Lawrence Berkeley National Laboratory
LBL Publications

Title
Machine Learning Based Job Status Prediction in Scientific Clusters

Permalink

bttgs:ggescholarshiQ.orgéucgitem44wx6w70g

Authors
Yoo, Wucherl
Sim, Alex
Wu, Kesheng

Publication Date
2016-07-01

DOI
10.1109/5ai.2016.7555961

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4wx6w700
https://escholarship.org
http://www.cdlib.org/

Machine Learning Based Job Status Prediction in
Scientific Clusters

Wucherl Yoo, Alex Sim, Kesheng Wu
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract—Large high-performance computing systems are
built with increasing number of components with more CPU
cores, more memory, and more storage space. At the same
time, scientific applications have been growing in complexity.
Together, they are leading to more frequent unsuccessful job
statuses on HPC systems. From measured job statuses, 23.4%
of CPU time was spent to the unsuccessful jobs. We set out to
study whether these unsuccessful job statuses could be anticipated
from known job characteristics. To explore this possibility, we
have developed a job status prediction method for the execution
of jobs on scientific clusters. The Random Forests algorithm was
applied to extract and characterize the patterns of unsuccessful
job statuses. Experimental results show that our method can
predict the unsuccessful job statuses from the monitored ongoing
job executions in 99.8% the cases with 83.6% recall and 94.8%
precision. This prediction accuracy can be sufficiently high that
it can be used to mitigation procedures of predicted failures.

Keywords—Reliability, Job Log Analysis, Job Status Prediction

I. INTRODUCTION

Technical advances in scientific clusters have involved
increasing scale of volumes in data accesses and movement,
number of nodes involving job executions, and exploited
parallelism in applications on multiple cores. These changes
lead to unforeseen increased scales of interactions and commu-
nications in software executions between hardware resources
and nodes in a cluster. However, technical advances have not
reached the reliability of hardware components and softwares
in the same scale. Therefore, the rates of unsuccessful job sta-
tuses have been dramatically increased due to the combinations
of the increased scales of software and hardware executions
and the lack of improvements in their reliability in the same
scale.

Despite these increased unsuccessful job statuses, system
administrators are overwhelmed by large-scale logs to take
actions for reducing unsuccessful job statuses and their impacts
such as wasted resources. It is challenging to analyze the
unsuccessful job statuses on large scientific clusters due to
the sizes of logs and noises in their measurements from the
interactions and interferences in the job executions. Since a
node can be assigned multiple tasks from different jobs, the
measured executions can be noisy because of performance
interferences in shared hardware resources from co-located
tasks from multiple jobs. This indeterministic variances and
noises due to interferences make job status prediction more
challenging. In order to tackle these challenges and improve
the reliability of scientific clusters and application executions,
we have developed an automated job status prediction method
based on machine learning classification mechanisms. We will

also discuss online job status prediction by extending our
method.

Scientific clusters usually have multiple types of nodes:
compute nodes, storage nodes with parallel file systems, data
transfer nodes for network accesses, and special purpose nodes
for database or web services. Parallel programming framework
such as Message Passing Interface (MPI) are generally used
to implement scientific applications. To execute this MPI-type
application on a scientific cluster, a job specifying application
execution is submitted to the job scheduling engine. Then,
the scheduling engine dispatches the executions of the job by
assigning one or multiple nodes. For scheduling decisions, the
scheduling engine considers the current load of a cluster and
the requests of resource usages specified in the job request.
The executions of dispatched jobs are stored in job logs. They
contain multiple fields that can provide information about job
specification such as executable name and parameters, job
assignment in a cluster such as host name, resource usage
related resource usages, failure code representing failures
or successes, and exit code returned from the application.
MPI-type jobs are usually implemented to involve parallel
executions. The parallel executions of a job are divided into
parts, and they are represented as tasks. A task (also known
as a part of job array) is usually assigned to a node, and the
parallel execution within a node is stored as an aggregated
measurement in job logs. When a job is dispatched to multiple
nodes, the execution of each node is stored in separate records
as a task in job logs.

The resources of a cluster are reclaimed when the job
finishes with success or ends with failures due to unsuccessful
job statues. The failures are causes by various reasons. They
can be caused by software issues such as application bugs
or errors, job related issues such as insufficient allocated
resources, e.g. wall clocks, CPU time, or memory, system
related issues such as OS errors, file system errors, or cluster
managing system errors, or transient or permanent faults
caused by hardwares. We define unsuccessful job statues as
the job execution patterns leading to interrupted and failed job
executions. The ultimate goal of predicting unsuccessful job
status is to predict future failures in an online fashion based
on the historical characteristic patterns of executions from
job failures compared to the current job processing statues
and characteristics. Failures are costly to users and systems
since they waste time and system resources. Online failure
prediction can mitigate these wastes by taking early actions
for those predicted failures. For instance, an ongoing task
execution of a job can be predicted to be failed based on the
characteristic patterns in the execution. Provided the accurate
prediction, system administrators or an automated job manager
can explicitly terminate the execution, fix the problem and

reschedule the job, instead of wasting time and resources by
waiting until actual failure happens. If the failure is caused by
an application error, the developer of the application can be
notified to fix the error.

In our experiments, we used job logs from Genepool
scientific cluster [1] at NERSC. The Genepool cluster includes
the sufficiently large number of nodes and multiple parallel
executions from the tasks that incur complexity challenges
for manual log analysis. Due to the complexity and the size
of the job logs, it is challenging for developers and system
administrators to manually analyze and extract meaningful
information from the job logs. Since there exist multiple
resource usage related fields mostly correlated to each other
due to the interactions in the executions, it is challenging to
make a prediction model in a manual way.

