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RESEARCH Open Access

Life-table studies revealed significant
effects of deforestation on the
development and survivorship of Anopheles
minimus larvae
Xiaoming Wang1,2, Guofa Zhou2, Daibin Zhong2, Xiaoling Wang3, Ying Wang4, Zhaoqing Yang5, Liwang Cui6

and Guiyun Yan1,2*

Abstract

Background: Many developing countries are experiencing rapid ecological changes such as deforestation and
shifting agricultural practices. These environmental changes may have an important consequence on malaria due
to their impact on vector survival and reproduction. Despite intensive deforestation and malaria transmission in the
China-Myanmar border area, the impact of deforestation on malaria vectors in the border area is unknown.

Methods: We conducted life table studies on Anopheles minimus larvae to determine the pupation rate and
development time in microcosms under deforested, banana plantation, and forested environments.

Results: The pupation rate of An. minimus was 3.8 % in the forested environment. It was significantly increased to
12.5 % in banana plantations and to 52.5 % in the deforested area. Deforestation reduced larval-to-pupal development
time by 1.9–3.3 days. Food supplementation to aquatic habitats in forested environments and banana plantations
significantly increased larval survival rate to a similar level as in the deforested environment.

Conclusion: Deforestation enhanced the survival and development of An. minimus larvae, a major malaria vector in
the China-Myanmar border area. Experimental determination of the life table parameters on mosquito larvae under a
variety of environmental conditions is valuable to model malaria transmission dynamics and impact by climate and
environmental changes.
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Background
Many developing countries are experiencing rapid eco-
logical changes such as deforestation and shifting agri-
cultural practices [1–4]. These ecological changes may
have an important consequence on vector-borne disease
transmission due to their impact on vector survival and
reproduction [5–8]. In southeast Asia, including China
and Myanmar, deforestation and cultivation of cash crops
represent the most important environmental changes in
rural areas [9, 10]. Many forests were depleted through

illegal logging, agricultural clearing, and land development
for housing and hydroelectric projects. Deforestation has
led to major changes in the environment and subsequently
may affect the ecology of malaria vectors. Deforestation
may provide more favorable conditions for the larval de-
velopment of anopheline species. For example, enhanced
larval survivorship and faster larval-to-pupal development
were found in Anopheles gambiae and An. arabiensis
larvae in habitats from open-canopy areas in comparison
to shaded habitats [11, 12]. It is possible that deforestation
may be detrimental to the survival of other mosquito
species. For example, An. dirus larvae breed in well
shaded, temporary ground pools, or slow-moving water
[13, 14]. These breeding habitats normally occur in the
deep forest, making An. dirus a common vector at the
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forest edges [15]. Consequently, environmental disturb-
ance such as deforestation can have positive or negative
impacts on malaria vector populations, depending on the
ecology of the vector species.
The malaria elimination goal set by China, Thailand and

other countries in the Greater Mekong subregion faces a
number of challenges [16, 17]. These challenges include
parasite re-introduction by migratory human populations
from the endemic neighboring country Myanmar. For
example, among malaria patients over 15 years old in Yun-
nan, imported cases constituted 22 % of total cases in men
and 13 % in women, and Myanmar was the predominant
source of infection [18]. The second is intense malaria
transmission in the remote border areas where impover-
ished minority ethnic groups are concentrated and re-
sources for malaria control are very limited [19]. In the
border area between China and Myanmar, illegal logging
of the tropical rainforest and forest clearing for cash crops
have been particularly severe [20, 21]. There is no infor-
mation on how these environmental changes alter the
ecology of malaria vectors in the border area. However,
this knowledge is critical to malaria control in the border
area where malaria burden is the highest and residents are
most prone to malaria epidemics.
The objective of this study is to determine the impact of

deforestation and agricultural land development on the lar-
val ecology of An. minimus, a key malaria vector species in
China-Myanmar and Thai-Myanmar border areas. Know-
ledge of the response to anopheline vectors to environmen-
tal changes will provide a better understanding of malaria
transmission dynamics, which is crucial for implementing
effective malaria control strategies.

Methods
Study sites
The study was conducted in Nabang (24°45′ E, 97°32′ N),
Yingjiang County, Yunnan Province, China on China-
Myanmar border area. Deforestation represents the most
important environmental change in the area (Fig. 1). The
deforested areas were often converted to maize, banana,
or rubber plantations. In this study, we selected three land
use and land cover types: forested areas, banana fields
(cultivated after deforestation), and newly deforested
areas. A forested area is defined as an area with tree can-
opy over 60 %; and a deforested area is an area that has
less than 10 % canopy coverage but where a plantation
has not yet been started [5]. The forested and deforested
areas were within 1 km distance at the same elevation
(250 m above sea level) (Fig. 1).

