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Abstract

Continuous Commissioning of Buildings: HVAC Fault Detection and Diagnosis

by

James Alexander Shia

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor David M. Auslander, Chair

It is almost certain that all systems contain faults, and Heating, Ventilation, and Air
Conditioning (HVAC) systems are no exception. About 41% of total energy consump-
tion in the U.S. of year 2014 is used for heating and air conditioning, that is about 40
quadrillion (1015) British thermal units (BTU)! In the past, fault detection and diag-
nosis (FDD) has been commissioned by man, which is costly and inefficient. If FDD
can be done automatically and continuously, a great amount of energy could be saved
and our buildings would become more sustainable.

People have been working on HVAC FDD for years, and will continue to make
progress. However, buildings are complicated, and so are the HVAC systems which
comes with them. Thanks to the fast growth of computers and developments of machine
learning algorithms in recent years, we have more tools to work with.

In despite of many researches done on HVAC FDD, we have noticed that very
few publications have focused on scalability and low cost. In order to address this
challenge, we will propose an approach which focuses on control data. In this thesis,
we will be relying on simulation data because of data access issues and the lower cost for
experiments. A list of machine learning algorithms are introduced for data exploration
and analysis, a control data focused model free approach is presented as well, and
finally, FDD is carried out by implementing anomaly algorithms.
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1 Introduction

1.1 Energy usage of HVAC systems

Buildings play an important role in human civilizations. They are a symbol of tech-
nology advancement, a style of culture, and a shelter for people. The most important
thing is that buildings provide indoor environments to meet with our day to day needs.
For example, libraries provide quiet places to study and read, meeting rooms for people
to discuss things, cold rooms are used for food storage, negative pressure rooms for
special treatments, and so on.

As the scale of buildings grow larger to provide more space capacity, the task for
maintaining the indoor environment grows in scale as well; thus, Heating Ventilation
and Air-conditioning (HVAC) systems, become more complicated and power consum-
ing. In the U.S., more than 40% of the total energy consumption is used for heating
and air conditioning purposes in general households. This is shown in figure 1.1.

Figure 1.1: Energy consumption in residential homes (U.S. Energy Information Administration,
Residential Energy Consumption Survey).

Due to improvements in insulation, new sustainable materials, and more efficient
designs, newer buildings generally have better HVAC system energy efficiencies. Ac-
cording to U.S. Energy Information Administration’s (EIA) most recent Residential
Energy Consumption Survey (RECS), homes built in 2000 and later consume only 2%
more energy on average than homes built prior to 2000, despite being on average 30%
larger [1, 2]. See figure 1.2. The general trend of energy usage is similar for commercial
buildings as well. See figure 1.3.

From the figures we see that the overall percentage of energy consumption for HVAC
systems has gradually dropped from more than half to around 40% over the past 20
years. Still, the amount of energy consumed is considerably high! In 2014, 41% of
total U.S. energy consumption was consumed in residential and commercial buildings,
or about 40 quadrillion (1015) British thermal units (BTU).

Introduction 1.1 1



Figure 1.2: Energy consumption changes in residential homes (U.S. Energy Information Ad-
ministration, Residential Energy Consumption Survey).

Figure 1.3: Energy consumption changes in commercial buildings (U.S. Energy Information
Administration, Commercial Buildings Energy Consumption Survey).

Introduction 1.1 2



1.2 Motivation

HVAC systems have been playing an important role in maintaining the indoor envi-
ronments and have become more complex than before. Ideally, every building has its
HVAC system designed and made specifically, and assuming all its components are
installed properly. In practice, the real cases are usually not perfect and systems have
faults from the very first day of installment. In addition, after years of usage, due to
the lack of maintenance, many HVAC systems that seem to work properly have internal
faults which results in a large amount of waste in energy. Even a small percentage of
waste adds up to a large amount over time and due to the fact that HVAC systems are
implemented almost everywhere.

Under normal conditions, people usually do not notice and forget about the quietly
working HVAC system. Once people are aware of it is when something feels wrong,
which usually indicates some serious problems, and the repair is expensive. This can
be avoided by scheduled routine checks and maintenances. The best strategy is to
prevent failures by spotting the faults when they are minor and easy to fix. However,
maintenance can be expensive as it requires a lot of labor. As the scale of HVAC
systems grows larger, the cost and difficulty in maintenance increases significantly, and
continuous commissioning by man is no longer a preferred option.

As mentioned, HVAC systems consume a huge amount of energy. Our goal is simple:
We want to build a system that can help us save energy by finding faults in HVAC
systems to avoid unnecessary energy losses at a low expense. Making our buildings
become more sustainable and environmentally friendly. Preventing waste of energy is
as important as harvesting sustainable new energy.

Before we look into the wide selection of methods and approaches, we may want to
get more familiar with the problem we want to solve by answering the questions:

• Why is fault detection important?
As mentioned, cost is high for commissioning by man. The larger the system the
higher the cost for maintenance. The cost would decline if we could detect the
faults.

• Why does fault consume energy?
There are various kinds of faults; however, they mean the system is not operating
well and all are undesired, e.g., a leak in the air duct or a jammed damper, causing
the system to have extra heat loss for a room that needs heating.

• System is still working but faulty?
We can almost be certain to say that all systems have faults. However, HVAC
systems are designed to handle extra loadings, and their control systems tend to
‘hide’ faults while they compensate faults and use up more energy.

One last step before we start our search of possible methods is that we should set
up our goals. Yes, we just mentioned and described our motivation; however, ‘building
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a Fault Detection and Diagnosis (FDD) system to save energy’ may be somewhat too
general. We would like to be more specific with our goal in order to make sure that our
FDD approach is reasonable and fits our purposes. The following four major features
are listed as our goals; we would like our FDD system to be:

• Scalable
Applicable to most modern buildings which have installed control systems and
sensors.

• Reliable
Delivers credible results with high accuracy.

• Automatic
The system has the ability to detect and diagnose faults by itself - continuous
commissioning.

• Economical
Once installed, no expert nor any system development member is needed to
maintain the system.

Scalability is something we would prefer; that is, a system can be adapted to various
kinds of HVAC systems instead of being model specific. The system should need to be
set up only once without too much trouble. Without scalability this would be more
like a project focused on one certain building (case by case), and would have to redo
everything for each building. Reliability is important to almost anything we would
work with. We do not want to receive false alarms (false positive) all the time, nor do
we want our system to remain silent and not report errors when faults do exist (false
negative). See 1.2.1 for false positives and false negatives. Continuous commissioning
is something important that differs new modernized HVAC systems from conventional
ones. That is, our FDD system should be able to continuously monitor the HVAC
system automatically and report any faulty behaviors without any personnel needed
for the task. Once set up, the system should be running on its own. The main
purpose of conducting FDD is maintaining HVAC systems in order to save unwanted
waste of energy. Whatever we do, it should lower our overall cost, or else it would be
meaningless. Building a FDD system will reduce the cost of labor and work for routine
maintenance and checks, which are expensive.

1.2.1 False positives and false negatives

In statistics, we often set up a test to test whether our null hypothesis H0 is true or
false. In hypothesis testing [3], there are two possible errors that may occur; they are
named as Type I error and Type II error. Type I error happens when we reject the
null hypothesis H0 when H0 is true, while Type II error happens when we fail to reject
the null hypothesis H0 when H0 is false. Their relation can be easily understood by
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putting them into a table as shown in table 1.1. Type I error and Type II error are
also known as false positives and false negatives.

The null hypothesis H0 is determined arbitrarily. Usually people choose the null
hypothesis for the case which is more important, causes more serious consequences if
incorrectly rejected, easier to approach ... etc. For our purpose here, we choose the
null hypothesis H0 as the system is operating faultlessly; since there are almost an
infinite number of possible faults that may occur to the system. This fact also means
that in order to compute the false negative rate, we have to know the kind of fault we
are dealing with and their characteristics before we are able to determine their values.
In other words, there is a false negative rate for each kind of possible fault. Figure 1.4
gives us the idea of this concept. For different faults, there are different probability
density profiles (blue curve).

H0 is true H0 is false
Reject H0 Type I error Correct
Fail to reject H0 Correct Type II error

Table 1.1: Type I & Type II errors.

−4 −2 0 2 4
0

0.2

0.4

0.6

Figure 1.4: False positives and false negatives. Assuming the red curve is the density function
of a faultless system and the blue curve is the density function of a faulty system. The false
positive rate α (Type I error) is the area formed by the red curve, black line, and the x-axis. The
false negative rate β (Type II error) is the area formed by the blue curve, black line, and the
x-axis.

It is impossible to eliminate false positives and false negatives, since they are the
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nature of probability. Nevertheless, for a given set of null hypothesis H0 and alterna-
tive hypothesis HA, we have a choice to determine the critical/threshold value. It is
like determining where the black line (not the dashed line, the dashed line is just an
intersection) should be located in figure 1.4. If we want to have a relatively low false
positive rate, the trade-off would be an inevitably higher false negative rate, and vice
versa. How and where should we draw the line at? This depends on the problem we
are dealing with and how we value the consequences if these errors happen.

1.3 Fault detection and diagnosis

There are a variety of different Fault Detection and Diagnosis (FDD) methods intro-
duced in numerous publications [4–6]. They provide different views and approaches to
the problem. These methods can be classified into three categories: quantitative, qual-
itative, and history-based methods. Each category can be further classified as shown
in figure 1.5.

Diagnostic methods

Quantitative

Detailed Physical Models

Simplified Physical Models

Qualitative

Rule-Based

Expert Systems

Limits and Alarms

First-Principle Based

History-Based

Statistical

Artificial Neural Networks

Figure 1.5: Fault detection and diagnosis methods.

Figure 1.5 gives us a general idea of the FDD methods, there may be more or
a mixture of multiple methods out there. A general overview of FDD methods is
discussed in [7, 8]. We should note that all methods are somewhere in the scalability-
accuracy spanned space; that is, usually there is a trade-off between scalability and
accuracy. This relation is shown in figure 1.6. Note that the dashed line and the shaded
area is just drawn to show this concept, the trade-off relation is not necessarily exact
like what is drawn.

It is probably safe for us to say that in order to practice FDD, some sort of baseline
(reference) is needed. However, how to recognize any patterns or find such a compara-
ble reference is the key. All FDD methods try to make use of the information gathered
as much as possible. Some use prior knowledge and/or logic rules while some use his-
torical data. We will do a brief and simple comparison of quantitative, qualitative, and
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Figure 1.6: Showing the trade-off of FDD methods trend conceptually.

history-based methods.

Advantages of quantitative methods are:

• Models are more detailed and therefore provide more overall information.

• Unlike qualitative physical models, detailed data and information are available
with more accuracy.

• Unlike history-based models, they don’t need historical data.

Quantitative methods usually provide the most information and are tailor-made. This
comes with the cost that more computation is needed. Also, such models are more
constrained to specific cases and cannot be reused easily, that is, not scalable.

Advantages of qualitative methods are:

• If some prior knowledge is known, they are relatively easier to set up and check.
The process is more transparent and less computation is needed.

• Unlike quantitative physical models, detailed set ups are not needed. Is poten-
tially more scalable.
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• Unlike history-based models, they don’t need historical data.

Generally speaking, qualitative methods are straightforward and obey physical laws.
They give us certain rules to follow while keeping the models simple.

Advantages of statistical methods are:

• They are history-based models, if data are handled correctly, the model can learn
from the data by itself.

• Unlike quantitative physical models, detailed set ups are not needed. Are poten-
tially more scalable.

• Unlike qualitative models, thresholds can be learned or trained instead of a prior
determined one, which may not be suitable. Has potentially better scalability.

In short, statistical methods tend to adapt to various situations. This meets our
requirement for the system to be scalable. Also, thresholds are set by the model itself,
saving the cost of hiring people to do it.

Here we have given a rough picture of how FDD methods are categorized and their
characteristics. For the moment, we will give it a pause. Further discussion of Fault
Detection and Diagnosis will be continued in section 3.

1.4 Deployment of our FDD approach

Our work is based on HVAC system simulations. Details on building HVAC models
are introduced in section 2. In order to achieve scalability and lower the cost, we
will be adopting a data-driven approach focusing on control system variables. To our
knowledge, HVAC FDD is mostly carried out focusing on thermodynamic/physical
variables, neglecting the control system (or at least not shown explicitly). We think
that variables of the control system provide many crucial information of the system.
Many researches focus on sensor data, which rely on the accuracy and well-being of the
sensors. Sensors may be faulty themselves or costly to install (absence of sensor) at
times. In comparison, control signals are generated by the controllers/control system;
thus, such problems don’t exist for control data. Further discussion on control data
can be found in section 3.3.

Scalability has often been left out in HVAC FDD. Many FDD methods are model
specific and need to be tuned and set up, that is, system specific. Also, they more or
less assume there are known faults and somehow know their patterns/characteristics.
The system specific set up and prior knowledge make them less scalable. Most control
systems make use of PID controllers and on/off switches, and they are somewhat similar
in how they behave (universal). Fewer assumptions made the better, only those that
are common should be considered.

Due to our focus on scalability and control system data, other benefits such as
easy installation and low cost follow along. As mentioned, this approach is not system
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specific; therefore, the set up process does not require to know much of the HVAC
system. We only need to be able to access data. Because there is no need of tuning
involved, nor is the method designed for a specific HVAC system. The cost is cheaper
to deploy.

Since we are using simulation data, we have the benefits of producing faultless data,
which is not likely to happen in real cases. In addition, we can run experiments on the
same models to simulate identical buildings under different conditions, which is not
possible for real buildings. If methods work for ideal cases, they are likely to work in
the real world. That is, we have controlled experiment conditions.

The FDD approach we have adopted is described in section 3 and our proposed FDD
road map is listed in section 3.7. The set up process and experiments are demonstrated
in sections 4, 5, and 6. Other than general input weather data and its preprocessing
work, we see that having access to the control system data is the only set up needed.
Our work shows how a simple FDD approach can be deployed for HVAC systems.
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2 Building model and data

2.1 Building and data access

Before getting our hands dirty and dive into fault detection and diagnosis for HVAC
systems and starting to look up what we should do with data, our first question becomes
‘Which specific HVAC system are we dealing with?’ and ‘Where do we find and gain
access to data?’

Here comes the problem; one would find that gaining access to HVAC systems and
its data is not as simple as just walking into a building and asking for them. Both the
building itself and its HVAC system built with it are private properties, and are usually
made and commissioned by private companies, not to mention the data. These datasets
are not easily accessible and are not opened to the public like highway transportation
statistics data. We are simply saying that datasets come with a cost; they are not free.
In addition to data access, our goal is to build a FDD system that is scalable. That is,
we want our FDD system to be able to handle data from not only one specific building,
but most modern commercial buildings. This means we would need to gain access to
multiple buildings and their HVAC system data.

Under such circumstances, a reasonable and viable solution is to depend on simula-
tion data. By implementing a simulation model, we would not only be able to collect all
the data we need, but also gather data from various buildings and systems with some
adjustments to our model. Here we would like to introduce Modelica1 (see section 2.2),
“a non-proprietary, object-oriented, equation based language to conveniently model
complex physical systems containing, e.g., mechanical, electrical, electronic, hydraulic,
thermal, control, electric power or process-oriented subcomponents.”

2.2 Modelica

Modelica is a programming language widely used for modeling and simulations for en-
gineering systems [9–11]. Among all of the programming languages out there, Modelica
is chosen as the preferred language for us to work with due to some of the features that
Modelica provides.

First, one of the special features that Modelica differs itself to other programming
languages is that it is equation oriented instead of statement oriented. A simple exam-
ple would help us understand what this means:

x = y + z

y = x− z
z = x− y

If we run the set of equations above in a common programming language (such as
Python or Matlab), each equation in the set is considered doing something completely

1https://www.modelica.org/
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different. However, these three equations are considered the same in Modelica! This is
due to the fact that the ‘equal’ sign, ‘=,’ is actually assigning the value on the right-
hand side to the variable on the left-hand side in normal programming environments,
while Modelica takes the ‘equal’ sign to be ‘equal’ as we use normally for math deriva-
tions. If we put in all three equations into our Modelica model, we would be giving
redundant information. Any one of them is enough and works the same.

The second main feature is that Modelica handles differential algebraic equations
(DAE) for us. This feature simplifies our task of building a simulation model signifi-
cantly, especially when models grow large and become complex. While one is building
a simulation model, one is actually ‘describing’ a system with math equations based
on physical laws. To be more specific, one is using differential equations, algebraic
equations, or both (DAE) to model a system. Solving an ordinary differential equation
(ODE) or algebraic equation (AE) usually isn’t too hard, thanks to the hard work
of mathematicians and the software packages being developed. Nevertheless, when it
comes to DAEs, things get complicated and difficult. Also, it is quite common that a
model is formed of DAEs.

Figure 2.1: Solving DAEs in Matlab (DAE flowchart). Source: Matlab.

Solving a set of DAE may not be too big a deal. Take the Matlab working environ-
ment for example, first we would have to reduce, decouple, and transform the DAEs into
ODEs and AEs. Then we would pass these equations to their corresponding solvers;
this is shown in figure 2.1. In other words, we are reformulating the problem into a
form that is compatible with our toolboxes and solvers. If the set of DAEs is solvable
we would then get the results we want. Suppose we are trying to build a simulation
model using Matlab, we could follow the flowchart in figure 2.1 for a simple model.
However, when it comes to building a system, the model is usually much larger in scale
and has many sub-models included, and for each sub-model there may be some sub-
sub-models ... etc. Therefore, as the system grows large and its complexity increases,
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doing simulations and solving these DAEs become intimidating. With Modelica, we
don’t have to worry too much about this problem, as long as we keep our models simple
and representative, and follow the general rules of Modelica, it is likely that Modelica
will handle the DAEs for us properly2.

Another feature of Modelica is that it handles both causal and acausal models. We
may not be using this feature for our work here, but it is a special feature of Modelica
and is worth mentioning.

2.3 Our HVAC model

HVAC systems are usually built and commissioned by private companies. They are
designed and built specifically for a certain building in order to fit the requirements
and needs of its use. This means that every building out there has a different HVAC
system. The good news is that the HVAC system is ‘tailor-made’ for each building,
but the bad news is that maintenance will also be ‘tailor-made,’ in other words, costly.

There are hundreds and thousands of HVAC systems out there. In order to start
our work, we will have to start with one model. Hence, we will start with a model
which should be as simple as possible to save time and effort, but also complicated
enough to reflect the features and characteristics of HVAC systems working in real
buildings. We start with a model shown in figure 2.2. In this model, we have a simple
HVAC model that has one room, one AHU, one cooling system, one heating system,
and a few other components. This simple model contains the basic features of what a
HVAC system does, which are heating, cooling, and ventilating.

Now that we have a targeted simple HVAC system model, we will try to build it in
the Modelica environment for simulation purpose.

2.4 Building our model in Modelica

As mentioned in 2.2, Modelica is a programming language which has some special fea-
tures that are designed and used for many engineering simulations. There is a list of
Modelica simulation environment software packages, such as Dymola and SimulationX,
which are commercially available and popular within the community, while OpenMod-
elica and JModelica.org are free to the public [10, 12, 13]. In this thesis, we will be
using both OpenModelica and JModlica.org as our working environment. This choice
is made due to free accessibility, compatibility, and ease of use.

We start with building simple models in OpenModelica because of its friendly user
interface and has OMEdit, a model editor and connector with a graphical user interface
(GUI) that comes with OpenModelica. Note that the interface, functions, solvers, and

2Modelica is still under development. New releases improve the interface and solvers, fix bugs, add
in new features, and so on. With that being said, Modelica still has bugs and compatibility issues.
It’s best to test out one’s model with care and make sure the libraries being used are compatible with
each other.
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Figure 2.2: Our targeted HVAC system model.

features may vary across different Modelica simulation environments; however, they all
use the same syntax and support the Modelica Standard Library.

In order to build the HVAC system, we would have to start with the most basic
components. The strategy is simply ‘divide and conquer,’ it would be almost impossible
to build a large system without having its components and subsystems first. One would
have to build all the components, such as fans, air ducts, dampers, heat exchangers, ...
etc (as in figure 2.3), making sure all the linking ports have their properties balanced,
media which are used well defined, parameters fine tuned and set, and check if they
are compatible with one another. This is a lot of work and very time consuming.
Fortunately, people have noticed this problem and have been working on libraries to
save work and time by setting standards and making the models reusable.

In practice, it is best for us to take advantage of these libraries. One reason is that
people have already spent a huge amount of time and effort to develop and maintain
these libraries, saving us from going over all the trouble and work. Another reason is
that sticking with these standard libraries, it is more likely the model we build will
have better compatibility with other libraries in the future.

In addition to the Modelica Standard Library3, we will be using the Buildings Li-
brary4 for most of our models. It is being developed and maintained by the Lawrence

3Modelica Standard Library is the standard and basic library that is free and comes with all
Modelica simulation environment pacakges.

4A library that is built on top of the Modelica Standard Library. It includes models for HVAC
systems, controls, heat transfer, ... etc. See http://simulationresearch.lbl.gov/modelica/ for more
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Figure 2.3: Building components in OMEdit. Making all of the component models by ourselves
is not recommended due to the time and effort spent, and compatibility issues with other libraries.
We have made these models for practice and testing purposes. Some of the components are still
built ourselves to fit our usage.

Berkeley National Laboratory (LBNL) and funded by the U.S. Department of Energy.
We have chosen to build our model based on this library is due to the fact that it
contains many component models of HVAC systems. Also, it is compatible with the
standard library. However, this library is being developed and tested in Dymola, a
commercial software package; therefore, some of its models are not compatible with
OpenModelica. Some of the errors are reported, and hopefully the issues will be re-
solved soon. Most of our work will be using OMedit to build up the model, for it
provides a much more user friendly GUI, and run our simulations in JModelica.org
environment. We have chosen to run simulations in JModelica.org, this is because that
it is much lighter; thus, loads and runs faster. The second reason is because of its
compatibility with the Modelica Buildings Library. Another reason is that its UI uses
Python; this makes running simulations and exporting data in batches easy.

Although we have these simulation environment software packages and libraries as

details.
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useful tools which speed up our efficiency and reduce the amount of work significantly,
we still need to put all the models together, test all components, and make sure all the
settings are correct [14]. We build our model brick by brick and have resulted with a
simulated HVAC system shown in figure 2.4. Some of the subsystems, such as the air
handling unit (AHU), cooling and heating system are shown in figures 2.5, 2.6, and
2.7.

Figure 2.4: Our HVAC model in OMEdit.

2.5 Model verification and validation

In previous subsections, we have introduced using Modelica briefly as a simulation tool
for our later on HVAC FDD work. We are relying on simulation data due to the fact
that we do not have access to real commercial buildings and building one (or multiple
ones) of our own is way too expensive and impractical. However, while relying on
simulation data, we need to be aware of the common pitfalls we may encounter [9],
which are: Pygmalion effect, Procrustes effect, and forgetting the model’s level of
accuracy5. We try to avoid falling into these pitfalls by conducting verification and
validation tests.

Simulations are done by using mathematical models to describe the physics of a
system. Verifications and validations of model reliability are very hard in general;
however, there are still ways for us to check how good our model performs to some
extent. First, we can try to look into how our system components are modeled. Most

5Pygmalion effect means to become too enthusiastic about a model and forget all about the exper-
imental frame. Procrustes effect means forcing reality into the constraints of a model.
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Figure 2.5: AHU model in OMEdit.

Figure 2.6: Our cooling system model in OMEdit.
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Figure 2.7: Our heating system model in OMEdit.

of the components we have used are from the Buildings Library which is built on top
of the Modelica Standard Library (MSL). By checking Modelica’s official website, we
can find a list of publications6 and different libraries applied for all kinds of engineering
areas. As for our task in HVAC systems, a list of publications can also be found in the
Buildings Library webpage7. This somehow gives us a sign that these libraries do have
credibility to some point and people are willing to use them for their work. Nonetheless,
we would still have to look into the model structures to be convinced that they are
valid. It would be tedious and redundant for us to elaborate all the components used,
we will only demonstrate a few examples here. Of course, while we were building the
HVAC system model, we tested and looked into the components before putting them
together. For example, we would like to put a heat exchanger into our model; we first
look into the libraries to find one. Suppose we have picked a constant effectiveness
type from the library, in order to understand how it is modeled, it would be best to
read the documents first8. According to the documents, we see that this model uses
the simple heat transfer equation:

Q = Qmaxε

6https://www.modelica.org/publications
7http://simulationresearch.lbl.gov/modelica/publications.html
8http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings.html. For new users,

it is also recommended to read the user guide.
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where ε is the constant effectiveness and Qmax is the maximum heat that can be
transferred. Its Modelica code is shown below:

model ConstantEffectiveness "Heat exchanger with constant effectiveness"

extends Buildings.Fluid.HeatExchangers.BaseClasses.PartialEffectiveness(

sensibleOnly1 = true,

sensibleOnly2 = true,

final prescribedHeatFlowRate1=true,

final prescribedHeatFlowRate2=true,

Q1_flow = eps * QMax_flow,

Q2_flow = -Q1_flow,

mWat1_flow = 0,

mWat2_flow = 0);

parameter Modelica.SIunits.Efficiency eps(max=1) = 0.8

"Heat exchanger effectiveness";

end ConstantEffectiveness;

Due to the simplicity of this model, we believe that most people can understand the
code shown. There are different variants of heat exchanger components included in
the library, such as DryEffectivenessNTU9, which uses the NTU (Number of Transfer
Units) method10. If none of the models meet one’s needs, one can always build a new
model on top of existing models (Modelica is an object-oriented language) or from
scratch. Note that the constant effectiveness heat exchanger model shown here is built
on top of (extends) another basic model PartialEffectiveness, so it is actually more
complicated than the code shown here.

The heat exchanger component cannot work on its own; to test it out, we would
need to hook it up with other components. The simplest example would be connecting
it with flow sources.

Figure 2.8: A simple heat exchanger test example in Modelica.

9The Modelica code for this model is much more complicated and would take up too much space
to show it here. However, all components can be looked up from the library or documentations.

10NTU method can be found in most heat and mass transfer textbooks, e.g., Chapter 13-5 (page
690) of Heat Transfer: A Practical Approach 2nd Edition by Yunus A. Çengel. This can also be found
on Wikipedia: https://en.wikipedia.org/wiki/NTU method.
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Note that in flow systems, every component, which deals with fluids, must redeclare
its medium (e.g., air, water, and R134a). Each type of medium is modeled in other
classes. Take water for example, all its properties are defined and modeled in package

Water which has more than 1000 lines of code; we will just show the constants in its
definition:

constant Modelica.Media.Interfaces.Types.TwoPhase.FluidConstants [1]

waterConstants(

each chemicalFormula="H2O",

each structureFormula="H2O",

each casRegistryNumber="7732-18-5",

each iupacName="oxidane",

each molarMass =0.018015268,

each criticalTemperature =647.096,

each criticalPressure =22064.0 e3,

each criticalMolarVolume =1/322.0*0.018015268,

each normalBoilingPoint =373.124,

each meltingPoint =273.15,

each triplePointTemperature =273.16,

each triplePointPressure =611.657,

each acentricFactor =0.344,

each dipoleMoment =1.8,

each hasCriticalData=true);

In figure 2.8, icons at the upper left and lower right are another type of component.
They are fixed mass flow sources. The lower left and upper right components are
fixed boundary (flow) sources. The gray box is a constant effectiveness heat exchanger
we have just mentioned. Two flow thermometers are added to the exits of the heat
exchanger in order to monitor output flow temperatures. Depending on the design,
each component will require different inputs; we will have to assign them carefully or
errors would occur (Errors incurred by missing values forgotten to fill in happen quite
often. Unrealistic inputs usually lead to computational errors as well.).

By checking with the physical models of the components, we can verify that the
physics seem to be reasonable and consistent with what is written in textbooks. How-
ever, we would also need to be cautious while putting components together and build-
ing a bigger component or system. After verifying the physics contained within the
components, input values would be next for us to verify.

Input values are mostly determined by looking up handbooks [15–17] or online
resources11. Take air flow for example, according to Ventilation for acceptable indoor
air quality ANSI/ASHRAE Standard 62.1, for office areas, the minimum ventilation air
flow rate would be 8.5[L/s] per person. Let’s assume an office room has a dimension of
10×10×3 (length, width, and height in meters), and a typical office cubicle usually has
a size of 6′×8′ or 8′×8′ (in feet). By doing the math, we would result in an estimation
of 20-30 people in this office room. We would tend to be on the conservative side, so
we will end up with a minimum air ventilation of 8.5 × 30 = 255[L/s]. This tells us
we would need to set our air flow rate to be at least 255[L/s]. Nevertheless, this is
only considering air ventilation, our HVAC system should also be able to remove heat

11e.g., https://www.engineeringtoolbox.com/
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dissipated from human bodies12 and other equipment or facilities within the room (e.g.,
lights, computers, ... etc). If a centralized HVAC system is used (such as the ones we
used in section 5), we know that the supplied air is usually set to 13◦C for centralized
systems, and 20 BTU (British Thermal Unit, ∼ 1055 Joules) per hour for each square
foot is needed in general13. We can then get a rough estimation of the heating and
cooling power by carrying on this kind of estimation with the aid of handbooks and
online resources. Some simulation tests are run to verify our input values are valid or
reasonable by checking if the system variables respond within a desirable range (within
a magnitude of order).

Another quick check is by looking at the simulation result plots. We will show this
by adjusting our example shown in figure 2.8 a little, because the model in figure 2.8
has two prescribed temperature and mass flow sources of water flows, we would expect
a steady state output result, which is a little boring and not showing the dynamics of
our heat exchanger. To make things more interesting, we will test the heat exchanger
with a model shown below in figure 2.9.

Figure 2.9: A heat exchanger test example with a water tank in Modelica.

We replace the water source on the top with a water tank and a water pump. In
order to verify this model quantitatively, we will now assign parameter values to our
components in this model. Our water tank will have a height of 2[m] and an area of

12Usually close to 100 Watts and could go up to around 120 Watts. This can be easily estimated
by calculating the overall calories a normal person intakes a day.

13https://www.energy.gov/energysaver/room-air-conditioners
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2[m2]. The water level will be set to half of the height, which is 1[m]. So we will have
a total of 2[m3] water, which is 2000[kg] (we are approximating the water density to
1000[kg/m3]) of water in the upper loop. The pump14 is set to provide a constant mass
flow at 1[kg/s] using the flowrate15 block to provide a control signal. We have chosen
a constant effectiveness type heat exchanger and set its constant effectiveness ε to 0.6.
Water source at the lower right corner provides a 3[kg/s] constant water flow at 80[◦C],
and our initial water temperature in the water tank is set to 20[◦C]. The lower left is
just a water sink and we don’t have to worry about it. After running the simulations,
we get the water temperature profile shown in figure 2.10.
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Figure 2.10: The simulation results of our water tank temperature in Modelica (using JMod-
elica with simulation time of 7200 seconds). The y-axis is water temperature in Kelvins[K].