To tackle these challenging problems, we apply machine
learning classification mechanisms on the measured job logs.
Machine learning classification mechanisms are used for job
status prediction by characterizing the patterns of task execu-
tions in a job with the classes of successful and unsuccessful
job statuses. We use 13 resource-usage-related fields measuring
resource usages in the job logs, and feed them as features
to machine learning mechanisms. The failed code and exit
code are used as labels, the machine learning classification
mechanism is trained to classify or predict labels from the
features in each record in the job logs. We compared multiple
machine learning classification mechanisms for job status
prediction: the Decision tree [19], the Random forests [3], the
Naive Bayes [16], the Logistic regression [13], and the Support
vector machine (SVM) [6].

The contributions of this paper are:

e Applying machine learning classification for auto-
mated job status prediction.
We empirically compare multiple machine learning
classification methods for job status predictions on
scientific clusters. The Random forests method is
selected because of its multiple advantages , which
will be shown in in Sec. IV. In addition, we provide
an analysis of how to select and apply the Random
forests to improve the prediction results.

e Providing empirical evidence of appropriateness in

using resource usage related measurements for online
job status prediction.
We show that machine learning-baed online job status
prediction based on these measurements can provide
higher prediction accuracy in terms of recall and
precision compared with previously proposed liter-
atures. In addition, the prediction result is accurate
for both near-term (several minutes) and long-term
predictions (several days), which is an improvement
from the previously proposed event-based approaches
that favors to near-term predictions.

e Parallelizing log analysis to handle large volume of
logs for training and prediction.

We show how we applied these mechanisms for the job
status predictions in Sec. III-B. We present the experimental
results showing that the Random forests method shows the
best prediction results and is able to predict job statuses from

the job logs of a scientific cluster in an automated manner
in Sec. IV. The rest of paper is organized as follows. Sec. II
presents the related work. Sec. III demonstrates the design and
implementation of job status prediction. Sec. IV presents the
experimental evaluation and discussion of offline and online
job status prediction. The conclusion is in Sec. V.

II. RELATED WORK

Salfner et al. [21] presented the survey of online failure pre-
diction methods. They proposed to make distinction between
the root cause analysis and the online failure prediction, and
our focus in this paper is on the online failure prediction. The
definition of the failure in the survey is an event that occurs
when a misbehavior in the system results in an incorrect output.
Our definition of failure is the failed task executions labeled
by a job scheduler. It is broader than their definition so that it
includes faults and errors that do not involve the misbehavior
or incorrect status. In addition, most of the previous researches
for the online failure detection with the event-based failure
definition resulted in better near-term prediction than long-
term prediction. Our online failure prediction based on the job
executions shows similarly accurate prediction in both near-
term and long-term predictions. This is mainly because our
failure prediction uses the characterized patterns of the job
executions for failures. When applications are not changed
frequently as in most scientific clusters, our failure prediction
method is more appropriate than those prediction methods
based on events.

Schroeder et al. [22] presented a study about failures in
High-performance computing (HPC) systems. Chen et al. [4]
presented a study about failures in Cloud environment, using
measured data from Google cluster [20]. These studies show
the increasing failure rates in HPC clusters and Cloud clusters.
Guan et al. [10] proposed to use the Principal Component
Analysis (PCA) [15] for detecting an anomaly in Cloud
environment. Detecting an anomaly is orthogonal to our work
for failure prediction.

Heien et al. [12] claimed that application-specific failure
models achieve better accuracy because failure events are
heterogeneously correlated in space and time. Hamerly et
al. [11] proposed to use Naive Bayes classification to predict
hard disk failures. These proposed works cannot provide
location information of failures while our work can.

Linag et al. [17] proposed to use temporal and spatial
compression of failures for predicting them. Fu et al. [8]
proposed to use temporal and spatial event correlation for
failure prediction. Gainaru et al. [9] proposed to combine
outlier detection and correlations in location and signal for
failure prediction. While these event-based failure predictions
provide location information of failures, their prediction is not
accurate for long-term prediction while our work is accurate
for both long-term and near-term prediction. In addition, these
methods lack parallelization to utilize multiple cores and nodes
in order to handle large-size data.

Snir et al. [23] presented the survey paper of addressing
failures in exa-scale computing. This survey showed that
current failure predictors achieve a precision of over 90% and
a recall of below 50%. Our failure prediction method achieves
94.8% precision and 83.6% recall. Nakka et al. [18] proposed

to use the decision tree algorithm for predicting node failures in
HPC after comparing multiple machine learning mechanisms.
Since they use separate usage logs and node failure logs, their
prediction results (81.3% recall and 73.9% precision) are less
accurate than ours. In addition, the node failures cover less
amount of failures than our task failures by definition.

Di et al. [7] proposed a mechanism of checkpoint and
restart task execution to improve reliability in the event of
failures. Chen et al. [5] proposed to use machine learning-
based binning of relative changes to reduce the cost for
checkpointing. These checkpoint and restart mechanisms can
improve the reliability of scientific clusters, and our work is
complementary to these approaches by providing predictions
of failures and preparing the checkpointing in accordance with
the predictions.

Previously, we have applied machine learning mechanisms
to identify performance bottleneck, using fingerprints gener-
ated from micro-benchmarks [24]. Our current work extends
the previous method to cluster-scale multi-nodes execution in
terms of using the Random Forests to characterize the patterns
of task executions leading to failures.

III. MODEL DEVELOPMENT
A. Preliminaries

Machine learning classification mechanism is a supervised
learning that is designed to infer class labels from the labeled
trained set having input features associated with the class
labels. The decision tree algorithm is a machine learning
classification mechanism, where patterns of input features are
analyzed to create a predictive model. A decision tree consists
of non-leaf nodes representing tests of features, branches
between nodes representing the outcomes of the tests, and leaf
nodes holding the class labels.

