of control supports an advanced NFB model in which
two usage scenarios can be simultaneously active, one at a remote
location beyond the "problem hop" and one closer to the client
such as at the LAN/WAN gateway. For example, suppose an
NFB is deployed just beyond a common problem area in the
WAN near a server that is commonly accessed by the user. This
is an ideal location for performing network differential buffering
because the NFB is in good position to reliably and quickly
receive the data from the server. However, suppose that the client
is a low memory device and would benefit from pre-buffering at
the NFB. In the case of pre-buffering, the NFB should be closer
to the client so that there is minimal latency, since the buffer is
essentially an extension of the client's memory. In this case, the
ideal set-up is to have an NFB performing network-differential
buffering at the remote location, and an NFB performing pre-
buffering closer to the client such as at the WAN/LAN gateway.

3. EXPERIMENTS

We performed experiments to validate the benefits of smoothing
and regulated split- stream buffering. The experimental setup for
both experiments is shown in Figure 8. For the client, we used a
notebook computer with a S00MHz Intel Pentium III processor
running the RealOne™ Player on Windows 98. The server was a
P3 933MHz PC running Windows 2000. Both an HTTP server
and Real Helix Server™ were used. The intermediate “gateway”
machine used for network flow buffering was a Pentium II
450MHz PC running FreeBSD.

REGULATED Timed REGULATED
LAN Buffering WAN
(Switched 100 Base-T) Customizer (Switched 100 Base-T)

“‘4—» ,- 4—\>

= AL

B M= |-
Client .
Customizer Server Video Server
P3 500 MHz,
(W' d 9§ (“Gateway”, p2 450MHZ, (P3 933MHZ,
fneows HTTP And RTSP Server)

FreeBSD, dummynet

IPI T™M
RealPlayer™) Regulates WAN/LAN B/W)

Figure 8. Experimental Setup

To simulate a network with a given bandwidth, we used
“dummynet” in FreeBSD (IP Firewall kernel module), which
supports the creation of pipes to control bandwidth between two
communication endpoints. We ran dummynet on the gateway
machine, controlling bandwidth between itself, the client, and the
server. We also ran tcpdump, a Unix program that logs IP packets
and their sizes, including the amount of user data, on the gateway
machine to track network communication. We also ran a
Windows version of tcpdump called windump at the client, to
precisely track the arrival of data at the client.

Measuring the video playback and buffering in the video player
was a bit more difficult, as we did not have access to the internals
of the Real Player™. Thus, we assumed a constant bitrate
playback rate based on the attributes of the video being used, and
we manually timed the buffering periods of the player based on
information provided via its user interface, which indicates when
it is buffering. So, for example, a general way to estimate the size
of the player's buffer is to subtract the amount of arriving data
reported by windump from the amount of video data that has been
displayed. The amount of video data is calculated as the amount
of time the video has played so far, which is displayed by the
player, multiplied by the bitrate of the video reported by the
player. We used the same video clip for all experiments: it was 3
minutes and 22 seconds in length, with a bitrate of 308Kbps (38.5
KB/s).

3.1 Experiment 1: Smoothing

In this experiment, we show how a NFB (network flow buffer)
can provide smooth playback that would otherwise be interrupted
multiple times. We also demonstrate that in addition to the
performance improvement, using the NFB requires no more
application-layer buffering than is required when streaming
directly from server to client. In fact, in circumstances when
smoothing works well, it is normally expected to use less.

We used dummynet to simulate highly bursty LAN and WAN
bandwidths (over time). The bandwidths are shown in Figure 9.
The LAN and WAN bandwidths repeat the same 24-second

cycles, but start at a different point within the cycle. For each, the
bandwidth changes every 2 seconds, half of the cycle is spent
above the video rate and half of the cycle is spent below the video
rate. The individual averages for the WAN and LAN for a cycle
are 41.75 KB/s, which is above the average playback rate of 38.5
KB/s. However, the combined bandwidth, calculated as the lower
of the two at any point in time, is 25 KB/s. As a result, without
smoothing, we expect the video player to have to interrupt
playback so that the network can catch up to the video. The
benefits of smoothing are illustrated below.