The Modelica code for this model looks like:

model HeatExchangerTest2

package water = Buildings.Media.Water;

Buildings.Fluid.HeatExchangers.ConstantEffectiveness hex(redeclare

package Medium1 = water, redeclare package Medium2 = water,

dp1_nominal = 100, dp2_nominal = 100, eps = 0.6, m1_flow_nominal = 1,

m2_flow_nominal = 3);

Buildings.Fluid.Sources.MassFlowSource_T source2(redeclare package Medium

= water, T = 273.15 + 80, m_flow = 3, nPorts = 1);

Buildings.Fluid.Sources.FixedBoundary sink2(redeclare package Medium =

water, nPorts = 1);

14The pump component is also in the Buildings Library.
15This is a constant source signal block component. It can be found in the Modelica Standard

Library.
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Buildings.Fluid.Sensors.TemperatureTwoPort senTem1(redeclare package

Medium = water, m_flow_nominal = 1);

Buildings.Fluid.Sensors.TemperatureTwoPort senTem2(redeclare package

Medium = water, m_flow_nominal = 3);

Modelica.Fluid.Vessels.OpenTank tank(redeclare package Medium =

water,crossArea = 2, height = 2, nPorts = 2, use_portsData = false);

Buildings.Fluid.Movers.FlowControlled_m_flow pump(redeclare package

Medium = water,dp(start = 100), m_flow(start = 1), m_flow_nominal = 1)

;

Modelica.Blocks.Sources.Constant flowrate(k = 1);

equation

connect(senTem1.port_b, tank.ports [2]);

connect(tank.ports [1], pump.port_a);

connect(hex.port_b2, sink2.ports [1]);

connect(senTem2.port_b, hex.port_a2);

connect(source2.ports [1], senTem2.port_a);

connect(flowrate.y, pump.m_flow_in);

connect(pump.port_b, hex.port_a1);

connect(hex.port_b1, senTem1.port_a);

end HeatExchangerTest2;

In order to verify this result, we can solve this problem analytically. Assuming
the water temperature in the tank is T1 and mass flow is ṁ1. The hot water has a
temperature T2 and a mass flow ṁ2. Water heat capacity is denoted as cp. We start
with calculating the maximum possible heat transfer rate Q̇max:

Q̇max = Q̇1max = Q̇2max

⇒ ṁ1cp(T − T1) = ṁ2cp(T2 − T )

we then get the output temperature T as

T =
1

ṁ1 + ṁ2

(ṁ1T1 + ṁ2T2).

We now can use the relation Q = Qmaxε given by the constant effectiveness heat
exchanger:

Q̇ = Q̇maxε = ṁ1cp(T − T1)ε

= εṁ1cp

(
ṁ2

ṁ1 + ṁ2

T2 −
ṁ2

ṁ1 + ṁ2

T1

)
= ε

ṁ1ṁ2

ṁ1 + ṁ2

cp(T2 − T1)

this heat flow will then result in heating up the water in the water tank; thus we can
write:

Q̇1 = Mcp
dT1
dt

= ε
ṁ1ṁ2

ṁ1 + ṁ2

cp(T2 − T1)

where M stands for the total mass of water in the water tank. This is a first order
ODE (Ordinary Differential Equation) and can be solved easily with the use of change
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of variables by letting Θ = T2 − T1, our equation becomes:

dT1
dt

= ε
ṁ1ṁ2

(ṁ1 + ṁ2)M
(T2 − T1)

⇒ dΘ

dt
= −ε ṁ1ṁ2

(ṁ1 + ṁ2)M
Θ

solving for this:
Θ = Ae−Bt

Θ̇ = −ABe−Bt

plug these two back to the ODE:

− ABe−Bt + Aε
ṁ1ṁ2

(ṁ1 + ṁ2)M
e−Bt = 0

⇒ B = ε
ṁ1ṁ2

(ṁ1 + ṁ2)M

making use of the initial condition that T1(t = 0) = T1,init; hence, we have

Θ(t = 0) = T2 − T1,init

⇒ Θ = (T2 − T1,init) exp

(
−ε ṁ1ṁ2

(ṁ1 + ṁ2)M
t

)
replacing Θ with T2 − T1, we finally get:

T1 = T2 − (T2 − T1,init) exp

(
−ε ṁ1ṁ2

(ṁ1 + ṁ2)M
t

)
To show the result quantitatively, we just have to plug in the values as in our set up:

T1,init = 20

T2 = 80

ε = 0.6

ṁ1 = 1

ṁ2 = 3

M = 2000

We use a Python script to help us plot out this analytical solution:

1 import numpy as np

2 import matplotlib.pyplot as plt

3
4 N = 101 # number of computational points

5 eps = 0.6 # heat exchanger effectiveness
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6 m1_dot = 1 # m1 flow rate

7 m2_dot = 3 # m2 flow rate

8 Cp = 4 # heat capacity , [kJ/(kg K)]

9 M = 2000 # tank water mass

10 T1_init = 20 # ambient temperature

11 T2 = 80 # hot water temperature

12
13 t = np.linspace (0,7200,N) # time

14 c = eps*m1_dot*m2_dot /( m1_dot+m2_dot)/M # exponential constant

15
16 T1 = T1_init*np.ones(N,)

17 T2 = T2*np.ones(N,)

18
19 T1 = T2 - (T2 -T1)*np.exp(-c*t)

20
21 # plot

22 plt.plot(t,T1 ,label=’T1’)

23 plt.plot(t,T2 ,label=’T2’)

24 plt.xlabel(’time[sec]’)

25 plt.ylabel(’Temperature[degC]’)

26 plt.legend ()

27 plt.show()

and the plot is shown in figure 2.11. We see that figure 2.11 shows the same trend
as figure 2.10. However, we have made some approximations, such as assuming water
heat capacity is a constant with respect to temperature in this temperature range and
approximating the density to be constant at 1000[kg/m3] (which both are not true),
while the Modelica Standard Library has a more sophisticated water model. Therefore,
the results are still slightly different.

The components can be easily modified as one wishes, or one can simply replace
a component with another one, as long as the connecting ports and basic parameter
settings are compatible. For example, we can simply swap out the constant effectiveness
type heat exchanger to a dry effective NTU type from the library.

As the system model grows larger, it becomes hard and impractical to keep track
of all outputs. It is best to check small components at early stages before putting
them together. However, we could check how our model behaves when there are small
changes in the parameter values. As stated in [9]:

if the simulated behavior is not very sensitive to small variations in the model
parameters, there is a good chance that the model fairly accurately reflects the
behavior of the real system.

This happens to be true with our HVAC model. Number values are first checked
with handbooks or online, then small experiment tests on components are carried
out, and some quick estimation is done. After filling in the parameters, we check
different values which are within an order of magnitude range and see how the system
behaves. Most of the time our models perform as expected and usually we tend to put
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Figure 2.11: Water temperature (water tank) profile verification of our analytical solution.

in a parameter that is more conservative, which means a system with more reserved
capacity. The models we have built are still considered simple; however, our goal is
to have data access to HVAC systems which are meaningful; hence we tend to keep
things simple for us to finish our work within reasonable time.

One more thing to note is that in the libraries we have used, there usually are user
guides, examples, and validation tests for the components in the package. For instance,
[18] explains how the fan and pump models are built. Users can assign different fan
curves if needed; however, for our case, we will stick to the defaults for building a
sophisticated model is not our goal.
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3 Fault detection and diagnosis

In section 1.3 we have given a brief introduction to FDD methods and how they dif-
fer. In order to meet our requirements in section 1.2, history-based models would be
favorable to us.

Modernly built commercial buildings with modern HVAC systems installed are
equipped with sensors to monitor how the system is functioning. If we have access to
the systems, we have access to setpoints and sensor data. In section 2 we have already
dealt with this problem.

In the past, FDD is often approached by using model based methods; that is,
people build a physical or simulation model of the system and compare how the model
differs with the system behaviors. Thanks to the development and popularity growth
of the topic, ‘Machine Learning,’ data-driven approaches have started to catch people’s
attention.

In the following subsections, we will present a brief introduction to the set up of
our work (sections 3.1, 3.2, and 3.3), then an introduction to the data analysis tools
we will be using (sections 3.4, 3.5, and 3.6), and finally our road map to our FDD
approach (section 3.7).

3.1 Data-driven FDD approach

In recent years, due to the improvement in computer processing power and statistical
tools, machine learning has proven to be very powerful and useful for applications in
many areas. However, these statistical tools are not a panacea for all problems. The
famous quote from George Box, ‘All models are wrong but some are useful,’ is telling us
in some way that statistical models are not ‘plug and play,’ we cannot simply feed all
the data we gathered into some simple model and expect the results to be satisfying.
Models are useful only when our problem fits with the assumptions of the models in
the first place. Our challenge here is how and what to do with the data (see section 2)
we have. With an abundant collection of statistical models and tools out there, which
do we choose and how do we implement them?

For data-driven HVAC FDD, in order to explain the simple idea, we can basically
break it down into two parts. For the first part, the idea is, given some input data, we
build some model16 to generate some measure, which is simply some output value(s).
The other part is using the input data to establish some threshold or a detection
criterion. We then compare the measure with the threshold to determine whether the
system is faulty or not. This is simply shown in figure 3.1.

Usually, people try to model the input data with some mathematical or statistical
model, such as HMM (Hidden Markov Model) [19], Bayesian networks [20, 21], ARMA
models [22], GP (Gaussian Process) [23], FCD (Fractal Correlation Dimension) [24]
... etc., and then along with some threshold/detection criterion set up, depending on

16The word model here means a mathematical or statistical model; we are not referring to the
HVAC model, such as the one we mentioned in section 2.
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Figure 3.1: Basic idea of a fault detection and diagnosis approach.

the model formulation. Common ones are PCA (Principal Component Analysis) [25–
31], SVM (Support Vector Machine) [32–35], OC-SVM (One Class SVM) [23, 36],
ANN (Artificial Neural Networks) with fuzzy logic [37–41], ... etc. Moreover, in order
not to fall into the ‘data rich, information poor’ situation, dimensionality reduction
methods such as PCA, PLS (Partial Least Squares) [30], mRMR (minimal-redundancy-
maximal-relevance) [32, 42, 43], and so on are adopted. Dimensionality reduction not
only shrinks down our datasets to prevent them from bogging down our computing
machines, but also specifies the hidden features of the data.

3.2 Time-series data

The data we collect are from a simulation model (or a real HVAC system). The data
is in a sequence form; that is, for each variable xt at each time step t, xt has some real
number value. Quoting from Wikipedia17:

A time series is a series of data points indexed (or listed or graphed) in time order.
Most commonly, a time series is a sequence taken at successive equally spaced points
in time. Thus it is a sequence of discrete-time data.

17https://en.wikipedia.org/wiki/Time series
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The difference between time-series data and non time-series data is that time-series
has a ‘time order.’ This time order feature of time-series turns the data into some high
dimension form (a time-series with N data points can be viewed as a vector of length
N , that is x ∈ RN) and makes it much more difficult to handle.

In section 3.1 we have mentioned many methods how people dealt with HVAC
FDD. The most well-known time-series model is probably the ARMA (Auto Regression
Moving Average) [44] model. Many analysis tools such as Fourier transform, wavelet
transform, and their variants are also widely used. Many other methods and tools that
are not specifically designated for time-series are also commonly used, for example,
PCA, SVM, HMM, SSM (State Space Models), fuzzy logic [45], Bayesian network, GP,
... etc.

One would find that time-series analysis is a big topic with numerous methods and
approaches. There are even researches regarding comparing multivariate time-series
with different dimensions such as [46]. Before we dive into the time-series analysis area
and try to do some analyses on our data by picking a mathematical model, we should
be considering what we want to achieve by inspecting the data.

In HVAC systems, there are all kinds of time-series data. Sensor data, such as, room
temperature, air flow rate, motor speed, damper positions, and so on; control signal
data, cooling and heating controls, for example; weather data, including temperature,
wind speed, pressure, humidity, ... etc.

3.3 Control data

In section 1.2, we have mentioned that we want some FDD to be scalable, reliable,
automatic, and economical. In short, we would like the overall cost of FDD to be low.
We try to achieve this by looking for possible ways to improve HVAC FDD.

To lower the cost of FDD, we would want it to be scalable; this means that detailed
modeling of a specific HVAC system would not be our choice (Though very accurate, it
is very expensive as well). We would like something that is general to most, if not all,
HVAC systems. HVAC systems installed in buildings are all different, but they all do
one same thing, that is, to provide a controlled indoor environment, including thermal
comfort and air quality. This is done by controlling temperature, pressure, humidity,
and ventilation (CO2 concentration level). The components in HVAC systems may
be different in design, models, numbers, performance, ... etc; nevertheless, they all
work similarly; the indoor environment is simply controlled by heating, cooling, and
air ventilation with controllers. What all HVAC systems have in common are the
controllers. Although the control system in HVAC systems varies, the basic control
components are generally the same, either an on/off switch or a PID controller18 is
used. Other types of switches are rare; even if they are used, on/off switches and PID
controllers are likely to be used in the system as well. Moreover, for a working HVAC

18PID controllers are used due to the fact that they are simple, easy to tune, and work fairly well
in almost all applications. More complicated designs for controllers may work better for some cases;
however, the benefits gained usually don’t justify the higher cost and requirement for more training.
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system, we suppose all the design and set up have been carefully engineered with a
lot of work and effort put into it. Hence, a working HVAC system means its control
system works as well. Having this in mind, and since the control system collects all the
input data and outputs all the control signals (manipulated variables) after running
computations over some rules, we claim that the control system data holds important
information of the overall HVAC system. Figure 3.2 shows a simple block diagram of
a control loop.

controller plant

sensor

SP
+

ε MV PV +
+

noise
external disturbance

−

Figure 3.2: Block diagram of a control loop.

In this figure, there are basically only five variables: SP (setpoint), ε (error), MV
(manipulated variable), PV (process variable), and sensor data. If we put aside noise
for the moment, there are only SP, ε, MV and PV (same as sensor data) four variables.
In the controller’s point of view, these four variables are the only information needed
to make the HVAC system work. No matter how large the system grows or how
complicated it becomes, how the control system works is the same.

Kp

Ki

Kd

G(s)
R(s) +

+

+ +
C(s)

−

Figure 3.3: Block diagram of a PID controller.

The controller in figure 3.2 is either an on/off switch or a PID controller (for most
cases if not all). A PID controller block diagram is shown in figure 3.3.
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However, an HVAC system is not closed, it is not isolated from the outside envi-
ronment. External data (including weather data, noise, and heat load) comes in and
interacts with the system, so now an external variable label should be located where
the ‘noise’ label is in figure 3.2.

Most HVAC FDD approaches found in publications monitor the external variables
and sensor data closely. People try to find their relationships and patterns with all kinds
of mathematical/statistical models. We here suggest that instead of inspecting external
variables and sensor data alone, we should focus more on the manipulated variable data.
There are a few reasons why we should focus on the control data. First, every HVAC
system has controls; though they may have some intricate designs and/or complicated
connections, they are basically comprised of on/off switches and PID controllers. The
overall picture of this concept is again shown in figure 3.2. Figure 3.4 depicts the
concept of control loops in the HVAC system.

Second, solely depending on weather and sensor data, one could encounter sensor
failure and/or inaccuracy problems. That is, an anomaly data point could be caused
by a faulty component, a failing sensor, or both. If control data is not included, it
would be difficult to tell if the datasets we collected are reliable. Research regarding
sensor failures, such as [47], requires additional system-specific information, which we
do not prefer due to the scalability trade-off.

Another reason why we should focus on control data is that we are targeting hidden
faults of an HVAC system. It has been mentioned a few times in papers that hidden
faults [29] is something hard to deal with, but to our knowledge, so far no one has
really explicitly stated how hidden faults are handled19. We believe this is because
that control systems hide faults. This is the nature of control systems, for they are
designed to meet the requirements of user settings by making sure the process variables
are controlled and maintained at setpoint values. For example, a heater is controlled
by a thermostat to keep the temperature in a room warm during winter. Suppose
the fan has been clogged by dust causing the air flow to decrease; thus, leading to a
decreased heating performance. The thermostat then senses the temperature is lower
than expected; therefore keeping the heater on for longer periods to compensate the
lost heating performance. This means that the control system is making the overall
system to work harder to ensure the process variables are in the desired range. HVAC
systems are usually designed to have some reserve capacity in order to take care of
different loadings. When faults, which are not serious, occur, they are being hidden by
the control system and users won’t notice any difference; hence, no one would report or
complain about them. However, energy is still being wasted; faulty components may
get worse and fail eventually in the long run, which could be very expensive to repair.
When it comes to hidden faults, monitoring external and sensor data alone would not
be as effective as monitoring MVs (control data), for the controllers have a nature

19Most papers don’t even mention about hidden faults; that is, a distinction of faults (hidden or not
hidden) probably isn’t made. In addition, some approaches are implicitly assuming some knowledge
of faults are known (supervised learning) while some don’t (unsupervised learning). This can usually
be distinguished by looking at the machine learning algorithms used.
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of hiding faults, and inspecting their behaviors directly20 makes more sense. Sensor
data may be able to catch some anomaly behavior for a short period of time before
the controllers compensate it. On the other hand, MVs will continuously reflect the
controllers’ attempts to hide faults, making MVs a better indicator to hidden faults.

Finally, with MV data (control data) available, it should help us differentiate the
anomaly behaviors with system transient states. All machines and systems we build
have different operating modes; even the most simple ones have at least two states, on
and off. For instance, the state of a heater is on while the temperature of a room is below
the setpoint, and the state is off if the temperature is higher than the setpoint. When
the scale of a system grows larger, it’s likely that there are multiple operating modes,
which may be a combination of different states of its subsystems and/or components.
Take a simple HVAC system for example; imagine two different scenarios for the exact
same building. The first scenario is during a hot sunny summer day; without a doubt,
the building gets hot inside and the HVAC system tries to cool the interior by turning
on the cooling subsystem. The second scenario is people holding a big event in the
building during fall season; the outdoor weather is cool and comfortable; however,
the indoors get hot and stuffy due to the large number of people attending the event,
causing a lot of heat and rising CO2 levels. The HVAC system responds to this situation
by turning on both the cooling and ventilation (fans and dampers) subsystems. In this
example, the HVAC system starts cooling the building in both cases, but only increases
the ventilation for the second case. This is because for the first case, the CO2 level is
normal and further ventilation is not needed; increasing hot outside air intake will force
the cooling system to work harder and increase power usage. As for the second case,
outside air is cool and indoor CO2 level is relatively higher; increasing the ventilation by
letting more outside air in would not only help air ventilation, but also reduce the work
load of the cooling system. From this example, we see that though the HVAC system is
cooling the building for indoors temperature which is higher than the setpoint, it may
be working in different operating modes. If we only monitor external and sensor data,
one major challenge would be how to determine which operating mode the system is in.
We could guess by historical training data; still, it may be vague at times and we could
guess wrong, especially when there are multiple operating modes; thus, reporting false
positive faults. Another problem would be the transient states between two operating
modes. These data points don’t belong to either operating modes and could look very
similar to faulty behaviors. If not taken with special care, these data points are often
being marked as anomaly points, leading to false positives, or even causing trouble to
train the FDD at the beginning.

Due to the reasons stated and discussed above, we propose that including and
focusing on control data could be beneficial to our FDD task.

20Let’s say some component (plant in figure 3.2, or the HVAC system in the dashed box of figure 3.4)
has a glitch and is not functioning normally. External data should be independent of the HVAC
system and sensor data is the result of external data interacting with the HVAC system, making it to
be indirectly related and less representative to hidden faults.
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Figure 3.4: A simplified control loop concept of a HVAC system.
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3.4 Time-series clustering

Given a dataset of time-series, without much prior knowledge about the data itself,
clustering is one of the approaches we may choose. Since we are dealing with fault
detection and would like our approach to be scalable, which means we are not dealing
with a specific model; thus, we would not know how faults will affect the system nor
how the system will react to faults.

As mentioned, we do not have much prior knowledge of a specific HVAC system
model type besides what are commonly seen in most HVAC systems. With the large
amount of data generated from the system, clustering serves as a good tool helping us
to learn more about the data.

Clustering (see section 3.4.3), a category of unsupervised statistical analysis meth-
ods, is commonly used to explore data. There are a number of different clustering
methods; however, there are generally four types of clustering methods: connectivity-
based clustering, centroid-based clustering, distribution-based clustering, and density-
based clustering. One of the most well-known algorithms of each type are hierarchical
clustering, k-means clustering, Gaussian mixture models, and DBSCAN respectively.
Each of them has its strengths and drawbacks.

While clustering algorithms serve as powerful tools for exploring conventional data,
most of them are not able to handle time-series data. Nevertheless, researchers have
come up with fixes and adjustments to the existing clustering algorithms, making them
compatible with time-series data. Moreover, some approaches are designed specifically
to handle time-series data. Here we will give a brief overview on how time-series
clustering works.

Generally speaking, there are a few challenges when dealing with time-series data.
First, time-series data are often far larger than memory size and consequently are stored
on disks. This leads to an exponential decrease in speed. Second, time-series data are
high dimension, which makes handling these data difficult for clustering algorithms
and also slows down the speed. Third, some similarity measure is needed to carry out
the clustering task. There are a plethora of papers about time-series clustering [48–
51]; they can be classified into three types: whole time series clustering, subsequence
time-series clustering, and time point clustering. This is shown in figure 3.5. Our work
will be focusing on whole time-series clustering.
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Figure 3.5: Time-series clustering types.

The time-series clustering task can be split into four components [48]:

1. Time series representation

2. Distance measure(similarity/dissimilarity)

3. Clustering prototype

4. Time series clustering

3.4.1 Time-series representation

Before doing any clustering, we would have to determine how we want our time-series
data to be represented to clustering algorithms. One can choose to simply use the raw
time-series data, reduce the dimensions, or apply some math model to represent the
data.

Time series representations:

1. Raw data

2. Data adaptive - In this category, a common representation will be chosen for all
items in the database that minimizes the global reconstruction error (e.g., PCA,
SVD, SAX)

3. Non-data adaptive - In contrast, these methods consider local properties of the
data, and construct an approximate representation accordingly (e.g., PAA,DWT)

4. Model based - Relies on the assumption that the observed time series was created
based on basic model. The aim is to find the parameters of such a model as a
representation (e.g., HMM,ARMA [44])

5. Data dictated - The compression ratio is defined automatically based on raw time
series such as clipped (e.g., Clipped [52])
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3.4.2 Distance measures

In order to compare time-series data, a distance measure (or some kind of similari-
ty/dissimilarity measure) is required. Again, there are a variety of distance measures.
How and which we should choose depend on the time-series characteristic itself, length
of time-series, our objective, and the time-series representation used. We will intro-
duce some of the most commonly used and competitive ones. There is a long list of
distance measures, and they can be classified into different types, such as shape-based,
compression-based, and feature-based [48–51]. Our work will be focusing on dealing
with raw time-series data; therefore, we will be focusing on their corresponding distance
measures.

3.4.2.1 Euclidean distance

For most people, the first thing that comes to mind when it comes to a distance
measure is probably the Euclidean distance. Let’s say we have two time-series x and
y of equal length T ; that is, x and y are ∈ RT . Then the Euclidean distance can be
easily calculated:

Euclidean distance(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xT − yT )2

=

√√√√ T∑
t=1

(xt − yt)2

Or in vector notations, this is simply:

Euclidean distance(x, y) = ||x− y||2
where || · ||2 stands for the L2 norm.

The Euclidean distance is simple but very useful, and has a tendency to be neutral
that it does not favor any direction, which means it is blind to trends/correlations.
Although the Euclidean distance seems simple and straightforward, it actually turns
out to be surprisingly competitive in time-series clustering [53, 54] when it comes to
comparing their shapes. Other cases such as applications in high-dimensional space,
the Euclidean distance is probably not so good a choice [55].

3.4.2.2 Manhattan distance (Absolute distance)

The Manhattan distance is similar to the Euclidean distance with little difference in
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its mathematical form. Given two time-series x and y of equal length T , such that x,
y ∈ RT :

Manhattan distance(x, y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xT − yT |

=
T∑
t=1

|xt − yt|

In vector notations:
Manhattan distance(x, y) = ||x− y||1

where || · ||1 stands for the L1 norm.
The Manhattan distance, which is also known as the absolute distance, taxicab

geometry, city block distance, or L1 norm, gives us similar results for our usage in
comparing weather data. However, the Manhattan distance is widely used as a heuris-
tic21 technique in optimization problems.

3.4.2.3 Minkowski distance

Minkowski distance (Lp22 norm) is a generalization of both the Euclidean and Man-
hattan distances. Its mathematical definition is:

Minkowski distance(x, y) = (|x1 − y1|p + |x2 − y2|p + · · ·+ |xT − yT |p)
1
p

=

(
T∑
t=1

|xt − yt|p
) 1

p

where p ≥ 123. Figure 3.6 shows a plot of ||x||p = 1 for different p values.

21While working on optimization problems, we would sometimes need to work with cardinalities,
which is not a convex problem. A non-convex problem is relatively hard to solve; hence, people try
to relax the problem by solving the L1 norm instead.

22L stands for Lebesgue spaces.
23If p < 1, it is not a metric.
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Figure 3.6: Unit spheres in 2 dimensional space for different Lp norms, ||x||p = 1. p = 0, 0.5,
1, 2, 5, ∞ are plotted in gray, orange, red, blue, green, and purple colors respectively.

3.4.2.4 Dynamic time warping (DTW)

Dynamic time warping [56] has been used for voice recognition in the past, and is still
used as a similarity measure for time-series data. What dynamic time warping does is
non-linearly aligning two sequences x and y (x and y don’t have to be same in size,
x ∈ RN , y ∈ RM) by minimizing their differences in shape. A warping path p is found
between the two sequences, defining how they are being matched. This is done by
creating a cost matrix C, which its entity C(n,m) is the cost of xn and ym. A cost
function can be chosen arbitrarily; usually the Euclidean distance is the default choice.

C(n,m) := dist(xn, ym)

where dist is the cost function, xn is the nth element of sequence x, and ym is the mth
element of sequence y. For a given warping path p, the warping cost is:

cp =
L∑
l=1

c(xnl
, yml

)

where L is the size of the warping path p, that is, p = (p1, p2, . . . , pL). The dynamic
time warping distance is then defined as:

DTW (x, y) = min
p

(cp(x, y))

p∗ = arg min
p

(cp(x, y))
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for p is the warping path and p∗ is the optimal warping path that minimizes the
DTW distance. This optimization problem is solved by dynamic programming [57–
59]. Defining the accumulated cost matrix D as:

D(n,m) := DTW (x(1 : n), y(1 : m))

where x(1 : n) and y(1 : m) represent the subsequences of sequence x from step 1 to
n and sequence y from step 1 to m, respectively. The accumulated cost matrix D is
then computed:

D(n,m) = min[D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)] + c(xn, ym)

and the optimal warping path p∗ can then be determined by the algorithm in reverse
order:

pl−1 =


(1,m− 1) , if n = 1

(n− 1, 1) , if m = 1

arg min
(n,m)

[D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)] , otherwise

where p1 = (1, 1) and pL = (N,M) (boundary conditions). Once D and p∗ are solved,
we get our DTW distance:

DTW (x, y) = D(N,M)

DTW distance takes the shape of a sequence into account and is a good measure
for comparing sequential data. The drawback of DTW is that it is computationally
expensive compared to measures such as the Euclidean distance. Because of this, some
DTW variants have been developed in order to speed up the computation process
and save time. For example, FastDTW [60], a multi-scale DTW variant that gives an
approximated optimal result with a reduced computational time.

To show an example of how DTW works, we take two weather temperature profile
data. In figure 3.7, the plot in the first row shows two weather profiles. The green lines
between them indicate how they are being aligned by the warping path p∗. The plot
in the second row shows what it would be like if both sequential data were unfolded
into a linear space; also, DTW and FastDTW are compared. The bottom two plots in
the figure show how it would look like when sequential data1 is non-linearly warped to
data2’s space and data2 non-linearly warped to data1’s space, respectively. Figure 3.8
shows the DTW and FastDTW warping paths. The two paths are plotted on top of a
contour plot (heat map) of the cost matrix C. We can see that the optimal warping
path walks in the ‘valley,’ which is a path with the lowest cost, of the contour plot. The
FastDTW warp path tends to stay closer to the diagonal region due to its multi-scale
approximation. Figures 3.9 and 3.10 show the DTW warp of two pulse data instead;
this clearly shows how DTW matches the shape of sequences.
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Figure 3.7: DTW warping two weather temperature profile data.
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Figure 3.8: DTW warping path of two weather temperature profiles.
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Figure 3.9: DTW warping two pulse data.
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Figure 3.10: DTW warping path of two pulse data.
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3.4.2.5 Mahalanobis distance

If we say DTW distance takes the shape of a sequential data into consideration, Maha-
lanobis distance takes the correlation into account. Given two time-series data x ∈ RN

and y ∈ RM :

Mahalanobis distance(x, y) =
√

(x− y)>C−1(x− y)

where C is the covariance matrix of x and y.

There are many other distance measures, cosine similarity, Jaccard/Tanimoto co-
efficient, Pearson correlation coefficient, averaged Kullback-Leibler divergence, longest
common subsequence (LCSS), and probability-based distance function to name a few.
They all have different features and their usage depends on the problem itself. The
choice of distance measures is also affected by the time-series representation used. For
instance, if one chooses to use a model based representation, such as HMM, ARMA or
GP, the distance measure used would probably be comparing the model parameters [23];
and if the data is modeled with some probability distribution, Kullback-Leibler diver-
gence or some probability-based distance function are likely to be chosen. In [53], a
comparison of using different distance measures for building energy time-series data
clustering is demonstrated. The paper has come up with an evaluation method for
the distance measures and concluded that “Euclidean distance as the best similarity
metric to obtain good general solutions in raw-data-based time series clustering” and
“has been the most successful in the evaluation test and in finding the best clusters.”
In addition, other papers, such as [54], that are working on time-series data other than
building energy also came up with similar conclusions that Euclidean distance is a very
competitive measure.

3.4.3 Clustering algorithms

As mentioned, there are basically four kinds of clustering types, each having its own
pros and cons. They are powerful tools for exploring and learning about new data.
Which clustering methods we should choose to use is like picking the right tools for
a certain task; it depends on the problem itself. Here we will mention some of the
methods that we have tried out and found useful for our work.