Constructing the most optimal and accurate decision tree
is usually NP-hard on a given training set [19]. To construct
a decision tree model, most of the practical algorithms use
a greedy approach using heuristics such as information gain.
Using these algorithms, the training data is recursively parti-
tioned into smaller subsets. When partitioning the dataset, the
feature with the highest splitting criterion such as information
gain is chosen as the splitting feature. This feature minimizes
the information needed to classify the data in the resulting
partitions, and reflects the least randomness in these partitions.

The Random forests method [3] consists of multiple de-
cision trees that are constructed by randomly chosen features
with a predefined number of features. The random features
classify a label by voting, a plurality decision from individual
decision trees. Because of the law of large numbers, the
Random forests method is less prone to generalization error
(overfit) as randomness are added with more trees. In addition,
the generalization error converges to a limited value.

B. Job Status Prediction

The purpose of job status prediction is to predict future
failures based on the characteristic patterns or fingerprints of
unsuccessful job statues. As failed job executions labeled by a
job scheduler when their executions are interrupted or stopped,
the unsuccessful job statuses are exhibited in the measurements

of the failed job executions. As a failure is labeled by a job
scheduler after the task execution finishes, it is important to
build an online prediction from the runtime information. Since
failures are labeled systematically by a scheduler, the inference
from the supervised machine learning classifier can result in
better error rate than the case with manually labeled data.

We compared multiple supervised machine learning
clarification mechanisms for failure prediction: the Decision
tree [19], the Random forests [3], the Naive Bayes [16], the
Logistic regression [13], and the Support vector machine
(SVM) [6]. The Naive Bayes is based on the independence of
features so that it does not fit to performance related features
in job logs, as some of the features are highly correlated. The
SVM constructs hyperplane from a selected kernel function
to separate space of features associated with the class labels.
The drawback of the SVM is in the difficulty of the correctly
fitted kernel function and additional computational cost for
conversion to hyperplane. The logistic regression is a special
case of generalized linear model. It can probabilistically
classify the features by fitting them to linear space using
logistic function. The decision tree and the Random forests
based on the randomly generated decision trees have two
advantages compared to the aforementioned machine learning
classification mechanisms. One is that they have relatively
short training time and classification (prediction) time. The
other is that the trained decision tree is easy to understand so
that it can help analyze predicted patterns of failures.

Training phase

I

(C Joblogs) !
I

\4 '

Prediction phase

Monitored
task executions

Training predictor Predict Predict Predicting
using machine (cll;iesslﬁig:) %b (CI':SS'%Z:) failures from
L
learning classifier predictor

Predicted
failures

Fig. 1: The overview of failure prediction using machine
learning classifier

Fig. 1 illustrates the overview of our online failure pre-
diction. In the training phase, a machine learning classifier
is trained with job logs. The job logs contain failed codes
and exit codes, and they are used as labels in the training.
These job logs also contain 13 resource-usage-related fields
associated with failures, and they are used as features in the
training. Since the number of fields is reasonably small for
the experiments, we use all 13 fields instead of conducing
feature selection to reduce the number of fields. However, the
generated classification rules in the training of classifiers select
the fields with the highest splitting criterion, which implic-
itly conducts the feature selection. The training of machine
learning classification mechanism extract and characterize the
patterns of features associated with labeled failures, and build
a classifier based on these patterns so that they can classify or
predict labels from the features in each record in the job logs.

While these failed code and exit code can include hints about
the possible causes of failures, the identification of the causes
of failures is not the focus of this paper. Instead, we focus
on job status prediction to find patterns and characteristics of
unsuccessful job statues.

In the prediction phase, the same classifier can be used
to predict unknown class labels from the features of future
measurement data. Furthermore, the trained machine learning
classifier can be used for online failure prediction. For online
failure prediction, the classifier needs to be trained with the
progress information and to be able to predict failures from the
features of ongoing execution. Normalization of features with
dividing by wall clocks or CPU time can convert the originally
measured features in job logs. The measured features can be
converted to progress information as the form of the ratio of
performance related measures by the unit of wall clocks or
CPU time. Once the classifier is trained with the features of
the progress ratio, it can predict failures from the features as
the same form of the progress ratio. As they are normalized by
time-based value, the prediction is possible regardless of how
much task executions are progressed or where the progress
is positioned. Our cluster monitoring tool, Procmon [14] can
provide this runtime progress information for online failure
prediction.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

In our experiments, we have used job logs collected on
Genepool cluster at NERSC, consisting of 774 nodes [1]. The
logs were written by the Univa Grid Engine [2] when each
job was finished. It contains 45 fields such as host name, job
name, failed code, exit code, and resource usages. We selected
13 resource usage related fields: wall clock, user/system CPU
time, soft/hard page faults, file block input/output, volun-
tary/involuntary context switches, aggregated memory usage,
aggregated 1/0, maximum resident set size, and maximum
virtual memory. The size of the logs from Nov. 1, 2015 to
Feb. 7, 2015 (PST) is 5.2 million records. The experiments
were conducted on a machine with two 8-core Intel Xeon E5-
2670 CPUs and 64 GB memory.

B. Job Status Prediction

When a job executes multiple tasks in multiple nodes,
each task execution is recorded into a separate line in the
job log. The failure codes represent different unsuccessful job
exit cases involving incorrect status in task executions due to
mostly software failures. For example, they include reschedul-
ing from job scheduler or application errors, input/output
errors, and being killed by signals. The failed code 25 means
that a job is rescheduled without implying an error on a node.
The failed code 30 means that a job is rescheduled to error state
without implying an error on a node. The failed code 8 implies
an error on the node that prevented job setup. The failed
codes 26 and 28 are issues on the filesystems input/output. The
failed code 100 means that allocated resources are exhausted
such as wall clock, memory, or I/O. In addition, the exit code
represents exit status from a task execution, which applications
of Unix or Linux generally share meanings including signals.