Experiments
Blood-engorged Anopheles adult mosquitoes were col-
lected from the deforested area and separated to species
by morphology. F1 eggs were collected and allowed to
hatch in the insectary. The female parents were collected
for molecular identification using the multiplex polymer-
ase chain reaction (PCR) method [22, 23]. Because An.
minimus was the predominant vector species in the field
collection, it was the focus of the present study. We con-
structed microcosms using plastic bins of 24 cm in
diameter and 27 cm deep (Fig. 1). Two liters of rainwater
were added to the plastic bin and allowed to acclimate for
1 day. To prevent other insects from invading the micro-
cosms or other mosquitoes from laying eggs, the micro-
cosms were placed in an insect-proof 61 × 61 × 61 cm3

A

B C

D
Forest

Banana
Plantation

Fig. 1 Pictures of field settings. Deforestation and plantation of banana, rubber and other plants in the study site (a), and microcosms inside a
InsectDorm placed under a deforested area (b), forested area (c), and banana field (d)
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BugDorm tent (BioQuip, Rancho Dominguez, CA, USA)
(Fig. 1). All sides of the BugDorm tent were made of clear
polyester netting materials, so that sunlight was not
blocked. Microcosms mimicked natural habitats, and were
homogeneous. The homogeneous feature of microcosms
had the advantage over the natural habitats which were
highly variable in habitat size, larval food conditions (e.g.
organic matters), vegetation coverage and predators.
Fifty newly hatched An. minimus larvae were introduced

to each microcosm. Each day the number of surviving lar-
vae was counted and their stage of development recorded.
Pupae were counted and removed daily. Water levels in
the microcosm were checked daily, and were maintained
by adding rainwater if needed. Water temperature was
measured using the HOBO data loggers placed in the
microcosm, 1 cm below the water surface. There were 8
microcosms in each of the three land use and land cover
types (deforested, banana field and forest area). Micro-
cosms in the forested environment may not receive suffi-
cient sunlight for microbial growth and thus mosquito
larvae failed to develop due to a lack of necessary nutri-
ents. To test this hypothesis, 12 microcosms (4 replicates
per land use type) were supplemented with Tetramin fish
food daily, and daily larval mosquito survivorship was
measured.

Data analysis
The pupation rate of An. minimus larvae was calculated
as the proportion of 1st instar larvae that developed into
pupae. Mean larval-to-pupal development time was cal-
culated. The t-test and analysis of variance (ANOVA)
were used to determine the effect of land use and land
cover types and larval food supplementation on pupa-
tion rate and larval development time wherever appro-
priate. Kaplan-Meier survival analysis was performed to
determine the effects on larval survivorship. The log-
rank test was used to test the statistical significance.
Stage-specific larval development time and mortality rate
were calculated. All data analyses were performed using
STATISTICA 10.0 (StatSoft, Tulsa, USA).

Results
Field-collected mosquito species
A total of 218 blood-engorged Anopheles adult mosqui-
toes were collected from indoors and outdoors (pig and
cow shelter) using aspirators. Among these, 94 % were
An. minimus and the remaining mosquitoes were An.
maculatus. The PCR method confirmed morphological
identification.

Effects of land use and land cover on An. minimus larvae
Under natural conditions, 52.5 % of the 1st instar larvae
developed to pupae in the deforested area, whereas pu-
pation rate was significantly reduced in the banana field

(12.5 %) (t(1) = 4.48, P = 0.01) and the forested area (3.8 %)
(t(1) = 14.19, P < 0.0001) (Fig. 2a) (Additional file 1). Pupa-
tion rate was not significantly different between the banana
field and the forest (t(1) = 0.99, P = 0.39). The stage-specific
mortality rate was high in the 1st and 2nd instar larvae
(Table 1). This was consistent with the Kaplan-Meier ana-
lysis of larval survivorship which showed higher mortality
in young larvae than older larvae (Fig. 3). In the forested
environment, there was a high mortality in the 4th-instar
larvae: 34 % of the 4th instar larvae failed to develop into
pupae (Table 1). Among those that successfully developed
into pupae, the larval-to-pupal development time was
about 13.5–15.6 days, and it was not significantly different
among the three land cover types (ANOVA, F(2, 7) = 0.58,
P = 0.59) (Fig. 2b).

