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ABSTRACT: With the rapid expansion of microplastic research
and reliance on semantic descriptors, there is an increasing need for
plastic pollution data harmonization. Data standards have been
developed but are seldom implemented across research sectors,
geographic regions, environmental media, or size classes of plastic
pollution. Harmonization of existing data is currently hindered by
increasingly large datasets using thousands of different categorical
variable descriptors, as well as various metrics used to describe
particle abundance and differing size ranges studied across groups.
For this study, we used manually developed relational databases to
build an algorithm utilizing artificial intelligence capable of
automatically curating harmonized, more usable datasets describing
micro to macro plastic pollution in the environment. The study algorithm MaTCH (microplastics and trash cleaning and
harmonization) can harmonize datasets with different formats, nomenclature, methods, and measured particle characteristics with an
accuracy of 71−94% when matching semantically. All other non-semantic corrections are reported within a 95% confidence interval
and with model uncertainty. All steps of the algorithm are integrated in an open-source software tool for the benefit of the scientific
community and ease of integration for all plastic pollution data.
KEYWORDS: plastic, microplastics, trash, natural language processing, harmonization, data management, artificial intelligence

1. INTRODUCTION
Studies focused on trash (mismanaged waste > 5mm in length1)
andmicroplastic (plastics 1−5000 μm in length1) pollution have
increased dramatically in number over recent years.2 Together,
these studies have indicated that the majority of microplastics
found in the environment are secondary products of degrading
mismanaged plastic waste rather than primary emissions,
pointing to a relationship in environmental occurrence between
trash and microplastics.3 Microplastics and trash are diverse
environmental pollutants that are difficult to query and quantify,
as we generally describe them with incomparable categorical
variables, and report environmental concentrations composed of
varying reporting metrics and particle size ranges.4 Microplastics
data is not currently standardized and is therefore less easily or
reliably comparable between studies,5,6 leading to many calls for
both standardization6−9 and harmonization.5,10,11 Nearly all
propositions for standardization or harmonization have focused
either on nano, micro,5,9 or macro8,12 particles, whose size
domain thresholds are often arbitrary and inconsistent between
groups.13,14 Given the intrinsic relationship between trash and
microplastics in their environmental occurrence and categorical
semantics, it follows that data management strategies for
microplastics and trash should be harmonious.15

Standards have been developed for managing mandated trash
assessment data8 and tabulating microplastics data with respect
to specific reporting guidelines.9 Such strategies serve as hubs for
accumulating already standardized data and are often specific to
certain geographic regions, study media, or government
protocols.8,10,16 Certain database structures may be better
suited for data at the sample level (reported as a concentration)
or the particle level (information reported for individual
particles). Standardization is limited by the rate at which
scientists, government organizations, nongovernmental organ-
izations (NGOs), or industry adapt to such protocols.
Additionally, most protocols do not have a strategy to utilize
data that does not fit their standardized structures, which
alienates potentially useful data. In these cases, users must
perform data harmonization manually. It is particularly
important in the field of microplastics monitoring to utilize
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existing databases due to the cost and time prohibitive nature of
the field, wherein it commonly requires up to thousands of
dollars and tens of hours to process a single sample, making data
from each monitoring study highly valuable.
Harmonization posthoc methods, wherein the harmonization

of data occurs after a study is complete and no prior
consideration for data standards is necessary, allow the inclusion
of more data but are limited by the ease at which foreign data can
be assimilated to a common structure.12 Manual harmonization
can take weeks for even a single dataset depending on its size,
again leading to underutilization of plastics databases.2 Previous
work on harmonizing trash data has focused on manually
extracting categorical variables to develop broad encompassing
data structures, including databases such as the Trash
Taxonomy, wherein terms used to describe trash characteristics
are detailed in a relational table database.12 However, there
exists no approach that automatically harmonizes macro debris
and microplastics data from nonspecified formats or with
unknown categorical descriptors.2 Best practices for the
development of database structures have remained a manual
undertaking that should be performed with the input of a wide
array of stakeholders, though the addition of new terms is
prohibitively effort-intensive. An automated approach to data
harmonization would allow for quick ingestion of data from new
studies, leading to larger, more valuable databases.
The field of microplastics and trash is not the first to