In order to predict job statuses from job executions, we
used machine learning mechanisms on the measured job
logs. We compared multiple machine learning mechanisms
that are widely used for solving the classification problem:
the Decision tree [19], the Random forests [3], the Naive
Bayes [16], the Logistic regression [13], and the Support
vector machine (SVM) [6]. The distinction of unsuccessful
job exits comes from the failed code in the jog logs, which
we used failed code and exit code as a binary tuple for a
multi-class label or only the status of failed or succeeded
as a binary class label. In addition, we used 13 resource
usage related fields for features shown in Tab. I. We trained
aforementioned machine learning classification mechanisms
with these labels and features in the training set. These trained
classifiers can predict unsuccessful job exits from the features
in the test set. Since our purpose of job status prediction is to
identify unsuccessful job exits in ongoing executions of jobs,
we only used resource usage related fields from the job logs.
While the job logs were stored after the unsuccessful job exit
occurred, the job status predictions were possible by only using
the progress ratios of resource usage related fields after the
normalization with diving by wall clocks or CPU time.

Cross Validation: Fig. 2 shows the results of 5-fold cross
validation by the multiple machine learning mechanisms. The
6 weeks of job logs from Nov. 1, 2015 to Jan. 31, 2015 (PST)
are randomly and equally divided to five sets. The number of
positives (unsuccessful job exits) is 490,174 and the number
of negatives (successful job finishes) is 4,304,988. Each set
was used as a test set, and the rest four sets were used as
training sets. This cross validation was repeated five times
with different test sets. The results are the average values of
predictions, as accuracy (%), recall (TPTJF%),
and precision (TPTJF%), where true positives, true negatives,
false positives, and false negatives are represented as T'P, T'N,
F P, and FN. For the clarification, T'P are correctly predicted
unsuccessful job exits. TN are correctly predicted successful
job finishes. F'P are incorrectly predicted unsuccessful job
exits, i.e., successful job finishes that are predicted as un-
successful job exits. F'N are incorrectly predicted successful
job finishes, i.e., unsuccessful job exits that are predicted as
successful job finishes.

As shown in Fig. 2, the Decision tree and the Random
forests methods show better prediction results in terms of
accuracy, recall, and precision, compared to the Naive Bayes,
the Logistic regression, and the SVM methods. The predictions
by the Naive Bayes, the Logistic regression and the SVM are
for binary class labels about the status of unsuccessful job exits
and successful job finishes. The predictions by the Decision
tree and the Random forests methods are both multi-class of
binary tuple of failed code and exit code as well as the binary
class labels. In order to interpret the strength of predictions,
accuracy is the most useful measure. The high accuracy shows
both high values of T'P and T'N, and the low values of F'P and
F'N. The accuracy of our predictions by the Decision tree and
Random forests methods were more than 99%. In addition to
the accuracy, recall and precision are needed to be compared to
interpret the strength of predictions. For instance, the precision
of the SVM was 100%. However, the recall of the SVM was
almost 0%. This was because the SVM only predicted one
unsuccessful job exits correctly out of 490,174 unsuccessful

TABLE I: The description of resource usage related features.

Feature

Description

‘Wall clock

The duration between start and end of a task

User CPU time

The sum of spent time from CPU cores in user level

System CPU time

The sum of spent time from CPU cores in system level

CPU time

The sum of user CPU time and system CPU time

Maximum resident set size

Maximum value of utilized memory size during execution

Page reclaims

Soft page faults without involving 1/O

Page faults

Hard page faults with involving I/O

Block input operations

The number of that times the file system had to perform input

Block output operations

The number of times that the file system had to perform output

Voluntary context switches

the number of times for voluntary context switches

Involuntary context switches

the number of times for involuntary context switches

Memory

The integral memory usage in Gbytes * CPU time in second

10

The amount of data transferred in input/output operations

Prediction of Future Jobs: Fig. 3 shows the prediction
results of the test set of job logs from Feb. 1, 2015 to Feb.
7, 2015 (PST). The test set includes 16,902 unsuccessful job
exits and 409,035 successful job finishes. The 6 weeks of job
8% 17 B B B | e | B logs from Nov. 1, 2015 to Jan. 31, 2015 (PST) were used as
%717]]] ' = | B | the training set. The prediction results by the Random forests
60% 1 B N BN] 1] | B | method are (98.5%, 63.9%, 97.6%) for the multi-class label
0% 17]]] N | I | B | and (97.7%, 44.7%, 96.9%) for the binary class label. The
0% | | B | precision results by the Decision tree method are (96.6%,
39.3%, 61.7%) for the multi-class label and (97.0%, 42.0%,
69.0%) for the binary class label.

K Accuracy & Recall Precision

100%
90%

30%

20%

. Compared to the results of cross validation in Fig. 2, the

o K\ X L L.
e W\&\a ‘(\w‘ 0\‘\‘35 @\e e 5 B accuracies of the prediction results by the Decision tree and
O\ (3 .
°° ,\‘ee\ @\“0 @s“’\ o o@s“(’ the Random forests methods are decreased. On the other hand,
o0 o' S
06° & the accuracies of the prediction results by the Naive Bayes,
G

the Logistic regression, and the SVM methods are slightly
increased. This is because the unsuccessful job ratio of the test
set (3.97%) is lower than that of training set (10.22%), which
makes the number of F'N smaller even when the almost all
unsuccessful job exits are incorrectly predicted as successful
job finishes from those three mechanisms. Obviously, these
incorrect predictions are shown in the decreased precisions of
those three mechanisms.