Effects of food supplementation
With food supplementation, pupation rate increased
significantly for all three land use and land cover types
(Fig. 2a). A particularly large change was found in
banana fields and forested environments where a 3.7 fold
(t(1) = 2.92, P = 0.02) and 15.4 fold (t(1) = 9.26, P < 0.0001)
increase was found in comparison to the natural condi-
tions. The pupation rate did not vary significantly among
the three land use and land cover types when larval food
was added to the microcosms, suggesting that sunlight
contributed significantly to the process of larval food
production in the habitats. Stage-specific mortality ana-
lysis found a dramatic reduction in the mortality rate for
all 4 larval instars (Table 1). The average larval-to-pupal de-
velopment pupation time did not vary significantly among
the three land cover types. Comparing the treatment with-
out food supplementation, food supplementation reduced
larval development time by 3.1 days (t(1) = 1.66, P = 0.17) in
the deforested area, by 3.3 days in the banana field (t(1) =
2.74, P = 0.05) and by 1.9 days (t(1) = 1.25, P = 0.34) in the
forested environment (Fig. 2b). Kaplan-Meier survivor ana-
lysis found similar mortality rate across time for the three
land use and land cover types (Fig. 3).

Effects of land use and land cover on habitat temperature
The average temperature of the microcosms in the defor-
ested environment was significantly higher than the ba-
nana fields (t(1) = 1.95, P = 0.05). A larger fluctuation in
hourly temperature was observed in the deforested envir-
onment (Fig. 4). Overall, the minimum and maximum
temperature ranged from 25.5 to 30.2 °C, within the opti-
mal temperature for larval mosquito development.

Discussion
The present study found that in comparison to larval
habitats in the forested area, the pupation rate of An.
minimus was about 4-fold higher in banana plantation
fields and 13-fold higher in deforested area, and the
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Table 1 Developmental stage-specific survivorship of immature An. minimus under three land use and land cover environments
under natural condition and larval food supplementation

Natural conditions Food supplemented

Land use Stage Development
time (day)

Cumulative
survival rate

Stage mortality
rate

Development
time (day)

Cumulative
survival rate

Stage mortality
rate

Deforested 1st instar 2.81 0.91 0.08 3.03 0.98 0.09

2nd instar 3.66 0.83 0.18 3.34 0.89 0.07

3rd instar 5.15 0.65 0.10 3.97 0.82 0.11

4th instar 4.01 0.55 0.03 2.17 0.71 0.07

Banana field 1st instar 3.1 0.79 0.25 2.98 0.90 0.11

2nd instar 5.12 0.54 0.28 3.63 0.79 0.08

3rd instar 3.17 0.26 0.00 2.85 0.71 0.02

4th instar 3.28 0.26 0.10 1.93 0.69 0.24

Forested 1st instar 3.44 0.91 0.19 2.72 0.93 0.14

2nd instar 3.31 0.72 0.16 3.13 0.79 0.04

3rd instar 6.36 0.56 0.16 3.51 0.75 0.07

4th instar 0.31 0.40 0.34 2.24 0.68 0.09

Pupation rate
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Fig. 2 Pupation rates (a) and larval-to-pupal development time (b) of Anopheles minimus larvae in three land use and land cover conditions. Two
experimental conditions were used: natural condition (left) and larval food supplementation (right)
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larval-to-pupal development time was shortened by 1.9–
3.3 days. The microcosms were covered by insect-proof
materials and no predator had been observed in the mi-
crocosms. Because the experiments used microcosms
made of the same rain water and same substrate, and
the only difference was the environment in which the
microcosms were placed (forested, banana field and
deforested); the difference in pupation rate and develop-
ment time of mosquito larvae among the three environ-
ments was entirely due to land use and land cover
differences. This finding was consistent with the study in
the Peruvian Amazon where An. darlingi larvae were
more commonly found in open sunlit aquatic habitats
[6]. Tuno et al. demonstrated that the survivorship of
An. gambiae larvae was reduced from 55 to 57 % in
habitats fully exposed to sunlight to 1–2 % in habitats with
full forest canopy coverage (forest habitats) in western
Kenya highlands [24]. Whether the observation that

deforestation facilitates the survival of the immature stage
of anopheline mosquitoes is a common phenomenon
across various malaria vector species and across multiple
continents warrants further investigation.
The mechanisms for reduced larval survivorship in mi-

crocosms placed in the forested environment and banana
plantation with high canopy coverage are unknown. Land
use and land cover may modify the temperature and food
source availability for mosquito larvae. We observed an
average of 0.4 °C lower temperature in microcosms in the
forested environment than deforested environment al-
though the minimum and maximum temperature in for-
ested and sunlit deforested microcosms ranged between
25.5–30.2 °C, within the optimal temperature for mos-
quito development. Lower pupation rate in habitats from
the forest environment could lead to large early-instar lar-
val mortality, subsequently leading to lower pupation rate
as observed in Culex quinquefasciatus [25]. The larval
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Fig. 3 Kaplan-Meier survival curve of Anopheles minimus larvae in three land use and land cover conditions. a natural conditions; and b larval
food supplemented