3.4.3.1 K-means clustering

K-means clustering [61–63] is one of the most popular clustering algorithms. Its concept
is simple and easy to understand; we only need to iterate over two steps until the result
converges. The idea is, given k clusters in a feature space RM , our task would be
assigning all the data points to their nearest cluster. The location, or center/centroid,
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of each cluster is determined by the mean of all data points in the cluster. However,
we are only provided with the information: the number of clusters k and data points in
the feature space. If we know the centroids of each cluster, we could easily determine
the assignments for each data point. On the other hand, if we know the assignments
of each data point, we could compute their means with ease. What we do is to make
a guess for the means (assignments); thus, we can determine the assignments (means).
That is, once we know either the means or assignments, we are able to determine
the other. By repeating this process iteratively, the means and assignments would
converge. K-means clustering is actually minimizing the distortion measure24:

J =
N∑
n=1

K∑
i=1

zin||xn − µi||2

where N and K are the number of data points and clusters, xn is the nth data point,
µi is the ith cluster mean, and zin stands for the assignment of the nth data point in
the ith cluster. zin is defined as:

zin =

{
1, if i = arg min

j
||xn − µj||2

0, otherwise

where the means µi’s are determined by:

µi =

∑
n z

i
nxn∑

n z
i
n

The clustering algorithm is simply computing the two equations shown above.
We see that the k-means clustering algorithm has a ‘crisp’ or ‘hard’ classifying

assignment. Some variants of k-means, for example, fuzzy c-means [45] and the EM
algorithm [61] of Gaussian mixture models, use some ‘soft’ assignment rule. Further-
more, the k-medoids uses the medoids of data points instead of the means. Given N
data points in a feature space and a distance function dist, the medoid is calculated as:

m∗ = arg min
m∈{x1,x2,··· ,xN}

N∑
i=1

dist(xi,m)

An example of k-means applied to synthetic data is shown in figure 3.11. We have
set parameter k = 3. We can see how the cluster means (marked as red crosses in the
figure) move around and converge eventually.

3.4.3.2 Mean shift

Mean shift [64] algorithm is often used in computer vision or image processing, such

24The Euclidean distance is usually used as the default distance measure for k-means clustering.
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(a) k-means clustering at iteration step 1.
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(b) k-means clustering at iteration step 5.
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(c) k-means clustering at iteration step 9.
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(d) k-means clustering at iteration step 12.

Figure 3.11: K-means clustering example with k = 3. Iteration steps of 1, 5, 9, and 12 are
shown. Cluster centers are marked with red crosses. Python code used for this example can be
found in appendices D.3 and D.4.

as tracing a moving object in a video; however, it can also be used as a clustering
technique. The major use of mean shift for us is that mean shift finds ‘modes’ of a
dataset. In section 3.4.3.1, we mentioned that k-means clustering starts with an initial
guess of either the means or assignments, and then iterate the steps until clusters
converge. Nonetheless, we have never mentioned how the number of clusters, k, is
determined, which is the challenging part of k-means. We would need to have some
kind of prior knowledge or insight about the problem or data itself. For instance, if our
data is seasonal, setting k = 4 seems to be reasonable. The challenge here is caused by
the nature of clustering, for we conduct clustering algorithms due to the fact that we
do not know the data well enough, or else, we would be doing classifications instead.
With the use of mean shift, we would be able to determine the number of clusters from
the density distribution of the data points.

The idea of mean shift is for each data point, we compute the mean of all data
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points within a given radius from a data point. We then ‘shift’ the data points to
their new locations, which are the mean points we just computed. The ‘shift,’ is the
difference of the mean and location of the original data point. Iterating this process
until the data points converge, we then find the ‘modes’ of the dataset. Data points
are then clustered to the ‘modes’ they converge to. This shifting iteration is illustrated

Figure 3.12: An iteration of mean shift. The data point is moved to a new location determined
by the mean of all points inside the black circle. Source: https://goo.gl/qC6JP9.

in figure 3.12.
There are different kernel functions used to calculate the means; given a kernel

function k(x), we can calculate the mean:

µ(x) =

∑
xi∈N(x) k(xi − x)xi∑
xi∈N(x) k(xi − x)

where x is the data point, N(x) is the neighbors of x, and µ(x)− x is the mean shift.
Popular kernels are the step kernel:

k(x) =

{
1, if x ≤ r

0, otherwise

and the Gaussian kernel:
k(x) = exp

(
− x

2σ2

)
.

3.4.3.3 DBSCAN

Density-Based Spatial Clustering of Applications with Noise, or DBSCAN [65, 66],
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Figure 3.13: A comparison of different clustering algorithms with synthetic data. Source:
scikit-learn, https://goo.gl/nNUstV.

is a density-based clustering algorithm. Compared to centroid-based clustering algo-
rithms, e.g., k-means, DBSCAN has the advantage of being able to cluster data points
distributed in ‘irregular-shapes’ in its feature space with a much higher accuracy. Fig-
ure 3.13 shows a comparison of different clustering algorithms applied to different sets
of synthetic data. The result in the figure shows us the characteristics of how data is
treated for each algorithm.

The basic idea of DBSCAN is putting the data points into three different categories.
That is, a data point is either a core point, reachable point, or noise. DBSCAN requires
two parameters, MinPts and ε. If a data point has at least a number of MinPts within
the radius distance of ε, then it is considered as a core point. If a data point is
reachable25 from a core point but is not a core point itself, it is then a reachable
point. If a data point is not reachable from any core points, it is then considered as an
outlier and treated as noise. In order to determine these two parameters, one usually
starts with assigning a number to MinPts. According to [65], for most cases, with
a MinPts ≥ 4 is usually good enough; bigger values do not make much difference.
Given a MinPts, we can then determine ε by drawing a k-distance plot. K-distance
is the distance from the kth nearest neighbor for a data point, and plotting all the
k-distance’s out for each data point in a(n) ascending/descending order, we would get

25Reachable means within the distance of ε.
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a k-distance plot. As an example, with some randomly generated data, a k-distance
plot is shown in figure 3.14a. By inspecting the plot, we see that there is an ‘elbow’ at

0 20 40 60 80 100
data points

0.5

1.0

1.5

2.0

2.5

3.0

di
st

an
ce

k-distance plot

(a) A k-distance plot example.
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(b) DBSCAN clustering scatter plot.

Figure 3.14: A DBSCAN example. Random data points are generated and clustered with
DBSCAN.

about 1.74 in the distance (y) axis. This means that for this set of data points, there
is a density change somewhere close to this distance. Normally, we would set our ε to
this value, that is, ε = 1.74 for this example.

We then run the DBSCAN algorithm with these parameter settings, and end up
with the results shown in figure 3.14b. We can see that these data points are separated
into two clusters based on their densities. A reachable point, which is reachable to
only one (less than MinPts=4) core point in cluster 1 (green), is drawn in purple. An
outlier, which is not reachable, is drawn in orange. The transparent circles stands for
the radii with a length of ε.

In order to see this clearer, we generated less data points and did another example,
this is shown in figure 3.15.

The same group of authors of DBSCAN has also invented Local Outlier Factor
(LOF), an anomaly detection algorithm which we will use and discuss later (see 3.6.1).

3.4.3.4 OPTICS

Closely related to DBSCAN, Ordering Points To Identify the Clustering Structure
(OPTICS) [67] can be thought of as an enhanced version of DBSCAN by taking care
of density varying datasets, where DBSCAN falls short. The advantage of OPTICS
is that it gets rid of those hard to determine parameters in other clustering methods,
e.g., the number of clusters k for k-means, or the radius parameter ε in DBSCAN,
and handles density varying datasets that are problematic to most clustering tools
except hierarchical algorithms. Besides, it also provides us information on how the
data structure looks like, something similar to hierarchical clustering. OPTICS does
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Figure 3.15: Another DBSCAN example. Random data points are generated and clustered
with DBSCAN.

this by introducing the concept of ‘ordering’ and ‘reachability-distance plots.’ The
trade-off here is that OPTICS runs slower than DBSCAN due to its ordering and
nearest neighbor queries.

Starting with the first data point in a dataset, OPTICS then looks for the closest
MinPts data points from the first data point. The distances are measured using
reachability-distance and core-distance:

core-distanceε,MinPts(p) =

{
Undefined , if |Nε(p)| < MinPts

MinPts-distance(p) , otherwise

reachability-distanceε,MinPts(p, o) =

{
Undefined , if |Nε(o)| < MinPts

max(core-distance(o), dist(p, o)) , otherwise

where Nε(p) is the function that returns the set of neighbors of data point p. Note
that the reachability-distance is not symmetric in general, though it could be; that is,
reachability-distanceε,MinPts(p, o) 6= reachability-distanceε,MinPts(o, p). OPTICS then
does this data point collecting task iteratively the same as DBSCAN, but with an
infinite number of εi’s that 0 ≤ εi ≤ ε and keeping track of the order in a priority-
queue.

After getting the order of all data points, we can draw out the reachability-distance
plot of the dataset, which provides a lot of information about the data clustering
structure. Figure 3.16a shows the clustering result of a randomly generated synthetic
dataset (a size of 300 points). Its corresponding reachability-distance plot is shown
in 3.16b; the x-axis in 3.16b is the index of the ordered data points. The data points
are color-coded circle dots and outliers are marked as crosses. From figure 3.16, we see
that the dents in the reachability-distance plot stand for clusters. Since the data points
are ‘ordered,’ a sudden rise in the plot means a longer reachability-distance from the
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Figure 3.16: OPTICS clustering with parameters ε′ = 11 and MinPts = 15.

previous point to the current point, which tells us it is a starting of a new cluster. In
this example, by reading figure 3.16b, we set ε′ = 11 and can then extract a clustering
result similar to DBSCAN.

However, if we run a DBSCAN on the same exact dataset, we will find that it is
hard for us to determine the correct parameters. This is shown in figure 3.17. We
have set the radius parameter ε to three different values; each value is an ‘elbow’ of
the k-distance plot in figure 3.17a, and none of the results is satisfying. This is exactly
the case, a dataset with various densities, where DBSCAN’s weakness reveals.

In order to extract clusters from the reachability-distance plot, we could either
inspect the plot and set a ε′ value cut, or can apply some automatic algorithms to find
the ‘dents’ or ‘elbows.’ We have implemented26 the ξ-steepness clustering algorithm
introduced in [67], which locates the steep upward and downward areas automatically.

The results are shown in figures 3.18 and 3.19. It is interesting that this algorithm
not only determines the parameters for us, but also provides a hierarchical cluster
structure. We can find that there are smaller clusters within a bigger cluster. This is
useful when one is trying to learn about a dataset.

When working on clustering, one may encounter cases when the dataset is too
large (big data!) to handle that the dataset cannot fit into the memory of a machine.
Some algorithms do not have an on-line version to deal with this kind of situation; one
would have to look for out-of-core learning methods. For example, mini-batch k-means
is an alternative to k-means clustering for large datasets. Data partition techniques,

26As of the date of writing, no reliable python library was found; however, scikit-learn will include
this in their next release. Once OPTICS is included, we can verify the results by comparing both
implementations. The python code used can be found in appendix D.2.
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(b) DBSCAN clustering with ε = 4.86.
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(c) DBSCAN clustering with ε = 9.53.
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(d) DBSCAN clustering with ε = 15.4.

Figure 3.17: DBSCAN clustering with parameter MinPts = 15 .

such as [68], demonstrated distributing clustering for both k-means and DBSCAN by
defining the contours of data points in a dataset, using a non-convex polygon generating
algorithm [69], provides existing clustering algorithms a way to deal with this problem.
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Figure 3.18: OPTICS automatic clustering using the ξ-steepness clustering algorithm with
ξ = 0.01.

0 50 100 150 200 250 300
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

reachability-distance plot
auto extract

cluster0:range(2, 45)
cluster1:range(2, 72)
cluster2:range(185, 261)
cluster3:range(2, 268)
cluster4:range(112, 268)
cluster5:range(132, 268)
cluster6:range(185, 268)
cluster7:range(227, 268)
noise

Figure 3.19: OPTICS reachability-distance plot.
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3.4.4 Rank ordering time-series data

Despite the different characteristics of each algorithm, sophisticated clustering algo-
rithms, such as the ones we discussed in 3.4.3, all work well to some extent as they are
designed. As shown in figure 3.13, for different datasets, an algorithm may perform
better and faster than others for one dataset, but does not necessarily work well for
other cases. Algorithm A could be the best choice for dataset A but fail to finish the
task in a reasonable time period, then we would probably consider algorithm B instead
due to computational feasibility. Sometimes we would even consider using more than
one method; a combination of multiple clustering algorithms may help us learn even
more about the dataset. Besides that, we may also use multiple methods as some sort
of verification for our results.

In addition to sophisticated clustering algorithms, it would be interesting to try out
something more simple and straightforward, that is, rank ordering time-series data.
The reasons why rank ordering draws our attention are: 1. As stated, simplicity and
straightforwardness. There is no obvious reason to not use it. Besides, simple means
faster; rank ordering should run faster and take less time than clustering algorithms in
general. 2. The main purpose of conducting all these data examinations is to learn how
we should compare the input time-series data. When it comes to comparing sequential
data, rank ordering seems to fit pretty well. 3. As mentioned, we want our time-series
data become ‘comparables,’ some pattern matching method would serve us better than
a clustering algorithm here. Although the boundaries are vague here, rank ordering
can both serve as a clustering and pattern matching method.

As simple as it sounds, rank ordering is done by computing the distance from each
time-series data to others, using the distance measures we mentioned in 3.4.2. Then we
sort the order based on the similarities among these time-series data. We will practice
rank ordering in section 4.4.

To conclude, there is no best method; it all depends on the problem itself. We will
compare the methods and find the ones that fit our purposes.

3.5 Multidimensional Scaling (MDS)

We won’t be using multidimensional scaling much, but it will serve as a tool for visu-
alizing our time-series data in another way. MDS is regarded as a member of manifold
learning, which focuses on dimensionality reduction. Since our work will mostly be
focused on raw time-series data and their distance measures, MDS seems to be a good
auxiliary exploration/visualization tool, for it uses similarity/dissimilarity measures as
its input. So MDS is basically a method that takes similarity/dissimilarity measures
of some data and represents them as distances in a low dimensional space.

For simple cases, one can solve a MDS problem with just a pen, ruler and com-
pass [70]; however, this is not practical for high dimensional data or when dealing with
many data points.
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MDS is usually formulated as an optimization problem as:

min
x1,...,xN

∑
i<j

(dist(xi, xj)− dij)2

where xi and xj are the ith and jth rows of our low dimensional data matrixX ∈ RN×M ,
and dij is the entity of the distance matrix D = dist(X) ∈ RN×N at its ith row and
jth column, which looks like:

D =


d11 d12 · · · d1N
d21 d22 · · · d2N
...

...
. . .

...
dN1 dN2 · · · dNN


and dist is the distance function used, which is usually the Euclidean distance.

The intention here is trying to reconstruct the data points in a low dimension
space (usually M = 2 for plotting) with as little stress as possible. The term ‘stress’
used for MDS is also known as error or loss. For example, we use some heat load
data we gathered and carry out MDS. From the results shown in figure 3.20, we see

1500 1000 500 0 500 1000 1500

1500

1000

500

0

500

1000

1500

2000

2500
Multidimensional Scaling

Figure 3.20: Multidimensional scaling applied to heat load data.

that each sample of the heat load data, which is time-series data, is compressed to
a single data point in a two dimensional plot. Of course, applying a dimensionality
reduction method to the data, we will loose some information. But on the other hand,
this somehow simplifies the raw data and helps us visualize and explore the dataset.
Figures 3.21a and 3.21b show the MDS results of clustered data using k-means and
mean shift clustering.
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Figure 3.21: Multidimensional scaling with clustering.

3.6 Anomaly detection

An anomaly is a process that behaves unusually which its pattern deviates from nor-
mal behaviors. Anomaly has many alternative names; people usually use the term,
outliers, in statistics; abnormalities, deviants, and discordants are also used inter-
changeably. Although not necessarily true, in a working physical system with given
inputs, an anomaly usually indicates the existent of fault(s), and exceptions happen
due to uncertainties in the system. Since we are working on HVAC systems, which is
a physical system and should be deterministic, if anomalies are found in our system,
this gives us a hint that it is likely to have faults found, too. Therefore, the task of
fault detection mainly relies on anomaly detection methods.

It is true that anomaly detection is a big topic and has many applications in a lot of
different areas [71–73]. The challenge is how to properly define what is normal? This
is still an open question, but people in the probability and statistics field have come up
with the concept of hypothesis testing, described in 1.2.1, and this has been adopted
for use in anomaly detection. The challenge becomes tougher when we are dealing
with unknown anomalies, that is, unsupervised learning. Compared to supervised
learning methods, such as SVM [61, 62] and GP [74], our training data does not have
data of known faults; hence, it becomes harder to determine the boundaries of normal
behaviors. If there is prior knowledge of what faults look like, we then know their
patterns and could clearly exclude them from the set of normal patterns.

Principal component analysis (PCA) [75], a popular technique used to examine
the components of a dataset, is also often used for dimensionality reduction and as
an anomaly detection tool [76]. Research using PCA for HVAC FDD has been con-
ducted [26, 36] giving reasonable results; however, PCA struggles to tell the differences
between faults and change of operating modes in a system [8]. This could probably be
improved by setting up a more detailed model for the HVAC system, but this would
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be going towards the opposite direction of being scalable.
Here we introduce two anomaly detection methods. One is Local Outlier Factor,

a density-based approach that is similar to DBSCAN and OPTICS. Another method
called Isolation Forest, which is a depth-based approach, is called a forest because it
uses a tree data structure in its algorithm.

3.6.1 Local outlier factor (LOF)

Sharing similar ideas with DBSCAN and OPTICS, Local Outlier Factor (LOF) [77] is a
density-based method; however, it also introduces the ‘local’ outlier concept compared
to ‘global’ ones27. LOF of a data point is computed by comparing its neighboring local
reachable densities with its own reachable density. Using LOF’s author notations, that
is:

LOFMinPts(p) =

∑
o∈NMinPts(p)

lrdMinPts(o)

lrdMinPts(p)

|NMinPts(p)|
where MinPts specifies the minimum number of data points, NMinPts(p) is the set
of MinPts-nearest neighbors of data point p, and lrdMinPts(p) is the local reachable
density of p:

lrdMinPts(p) =


∑

o∈NMinPts(p)

reach− distMinPts(p, o)

|NMinPts(p)|


−1

the reachability distance of p from o, reach− distMinPts(p, o) is defined as:

reach− distMinPts(p, o) = max(k − distance(o), d(p, o))

where d(p, o) is the distance between data points p and o, and k − distance(o) is the
distance of the kth nearest neighbor of point o.

The reason why the notion of reachability distance is introduced is because of its
smoothing effect and the fact that it improves statistical stability. LOF should have a
value comparable or lower than 1 when the data point is considered as an inlier, and a
value much higher than 1 when it is an outlier. Given the LOF values, inliers are easily
determined for those LOF values which are less than 1; however, one will still have to
decide where the outlier determining line is drawn. One method would be to set the
threshold at a percentile level, e.g., the 90th percentile; that is, the highest 10% LOF
values are marked as outliers.28

27Another density-based clustering method called OPTICS is closely realted to DBSCAN. OPTICS
(see section 3.4.3.4) handles varying densities in the dataset by introducing the reachability distance,
similar to what LOF uses.

28This is the default setting used for the python library scikit-learn. We have implemented LOF
based on [77] ourselves getting the exact same results with library scikit-learn. See figure 3.22.
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What is great about LOF is that it is a density-based method, which works on
datasets with irregular shapes29. LOF is very adaptive to different datasets for it
measures the densities instead of distances. Also, it can be applied to many applications
as long as we can come up with a dissimilarity measure that generates a distance matrix
for us. Compared with DBSCAN, LOF only takes one parameter MinPts. How to
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Figure 3.22: LOF applied on a testing dataset. Circles around data points represent the LOF
values by their radii. Orange colored points are marked as outliers. By comparing the radii, we
see outliers have larger LOF values.

determine this depends on the dataset. A general guideline is to choose a value within
the upper and lower bounds. For stable results, MinPts should be at least 10 to
avoid statistical fluctuations. Also, according to [77] “MinPts can be regarded as the
minimum number of objects a cluster has to contain.” This means that we would want
to choose MinPts to be larger than the number of points close together which we
consider as outliers, so these points would not be classified as a cluster. On the other
hand, we would choose MinPts to be smaller than the smallest cluster of points we
want to be classified as a cluster. That is, if there is a cluster with a number of points
less than MinPts, they all would be regarded as outliers.

3.6.2 Isolation forest (iForest)

Isolation forest was invented with the idea that “anomalies are ‘few and different’
and therefore they are more susceptible to isolation.” In plain words, it means that
anomaly data points in a feature space are, statistically speaking, easier to isolate.
The basic idea is to randomly select an attribute dimension in the feature space and
split it at a randomly selected value between the minimum and maximum values of
the corresponding attribute dimension. Comparing normal data points with anomaly
ones, for most of the time, it should require a greater number of splits (the term path

29In the LOF family, there is also a variant called OPTICS-OF, which is based on the same concepts
of LOF and OPTICS [78].
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length is used for Isolation Forest) before we can isolate a normal data point than an
anomaly one.

In practice, Isolation Forest uses an isolation tree data structure, according to its
definition:

Definition - Isolation Tree:
Let T be a node of an isolation tree. T is either an external-node with no child,
or an internal-node with one test and exactly two daughter nodes (Tl, Tr). A test
consists of an attribute q and a split value p such that the test q < p divides data
points into Tl and Tr.

and the path length:

Definition - Path Length:
Path length h(x) of a point x is measured by the number of edges x traverses an
Isolation Tree from the root node until the traversal is terminated at an external
node.

The anomaly score is then defined as:

s(x, n) = 2−
E(h(x))
c(n)

where c(n) = 2H(n− 1)− (2(n− 1)/n) is the average path length, H(i), the harmonic
number, is estimated by ln(i) + γ(Euler’s constant), and E(·) is the expectation value.

As for the anomaly score s:
If the score s is close to 1, then the data point is regarded as an anomaly.

If s is much smaller than 0.5, then the data point should be normal.

If s is close to 0.5, then the sample does not have any distinct anomaly.

Further details can be found in [79].
Isolation Forest excludes itself from model-based, distance-based, and density-based

methods. The advantages of its set up is that it does not need any distance measures;
this means that the computational cost of building a distance matrix is saved, which
could be a great difference when the dataset is large. In addition, Isolation Forest can
work on a partially sampled dataset; thus, making it capable of handling very large
datasets.

3.7 Proposed FDD approach

In sections 1.3 and 3.1 we have introduced HVAC FDD approaches people have devel-
oped and applied. From the literature reviews, we have found that due to the popu-
larity and potential of applications of statistical learning tools, research on data-driven
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methods has become a trend. However, most researches are making the assumption
implicitly that they more or less have some prior knowledge of the HVAC system they
are dealing with. Some approaches using supervised learning tools even have prior
knowledge of the kind of faults exist and what their patterns may look like. Research
on how faults impact HVAC performance is conducted [80] as well. These papers help
us learn more about the connection between faults and our targeted HVAC system;
nonetheless, these researches do not account for scalability, which is an important
objective of our work.

On the other hand, in the field of HVAC FDD, unsupervised approaches seem to
rely heavily on PCA methods. A very large portion of publications apply PCA as both
a dimensionality reduction tool and a fault detection method as well. Very few papers
have practiced newer anomaly detection tools such as Local Outlier Factor, Isolation
Forest, or other tools that have been invented in the past two decades. As mentioned
in section 3.6, PCA does not perform well when multiple operating modes exist; also,
PCA is not robust to anomalies as it uses the covariance matrix [81]. In practice, false
alarms occur often during transient states between operating modes.

Because of the complexity of HVAC systems30, a dimensionality reduction is needed
for data analysis. PCA and PLS are often chosen for this task. It is true that these
statistical tools are very powerful and useful in many applications; why they work
is basically based on correlations/covariances of the variables. We should remember
that correlations do not represent causations, though they are usually indicators of
some hidden relations. Even if statistical tools based on correlations, such as PCA,
are able to find meaningful connections among the vast number of variables, the lack
of meaningful explanation for these connections leads to questionable results. This
is normal and acceptable from a data analyst’s perspective, since this is considered
as exploring and learning about the data/system. However, this may be considered
too iffy from an engineer’s point of view. Hence, we would propose that we should
approach HVAC FDD by focusing on its control system. To our knowledge, HVAC
FDD is mostly carried out focusing on thermodynamic/physical variables, neglecting
the control system. In addition to the reasons and advantages mentioned in section 3.3,
focusing on control data also carries out the dimensionality reduction task for us. This
not only reduces the number of variables significantly, but also delivers results with
much more meaningful explanations.31

Most of the HVAC FDD research work we have found in literature starts with some
mathematical or statistical model (see 3.1); some are general models while others are
designed for time-series data. That is, most HVAC FDD approaches have worked on
model-based time-series representations. A few have used non-data adaptive or data
adaptive time-series representations. As of the date of writing, to our knowledge, no
HVAC FDD approach has used raw data time-series representation. In [53], time-series

30In the simulation model we built using Modelica in section 2, we ended up with more than ten
thousand variables. Real systems may be even more complex.

31Dimensionality reduction not only simplifies the problem we are dealing with, but also helps us
avoid running into the ‘curse of high dimensionality’ [55, 82, 83].
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clustering for building energy patterns using raw data has been carried out, but no FDD
related work. Here we would propose to use raw data representation, for we won’t be
assuming any models, which means that we won’t be making strong assumptions on
how the data would behave (e.g. If one uses a probability model approach, one would
have to assume a probability distribution for the model, such as Gaussian distribution is
used for GP models. Using a non-parametric model would introduce another problem,
that is, how to determine a good distribution for time-series data); moreover, we would
then fill up this untouched HVAC FDD area.

In section 3.7.1, we will explain how we plan to carry out our HVAC FDD task and
accomplish our goals.

3.7.1 Our goal and proposed road map

The goal for our FDD approach would be scalability; thus, low cost and easy to set up
would also be the requirements that come with it. Because there is no need for tuning
involved, nor is the method designed for a specific HVAC system, the cost is cheaper
to deploy. Also, the approach is not system specific; therefore, the set up process does
not require to know much of the HVAC system. We only need to be able to access
data. With this in mind, our work flow would be the following:

1. Collect historical weather and heat load data as training input data.

2. Run a data cleaning process, including fixing data sampling rate, discard noisy
and system initialization data, approximations for on/off switch control data...etc.

3. Data clustering and exploring.

4. Organize data structure based on clustering/exploring results.

5. Rank order input weather data based on distance measures.

6. Compare and select distance measures.

7. Collect HVAC system data by Modelica simulations based on the historical
weather and heat load data.

8. Find and collect the corresponding control data (manipulated variables).

9. Set up normal dataset as a baseline.

10. Collect new test sample data.

11. Run the same data cleaning process for the new sample data.

12. Rank order the new test sample with our normal dataset.

13. Find and collect the corresponding control data for the test sample data.
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14. Run anomaly detection algorithms (e.g., LOF) using test sample data with nor-
mal dataset.

15. Get fault detection results.

16. Repeat the anomaly detection process and select the optimized parameters with
respect to true positive rates and false positive rates32.

17. Get final optimized fault detection results.

We will be using the HVAC model we built described in section 2, and statistical tools
that are introduced in section 3. We will carry out this work flow in section 4; further
details and results will be presented as well.

32Or draw out a ROC (Receiver Operating Characteristic) curve for comparison. See section 4.6.1.
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4 A fault detection approach based on raw time-

series data

In this section, we demonstrate an approach to conduct HVAC FDD based on raw
control variable time-series data as we have mentioned in section 3.7. We will be
following the work flow listed in section 3.7.1. A basic HVAC model is introduced in
section 2.3; basic statistical models are briefly included in section 3.4, 3.5, and 3.6.
Other changes and details will be shown in subsections below, or can be found in the
references.

4.1 Data source

The first thing to do in order to work on a data-driven approach is to collect data! As we
have mentioned in section 2, access to private building datasets is not an option for us.
Our HVAC system data will be collected from simulation results of our HVAC system
model built in Modelica. The models we use are built using Modelica Standard Library
(v3.2.3) and the Buildings Library (Buildings 4.0.0) in OpenModelica environment
(v1.11.0-64bit). Simulations are run with JModlieca.org (v2.1). All software packages
are executed on a Intel Core i5-2400 3.10GHz CPU with 8.00GB RAM machine running
Windows 10 64bit.

As for input data, we have used weather datasets based on TMY3 from NOAA
(National Oceanic and Atmospheric Administration)33. Our simulations will be based
on the bay area (San Francisco) and Boston area weather. Two datasets are chosen
to show results for different weather inputs. The locations are chosen due to different
weather trends; while the bay area has a rather mild change in weather throughout a
year, the east coast of U.S. has an overall wider range of weather change. We will be
using the heat load data from the US department of energy, datasets of ‘Commercial
and Residential Hourly Load Profiles for all TMY3 Locations in the United States’34,
which is a dataset generated by EneryPlus35 using TMY3 (Typical Meteorological
Year 3)36 data. Again, we will choose two different heat load datasets as inputs for
comparison. Since our work is mainly targeted for commercial office buildings, we will
be using office heat load datasets for the experiments here.

In this section, we will start with a single room model, a HVAC system with a single
room, an AHU, a cooling loop, and a heating loop. This set up is shown in figure 4.1.

33https://www.climate.gov/maps-data/dataset/past-weather-zip-code-data-table
34https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-

all-tmy3-locations-in-the-united-states
35EnergyPlus is another building energy simulation program funded by DOE. Compared to Model-

ica, it is more focused on the whole HVAC system in the building for designing. As for our purpose,
we need transient time-series data with more freedom to customize different models; Modelica suits
us better. See https://energyplus.net/. Some researches use EnergyPlus as a tool, e.g., in [84],
EnergyPlus is used to do research on HVAC operational faults.

36https://rredc.nrel.gov/solar/old data/nsrdb/19912005/tmy3/
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Figure 4.1: A simple HVAC model with one room and one AHU.