Machine Learning Mechanisms (5-fold Cross Validation)

Fig. 2: Job status predictions of 5-fold cross validations by
machine learning mechanisms

job exits (490,173 F'N). Therefore, the strength of predictions
can be compared by all these measures, accuracy, recall, and
precision. The prediction results by Random forests method
shows the best prediction results. In terms of (Accuracy (A),
Recall (R), Precision (P)), the prediction results of results by

i Accuracy W Recall Precision

100%
90%

Random forests were (99.8%, 98.8%, 99.4%) for the multi- 80%
class label and (99.8%, 98.8%, 99.4%) for the binary class 70%
label. The precision results by the Decision tree method are 60%

(99.3%, 96.4%, 96.8%) for the multi-class label and (99.4%, S
97.3%, 96.8%) for the binary class label. We use this tertiary 0%

tuple (A,R,P) for showing other prediction results in this 30%

section. The prediction accuracies by the Naive Bayes, the 20%

Logistic regression and the SVM were lower than those by 10% . h h " - I I
the Decision tree and the Random forests. We think that 0%

converting multi-class labels to binary class labels for the R ‘_\C\as ?o‘e"‘ ‘\c\as\ *ee,\ S
Naive Bayes, the Logistic regression, and the SVM made the gei“’\o ee\@“\ %@0“‘ A\ & V\?’Ne@ A"{\c%e%

generated classifiers too simple and too weak to characterize \,,\00“ « < o

the different patterns of multiple job exit r. In addition, we o &%

think that the multiple randomly generated classifiers by the
Random forests showed better prediction accuracy due to
more robustness against generalization error (overfit) than the
prediction accuracy by the decision tree.

Predictions by Machine Learning Mechanisms

Fig. 3: Job status predictions by machine learning mechanisms

The recall and precision of the predictions of the Decision
tree and the Random forests methods are decreased. These
decreases are expected since the cross-validation has used
the test set collected in the same duration as the training
set. They presumably share the similar patterns of executions,
which makes the predictions of cross-validation better than
predictions of the test set for the future duration. The randomly
constructed multiple decision trees in the Random forests
method make their predictions less prone to generalization
errors (overfit), compared to those of the (single) Decision tree.
We think that this difference makes better recall and precision
of the Random forests method in addition to slightly better
accuracy.

Prediction of Filtered Future Jobs: We investigated the
reason of prediction accuracy decreases for the future data
compared to that of cross-validation. We found that there
existed one majority case of unsuccessful job exits, which
was represented as failed code, 25 and exit code, 99. The
exit code 99 forces the job to be rescheduled with the failed
code, 25. This was done by having the batch script of the
job exited with the status 99. When the site administrator
reschedules a job which would have a failed code 25, the exit
codes would have 143 or 137 in this case (meaning signal of
SIGTERM or SIGKILL respectively). Therefore, this specific
case of unsuccessful job exits (25, 99) is always intended by
the user choice in the execution.

i Accuracy HRecall Precision

100%

50%

- d ll II ll ‘ | I |
0%
<@ & ¢ e “6395 o . 0 N
\) N o
ec\s\ W 60‘0 N -\\\e‘b - CY&Q’
@ = e Ne o
o « \O
&
e &0
T
b

Predictions by Machine Learning Mechanisms after Filtering

Fig. 4: Job Status predictions by machine learning mechanisms
after filtering

Further investigation revealed most of the unsuccessful job
exits case from a particular application. The application kept
the executions after executing some tasks, and intentionally
rescheduling itself in order to essentially keep the executions.
Its main purpose is to monitor jobs running on an FPGA
system outside of the batch system. In addition, it has other
rescheduling cases waiting for a database server or web server
that is busy or unavailable. Since the task executions of this
application depend on the external services and behaviors, they
showed the indeterministic patterns of executions that made
difficult to characterize and predict from the machine learning

mechanisms. This is shown that the most of F'P and F'IN come
from the specific unsuccessful job exits.

When the task of this application is rescheduled by exiting
with code 99, it is labeled as an unsuccessful job exit by
the scheduler due to the customized rescheduling. As it is
a normal behavior from the application developer’s point
of view, it is better to be labeled as a successful finish
instead of an unsuccessful job exit. However, regardless of
labeling a successful finish or an unsuccessful job exit, this
customized patterns of task executions made the predictions
by the machine learning classifiers challenging, due to its
peculiarity and indeterministic behaviors. Therefore, we have
filtered out the unsuccessful job exit case (25, 99) to see how
much the predictions improve.

Fig. 4 shows the prediction results of filtered test set
of job logs from the same duration. The prediction results
by the Random forests method are (99.8%, 79.6%, 94.9%)
for the multi-class label and (99.9%, 84.3%, 95.2%) for the
binary class label. The precision results by the Decision tree
method are (99.6%, 83.2%, 75.4%) for the multi-class label
and (99.8%, 84.6%, 90.3%) for the binary class label. The
prediction results are improved in all measures, accuracy, recall
and precision, compared to those with the unfiltered test set in
Fig. 3. We think that the application is highly customized and
incurred much different and indeterministic tasks executions
than usual tasks executions of most other jobs. We plan to
investigate further whether the highly customized job causing
indeterministic patterns is discovered in the job executions
in other scientific clusters. If this is the particular case in
the Genepool cluster, filtering out some indeterministic tasks
would not be necessary. We believe that this type of intentional
rescheduling jobs are much rare.

