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Consensus and conflict among 
ecological forecasts of Zika virus 
outbreaks in the United States
Colin J. Carlson   1,2, Eric Dougherty   3, Mike Boots4, Wayne Getz   3,5 & Sadie J. Ryan 6,7,8

Ecologists are increasingly involved in the pandemic prediction process. In the course of the Zika 
outbreak in the Americas, several ecological models were developed to forecast the potential global 
distribution of the disease. Conflicting results produced by alternative methods are unresolved, 
hindering the development of appropriate public health forecasts. We compare ecological niche models 
and experimentally-driven mechanistic forecasts for Zika transmission in the continental United States. 
We use generic and uninformed stochastic county-level simulations to demonstrate the downstream 
epidemiological consequences of conflict among ecological models, and show how assumptions and 
parameterization in the ecological and epidemiological models propagate uncertainty and produce 
downstream model conflict. We conclude by proposing a basic consensus method that could resolve 
conflicting models of potential outbreak geography and seasonality. Our results illustrate the usually-
undocumented margin of uncertainty that could emerge from using any one of these predictions 
without reservation or qualification. In the short term, ecologists face the task of developing better post 
hoc consensus that accurately forecasts spatial patterns of Zika virus outbreaks. Ultimately, methods 
are needed that bridge the gap between ecological and epidemiological approaches to predicting 
transmission and realistically capture both outbreak size and geography.

In the urgent setting of pandemic response, ecologists have begun to play an increasingly important role1. 
Ecological variables like temperature and precipitation often play just as important a role as socioeconomic risk 
factors in the vector-borne transmission cycle, governing key parameters including transmission rates, vector 
lifespan, and extrinsic incubation period2; the statistical relationships among these variables can be exploited to 
develop predictive frameworks for vector-borne disease outbreaks. These models are often developed for mecha-
nistic prediction at local scales, but ecologists have recently begun to play a more important role in predicting the 
overall possible distribution of emerging infections. Ecological niche modeling is a typically phenomenological 
method that correlates occurrence data with environmental variables to make inferences about the geographic 
boundaries of potential transmission3. Within niche modeling approaches, there are conflicting views regarding 
which algorithms are appropriate to use in the context of particular applications4–6, and consensus methods have 
hardly advanced beyond basic model averaging7. As an increasingly popular alternative, mechanistic ecological 
models have been developed that extrapolate geographic projections from experimental results8, but these can 
be data-intensive and highly sensitive to parameterization8–10. In theory, the two approaches—phenomenological 
and top-down, or mechanistic and bottom-up—should be roughly congruent when implemented with sufficient 
data and predictors, as they approximate the same pattern11. Yet discrepancies between the two approaches in 
practice highlight a tension in species distribution modeling, between deductive approaches that infer ecology 
from observed broad-scale patterns, and inductive approaches that scale ecological experiments to predict real 
patterns. In the context of pandemic response, the trade-off has acute stakes: early access to ecological predictions 
can help pandemic efforts, but inaccurate information based on limited data could drive misallocation of public 
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health resources12. Thus, there is a clear need to develop better consensus methods, but even before that, a need to 
understand the epidemiological implications of the differences among model-building approaches.

The Zika virus (henceforth Zika) pandemic that was first detected in Brazil in 2015 highlights the unusual 
and sensitive challenges of pandemic response. A number of characteristics make Zika unique from a public 
health standpoint, including its rapid spread through the Americas after a slow, multi-decade spread from Africa 
through Asia; the appearance of a sexual route of transmission, a rare feature for a vector-borne pathogen; and 
perhaps most importantly, the appearance of high rates of microcephaly, and more broadly the emergence of Zika 
congenital syndrome. At least 11,000 confirmed cases of Zika have affected pregnant women, leading to roughly 
10,000 cases of birth defects, including microcephaly13. As of April 6, 2017, a total of 207,557 confirmed cases of 
autochthonous transmission (out of 762,036 including suspected cases) have been recorded in the Americas14. 
Moreover, Zika is exceptional among vector-borne diseases in that it has developed a sexual pathway of transmis-
sion in humans (comparable examples, such as canine leishmaniasis, are uncommon15). The rapid spread of Zika 
virus from Brazil throughout the Americas has posed a particular problem for ecologists involved in pandemic 
response, as several different ecological niche models (ENMs)12,16,17 and a handful of mechanistic forecasts10 have 
been developed to project the potential full spread of the pathogen. So far, autochthonous transmission has been 
recorded throughout most of Central America and the Caribbean, with cases as far north as the southern tips of 
Texas and Florida.

In this study, we focus on the United States as a test system for exploring conflict between different model 
predictions. A Brazil-scale outbreak of Zika in the United States could be devastating; one model for only six 
states (AL, FL, GA, LA, MS, TX) found that even with the lowest simulated attack rate, Zika outbreaks could be 
expected to cost the United States over $180 million, and estimates under worse scenarios exceed $1 billion18. 
Consequently, a high priority has been placed on developing accurate models that capture socioecological suita-
bility for Zika outbreaks in the United States19,20. However, we suggest that the lack of a consensus among differ-
ent models of spatial risk renders the literature less credible or navigable to policymakers, as predictions under 
certain conditions span a range from 13 counties at risk12 to the entire United States (Fig. 1)10,21. At the time of 
writing, the majority of public health agencies in the United States were preparing for the apparent eventuality 
of Zika, based either on no prior geographic information, or basic data on the range of Aedes mosquitoes22,23. 
Millions of dollars have already been invested in state- and city-level Zika preparation, even in areas without 
recently-recorded Aedes presence, and pesticide spraying for vector control has already had unanticipated con-
sequences, including killing millions of honeybees24. Domestic efforts to prepare for Zika are not unreasonable 
in the absence of a consensus prediction about Zika’s likely final range; the continued importation of new cases 
into every state in the U.S. likely amplifies the perceived threat of local outbreaks, especially given the pathway of 
sexual transmission (which could conceivably start stuttering chains25 outside regions of vector-borne transmis-
sion). However, an informed response to Zika in the United States requires both a greater consensus about at-risk 

Figure 1.  The margin of error in ecological niche models for Zika virus. (a) Average epidemiological forecasts 
associated with county data for Carlson (blue), Messina (red), and Samy (black), against a backdrop of 
overlapping individual simulations for each (grey). (b) The individual predictions of each model are given as 
presence or absence values; a maximum score of 3 indicates all models agree on presence, while a score of 0 
indicates all models agree on absence. (c) Has consensus been achieved? At the county scale, dark blue indicates 
consensus among niche models; white indicates controversy. Maps were made in R 3.3.268 (https://www.R-
project.org), using U.S. Census shapefiles.

https://www.R-project.org
https://www.R-project.org
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areas, and a more precise understanding of the uncertainty contained in different ecological forecasts. Though 
no autochthonous transmission in the United States has been reported in 2018, the challenge of prediction is 
ongoing, and little work has been done to track and synthesize the kinds of evidence that were most influential 
during the peak of the outbreak.