The corresponding Modelica model is shown in figure 4.2. Here we briefly explain
about the Modelica model shown. The circle icon at the upper left is an air flow source
with prescribed temperature and pressure values given by a time table component; this
time table uses the datasets we obtained from NOAA as we have just mentioned. The
circle icon at the lower right is a mixing volume component; we use it to simulate a
simple room with heat load. The block which is labeled as system at the lower left is
a system component. It is used for “system properties and default values (ambient,
flow direction, initialization),” it defines the ambient parameters, e.g., gravity, ambient
temperature, ... etc. The component which has ports with labels: OA, SA, RA, and
EA is the AHU component; its model is shown in figure 2.5. The label ‘M’ stands for a
motor which controls a damper. A list of acronyms can be found in appendix A. Most
of the component parameters (library components) we tend to leave them as default
values; we fill in required inputs and adjust parameters only if necessary. For example,
in this particular model, we have used a constant pressure fan in the AHU; the pressure
rise is set to 2000[Pa]37 so the air flow rate would be around 1[m3/s], which is about
four times of the required ventilation minimum (air flow rate is higher because heat
is also being taken away or added in by air; this depends on both weather and heat
load), depending on the damper position (controlled by a PID controller). Our default

37This number depends on the system friction settings as well; we ended up with this number to
ensure that the air flow is sufficient. This fan model also obeys fan affinity laws, so one can adjust
the parameter setting accordingly.
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room temperature setpoint is set to 22◦C.

Figure 4.2: The corresponding HVAC model of figure 4.1 in Modelica.
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4.2 Data cleaning

Generally speaking, when doing data analysis, people will spend most of their time
working on data cleaning. That is, we have to make sure our data is in a usable,
informative, and meaningful form. For instance, most datasets are either collected by
man or documented by sensors in the field. This means that it is not uncommon to find
errors, missing values, incomplete data, incompatible format, sensor failure, misplaced
sensors, wrong installations, noisy data due to environment, ... etc, all kinds of things
could happen.

Fortunately, the datasets we need for our HVAC system simulations are available
on the Internet. The hourly normal weather datasets we have used are TMY3 Class I,
according to NREL, ‘Class I sites are those with the lowest uncertainty data’. There-
fore, we only need to make sure the time is matched and units are compatible. This is
also the case for our heat load data, according to DOE, ‘hourly load profile data for 16
commercial building types (based on the DOE commercial reference building models)’.

However, HVAC system variable simulation data are a little different. Since the
parameters’ initial conditions of the HVAC model won’t be exactly the same as input
datasets, the system will have an initializing period to put everything into its ‘normal’
state. Thus, we will remove the first couple of hours to avoid noisy and unstable data.
Another thing is that depending on the ODE solver being used, the output results
are not necessarily linear in time. This is the case for JModelica.org’s default (also
recommended) ODE solver CVode. We will have to make sure the time intervals are
consistent and fixed, for the algorithms we use are based on this assumption. Some
data processing task would need to be carried out before applying further work on
these output datasets38.

Furthermore, while working on the datasets, we will have a lot of tables. Conver-
sions between parameters, formats, pivot tables, data dimensions, and units must be
done with care, or we may end up with strange and unrealistic results. It would be
easier to do it right in the first place than to ‘debug’ such errors later.

One more thing to take note is that we cannot blindly feed in the data into our
simulation model without inspecting the data first. Data cleaning is not just filling
in missing data or discarding erroneous data. The data content may be correct, but
people could be using them wrongly. One would have to have a good understanding
of the dataset to make good use of it. We will show this in the next section how the
results could be different if we did not do clustering and explorations before using these
datasets.

38OpenModelica’s default solver gives a fixed time interval for its output. Also, each Modelica
editor comes with multiple solvers, the default is usually the recommended one, the user would have
to check the solvers before using.
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4.3 Clustering and exploration of input data

Starting with the temperature profiles, we simply run a DBSCAN clustering algorithm
with the weather temperature data. We did not adopt k-means here, because it is
difficult to determine the number of clusters. The statistical clustering tools we use here
are introduced in section 3.4. The results are shown in figure 4.4. Great, everything
works nicely.
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Figure 4.3: Temperature hourly data for San Francisco area. The solid line is the average,
two dashed curves are one standard deviation from the average, and the color filled area stands
for temperature data between the first and third quantile.

At first glance, the results are reasonable and look good. However, we soon realize
the results shown in figure 4.4 do not really tell us much. This is actually because the
‘shapes’ of the temperature profile curves are very similar throughout a year for a fixed
regional location. We can arbitrarily group neighboring temperature profiles together
and then end up with very similar results that look reasonable. Temperature data is our
input data for the HVAC system; thus, how to compare two different temperature data
sequences for two days is important. Apparently, from the clustering results we do not
gain much information regarding comparable weather data. Nonetheless, we did learn
that clustering algorithms are not the tools we are looking for to make two sequential
data comparable; what we need here would be a pattern matching technique instead
of clustering. We will leave this discussion for later (see section 4.4). Also, the ‘shape’
is an important feature of the temperature profiles. Collecting more data samples will
not help, since the new data samples will be absorbed into their nearest neighboring
clusters, making the clusters grow larger; therefore, causing the boundaries to expand.
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(a) Annual weather data profiles clustered with DB-
SCAN.
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(b) Annual raw weather data profiles color coded
with DBSCAN clustering.

Figure 4.4: Annual TMY3 hourly normal weather data for San Francisco bay area.

This does not help us define the pattern of a data sequence.
HVAC systems are built on top of physics; why they work are because of the physical

laws. That is, for inputs given, the outputs should be deterministic. To rephrase this,
with the same inputs, we should always end up with the same outputs. However, in
real cases, the measurable inputs are the weather data; heat loads generated in and
out of the HVAC system are, in general, unlikely to be measurable. As discussed in
section 3.3, these inputs, or external disturbances (figure 3.2) in a controller’s point of
view, are considered as noise to the system. While weather data are measurable, the
biggest uncertainty left is the heat load.

For the experiment set up, we are given heat load data for commercial office build-
ings from the DOE datasets. In experiments and real cases, we would not know how
the heat load data would look like (blind test); however, we could still learn some prior
knowledge regarding the heat load data’s behaviors and trends by inspecting them first.
As usual, we look at its average, standard deviation, and quantiles first; see figure 4.5.
According to the plot, we see that the heat load seems to have a very wide range,
especially during working hours, with about a 100% range difference. This indicates
that the heat load is a very big uncertainty factor, and we should be careful while
dealing with it.
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Figure 4.5: Heat load hourly data for commercial offices. The solid line is the average, two
dashed curves are one standard deviation from the average, and the color filled area stands for
heat load data between the first and third quantile.
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(a) Annual heat load data profiles clustered with
DBSCAN.
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(b) Annual heat load data interpreted with MDS
and color coded with DBSCAN clustering labels.

Figure 4.6: Annual hourly normal heat load data for commercial offices clustered with DB-
SCAN.

Again, we run DBSCAN and MDS on the heat load data for further inspection.
The results are shown in figure 4.6. By viewing the plots, we soon find that the cause of
a big variance is not because of randomness (Yes, there is always some randomness in
the data; however, randomness is not the main factor causing the big variance here.);
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obviously, there are certain patterns or modes in the data. It is the differences among
these patterns that are causing the big variance in heat load data. Now that we have
an idea about what might be going on with the heat load data, we would like to
investigate more before we move on. Next we apply k-means clustering to the data for
k = 2, 3, 4, 5; the results are shown in figure 4.7.
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(a) Annual heat load data profiles clustered with
k-means clustering(k = 2).
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(b) Annual heat load data profiles clustered with
k-means clustering(k = 3).
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(c) Annual heat load data profiles clustered with
k-means clustering(k = 4).
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(d) Annual heat load data profiles clustered with
k-means clustering(k = 5).

Figure 4.7: Annual hourly normal heat load data for commercial offices clustered with k-means.

At this point, one would probably already have guessed why the heat load dataset
has these kinds of patterns, and probably have guessed correctly. But before sharing
what we believe is the reason, let’s do one more clustering. This time we run OPTICS
fully automatically and implement the ξ-steepness clustering algorithm, only setting
the MinPts = 15 and ξ = 0.01 parameters. In figure 4.8, note that the ξ-steepness
clustering algorithm generates a hierarchical clustering structure; that is, there could
be smaller clusters inside a bigger cluster; thus, a data sample could belong to multiple
clusters. This means that a data point is in a smaller cluster that is inside a bigger
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one itself. The data points in figure 4.8 are plotted according to the cluster numbering
order; therefore, some data points which have multiple labels will only be drawn with
one color (with a bigger ordering number), for one color (smaller ordering number)
will be covered by the other one. It gets a bit messy to plot out the results with this
structure, so we will only plot out the max clusters which are mutually exclusive (no
overlaps). This is shown in figure 4.9.
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Figure 4.8: Reachability-distance plot of OPTICS automatic clustering annual heat load hourly
data.
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(a) Annual heat load data clustered with OPTICS.
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(b) Reachability-distance plot.

Figure 4.9: Annual hourly normal heat load data for commercial offices clustered with OPTICS.

It is interesting to find that all of these clustering methods give us very similar
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results, but are also slightly different in some ways. Anyways, after doing these explo-
rations, we end up believing these certain patterns are due to weekdays and weekends.
Power consumption patterns are different for weekdays and weekends; this seems very
reasonable. In order to prove this, we plot out all heat loads based on their day or-
der and cycle over seven days. Each classified heat load data are drawn in a subplot.
Figure 4.10 verifies our guess nicely. However, we do spot some of the days in each
group that seem like they are different and should belong somewhere else. After cross
comparing the dates with a calendar, we have confirmed that those remaining heat load
patterns that look like weekend patterns are national holidays. We then list out the
weekends and holidays, and label them as non-workdays. The final results are shown
in figure 4.12. A monthly average heat load profile is drawn and shown in figure 4.11;
we see that there is a seasonal trend in the heat load data, which means heat load
is dependent to seasonal weather. Also, we can spot an offset between summer and
winter months, a phenomenon resulted from daylight saving time.
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Figure 4.10: Heat load hourly data classified in a weekly cycle. Subplots starting from the top
left represent Sundays (blue), Mondays (orange), Tuesdays (green), Wednesdays (red), Thursdays
(purple), Fridays (brown), and Saturdays (pink).
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Figure 4.11: Monthly average heat load hourly data. Label 0 stands for January, label 1
stands for February, and so on.
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Figure 4.12: Heat load hourly data classified as workdays v.s. non-workdays.

A fun fact is that this workday v.s. non-workday result is exactly the same as the
result of k-means clustering with a k = 2 parameter setting (Yes, we have verified this.).
It would be very hard for us to set the parameter value to 2 without any additional
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information though. These clustering methods not only were able to classify workdays
with non-workdays, they were also successful in telling Sundays and Saturdays apart.
Moreover, an offset caused by the daylight saving time is also detected if we set the
parameter right, though not that obvious.

Before carrying out the exploring work, we did not have the prior knowledge or
information about the heat load dataset. Without knowing all these, blindly feeding all
these datasets into our HVAC model and fault detection algorithms, we ended up with
very poor results. After knowing there are multiple patterns in the heat load data, we
were able to narrow down the uncertainty; therefore, we were able improve our results
significantly. The work of this section shows us that having a good understanding of
our data is as important as data cleaning.

4.4 Time-series rank ordering

Our main purpose for time-series rank ordering is to compare the time-series data;
this is mentioned in section 3.4.4. In addition, it has been discussed formerly that
HVAC systems are built on top of physics; therefore, we are making the assumption
that with similar inputs, the system will have similar outputs. Although there may
be things which are designed to have very different results given two very similar but
not identical inputs, such as a hash function which is widely used for integrity checks,
electronic signatures, and block chains, for most physical systems, the response to close
inputs do not have kinks or abrupt changes in general. As a result, we are looking for
a meaningful way to compare two days of weather data.

Given a weather day data in sequential form, in order to find comparables and make
comparisons, we would have to put ‘similar’39 days together. This grouping process is
kind of like clustering, but not exactly. The reason why clustering is not a good choice
for grouping similar daily data for our case is because for a data sample in a dataset,
the distance between itself and other data samples could be very far. This depends on
the size and density of the cluster the data sample is in. For example, in figure 4.4b,
we see that weather data profiles are clustered into five clusters. It is obvious that
cluster 2 (orange) has the largest range/variation by simply reading the plot. Let us
look for the largest distance between two data samples within the same cluster; from
the figure, we see that in cluster 2, the farthest distance between two data samples
are much larger than other clusters. If we pick the top and bottom two data samples
from cluster 2, the distance between these two are much larger than their neighbors
that happen to be in different clusters. Depending on the data structure, clustering
algorithm used, and how many data points are sampled, we would end up having
different results; the similar group a data sample is in varies. What’s more troubling is
that as the size of a dataset grows, it is very likely that the sizes of clusters grow as well,
causing dissimilar data samples being put into the same cluster. That is, members of

39There are many ways to define similarity; here we will be using distance measures we talked about
in section 3.4.2.
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a cluster become less and less comparable, while they are suppose to be similar data
samples. In order to depict this phenomenon, as an example, we randomly sample 120
and 300 data points from a distribution with multiple modes. In figures 4.13a and
4.13b, 120 and 300 sampled data points are clustered with OPTICS (MinPts = 15)
and plotted out. We have noticed two things; one is that by increasing the number of
data points, cluster 0 in figure 4.13a has split into two smaller clusters. This is because
that the number of points in each sub-cluster has surpassed the parameter MinPts;
based on density estimations, they are considered as independent clusters (cluster 0
and 2 in figure 4.13b). Second, cluster 1 has absorbed neighboring data points and has
grown larger. There is nothing wrong here, since this is what clustering algorithms do;
however, for our purpose, we do not want clusters grow large as the distance between
data points within a cluster may become too large.
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(a) 120 data points clustered with OPTICS.
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(b) 300 data points clustered with OPTICS.

Figure 4.13: Clustering result affected by the number of data samples. Data points are
randomly generated in 2D space. Python code used to generated these toy examples can be
found in appendix D.4.

Pattern matching techniques, such as SAX (Symbolic Aggregate approXimation,
see section 4.4.1), would probably fit our purpose better than clustering, since they
are designed to find matches based on similarities. Nevertheless, using sophisticated
pattern matching tools is probably an overkill for such a task, and could potentially
introduce additional work without great improvements. For example, SAX and iSAX
are regarded as very powerful tools without a question; however, what they do to time-
series is delivering a discretized approximation output. This is very useful when we
have datasets having more than millions of time-series data samples. Approximations
of similar patterns can be found much faster than going over the whole dataset. But
for our case, weather data is a very specific type of data. From figures 4.3 and 4.4,
we find that daily temperature profiles are rather stable, and very similar shape-wise.
These profiles have a seasonal trend of offsets going up and down, but their shapes
look-alike in general.
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We would propose to use rank ordered time-series data for comparing input weather
temperature profiles. First, rank ordering is relatively simple and straightforward;
we all know that simple means fast in computations. Second, as mentioned, using
sophisticated tools for a simple task is not only an overkill, but also introducing more
work. Take SAX for example, SAX does not really help us much here, for temperature
profiles are similar in general; if we adopt some discretization with a resolution too low,
all profiles will be classified as the same symbolic pattern. On the other hand, if we
choose a discretization with high resolution, we would be able to tell the profiles apart,
but then we won’t have comparables, for they are considered different. Moreover, the
temperature is usually low during early mornings and after sunsets; symbols reserved
for high temperatures for these time periods are basically never used. The opposite is
true for low temperature symbols used during noons. Third, rank ordering is actually
having a ‘cluster’ tailor-made for every time-series data sample, meaning each data
sample is automatically being at the center of its rank ordered group. This gives us
a good comparable group for the data sample is always at the center. Therefore, we
think using a simple rank ordering method would be a better choice.

One would find that in the field of HVAC FDD, how to compare two weather data
is rarely seen or heard of. This is due to the fact that most approaches found in the
literature use model-based methods (see sections 3.1, 3.4.1, and 3.7). One of our goals
is to fill up this untouched area without using models to represent the data; thus,
improving scalability.

Although we are working on raw time-series data, we still need to use distance
measures to compare data profiles. We will perform a comparison of five different
distance measures used for rank ordering. We arbitrarily select a day (day 123) as a
reference, and compare annual daily temperature profiles with it. A list of days are
sorted with an order of the distance measure scores for each distance measure. The
closest day would be put at the top of the list, and the most different one would be put
at the end. We then compare how similar these lists are. Two comparison methods
are conducted and a visualized order similarity plot is shown in figure 4.14.

One way to compare the ordered lists is to find matches in the lists. We start by
taking two lists and go through each member in the lists. If members with the same
index match, we would add 1 to the accumulative score. Once we have finished with
all members, we divide the accumulative score with the total number of members and
result with a similarity ratio. All five distance measures are compared to each other,
and a similarity ratio matrix is shown in table 4.1. A similar method can be done by
computing the distance between members with the same indices in the lists. We would
have an overall distance sum after summing over all member distances in the lists.
Again, we do this comparison for five distance measures, and the results are listed in
table 4.2. In both tables, the last column is the sum for each row; this gives us an idea
about how similar/dissimilar each distance measure is compared to other measures.
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Figure 4.14: Temperature day data rank ordered with different distance measures. Test day
is arbitrarily chosen.

Absolute DTW Euclidean HighLow SAX Sum
Absolute 1.000 0.392 0.667 0.106 0.144 2.308

DTW 0.392 1.000 0.425 0.125 0.133 2.075
Euclidean 0.667 0.425 1.000 0.094 0.125 2.311
HighLow 0.106 0.125 0.094 1.000 0.069 1.394

SAX 0.144 0.133 0.125 0.069 1.000 1.472

Table 4.1: Similarity ratio matrix.

Absolute DTW Euclidean HighLow SAX Sum
Absolute 0 510 166 2144 1138 3958

DTW 510 0 454 2192 1194 4350
Euclidean 166 454 0 2264 1080 3964
HighLow 2144 2192 2264 0 2966 9566

SAX 1138 1194 1080 2966 0 6378

Table 4.2: Distance rating matrix.

Figure 4.14 demonstrates the ordering for using these five different distance mea-
sures. Compared with the selected reference day, the more similar (dissimilar) the days
are, the redder (greener) are the colors. We see that the absolute, Euclidean, and DTW
distances look closer than the other two, which is consistent with the results shown in
tables 4.1 and 4.2.
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From the results, we find that when it comes to rank ordering temperature profiles,
these distance measures all deliver similar results. The Euclidean distance seems to
work best here, and people have commented that it is a competitive distance measure in
many applications [53, 54]. SAX and high-low40 method gives slightly different ordering
results, which is reasonable since SAX uses a discretized approximation for calculations
and high-low only uses two scalar values to sort the order. It is surprising that the
high-low method works well by just using so little information and computations. No
wonder for a local weather forecast, the high and low temperatures are good enough for
most people. We believe that this surprising result is due to the fact that temperature
profiles are rather stable and similar in shape as we have discussed previously. On the
other hand, DTW distance gives us a very similar result to the Euclidean distance. The
advantage of DTW is that it is good at measuring dissimilarities shape-wise, with a
much higher computational power requirement as a trade-off. However, as mentioned,
temperature profiles for a local region is generally similar in shape; DTW won’t provide
us better results. Furthermore, for long sequential data, DTW distance degenerates
to the Euclidean distance [54, 85]. Because of our limited computational resource and
very little result differences, we will leave out DTW in later data analyses.

4.4.1 Piecewise aggregate approximation (PAA) and symbolic aggregate
approximation (SAX)

What Piecewise Aggregate Approximation (PAA) does is rather simple; given a fixed
interval (window size), it computes the average of all values within the window for
each interval. That’s it. PAA can be applied to time-series data as an approximation
and coarsen the time intervals. This could be useful for working on signals of on/off
switches, for sampling the state of an on/off switch for an instant with an infinitesimal
small time interval would not be informative. PAA can also be used as a non-data
adaptive time-series representation. Another application of PAA is it is used as a
middle step for converting a time-series to SAX.

Symbolic Aggregate approXimation (SAX) [54, 86, 87] is a data adaptive time-series
representation. Before transforming a time-series to SAX, it will first be converted to
a PAA sequence, and then the PAA sequence will be converted to SAX. SAX is the
first symbolic representation for time-series that allows for dimensionality reduction
and indexing. Also, due to its characteristic of indexing, it can be used for time-series
pattern matching applications [30]. We have used SAX as a time-series representation
in section 4.4 for rank ordering temperature profiles.

In order to illustrate this, we take two sequences for example. The first sequence
is the output of a sine wave, and the second one will be random numbers. We apply
PAA and SAX on them and plot out the results in figure 4.15. The blue solid curve
is our sine wave, and the semi-transparent coral solid curve is the sequence of random
numbers. The solid green and coral lines contained in bands are the PAA results. We

40high-low distance is calculated by taking only the highest (largest number) and lowest (smallest
number) temperature data points in the time-series data.
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can see that within a window (size is set to 8 here), the line sections are horizontal
with the mean value of its corresponding point values. The bands are the SAX results.
In this example, we have set the cardinality to be 24 = 16; each interval is assigned to
a symbolic value (e.g., a, b, c, etc). Every band contains its corresponding PAA mean
value in its interval. SAX then gives a symbolic sequence output.
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Figure 4.15: A PAA and SAX example.

4.5 Simulations with Modelica

In this section we will discuss how we set up our model in Modelica for simulations.
The reasons why and how to build a Modelica model are discussed in section 2. The
model used for this section is shown in figure 4.2. This model simulates a rooftop unit
used for a single room with a CAV (Constant Air Volume) set up. Another model
variant will be tested in section 5.

The input datasets for our models are cleaned and restructured. Weather data are
put into the system as outside environment conditions, which can be monitored by
sensors. Heat load data are also plugged into the HVAC model but without sensors
monitoring, for most cases in the real world we won’t be able to monitor the overall
heat load dissipated into a building. Heat load data are used for simulating possible
heat load patterns, which should have a similar pattern from day to day and change
seasonally with the weather data. Therefore, heat load day data are selected based on
the date of weather data (with a random ± 2-day range to introduce some randomness)
to reflect seasonal changes, but we will separate non-workdays from the heat load data
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Fault Fault description
Normal A normal operating dataset for testing purpose.
Fault 1 A stuck/clogged hot water valve in the AHU.
Fault 2 A leaking air duct. Supply air leaking to the outside.
Fault 3 Cooling loop subsystem malfunctioning with a lower efficiency.
Fault 4 A malfunctioning thermostat. Reads the RAT incorrectly by a 0.7◦C offset.
Fault 5 Same as fault 2, but with a much minor leak.
Fault 6 Same as fault 4, but with a smaller offset of 0.1◦C.

Table 4.3: Simulated faults and descriptions. A more detailed description list can be found in
appendix C.1.

in order to avoid large variance and uncertainty of the data, since heat load is strongly
dependent on both weather and energy usage.

A normal operating condition dataset is generated by simulating this model for
362 days (approximately a year). This dataset will be used as a baseline/normal
reference for the HVAC system. New datasets will be compared with this normal
reference by anomaly detection algorithms. Another normal condition dataset with
randomly selected dates is generated for true positive tests. We have come up with six
different faults and have built variant models to run simulations. The faults are listed
in table 4.3. Each of these testing dataset contains at least 100 samples (days) of data
with randomly selected dates for weather data and corresponding heat load data with
a random ± 5-day range and excluding non-workdays for their dates. The datasets we
used as inputs are described in section 4.1. Note that all faults we have introduced
to the HVAC system are hidden faults, that is, they are minor faults to the overall
system, and their affections are compensated by the control system, so residents inside
the building will not notice any differences.

Simulation results of a selected number of variables are then saved for each day. Not
all variables are saved since the total number of variables are nearly 20,000 with 86,400
(secs) for each day. If we stored all data, it would have a size of 20, 000×86, 400×362 for
a single normal operating dataset alone. This would overwhelm our PC and consume
all of our RAM and HD resources, and it would be very time consuming to process
all these data. We will save general sensor and control data for our work. A simple
PCA is conducted, but the results are not useful; in addition, it is not practical to
trace all variables for explanations, nor is it likely for us to convert all variable units
and normalize them. Not to mention, these variables may have different properties,
e.g., an on/off switch signal may have a high variance, but is probably not a ‘principal
component’ of the system; some data processing should be done first, that is, blindly
applying PCA would not be a good idea. This is one of the reasons why we would
focus on manipulated variables of the control system.
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4.6 Fault detection results and discussion

Simulation data of our HVAC Modelica model are collected and stored. The next
step would be running fault detection tests on these datasets. We will use anomaly
detection algorithms, Local Outlier Factor and Isolation Forest (see section 3.6), for
this task.

We construct a rank order list of the training data for each time-series data sample
in the testing dataset; the testing data sample is then added to this group to form
a testing group sample. Based on this testing group, we look up their corresponding
manipulated (control) variables. The two anomaly detection algorithms are then run
using the manipulated variables of this testing group sample. Note that we have only
used the manipulated variables from the control system (and control components/u-
nits); this greatly reduces the number of variables we have to handle while providing
meaningful information at the same time. We have run these tests with four differ-
ent distance measures, the absolute distance, Euclidean distance, high-low distance,
and SAX. We have compared these distance measures for rank ordering in section 4.4,
we will see whether there will be differences in fault detection results if one distance
measure is chosen over the others. Also, fault detection tests are run for four different
HVAC datasets using different input settings (two different weather datasets for dif-
ferent regional locations, and two simulated heat load datasets for office buildings are
used).

The results are shown in figures 4.19, 4.20, 4.21, and 4.22. From these plots, we
have first noticed that all four distance measures deliver very similar results. This is
not surprising after we have compared their differences for rank ordering time-series;
the similarity in final results of fault detection rates verifies our conclusion discussed
in section 4.4. We have found that the high-low distance measure gives slightly lower
fault detection rates in all of our experiment set ups; this is probably because using
only two values to represent the temperature profile for a whole day is less discernible
after all. However, with such little information, results of the high-low distance are
already very impressive. On the other hand, by comparing the figures, we have found
that the overall fault detection rates seems to be higher for office type 1 compared
to type 2, especially for less detectable ones, such as fault 3. In order to check this,
we pulled out the heat load datasets and plotted out their profiles; see figures 4.16,
4.17 and compare them with figures 4.5 and 4.12. We see there is obviously a much
larger variance for the heat load type 2 dataset; this may be the reason for lower fault
detection rates.
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Figure 4.16: Summary for heat load data of office building type 2.
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Figure 4.17: Heat load of office building type 2 classified as workdays v.s. non-workdays.
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4.6.1 Parameter selection for anomaly detection algorithms

We have presented the results of our approach for HVAC FDD using raw control time-
series data; however, in order to get a better picture of how our approach performs, we
will introduce the Area Under Receiver Operating Characteristic (AUROC) [88, 89]
curve.

In contrast to Akaike information criterion (AIC), Bayesian information criterion
(BIC), and Cross-validation [61, 90]41, which are popular model selection methods used
for regression [91] and ARIMA models [44], AUROC is a popular way to present the
performance of a classifier. The basic idea of AUROC is to compare the true positive
rate (TPR) with false positive rate (FPR) (see section 1.2.1). Let us reuse table 1.1
with some rephrasing and modifications. In table 4.4, we clearly see that there are four
possible outcomes from a binary classifier. The diagonal entities, true positive and true
negative, are the cases for a classifier to correctly classify data. In order to see how a
classifier performs, one would calculate its TPR and FPR:

TPR =
Number of true postives

Number of true positives + Number of false negatives

FPR =
Number of false positives

Number of true negatives + Number of false positives

Actual case is true Actual case is false
Predicted as true True positive False positive
Predicted as false False negative True negative

Table 4.4: Possible outcomes of a binary classifier.

If one wants to simplify these two numbers further by combining them as a single
curve, which is a function of FPR with an output of TPR, one could use different
parameter settings and draw out the ROC curve. This plot shows us with a ‘cost’ of
FPR , how much ‘gain’ of TPR we get in return. One can use AUROC to optimize42

a classifier’s parameter setting and illustrate its performance simultaneously. An ideal
classifier would have a curve going way up to the upper left corner (TPR=1 at FPR=0),
and a poor classifier would be close to the diagonal line.

ROC curves of our HVAC FDD approach for all six kinds of faults, two anomaly
detection algorithms (Isolation Forest and Local Outlier Factor), and two distance
measures (Euclidean and high-low) have been drawn out using 18 different parameter
settings, which are shown in figure 4.18.

41AIC and BIC penalizes a model for the number of terms used, this is to prevent overfitting,
while Cross-validation does this by minimizing the mean squared error. There are many researches
comparing these different model selection methods.

42Depending on the task one is dealing with, optimize here does not necessarily mean to maximize
the TPR/FPR ratio. For example, one may want to minimize FPR even with a loss of TPR in some
cases to avoid system interruptions.
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Recall that both LOF and iForest give us a score for each of the data points. This
score is a measure that describes how likely a data point is an outlier. Nevertheless,
similar to a λ-cut is needed in fuzzy logic; we still need to define a threshold for
the decision function. The parameter we are setting here is the threshold of a decision
function for these anomaly detection algorithms. Based on different parameter settings,
we can clearly see that there are different performance results.

By inspecting the ROC curves, we see that our FDD approach has different fault
detection performances for different kinds of faults. The ROC curves for fault 6 is
basically lying over the diagonal line; this simply means that fault 6 is not detectable.
This is consistent with results of fault detection rates shown in figures 4.19 and 4.20
(4.21 and 4.22 as well). The diagonal line basically means that with one cost of FPR
we get one TPR back, so there is no difference to randomly guessing. This is still
considered as a classifier, but does not benefit us. In addition, for faults 2 and 5, which
are the same type of fault, a fault detection rate drop (about 10%) is noticed, we can
also spot this performance drop in their ROC curves. This phenomenon is also true for
faults 4 and 6; apparently fault 4 is detected successfully by our method; however, fault
6 is not detectable. Isolation forest seems to perform slightly better for fault 2 and 5
(same type of fault), while LOF works slightly better for fault 4, yet, both methods
are comparable.

From these results, we conclude that the fault detection rate depends on the nature
of the HVAC system itself, anomaly detection algorithm and parameters used, fault
types, and severity of the faults. Strictly speaking, AUROC is used to depict the
performances of classification (supervised learning) methods, while our fault detection
work is considered as an unsupervised learning method. However, in this section, we
are discussing and testing about how our approach works; hence, for testing purposes,
we have revealed the fault labels to check the results after running fault detections.