The recalls of the multi-class labels from the Decision
tree and the Random forests methods are worse than those
of the binary class labels. The precisions of the multi-class
labels by the Random forests method are almost the same
as those of the binary class labels, while those of the multi-
class labels by the Decision tree method are worse than
those of the binary class labels. We think that the multiple
decision trees in the Random forests method not only makes
less generalization errors but also includes more characteristic
patterns or fingerprints of different types of unsuccessful job
exits. Therefore, the precisions by the Random Forests method
are little degraded in the multi-class labels compared to the
binary labels. Interestingly, the recalls of the multi-class labels
by the Random forests method are better than those of the
binary class labels in the unfiltered results in Fig. 3. We think
that this also shows the less proneness of generalization errors
by the Random forests, where they are able to predict more
TP and less F'N, which makes higher recall in the multi-class
labels.

Parameter Selection for Random Forests: Fig. 5 shows
the prediction results by the Random forests method with the
different sizes of training sets. We used from 2 weeks to 8
weeks on and before Jan. 31, 2015 (PST), e.g., 2 weeks training
set is from Jan. 18, 2015 to Jan. 31, 2015 (PST). The prediction
results are (99.9%, 80.9%, 90.7%) for 2 weeks, (99.9%, 80.0%,
93.5%) for 4 weeks, (99.8%, 79.6%, 94.9%) for 6 weeks, and
(99.8%, 78.8%, 94.0%) for 8 weeks. The accuracy is not much
sensitive to the sizes of training sets. The recall is the best with

the 2 weeks training set. The precision is the best with the 6
weeks training set. As the difference of precisions between
2 weeks and 6 weeks is more significant than that of the
recalls, 6 weeks was selected as the size of the training set. In
addition, the precision is more important than the recall, since
F'P is more critical than F'N in the job status prediction. It
is because the application of the job status prediction such as
early termination of jobs incorrectly predicted as unsuccessful
job exits (F'P) can be much more costly than the inaction due
to the incorrectly predicted as successes (F'NV). This is another
reason to select 6 weeks as the size of the training set.

& Accuracy & Recall Precision

100%
95%
90%
85%

80%

8 weeks

75%

2 weeks 4 weeks 6 weeks

Training Set Size

Fig. 5: Job status predictions by different training set sizes for
multi-class label

Fig. 6 shows the prediction results by the Random forests
method with the different depths of the training sets. The
prediction results are (99.8%, 68.4%, 94.9%) for depth 5,
(99.8%, 79.6%, 94.9%) for depth 10, and (99.8%, 72.2%,
92.0%) for depth 15. The recall and the precision are the best
with the depth, 10, and this becomes the selected depth. We
think that the prediction degradation in recall and precision
with the depth, 15 is due to the generalization errors. As the
more depth in Random forests method includes more patterns
of the training set, it leads to unnecessary information that only
fits to the training set and not needed to predict the future test
set.

& Accuracy & Recall Precision

100%
95%
90%
85%
80%
75%
70%

65%

~T . .
5 10 15

Depth

Fig. 6: Job status predictions by the Random forests with
different depths for multi-class label

Fig. 7 shows the prediction results by the Random forests
method with the different numbers of decision trees. The
prediction results are (99.8%, 77.7%, 90.6%) for size 5,
(99.9%, 78.4%, 92.6%) for size 11, (99.8%, 79.6%, 94.9%) for
size 21, and (99.9%, 79.6%, 93.7%) for size 31. The recall and
the precision are the best with the number of trees, 21, and this
becomes the selected number. Increasing numbers of decision
trees allow more randomness in the prediction that makes
less generalization errors. The tradeoff is in the additional
computational cost for constructing more trees in the training
and traversing more trees in the prediction. The precision with
number of decision trees, 31, is decreased, compared to that
with 21. As increasing the number of trees does not increase
the chances of the generalization errors, we think that this is
the probabilistic coincidence or marginal errors from the nature
of randomness in the Random forests method.

& Accuracy & Recall Precision

100%
95%
90%
85%

80%

5 11 21 31

70%
Number of Trees

Fig. 7: Job status predictions by the Random forests with
different numbers of trees for the multi-class label

Predictor Update: Fig. 8 shows the job status prediction
results of test sets in different weeks. The update of predictor
was done for each weekly test set in order to evaluate the effect
of weekly update of prediction model. Each 6-week training set
was used, and its end date is the previous date of the start date
of each test set. The prediction results show similar prediction
accuracy except the two weeks from 2/15/2015 to 2/28/2015.
The degradations in these test sets were due to uncharacterized
unsuccessful job exits (unseen pairs of failure code and exit
code). The average prediction results shown in Fig. 8 were
(99.3%, 75.2%, 92.4%).

Fig. 9 shows the job status prediction results of test sets
in different dates in Feb. 2015. The update of predictor was
done for each one-day test set in order to evaluate the effect
of daily update of prediction model. Each 6-week training set
was used, and its end date is the previous date of each test
set. The results from daily update showed more consistently
accurate and slight better than the prediction results of weekly
update in Fig. 8. This is because daily update can characterize
some of unseen unsuccessful job exits that were missed in
weekly updates. As shown in lower recalls in Feb. 20 and
Feb. 24 and lower precision in Feb. 28, prediction results
were degraded when there were unseen unsuccessful job exits
even after daily update. The average prediction of daily update

i Accuracy M Recall Precision
100%
90%
80%
70%
60%
50%
40%
30% 1 1 1 1
20% 1 1 1
1hRlEL
0%

o oL A o

A)
N W W
o) \4\3‘ ‘\X&O \4\3‘ ‘\%xo) @xo
<@ oW

N >
NGNS L
x0

Predictions of different test sets by weekly update

Fig. 8: Job status predictions of different test sets by the
Random forests with weekly updating (training)

results shown in Fig. 9 were (99.4%, 82.7%, 95.2%), which
were improved from those of weekly update. the prediction
results were accurate both near-term (Fig. 9) and long-term
(Fig. 8) predictions. This is because our job status prediction
is based on the resource usage related measurement in task
executions instead of event-based information that is dependent
on the temporal correlations.