Ecological niche models for vectors and pathogens are commonly used as an underlying foundation in epi-
demiological models, or more broadly, spatial studies in public health and policy work (including in the Zika 
literature19,26–28). In this study, we highlight the unavoidable – but usually, unacknowledged – downstream con-
sequences of model selection in those cases, and illustrate the lack of any one clear way to resolve conflict among 
published, peer-reviewed ecological studies. To expose this problem more clearly, we compare four published 
ecological predictions for the extent and duration of possible Zika virus transmission in the United States, and 
overlay generic epidemiological forecasts to measure the impacts of model differences. In doing so, we examine 
the scale of epidemiological uncertainty introduced at five scales:

	 1.	 Different environmental variable selections for a given niche modeling approach17

	 2.	 Differences among published ecological niche models
	 3.	 Differences between phenomenological12,16,17 and mechanistic10 approaches
	 4.	 Differences driven by parameterization of Bayesian mechanistic models10

	 5.	 Differences in how population-at-risk is aggregated from the niche models for epidemiological simulations

In the process, our exercise shows that relying on any one ecological model adds a hidden layer of uncertainty 
to epidemiological forecasts, indicating the need to develop better consensus methods—and to develop ecological 
and epidemiological tools in a more integrated approach that better approximates observed outbreak patterns.

Results
Ecological forecasts for Zika suitability span the range of thirteen counties to all 3108 counties in the continen-
tal United States (Table 1), and this uncertainty (unsurprisingly) produces tremendous downstream variation 
in outbreak size. For ENM-based projections, the margin of error among mean trajectories spans an order of 
magnitude, with a total difference of 168 million cases between Carlson and Samy (Fig. 1). Areas predicted by 
other methods to be at the greatest risk from Zika virus are roughly agreed upon among the models, with south-
ern California and the Gulf Coast represented most significantly as outbreak hotspots among the three models. 
Agreement among all three models is limited along both coasts and in much of the southern United States (see 
Fig. 1c), but is most significantly clustered in these areas, especially in the southern tip of Florida and Los Angeles 
County. While we assumed that aggregating risk at the county level could potentially absorb some of the spatial 
uncertainty of models and decrease differences between them, we found that it actually substantially exacerbated 
the observed differences among them (Table 2). This was perhaps most notable in the most populous counties, 
such as Los Angeles county (see Supplementary Figs S1–S3).

Model parameterization has a considerable impact on downstream epidemiological results. The four models 
proposed by Samy, each with different selection of environmental variables (see the Methods), produced corre-
spondingly different results (Table 3, Fig. 2). Perhaps counter to our a priori expectations, adding more predictors 
produced broader projections and larger epidemics (not tighter-fit models); the model with all predictors (model 
4) produced the largest epidemic, while the one with only climatic covariates (model 1) was in fact somewhat 
smaller than the Messina outbreak simulation. Model 2 (only social predictors) was only slightly more severe than 
model 4 (all predictors, which we use as the “Samy model” in all other cases). Adding more predictors increased 

Carlson Messina Samy
Mordecai 
(97.5% min)

Mordecai 
(2.5% max)

npoints 242 323 168 NA NA

npredictors 15 6 15 NA NA

AUC 0.970 0.829 NA NA NA

Counties Predicted 13 465 1616 1937 3108

Accuracy 99.6% 85.2% 48.2% 37.8% 0.2%

County Population at Risk 19,653,445 95,359,408 270,249,781 218,444,263 320,957,062

Mean Outbreak Size 12,871,005 63,622,367 181,290,371 37,598,099 198,910,979

Median Outbreak Size 14,552,250 64,038,273 181,732,629 37,312,233 197,731,918

Table 1.  A comparison of the different ecological forecasts. Four different methods, each performing well 
based on sufficient data and predictors, produce highly contrasting results. Out of a total of 3108 counties in the 
continental U.S., only five have experienced outbreaks (Cameron County, TX with 6 cases of local transmission 
in 2016; Miami-Dade, FL with 241; Palm Beach, FL with 8; Broward County, FL with 5; and Pinellas County, FL 
with 1)39,69. Accuracy values were calculated from the confusion matrix of observed outbreaks against predicted 
suitability. The Carlson model comes closest to predicting the geography of those outbreaks most accurately; 
but all epidemiological models “overpredict” the number of suitable counties based on the current extent of 
outbreaks. (Mordecai results are split for the highest bound with minimum temperatures, and the lowest bound 
for maximum temperatures, to give the full range of predictions. Self reported AUC values are shown not as a 
comparative measure of accuracy, but simply as the self-reported accuracy of the studies. Samy et al. used the 
Partial ROC in place of the AUC but did not report values. NA = Not Applicable; NR = Not Reported).
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the projected impacts most noticeably in Arizona and New Mexico; the projections in model 1, the most con-
servative, were very similar geographically to the Messina model, but with much more substantial range in the 
Pacific northwest.

Carlson Partial Messina Partial Samy Partial

Counties Predicted 13 13 465 465 1616 1616

County Population at Risk 19,653,445 6,264,516 95,359,408 38,085,602 270,249,781 99,324,226

Mean Outbreak Size 12,871,005 4,195,326 63,622,367 25,897,671 181,290,371 66,345,567

Median Outbreak Size 14,552,250 4,262,636 64,038,273 26,307,445 181,732,629 66,850,610

Table 2.  Aggregating risk to the county scale can absorb some of the inherent spatial uncertainty of ecological 
niche modeling, but is itself an assumption that changes downstream impacts on the scale of outbreaks, as well 
as the scale of disagreement between models.

Model 1 Model 2 Model 3 Model 4

Counties Predicted 338 2197 670 1616

County Population at Risk 91,174,791 296,007,551 148,700,587 270,249,781

Mean Outbreak Size 59,561,603 197,553,462 98,314,605 181,290,371

Median Outbreak Size 59,561,222 197,759,983 98,770,516 181,732,629

Table 3.  Outbreak simulations exhibit greater than threefold variation in predictions among the four models 
presented in Samy.

Figure 2.  Variation within the Samy models. Outbreak trajectories are shown in (a) for models 1 (red), 2 (blue), 
3 (green), and 4 (black). Bolded lines are mean trajectories. Final average case totals are then mapped for model 
4 (b), the main model we discuss in the text and use in other comparisons, as well as models 1 (c), 2 (d), and 3 
(e). Maps were made in R 3.3.268 (https://www.R-project.org), using U.S. Census shapefiles.

https://www.R-project.org
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A roughly comparable range of predictions to the span of the Carlson, Messina, and Samy models is con-
tained within the entire span of possible implementations of Mordecai’s Bayesian model (Fig. 3). Whereas ENM 
approaches indicate a somewhat restricted geographic range for possible outbreaks, the Mordecai model suggests 
that even in a conservative scenario (using minimum temperatures, and 97.5% posterior probability), the major-
ity of Aedes aegypti’s range is at least seasonally suitable for Zika transmission. A far greater range of variation is 
contained within the minimum-temperature-based model scenario, which encompasses roughly half of the land 
area of the continental U.S. In contrast, the three scenarios based on maximum temperatures are geographically 
indistinguishable, though worsening projections do extend the seasonality of transmission and thereby produce 
somewhat longer-tailed epidemics (Fig. 3a).