Despite the popularity among the machine learning community, recently some re-
searches have raised some skepticism and started to question the accuracy and repre-
sentation using AUROC as a classification performance measure. For example, in [92],
five reasons have been listed out for doubting the use of AUROC. In [93], the behaviors
of ROC curves have been tested on synthetic data using statistical techniques such as
cross-validation and bootstrap for small sample sized datasets. However, the poten-
tially questionable issues brought up by these researches should not affect our usage of
ROC curves. The issues are mostly regarding modeling probability distributions, and
AUROC is not delivering enough information for some of their tasks, which, therefore,
could be misleading. For our case here, we are not using ‘areas’ or some kind of ‘score’
to benchmark our work; ROC curves are simply used as a tool to visualize and help
us select parameters instead of comparing classifiers. In addition, we are not trying
to model any probability distributions for our time-series data since we are applying
raw time-series representation for our work. If we tried to model probability distribu-
tions, we would be working on a model-based approach, e.g., something like Gaussian
processes. Probability distributions could affect works regarding classification for some
tasks that need more information such as probabilities instead of just a single classifi-
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Figure 4.18: Receiver Operating Characteristic curves for our HVAC FDD approach.

cation label. Nonetheless, we are working on fault detection; a simple normal/faulty
result would be the most important. Moreover, we are working on time-series data,
that is, high dimensional data at the order of about 105 dimensions; both modeling and
presenting probability distributions would be very difficult. It is also mentioned that
AUROC tests performance over regions of the ROC space in which one would rarely
operate and weighs false positives and false negatives equally. We have only tested the
parameters within a reasonable operating range, which is the scattered points shown in
our ROC results in figure 4.18, this should be equivalent to a partial ROC plot. Also,
we have mentioned that the ROC curve is just a tool to help optimize parameter selec-
tion; we choose operating points based on the goal of a task, not by the area, largest
accuracy sum, or some kind of single value score. Not to mention that we are assuming
the faults are unknown; the reason we reveal them is just for testing purposes. That
is, we are working on unsupervised learning, so there are no specific classes of faults
defined in the feature space. Hence, it would be impossible to model the probability
distributions for we do not have any known classes to model.

To conclude, ROC curves are only used to present and help us to both understand

A fault detection approach based on raw time-series data 4.6 82



the performance of our approach and select parameters of our results visually. If one
wants to have more information and get the whole picture, it is recommended to look
up the raw result data instead of summarized statistics, since any single-valued number
would never be capable of representing and containing all information of a large high
dimensional dataset.
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(a) Fault detection rates for Boston weather and office type 1 heat load.
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(b) Fault detection rates for Boston weather and office type 2 heat load.

Figure 4.19: Fault detection rates for Boston weather with 4 different distance measures using
Local Outlier Factor. The fault descriptions are listed in table 4.3.
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(a) Fault detection rates for San Francisco weather and office type 1 heat load.
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(b) Fault detection rates for San Francisco weather and office type 2 heat load.

Figure 4.20: Fault detection rates for San Francisco weather with 4 different distance measures
using Local Outlier Factor. The fault descriptions are listed in table 4.3.
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(a) Fault detection rates for Boston weather and office type 1 heat load.
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(b) Fault detection rates for Boston weather and office type 2 heat load.

Figure 4.21: Fault detection rates for Boston weather with 4 different distance measures using
Isolation Forest. The fault descriptions are listed in table 4.3.
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(a) Fault detection rates for San Francisco weather and office type 1 heat load.
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(b) Fault detection rates for San Francisco weather and office type 2 heat load.

Figure 4.22: Fault detection rates for San Francisco weather with 4 different distance measures
using Isolation Forest. The fault descriptions are listed in table 4.3.
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5 Fault detection approach tested on different HVAC

models for robustness

A fault detection approach for HVAC systems based on raw control time-series data
is demonstrated in section 4, and its results are presented at the end of the section.
As shown in the results, our data-driven approach works reasonably without relying
on a vast amount of sensor data. In contrast, we rely on the manipulated variables
of the system’s control data. This approach benefits us by reducing the number of
variables significantly; however, the main purpose is to ensure our approach is scalable,
for control systems are in general comprised of on/off switches and PID controllers.
Moreover, we have used a raw time-series representation without making any model
assumptions as model-based representations would. Again, this was chosen, for our
intention is to make as little assumptions as possible to ensure scalability. Hidden
faults, which are not sensible to residents as the controlled environment (room) has
remained the same, were able to be detected. In order to test the robustness of this
approach, we will adopt the same steps and work flow using a different model.

5.1 A centralized multiple room HVAC system model

In contrast to the model used in the previous section, we will have three rooms with
individual VAV (Variable Air Volume) boxes and a central AHU providing constant
cool air at 13◦C. While we have used a CAV control mechanism to maintain the room
environment in our previous model, we will apply a VAV control strategy for our
centralized multiple room in this section. Each VAV box will have a cool air intake
with constant temperature supplied by the AHU. If higher room temperatures are
needed, the cool air will be reheated by the heating coils within the VAV boxes. Each
room will be set to different sizes and with their own temperature setpoints, at 20◦C,
21◦C, and 22◦C (all within the normal comfort zone), respectively. In addition, each
room will have their own heat load data added to simulate different usages. A hot
water loop with a boiler, a cold water loop with a chiller, and a cool water loop with a
cooling tower are connected as subsystems in the model. A schematic diagram of this
model set up is shown in figure 5.1.
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Figure 5.1: Our targeted centralized multiple room HVAC system model.

5.2 Data source

The input data source we will be using are the same datasets we used in section 4.1.
Datasets of TMY3 from NOAA are used for weather data, and ‘Commercial and Res-
idential Hourly Load Profiles for all TMY3 Locations in the United States’ from DOE
are used for heat load data.

As for simulation data, we will use our new centralized multiple room HVAC sys-
tem model built in Modelica. The simulation environment is the same, using Modelica
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Standard Library (v3.2.3) and the Buildings Library(Buildings 4.0.0) in OpenModelica
environment (v1.11.0-64bit). Simulations are run with JModlieca.org (v2.1). All soft-
ware packages are executed on a Intel Core i5-2400 3.10GHz CPU with 8.00GB RAM
machine running Windows 10 64bit.

5.3 Data cleaning

Since we are using the same data source for weather and heat load input data in the
previous section, the steps and procedures are the same; we only need to make sure
the time is matched and units are compatible.

Again, same as section 4.2, we will remove the first two hours of simulation data to
avoid unstable and noisy data during the initialization period. Also, we would have to
take note of the data sampling rate, for this model contains more components and is
more complicated, which means there are more variables. Thus, we have set a lowered
data sampling rate for this model to avoid memory errors. This is because of our
computer hardware restrictions. Previous codes used for data cleaning needs to be
adjusted before reusing.

5.4 Simulations with Modelica

We will skip the steps for input data exploration and time-series rank ordering here, for
the steps and procedures are the same and redundant. We will simply adopt the results
we have concluded in sections 4.3 and 4.4. Two sets of weather data including San
Francisco and Boston area are reused. As in section 4.5, we will classify heat load data
into workdays and non-workdays to avoid large variances and uncertainties. A heat
load pattern and calendar comparison check is needed to ensure the days are matched.
However, since we have three rooms this time, each room will have hourly heat load
added based on the input weather date with a ±2-day range of randomness for the
training data generation. That is, heat loads for the rooms are different since they are
randomly drawn from the heat load dataset within a range. Testing datasets will be
generated with a similar way but the heat load data will be drawn using a wider range
of ±5-day to introduce randomness while keeping the seasonal dependency of weather
data.

A training dataset of a normal operating model comprising 362 days is generated.
Another normal operating testing dataset is generated, which is used to test the true
positives and false negatives for true positive rates. Five types of faulty HVAC system
model variants are built; these models are simulated to generate our faulty datasets.
These faults are listed in table 5.1. At least 100 data samples are generated for each
testing dataset. The stored variables are adjusted due to the model change. VAV box
control variables for each room are collected and saved.
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Fault Fault description
Normal A normal operating dataset for testing purpose.
Fault 1 A stuck/clogged VAV damper for a VAV box.

Fault 2
A stuck/clogged hot water valve of the heating coils
in one of the VAV boxes.

Fault 3 A leaking air duct. Supply air leaking to the outside.

Fault 4
Heating loop with a malfunctioning boiler.
Hot water temperature is lower than normal.

Fault 5
A malfunctioning thermostat.
AHU supply air temperature is 1◦C lower than setpoint.

Table 5.1: Simulated testing datasets and descriptions for our centralized multiple room HVAC
system model. A more detailed description list can be found in appendix C.2.

5.5 Fault detection results and discussion

Since this section is designed to test out the robustness of our fault detection approach
for different HVAC models, we conduct the same procedures as in section 4. That is,
the environmental weather is the same, and the heat load datasets are reused; only
the HVAC system model is changed. Some minor differences exist due to the different
HVAC model used; the rest of the simulation set up is basically the same. However, the
manipulated variables are different because of the fact that we have changed the model.
Therefore, we would again build a rank order list of the training data for each testing
data sample, adding this data sample to the order list and form a testing group. After
locating the corresponding manipulated variables data, we run anomaly algorithms on
them. As in section 4, we have used four different distance measures for rank ordering.
Two different weather datasets (Boston and San Francisco) and two types of office heat
load datasets are used.

The results are shown in figures 5.6, 5.7, 5.8, and 5.9. The ROC curves of Boston
and San Francisco weather with office type 1 heat load data are shown in figures 5.4 and
5.5. The first subplot (upper left) in the ROC figures shows a ROC curve of a normal
operating dataset; we see that the data points basically are on top of the diagonal line,
which is as we expected since no faults should be detected in the ideal case. From these
result plots, we see that Isolation Forest seems to be more stable than Local Outlier
Factor for this set up in both the ROC curves and fault detection rates.

From the results we have demonstrated here and in section 4, we can say that our
fault detection approach using raw time-series works and delivers reasonable detection
rates. It is true that the overall performance would be affected by many factors, and
we are assuming the heat load patterns are in general very similar among work days
for a specific building. However, our results suggest that a data-driven fault detection
approach using manipulated control variables being scalable, reliable, automatic, and
economical is achievable.
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5.5.1 Parameter selection according to experiment results

Comparisons of different parameter value settings have been carried out and visually
demonstrated in the form of ROC curves in figures 4.18, 5.4, and 5.5. As we have
mentioned in section 4.6.1, ROC curves will be used as a visualization tool to help us
select the parameters. In this subsection, we will list parts of the different parameter
values we have used for the anomaly detection algorithms.

The parameter we are talking about here is the threshold parameter (decision func-
tion’s threshold)43. The meaning of this parameter value stands for the proportion
of outliers in the dataset. Because both anomaly detection algorithms we have used,
LOF and iForest, give us some score of the new data sample after comparing it with
the training dataset, a threshold still needs to be assigned in order to tell at what
score are the data points considered as outliers. The decision function here is using
the distribution percentile of the training dataset. This concept is similar to where
we should draw the black solid line in figure 1.4. Hence, a trade-off of a higher fault
detection rate versus a lower false alarm rate is set by adjusting this parameter.

Figure 5.3 shows ROC curves with different threshold parameter values labeled for
two different weather (Boston and San Francisco) and two different office heat load
datasets using LOF as the anomaly detection algorithm. Tabulated data can be found
in tables F.1 and F.244. We see that larger variances (which means more uncertainty),
e.g., Boston weather with office type 1 heat load data (see figures 4.12 and 4.17 in
section 4), leads to poorer overall performance in figure 5.3a. The general trend is the
same; that is, by lowering the threshold parameter, we get lower false positive rates
by sacrificing true positive rates. Again, how this is chosen depends on the system,
inputs, desired sensitivity of our fault detection system, ... etc. However, from our
experimented results, a value of 0.007 (99.3 percentile) seems to be a reasonable choice
for us, since we would prefer a low FPR for HVAC systems. For more conservative
settings, a value of 0.002 (99.8 percentile) is probably the choice to go with. This
parameter selection is based on our experiment results. Boston and San Francisco are
chosen to reflect different weather trends, where Boston has a wider range of change
in weather and San Francisco’s bay area is known for its stable weather climate.

43In scikit-learn library, this parameter is called contamination.
44We have only listed the tabular data for Boston weather and office type 1 heat load results. This

is to avoid using up unnecessary pages. Besides, ROC curves summarize the results for us neatly.
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Figure 5.2: Our centralized multiple room HVAC system model in Modelica. This is the
Modelica equivalent model shown in figure 5.1

Fault detection approach tested on different HVAC models for robustness 5.5 93



0 20 40 60 80 100
FPR(%)

0

20

40

60

80

100

TP
R(

%
)

0.001
0.002

0.003

0.004

0.005
0.006

0.007
0.009

(a) ROC curve of Boston weather and office type
1 heat load data with labeled threshold parameter.
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(b) ROC curve of Boston weather and office type
2 heat load data with labeled threshold parameter.
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(c) ROC curve of San Francisco weather and office
type 1 heat load data with labeled threshold param-
eter.
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(d) ROC curve of San Francisco weather and office
type 2 heat load data with labeled threshold param-
eter.

Figure 5.3: ROC curves with parameter value labeled.
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Figure 5.4: Receiver Operating Characteristic curves for our HVAC FDD approach for our
multiple room model with Boston weather and office type 1 heat load.
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Figure 5.5: Receiver Operating Characteristic curves for our HVAC FDD approach for our
multiple room model with San Francisco weather and office type 1 heat load.
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(a) Fault detection rates for Boston weather and office type 1 heat load.
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(b) Fault detection rates for Boston weather and office type 2 heat load.

Figure 5.6: Fault detection rates for Boston weather with 4 different distance measures using
Local Outlier Factor. The fault descriptions are listed in table 5.1.
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(a) Fault detection rates for San Francisco weather and office type 1 heat load.
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(b) Fault detection rates for San Francisco weather and office type 2 heat load.

Figure 5.7: Fault detection rates for San Francisco weather with 4 different distance measures
using Local Outlier Factor. The fault descriptions are listed in table 5.1.
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(a) Fault detection rates for Boston weather and office type 1 heat load.
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(b) Fault detection rates for Boston weather and office type 2 heat load.

Figure 5.8: Fault detection rates for Boston weather with 4 different distance measures using
Isolation Forest. The fault descriptions are listed in table 5.1.
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(a) Fault detection rates for San Francisco weather and office type 1 heat load.
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(b) Fault detection rates for San Francisco weather and office type 2 heat load.

Figure 5.9: Fault detection rates for San Francisco weather with 4 different distance measures
using Isolation Forest. The fault descriptions are listed in table 5.1.
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6 Data-driven fault diagnosis approach using raw

time-series data

Thus far, we have demonstrated how a fault detection approach can be conducted
on raw manipulated variable time-series data in sections 4 and 5 for different HVAC
system model types, including a rooftop unit using a CAV strategy for a single room
set up and a centralized multiple room HVAC system with a VAV control strategy set
up. However, we have not yet presented work on fault diagnosis. In this section, we
will be dealing with HVAC fault diagnosis by assuming we have some prior knowledge
of the system’s faults based on historical data. In order to work on fault diagnosis, one
would either have knowledge of the system model design or have access to historical
data that contains information of the system. Since we are working on a data-driven
approach to achieve a scalable FDD, we will stick to the latter assumption.

In the following subsections, we will present two HVAC fault diagnosis approaches.
First, we will be going in an opposite direction of our previous fault detection work; that
is, we will invert the training and testing datasets of the anomaly detection algorithms
and try to find which fault has the highest match. Our second approach will be applying
classification algorithms to our new faulty data sample and see which faulty dataset it
has been classified to. All of the work will again be using raw time-series data.

6.1 Data source

In this section, we will be reusing the datasets we have generated by Modelica simula-
tions from previous sections. Control data, that is, manipulated variables data, will be
extracted from the result files and be used as training datasets. Historical faulty data
samples are randomly drawn; also, new faulty data samples for testing will be newly
generated by the Modelica models we have built in previous sections.

The set up for Modelica simulations is the same, using TMY3 weather data from
NOAA and heat load data from DOE as input data for our HVAC models, and using
Modelica Standard Library(v3.2.3) and the Buildings Library(Buildings 4.0.0) in Open-
Modelica environment(v1.11.0-64bit). Simulations are run with JModlieca.org(v2.1).
All software packages are executed on a Intel Core i5-2400 3.10GHz CPU with 8.00GB
RAM machine running Windows 10 64bit.

6.2 Data cleaning

Data cleaning process is basically the same; the first two hours are removed to avoid
unstable and noisy data during the initialization period. Data sampling rates for
simulations are set to be conformable with previously generated data. If a higher
sampling rate is used for new data generation, a down sampling process would need to
be carried out to make datasets compatible. For details, see sections 4.2 and 5.3.
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6.3 A fault pattern matching approach by adjusting our fault
detection method

By assuming we have datasets of formerly collected historical data, the idea here is that
we can learn the patterns of faults that had occurred previously in the system. Suppose
some kind of fault has existed for some period of time in the system before, and its
data has been recorded in time-series form; due to the system’s design, materials used,
or whatever reason a fault happens again, from the results of our previous work about
fault detection and with historical data at hand, we should be able to not only detect
a reoccurring fault, but also identify and recognize its manipulated variable patterns.
Even though the new fault may not be exactly the same (for example, faults 2 and 5
in section 4 are the same type of fault but with different severity levels), we should at
least be able to guess or find similarities between their data patterns.

We think that for a HVAC system having comparable inputs, including similar
weather and heat load profiles, its manipulated variable patterns are comparable as
well. If a fault is introduced, it becomes a faulty system, which is still a system;
the manipulated variables of the control system should reflect the inputs the same
faulty way. Therefore, we can compare the patterns of manipulated variables; if a fault
happened to the system before and has been recorded, we should be able to find matches
in the patterns. Having this idea in mind, we find that our fault detection approach is
actually some kind of pattern matching technique for normal operating conditions. If
we change the training data to a historical dataset of some fault, we will be matching
faulty manipulated variable patterns, since ‘faulty’ is considered as ‘normal’ to a faulty
system. Hence, by changing the training datasets we use to different historical faults,
we can carry out a fault diagnosis task.

Faulty testing datasets that are generated from previous sections are now used as
our historical database. These datasets are then used as training data for anomaly
algorithms. New testing data samples are generated and tested against our old data.
We expect to see higher match rates for faults of the same type and lower rates for
normal conditions and/or different fault types.

6.3.1 Fault diagnosis results and discussion

Our single room HVAC model used in section 4 is tested out, using San Francisco
weather and an office heat load data as inputs, and the matching rates (normal op-
erating rates) of it are shown in table 6.1, where the rows are the training datasets
used and the columns are the testing datasets. We see that with the same type of
system fault, there is a very high probability the system would be considered ‘normal’
to the faulty dataset. A similar type of fault or a fault that causes the control system
to compensate with similar manipulated variable patterns would also lead to a close
match. This result is also plotted as a radar chart shown in figure 6.1. A peak in the
radar charts stands for a good match; the ideal case is to only have one peak; however,
if multiple peaks exist, this means the testing dataset has similar manipulated variable
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patterns to multiple types of faults. For example, fault 5 (purple color) testing data is
both similar to the patterns of fault 2 and 5 (see table 4.3). This is expected since both
of these faults are basically the same but with different severity levels. Faults 3 and 6
seem to have high matches to the normal dataset; this is due to the fact that they are
minor faults, especially fault 6, for it can be considered undetectable for some set ups.
This can be verified by the ROC curve and fault detection rates back in section 4.

LOF
Fault1 Fault2 Fault3 Fault4 Fault5 Fault6

Normal 0.0 0.0 65.1 4.6 4.4 88.5
Fault1 98.1 0.0 0.0 0.0 0.0 0.0
Fault2 0.0 97.2 16.5 8.3 53.1 11.5
Fault3 0.0 0.9 94.5 0.9 12.4 86.5
Fault4 0.0 0.0 8.3 95.4 1.8 7.7
Fault5 0.0 22.0 65.1 13.9 97.3 65.4
Fault6 0.0 0.0 89.9 2.8 12.4 97.1

iForest
Fault1 Fault2 Fault3 Fault4 Fault5 Fault6

Normal 0.0 0.0 61.5 4.6 0.0 86.5
Fault1 97.2 0.0 0.0 0.0 0.0 0.0
Fault2 0.0 97.2 7.3 0.0 47.8 7.7
Fault3 0.0 0.0 94.5 63.0 8.0 90.4
Fault4 0.0 0.0 30.3 83.3 0.0 38.5
Fault5 0.0 11.0 50.5 19.4 94.7 46.2
Fault6 0.0 0.0 95.4 67.6 3.5 97.1

Test data

Test data

Training data

Training data

Table 6.1: Matching rates for testing fault data. Values are in percentages. Single room HVAC
model.

We test out our multiple room HVAC model used in section 5 the same way, using
San Francisco weather and office building heat load data as inputs. Here we have
generated a new faulty dataset, fault 6, for our centralized multiple room HVAC model.
The faults are listed in table 6.2, matching results are listed in table 6.3, and the radar
charts are shown in figure 6.2. Similarly, fault 3 and 6 are basically the same type of
fault; therefore, we find that they have similar matching results. In addition, fault 6
is ‘less detectable’ than fault 3 in nature; it has multiple peaks in the radar charts.
We can also see in the radar charts that Isolation Forest performs better than Local
Outlier Factor for this case.
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Fault Fault description
Normal A normal operating dataset for testing purpose.
Fault 1 A stuck/clogged VAV damper for a VAV box.

Fault 2
A stuck/clogged hot water valve of the heating coils
in one of the VAV boxes.

Fault 3 A leaking air duct. Supply air leaking to the outside.

Fault 4
Heating loop with a malfunctioning boiler.
Hot water temperature is lower than normal.

Fault 5
A malfunctioning thermostat.
AHU supply air temperature is 1◦C lower than setpoint.

Fault 6 Same as Fault 3, but with a smaller leak.

Table 6.2: Simulated testing datasets and descriptions for our centralized multiple room HVAC
system model. A more detailed description list can be found in appendix C.3.

LOF
Fault 1 Fault2 Fault 3 Fault 4 Fault 5 Fault 6

Normal 62.7 0.0 41.8 0.0 0.0 93.3
Fault1 92.7 0.0 5.5 0.0 0.0 3.3
Fault2 0.0 88.7 0.0 0.0 0.0 0.0
Fault3 30.0 0.9 91.8 0.0 0.0 76.7
Fault4 0.0 0.0 0.0 92.7 0.0 0.0
Fault5 0.0 0.0 0.0 0.0 90.0 0.0
Fault6 64.5 30.2 89.1 0.0 0.0 83.3

iForest
Fault 1 Fault2 Fault 3 Fault 4 Fault 5 Fault 6

Normal 5.5 0.0 21.8 0.0 0.0 36.7
Fault1 80.0 0.0 0.0 0.0 0.0 0.0
Fault2 0.0 84.0 0.0 0.0 0.0 0.0
Fault3 1.8 0.0 85.5 0.0 0.0 40.0
Fault4 0.0 0.0 0.0 77.3 0.0 0.0
Fault5 0.0 0.0 0.0 0.0 89.1 0.0
Fault6 20.9 0.0 46.4 0.0 0.0 80.0

Test data

Training data

Training data

Test data

Table 6.3: Matching rates for testing fault data. Values are in percentages. Multiple room
HVAC model.
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(b) Radar chart of matching rates for each testing fault using iForest.

Figure 6.1: Radar chart of matching rates. Values are in percentages. Single room HVAC
model.
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(b) Radar chart of matching rates for each testing fault using iForest.

Figure 6.2: Radar chart of matching rates. Values are in percentages. Multiple room HVAC
model.
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The result shown here tells us that if we have some historical data of the system,
these records could provide us some sort of ‘guess’ about what the system fault might
be. Each testing dataset is tested against different training datasets individually; this
means that each test is conducted independently; thus, even if we do not know all the
faults beforehand, we can still try out this approach to see what the faults might be
like. That is, once the HVAC system is detected as faulty, if some historical data is
available, this matching process could be helpful in further fault diagnosis.

6.4 A classification approach for fault diagnosis

In contrast to using anomaly detection algorithms as faulty pattern matching tools in
the previous section, we will work on another approach here. Since we are making the
assumption that faulty data are available, this means that we have prior knowledge
about the faults and our data has class (fault type) labels; a fault diagnosis task can
then be considered as a classification problem (supervised learning). That is, suppose
manipulated variables carry the information of a system’s state, we would be able to
spot differences if some fault is introduced. Also, if we have datasets of various types
of faults, we could diagnose a system’s state depending on how complete the datasets
are. This means that all classification algorithms can be regarded as candidates.

In order to run classification algorithms on our data, we would first need to re-
structure and add labels to our datasets. For each testing data sample, we find the
nearest weather profiles in each dataset, then we can pull out time-series data of their
corresponding manipulated variables. Next we add class labels to these sets of time-
series data according to their parent dataset and stack these data for each manipulated
variable. The data structure and this process are shown in figure 6.3. These stacked
data will then be used as training datasets for the classifiers.

Here we will test out a few different classifiers. Which classifier should one choose is
a tricky question, for every classifier has different characteristics. Generally speaking,
there is no best classification algorithm; it depends on the problem itself. An algorithm
may be powerful and accurate for some cases, and weak in other conditions. Take
support vector machine (SVM) for example: SVM is known for its strength in handling
high dimensional data very well, while it struggles to work on large datasets due to its
algorithm computational cost, O(FN3) [94], where F is the number of features and N
is the number of samples.
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Figure 6.3: A diagram showing the stacked data structure.
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6.4.1 Fault diagnosis results and discussion

Compared to our work in section 6.3, we are now assuming that all faulty datasets are
revealed. The task becomes straightforward; we pull out corresponding manipulated
variable data and run classification algorithms on these test data. A number of classifi-
cation algorithms are selected for our test, including linear-SVM (linear-support vector
machine), RBF-SVM (radial basis function-support vector machine), GPC (Gaussian
process classifier), kNN (k-nearest neighbors), and SGD-logistic (logistic regression
using stochastic gradient descent).

As in section 6.3, we will start with working on our single room HVAC model first.
After preprocessing the data by restructuring and adding labels as in figure 6.3, we
apply the classifiers to our data; the correctness rates45 results are shown in table 6.4.
We find that linear-SVM works very well in classifying our time-series data. This could
be due to the fact that SVM is good at working with high dimensional data. kNN and
RBF-SVM classifiers work pretty good as well; however, we do notice that all classifiers
seems to perform relatively bad for fault 6. Again, if we go back and check with the
results of section 4, we find that fault 6 is a very minor fault that is barely detectable.
It is surprising that linear-SVM is able to classify fault 6 with such a high correctness
rate.

GPC RBF‐SVM SGD‐logistic kNN linear‐SVM
Fault 1 1.000 1.000 0.533 1.000 1.000
Fault 2 0.725 0.954 0.119 0.954 1.000
Fault 3 0.275 0.807 0.101 0.908 0.945
Fault 4 0.157 0.889 0.111 0.926 1.000
Fault 5 0.062 0.805 0.080 0.832 1.000
Fault 6 0.038 0.404 0.163 0.481 0.750

Classifier

Fault

Table 6.4: Classification correctness rates for single room HVAC model.

The same classification process is carried out for our multiple room HVAC model.
The results are shown table 6.5. Again, linear-SVM performs best for our multiple
room HVAC model. kNN and RBF-SVM delivers a decent classification result. As for
fault 6, it not only is a weaker version of fault 3, but also has less data samples than
the rest (30 samples compared to 100+). This explains why the classification results
of fault 6 are the worst among all classifiers. The poor results of fault 6 with a smaller

45Note that true positive rates and false negative rates are used for binary classifiers; however, our
task here is a multi-class classification; we will use correctness rate to represent the ratio of number
of samples classified correctly to the total number of samples.
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GPC RBF‐SVM SGD‐logistic kNN linear‐SVM
Fault 1 0.509 0.973 0.227 1.000 1.000
Fault 2 1.000 0.877 0.708 0.943 1.000
Fault 3 0.218 0.673 0.245 0.755 0.973
Fault 4 0.464 0.682 0.082 0.827 1.000
Fault 5 0.873 0.991 0.191 0.973 1.000
Fault 6 0.167 0.233 0.133 0.267 0.633

Classifier

Fault

Table 6.5: Classification correctness rates for multiple room HVAC model.

sample size reminds us the fact that it is known in the machine learning community
that more data is better than a strong classifier. Also, if one would prefer to improve
the results, such as the SGD-logistic classifier, one could apply ensemble methods (e.g.,
bagging and boosting) to incorporate multiple classifiers.

In this section, we have demonstrated that if historical faulty datasets are recorded
and available, then a fault diagnosis task can be carried out using raw manipulated
variable time-series data of the control system alone.
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7 Conclusion and future work

7.1 Conclusion

Unless a perfect system is developed and built, a fault detection and diagnosis task
will always be needed. FDD has been considered costly and tedious but necessary.
Therefore, people have started to develop FDD systems to automate these laborious
and routine jobs. This has also been the case for HVAC systems as well. Various
kinds of approaches have been proposed and all have their own strengths and weak-
nesses. In this thesis, we have proposed an approach that focuses on being scalable
and economical. This idea is introduced in section 1.

In order to achieve our goal of being scalable, we have introduced the notion of
focusing on control systems (section 3.3), for they are considered to be universal in
most systems, including HVAC systems. Moreover, due to the nature of controllers
that tend to hide faults, exploiting control data gains us the benefit of discovering
hidden faults of a system, which would be a much harder task if we are only relying
on sensor data. Sticking to our goal of being scalable and low cost, we have chosen
to adopt machine learning and data analysis techniques using raw time-series data
(section 3).

In section 2 we have introduced the use of Modelica as our source of simulated
data. This choice is made due to two reasons; one is because of our limited access to
real building data, and second, the ability to conduct experiments on multiple HVAC
models and/or run tests on the exact same building under identical conditions. This
would not be possible, or at least extremely expensive if we worked on real buildings.

Fault detection (sections 4 and 5) and diagnosis (section 6) experiments are carried
out; it is demonstrated that a FDD task can be simplified significantly (according to
our set up and results, the number of features is shrunk from ∼ 104 to ∼ 101) by
focusing on control variables alone. This not only saves us a great amount of effort
to work on feature selection, but also helps us avoid the daunting high-dimensionality
space. We have also learned that solving a problem with an insightful approach is
easier and more efficient than throwing all kinds of data analysis tools to it.

Machine learning and data analysis techniques have caught eyes in all kinds of areas.
According to our experiment results, it is shown that data-driven FDD approaches
have great potential. Exploring tools, such as clustering algorithms, were able to help
us identify the similarities among different days in the weather datasets. Anomaly
algorithms were able to learn the rules by comparing raw data without an expert to
explicitly list out the rules. These techniques become more and more important as
datasets grow larger.
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7.2 Future work

Because of the limited time and computational resources, we have shown our FDD
approach for two different types of HVAC system models; this could be further extended
to more variants of HVAC systems in order to be more robust. Also, more datasets
could be collected and tested.

We have mentioned the high cost to work on real buildings; however, it would be
best if we could get our hands on a real one to test out and verify our work. Another
possible future work is to test out our approach on other types of systems instead of
HVAC systems. Since we have been focusing on control data, theoretically speaking,
our approach should also be valid for any system that incorporates a control system
in general. Although this sounds like taking an indirect path, this could provide us
a cheaper way of validation and discover more potential applications of this FDD
approach.