=o=Accuracy “E=Recall

Precision

100% [Tt ot N N Nt e P
90% 2 -
80%

70%

60%

50%

40%

30%

20%

10%

0%

AL 3 B9 601 D O A0 A AL A3 B D 40 A1 4B A0 90 93 92 73 9k 95 16 71 B
Predictions of different test sets by daily update

Fig. 9: Job status predictions of test sets in different dates by
the Random forests with daily updating (training)

Online Job Status Prediction: Fig. 10 shows the online
job status prediction results by the Random forests method
with the different normalizations with wall clocks and CPU
time. The prediction results with the wall clock normaliza-
tion are (99.8%, 83.6%, 94.8%) for the multi-class label.
The prediction results with the CPU time normalization are
(99.8%, 84.1%, 92.1%) for the multi-class label. Since the
job logs store the finished information of jobs regardless of
the unsuccessful job exits or successful finishes, online job
status prediction needs to be based on the progress information
instead of post-processing of the measured information after
the job is finished. The Normalization with dividing by the
wall clocks or CPU time can provide progress information as

the form of the ratio of resource usage related measurements
by the unit of the wall clocks or CPU time.

As shown in Fig. 10, the normalization by dividing by the
wall clocks is better than that of the CPU time. In addition,
the multi-class prediction is better than the binary class label,
and the predictions are very similar to that of the original test
set without the normalization. We think that it is because the
CPU time includes more crucial information for the job status
prediction than the wall clocks. Furthermore, the wall clocks
do not include crucial information, and the prediction is not
much degraded after the normalization with the wall clocks.
As shown in the predictions of one-week test set without re-
training the Random forests, In short, the progress information
after the normalization with the wall clocks is shown almost
the same prediction quality for the online job status prediction
as the prediction without the normalization for the offline job
status prediction.

The 6 weeks training set (4,795,162 records normalized
by dividing by wall clocks) incurs significant computational
challenges for an analysis. We used Apache Spark [25] to
distribute and parallelize computational loads of the online
job status prediction method. The parallelized computations
utilize all the 16 cores in a node in the experiments. The
training time by the Random forests method with the 6 weeks
training set, the depth, 10 and the number of trees, 21 took
139.4 seconds. The test time of 1 week test set (425,937
records) was 23.4 seconds, which is 55 ms per record. While
we tested one-week test set, the delay of 55 ms per record will
be increased with the smaller batch size of the test duration.
However, the prediction results from the one-week test set
showed that the trained Random forests method did not need to
be frequently updated, i.e., one-week frequency was sufficient
to result in 99.8% accuracy, 83.6% recall, and 94.8% precision.
Since there is the tradeoff of the update frequency between
computational cost (delay) and prediction accuracy, and the
frequency is dependent on the characteristics of the job logs,
we plan to further study this aspect.

As we used one node for the experiments, the short time
of training and testing showed that the delay of the online job
status prediction is not an obstacle for a realtime prediction.
For the job status prediction on a larger cluster, we can simply
increase the number of nodes in order to reduce the delay.
While the normalized progress information from the job logs
can be used for the online job status prediction, the information
is not readily available in the job scheduler until the task
execution is finished. In order to access the runtime progress
information, we used a cluster monitoring tool, Procmon [14].
We plan to study the online job status prediction on the
Procmon data, and briefly discussed in Sec. IV-C.

C. Discussion

In order to deploy the online job status predictor in a
cluster, a cluster monitoring tool is necessary to gather runtime
execution information from the cluster. Our cluster monitoring
tool, Procmon, can provide the resource usage related measure-
ments to feed into the trained online predictor with the Random
forests. The current size of the job logs is approximately SOMB
per day, and the current size of the Procmon logs is 30GB per
day with the 30-second measurement interval. The difference

Accuracy & Recall Precision

100%

95%

90%

85%

80%

75%

70%

o o o e N o
<
[¢) o o o0
« o N o
. -\“’A\ \\\0 \od‘ $0 CQ\)
o® \0\‘(, o
V\&“\ V\oﬂ«\

Normalization

Fig. 10: Job status predictions by the Random forests with
different normalizations

in data sizes between these logs results from the frequency
of measurement collection. While the job logs are collected
once a task finishes, the Procmon logs are collected based
on the pre-defined frequency. In other words, the Procmon
logs can monitor and collect information about the runtime
executions with the cost of the storage 1/0. The delay of the
training and prediction by the online job status predictor will
be significantly increased to accommodate the order of larger
Procmon log sizes. In order not to increase the delay, we plan
to use more nodes for parallel analysis. In addition, we will
investigate filtering out unnecessary information for the online
job status prediction from the Procmon logs to decrease the
cost of the I/O.

There exists a possibility that the progress of a task might
not be constant, i.e., resource usage related measurements from
the same task and the same job might have different patterns
measured in different intervals. This would degrade prediction
results due to the differences in the measured patterns. We
think two possible solutions for this case. We can merge
multiple consecutive measurements to amortize the variances
of the progress in the task executions. We think that as more
measurements are merged, less variances of tasks executions
will have. Thus they will be similar to the entire executions,
and will result in similar prediction results. Another solution
is to use the measurements of Procmon logs as the training
set, instead of using resource usage related measurements of
the job logs. We think this solution will improve the overall
prediction results as the Procmon logs can characterize the
variances in the task executions with the increased costs for
computation and storage. As the former solution incurs less
cost than the latter, we will compare the tradeoff between the
prediction results and the overall costs.

V. CONCLUSIONS

Scientific clusters experience increasing trends of failures
rates. To tackle the challenges to provide reliability against the
increasing trends of number of nodes, data size, and complex

interactions between software and hardware, it is crucial to
provide accurate failure predictions for scientific clusters.
Our job status prediction can help reduce time, resource
waste, and cost against failures by enabling the preparation
of checkpointing or taking actions for imminent failures.