Bandwidth Cycle
(This shows 2 cycles, 24 seconds each, 12 bandwidth changes
per cycle, each bandwidth lasts for two seconds)
& a0
@ 70 I) I I
A A VA Y A WAV A
EOT A A A
S0 [= T 7 —— VAN
Eq = i A — LAN
50 | L |
= [= =
s 10
® 0
] 10 20 30 40 50
Time (s)
Figure 9. Bandwidth For Smoothing Experiment

5000000

5000000
w
g 7000000
£, 5000000
=
£ 5000000 —With NFB
E 4000000 ——Without NFB
£ 3000000
=]
£ 2000000
<

1000000

0 T T T
0 100 200 300 400
Time (s)

Figure 10. Playback With/Without Network Flow Buffering

We performed two video trials. For both trials, the NFB host was
configured to be the HTTP proxy for the player, and the player
was configured to stream directly over HTTP from a Web server.
In one trial, the NFB application simply acted as a pass-through
streaming proxy without buffering. Going through the proxy
simulates the data passing through a network gateway between the
LAN and WAN, and allows the proxy host to run dummynet and
control the LAN and WAN bandwidths. In the second trial, the
NFB smooths the data flow between the server and client. It is
implemented very simply using two threads. One thread reads
data from the connection to the server as it becomes available and
writes it to a data buffer. Another thread reads data from the
buffer and writes to the client. Both threads use synchronous
network I/O. When the WAN bandwidth is higher than the LAN
bandwidth, the buffer will increase in size. When the WAN
bandwidth drops and the LAN bandwidth surpasses it, data will be
available in the buffer to send to the client to compensate for the

lack of data arriving from the server. Figure 10 shows the video
playback as amount of data played over time with and without
NFB.

When the NFB is being used, there are about 15 seconds of pre-
buffering. Once playback begins, the video plays smoothly for its
entirety without any additional buffering by the player. This is due
to the smoothing effect of the buffer, which allows a higher
average bandwidth to be sustained to the client. Without the
buffer, the player pre-buffers for about 22 seconds. During
playback, it interrupts the video twice to refill its buffer: one
buffer refill begins 54 seconds from the time that the start button
was pressed on the player and has a 30 second duration, and the
second interruption begins a total of 168 seconds after the start
button was pressed and has a 35 second duration. This sums to 65
seconds of buffering after playback has started and 87 seconds of
total buffering including pre-buffering, as compared to just 15
seconds with the NFB. The extra buffering that occurs when there
is no smoothing is required because the player's buffer is suffering
from underflow due to the fact that the average bandwidth is
lower than the video bit rate. Note that even if the player had
perfect knowledge of the future, it would have had to delay the
start of the video by about 87 seconds to ensure smooth playback.
Not only would this frustrate the user, it would also require a
buffer size of roughly 3MB (87s multiplied by 38.5 KB/s). Given
that the player cannot anticipate the highly bursty nature of the
network traffic, or that it may not be desirable to delay the start of
the video for so long and force the user to wait, or to reduce
memory consumption, the player is forced to interrupt the video
for two periods of half a minute or more to complete the playback.

1200000

& 1000000
5
9 800000
g e
S 600000 ~ ——lent With NF8
b= —
£ 400000 -
O
g :
2 200000

0~ T

0 100 200 300 400

Time (s)

Figure 11. Buffering During the Smoothing Experiment

In Figure 11, we show the amount of buffering by the player in
both scenarios, and we show the application-layer buffering at the
NFB as well as the combined client and NFB buffering when the
NFB is being used. The line labeled "Client Without NFB"
represents the amount of data buffered by the player over time.
As described above, this is calculated as the difference between
the video bit rate and the incoming data rate, taking into account
buffering periods when the video is not playing. The first spike
represents the pre-buffering before playback begins. Since the
video plays faster than the incoming data rate, the client's buffer
steadily reduces in size until the player decides to refill the buffer
by pausing video playback. This occurs twice, corresponding to
the two remaining peaks. The maximum buffer size for the player
is 1076886 bytes.