Among nine ecological scenarios considered (three niche models and six mechanistic scenarios), an over-
whelming spread of possible epidemics could be predicted for the United States (Fig. 4). The accompanying 
spatial pattern of case burden also varies between interpretations; while the spatial patterns are roughly identi-
cal for Carlson, Messina, and Samy, the temporal dimension introduced by mapping the Mordecai model onto 
monthly temperature grids dramatically affects how cases are ultimately distributed—and produces a reduction 
in epidemic size in some scenarios (Fig. 5). In fact, the most conservative Mordecai scenario (97.5% confidence 

Figure 3.  The margin of error within a single Bayesian mechanistic model for Zika virus, applied to minimum 
(left) and maximum (right) monthly temperatures. (a) 100 outbreak simulations for 97.5% (blue), 50% (red), 
and 2.5% (black) confidence intervals. (b–f) The number of months each county is predicted to be suitable for 
Zika virus transmission (R0 > 0) for 97.5% (b,c), 50% (d,e), and 2.5% (f,g) scenarios. Maps were made in R 
3.3.268 (https://www.R-project.org), using U.S. Census shapefiles.

https://www.R-project.org
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with minimum temperature) falls between Carlson and Messina in terms of case burden, despite predicting more 
than four times as many counties with transmission suitability as the Messina model. Across all models, forecasts 
predict that the majority of the case burden will still be seen along the Gulf Coast and in southern California. 
The advantage of interfacing ecology and epidemiology is especially evident here; for example, while the original 
Carlson et al. study noted the most significant suitable area was in southern Florida and failed to comment on the 
potential importance of southern California, the most significant epidemic predicted by most models is in Los 
Angeles county. The exception is the most conservative Mordecai scenario (Fig. 2b), the only parameterization 
of that model in which Los Angeles is designated unsuitable for transmission—a fairly important discrepancy, 
given that the county is the most populous in the United States, and correspondingly contributes substantially to 
epidemic size in every other scenario (Fig. 5a–c).

In an effort to illustrate a method of resolving these conflicting predictions, we present a final “consensus 
model” that incorporates all four modeling studies. Consensus methods are limited for ecological niche models7, 
so we adopt one possible approach: a majority rule at the county scale across Carlson, Messina, and Samy (i.e., 
in Fig. 1b, any county value at or above 2 is “suitable,” and any below is “unsuitable”). Weighted averaging and 
unweighted means are considered comparatively strong ensemble methods for ENMs7, and rather than try to 
compare the accuracy metrics of such different models, we simply treated majority rule as an “unweighted average” 
for binary model outputs, with no prior expectations for the models’ relative power. Geographically, the results 
of the majority rule method are fairly similar to the Messina or Samy (model 1) predictions for the United States, 
with hotspots of transmission along the Gulf Coast, up some of the Eastern seaboard, and in southern California.

Building on this “majority rule model,” for counties that are marked suitable by the ecological niche mod-
els, we superimpose the monthly transmission values from Mordecai’s most conservative scenario, which most 
closely matches the geographic extent predicted by the ecological niche models (Fig. 3a versus Fig. 5a–c). This 
filtered “seasonal majority rule” algorithm incorporates the temporal dimension of transmission that is added by 
our implementation of the Mordecai model while maintaining consensus among the niche models. The seasonal 
majority rule model produces a somewhat unsurprising pattern where year-round transmission is most com-
mon in the tropics, with seasonal transmission most important in the southeast United States, southeast Brazil, 
southeast China, and the Himalayas (Fig. 6). Unsurprisingly, this produces a comparatively conservative outbreak 
prediction (Fig. 7). The inclusion of the temporal component from the mechanistic model reduces case burden by 
almost two-thirds (Table 4), and excludes a handful of counties in the process (which were suitable in the ENM 
approach but not suitable for a single month in the mechanistic model). Most notably, Los Angeles county (which 
is suitable for no months of the year in the conservative Mordecai model) is excluded despite being suitable in 

Figure 4.  Nine possible trajectories for outbreaks in the United States: three based on ecological niche models, 
and six based on Bayesian mechanistic forecasts. (y-axis on log scale).
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all three ENMs, which contributes substantially to the overall reduction of projected case totals in the seasonal 
majority rule approach.

Discussion
Clear Problems, No Easy Answers.  By constructing epidemiological simulations on top of ecolog-
ical niche models, we found that subtle differences among—and within—rigorous modeling frameworks can 

Figure 5.  Case totals by county for (a) Carlson, (b) Messina, (c) Samy, (d), Mordecai 97.5% confidence 
(minimum temperatures), and (e) Mordecai 2.5% confidence (max temperatures), compared against (f) 
counties with reported autochthonous transmission in 2016 (three in Florida, one in Texas). Maps were made in 
R 3.3.268 (https://www.R-project.org), using U.S. Census shapefiles.

Figure 6.  A global, consensus-based, seasonal (monthly) majority rule map of suitability for Zika virus 
transmission. Map was made with ArcMap 10.

https://www.R-project.org
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introduce substantial downstream variability in outbreak sizes and durations. Conflict among different published 
studies is the most immediately apparent problem, especially given the lack of a more sophisticated method of 
resolving these differences beyond the majority rule approach we use. However, for any given study, we show that 
internal model assumptions carry a level of uncertainty that is hard to understand just from looking at a “final 
model,” a fact that is readily apparent by comparing the different Samy models and Mordecai model parameteriza-
tions. (This can be a problem even in cases where no conflict exists among different published models; for exam-
ple, one model of Aedes aegypti and Ae. albopictus is most commonly used across purposes29, including frequently 
as an outer bound in epidemiological models). Subjective model design issues like occurrence data collection and 
thinning, environmental variable selection, pseudoabsence generation, model algorithms, and threshold selection 
all introduce subjectivity into niche modeling30–35 that goes beyond basic issues of accuracy and exposes deeper 
strategic tensions in modeling (e.g., Levins’ proposed tradeoff in modeling among realism, precision, and general-
ity36). Mechanistic models are often designed as a response to that subjectivity but, as we highlight here, they also 
produce another conflicting result or set of results; moreover, Bayesian model parameterization still introduces 
downstream variability, possibly even more so than niche modeling.

We also found that the mechanistic models we examined produced much more inclusive predictions than any 
other model we considered (in accordance with work in parallel fields similarly suggesting mechanistic models 
favor generality and realism over precision37). To some degree, this conflict may expose an underlying tension 
between two different intentions of disease mapping. One paradigm focuses on accuracy (especially specificity), 
and follows a similar paradigm to mainstream invasion biology research in that it attempts to most accurately 
project the final boundaries of incipient range expansion. Overprediction and underprediction are weighted as 
equal problems in this approach; the task of appropriate allocation of clinical resources is equally impeded by 
both margins of error. An alternative paradigm assumes that a Type II error (excluding regions at risk of out-
breaks) is of far greater significance than a Type I error (predicting risk for areas that remain unaffected), from 

Figure 7.  The seasonal majority rule method for consensus building across ecological forecasts. (a) Mean 
(black) and median (dashed) trajectories for 100 epidemic simulations. (b) The majority rule map: shading 
represents the number of months each county is marked suitable for outbreaks. (c) Final average case totals in 
the seasonal majority rule method. Maps were made in R 3.3.268 (https://www.R-project.org), using U.S. Census 
shapefiles.

Majority Rule Seasonal Majority Rule

Counties Predicted 383 370

County Population at Risk 93,195,970 87,632,865

Mean Outbreak Size 60,259,904 24,267,441

Median Outbreak Size 60,940,111 24,407,885

Table 4.  Majority rule based consensus models, meant to resolve uncertainty between the forecasts and 
provide a middle scenario. The main majority rule model combines the Carlson, Messina, and Samy forecasts; 
the seasonal majority rule model assigns monthly suitability values to that forecast, based on the minimum 
temperature 97.5% Mordecai model.

https://www.R-project.org
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a preparedness standpoint; and reacts especially to the stakes of under-prediction by targeting predictions at 
any area that could, theoretically, sustain outbreaks. In reality, all disease distribution models fall somewhere on 
a continuum between the two paradigms, and modelers following best practices are likely to produce primar-
ily objective results. But to the degree that no forecasting effort is fully unsupervised, and basic decisions (like 
including or excluding current outbreak data) introduce opportunities for subjectivity, conflict between these two 
approaches is likely to be an ongoing disciplinary problem beyond Zika.