encounter such issues. Many divisions of the environmental and
biological sciences have similar problems, which will worsen
over time with ever-growing datasets and a focus on curating
“big data” to identify knowledge gaps and answer key
questions.17 Previous work has assessed the use of natural
language processing (NLP) algorithms as a means for
information retrieval to assemble databases and organize their
taxonomic structures.18,19 Until recently, the technology
available consisted of different pattern matching and syntac-
tic/semantic parsing, some of which rely on extracting exact
matches, and most have a narrow application range tailored to a
specific subfield.19 Results from early exploration of NLP for
scientific data curation were discouraging20 and may have led to
underutilization.
NLP technology has vastly improved in accuracy and

efficiency just over the past few years, primarily a result of
increases in computing power and the development of open-
source artificial intelligence (AI) software capable of employing
transformers and embeddings.21 Transformers are a type of
neural network structure able to interpret data nonsequen-
tially.22 The first step in using a transformer is to encode words
as vectors, of which embeddings are one of the most efficient
vector types to compare and derive meaning. Advanced open-
source language models, such as BERT (bidirectional encoder
representations from transformers)21 and GPT (generative pre-
training transformer) (provided through OpenAI),23 have made
it possible for scientists to now utilize the power of embeddings
and AI to rapidly automate harmonization of categorical data�
including those for trash and microplastics.
In addition to semantic harmonization�referring to

combining categorical variables based on their semantic
meaning in addition to their structural similarity�effective
and transferrable microplastics data reporting is challenged by
the incongruence of concentration data spanning different
particle size ranges and a paucity of the particle-level reporting
required to minimize error and ensure accurate representation.
Microplastic sample concentration is most often reported on a

particle count basis and is dependent on the size range of
microplastics characterized, as microplastic occurrence data
show particle counts generally increase with decreasing size in
the form of an inverse power law relationship.24−27 Incon-
sistencies may also arise from differing reported dimensions (i.e.,
length, mass, projected surface area, and volume).26 Our
framework includes non-semantic harmonization methods that
both rescale studied-size ranges and convert between count,
volume, and mass given basic particle characteristics. Our
framework also attempts to improve the accuracy and
transparency of such non-semantic harmonization methods by
introducing a large database of polymer densities (n > 77,000)
and reporting 95% confidence intervals and model error.
This study aims to (1) create a data management workflow to

merge terminologies for both trash and microplastics in one
unified querying system, (2) integrate an automated NLP step
into the workflow to account for foreign terminology, (3) create
an automated strategy for rescaling heterogeneous microplastic
concentrations and particle metrics, (4) validate the perform-
ance of the automated data harmonization pipelines relative to
manual curation, (5) generate open-source web tools for
scientists to rapidly leverage the created algorithm, and (6)
create a generalizable approach to perform such analyses so they
may be applied in other fields. Through the use of NLP and
newly assessed data structures, we aim to ensure that all
descriptors of these complex pollutants are retained during
harmonization to provide datasets that are comparable between
studies without losing any of the rich descriptive information
provided to better support plastic pollution investigation and
future management.

2. MATERIALS AND METHODS
2.1. Model Development: Semantic Data Harmoniza-

tion. 2.1.1. Microplastics and Trash Taxonomy. To assess the
current lexicon of microplastics researchers in describing
particles, we used Google Scholar to search for studies related
to microplastic occurrence in drinking water (75% tap and 25%
bottled) and an environmental compartment of interest�
rivers�including multiple media types with a focus on surface
water (95% surface water, 4% sediment, and 1% river discharged
effluent). In total, we reviewed 57 studies totaling 1186 samples
(Table S1), recording concentration data and a comprehensive
list of all unique terms used to describe particles, all of which
included some instrumental verification that particles found
were plastic. Data was manually extracted from article text and
reported in the format described in SI file “User Guide”, Section
3 “Data Structuring”. None of the reviewed studies (Table S1)
reported individual particle data; therefore, we focused on
harmonizing sample level data for our review.
Our goal was to build on the existing Trash Taxonomy to

integrate terms describing both microplastics and macro debris
into one querying system.12 We created alias tables that first
relate any synonymous terms (e.g., "LDPE" and“low density
polyethylene”), as well as hierarchical tables to relate child and
parent terms [e.g., “PE” (polyethylene) is the parent term to
both “LDPE” (low-density polyethylene) and “HDPE” (high-
density polyethylene)] (Figure S1). Through conducting this
review, the primary reported categorical characteristics were the
morphology (shape), material, and color. All types of categorical
variables have their own alias tables, and hierarchical tables were
generated for material and morphology. Similarity between
terms used to describe morphology andmaterial is calculated via
eq 1