Our automated job status prediction uses the Random
forests method to characterize the patterns of performance
related measurements in unsuccessful job executions. The
trained Random forests can identify the characterized patterns
from the runtime job executions in order to predict imminent
failures resulted from the unsuccessful job statues. We provide
empirical evidence that performance related measurements
are appropriate data sources for the machine learning based
job status prediction that can be extended to online failure
prediction. A machine learning classification method, the
Random Forests was applied to extract and characterize the
patterns of unsuccessful job statuses. Using the trained Ran-
dom Forests, the experimental results show the prediction of
the unsuccessful job statuses from the monitored ongoing job
executions in 99.8% the cases with 83.6% recall and 94.8%
precision. This prediction accuracy may be sufficiently high
so that the predictions can be used to initiate predicted failure
mitigation procedures.

The future work includes applying online failure prediction
on collected runtime execution information from runtime
measurement tools. We plan to apply online failure prediction
on other scientific clusters that have a larger number of nodes
and various applications.

ACKNOWLEDGMENTS

This work was supported by the Office of Advanced
Scientific Computing Research, Office of Science, of the
U.S. Department of Energy under Contract No. DE-ACO02-
05CH11231. The authors would like to thank Bryce Foster
and Alex Copeland at JGI; Douglas Jacobson, Jay Srinivasan,
and Richard Gerber at NERSC; Arie Shoshani at LBNL; Lucy
Nowell and Richard Carlson at Dept. of Energy.

REFERENCES

[1] “Genepool cluster,”
computational-systems/genepool, 2015.

https://www.nersc.gov/users/

[2] “Univa grid engine,” http://www.univa.com/products/grid-engine.php,
2015.

[3] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, Oct. 2001.

[4] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure Analysis of Jobs in
Compute Clouds: A Google Cluster Case Study,” in 2014 IEEE 25th
International Symposium on Software Reliability Engineering (ISSRE),
Nov. 2014, pp. 167-177.

[5S] Z.Chen, S. W. Son, W. Hendrix, A. Agrawal, W.-k. Liao, and A. Choud-
hary, “NUMARCK: Machine Learning Algorithm for Resiliency and
Checkpointing,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 733-744.

[6] C. Cortes and V. Vapnik, “Support-vector networks,” Mach Learn,
vol. 20, no. 3, pp. 273-297, Sep. 1995.

[71 S. Di, Y. Robert, F. Vivien, D. Kondo, C.-L. Wang, and F. Cappello,
“Optimization of cloud task processing with checkpoint-restart mech-
anism,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2013 International Conference for, Nov. 2013, pp. 1-
12.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Fu and C.-Z. Xu, “Exploring event correlation for failure prediction
in coalitions of clusters,” in Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, 2007. SC '07, Nov. 2007, pp. 1-12.

A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault Prediction
Under the Microscope: A Closer Look into HPC Systems,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 77:1—
77:11.

Q. Guan and S. Fu, “Adaptive Anomaly Identification by Exploring
Metric Subspace in Cloud Computing Infrastructures,” in 2013 IEEE
32nd International Symposium on Reliable Distributed Systems (SRDS),
Sep. 2013, pp. 205-214.

G. Hamerly and C. Elkan, “Bayesian Approaches to Failure Prediction
for Disk Drives,” in Proceedings of the Eighteenth International
Conference on Machine Learning, ser. ICML ’01. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 202-209.

E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cappello,
“Modeling and Tolerating Heterogeneous Failures in Large Parallel
Systems,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’11. New York, NY, USA: ACM, 2011, pp. 45:1-45:11.

D. W. Hosmer Jr and S. Lemeshow, Applied logistic regression. John
Wiley & Sons, 2004.

D. Jacobsen, “Nersc procmon,” http://www.osti.gov/estsc/details.jsp?
redid=5344, 2014.

1. Jolliffe, “Principal Component Analysis,” in Wiley StatsRef: Statistics
Reference Online. John Wiley & Sons, Ltd, 2014.

D. D. Lewis, “Naive (Bayes) at forty: The independence assumption
in information retrieval,” in Machine Learning: ECML-98, ser. Lecture
Notes in Computer Science, C. Ndellec and C. Rouveirol, Eds. Springer
Berlin Heidelberg, 1998, no. 1398, pp. 4-15.

Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“BlueGene/L Failure Analysis and Prediction Models,” in International
Conference on Dependable Systems and Networks, 2006. DSN 2006,
Jun. 2006, pp. 425-434.

N. Nakka, A. Agrawal, and A. Choudhary, “Predicting Node Failure in
High Performance Computing Systems from Failure and Usage Logs,”
in 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), May 2011, pp. 1557—
1566.

J. R. Quinlan, “Induction of Decision Trees,” Mach Learn, vol. 1, no. 1,
pp. 81-106, Mar. 1986.

C. Reiss and J. Wilkes, “Google cluster-usage traces: format+ schema,”
Google Inc., White Paper, 2011.

F. Salfner, M. Lenk, and M. Malek, “A Survey of Online Failure
Prediction Methods,” ACM Comput. Surv., vol. 42, no. 3, pp. 10:1-
10:42, Mar. 2010.

B. Schroeder and G. Gibson, “A Large-Scale Study of Failures in High-
Performance Computing Systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 337-350, Oct. 2010.

M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” International Journal of High Perfor-
mance Computing Applications, 2014.

W. Yoo, K. Larson, L. Baugh, S. Kim, and R. H. Campbell, “ADP: auto-
mated diagnosis of performance pathologies using hardware events,” in
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE, vol. 40.
New York, New York, USA: ACM, Jun. 2012, pp. 283-294.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. USENIX, 2010.