We note also that deliberate choices we made in the epidemiological models we included similarly produced 
a specific, and extreme, result. By setting mosquito populations high and using wide stochastic priors rather than 
tailored Zika outbreak parameters, we simulated unrealistic outbreaks on a scale even greater than seen in Brazil. 
(However, we note that a landmark study just published estimates that 12.3 million cases of Zika are expected 
every year in Latin America and the Caribbean; and while the United States was unassessed, northern Mexico was 
identified as a region of high variability and therefore high epidemic potential38). Our methods here are meant 
to illustrate the full potential of hidden uncertainty that epidemiological models might inherit from ecological 
assumptions. The range of projected epidemics varies among the ENM approaches by more than an order of 
magnitude, but even the smallest outbreak prediction is still five orders of magnitude higher than the case totals 
observed during the last outbreak season (223 real cases versus roughly 12 million simulated cases). In practice, 
epidemiological models fitted to data may absorb some of the uncertainty between different ecological forecasts 
if outbreaks are constrained in areas of disagreement by additional socioecological factors. The scale of the prob-
lem is difficult to evaluate except on a case by case basis; at a minimum, we conclude that understanding the 
epidemiological implications of ecological uncertainty is a key step towards improving ecologists’ performance 
in pandemic preparedness.

Ecological niche modeling is a comparatively new statistical method in ecology, and it has only recently been 
applied to emerging infectious diseases. In under two decades, the statistical power of ENMs has grown expo-
nentially, especially as increasingly complex methods for machine learning have been applied to the problem. The 
dozen or so methods currently employed offer a wide palette of options for potential modelers to choose from, 
and compounded with the wide range of potential environmental and social covariates, seemingly limitless com-
binations of possible models can be produced from a single dataset, each of which is statistically rigorous enough 
to be published. Although guidelines exist for method selection and model tuning (e.g., variable selection), 
tremendous user-end creativity is still possible. High-profile targets, such as vector-borne and other zoonotic 
diseases, frequently inspire conflicting models, but in mainstream species distribution modeling research, the 
impacts of those conflicts are often treated in as an academic problem. For infectious disease mapping, such con-
flict has conspicuous stakes that produce downstream uncertainty for stakeholders, clinicians, and policymakers.

Future Directions for the United States.  Despite the disagreement between different modeling 
approaches and results, southern Florida and southern Texas clearly emerge across studies as the most at-risk 
regions of the continental United States for Zika virus outbreaks. This appears concordant with the broader con-
sensus in public health research, especially given that these are already the only regions with a recent history of 
dengue outbreaks in the continental U.S.39. We also note that, in many of the models we considered, Los Angeles 
county emerged as a potential area of significant concern, especially given its dense population. But for the rest of 
the country, model disagreement is high and unresolved.

Given the wide suitable area suggested by the majority of models, the low totals of autochthonous cases in the 
continental United States still seems surprising. Epidemiological work supports the idea that the 2016 outbreak 
was not anomalously small; recent work estimated the R0 of the Miami-Dade outbreak in the low range of 0.5 to 
0.8, and found that multiple introductions (an estimated 4 to 40) were a necessary precursor for an outbreak on 
the scale of the 256 cases in 201639. Continued or larger outbreaks could be possible in the future if the high force 
of infection from traveler cases—which have so far been an order of magnitude more common in the U.S.—drives 
more significant outbreaks than the 2016 outbreak in Florida. More realistically, a number of factors likely prevent 
the United States from experiencing an outbreak on the scale that Brazil or Colombia experienced. Some are eco-
logical; vector populations may be more strongly seasonal at higher latitudes, or the sylvatic cycle of Zika may be 
different in different parts of the Americas. The role non-human primates play in the transmission of Zika is still 
poorly understood40,41, but the absence of monkey hosts could plausibly limit transmission in the United States. 
Lessons from chikungunya suggest that attention may need to be paid to potential alternate, sylvatic vectors and 
associated hosts42,43, especially given the significant number of vectors that may be competent for Zika transmis-
sion in the United States21.

Other potential explanations for the limited spread of Zika through the United States are more social or soci-
oecological in nature. In developed countries, household exposure is often secondary to outdoor exposure for 
Aedes, and in Miami-Dade county, it has been suggested that heterogeneity in outdoor exposure could have 
produced a much smaller, faster epidemic44. Other plausible explanations include better access to health care, 
preemptive vector control as part of Zika preparedness efforts, and significant fine-scale heterogeneity limiting 
mosquito populations in well populated areas (a factor that some models can accommodate45, but niche models 
at the global scale do not). The last of these is most easily addressed through ecological tools, and finer-scale val-
idation of downscaled ecological models is an important next step for ongoing forecasting. At the county scale, 
more detailed GIS data are needed to identify probable areas of suitable vector density; identifying those areas can 
reduce the population at risk (used to parameterize models) from the population of an entire county down to just 
those living in high-risk (or non-zero risk) areas.

Future Directions for Model Development.  At the present time, the most common practice to address 
the ecology-epidemiology interface in the niche modeling literature is the use of population-at-risk (PAR) meth-
ods. Basic area-under-the-model population estimates are perhaps the simplest and most readily comparable 
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possible epidemiological metric; only Messina et al. present a global PAR (2.17 billion people) based on their Zika 
virus niche model. Bogoch et al. revised that figure in a more regional assessment for Africa, Asia, and the Pacific 
that included traveler populations and a seasonal component to transmission, but to do so, substituted existing 
dengue models in place of actual Zika models26. If implemented more frequently, population-at-risk methods 
could be a simple post hoc way of comparing different ecological forecasts. However, these methods might acci-
dentally introduce more alarm than they communicate risk (just as using susceptible populations, without any 
associated model of transmission, is a fairly uninformative proxy for an epidemic projection in mainstream epi-
demiology). The exercise carried out here illuminates one of the primary weaknesses of ecological niche mod-
eling methods; namely, though ENMs have great value for defining the plausible outer bounds of transmission, 
they are largely unable to clarify the distribution of risk within these suitable areas (except in rare cases where 
extremely specific populations at risk can be measured, e.g., rural poor livestock keepers at risk of anthrax46). 
Modeling approaches that more directly interface ecological and epidemiological concepts of risk and hazard are 
perhaps the “Holy Grail” of work at this interface, and approaches along these lines have recently been tested for 
hemorrhagic viruses in Africa47,48. But we show here that uncertainty and subjectivity on the ecological side are 
propagated through approaches like these, with no clear solution.

The uncertainty at this interface represents a major deficiency in our ability to forecast disease spread. 
However, there are a number of potential of avenues of exploration that may help improve efforts to directly link 
epidemiological forecasts and ecological projections. On the epidemiological side of the problem, travel-based 
models have shown promise for other diseases49, and have been applied in a limited capacity with dengue models 
to predict Zika risk26. These types of models can be applied with Zika-specific niche models for more detailed 
forecasts of traveler-driven outbreaks at the edges of suitability. But a more detailed epidemiological link is needed 
between traveler force of infection and the scale of subsequent local outbreaks; so far, that causation has only been 
investigated in reverse50. The role of sexual transmission also requires deeper investigation. Early work suggested 
sexual transmission might be a substantial factor explaining the explosive South American outbreak51,52, but 
recent work has suggested sexually-transmitted outbreaks are unlikely53, even if sexual transmission increases the 
severity of vector-borne outbreaks54; others still argue these risks are “understated”55,56. Some work at the county 
level has already begun predicting Zika risk based on other sexually transmitted diseases57, but for this to be use-
ful to policymakers, a basic and accurate model of importance of sexual transmission is still needed58.