Moreover, in light of the fast growth of data science, a wide variety of data analytical
tools and the development of their infrastructures, it is almost certain that our work
can be improved and benefit from new algorithms and cloud services.
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Appendices

A List of acronyms

• HVAC: Heating, Ventilation, and Air Conditioning

• FDD: Fault Detection and Diagnosis

• BTU: British Thermal Unit

• OAT: Outside Air Temperature

• SAT: Supply Air Temperature

• RAT: Return Air Temperature

• EAT: Exhaust Air Temperature

• OAD Outside Air Damper

• SAD: Supply Air Damper

• RAD: Return Air Damper

• EAD: Exhaust Air Damper

• AHU: Air Handling Unit

• CAV: Constant Air Volume

• VAV: Variable Air Volume

• DAE: Differential Algebraic Equations

• ODE: Ordinary Differential Equations

• AE: Algebraic Equations

• HVAC: Heating Ventilation and Air Conditioning

• FDD: Fault Detection and Diagnosis

• SVD: Singular Value Decomposition

• PCA: Principal Component Analysis

• PLS: Partial Least Squares

• PID: Proportional-Integral-Differential controller
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• SP: Setpoint

• MV: Manipulated Variable

• PV: Process Variable

• PAA: Piecewise Aggregate Approximation

• SAX: Symbolic Aggregate approXimation

• HMM: Hidden Markov Model

• ARMA: Auto Regression Moving Average

• GP: Gaussian Process

• SSM: State Space Model

• FCD: Fractal Correlation Dimension

• ANN: Artificial Neural Network

• mRMR: minimalRedundancy-Maximal-Relevance

• MDS: MultiDimensional Scaling

• LOF: Local Outlier Factor

• iForest: Isolation Forest

• DTW: Dynamic Time Warping

• DBSCAN: Density-Based Spatial Clustering of Applications with Noise

• OPTICS: Ordering Points To Identify the Clustering Structure

• SVM: Support Vector Machine

• kNN: k-Nearest Neighbors

• GPC: Gaussian process classifier

• SGD: Stochastic Gradient Descent

• RBF: Radial Basis Function

• TPR: True Positive Rate

• FPR: False Positive Rate

• ROC: Receiver Operating Characteristic
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• AUROC: Area Under Receiver Operating Characteristic

• AIC: Akaike Information Criterion

• BIC: Bayesian Information Criterion

• TMY3: Typical Meteorological Year 3

• DOE: Department of Energy

• NREL: National Renewable Energy Laboratory

• NOAA: National Oceanic and Atmospheric Administration

• EIA: U.S. Energy Information Administration

• PC: Personal Computer

• CPU: Central Processing Unit

• RAM: Random-Access Memory
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B Modelica models used

Modelica models used in our work which were not shown in previous sections.

Figure B.1: AHU model used for our centralized multiple room HVAC system.

Figure B.2: VAV box model used for our centralized multiple room HVAC system.
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C Fault descriptions for sections 4, 5, and 6

Here we list the fault descriptions shown in tables 4.3, 5.1, and 6.2.

C.1 Fault descriptions for section 4

Descriptions of faults for section 4 listed in table 4.3.

Fault 1 A stuck/clogged hot water valve in the AHU. This fault is simulated by lim-
iting the hot water valve control signal output from the control unit to a small
range. Here we have the control signal set to [0.6,0.8], where the total range
should be [0,1]. A 0 signal closes the hot water valve completely (no heating)
while 1 will open it fully (heating at full power).

Fault 2 A leaking air duct. This fault is assuming the supply air duct has an unsealed
joint. The leaking air flow depends on the transient state of the system; however,
it is around 0.4[m3/s] based on one of our simulation results, that is about 30%
of the total supply air flow.

Fault 3 Cooling loop subsystem malfunctioning with a lower efficiency. In the cooling
loop subsystem we used the Carnot TEva type chiller. In our normal system,
the chiller parameter TSet is set to 279.15[K] while in a faulty one it is set to
281.15[K]. This simulates a higher cooling water temperature output (Still much
colder than the required temperature).

Fault 4 A malfunctioning thermostat. This is done by adding a pulse to the RAT sen-
sor (offset 0.1[K], period 7200[s], amplitude 0.7[K]). This simulates a thermostat
switch which has worn out and has a hysteresis effect.

Fault 5 Same fault as Fault 2; however, a much minor leak. This is simulated by
adding an orifice component with an effective leaking area of 0.01[m2]. Again,
the leaking air flow is not a fixed number; however, based on simulation results
it fluctuates between 0.17[m3/s] to 0.2[m3/s], that is around 12-15% of the total
supply air flow.

Fault 6 Same as Fault 4, but with a smaller offset. To be specific, this is done exactly
the same as Fault 4, but we have changed the pulse parameter settings of the
RAT sensor to (offset 0.1, period 43200, amplitude 0.1).

C.2 Fault descriptions for section 5

Descriptions of faults for section 5 listed in table 5.1.

Fault 1 Stuck/clogged VAV damper. This is done by replacing the VAV box with
a faulty VAV box model. The faulty VAV box is made by limiting the VAV

Fault descriptions for sections 4, 5, and 6 123



damper position of one of the VAV boxes (there are three VAV boxes in this
HVAC model) to [0.30,0.35]. Position 0 means the VAV damper is completely
closed while position 1 means the VAV damper is fully open.

Fault 2 Stuck/clogged heating water valve. This is done by replacing the VAV box
with a faulty VAV box model. The faulty VAV box has a reheating hot water
valve with its position limited to [0.01,0.05]. For a centralized HVAC system, the
supply air is usually fixed to 13[◦C]; if a higher supply air temperature is needed,
the air will be reheated by the VAV box.

Fault 3 A leaking supply air duct. This is simulated by adding an orifice with an
effective area of 0.005[m2] to the supply air duct. Again, the leaking air flow
fluctuates, but is very close to 0.18[m3/s] based on our simulation result. The
total supply air flow for this model is about 4.15[m3/s], so we have a leak of
about 4%.

Fault 4 Heating loop with a malfunctioning boiler. Hot water temperature is lower
than normal. This is done by adjusting the floating switch setpoints of the
boiler. That is, high temperature setpoint changed from 80◦C to 70◦C and low
temperature setpoint changed from 75◦C to 50◦C (Our FDD work did not collect
the setting parameters).

Fault 5 A malfunctioning thermostat. This is done by adjusting the AHU setpoint
from 13◦C to 12◦C. Note that this is not changing the temperature setpoints for
individual rooms; the AHU setpoint controls the supply air temperature.

C.3 Fault descriptions for section 6

Descriptions of faults for section 6 listed in table 6.2.

Fault 1 Same as Fault 1 in C.2.

Fault 2 Same as Fault 2 in C.2.

Fault 3 Same as Fault 3 in C.2.

Fault 4 Same as Fault 4 in C.2.

Fault 5 Same as Fault 5 in C.2.

Fault 6 Same as Fault 3; however, a much minor leak. A leaking supply air duct is
simulated by adding an orifice with an effective area of 0.001[m2] to the supply
air duct. Again, the leaking air flow fluctuates, but is very close to 0.054[m3/s]
based on our simulation result. The total supply air flow for this model is about
4.16[m3/s], so we have a leak of about 0.024%.
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D Python code for LOF, OPTICS, k-means, ... etc

D.1 Python code for LOF

Code for Local Outlier Factor (LOF):

1 import numpy as np

2 class meLOF:

3 def __init__(self ,coords ,MinPts = 10,threshold = 90,D=None):

4 ’’’

5 inputs:

6 coords: data matrix of coordinates , in NF format (N by

F)

7 Set to None if distance matrix D is provided

8 MinPts: parameter of min points used for LOF , default

is 10

9 threshold: threshold percentile parameter , default is

90, 0-100

10 D: distance matrix (N by N), if not provided , will

generate one)

11 ----------------------

12 Initializes meLOF

13 needs numpy and scipy

14 ’’’

15 self.coords = coords

16 self.MinPts = MinPts

17 self.threshold = threshold

18
19 if D is None:

20 from scipy.spatial import distance

21 dist = distance.minkowski

22 D = self.gen_dist_mat(coords ,dist)

23 self.D = D

24
25 def gen_dist_mat(self ,X,dist_func=None ,print_ = False):

26 ’’’

27 inputs:

28 X: data matrix in NT(or NF) format

29 dist_func: distance measure used , if not specified ,

will use Euclidean distance

30 print_: if set to True , will print out progress during

computations

31 Outputs:

32 D: distance matrix (N by N)

33 ----------------------

34 # Generate distance matrix (N*N)

35 # uses Euclidean distance if not assigned

36 # format should be NT

37 # T: number of time steps in the time series

38 # N: number of time series samples

39 ’’’

40 from scipy.spatial import distance
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41 X = np.array(X)

42 N,T = X.shape [0],X.shape [1]

43
44 if dist_func is None:

45 dist = distance.minkowski

46 else:

47 dist = dist_func

48 # intialize distance matrix

49 D = np.zeros((N,N))

50 for i in range(N):

51 for j in range(N):

52 if i==j: # identical

53 D[i,j] = 0

54 elif i > j: # distance matrix is symmetric , no need

to compute twice

55 D[i,j] = D[j,i]

56 else:

57 D[i,j] = dist(X[i,:],X[j,:])

58 if print_: print(’{}/{} finished ’.format(i+1,N))

59 return(D)

60
61 def k_dist(self ,D,k = 4):

62 ’’’

63 inputs:

64 D: distance matrix(N by N)

65 k: k-th neighbor distance , default is 4

66 ’’’

67 D = np.array(D)

68 N = D.shape [0]

69 # initialize k_dist vector

70 k_dist = np.zeros ((N,1))

71 for i in range(N):

72 row = list(D[i,:])

73 for j in range(k):

74 row.remove(min(row))

75 k_dist[i] = min(row)

76 return(k_dist)

77
78
79
80 def r_dist(self ,D,k_distances ,dist=None):

81 ’’’

82 inputs:

83 D: precomputed distance matrix(N by N)

84 k_distances: a list of precomputed k-distances.

85 dist: distance function

86 Outputs:

87 r_dists: reachability distance matrix (p,o), distance

of p(rows) from o(cols)

88 ’’’

89 if dist is None:
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90 from scipy.spatial import distance

91 dist = distance.minkowski

92
93 N = D.shape [0]

94 r_dists = np.empty((N,N),dtype = float)

95
96 for i in range(N):

97 for j in range(N):

98 r_dists[i,j] = np.max([ k_distances[j],D[i,j]])

99 return(r_dists)

100
101
102 def nearest_neighbors(self ,coords ,k,D=None):

103 ’’’

104 inputs:

105 coords: data coordinates in NF format , ignored if

distance matrix D is provided

106 k: Parameter MinPts , the k-nearest neighbors

107 D: distance matrix , if not given , will use gen_dist_mat

to generate one

108 Outputs:

109 NN_dists: k nearest neighbors distances matrix , np.

array , (N by k)

110 NN: k nearest neighbors matrix , np.array , (N by k)

111 Contains the indices of coords , NOT the coordinates

themselves

112 ’’’

113 if D is None:

114 from scipy.spatial import distance

115 dist = distance.minkowski

116 D = gen_dist_mat(coords ,dist)

117 N = D.shape [0]

118 # initialize nearest neighbors

119 NN_dists = np.empty ((N,k),dtype=float)

120 NN = np.empty ((N,k),dtype=int)

121
122 for i in range(N):

123 # use numpy ’s structured array for sorting

124 dtype = [(’distance ’,float),(’index’,int)]

125 structure_dist = np.empty ((N,),dtype=dtype)

126 structure_dist[’distance ’] = D[i]

127 structure_dist[’index’] = np.arange(N)

128 structure_dist = np.sort(structure_dist ,order=’distance

’)

129
130 # starts from 1 to remove itself , since the distance to

itself is always 0

131 NN_dists[i] = structure_dist[’distance ’][1:k+1]

132 NN[i] = structure_dist[’index’][1:k+1]

133
134 return ([NN,NN_dists ])
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135
136 def avg_r_dists(self ,r_dists ,NN):

137 ’’’

138 inputs:

139 r_dists: reachability distance matrix (p,o), distance

of p(rows) from o(cols)

140 NN: k-nearest neighbors matrix , np.array , (N by k)

141 Contains the indices , NOT the coordinates

themselves

142 Outputs:

143 avg_r_dists: list of average reachable distances

144 ’’’

145 N = NN.shape [0] # number of samples

146 k = NN.shape [1] # number of neighbors

147 # initialize

148 avg_r_dists = np.empty ((N,),dtype=float)

149 for i in range(N):

150 avg_r_dists[i] = np.mean(r_dists[i][NN[i]])

151
152 return(avg_r_dists)

153
154 def my_LOFs(self ,NN ,lrds):

155 ’’’

156 inputs:

157 NN: k-nearest neighbors matrix , np.array , (N by k)

158 Contains the indices , NOT the coordinates

themselves

159 lrds: list of local reachability densities

160 Outputs:

161 LOFs: Local outlier factor scores

162 ’’’

163 N = NN.shape [0]

164 k = NN.shape [1]

165 # initialize

166 LOFs = np.empty ((N,),dtype=float)

167 for i in range(N):

168 neighbor_lrds = lrds[NN[i]]

169 numerator = np.sum(neighbor_lrds)

170 lrd = lrds[i]

171 LOFs[i] = numerator/lrd/k

172
173 return(LOFs)

174
175
176 def labels_(self ,myLOF_scores ,threshold_percentile = 90):

177 ’’’

178 inputs:

179 myLOF_scores: LOF scores from function my_LOFs

180 threshold_percentile: threshold percentile parameter ,

default is 90

181 Outputs:
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182 myLOF_labels: 1 for inliers and -1 for outliers

183
184 ----------------------

185 LOF in sklearn , contamination sets the threshold , default

is 0.1

186 check source code of fit_predict function:

187
188 self.threshold_ = -scoreatpercentile(

189 -self.negative_outlier_factor_ , 100. * (1. -

self.contamination))

190
191 ’’’

192 # check percentiles - set up threshold

193 my_lof_threshold = np.percentile(myLOF_scores ,

threshold_percentile)

194 myLOF_scores[myLOF_scores > my_lof_threshold]

195 # LOF labels

196 myLOF_labels = np.empty(myLOF_scores.shape ,dtype=int)

197 for i,score in enumerate(myLOF_scores):

198 if score > my_lof_threshold:

199 myLOF_labels[i] = -1

200 else:

201 myLOF_labels[i] = 1

202
203 return(myLOF_labels)

204
205 def compute_scores_(self):

206 ’’’

207 outputs:

208 myLOF_scores: original LOFs

209 ----------------------

210 Uses default settings for everything

211
212 ’’’

213 # Generate distance matrix D

214 D = self.D

215 coords = self.coords

216 k=self.MinPts

217 k_distances = self.k_dist(D,k)

218
219 # reachability distances

220 r_dists = self.r_dist(D,k_distances)

221
222 # Nearest neighbors

223 NN, NN_dists = self.nearest_neighbors(coords ,k,D)

224
225 # average reachability distances

226 r_dists_k = self.avg_r_dists(r_dists ,NN)

227
228 # local reachability densities

229 lrds = 1/ r_dists_k
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230
231 # LOF scores

232 myLOF_scores = self.my_LOFs(NN ,lrds)

233
234 return(myLOF_scores)

235
236
237 def compute_labels_(self):

238 ’’’

239 outputs:

240 myLOF_labels: 1 for inliers and -1 for outliers

241 ----------------------

242 Uses default settings for everything

243
244 ’’’

245 # LOF scores

246 myLOF_scores = self.compute_scores_ ()

247 # LOF labels

248 myLOF_labels = self.labels_(myLOF_scores , self.threshold)

249
250 return(myLOF_labels)

251
252
253 def scores_labels_(self):

254 ’’’

255 Outputs a tuple of myLOF_scores and myLOF_labels (

myLOF_scores ,myLOF_labels)

256 outputs:

257 myLOF_scores: original LOFs

258 myLOF_labels: 1 for inliers and -1 for outliers

259 ----------------------

260 Uses default settings for everything

261
262 ’’’

263 # LOF scores

264 myLOF_scores = self.compute_scores_ ()

265 # LOF labels

266 myLOF_labels = self.labels_(myLOF_scores , self.threshold)

267
268 return(myLOF_scores ,myLOF_labels)
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D.2 Python code for OPTICS

Code for Ordering Points To Identify the Clustering Structure (OPTICS):

1 import numpy as np

2 class DataPoint:

3 def __init__(self ,index):

4 self.core_dist = None # core distance

5 self.r_dist = None # reachability distance

6 self.processed = False # flag for processed

7 # index of point , need indexing because we would be dealing

with time -series ,

8 # may only have a distance matrix and don’t have the

coordinates

9 self.index = index

10 self.clusterID = None # cluster ID (label)

11
12 class meOPTICS:

13 def __init__(self ,coords ,eps ,eps2 ,MinPts ,D = None ,xi = 0.05):

14 ’’’

15 inputs:

16 coords: data matrix of coordinates , in NF format (N by

F)

17 eps: the maximum distance (radius) to consider

18 eps2: parameter epsilon prime < epsilon in OPTICS

19 MinPts: parameter of min points used for LOF , default

is 10

20 D: distance matrix (N by N), if not provided , will

generate one)

21 xi: parameter for xi -steep points , 0 < xi < 1, default

is set to 0.05

22 ------------------------------------

23 Initializes meOPTICS

24 needs numpy and scipy

25 ’’’

26 self.coords = coords

27 self.eps = eps

28 self.eps2 = eps2

29 self.MinPts = MinPts

30 if D is None:

31 from scipy.spatial import distance

32 dist = distance.minkowski

33 D = self.gen_dist_mat(coords ,dist)

34 self.D = D

35 self.xi = xi

36 # initialize data points

37 DPs = [] # list of data points

38 for i,datapoint in enumerate(coords):

39 p = DataPoint(i)

40 DPs.append(p)

41 self.DPs = DPs

42 # initialize nearest neighbors
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43 self.NN , self.NN_dists = nearest_neighbors(None ,MinPts ,D)

44
45 def fit(self):

46 ’’’

47 Runs OPTICS

48 ----------------------

49 outputs:

50 order_list: returns the order_list with cluster ID/

label for the DataPoints(class)

51 ’’’

52 order_list = self.get_order ()

53 order_list = self.cluster(order_list)

54 return(order_list)

55
56 def get_order(self):

57 ’’’

58 inputs from class attributes:

59 DPs: list of Data points(class DataPoints)

60 D: distance matrix (N by N)

61 eps: the radius parameter epsilon for OPTICS

62 MinPts: parameter of min points used for OPTICS

63 outputs:

64 order_list: list of DataPoints(class) with OPTICS ’

ordering

65 ’’’

66 # initialize parameters

67 D = self.D

68 DPs = self.DPs

69 eps = self.eps

70 MinPts = self.MinPts

71 NN_dists = self.NN_dists

72 # initialize order_list

73 order_list = []

74 for p in DPs:

75 if not p.processed:

76 neighbor_index = get_neighbors(p.index ,eps ,D)

77 number_of_neighbors = neighbor_index.shape [0]

78 p.processed = True

79 order_list.append(p)

80 # if core distance is not defined , means

reachability distance is not defined as well ,

81 # and the point is not a core object

82 # expand the cluster order only if the point is a

core object

83 if core_distance(p,NN_dists ,number_of_neighbors) !=

None:

84 seeds = [] # initialize orderseeds

85 seeds = self.update_seeds(seeds ,p,

neighbor_index ,D)

86 while len(seeds) >0: # while seeds is not empty
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87 # the smallest reachability -distance in the

seed -list is selected by the method

OrderSeeds:next().

88 # c = seeds [0] # current object(datapoint)

// OrderSeeds.Next()

89 c = seeds.pop(0) # current object(datapoint

) // OrderSeeds.Next()

90 c_neighbors = get_neighbors(c.index ,eps ,D)

91 c.processed = True

92 c.core_dist = core_distance(c,NN_dists ,

c_neighbors.shape [0])

93 order_list.append(c)

94
95 if not c.core_dist is None:

96 seeds = self.update_seeds(seeds ,c,

c_neighbors ,D)

97
98 return(order_list)

99
100 def update_seeds(self ,seeds ,p,neighbors ,D):

101 ’’’

102 inputs:

103 seeds: list of the order seeds

104 p: the datapoint

105 neighbors: list of neighbor indices

106 D: distance matrix (N by N)

107 outputs:

108 seeds: list of the updated order seeds

109 ’’’

110 # initialize parameters

111 NN_dists = self.NN_dists

112 DPs = self.DPs

113
114 c_dist = core_distance(p,NN_dists ,neighbors.shape [0])

115
116 for o_index in neighbors:

117 o = DPs[o_index]

118
119 if not o.processed:

120 new_r_dist = np.max([c_dist ,D[p.index ,o.index ]])

121 if o.r_dist is None:

122 o.r_dist = new_r_dist

123 seeds.append(o)

124 else: # object already in seeds

125 if new_r_dist < o.r_dist:

126 o.r_dist = new_r_dist

127
128 # OrderSeeds are sorted by their reachability -distance

129 # sort seeds wrt r_dist , use structured np.array

130 # numpy sort doesn ’t support object type

131 dtype = [(’r_dist ’,float),(’index ’,int)]
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132 N = len(seeds)

133 seedsArr = np.empty ((N,),dtype=dtype)

134 seedsArr[’index ’] = np.arange(N)

135 for i,ob in enumerate(seeds):

136 seedsArr[’r_dist ’][i] = seeds[i]. r_dist

137 seedsArr = np.sort(seedsArr ,order=’r_dist ’)

138 # seeds sorted wrt reachability -distance

139 seeds = list(np.array(seeds)[seedsArr[’index ’]])

140
141 return(seeds)

142
143 def cluster(self ,order_list):

144 ’’’

145 Clustering by assigning a eps2 parameter , works as DBSCAN ,

also called ExtractDBSCAN -Clustering

146 inputs:

147 order_list: list of DataPoints(class) with OPTICS ’

ordering

148 outputs:

149 order_list: returns the order_list with cluster ID/

label for the DataPoints(class)

150 ’’’

151 # initialize parameters

152 eps2 = self.eps2

153 MinPts = self.MinPts

154 # clusterID = -1 # noise

155 clusterID = 0

156 for o in order_list:

157 # assume UNDEFINED to be greater than any defined

distance

158 r_dist = np.inf if o.r_dist is None else o.r_dist

159 c_dist = np.inf if o.core_dist is None else o.core_dist

160
161 if r_dist > eps2:

162 if c_dist <= eps2:

163 clusterID += 1 # next clusterID

164 o.clusterID = clusterID

165 else:

166 o.clusterID = -1 # noise

167 else:

168 o.clusterID = clusterID

169 return(order_list)

170
171 def auto_cluster(self ,order_list):

172 ’’’

173 Automatically cluster data points using steep point extract

cluster algorithm

174 inputs:

175 order_list: list of DataPoints(class) with OPTICS ’

ordering

176 outputs:
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177 #order_list: returns the order_list with cluster ID/

label for the DataPoints(class)

178 clusters: a list of cluster areas [start ,end] indices

wrt to order_list

179 ----------------------

180 Note: This outputs a hierachical list of clusters!

181 ’’’

182 # initialize parameter xi

183 xi = self.xi

184 MinPts = self.MinPts

185 # find the steep upward/downward areas

186 SUAset ,SDAset = self.max_steep_area(order_list)

187 SUAset = np.array(SUAset) # row: steep upward area , col =

start/end indices

188 SDAset = np.array(SDAset) # row: steep downward area , col =

start/end indices

189 # initialize

190 index = 1

191 mib_g = 0 # global max in between

192 N = len(order_list)

193 SDAlist = [] # list of the wanted steep down areas(

SetOfSteepDownAreas in paper)

194 miblist = [] # list of steep down areas ’ mibs

195 clusters = [] # set of clusters

196 while index < N-1:

197 o = order_list[index]

198 # max between end of last steep upward or downward area

and current index

199 mib_g = np.max([mib_g , o.r_dist ]) if not o.r_dist is

None else mib_g

200 if index in SDAset [:,0]: # start of a steep down area

at index

201 # find the SDA in SDAset

202 SDA = SDAset[SDAset [: ,0]== index]

203 # update mib values: max between end of steep down

region and current index

204 for i,iSDA in enumerate(SDAlist):

205 eoSDA = iSDA [0][1] # end of steep down area

index

206 ps = order_list[eoSDA:index] # all points

between end of steep down area and current

index

207 rs = [p.r_dist for p in ps] # reachability -

distances

208 miblist[i] = np.max(rs)

209 # Set local mib = 0

210 miblist.append (0)

211 # Add SDA to SDAlist

212 SDAlist.append(SDA)

213 # update index and mib_g

214 index = SDA [0][1] + 1
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215 mib_g = order_list[index ]. r_dist # end of last

steep upward or downward area

216 elif index in SUAset [:,0]: # start of a steep up area

at index

217 # find the SUA in SUAset

218 SUA = SUAset[SUAset [: ,0]== index]

219 # update mib values: max between end of steep down

region and current index

220 for i,iSDA in enumerate(SDAlist):

221 eoSDA = iSDA [0][1] # end of steep down area

index

222 ps = order_list[eoSDA:index] # all points

between end of steep down area and current

index

223 rs = [p.r_dist for p in ps] # reachability -

distances

224 miblist[i] = np.max(rs)

225
226 # update index and mib_g

227 index = SUA [0][1] + 1

228 mib_g = order_list[index ]. r_dist # end of last

steep upward or downward area

229 for i,SDA in enumerate(SDAlist):

230 # check combiniation of U and D is valid

231 # find SDA’s corresponing mib: just use

enumerate

232 mib = miblist[i]

233 # compare: "reachability -distance" of end of

SUA*(1-xi) >= mib

234 eoSUA = order_list[SUA [0][1]]. r_dist

235 if eoSUA*(1-xi) >= mib:

236 # cluster condition 4:

237 s_D = order_list[SDA [0][0]] # s_D

238 e_U = order_list[SUA [0][1]] # e_U

239 e_U1 = order_list[SUA [0][1]+1] # e_U+1

240 if s_D.r_dist *(1-xi) >= e_U1.r_dist: #

cluster condition 4b

241 # ps = order_list[np.arange(SDA [0][0] ,

SDA [0][1]+1)] # all points in SDA

242 ps = order_list[SDA [0][0]: SDA [0][1]+1]

# all points in SDA

243 rs = np.array ([p.r_dist for p in ps]) #

reachability -distances of points in

SDA

244 # rs = rs[rs > e_U1.r_dist]

245 s = ps[np.argmax(rs)] # point in SDA

with max reachability -distance

246 e = e_U

247 elif e_U1.r_dist *(1-xi) >= s_D.r_dist: #

cluster condition 4c
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248 # ps = order_list[np.arange(SUA [0][0] ,

SUA [0][1]+1)] # all points in SUA

249 ps = order_list[SUA [0][0]: SUA [0][1]+1]

# all points in SUA

250 rs = np.array ([p.r_dist for p in ps]) #

reachability -distances of points in

SUA

251 s = s_D

252 e = ps[np.argmin(rs)] # point in SUA

with min reachability -distance

253 else: # cluster condition 4a

254 s = s_D

255 e = e_U

256 # check cluster conditions 1,2,3a:

257 # condition 1: s in SDA

258 s_order_index = order_list.index(s)

259 cond1 = SDA [0][0] <= s_order_index <= SDA

[0][1]

260
261 # condition 2: e in SUA

262 e_order_index = order_list.index(e)

263 cond2 = SUA [0][0] <= e_order_index <= SUA

[0][1]

264
265 # condition 3a: e-s > MinPts

266 cond3a = e_order_index - s_order_index >

MinPts

267
268 # condition 3b is taken care by mib set up

269 if (cond1 and cond2 and cond3a):

270 # clusters.append ([s,e])

271 # store index wrt order_list

272 clusters.append ([ order_list.index(s),

order_list.index(e)])

273 else:

274 index += 1

275 return(clusters)

276
277 def is_steep_point(self ,order_list ,p):

278 ’’’

279 inputs:

280 order_list: list of DataPoints(class) with OPTICS ’

ordering

281 p: the datapoint

282 parameter for xi-steep points , 0 < xi < 1

283 outputs:

284 verdict: ’U’ if is an upward steep point , ’D’ if is a

downward steep point

285 ’X’ if is not a steep point

286 ----------------------
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287 Note: last point in order_list isn’t defined upward or

downward

288 ’’’

289 # initialize parameter xi

290 xi = self.xi

291
292 N = len(order_list)

293 if p.index == order_list [-1]. index:

294 print(’Last data point\’s steepness is undefined ’)

295 return(’X’)

296
297 order_indices = [o.index for o in order_list]

298 # find p’s index in order_list

299 index = order_indices.index(p.index)

300 # find next data point in order_list # next_index = index

+ 1

301 o = order_list[index + 1]

302
303 verdict = ’X’

304 if (not p.r_dist is None):

305 if p.r_dist <= o.r_dist * (1-xi):

306 verdict = ’U’

307 elif o.r_dist <= p.r_dist * (1-xi):

308 verdict = ’D’

309
310 return(verdict)

311
312 def is_steep_area(self ,order_list ,s,e):

313 ’’’

314 Checks the first 3 conditions:

315 1. s and e are steep upward/downward points

316 2. reachability -distances are monotonically increasing/

decreasing

317 3. doesn’t contain more than MinPts of consecutive non -

steep points

318 ----------------------

319 inputs:

320 order_list: list of DataPoints(class) with OPTICS ’

ordering

321 s: starting data point in area

322 e: ending data point in area

323 outputs:

324 verdict: ’UA’ if is an upward steep area , ’DA’ if is a

downward steep area

325 ’XA’ if is not a steep point

326 ’’’

327 # initialize paramters

328 MinPts = self.MinPts

329 is_steep_point = self.is_steep_point

330 # find start , end indices in order_list

331 order_indices = [o.index for o in order_list]
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332 start_index = order_indices.index(s.index)

333 end_index = order_indices.index(e.index)

334 # check upward area

335 cond1 = is_steep_point(order_list ,s) == ’U’ and

is_steep_point(order_list ,e) == ’U’

336 cond2 = True

337 count = 0 # counter for condition 3: number of consecutive

points that are not steep upward

338 for i in range(start_index ,end_index):

339 cond2 = cond2 and (order_list[i]. r_dist <= order_list[i

+1]. r_dist)

340 if is_steep_point(order_list ,order_list[i]) != ’U’:

count += 1

341 cond3 = ( count < MinPts )