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c02406
Environ. Sci. Technol. 2024, 58, 20502−20512

20503

https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c02406/suppl_file/es4c02406_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c02406/suppl_file/es4c02406_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c02406/suppl_file/es4c02406_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c02406?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= X Y
Y

Comparability metric

Terms in sheet equivalent with terms in sheet
All terms in sheet

X Y,

(1)

Equation 1: Comparability metric to be computed for material

or morphology between two sheets (sheet X and sheet Y), where

the numerator describes the number of terms present in both

sheet X and sheet Y, and the denominator describes the total

number of terms in sheet Y.

Figure 1. Microplastics and trash cleaning and harmonization (MaTCH) workflow schematic. Dark blue boxes represent data inputs and outputs.
Light blue boxes represent model operations. Text outside of boxes and medium blue arrows represent decision trees.
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Microplastic morphologies can be easily differentiated from
trash, as they all have the parent term “microplastic” in the
morphology hierarchy table. To differentiate materials, specific
polymer names to describe microplastics are all under the parent
term “plastic” in the materials hierarchy table. These merged
microplastic and trash taxa allow all plastic pollution data to be
studied contemporaneously, regardless of size.
2.1.2. Embeddings and Querying through AI. We used the

text-embedding-ada-002 embedding model and API from
OpenAI28 to generate our embeddings�the vector described
earlier needed for relating terms via NLP, with each term having
a corresponding vector embedding�deployed in R (4.3.0) and
RStudio (23.09.0). This model was chosen on the basis of
accuracy, speed, and cost. Accuracy was assessed by attempting
to reproduce our alias relational tables through matching aliases
to their associated prime terms by the similarity of their
associated embeddings.
The alias tables consist of one “prime” term that acts as the key

linking to other tables in the relational database and other
synonymous terms as “aliases”. Embeddings were generated for
1326 morphology aliases and 609 material aliases. Of these, 441
morphologies and 406 materials were designated to be “prime”
terms, and 885 morphologies and 203 materials were designated
as synonymous “alias” terms. Using the “chRoma” package29

that streamlines vector database management, we queried the
top five matches as determined via dot product between each
embedding vector (see data availability statement to access
open-source code). We compared these results to the actual
prime term for that alias in the alias tables�as outlined in
Section 2.1.1�and reported those that were correctly matched
to their prime term, as well as those that contained the correct
prime term in the top 5 matches as ranked by percent similarity.
We also used a database not previously integrated from an urban
litter study30 and compared embedding matches to manual
matches.

2.2. Model Development: Non-Semantic Data Harmo-
nization. 2.2.1. Particle Count to Mass Conversion. For the
sake of simplicity, when trying to traverse between count to
mass-based concentration estimates, some have assumed a
constant density and spherical volume, which greatly increases
error margins.31 Kooi and Koelmans (2019)26 identified the
problem of applying subjective morphological and polymeric
descriptors to microplastic particles and rather proposed
reporting as continuous distributions. In their study, ranges
were established for the L:W:H (length to width to height)
ratios of five common morphology types (fiber, fragment, film,
foam, and sphere).26 We have integrated these proposed L:W:H
ratios into our algorithm to convert morphology and length
information into particle volume. Error was calculated by
deriving a 95% confidence interval for each axis given the
reported possible ranges, assuming a normal distribution. A
measurement error of ±5% for particle length was also included
to better characterize all possible sources of uncertainty.
To obtain mass, we then multiply the volume estimates, as

outlined above, by material density. To obtain density, we
curated a database including over 77,000 polymer density
measurements (provided by Dale Kipp ofMatWeb),32 for which
we computed median values,33 adding to existing databases26,34

of n =∼ 1000 polymer densities. If only a range of densities were
provided, a Gaussian distribution was assumed, and a 95%
confidence interval was derived. If individual density measure-
ments were available, as in the case of our internally curated
dataset, confidence intervals were derived using actual values. If

no range or individual measurements were provided, then the
average coefficient of variation of polymers with known error
was applied. Our updated database contains 310 unique
densities that are specific constituents of 43 parent polymer
classes. By using densities derived from a larger number of
measurements, we hope to better encompass the possible ranges
of actual plastic particle densities while better representing
uncertainty (Figure 1). In order to estimate mass for macro
debris, we have used the method outlined in Cowger et al.
(2022), which includes a literature review of studies that report
litter masses to obtain average values for 205 distinct trash
morphologies (Figure 1).30