(
er

uta re
p

meT
°C

)

Hour of a day

24

25

26

27

28

29

30

31

0.00 6.00 12.00 18.00 24.00

Deforested

Banana field

Forested

Fig. 4 Mean hourly temperature 24-hr daily cycle in microcosms in three land use and land cover conditions

Wang et al. Parasites & Vectors  (2016) 9:323 Page 5 of 7



density used in the present study was comparable to the
density in natural habitats. Field sampling in over 100 hab-
itats of various habitat types found that the mean density
of 3rd and 4th instar Anopheles larvae ranged from 1.5–2
per dipper (300 ml volume), or 10–13 larvae per 2 l water
(unpublished data). In the present experiments we ob-
served ~20–40 % of the larvae developed into 3rd or 4th

instar (or 8–20 larvae in 2 l microcosms). Further, the
same larval density used in all experiments enabled us to
compare the environmental impact on larval development
and survivorship. Another hypothesis is the lack of food
for mosquito larvae in the shaded microcosms. This hy-
pothesis was supported by food supplementation to
shaded microcosms and resulting recuperation of mos-
quito pupation rate to a level comparable to the defor-
ested environment. Additionally, faster larval-to-pupal
development was found in all three land use and land
cover types. The potential food source of anopheline lar-
vae may include bacteria, fungi, diatom, detritus, organic
matter, and others. Using stable isotopes of carbon and ni-
trogen, Gilbreath et al. demonstrated inter-specific re-
source partitioning between Culex quinquefasciatus and
An. gambiae larvae in natural habitats in western Kenya
[26], but resource utilization of bacteria, algae, organic
matter or others by Anopheles larvae and their nutritional
contribution to mosquito larval biomass are virtually un-
known. The abundance and structure of microbes such as
algae and photosynthetic cyanobacteria in aquatic habitats
may have changed in response to shading [27]. Informa-
tion on the contribution of specific microbes to larval
mosquito development and survival will significantly en-
hance our understanding of larval ecology.
Our finding on the impact of environmental changes

on larval development of malaria vectors has important
implications on understanding malaria transmission dy-
namics in the China-Myanmar border area. First, An.
minimus larvae can successfully develop into pupae and
adults and complete its life cycle in the forest despite of
much reduced pupation rate. If aquatic habitats are
abundant in the forest, a considerable number of adult
mosquitoes may be produced. Because An. minimus is
highly anthropophilic and highly susceptible to malaria
parasites [28, 29], this presents a significant risk to forest
workers and hunters. Secondly, significantly enhanced
larval survivorship and pupation rate in An. minimus
mosquitoes in the deforested and cultivated areas render
the local residents highly prone to malaria outbreaks be-
cause more human-mosquito contact is expected in such
environments. Therefore, close malaria surveillance for
local residents living near deforested and cultivated areas
is needed to prevent outbreaks. Thirdly, climate warm-
ing is expected to affect the ecology of Anopheles mos-
quitoes and their malaria transmission potential. It is
imperative to use various tools, including mathematical

modeling to examine the impact of climate and environ-
mental changes on vector and malaria transmission dy-
namics [30]. Larval survivorship and development time
are important parameters for modeling transmission dy-
namics. The present study provided valuable information
on these important parameters.
This study has several limitations. First, we examined

the response of one of the most abundant malaria vector
species to environmental changes. There are multiple
malaria vectors in the area, including An. maculatus,
An. culicifacies, An. dirus and others [23]. It is possible
that other vector species may respond to environmental
changes differently. It would be particularly interesting
to study the mechanisms and larval ecology of An. dirus
that was found exhibiting reduced abundance in defor-
ested areas. Second, we did not examine the effect of de-
forestation on the survival and reproduction of adult
mosquitoes. Enhanced survivorship and blood feeding
frequency in adult mosquitoes by deforestation through
the effects on the microclimatic condition of the mos-
quitoes were found in other Anopheles species [31], and
it is possible that such effects are also manifested in An.
minimus adults. Third, the study was conducted in mi-
crocosms. The findings from the present study need val-
idating in natural habitats.

Conclusions
The present study shows that deforestation significantly
enhanced the pupation rate and shortened the larval-to-
pupal development time of An. minimus larvae, a major
malaria vector in southeast Asia. The results of the
present study on the life table parameters of mosquitoes
under a variety of environmental conditions is valuable to
model malaria transmission dynamics and the impact by
climate and environmental changes in southeast Asia.

Additional file

Additional file 1: Raw data on the survivorship of Anopheles minimus
larvae in three land use and land cover conditions under natural
conditions and with larval food supplemented. (DOCX 13 kb)
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