The line labeled "Client + NFB" is the sum of the buffering at the
Client and the NFB when the NFB is being used. This is further

broken down into its two components, the "NFB" line represents
the buffering by the NFB, and the "Client with NFB" line
represents the buffering at the client when the NFB is being used.
The bursty nature of these three lines is a direct result of the
bursty bandwidth. The NFB buffer will increase in size when the
WAN bandwidth is greater than the LAN bandwidth, and decrease
in size when the LAN bandwidth is greater than the WAN
bandwidth. This happens approximately every 12 seconds due to
the bandwidth schedule depicted in Figure 9. The "Client With
NFB" line has a slight upward trend because, when smoothing is
active, the average bandwidth over the course of the video is
higher than the video bit rate. Hence, despite the burstiness, on
average, data is arriving at the client slightly faster than it is being
displayed on the screen. The client buffer in this case is also
bursty due to the burstiness of the bandwidth. When the LAN
bandwidth is lower than the video rate, its buffer will reduce in
size, and when the opposite is true its buffer will grow. The
maximum combined buffering (client + NFB) peaks at 826419
bytes, less than the maximum buffer size at the client when the
NFB is not used. This is due to the fact that without the NFB the
effective bandwidth is lower, so more buffering is required to
compensate.

3.2 Experiment 2: Regulated Split-Stream
Buffering

In this experiment, we compare regulated split-stream buffering to
the use of a specialized streaming protocol, and demonstrate how
regulated split-stream buffering can perform better because it can
mask WAN and server failures from the client. The client, NFB
host, and server hosts are the same as in the prior experiment.
The WAN bandwidth is set at 900 Kbits/s and the LAN
bandwidth at 450 Kbits/s. After 20 seconds, the WAN bandwidth
drops to 100 Kbits/s for 25 seconds, then goes back up to 900
Kbits/s. This simulates a lapse in WAN or server performance.
There were two video trials, representing streaming without the
NFB and split-streaming with the NFB. The same video is used
as in the prior experiment, which has a bitrate of 308 Kbits/s. The
first trial shows the behavior without the NFB. The client
streams the video from the server using RTSP. However, to
simulate the network gateway and regulate the WAN and LAN
bandwidths, the client uses a streaming RTSP proxy running on
the intermediate FreeBSD machine. All data passes through the
proxy but the proxy does not do any application-layer buffering; it
simply forwards data to and from the client. We used a reference
implementation of an RTSP proxy available from
http://www.rtsp.org/2001/proxy/.

The second trial simulates the behavior of a regulated buffer. To
mimic a NFB that acts as an RTSP server to the client, we split
the functionality into separate components and used the hard disk
as the buffer. We installed a full-blown Real™ server on the
FreeBSD machine. We first start a direct HTTP retrieval of the
video from the server to the disk on the FreeBSD machine. We
then immediately push play on the client video player, which
causes the client to start streaming the video from an RTSP server
also running on the FreeBSD machine. The RTSP machine is
configured to read the file from the location where the HTTP
transfer is saving the file. The net effect is that the file is
downloaded at maximum speed from the server to the NFB
Server, and streamed at approximately the video playback rate
from the NFB Server to the client.

Figures 12 and 13 show the results of the trials with and without
the NFB, respectively. In each figure, three lines are shown. The
lines labeled "Proxy: Incoming Data" and "Client: Incoming

Data" show the arrival of data over time at the proxy and client
respectively. When the NFB is being used, the "Proxy: Incoming
Data" line is the rate that the HTTP data arrives at the FreeBSD
machine. When the NFB is not being used, this line represents the
arrival of data at the RTSP proxy on the FreeBSD machine. The
line labeled "Video Playback" shows the amount of video data
displayed by the video player over time in both scenarios. It
should be noted that the proxy receives more total data than the
client. This is most likely the result of the streaming protocol
selecting what data to send to the client, unlike direct HTTP
where all of the data is automatically downloaded. The video may
have been encoded with multiple quality levels so all of the data is
not needed.