On the ecological side, consensus models (like the simple majority-rule model presented here) may be the 
first step towards decomposing suitability into something more epidemiologically-relevant. Development of 
alternative consensus models should aim to further clarify the level of suitability beyond the simple binomial 
categorization offered by ENM methods alone. The inclusion of a temporal component (i.e., the use of the con-
servative Mordecai projections of suitability for mosquitoes) enables some decomposition of the ENM results. 
The Mordecai et al. model illustrates that transmission is unlikely to be a year-round property of most areas, 
especially in temperate zones, and our exercise shows that reducing the months of possible transmission does 
significantly reduce total outbreak size. Time-specific ecological niche models have been used with great success 
to predict the dynamics of dengue59, another Aedes-borne disease, and have been applied as a proxy for Zika 
risk26. However, these models will need to be developed specifically for Zika as more data become available, and 
time-specific ecological niche models will pose an additional challenge for consensus building with mechanistic 
time-sensitive models like Mordecai et al.’s. Finally, we suggest the frameworks underlying consensus models 
should be adaptable as additional occurrence data is made available. ENMs are typically presented as static instan-
tiations of dynamic processes, whether they describe species ranges of the transmission niches of emerging infec-
tious diseases. The ability of these models to contribute to our understanding of pathogens entering novel regions 
or hosts will hinge upon their flexibility in incorporating near-real-time data19. The computational frameworks 
for dynamic, updating niche models exist60, but are an unexplored frontier in eco-epidemiology.

Methods
Ecological Models.  Three studies have been published using ecological niche models (ENMs) to map the 
possible distribution of Zika virus, using a different combination of occurrence data, environmental predictors, 
and statistical approaches12,16,17. Their models suggest varying degrees of severity, especially as measured within 
the United States (Table 1). Other models have also been widely used in epidemiological work as a proxy for the 
distribution of Zika, such as an ecological niche model of Aedes aegypti and Ae. albopictus29 (fairly commonly 
used, e.g.57,61; or see62, which presents its own Aedes ENM that becomes a risk map of Zika transmission), or den-
gue-specific niche models (recently used by Bogoch et al. in two separate publications26,63). Most ecological niche 
models indicate the range of Zika virus should be more restricted than that of its vectors, and published evidence 
suggests there may be significant differences between the known and potential distributions of dengue and Zika12, 
so we exclude these proxy methods from our study and focus instead on modeling studies that explicitly use Zika 
occurrence data.

Carlson et al.  Carlson et al.12 developed an ensemble niche model constructed using the R package BIOMOD2. 
The resulting model uses seven of ten possible methods (general linear models, general additive models, classifica-
tion tree analysis, flexible discriminant analysis, multiple adaptive regression splines, random forests, and boosted 
regression trees), notably omitting maximum entropy (MaxEnt). Their primary model uses only occurrence data 
from outside the Americas, but here we adapt their secondary model which incorporates data from Messina et al. 
(below) to show the lack of the sensitivity of the method to that additional data, especially in the United States. 
The only environmental predictors used are the BIOCLIM dataset64 and a vegetation index (NDVI). The final 
model threshold was selected to maximize the true skill statistic, with a selected value of 0.271 used in the original 
study to produce a binary suitability map. In the Carlson et al. model, suitable range for Zika virus is predicted to 
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be limited to the southern tip of Florida and small patches of Los Angeles and the San Francisco Bay area. Only a 
total of 13 counties have any suitable area in this model; at the county scale, this model has the greatest concord-
ance with observed outbreak patterns of autochthonous transmission in the United States during 2016.

Messina et al.  Messina et al.16 use an ensemble boosted regression trees approach with a global dataset of occur-
rence points primarily from South American outbreak data. The model incorporates prior information about 
Aedes distributions. For example, pseudoabsences are preferentially generated in areas of lower Aedes suitability. 
Their model uses six environmental predictors: two direct climate variables, two indices of dengue transmission 
based on temperature (one for Ae. albopictus and one for Ae. aegypti), a vegetation index (EVI), and a binary land 
cover classifier (urban or rural). Messina et al. select a threshold of 0.397 that marks 90% of occurrence data as 
suitable (10% omission). Their model predicts that suitable range for Zika virus encompasses a substantial por-
tion of the Gulf Coast, including the entirety of Florida and as far west as eastern Texas. Their study is also the first 
to estimate population-at-risk, placing the global figure at 2.17 billion people.

Samy et al.  Samy et al.17 use MaxEnt to build four sub-models with different combinations of environmental 
predictors. The first uses environmental predictors (precipitation, temperature, EVI, soil water stress, “aridity,” 
and elevation). The second, a less common approach in the niche modeling literature, separates out socioeco-
nomic predictors (among them population density, night light from satellite imagery, and a function of expected 
travel time called “accessibility”). The third uses all the same as the first model but with three added layers (land 
cover and suitability for Ae. aegypti and Ae. albopictus); finally, in model 4, all variables are included and we use 
that here as the representative case of the alternative Samy formulations. The intention of model 4 deserves spe-
cial attention: by building in additional socio-economic predictors, the modelers shifted away from an exclusive 
focus on autochthonous transmission and towards predicting possible traveler-based cases. This is an important 
additional dimension, and in some ways makes that model less comparable to all the others. However, we include 
it alongside the others, with no additional caution, for two reasons. First, all of the occurrence records used in the 
study come from within the range of autochthonous transmission in Latin America and the Caribbean during 
the pandemic (no traveler cases). Second, though many areas predicted by model 4 would not have “all factors in 
place” for transmission, in the authors own words, they have the “broader potential for accessibility-related cases 
(e.g., imported infections that may turn into autochthonous transmission via seasonal vector activity).” We there-
fore include this model as a prediction of autochthonous transmission risk, just the same as any other ecological 
niche model. In an additional sub-analysis, we compare these four models and show the impacts of these variable 
selection choices on downstream epidemiological forecasts. For all, the model threshold is selected based on a 
maximum 5% omission rate for presence data, and also projects high environmental suitability in the Gulf region, 
very similar to that of Messina et al. This model also produced isolated suitable patches based on social factors, 
which predominantly occur at urban centers.

Mordecai et al.  Mordecai et al.10 produced a Bayesian model of transmission of Aedes-borne viruses (dengue, 
chikungunya, and Zika) in the Americas that we adapt as a mechanistic geographic forecast for subsequent anal-
yses. In their main model, an R0 modeling framework is constructed based on models for vector borne dis-
eases, building upon the Kermack-McKendrick R0 model for malaria65. In this model, the majority of parameters 
describing the life cycle of mosquitoes and parasite development within the mosquitoes are sensitive to tempera-
ture. Mordecai et al. used data derived from the literature to parameterize the shape of the temperature response 
for each temperature sensitive parameter. These are based on laboratory observations of Aedes aegypti and Aedes 
albopictus, and infections with dengue, chikungunya, and Zika at constant temperatures through the range of 
possible values. Because these are bioenergetic functions, curve fitting exercises to derive appropriate models 
of the non-linear relationships underlie the parameterization of the overall transmission model. A non-linear 
overall relationship between transmission (R0) and temperature is fitted in a Bayesian inference framework, and 
from it two endpoints of a “suitable range” can be extrapolated within which R0 > 0. Those ranges can be adjusted 
for different levels of posterior probability, and can be used as a suitability threshold that can be projected onto 
gridded temperature data, producing binary monthly maps of suitability (which can be aggregated to year-round 
possible presence). In the Mordecai et al. publication, the most conservative probability level (>97.5%) was then 
mapped onto long-term mean monthly average temperatures in the Americas, derived from Worldclim data64, to 
estimate the number of months transmission was possible for Ae. aegypti and Ae. albopictus10. Additional maps 
were also constructed of the number of months of possible transmission for R0 > 0 at posterior probabilities of 
50% and 2.5%, and are found in the supplemental material. Here, we use all three probability levels from the Ae. 
aegypti model, to project the terms of the number of months of predicted transmission potential by mapping the 
model onto WorldClim temperature gridded data for long-term monthly minimum and maximum temperatures 
(six possible combinations).