342 upward = cond1 and cond2 and cond3

343 # check downward area

344 cond1 = is_steep_point(order_list ,s) == ’D’ and

is_steep_point(order_list ,e) == ’D’

345 cond2 = True

346 count = 0 # counter for condition 3: number of consecutive

points that are not steep downward

347 for i in range(start_index ,end_index):

348 cond2 = cond2 and (order_list[i]. r_dist >= order_list[i

+1]. r_dist)

349 if is_steep_point(order_list ,order_list[i]) != ’D’:

count += 1

350 cond3 = ( count < MinPts )

351 downward = cond1 and cond2 and cond3

352
353 # assign verdict

354 if upward:

355 verdict = ’UA’

356 elif downward:

357 verdict = ’DA’

358 else:

359 verdict = ’XA’

360 return(verdict)

361
362 def max_steep_area(self ,order_list):

363 ’’’

364 Checks the 4th condition: steep area is maximal

365 ----------------------

366 inputs:

367 order_list: list of DataPoints(class) with OPTICS ’

ordering

368 # s: starting data point in area

369 # e: ending data point in area

370 outputs:

371 [USA ,DSA]:

372 - USA: list of upward steep areas

373 - DSA: list of downward steep areas
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374 areas are defined by [starting index , ending index

], indices wrt to order_list , not coords

375 ’’’

376 # initialize paramters

377 MinPts = self.MinPts

378 is_steep_point = self.is_steep_point

379 is_steep_area = self.is_steep_area

380
381 # Get list of steep points

382 steep_points = [is_steep_point(order_list ,order_list[i])

for i in range(len(order_list) -1)]

383 steep_points = np.array(steep_points)

384 upward_index = np.arange(steep_points.shape [0])[

steep_points == ’U’]

385 downward_index = np.arange(steep_points.shape [0])[

steep_points == ’D’]

386 # find all upward areas

387 USA = []

388 for i,ui in enumerate(upward_index):

389 for j,uj in enumerate(upward_index[i:]):

390 if (is_steep_area(order_list ,order_list[ui],

order_list[uj]) == ’UA’): USA.append ([ui,uj])

391 # include only max areas

392 i = 0

393 while i < len(USA):

394 flag = False

395 ui = USA[i]

396 for j,uj in enumerate(USA):

397 if ((uj[0] < ui[0] and uj[1] >= ui[1]) or (uj[0] <=

ui[0] and uj[1] > ui[1])):

398 USA.pop(i)

399 flag = True

400 break

401 if not flag: i += 1

402 # find all downward areas

403 DSA = []

404 for i,ui in enumerate(downward_index):

405 for j,uj in enumerate(downward_index[i:]):

406 if (is_steep_area(order_list ,order_list[ui],

order_list[uj]) == ’DA’): DSA.append ([ui,uj])

407 # include only max areas

408 i = 0

409 while i < len(DSA):

410 flag = False

411 ui = DSA[i]

412 for j,uj in enumerate(DSA):

413 if ((uj[0] < ui[0] and uj[1] >= ui[1]) or (uj[0] <=

ui[0] and uj[1] > ui[1])):

414 DSA.pop(i)

415 flag = True

416 break
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417 if not flag: i += 1

418 return(USA ,DSA)

419
420 def gen_dist_mat(self ,X,dist_func=None ,print_ = False):

421 ’’’

422 inputs:

423 X: data matrix in NT(or NF) format

424 dist_func: distance measure used , if not specified ,

will use Euclidean distance

425 print_: if set to True , will print out progress during

computations

426 Outputs:

427 D: distance matrix (N by N)

428 ----------------------

429 # Generate distance matrix (N*N)

430 # uses Euclidean distance if not assigned

431 # format should be NT

432 # T: number of time steps in the time series

433 # N: number of time series samples

434 ’’’

435 from scipy.spatial import distance

436 X = np.array(X)

437 N,T = X.shape [0],X.shape [1]

438
439 if dist_func is None:

440 dist = distance.minkowski

441 else:

442 dist = dist_func

443 # intialize distance matrix

444 D = np.zeros((N,N))

445 for i in range(N):

446 for j in range(N):

447 if i==j: # identical

448 D[i,j] = 0

449 elif i > j: # distance matrix is symmetric , no need

to compute twice

450 D[i,j] = D[j,i]

451 else:

452 D[i,j] = dist(X[i,:],X[j,:])

453 if print_: print(’{}/{} finished ’.format(i+1,N))

454 return(D)

455
456 def nearest_neighbors(self ,coords ,k,D=None):

457 ’’’

458 inputs:

459 coords: data coordinates in NF format , ignored if

distance matrix D is provided

460 k: Parameter MinPts , the k-nearest neighbors

461 D: distance matrix , if not given , will use gen_dist_mat

to generate one

462 Outputs:
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463 NN_dists: k nearest neighbors distances matrix , np.

array , (N by k)

464 NN: k nearest neighbors matrix , np.array , (N by k)

465 Contains the indices of coords , NOT the coordinates

themselves

466 ’’’

467 if D is None:

468 from scipy.spatial import distance

469 dist = distance.minkowski

470 D = gen_dist_mat(coords ,dist)

471 N = D.shape [0]

472 # initialize nearest neighbors

473 NN_dists = np.empty ((N,k),dtype=float)

474 NN = np.empty ((N,k),dtype=int)

475
476 for i in range(N):

477 # use numpy ’s structured array for sorting

478 dtype = [(’distance ’,float),(’index’,int)]

479 structure_dist = np.empty ((N,),dtype=dtype)

480 structure_dist[’distance ’] = D[i]

481 structure_dist[’index’] = np.arange(N)

482 structure_dist = np.sort(structure_dist ,order=’distance

’)

483 # starts from 1 to remove itself , since the distance to

itself is always 0

484 NN_dists[i] = structure_dist[’distance ’][1:k+1]

485 NN[i] = structure_dist[’index’][1:k+1]

486 return ([NN,NN_dists ])

487
488 def get_neighbors(self ,p_index ,eps ,D):

489 ’’’

490 inputs:

491 p_index: data point index

492 eps: the maximum distance (radius) to consider

493 D: distance matrix

494 Outputs:

495 neighbor_index: a list of neighboring point indices

with distance < eps

496 ’’’

497 eps = self.eps

498 D = self.D

499 N = D.shape [0]

500 # initialize

501 neighbor_index = []

502 for i in range(N):

503 if p_index != i: # exclude itself

504 if D[p_index ,i] < eps:

505 neighbor_index.append(i)

506
507 neighbor_index = np.array(neighbor_index)

508 return(neighbor_index)
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D.3 Python code for k-means clustering

Code for k-means clustering:

1 import numpy as np

2 from scipy.spatial import distance

3 import copy

4 ## class

5 class DataPoint:

6 def __init__(self ,index ,isCenter=False):

7 self.coord = None # coordinates , could be None if only

given a distance matrix

8 self.index = index # the order numbering from given data

9 self.label = None # cluster assignment

10 self.isCenter = isCenter # a boolean that indicates if this

data point is a cluster center

11
12 class KMeans:

13 def __init__(self ,X,k,dist_func=distance.minkowski ,initSeeds=

None ,tol=1e-5,max_iter =100):

14 ’’’

15 Inputs:

16 X: Data matrix , np.array(n_samples*n_dimensions)

17 k: number of clusters , integer

18 dist_func: distance measure function , default is

distance.minkowski

19 initSeeds: assigning the initial cluster centers np.

array(k * n_dimensions)

20 if set to None , then random generates

centers

21 tol: tolerance for convergence , if centers difference <

tol , then is considered as converged

22 max_iter: max iterations , integer

23 ’’’

24 # initialize

25 self.X = X

26 self.k = int(k)

27 self.dist = dist_func

28 self.initSeeds = initSeeds

29 self.max_iter = max_iter

30 self.labels = np.zeros ((X.shape [0],))

31 self.centers = []

32 self.tol = tol

33
34 if not initSeeds ==None and k != initSeeds.shape [0]:

35 print(’number of clusters does not match with initSeeds

!’)

36 elif self.k < 2:

37 print(’should have at least 2 clusters!’)

38
39 # initialize data points

40 DPs = [] # list of data points
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41 for i,datapoint in enumerate(X):

42 p = DataPoint(i)

43 p.coord = X[i]

44 DPs.append(p)

45 self.DPs = DPs

46
47 def setSeeds(self):

48 ’’’

49 Set up initial centers

50 ’’’

51 # initialize

52 DPs = self.DPs

53 k = self.k

54 initSeeds = self.initSeeds

55
56 centers = []

57 for i in range(k):

58 c = DataPoint(index=i,isCenter=True)

59 c.label = int(i)

60 centers.append(c)

61
62 if initSeeds == None: # generate starting points

63 N = len(DPs) # number of data points

64 indices = np.random.randint (10,size = k)

65 for i in range(k):

66 centers[i]. coord = DPs[indices[i]]. coord

67 else: # use initSeeds

68 for i in range(k):

69 centers[i]. coord = initSeeds[i]

70 self.centers = centers

71
72 def cluster_one_step(self):

73 ’’’

74 Runs only one step

75 ----------

76 ’’’

77 # one iteration:

78 self.assign_labels ()

79 self.update_centers ()

80
81 def cluster(self):

82 ’’’

83 Runs the algorithm

84 ----------

85 ’’’

86 # initialize

87 max_iter = self.max_iter

88 # initialize centers

89 self.setSeeds ()

90 # start iterations:

91 for i in range(max_iter):
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92 pre_centers = copy.deepcopy(self.centers) # save

centers of previous step

93 self.assign_labels ()

94 self.update_centers ()

95 # if converged , then stop

96 if self.converged(pre_centers):

97 print(’converged at {} iteration ’.format(i+1))

98 break

99
100 def converged(self ,pre_centers):

101 ’’’

102 check if converged

103 ----------

104 Inputs:

105 pre_centers: centers of previous step

106 Outputs:

107 returns True if converged

108 ’’’

109 # initialize

110 centers = self.centers

111 tol = self.tol

112 dist = self.dist

113 N = len(centers)

114 # calculate center changes

115 sum = 0

116 for i,c in enumerate(centers):

117 pc = pre_centers[i]

118 d = dist(c.coord ,pc.coord)

119 sum += d

120
121 if sum <= tol:

122 return(True)

123 else:

124 return(False)

125
126 def assign_labels(self):

127 ’’’

128 Assignment step

129 ’’’

130 # initialize

131 DPs = self.DPs

132 centers = self.centers

133 dist = self.dist

134
135 for p in DPs:

136 dists = [] # list of distances to centers

137 for c in centers:

138 d = dist(p.coord ,c.coord)

139 dists.append(d)

140 dists = np.array(dists)

141 index = np.argmin(dists) # find the closest center
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142 p.label = centers[index ].label # assign cluster label

143
144 self.DPs = DPs # update

145
146 def update_centers(self):

147 ’’’

148 Update step

149 ’’’

150 # initialize

151 DPs = self.DPs

152 centers = self.centers

153 # dist = self.dist

154 clusters = {} # dictionary of lists , key= cluster label ,

val = list of cluster data points(coords)

155 # list out data points according to their labels

156 for p in DPs:

157 if not p.label in clusters.keys(): # initialize cluster

158 clusters[p.label] = [p.coord]

159 else:

160 clusters[p.label ]. append(p.coord)

161 # update centers

162 for i,c in enumerate(centers):

163 if i in clusters.keys(): # check if cluster has members

164 coords = np.array(clusters[i])

165 c.coord = np.mean(coords ,axis =0)

166 self.centers = centers

167
168 def labels_(self):

169 ’’’

170 returns a np.array(n_samples ,) of cluster labels

171 ’’’

172 # initialize

173 DPs = self.DPs

174 labels = []

175 for p in DPs:

176 labels.append(p.label)

177 labels = np.array(labels)

178
179 return(labels)

180
181 def centers_(self):

182 ’’’

183 returns the center coordinates in np.array(n_centers *

n_dimensions) format

184 ’’’

185 # initialize

186 centers = self.centers

187 coord_list = []

188 for c in centers:

189 coord_list.append(c.coord)

190 return(np.array(coord_list))
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D.4 Python code for randomly generated 2D data

Code for randomly generated example data:

1 import numpy as np

2
3 # set random seed

4 np.random.seed (0)

5
6 # example data

7 n_points_per_cluster = 120 # 300, number of data points in each

cluster

8
9 C1 = [-5, -2] + .8 * np.random.randn(n_points_per_cluster , 2)

10 C2 = [4, -1] + .1 * np.random.randn(n_points_per_cluster , 2)

11 C3 = [1, -2] + .2 * np.random.randn(n_points_per_cluster , 2)

12 C4 = [-2, 3] + .3 * np.random.randn(n_points_per_cluster , 2)

13 C5 = [3, -2] + 1.6 * np.random.randn(n_points_per_cluster , 2)

14 C6 = [5, 6] + 2 * np.random.randn(n_points_per_cluster , 2)

15 coords = np.vstack ((C1, C2, C3, C4, C5, C6))
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Experim

ent
IsolationForest

126_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_random
24.3

75.7
25.2

74.8
22.4

77.6
27.1

72.9
IsolationForest

122_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_Fault2
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

123_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_Fault3
99.0

1.0
99.0

1.0
100.0

0.0
100.0

0.0
IsolationForest

124_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_Fault5
35.6

64.4
36.6

63.4
37.6

62.4
37.6

62.4
IsolationForest

125_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_Fault6
91.2

8.8
91.8

8.2
93.7

6.3
90.6

9.4
IsolationForest

128_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_Fault3_orifice
86.9

13.1
87.9

12.1
79.4

20.6
86.0

14.0
IsolationForest

129_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_Fault6_2
22.2

77.8
22.2

77.8
25.0

75.0
23.1

76.9
IsolationForest

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

27.2
72.8

25.2
74.8

24.3
75.7

29.1
70.9

IsolationForest
133_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault2
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

100.0
0.0

99.1
0.9

99.1
0.9

99.1
0.9

IsolationForest
135_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault5
47.7

52.3
46.7

53.3
45.8

54.2
46.7

53.3
IsolationForest

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

94.5
5.5

93.6
6.4

96.3
3.7

95.4
4.6

IsolationForest
138_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3_orifice
86.5

13.5
87.5

12.5
85.6

14.4
86.5

13.5
IsolationForest

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

29.9
70.1

30.8
69.2

25.2
74.8

29.9
70.1

IsolationForest
141_HVACv4a_SF+Sm

allO
ffice_W

orkday_random
10.3

89.7
8.4

91.6
13.1

86.9
19.6

80.4
IsolationForest

143_HVACv4a_SF+Sm
allO

ffice_W
orkday_Fault2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
144_HVACv4a_SF+Sm

allO
ffice_W

orkday_Fault3
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

145_HVACv4a_SF+Sm
allO

ffice_W
orkday_Fault5

86.2
13.8

86.2
13.8

83.5
16.5

82.6
17.4

IsolationForest
146_HVACv4a_SF+Sm

allO
ffice_W

orkday_Fault6
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

148_HVACv4a_SF+Sm
allO

ffice_W
orkday_Fault3_orifice

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
149_HVACv4a_SF+Sm

allO
ffice_W

orkday_Fault6_2
53.8

46.2
56.7

43.3
53.8

46.2
59.6

40.4
IsolationForest

151_HVACv4a_SF+LargeO
ffice_W

orkday_random
5.7

94.3
6.6

93.4
6.6

93.4
9.0

91.0
IsolationForest

153_HVACv4a_SF+LargeO
ffice_W

orkday_Fault2
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

154_HVACv4a_SF+LargeO
ffice_W

orkday_Fault3
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

155_HVACv4a_SF+LargeO
ffice_W

orkday_Fault5
36.1

63.9
30.6

69.4
36.1

63.9
27.8

72.2
IsolationForest

156_HVACv4a_SF+LargeO
ffice_W

orkday_Fault6
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

158_HVACv4a_SF+LargeO
ffice_W

orkday_Fault3_orifice
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

159_HVACv4a_SF+LargeO
ffice_W

orkday_Fault6_2
40.0

60.0
30.5

69.5
36.2

63.8
52.4

47.6
IsolationForest

161_HVACv4a_Boston+LargeO
ffice_W

orkday_random
18.3

81.7
19.3

80.7
18.3

81.7
19.3

80.7
IsolationForest

163_HVACv4a_Boston+LargeO
ffice_W

orkday_Fault2
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

164_HVACv4a_Boston+LargeO
ffice_W

orkday_Fault3
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

165_HVACv4a_Boston+LargeO
ffice_W

orkday_Fault5
24.8

75.2
25.7

74.3
23.9

76.1
23.9

76.1
IsolationForest

166_HVACv4a_Boston+LargeO
ffice_W

orkday_Fault6
96.4

3.6
95.5

4.5
94.5

5.5
91.8

8.2
IsolationForest

168_HVACv4a_Boston+LargeO
ffice_W

orkday_Fault3_orifice
96.5

3.5
94.7

5.3
93.8

6.2
94.7

5.3
IsolationForest

169_HVACv4a_Boston+LargeO
ffice_W

orkday_Fault6_2
21.5

78.5
21.5

78.5
20.6

79.4
21.5

78.5
LO

F
126_HVACv4a_W

eather_Boston+Sm
allO

ffice_W
eekday_random

21.5
78.5

21.5
78.5

19.6
80.4

27.1
72.9

LO
F

122_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_Fault2
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
LO

F
123_HVACv4a_W

eather_Boston+Sm
allO

ffice_W
eekday_Fault3

96.0
4.0

96.0
4.0

96.0
4.0

96.0
4.0

LO
F

124_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_Fault5
42.6

57.4
42.6

57.4
39.6

60.4
43.6

56.4
LO

F
125_HVACv4a_W

eather_Boston+Sm
allO

ffice_W
eekday_Fault6

94.3
5.7

94.3
5.7

97.5
2.5

95.0
5.0

LO
F

128_HVACv4a_W
eather_Boston+Sm

allO
ffice_W

eekday_Fault3_orifice
79.4

20.6
79.4

20.6
79.4

20.6
80.4

19.6
LO

F
129_HVACv4a_W

eather_Boston+Sm
allO

ffice_W
eekday_Fault6_2

25.9
74.1

25.9
74.1

24.1
75.9

24.1
75.9

LO
F

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

31.1
68.9

31.1
68.9

26.2
73.8

31.1
68.9

LO
F

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

96.3
3.7

96.3
3.7

94.4
5.6

96.3
3.7

LO
F

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

49.5
50.5

49.5
50.5

44.9
55.1

52.3
47.7

LO
F

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

97.2
2.8

97.2
2.8

96.3
3.7

99.1
0.9

LO
F

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

82.7
17.3

82.7
17.3

79.8
20.2

85.6
14.4

LO
F

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

30.8
69.2

29.0
71.0

26.2
73.8

31.8
68.2

LO
F

141_HVACv4a_SF+Sm
allO

ffice_W
orkday_random

10.3
89.7

9.3
90.7

9.3
90.7

20.6
79.4

LO
F

143_HVACv4a_SF+Sm
allO

ffice_W
orkday_Fault2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

144_HVACv4a_SF+Sm
allO

ffice_W
orkday_Fault3

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

145_HVACv4a_SF+Sm
allO

ffice_W
orkday_Fault5

85.3
14.7

84.4
15.6

80.7
19.3

82.6
17.4

LO
F

146_HVACv4a_SF+Sm
allO

ffice_W
orkday_Fault6

99.1
0.9

99.1
0.9

100.0
0.0

99.1
0.9

LO
F

148_HVACv4a_SF+Sm
allO

ffice_W
orkday_Fault3_orifice

99.1
0.9

98.2
1.8

100.0
0.0

98.2
1.8

LO
F

149_HVACv4a_SF+Sm
allO

ffice_W
orkday_Fault6_2

41.3
58.7

41.3
58.7

48.1
51.9

44.2
55.8

LO
F

151_HVACv4a_SF+LargeO
ffice_W

orkday_random
3.3

96.7
3.3

96.7
11.5

88.5
7.4

92.6
LO

F
153_HVACv4a_SF+LargeO

ffice_W
orkday_Fault2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0
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LO
F

154_HVACv4a_SF+LargeO
ffice_W

orkday_Fault3
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
LO

F
155_HVACv4a_SF+LargeO

ffice_W
orkday_Fault5

30.6
69.4

30.6
69.4

31.5
68.5

29.6
70.4

LO
F

156_HVACv4a_SF+LargeO
ffice_W

orkday_Fault6
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
LO

F
158_HVACv4a_SF+LargeO

ffice_W
orkday_Fault3_orifice

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

159_HVACv4a_SF+LargeO
ffice_W

orkday_Fault6_2
16.2

83.8
17.1

82.9
21.9

78.1
24.8

75.2
LO

F
161_HVACv4a_Boston+LargeO

ffice_W
orkday_random

19.3
80.7

19.3
80.7

14.7
85.3

20.2
79.8

LO
F

163_HVACv4a_Boston+LargeO
ffice_W

orkday_Fault2
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
LO

F
164_HVACv4a_Boston+LargeO

ffice_W
orkday_Fault3

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

165_HVACv4a_Boston+LargeO
ffice_W

orkday_Fault5
23.9

76.1
23.9

76.1
22.0

78.0
22.0

78.0
LO

F
166_HVACv4a_Boston+LargeO

ffice_W
orkday_Fault6

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

168_HVACv4a_Boston+LargeO
ffice_W

orkday_Fault3_orifice
95.6

4.4
96.5

3.5
93.8

6.2
93.8

6.2
LO

F
169_HVACv4a_Boston+LargeO

ffice_W
orkday_Fault6_2

16.8
83.2

17.8
82.2

15.9
84.1

20.6
79.4
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Experim

ent
IsolationForest

201_HVACv6a_3room
_Boston+Sm

allO
ffice_W

orkday_random
8.2

91.8
7.3

92.7
8.2

91.8
8.2

91.8
IsolationForest

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.9

13.1
86.0

14.0
86.9

13.1
89.7

10.3
IsolationForest

203_HVACv6a_3R_Boston+Sm
allO

ffice_Fault2
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
93.6

6.4
92.7

7.3
92.7

7.3
91.8

8.2
IsolationForest

205_HVACv6a_3R_Boston+Sm
allO

ffice_Fault 4
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

211_HVACv6a_3room
_Boston+LargeO

ffice_W
orkday_random

7.3
92.7

6.4
93.6

8.2
91.8

8.2
91.8

IsolationForest
212_HVACv6a_3room

_Boston+LargeO
ffice_Fault 1

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
213_HVACv6a_3room

_Boston+LargeO
ffice_Fault 2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
214_HVACv6a_3room

_Boston+LargeO
ffice_Fault3

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
215_HVACv6a_3room

_Boston+LargeO
ffice_Fault 4

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
216_HVACv6a_3room

_Boston+LargeO
ffice_Fault5

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
221_HVACv6a_3room

_SF+Sm
allO

ffice_W
orkday_random

7.2
92.8

8.1
91.9

7.2
92.8

14.4
85.6

IsolationForest
222_HVACv6a_3room

_SF+Sm
allO

ffice_Fault1
99.1

0.9
98.2

1.8
98.2

1.8
97.3

2.7
IsolationForest

223_HVACv6a_3room
_SF+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
224_HVACv6a_3room

_SF+Sm
allO

ffice_Fault3
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

225_HVACv6a_3room
_SF+Sm

allO
ffice_Fault 4

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
226_HVACv6a_3room

_SF+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
IsolationForest

231_HVACv6a_3room
_SF+LargeO

ffice_W
orkday_random

6.4
93.6

3.6
96.4

4.5
95.5

2.7
97.3

IsolationForest
232_HVACv6a_3room

_SF+LargeO
ffice_Fault 1

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
233_HVACv6a_3room

_SF+LargeO
ffice_Fault 2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
234_HVACv6a_3room

_SF+LargeO
ffice_Fault3

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
235_HVACv6a_3room

_SF+LargeO
ffice_Fault 4

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

IsolationForest
236_HVACv6a_3room

_SF+LargeO
ffice_Fault5

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

201_HVACv6a_3room
_Boston+Sm

allO
ffice_W

orkday_random
9.1

90.9
9.1

90.9
10.0

90.0
10.0

90.0
LO

F
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

63.6
36.4

62.6
37.4

60.7
39.3

65.4
34.6

LO
F

203_HVACv6a_3R_Boston+Sm
allO

ffice_Fault2
99.1

0.9
99.1

0.9
100.0

0.0
99.1

0.9
LO

F
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

62.7
37.3

64.5
35.5

67.3
32.7

LO
F

205_HVACv6a_3R_Boston+Sm
allO

ffice_Fault 4
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
LO

F
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

211_HVACv6a_3room
_Boston+LargeO

ffice_W
orkday_random

9.1
90.9

8.2
91.8

10.9
89.1

10.9
89.1

LO
F

212_HVACv6a_3room
_Boston+LargeO

ffice_Fault 1
98.3

1.7
98.3

1.7
98.3

1.7
99.2

0.8
LO

F
213_HVACv6a_3room

_Boston+LargeO
ffice_Fault 2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

214_HVACv6a_3room
_Boston+LargeO

ffice_Fault3
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
LO

F
215_HVACv6a_3room

_Boston+LargeO
ffice_Fault 4

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

216_HVACv6a_3room
_Boston+LargeO

ffice_Fault5
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
LO

F
221_HVACv6a_3room

_SF+Sm
allO

ffice_W
orkday_random

8.1
91.9

7.2
92.8

2.7
97.3

10.8
89.2

LO
F

222_HVACv6a_3room
_SF+Sm

allO
ffice_Fault1

52.7
47.3

61.8
38.2

50.0
50.0

58.2
41.8

LO
F

223_HVACv6a_3room
_SF+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

224_HVACv6a_3room
_SF+Sm

allO
ffice_Fault3

97.3
2.7

94.5
5.5

100.0
0.0

92.7
7.3

LO
F

225_HVACv6a_3room
_SF+Sm

allO
ffice_Fault 4

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

226_HVACv6a_3room
_SF+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

231_HVACv6a_3room
_SF+LargeO

ffice_W
orkday_random

8.2
91.8

5.5
94.5

1.8
98.2

4.5
95.5

LO
F

232_HVACv6a_3room
_SF+LargeO

ffice_Fault 1
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
LO

F
233_HVACv6a_3room

_SF+LargeO
ffice_Fault 2

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

234_HVACv6a_3room
_SF+LargeO

ffice_Fault3
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
LO

F
235_HVACv6a_3room

_SF+LargeO
ffice_Fault 4

100.0
0.0

100.0
0.0

100.0
0.0

100.0
0.0

LO
F

236_HVACv6a_3room
_SF+LargeO

ffice_Fault5
100.0

0.0
100.0

0.0
100.0

0.0
100.0

0.0
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Distance m
easure

Euclidean
Euclidean

High‐low
High‐low

Rates
Fault detection rate

N
orm

al operation rate
Fault detection rate

N
orm

al operation rate
Anom

aly algorithm
Contam

ination
Experim

ent
IsolationForest

0.001
130_HVACv4a_Boston+Sm

allO
ffice_W

orkday
13.29639889

86.70360111
11.63434903

88.36565097
IsolationForest

0.001
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
12.62135922

87.37864078
8.737864078

91.26213592
IsolationForest

0.001
133_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault2
100

0
100

0
IsolationForest

0.001
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
95.3271028

4.672897196
95.3271028

4.672897196
IsolationForest

0.001
135_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault5
32.71028037

67.28971963
36.44859813

63.55140187
IsolationForest

0.001
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
69.72477064

30.27522936
72.47706422

27.52293578
IsolationForest

0.001
138_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3_orifice
70.19230769

29.80769231
68.26923077

31.73076923
IsolationForest

0.001
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
10.28037383

89.71962617
12.14953271

87.85046729
IsolationForest

0.002
130_HVACv4a_Boston+Sm

allO
ffice_W

orkday
12.18836565

87.81163435
11.91135734

88.08864266
IsolationForest

0.002
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
11.65048544

88.34951456
9.708737864

90.29126214
IsolationForest

0.002
133_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault2
100

0
100

0
IsolationForest

0.002
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
94.39252336

5.607476636
94.39252336

5.607476636
IsolationForest

0.002
135_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault5
32.71028037

67.28971963
35.51401869

64.48598131
IsolationForest

0.002
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
71.55963303

28.44036697
72.47706422

27.52293578
IsolationForest

0.002
138_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3_orifice
71.15384615

28.84615385
70.19230769

29.80769231
IsolationForest

0.002
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
11.21495327

88.78504673
9.345794393

90.65420561
IsolationForest

0.003
130_HVACv4a_Boston+Sm

allO
ffice_W

orkday
13.29639889

86.70360111
11.35734072

88.64265928
IsolationForest

0.003
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
12.62135922

87.37864078
10.67961165

89.32038835
IsolationForest

0.003
133_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault2
100

0
100

0
IsolationForest

0.003
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
93.45794393

6.542056075
94.39252336

5.607476636
IsolationForest

0.003
135_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault5
35.51401869

64.48598131
34.57943925

65.42056075
IsolationForest

0.003
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
70.64220183

29.35779817
70.64220183

29.35779817
IsolationForest

0.003
138_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3_orifice
73.07692308

26.92307692
67.30769231

32.69230769
IsolationForest

0.003
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
10.28037383

89.71962617
12.14953271

87.85046729
IsolationForest

0.004
130_HVACv4a_Boston+Sm

allO
ffice_W

orkday
13.29639889

86.70360111
11.63434903

88.36565097
IsolationForest

0.004
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
13.59223301

86.40776699
10.67961165

89.32038835
IsolationForest

0.004
133_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault2
100

0
100

0
IsolationForest

0.004
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
94.39252336

5.607476636
94.39252336

5.607476636
IsolationForest

0.004
135_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault5
33.64485981

66.35514019
35.51401869

64.48598131
IsolationForest

0.004
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
75.2293578

24.7706422
71.55963303

28.44036697
IsolationForest

0.004
138_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3_orifice
72.11538462

27.88461538
67.30769231

32.69230769
IsolationForest

0.004
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
10.28037383

89.71962617
12.14953271

87.85046729
IsolationForest

0.005
130_HVACv4a_Boston+Sm

allO
ffice_W

orkday
11.63434903

88.36565097
11.91135734

88.08864266
IsolationForest

0.005
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
12.62135922

87.37864078
10.67961165

89.32038835
IsolationForest

0.005
133_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault2
100

0
100

0
IsolationForest

0.005
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
93.45794393

6.542056075
95.3271028

4.672897196
IsolationForest

0.005
135_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault5
33.64485981

66.35514019
36.44859813

63.55140187
IsolationForest

0.005
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
70.64220183

29.35779817
69.72477064

30.27522936
IsolationForest

0.005
138_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3_orifice
72.11538462