5000000
5000000 .
e
7000000 y -
BO00000 i ——— Client: Incoming
i . Data

5000000 - - —Video Playback
4000000 £ 2

O R [p— MFB: Incorming
3000000 > Data
2000000 =4
1000000 /

0L . . .
O 80 100 180 200 280

Figure 12. Playback with Regulated Split-Stream NFB

10000000
9000000
5000000 S
7000000 v // —gllent: Incoming
G000000 — fenta
S000000 i/« - - —%ideo Playback
4000000 S / MNFE: Incoming
3000000 > Data
2000000 1 PP —
1000000 — —

o T ,

0 100 200 300

Figure 13. Playback without Regulated Split-Stream NFB

When the NFB is used, playback is smooth. The proxy retrieves
the data quickly enough so that when the WAN lapse begins, there
is enough data already cached at the proxy to maintain the full
video rate streaming to the client. ~However, without the NFB,
the WAN lapse causes a long interruption in video playback
because the reduction in the incoming data rate allows the video
playback to catch up to the network. Notice that the streaming
protocol does not deal with the sudden drop in bandwidth very
gracefully. It actually slows down the streaming below 100
Kbits/s; in fact it averages below 8 Kbits/s for roughly 75s,
despite the lapse only lasting just 25 seconds. Also, the proxy
receives much more data than the client. In fact, this gap is
significantly larger than the corresponding difference when the
NFB is used. This is most likely due to the streaming protocol

reducing the quality of the video during the WAN lapse by
requesting that not all of the video data be sent.

4. CUSTOMIZER IMPLEMENTATION

In this section, we describe the Web Stream Customizer
Architecture, a framework for implementing network flow
buffering based on past work we reported in [13]. This is
certainly not the only possible framework for implementation, but
it is instructive as a guide to requirements and implementation
strategy. Specifically, the WSCA is an ideal platform for
implementing network flow buffering because it meets the
following requirements:

* Transparency: To promote ease of deployment, the
use of network flow buffering does not require any changes to
existing clients and servers. The WSCA supports transparent
deployment and execution of intermediaries between the client
and server using a proxy-based approach.

e Flexibility of Location and Dynamic Deployment:
The best location for network flow buffering depends on a number
of factors, such as where the likely problem areas in the network
may occur and the location of the user. In the case of mobile
devices, the location of the user is not known in advance. It also
may be useful to relocate the buffer as the user moves. In the
WSCA, Customizers are deployed dynamically and can be
dynamically relocated.

* Two Points of Control: Network flow buffering
benefits from knowledge of conditions at the client, such as
available memory and bandwidth. Knowledge of the client's LAN
bandwidth can be a factor in determining how much data to buffer
at the intermediary. Client feedback is supported by the WSCA,
while maintaining transparency by providing a Customizer with
two points of distributed control. Having two points of control
also allows for combining usage scenarios as described in Section
2.6.

4.1 Architecture Overview

The WSCA expands upon the notion of fixed Web proxies by
using a limited form of mobile code to allow dynamic deployment
of customization modules called Customizers to a host server
called a Customizer Server (CS). Figure 14 presents an overview
of the WSCA, with two Customizers running on a single CS. The
node labeled CIS is the Client Integration Server. This provides a
service running on or near the client that allows client Web
requests to be forwarded to a Customizer using the HTTP proxy
mechanism. However, Customizers are not limited only to
handling of HTTP transfers. A Customizer with network
privileges can use the initial web request that starts a non-HTTP
communication to set itself up as a proxy for the requested
service.

Client Integration

CLIENT Server (CIS) cs WEB SERVER

f 1
5 »
WEB e {eay e !SSTOM‘IZER 1_! 5
& & S
BROWSER / < []
CA2 | cusTOMIZER
[

il

y
y

a

Figure 14. The WSCA.

One of the important features of the WSCA is that it supports two
points of control. For each active Customizer, the CIS hosts a
helper module called a Customizer Assistant (CA). The CA

cooperates with a Customizer by providing functionality that must
be at or near the client, such as for compression/decompression,
encryption/decryption, and feedback to the Customizer on
conditions at the client, such as available memory and bandwidth.

Network flow buffering can be implemented by having the
Customizer do the buffering at a dynamically chosen location,
while the CA provides bandwidth and memory feedback to help
the Customizer make buffering decisions.