Consensus Mapping Methods.  In a preliminary effort to present a consensus forecast based on current ecological 
understanding, we use two alternative methods to develop county-scale predictions from the models included 
in our analysis. The first (“majority rule”) excludes the Mordecai model, and simply applies a majority rule to 
the binary thresholded Carlson, Messina, and Samy county shapefiles (i.e., any county with agreement between 
a majority of the niche models for either presence or absence). In the second model (“seasonal majority rule”), 
we take the counties predicted by the majority rule method and restrict their suitability to the months predicted 
in the strictest Mordecai model (97.5% confidence) for minimum temperatures. That process excludes 13 of 
the counties deemed suitable according to the simple majority rule, but which are predicted to be unsuitable 
year-round in the Mordecai model.
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Epidemiological Model.  To simulate potential Zika outbreaks in the United States, we adopt the modeling 
framework used by Gao et al., which incorporates both sexual and vector-borne transmission66. We selected 
Gao et al.’s framework because, while fairly simple, it includes a number of important features of the epidemi-
ology of Zika, including the high rate of asymptomatic cases, and lingering (primarily sexual) transmission by 
post-symptom “convalescent” cases. Because the transmission term is normalized by dividing by total population 
size, the model itself is scale-free. Thus, the values associated with each compartment could be represented as pro-
portions rather than the number of individuals. The model divides the human population into six compartments 
with levels: susceptible (S), exposed (E), symptomatically (I1) or asymptomatically (A) infected, convalescent 
(I2), and recovered (R), where he h and v refer to the human host and mosquito vector populations, respectively:
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Rather than use the fitted parameters from any given country’s outbreak, parameters for the above models 
were randomly generated from a set of uniform prior distributions specified by Gao et al. as reasonable priors 
based on the literature (Table S1). Evidently, these models are significantly discrepant with outbreaks in the con-
tinental U.S. so far, with fewer than 300 cases of local transmission recorded in 2016 (and in fact, our simulations 
are far more severe in terms of final case burden than estimates for Brazil or Colombia). However, the purpose of 
applying this epidemiological model across the spatial extent predicted by each niche model is both to illustrate 
the uncertainty that goes unstated in presenting such ENMs and to intimate the necessity of developing and 
parameterizing these models in concert.

County-Level Simulations.  In our main models, every spatial projection of Zika risk was summarized 
at the U.S. county scale, such that if a single pixel within a county polygon was projected to be suitable under a 
given model, the county was marked suitable for outbreaks. This assumption clearly overestimates population at 
risk, but environmental suitability is often aggregated to the county scale in order to develop Zika models for the 
U.S.19,57. For the Mordecai models, the maximum value (months suitable per year) of all pixels within a county 
was assigned as the value. For example, if a single 25 km2 cell in a particular county was suitable for a single 
month, simulations were run for one month with mosquitoes present and the remaining 11 with a mosquito pop-
ulation of zero. While this approach has the potential to overestimate populations vulnerable to mosquito-borne 
transmission, it adds a number of key strengths. Aggregating information at the county scale absorbs some of 
the relative spatial uncertainty of predictions at the pixel scale, and may account for source-sink dynamics for 
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vector-borne outbreaks driven by heterogeneity in vector density and competence. Moreover, the county level is 
one of the finest scales at which public health infrastructure is likely to decide whether interventions like vector 
control are necessary. Finally, sexual transmission can spread from cells with suitable vectors to vector-free areas, 
and as a function of both sexual transmission and underlying mobility, outbreaks are therefore unlikely to be con-
tained to a given pixel. Previous work has similarly used the county scale to study risk factors and model outbreak 
risk for Zika19,57, and we follow their precedent.

Population data for each county was taken from projections to the year 2016 based on the 2010 United States 
Census, and were set as the total susceptible human population at the start of a year. The mosquito population 
was set at five times the baseline human population, the middle of the range selected by Gao et al.66. While other 
studies have used a lower ratio20, we set mosquito populations (the only parameter we explicitly fixed from the 
Gao model) as high as we did because AU simulations with lower mosquito populations faded out immediately, 
and setting a higher ratio made the impacts of model differences more immediately apparent. Outbreaks were 
simulated stochastically at the county level using the Gao et al. model, initiated with a single infected person per 
county. We randomly selected a value for each of the parameters in the Gao et al. model for which a range was 
provided, using a uniform distribution (Table S1). For each modeling model, 100 simulations were run in each 
county designated as suitable. For the three ENMs, county models were run for a “model year” (twelve months 
of thirty days each), and had no interactive effect on each other. For the Mordecai models, the full vector- and 
sexually-transmitted epidemic models were run for the number of months (thirty days each) that were predicted 
suitable. After that period, the total vector population Nv was set to 0, effectively ending vector-borne transmis-
sion, but models continued so that sexual transmission was ongoing up to 360 days. All simulations were run in 
R 3.3.2, and all scripts and county simulation data are available as supplementary files.

Within-County Heterogeneity.  In a final set of analyses, we examine the impact of how risk is aggregated at the 
county scale. Fine-scale population data does exist for the world from multiple sources67, but at the resolution 
niche models are often generated, clear problems exist. Running models on a pixel-by-pixel basis would likely be 
computationally prohibitive in many cases (including this one); moreover, in the context of sexual transmission, 
models that do not explicitly include human movement between nearby pixels might produce results that make 
little sense. While vector movement may be fairly minimal, human movement likely produces mixing at broader 
geographic scales for both vector-borne and sexual transmission. Aggregating niche models to a county-level 
suitability is one solution to the problem, and has the added benefit of plausibly absorbing some of the uncertainty 
among different ENMs. However, this also has the clear tendency to overestimate population at risk; to examine 
how strongly this affects models, we include an additional set for Carlson, Messina, and Samy (model 4) where 
susceptible population is scaled down linearly by the proportion of the county marked suitable in each model. 
This, in itself, adds another layer of neutral assumptions (populations are treated as having a uniform distribution 
within counties) but might also produce less drastic differences between outbreak trajectories. The results of that 
analysis are given in Table 2 and Supplemental Figs S1, S2 and S3.

Data availability statement.  Data generated or analyzed during this study are made available on Figshare: 
https://doi.org/10.6084/m9.figshare.5514961.v1.