27.88461538
68.26923077

31.73076923
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IsolationForest
0.005

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

11.21495327
88.78504673

13.08411215
86.91588785

IsolationForest
0.006

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

11.91135734
88.08864266

12.74238227
87.25761773

IsolationForest
0.006

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

11.65048544
88.34951456

10.67961165
89.32038835

IsolationForest
0.006

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.006

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

93.45794393
6.542056075

96.26168224
3.738317757

IsolationForest
0.006

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

36.44859813
63.55140187

37.38317757
62.61682243

IsolationForest
0.006

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

67.88990826
32.11009174

73.39449541
26.60550459

IsolationForest
0.006

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

73.07692308
26.92307692

69.23076923
30.76923077

IsolationForest
0.006

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

10.28037383
89.71962617

13.08411215
86.91588785

IsolationForest
0.007

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

11.08033241
88.91966759

11.08033241
88.91966759

IsolationForest
0.007

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

15.53398058
84.46601942

11.65048544
88.34951456

IsolationForest
0.007

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.007

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

92.52336449
7.476635514

94.39252336
5.607476636

IsolationForest
0.007

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

33.64485981
66.35514019

34.57943925
65.42056075

IsolationForest
0.007

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

73.39449541
26.60550459

73.39449541
26.60550459

IsolationForest
0.007

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

72.11538462
27.88461538

67.30769231
32.69230769

IsolationForest
0.007

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

12.14953271
87.85046729

13.08411215
86.91588785

IsolationForest
0.008

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

12.74238227
87.25761773

13.01939058
86.98060942

IsolationForest
0.008

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

13.59223301
86.40776699

9.708737864
90.29126214

IsolationForest
0.008

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.008

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

93.45794393
6.542056075

93.45794393
6.542056075

IsolationForest
0.008

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

35.51401869
64.48598131

35.51401869
64.48598131

IsolationForest
0.008

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

72.47706422
27.52293578

72.47706422
27.52293578

IsolationForest
0.008

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

69.23076923
30.76923077

68.26923077
31.73076923

IsolationForest
0.008

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

11.21495327
88.78504673

13.08411215
86.91588785

IsolationForest
0.009

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

14.12742382
85.87257618

11.35734072
88.64265928

IsolationForest
0.009

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

11.65048544
88.34951456

10.67961165
89.32038835

IsolationForest
0.009

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.009

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

94.39252336
5.607476636

94.39252336
5.607476636

IsolationForest
0.009

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

34.57943925
65.42056075

36.44859813
63.55140187

IsolationForest
0.009

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

75.2293578
24.7706422

74.31192661
25.68807339

IsolationForest
0.009

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

72.11538462
27.88461538

67.30769231
32.69230769

IsolationForest
0.009

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

11.21495327
88.78504673

12.14953271
87.85046729

IsolationForest
0.01

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

12.18836565
87.81163435

12.18836565
87.81163435

IsolationForest
0.01

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

12.62135922
87.37864078

8.737864078
91.26213592

IsolationForest
0.01

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.01

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

92.52336449
7.476635514

95.3271028
4.672897196

IsolationForest
0.01

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

33.64485981
66.35514019

36.44859813
63.55140187

IsolationForest
0.01

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

68.80733945
31.19266055

73.39449541
26.60550459

IsolationForest
0.01

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

70.19230769
29.80769231

68.26923077
31.73076923

IsolationForest
0.01

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

12.14953271
87.85046729

11.21495327
88.78504673

IsolationForest
0.025

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

12.74238227
87.25761773

12.46537396
87.53462604
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IsolationForest
0.025

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

13.59223301
86.40776699

9.708737864
90.29126214

IsolationForest
0.025

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.025

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

94.39252336
5.607476636

94.39252336
5.607476636

IsolationForest
0.025

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

31.77570093
68.22429907

38.31775701
61.68224299

IsolationForest
0.025

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

73.39449541
26.60550459

69.72477064
30.27522936

IsolationForest
0.025

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

70.19230769
29.80769231

69.23076923
30.76923077

IsolationForest
0.025

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

10.28037383
89.71962617

14.01869159
85.98130841

IsolationForest
0.05

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

21.32963989
78.67036011

20.77562327
79.22437673

IsolationForest
0.05

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

21.3592233
78.6407767

18.44660194
81.55339806

IsolationForest
0.05

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.05

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

98.13084112
1.869158879

99.06542056
0.934579439

IsolationForest
0.05

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

40.18691589
59.81308411

42.05607477
57.94392523

IsolationForest
0.05

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

87.1559633
12.8440367

86.23853211
13.76146789

IsolationForest
0.05

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

80.76923077
19.23076923

75.96153846
24.03846154

IsolationForest
0.05

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

22.42990654
77.57009346

18.69158879
81.30841121

IsolationForest
0.075

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

21.05263158
78.94736842

20.22160665
79.77839335

IsolationForest
0.075

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

19.41747573
80.58252427

17.47572816
82.52427184

IsolationForest
0.075

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.075

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

99.06542056
0.934579439

98.13084112
1.869158879

IsolationForest
0.075

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

42.99065421
57.00934579

41.12149533
58.87850467

IsolationForest
0.075

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

88.99082569
11.00917431

86.23853211
13.76146789

IsolationForest
0.075

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

79.80769231
20.19230769

79.80769231
20.19230769

IsolationForest
0.075

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

19.62616822
80.37383178

19.62616822
80.37383178

IsolationForest
0.1

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

30.19390582
69.80609418

27.1468144
72.8531856

IsolationForest
0.1

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

28.15533981
71.84466019

25.24271845
74.75728155

IsolationForest
0.1

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.1

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

99.06542056
0.934579439

99.06542056
0.934579439

IsolationForest
0.1

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

49.53271028
50.46728972

47.6635514
52.3364486

IsolationForest
0.1

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

95.41284404
4.587155963

95.41284404
4.587155963

IsolationForest
0.1

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

87.5
12.5

84.61538462
15.38461538

IsolationForest
0.1

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

28.03738318
71.96261682

23.36448598
76.63551402

IsolationForest
0.125

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

28.80886427
71.19113573

27.1468144
72.8531856

IsolationForest
0.125

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

28.15533981
71.84466019

26.21359223
73.78640777

IsolationForest
0.125

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.125

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

100
0

98.13084112
1.869158879

IsolationForest
0.125

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

47.6635514
52.3364486

44.85981308
55.14018692

IsolationForest
0.125

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

94.49541284
5.504587156

92.66055046
7.339449541

IsolationForest
0.125

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

86.53846154
13.46153846

85.57692308
14.42307692

IsolationForest
0.125

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

30.8411215
69.1588785

25.23364486
74.76635514

IsolationForest
0.15

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

36.28808864
63.71191136

32.68698061
67.31301939

IsolationForest
0.15

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

32.03883495
67.96116505

33.00970874
66.99029126

IsolationForest
0.15

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0
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IsolationForest
0.15

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

100
0

100
0

IsolationForest
0.15

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

51.40186916
48.59813084

51.40186916
48.59813084

IsolationForest
0.15

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

97.24770642
2.752293578

97.24770642
2.752293578

IsolationForest
0.15

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

90.38461538
9.615384615

90.38461538
9.615384615

IsolationForest
0.15

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

33.64485981
66.35514019

33.64485981
66.35514019

IsolationForest
0.175

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

36.56509695
63.43490305

32.68698061
67.31301939

IsolationForest
0.175

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

32.03883495
67.96116505

33.00970874
66.99029126

IsolationForest
0.175

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.175

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

100
0

100
0

IsolationForest
0.175

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

52.3364486
47.6635514

52.3364486
47.6635514

IsolationForest
0.175

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

97.24770642
2.752293578

95.41284404
4.587155963

IsolationForest
0.175

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

89.42307692
10.57692308

91.34615385
8.653846154

IsolationForest
0.175

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

35.51401869
64.48598131

35.51401869
64.48598131

IsolationForest
0.2

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

43.2132964
56.7867036

40.16620499
59.83379501

IsolationForest
0.2

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

37.86407767
62.13592233

34.95145631
65.04854369

IsolationForest
0.2

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

IsolationForest
0.2

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

100
0

100
0

IsolationForest
0.2

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

55.14018692
44.85981308

55.14018692
44.85981308

IsolationForest
0.2

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

97.24770642
2.752293578

98.16513761
1.834862385

IsolationForest
0.2

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

94.23076923
5.769230769

94.23076923
5.769230769

IsolationForest
0.2

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

42.99065421
57.00934579

41.12149533
58.87850467

LO
F

0.001
130_HVACv4a_Boston+Sm

allO
ffice_W

orkday
13.29639889

86.70360111
9.418282548

90.58171745
LO

F
0.001

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

20.38834951
79.61165049

14.5631068
85.4368932

LO
F

0.001
133_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault2
100

0
100

0
LO

F
0.001

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

90.65420561
9.345794393

86.91588785
13.08411215

LO
F

0.001
135_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault5
34.57943925

65.42056075
35.51401869

64.48598131
LO

F
0.001

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

93.57798165
6.422018349

92.66055046
7.339449541

LO
F

0.001
138_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3_orifice
75.96153846

24.03846154
72.11538462

27.88461538
LO

F
0.001

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

14.95327103
85.04672897

14.01869159
85.98130841

LO
F

0.002
130_HVACv4a_Boston+Sm

allO
ffice_W

orkday
13.29639889

86.70360111
9.418282548

90.58171745
LO

F
0.002

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

20.38834951
79.61165049

14.5631068
85.4368932

LO
F

0.002
133_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault2
100

0
100

0
LO

F
0.002

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

90.65420561
9.345794393

86.91588785
13.08411215

LO
F

0.002
135_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault5
34.57943925

65.42056075
35.51401869

64.48598131
LO

F
0.002

136_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6

93.57798165
6.422018349

92.66055046
7.339449541

LO
F

0.002
138_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3_orifice
75.96153846

24.03846154
72.11538462

27.88461538
LO

F
0.002

139_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault6_2

14.95327103
85.04672897

14.01869159
85.98130841

LO
F

0.003
130_HVACv4a_Boston+Sm

allO
ffice_W

orkday
13.29639889

86.70360111
9.418282548

90.58171745
LO

F
0.003

131_HVACv4a_Boston+Sm
allO

ffice_W
orkday_random

20.38834951
79.61165049

14.5631068
85.4368932

LO
F

0.003
133_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault2
100

0
100

0
LO

F
0.003

134_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3

90.65420561
9.345794393

86.91588785
13.08411215

LO
F

0.003
135_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault5
34.57943925

65.42056075
35.51401869

64.48598131
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LO
F

0.003
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
93.57798165

6.422018349
92.66055046

7.339449541
LO

F
0.003

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

75.96153846
24.03846154

72.11538462
27.88461538

LO
F

0.003
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
14.95327103

85.04672897
14.01869159

85.98130841
LO

F
0.004

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

13.29639889
86.70360111

9.418282548
90.58171745

LO
F

0.004
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
20.38834951

79.61165049
14.5631068

85.4368932
LO

F
0.004

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.004
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
90.65420561

9.345794393
86.91588785

13.08411215
LO

F
0.004

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

34.57943925
65.42056075

35.51401869
64.48598131

LO
F

0.004
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
93.57798165

6.422018349
92.66055046

7.339449541
LO

F
0.004

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

75.96153846
24.03846154

72.11538462
27.88461538

LO
F

0.004
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
14.95327103

85.04672897
14.01869159

85.98130841
LO

F
0.005

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

13.29639889
86.70360111

9.418282548
90.58171745

LO
F

0.005
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
20.38834951

79.61165049
14.5631068

85.4368932
LO

F
0.005

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.005
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
90.65420561

9.345794393
86.91588785

13.08411215
LO

F
0.005

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

34.57943925
65.42056075

35.51401869
64.48598131

LO
F

0.005
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
93.57798165

6.422018349
92.66055046

7.339449541
LO

F
0.005

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

75.96153846
24.03846154

72.11538462
27.88461538

LO
F

0.005
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
14.95327103

85.04672897
14.01869159

85.98130841
LO

F
0.006

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

13.29639889
86.70360111

9.418282548
90.58171745

LO
F

0.006
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
20.38834951

79.61165049
14.5631068

85.4368932
LO

F
0.006

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.006
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
90.65420561

9.345794393
86.91588785

13.08411215
LO

F
0.006

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

34.57943925
65.42056075

35.51401869
64.48598131

LO
F

0.006
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
93.57798165

6.422018349
92.66055046

7.339449541
LO

F
0.006

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

75.96153846
24.03846154

72.11538462
27.88461538

LO
F

0.006
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
14.95327103

85.04672897
14.01869159

85.98130841
LO

F
0.007

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

13.29639889
86.70360111

9.418282548
90.58171745

LO
F

0.007
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
20.38834951

79.61165049
14.5631068

85.4368932
LO

F
0.007

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.007
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
90.65420561

9.345794393
86.91588785

13.08411215
LO

F
0.007

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

34.57943925
65.42056075

35.51401869
64.48598131

LO
F

0.007
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
93.57798165

6.422018349
92.66055046

7.339449541
LO

F
0.007

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

75.96153846
24.03846154

72.11538462
27.88461538

LO
F

0.007
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
14.95327103

85.04672897
14.01869159

85.98130841
LO

F
0.008

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

13.29639889
86.70360111

9.418282548
90.58171745

LO
F

0.008
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
20.38834951

79.61165049
14.5631068

85.4368932
LO

F
0.008

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.008
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
90.65420561

9.345794393
86.91588785

13.08411215
LO

F
0.008

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

34.57943925
65.42056075

35.51401869
64.48598131

LO
F

0.008
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
93.57798165

6.422018349
92.66055046

7.339449541
LO

F
0.008

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

75.96153846
24.03846154

72.11538462
27.88461538
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LO
F

0.008
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
14.95327103

85.04672897
14.01869159

85.98130841
LO

F
0.009

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

13.01939058
86.98060942

9.418282548
90.58171745

LO
F

0.009
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
20.38834951

79.61165049
14.5631068

85.4368932
LO

F
0.009

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.009
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
90.65420561

9.345794393
86.91588785

13.08411215
LO

F
0.009

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

34.57943925
65.42056075

35.51401869
64.48598131

LO
F

0.009
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
93.57798165

6.422018349
92.66055046

7.339449541
LO

F
0.009

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

75.96153846
24.03846154

72.11538462
27.88461538

LO
F

0.009
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
14.95327103

85.04672897
14.01869159

85.98130841
LO

F
0.01

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

13.29639889
86.70360111

9.418282548
90.58171745

LO
F

0.01
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
20.38834951

79.61165049
14.5631068

85.4368932
LO

F
0.01

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.01
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
90.65420561

9.345794393
86.91588785

13.08411215
LO

F
0.01

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

34.57943925
65.42056075

35.51401869
64.48598131

LO
F

0.01
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
93.57798165

6.422018349
92.66055046

7.339449541
LO

F
0.01

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

75.96153846
24.03846154

72.11538462
27.88461538

LO
F

0.01
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
14.95327103

85.04672897
14.01869159

85.98130841
LO

F
0.025

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

13.29639889
86.70360111

9.418282548
90.58171745

LO
F

0.025
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
20.38834951

79.61165049
14.5631068

85.4368932
LO

F
0.025

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.025
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
90.65420561

9.345794393
86.91588785

13.08411215
LO

F
0.025

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

34.57943925
65.42056075

35.51401869
64.48598131

LO
F

0.025
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
93.57798165

6.422018349
92.66055046

7.339449541
LO

F
0.025

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

75.96153846
24.03846154

72.11538462
27.88461538

LO
F

0.025
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
14.95327103

85.04672897
14.01869159

85.98130841
LO

F
0.05

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

18.55955679
81.44044321

14.95844875
85.04155125

LO
F

0.05
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
25.24271845

74.75728155
22.33009709

77.66990291
LO

F
0.05

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.05
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
95.3271028

4.672897196
93.45794393

6.542056075
LO

F
0.05

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

42.05607477
57.94392523

40.18691589
59.81308411

LO
F

0.05
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
95.41284404

4.587155963
96.33027523

3.669724771
LO

F
0.05

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

80.76923077
19.23076923

75.96153846
24.03846154

LO
F

0.05
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
23.36448598

76.63551402
21.4953271

78.5046729
LO

F
0.075

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

18.55955679
81.44044321

14.95844875
85.04155125

LO
F

0.075
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
25.24271845

74.75728155
22.33009709

77.66990291
LO

F
0.075

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.075
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
95.3271028

4.672897196
93.45794393

6.542056075
LO

F
0.075

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

42.05607477
57.94392523

40.18691589
59.81308411

LO
F

0.075
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
95.41284404

4.587155963
96.33027523

3.669724771
LO

F
0.075

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

80.76923077
19.23076923

75.96153846
24.03846154

LO
F

0.075
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
23.36448598

76.63551402
21.4953271

78.5046729
LO

F
0.1

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

23.54570637
76.45429363

19.11357341
80.88642659
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LO
F

0.1
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
31.06796117

68.93203883
26.21359223

73.78640777
LO

F
0.1

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.1
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
96.26168224

3.738317757
94.39252336

5.607476636
LO

F
0.1

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

49.53271028
50.46728972

44.85981308
55.14018692

LO
F

0.1
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
97.24770642

2.752293578
96.33027523

3.669724771
LO

F
0.1

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

82.69230769
17.30769231

79.80769231
20.19230769

LO
F

0.1
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
28.97196262

71.02803738
26.1682243

73.8317757
LO

F
0.125

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

23.54570637
76.45429363

19.11357341
80.88642659

LO
F

0.125
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
31.06796117

68.93203883
26.21359223

73.78640777
LO

F
0.125

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.125
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
96.26168224

3.738317757
94.39252336

5.607476636
LO

F
0.125

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

49.53271028
50.46728972

44.85981308
55.14018692

LO
F

0.125
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
97.24770642

2.752293578
96.33027523

3.669724771
LO

F
0.125

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

82.69230769
17.30769231

79.80769231
20.19230769

LO
F

0.125
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
28.97196262

71.02803738
26.1682243

73.8317757
LO

F
0.15

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

29.6398892
70.3601108

24.65373961
75.34626039

LO
F

0.15
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
35.9223301

64.0776699
29.12621359

70.87378641
LO

F
0.15

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.15
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
98.13084112

1.869158879
98.13084112

1.869158879
LO

F
0.15

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

55.14018692
44.85981308

52.3364486
47.6635514

LO
F

0.15
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
100

0
100

0
LO

F
0.15

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

83.65384615
16.34615385

80.76923077
19.23076923

LO
F

0.15
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
30.8411215

69.1588785
33.64485981

66.35514019
LO

F
0.175

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

29.6398892
70.3601108

24.93074792
75.06925208

LO
F

0.175
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
35.9223301

64.0776699
29.12621359

70.87378641
LO

F
0.175

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.175
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
98.13084112

1.869158879
98.13084112

1.869158879
LO

F
0.175

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

55.14018692
44.85981308

52.3364486
47.6635514

LO
F

0.175
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
100

0
100

0
LO

F
0.175

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

83.65384615
16.34615385

80.76923077
19.23076923

LO
F

0.175
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
30.8411215

69.1588785
33.64485981

66.35514019
LO

F
0.2

130_HVACv4a_Boston+Sm
allO

ffice_W
orkday

33.51800554
66.48199446

28.80886427
71.19113573

LO
F

0.2
131_HVACv4a_Boston+Sm

allO
ffice_W

orkday_random
39.80582524

60.19417476
36.89320388

63.10679612
LO

F
0.2

133_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault2

100
0

100
0

LO
F

0.2
134_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault3
99.06542056

0.934579439
99.06542056

0.934579439
LO

F
0.2

135_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault5

59.81308411
40.18691589

57.00934579
42.99065421

LO
F

0.2
136_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6
100

0
100

0
LO

F
0.2

138_HVACv4a_Boston+Sm
allO

ffice_W
orkday_Fault3_orifice

88.46153846
11.53846154

83.65384615
16.34615385

LO
F

0.2
139_HVACv4a_Boston+Sm

allO
ffice_W

orkday_Fault6_2
35.51401869

64.48598131
35.51401869

64.48598131
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Distance m
easure

Euclidean
Euclidean

High‐low
High‐low

Rates
Fault detection rate

N
orm

al operation rate
Fault detection rate

N
orm

al operation rate
Anom

aly algorithm
Contam

ination
Experim

ent
IsolationForest

0.001
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

7.3
92.7

6.4
93.6

IsolationForest
0.001

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.0

14.0
86.9

13.1
IsolationForest

0.001
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.001

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
92.7

7.3
92.7

7.3
IsolationForest

0.001
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.001

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.002
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

6.4
93.6

8.2
91.8

IsolationForest
0.002

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.0

14.0
86.0

14.0
IsolationForest

0.002
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.002

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
93.6

6.4
91.8

8.2
IsolationForest

0.002
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.002

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.003
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

5.5
94.5

IsolationForest
0.003

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.0

14.0
86.0

14.0
IsolationForest

0.003
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.003

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
91.8

8.2
90.9

9.1
IsolationForest

0.003
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.003

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.004
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

7.3
92.7

8.2
91.8

IsolationForest
0.004

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.9

13.1
86.0

14.0
IsolationForest

0.004
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.004

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
92.7

7.3
93.6

6.4
IsolationForest

0.004
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.004

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.005
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

7.3
92.7

11.8
88.2

IsolationForest
0.005

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
87.9

12.1
86.0

14.0
IsolationForest

0.005
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.005

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
92.7

7.3
94.5

5.5
IsolationForest

0.005
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.005

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.006
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

7.3
92.7

6.4
93.6

IsolationForest
0.006

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.0

14.0
86.9

13.1
IsolationForest

0.006
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.006

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
90.0

10.0
92.7

7.3
IsolationForest

0.006
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.006

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.007
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

6.4
93.6

6.4
93.6

IsolationForest
0.007

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
87.9

12.1
86.0

14.0
IsolationForest

0.007
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0
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IsolationForest
0.007

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
93.6

6.4
92.7

7.3
IsolationForest

0.007
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.007

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.008
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

8.2
91.8

IsolationForest
0.008

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.9

13.1
85.0

15.0
IsolationForest

0.008
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.008

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
92.7

7.3
95.5

4.5
IsolationForest

0.008
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.008

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.009
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

6.4
93.6

6.4
93.6

IsolationForest
0.009

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.9

13.1
86.0

14.0
IsolationForest

0.009
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.009

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
93.6

6.4
92.7

7.3
IsolationForest

0.009
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.009

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.01
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

5.5
94.5

IsolationForest
0.01

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.0

14.0
85.0

15.0
IsolationForest

0.01
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.01

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
93.6

6.4
92.7

7.3
IsolationForest

0.01
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.01

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.02
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

8.2
91.8

IsolationForest
0.02

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
86.9

13.1
85.0

15.0
IsolationForest

0.02
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.02

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
93.6

6.4
93.6

6.4
IsolationForest

0.02
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.02

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.04
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

15.5
84.5

13.6
86.4

IsolationForest
0.04

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
91.6

8.4
87.9

12.1
IsolationForest

0.04
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.04

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
96.4

3.6
97.3

2.7
IsolationForest

0.04
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.04

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.06
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

16.4
83.6

16.4
83.6

IsolationForest
0.06

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
89.7

10.3
88.8

11.2
IsolationForest

0.06
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.06

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
95.5

4.5
97.3

2.7
IsolationForest

0.06
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.06

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.08
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

25.5
74.5

20.0
80.0

IsolationForest
0.08

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
92.5

7.5
92.5

7.5
IsolationForest

0.08
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0
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IsolationForest
0.08

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
97.3

2.7
99.1

0.9
IsolationForest

0.08
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.08

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.1
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

31.8
68.2

26.4
73.6

IsolationForest
0.1

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
92.5

7.5
93.5

6.5
IsolationForest

0.1
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.1

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
100.0

0.0
100.0

0.0
IsolationForest

0.1
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.1

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.2
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

48.2
51.8

47.3
52.7

IsolationForest
0.2

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
93.5

6.5
93.5

6.5
IsolationForest

0.2
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.2

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
100.0

0.0
100.0

0.0
IsolationForest

0.2
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.2

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.3
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

59.1
40.9

60.0
40.0

IsolationForest
0.3

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
97.2

2.8
96.3

3.7
IsolationForest

0.3
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.3

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
100.0

0.0
100.0

0.0
IsolationForest

0.3
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.3

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.4
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

70.0
30.0

71.8
28.2

IsolationForest
0.4

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
98.1

1.9
98.1

1.9
IsolationForest

0.4
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.4

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
100.0

0.0
100.0

0.0
IsolationForest

0.4
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.4

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
IsolationForest

0.5
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

82.7
17.3

83.6
16.4

IsolationForest
0.5

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
100.0

0.0
100.0

0.0
IsolationForest

0.5
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

IsolationForest
0.5

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
100.0

0.0
100.0

0.0
IsolationForest

0.5
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

IsolationForest
0.5

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
LO

F
0.001

201_HVACv6a_3room
_Boston+Sm

allO
ffice_W

orkday_random
9.1

90.9
10.0

90.0
LO

F
0.001

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
62.6

37.4
60.7

39.3
LO

F
0.001

203_HVACv6a_3R_Boston+Sm
allO

ffice_Fault2
99.1

0.9
100.0

0.0
LO

F
0.001

204_HVACv6a_3R_Boston+Sm
allO

ffice_Fault3
62.7

37.3
64.5

35.5
LO

F
0.001

205_HVACv6a_3R_Boston+Sm
allO

ffice_Fault4
100.0

0.0
100.0

0.0
LO

F
0.001

206_HVACv6a_3R_Boston+Sm
allO

ffice_Fault5
100.0

0.0
100.0

0.0
LO

F
0.002

201_HVACv6a_3room
_Boston+Sm

allO
ffice_W

orkday_random
9.1

90.9
10.0

90.0
LO

F
0.002

202_HVACv6a_3R_Boston+Sm
allO

ffice_Fault1
62.6

37.4
60.7

39.3
LO

F
0.002

203_HVACv6a_3R_Boston+Sm
allO

ffice_Fault2
99.1

0.9
100.0

0.0
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LO
F

0.002
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.002
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.002
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.003
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

10.0
90.0

LO
F

0.003
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

62.6
37.4

60.7
39.3

LO
F

0.003
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

99.1
0.9

100.0
0.0

LO
F

0.003
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.003
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.003
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.004
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

10.0
90.0

LO
F

0.004
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

62.6
37.4

60.7
39.3

LO
F

0.004
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

99.1
0.9

100.0
0.0

LO
F

0.004
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.004
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.004
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.005
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

10.0
90.0

LO
F

0.005
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

62.6
37.4

60.7
39.3

LO
F

0.005
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

99.1
0.9

100.0
0.0

LO
F

0.005
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.005
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.005
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.006
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

10.0
90.0

LO
F

0.006
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

62.6
37.4

60.7
39.3

LO
F

0.006
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

99.1
0.9

100.0
0.0

LO
F

0.006
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.006
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.006
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.007
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

10.0
90.0

LO
F

0.007
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

62.6
37.4

60.7
39.3

LO
F

0.007
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

99.1
0.9

100.0
0.0

LO
F

0.007
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.007
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.007
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.008
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

10.0
90.0

LO
F

0.008
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

62.6
37.4

60.7
39.3

LO
F

0.008
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

99.1
0.9

100.0
0.0

LO
F

0.008
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.008
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.008
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.009
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

10.0
90.0

LO
F

0.009
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

62.6
37.4

60.7
39.3

LO
F

0.009
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

99.1
0.9

100.0
0.0
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LO
F

0.009
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.009
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.009
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.01
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

10.0
90.0

LO
F

0.01
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

62.6
37.4

60.7
39.3

LO
F

0.01
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

99.1
0.9

100.0
0.0

LO
F

0.01
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.01
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.01
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.02
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

9.1
90.9

10.0
90.0

LO
F

0.02
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

62.6
37.4

60.7
39.3

LO
F

0.02
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

99.1
0.9

100.0
0.0

LO
F

0.02
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

62.7
37.3

64.5
35.5

LO
F

0.02
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.02
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.04
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

14.5
85.5

18.2
81.8

LO
F

0.04
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

76.6
23.4

78.5
21.5

LO
F

0.04
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

LO
F

0.04
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

79.1
20.9

80.0
20.0

LO
F

0.04
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.04
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.06
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

14.5
85.5

18.2
81.8

LO
F

0.06
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

76.6
23.4

78.5
21.5

LO
F

0.06
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

LO
F

0.06
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

79.1
20.9

80.0
20.0

LO
F

0.06
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.06
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.08
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

27.3
72.7

22.7
77.3

LO
F

0.08
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

84.1
15.9

87.9
12.1

LO
F

0.08
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

LO
F

0.08
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

90.9
9.1

88.2
11.8

LO
F

0.08
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.08
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.1
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

34.5
65.5

30.0
70.0

LO
F

0.1
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

91.6
8.4

91.6
8.4

LO
F

0.1
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

LO
F

0.1
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

95.5
4.5

96.4
3.6

LO
F

0.1
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.1
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.2
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

59.1
40.9

59.1
40.9

LO
F

0.2
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

97.2
2.8

97.2
2.8

LO
F

0.2
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0
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LO
F

0.2
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

97.3
2.7

98.2
1.8

LO
F

0.2
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.2
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.3
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

75.5
24.5

74.5
25.5

LO
F

0.3
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

99.1
0.9

99.1
0.9

LO
F

0.3
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

LO
F

0.3
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

99.1
0.9

98.2
1.8

LO
F

0.3
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.3
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.4
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

88.2
11.8

87.3
12.7

LO
F

0.4
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

100.0
0.0

100.0
0.0

LO
F

0.4
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

LO
F

0.4
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

100.0
0.0

99.1
0.9

LO
F

0.4
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.4
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0

LO
F

0.5
201_HVACv6a_3room

_Boston+Sm
allO

ffice_W
orkday_random

93.6
6.4

94.5
5.5

LO
F

0.5
202_HVACv6a_3R_Boston+Sm

allO
ffice_Fault1

100.0
0.0

100.0
0.0

LO
F

0.5
203_HVACv6a_3R_Boston+Sm

allO
ffice_Fault2

100.0
0.0

100.0
0.0

LO
F

0.5
204_HVACv6a_3R_Boston+Sm

allO
ffice_Fault3

100.0
0.0

100.0
0.0

LO
F

0.5
205_HVACv6a_3R_Boston+Sm

allO
ffice_Fault4

100.0
0.0

100.0
0.0

LO
F

0.5
206_HVACv6a_3R_Boston+Sm

allO
ffice_Fault5

100.0
0.0

100.0
0.0
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