4.2 Customizer Deployment

The CIS integrates the Web browser with the WSCA by acting as
an HTTP proxy that can intercept all of the browser's requests.
Once the browser is configured to use a CIS as its proxy, the user
can load Customizers by clicking on special hyperlinks in Web
pages. A Customizer is first made available by placing it on a
Web server, and creating a separate Customizer Meta File (CMF),
which is also placed on a Web server.

When the hyperlink is clicked, the Customizer is seamlessly
loaded by the CIS. The CIS gets all the information it needs to
load the Customizer from the CMF. This information includes:

* The hostname of the machine running a CS that will run the
Customizer

* The name and location of the Customizer and CA.
* Initial configuration parameters for the CA and Customizer

* The Domain of Applicability, which specifies the sites (part
of the URL) to be acted upon by the Customizer

* Optionally, a URL for the Customizer’s configuration page.

HYPERLINK

NAME OF RC-SERVER

NAME OF CUSTOMIZER JAR FILE

DOMAIN OF APPLICABILITY
ETC.

>

(|

CMF
WEB PAGE WITH
LIST OF CUSTOMIZERS

a. A Web Page of Customizers With Links to CMFs

WEB
SERVER

1. CLICK ON
ILINK TO .CMF

WEB
BROWSER

—

5. SEND
“SUCCESFULLY LOADED” \ ijs]%gﬁ%%?c A
MESSSAGE TO BROWSER 4. DOWNLOAD
CA @

Figure 15. Customizer Loading.

b. Loading a Customizer

Figure 15a shows a web page with links to CMFs. Figure 15b
shows the process of loading a Customizer by clicking on a
hyperlink to a CMF. When the link is clicked, the CIS intercepts
the request and retrieves the CMF from the Web server. Once the
CIS has received the CMF, it can contact the CS, which will
download the Customizer and CA, and then send the CA to the
CIS. The CIS then sends a message to the browser to inform the
user that the Customizer was loaded.

Note that in this example, the CMF and Customizer are
collocated, but this is not required.

4.3 Customizing Streams

Once a Customizer is loaded, the CIS will forward HTTP
requests, from the browser to the Customizer, that fall within the
Domain of Applicability specified in the CMF used to load the
Customizer. The basic Customizer usage model allows
Customizers to act on HTTP requests. In the basic model, the CS
handles all HTTP communication and uses a callback API to pass
buffers to the Customizer, which it can modify. This model uses
soft state, in that the CS is not required to maintain session state,
or even actual Customizers, in between separate HTTP
transactions. However, this model does not allow direct streaming
from the Customizer. For applications such as network flow
buffering, there is the extended model, which allows Customizers
to handle arbitrary network communication that is initiated from
within a Web page, such as video streaming. To enable this,
Customizers that are trusted by a CS are given privileged access
to resources that are persistent across multiple HTTP transactions,
including memory for data, hard disk storage, and threads of
execution. The Customizer must also have network I/O
privileges.

For example, for an NFB Customizer to act on a video stream,
either the video player can be configured to use the CIS as its
HTTP proxy, so that its HTTP requests for videos will go through
the Customizer, or the Customizer can be used to intercept the
request before the video player is loaded as follows. When a Web
server replies to a request with a page linking to a stream or a
request for a metafile specifying the location of a multimedia file,
the Customizer modifies the location of the video stream. It
replaces the identity of the source of the video with itself, so that
the client's video application tries to retrieve the video stream
from the Customizer. The Customizer then acts as a proxy for the
video streaming. The Customizer appears to the video server to
be the video client, while the client sees the Customizer as the
video server. This allows the Customizer to buffer the video data.

4.4 Dynamic Relocation

Since being presented at WWWO02, the WSCA has been expanded
to support dynamic Customizer relocation [14]. Due to the soft-
state model of Customizer execution, Customizer relocation can
be achieved by dynamically reloading the Customizer at a new
CS. Customizers using the extended execution model may require
the user to re-initiate the most recent session after the relocation.
To support dynamic relocation, there is a special type of CS,
called the Personal Customizer Management Server (PCMS),
which can be run on a user-owned host or a host on which the user
has an account (such as a desktop at work or at home). The
PCMS serves as a central repository for the user's Customizers
and can act as a control point for managing Customizer
deployment and dynamic reloading of a Customizer to a new
location. For example, as the user of a mobile device moves, the
NFB could follow the user to remain near the current wireless
gateway being used by the device.