References
	 1.	 Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. The Lancet 380, 1956–1965 (2012).
	 2.	 Jetten, T. H. & Focks, D. A. Potential changes in the distribution of dengue transmission under climate warming. The American 

Journal of Tropical Medicine and Hygiene 57, 285–297 (1997).
	 3.	 Escobar, L. E. & Craft, M. E. Advances and limitations of disease biogeography using ecological niche modeling. Frontiers in 

Microbiology 7 (2016).
	 4.	 Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance 

of different species distribution modeling methods. Ecography 29, 773–785 (2006).
	 5.	 Segurado, P. & Araujo, M. B. An evaluation of methods for modelling species distributions. Journal of Biogeography 31, 1555–1568 

(2004).
	 6.	 Qiao, H., Soberón, J. & Peterson, A. T. No silver bullets in correlative ecological niche modelling: insights from testing among many 

potential algorithms for niche estimation. Methods in Ecology and Evolution 6, 1126–1136 (2015).
	 7.	 Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species 

distribution modelling. Diversity and Distributions 15, 59–69 (2009).
	 8.	 Johnson, L. R. et al. Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach. Ecology 96, 

203–213 (2015).
	 9.	 Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology 

Letters 12, 334–350 (2009).
	10.	 Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic 

models. PLoS Neglected Tropical Diseases 11, e0005568 (2017).
	11.	 Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts 

under climate change. Conservation Letters 3, 203–213 (2010).
	12.	 Carlson, C., Dougherty, E. & Getz, W. An ecological assessment of the pandemic threat of Zika virus. PLoS Neglected Tropical 

Diseases 10, e0004968 (2016).
	13.	 PAHO/WHO. Zika epidemiological report: Brazil. march 2017. Tech. Rep., Pan-American Health Organization, Washington, DC, 

http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=35221&&Itemid=270&lang=en (2017).
	14.	 PAHO/WHO. Zika suspected and confirmed cases reported by countries and territories in the americas cumulative cases, 

2015–2017. updated as of 6 april 2017. Tech. Rep., Pan-American Health Organization, Washington, DC, https://www.paho.org/hq/
index.php?option=com_docman&task=doc_view&Itemid=270&gid=40362&lang=en (2017).

	15.	 Naucke, T. J. & Lorentz, S. First report of venereal and vertical transmission of canine leishmaniosis from naturally infected dogs in 
germany. Parasites & Vectors 5, 67 (2012).

	16.	 Messina, J. P. et al. Mapping global environmental suitability for Zika virus. eLife 5, e15272 (2016).

http://dx.doi.org/10.6084/m9.figshare.5514961.v1


www.nature.com/scientificreports/

1 4ScIEntIFIc Reports |  (2018) 8:4921  | DOI:10.1038/s41598-018-22989-0

	17.	 Samy, A. M., Thomas, S. M., El Wahed, A. A., Cohoon, K. P. & Peterson, A. T. Mapping the global geographic potential of Zika virus 
spread. Mem Inst Oswaldo Cruz 111, 559–560 (2016).

	18.	 Lee, B. Y. et al. The potential economic burden of Zika in the continental United States. PLoS Neglected Tropical Diseases 11, 
e0005531 (2017).

	19.	 Castro, L. A. et al. Assessing real-time Zika risk in the united states. BMC Infectious Diseases 17, 284 (2017).
	20.	 Manore, C. A., Ostfeld, R. S., Agusto, F. B., Gaff, H. & LaDeau, S. L. Defining the risk of zika and chikungunya virus transmission in 

human population centers of the eastern united states. PLoS Neglected Tropical Diseases 11, e0005255 (2017).
	21.	 Evans, M. V., Dallas, T. A., Han, B. A., Murdock, C. C. & Drake, J. M. Data-driven identification of potential Zika virus vectors. eLife 

6 (2017).
	22.	 Lindstrom, N. Zika cases top 200 in pennsylvania. Tribune Live, https://shar.es/1QKP8O.
	23.	 Chelsia Rose Marcius, D. R. Zika virus prompts MTA plans for mosquito-killing larvicide in subway’s stagnant pools of water, 

cuomo announces. New York Daily News, http://nydn.us/2axoHxO.
	24.	 Blinder, A. Aimed at Zika mosquitoes, spray kills millions of honeybees. New York Times, https://nyti.ms/2olguVh.
	25.	 Blumberg, S. & Lloyd-Smith, J. O. Inference of R0 and transmission heterogeneity from the size distribution of stuttering chains. 

PLoS Computational Biol 9, e1002993 (2013).
	26.	 Bogoch, I. I. et al. Potential for Zika virus introduction and transmission in resource-limited countries in africa and the asia-pacific 

region: a modelling study. The Lancet Infectious Diseases 16, 1237–1245 (2016).
	27.	 Perkins, T. A., Siraj, A. S., Ruktanonchai, C. W., Kraemer, M. U. & Tatem, A. J. Model-based projections of Zika virus infections in 

childbearing women in the americas. Nature Microbiology 1, 16126 (2016).
	28.	 Alaniz, A. J., Bacigalupo, A. & Cattan, P. E. Spatial quantification of the world population potentially exposed to Zika virus. 

International Journal of Epidemiology dyw366 (2017).
	29.	 Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).
	30.	 Warren, D. L. & Seifert, S. N. Ecological niche modeling in maxent: the importance of model complexity and the performance of 

model selection criteria. Ecological Applications 21, 335–342 (2011).
	31.	 Austin, M. P. & Van Niel, K. P. Improving species distribution models for climate change studies: variable selection and scale. Journal 

of Biogeography 38, 1–8 (2011).
	32.	 Merow, C., Smith, M. J. & Silander, J. A. A practical guide to maxent for modeling species’ distributions: what it does, and why inputs 

and settings matter. Ecography 36, 1058–1069 (2013).
	33.	 Merow, C. et al. What do we gain from simplicity versus complexity in species distribution models? Ecography 37, 1267–1281 (2014).
	34.	 Anderson, R. P., Lew, D. & Peterson, A. T. Evaluating predictive models of species’ distributions: criteria for selecting optimal 

models. Ecological Modelling 162, 211–232 (2003).
	35.	 Bean, W. T., Stafford, R. & Brashares, J. S. The effects of small sample size and sample bias on threshold selection and accuracy 

assessment of species distribution models. Ecography 35, 250–258 (2012).
	36.	 Levins, R. The strategy of model building in population biology. American Scientist 54, 421–431 (1966).
	37.	 Dickey-Collas, M., Payne, M. R., Trenkel, V. M. & Nash, R. D. Hazard warning: model misuse ahead. ICES Journal of Marine Science 

71, 2300–2306 (2014).
	38.	 Colón-González, F. D. J., Peres, C., São Bernardo, C., Hunter, P. & Lake, I. After the epidemic: Zika virus projections for latin america 

and the caribbean. PLoS Neglected Tropical Diseases (2017).
	39.	 Grubaugh, N. D. et al. Genomic epidemiology reveals multiple introductions of Zika virus into the united states. Nature 546, 

401–405 (2017).
	40.	 Leung, G. H., Baird, R. W., Druce, J. & Anstey, N. M. Zika virus infection in australia following a monkey bite in indonesia. Southeast 

Asian Journal of Tropical Medicine and Public Health 46, 460 (2015).
	41.	 McCrae, A. & Kirya, B. Yellow fever and Zika virus epizootics and enzootics in uganda. Transactions of the Royal Society of Tropical 

Medicine and Hygiene 76, 552–562 (1982).
	42.	 Lourenço-de Oliveira, R. & Failloux, A.-B. High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical 

americas. PLoS Neglected Tropical Diseases 11, e0005698 (2017).
	43.	 Ragan, I. K., Blizzard, E. L., Gordy, P. & Bowen, R. A. Investigating the potential role of North American animals as hosts for Zika 

virus. Vector-Borne and Zoonotic Diseases 17, 161–164 (2017).
	44.	 Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of zika virus: Insights for epidemic control. 