5. RELATED WORK

There is a large body of research on smoothing compressed video
streams by sending frames to the client buffer ahead of their
playback time to reduce the burstiness of bandwidth requirements.
In this approach, a video transmission schedule is calculated at the
server based on the bit rate over the course of the video, the server
bandwidth, and the amount client memory available for buffering.
Here we discuss two notable contributions. In [10], the smoothing

takes into account the possibility of having multiple intermediary
buffers (such as proxies) along the path between server and client,
and considers bandwidth limitations of network hops among the
intermediary buffers, the client, and the server. In [5], the
constraint of minimizing peak server bandwidth is relaxed to keep
the client and server in closer synchronization, which better
supports interactive functionality such as fast-forward and rewind.

The above techniques are based on static measurements; they take
into account known video, network, and host characteristics and
calculate a bandwidth schedule. Optimal smoothing can be
approximated for live video by calculating the transmission
schedule over a window of time based on the currently available
video data in conjunction with predictive techniques [12].
However, we are attempting to solve a different problem, of
dynamic changes in network performance and availability as a
result of such factors as wireless network variability and
congestion, for HTTP streaming. Our approach is transparent to
the server so it does not require existing servers to change.

Another area of video research involves using intermediaries,
either fixed or dynamically deployable, to improve video
streaming using techniques such as transcoding and protocol
adaptation for unicast or multicast [2, 3, 6, 7, 8, 9]. These
approaches differ from ours in that network flow buffering does
not do any transcoding of the video data. This type of
functionality is more CPU intensive than buffering, which is I/O
bound. Certainly, CPU intensive approaches such as transcoding
can be used in conjunction with network flow buffering. If the
CPU is powerful enough, and enough CPU cycles are available to
the NFB, data can be transcoded as it is removed from the buffer
before being sent to the client.

Another approach to improving video performance is to use proxy
caching, where proxies cache all or part of commonly accessed
videos to improve performance for a group of clients. A number
of approaches perform partial caching of video streams to
improve performance, while reducing resource consumption at the
proxy [11, 16, 18]. Other approaches use cooperative caches to
improve hit rates as well as reduce server load and WAN
bandwidth utilization [1, 15]

Whereas proxy caching benefits a client that requests a video that
is popular enough among multiple clients to remain in the cache,
our approach is more client-specific in that it is deployed on
behalf of a particular client and does not depend upon cache hits
to be effective. Furthermore, our approach can be used in
conjunction with proxy caching to improve streaming
performance between the proxy and the client in cases where the
proxy is not at the LAN/WAN gateway.

6. CONCLUSIONS

We have presented network flow buffering, a simple technique
that can significantly improve the performance of direct HTTP
streaming of pre-recorded web-based video clips. Network flow
buffering can smoothen differences in WAN and LAN bandwidth,
supplement the client's buffer, regulate data flow to the client
while masking WAN and server failures, and support personalized
caching to reduce latency and restart times. To implement
network flow buffering, the Web Stream Customizer Architecture
is especially useful, as it supports dynamic deployment and
relocation, as well as two points of control.

Many network flow buffering usage scenarios aim to mask server
and WAN failures from the client by obtaining data from the
server as quickly as possible. Traditionally, this was not a
practical approach due to the cost and limited availability of client

memory. Today's desktops have enough combined memory and
disk space to efficiently buffer large video streams, and in such
cases the client capabilities may not be a consideration for what
type of protocol to use for streaming. Our approach provides
additional buffering near the client for those client devices that
lack adequate memory to support an HTTP-based streaming
model. With network flow buffering, client constraints do not
force a server to regulate bandwidth when it is not heavily loaded,
even when the client is a low-memory device. This makes direct
HTTP streaming a viable alternative to specialized streaming
protocols, and in some cases, such as regulated split-stream
buffering when the server is not heavily loaded, it is superior to
using these protocols.

REFERENCES

[1] S. Acharya and B. Smith, " MiddleMan: A Video Caching
Proxy Server," In Proceedings of 10th International
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), Chapel Hill, NC, June
2000.

[2] E. Amir, S. McCanne, and R. Katz, "An Active Service
framework and its application to real-time multimedia
transcoding," In Proceedings of ACM SIGCOMM, pp. 178-
189, Vancouver, Canada, August 1998.

[3] F. Baschieri, P. Bellavista, and A. Corradi, " Mobile Agents
for QoS Tailoring, Control and Adaptation over the Internet:
the ubiQoS Video on Demand Service," In Proceedings of
Symposium on Applications and the Internet (SAINT 2002),
Nara City, Japan, January/February 2002.

[4] M. Chesire, A. Wolman, G. Voelker, and H. Levy,
"Measurement and Analysis of a Streaming-Media
Workload," In Proceedings of of the 3rd USENIX Symp. on
Internet Technologies and Systems (USITS), San Francisco,
CA, March 2001.

[5] W.Feng, "Rate-Constrained Bandwidth Smoothing for the
Delivery of Stored Video," In Proceedings of IS&T/SPIE
Multimedia Networking and Computing, pp. 316-327, San
Jose, CA, February 1997.

[6] Z.Leiand N.D.Georganas, "Rate Adaptation Transcoding
For Video Streaming Over Wireless Channels”," In
Proceedings of IEEE ICME 2003, Baltimore, MD, June
2003.

[7] J. Meggers, T. Strang, and A.S. Park, "A Video Gateway to
Support Video Streaming to Mobile Clients," In Proceedings
of ACTS Mobile Communication Summit, Aalborg, Denmark,
October 1997.

[8] R. Mohan, J. Smith, and C.-S. Li, " Adapting Multimedia
Internet Content For Universal Access," In IEEE
Transactions on Multimedia, pp. 104-114, March 1999.

[9] W.T. Ooi, and R. van Renesse, “Distributing Media
Transformation Over Multiple Media Gateways,” In
Proceedings of ACM Multimedia 2001, Ottowa, Ontario,
Canada, October 2001.

[10] J. Rexford, and D. Towsley, “Smoothing variable-bit-rate
video in an internetwork,” In IEEE/ACM Transactions on
Networking, pp. 202-215, April 1999.

[11] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching
for multimedia streams,” In Proceedings of IEEE
INFOCOM, New York, NY, March 1999.

[12] S. Sen, J. Rexford, J. Dey, J. Kurose, and D. Towsley,
“Online smoothing of variable-bit-rate streaming video,” In
IEEE Trans. on Multimedia, pp. 37-48, March 2000.

[13] J. Steinberg and J. Pasquale, “A Web Middleware
Architecture for Dynamic Customization of Content for
Wireless Clients,” Proceedings of the 11th International
World Wide Web Conference. Honolulu, Hawaii, USA, May
7-11, 2002.

[14] J. Steinberg, “The Web Stream Customizer Architecture:
Improving Performance, Reliability and Security for
Wireless Web Access,” Ph.D. Dissertation University of
California San Diego Department of Computer Science and
Engineerint. In preparation.

[15] D. A. Tran, K. A. Hua, and S. Sheu, “A New Caching
Architecture for Efficient Video Services on the Internet,” In

Proceedings of IEEE Symposium on Applications and the
Internet (SAINT 2003), Orlando, FL, USA, January 2003.

[16] Y. Wang, Z. Zhang, D. H.C. Du, and D. Su, “A Network
Conscious Approach to End-to-End Video Delivery over
Wide Area Networks Using Proxy Servers,” In Proceedings
of IEEE INFOCOM'98, San Francisco, CA, April 1998.

[17] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M.
Brown, T. Landray, D. Pinnel, A. Karlin, and H. Levy.,
“Organization-Based Analysis of Web-Object Sharing and
Caching,” In Proceedings of the 2nd USENIX Conference on
Internet Technologies and Systems (USITS), Boulder, CO,
October 1999.

[18] K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy
caching of multimedia streams,” In Proceedings of the 10"
International WWW Conference, Hong Kong, May 2001.