PLoS Neglected Tropical Diseases 11, e0005851 (2017).
	45.	 Perkins, T. A., Scott, T. W., Le Menach, A. & Smith, D. L. Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen 

transmission. PLoS Computational Biology 9, e1003327 (2013).
	46.	 Kracalik, I. T. et al. Modeling the environmental suitability of anthrax in Ghana and estimating populations at risk: Implications for 

vaccination and control. PLOS Neglected Tropical Diseases 11, e0005885 (2017).
	47.	 Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of 

global change on human zoonotic disease emergence: a case study of Lassa fever. Methods in Ecology and Evolution 7, 646–655 
(2016).

	48.	 Pigott, D. M. et al. Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. The 
Lancet (2017).

	49.	 Balcan, D. et al. Seasonal transmission potential and activity peaks of the new influenza A (H1N1): a Monte Carlo likelihood analysis 
based on human mobility. BMC Medicine 7, 45 (2009).

	50.	 Ogden, N. H. et al. Risk of travel-related cases of Zika virus infection is predicted by transmission intensity in outbreak-affected 
countries. Parasites & Vectors 10, 41 (2017).

	51.	 Coelho, F. C. et al. Higher incidence of Zika in adult women than adult men in Rio de Janeiro suggests a significant contribution of 
sexual transmission from men to women. International Journal of Infectious Diseases 51, 128–132 (2016).

	52.	 Towers, S. et al. Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of 
the relative role of sexual transmission. Epidemics 17, 50–55 (2016).

	53.	 Yakob, L., Kucharski, A., Hue, S. & Edmunds, W. J. Low risk of a sexually-transmitted zika virus outbreak. The Lancet Infectious 
Diseases 16, 1100–1102 (2016).

	54.	 Baca-Carrasco, D. & Velasco-Hernández, J. X. Sex, mosquitoes and epidemics: An evaluation of Zika disease dynamics. Bulletin of 
Mathematical Biology 78, 2228–2242 (2016).

	55.	 Allard, A., Althouse, B. M., Hébert-Dufresne, L. & Scarpino, S. V. The risk of sustained sexual transmission of Zika is underestimated. 
bioRxiv 090324 (2016).

	56.	 Folkers, K., Caplan, A. & Igel, L. Zika, sexual transmission and prudent public health policy. Public Health 148, 66–68 (2017).
	57.	 Shacham, E., Nelson, E. J., Hoft, D. F., Schootman, M. & Garza, A. Potential high-risk areas for Zika virus transmission in the 

contiguous United States. American Journal of Public Health e1–e8 (2017).
	58.	 Regan, D. G. & Wilson, D. P. Modelling sexually transmitted infections: less is usually more for informing public health policy. 

Transactions of the Royal Society of Tropical Medicine and Hygiene 102, 207–208 (2008).
	59.	 Peterson, A. T., Martnez-Campos, C., Nakazawa, Y. & Martnez-Meyer, E. Time-specific ecological niche modeling predicts spatial 

dynamics of vector insects and human dengue cases. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 647–655 
(2005).

https://shar.es/1QKP8O
http://nydn.us/2axoHxO
https://nyti.ms/2olguVh


www.nature.com/scientificreports/

1 5ScIEntIFIc Reports |  (2018) 8:4921  | DOI:10.1038/s41598-018-22989-0

	60.	 Golding, N. et al. The zoon R package for reproducible and shareable species distribution modelling. Methods in Ecology and 
Evolution (2017).

	61.	 Lessler, J. et al. Assessing the global threat from Zika virus. Science 353, aaf8160 (2016).
	62.	 Santos, J. & Meneses, B. M. An integrated approach for the assessment of the aedes aegypti and aedes albopictus global spatial 

distribution, and determination of the zones susceptible to the development of zika virus. Acta Tropica 168, 80–90 (2017).
	63.	 Bogoch, I. I. et al. Anticipating the international spread of Zika virus from brazil. The Lancet 387, 335–336 (2016).
	64.	 Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. The worldclim interpolated global terrestrial climate surfaces. version 1.3 

(2004).
	65.	 Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology Letters 

16, 22–30 (2013).
	66.	 Gao, D. et al. Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling 

analysis. Scientific Reports 6 (2016).
	67.	 Pozzi, F., Small, C. & Yetman, G. Modeling the distribution of human population with nighttime satellite imagery and gridded 

population of the world. Earth Observation Magazine 12, 24–30 (2003).
	68.	 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 

https://www.R-project.org (2018).
	69.	 Zacharias, N. et al. First neonatal demise with travel-associated Zika virus infection in the United States of America. American 

Journal of Perinatology Reports 7, e68–e73 (2017).

Acknowledgements
We thank Lewis Bartlett, Eva Harris, and others for helpful comments and guidance. This work was supported 
by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the National 
Science Foundation DBI-1639145; the Rutgers University Center for Discrete Mathematics & Theoretical 
Computational Science (DIMACS) Mathematics of Planet Earth 2013+ Workshop on Zika & DIMACS MPE 
2013+ Workshop on Appropriate Complexity Modeling of the Impacts of Global Change on Ecosystem; and 
the Centers for Disease Control and Prevention Epidemic Predictions Initiative (CDC EPI), a Center funded by 
NSF (EF-0553768). SJR was also supported by NSF DEB EEID 1518681, NSF DEB RAPID 1641145, and CDC 
grant 1U01CK000510-01: Southeastern Regional Center of Excellence in Vector-Borne Diseases: the Gateway 
Program. This publication was supported by the Cooperative Agreement Number above from the Centers for 
Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily 
represent the official views of the Centers for Disease Control and Prevention.

Author Contributions
C.J.C. conceived of the study, and contributed the ecological niche models. S.J.R. contributed the mechanistic 
models. E.R.D. designed code for epidemiological simulations. C.J.C. and E.R.D. contributed to figures. All 
authors contributed to the writing and editing of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-22989-0.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

https://www.R-project.org
http://dx.doi.org/10.1038/s41598-018-22989-0
http://creativecommons.org/licenses/by/4.0/

	Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States

	Results

	Discussion

	Clear Problems, No Easy Answers. 
	Future Directions for the United States. 
	Future Directions for Model Development. 

	Methods

	Ecological Models. 
	Carlson et al. 
	Messina et al. 
	Samy et al. 
	Mordecai et al. 
	Consensus Mapping Methods. 

	Epidemiological Model. 
	County-Level Simulations. 
	Within-County Heterogeneity. 

	Data availability statement. 

	Acknowledgements

	Figure 1 The margin of error in ecological niche models for Zika virus.
	Figure 2 Variation within the Samy models.
	Figure 3 The margin of error within a single Bayesian mechanistic model for Zika virus, applied to minimum (left) and maximum (right) monthly temperatures.
	Figure 4 Nine possible trajectories for outbreaks in the United States: three based on ecological niche models, and six based on Bayesian mechanistic forecasts.
	Figure 5 Case totals by county for (a) Carlson, (b) Messina, (c) Samy, (d), Mordecai 97.
	Figure 6 A global, consensus-based, seasonal (monthly) majority rule map of suitability for Zika virus transmission.
	Figure 7 The seasonal majority rule method for consensus building across ecological forecasts.
	Table 1 A comparison of the different ecological forecasts.
	Table 2 Aggregating risk to the county scale can absorb some of the inherent spatial uncertainty of ecological niche modeling, but is itself an assumption that changes downstream impacts on the scale of outbreaks, as well as the scale of disagreement betw
	Table 3 Outbreak simulations exhibit greater than threefold variation in predictions among the four models presented in Samy.
	Table 4 Majority rule based consensus models, meant to resolve uncertainty between the forecasts and provide a middle scenario.