If only sample level data is provided, we simulate particle data
according to the morphological/material proportions provided
and then follow the workflow mentioned above. Additionally,
although we expect a majority of user input terms to be known
within our database, the use of embedding models to describe
polymer or morphology could lead to compounding error when
calculating mass if improper matching was to arise for
morphology or material.
2.2.2. Particle Size Rescaling. Investigations of continuous

distributions of microplastic sizes have found that smaller
microplastics contribute a much larger proportion to total
concentrations by count.26,34 Kooi et al. (2021) derived several
inverse power law models26 to describe microplastic size
distributions for various environmental media.34 In their
approach, a meta-analysis was performed on studies that report
microplastic size and relative abundance to develop alpha values
(power law exponents) for probability density functions
describing size. In the current study, we applied this method
to any dataset with more than 5 size bins (the recommended
minimum n by Nor et al., 202135) to derive an alpha value (eq
S1) (Figure 1).26 This value is used to calculate a correction
factor (eq S2),27 which is then multiplied by the given
concentration to describe the corrected range, which may be
larger or smaller than the original value depending on if you want
to expand or collapse your size range (Figure 1). Additionally,
we integrated the standard error from the inverse power law
model into our total error budget. Note, particle size rescaling is
contingent only upon sample size information and not on any
particle characteristic distributions, meaning there will be no
compounding error derived from embeddingmatch uncertainty.
Additionally, note that rescaling is not applicable to macro
debris (Figure 1). Degradation pathways suspected to be the
cause for observed microplastic particle size distributions
(PSDs) would not apply to macro debris that is typically a
result of primary production, not secondary degradation.

2.3. Model Testing: Drinking Water vs Riverine
Microplastic Occurrence Meta-Analysis Harmonization.
To assess the applicability of our harmonization model to real
world plastic pollution data, we merged curated datasets of
microplastic occurrence in drinking water (n = 600) and in rivers
across the United States (n = 586) (Table S1). These sources
were chosen due to their suspected incompatibility in terms of
particle size and concentration, with drinking water studies
assumed to have lower concentrations and smaller particles
observed. Our goals were to assess differences in semantics and
our ability to make cross-study comparisons more concise as
well as rescaling concentrations to analyze subsequent trans-
formations in both occurrence and semantics.
To rescale the concentrations, correction factors were

obtained for each sample. Values from Kooi et al. (2021) were
used for studies in freshwater surface, freshwater sediment, and
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effluent discharged into streams (α = 2.64 ± 0.01, 3.25 ± 0.19,
and 2.54 ± 0.04, respectively) (Figure 1). An alpha value for
drinking water was developed (α = 1.64 ± 0.55), in which 11
samples were isolated that met the criteria of having ≥5
reported-size bins. The method described in Section 2.2.2 above
was used to obtain a corrected concentration that describes the
full 1−5000 μm range.34

When semantic data was provided, morphology and polymer
were converted to one of the prime terms in the database
presented in this study (Figure 1). Correcting various samples
with differing size ranges, as we have done in our meta-analysis,
will also have implications on the final proportions of categorical
variables, as each study has a unique correction factor. Results
displaying the reported and corrected concentrations, morphol-
ogies, and materials are discussed below. While this case study
utilizes our model’s non-semantic capability to correct for
differing size ranges, see the Supporting Information section
titled “Model Testing: Micro vs. Macro Roadway Debris -Meta-
Analysis Harmonization” for a similar case study of count to
mass conversions for different sized roadway debris.

2.4. Open-Source Web-Tools.We developed a simple user
interface�the Microplastics and Trash Cleaning and Harmo-
nization (MaTCH) app�that will perform all possible
harmonization with a single upload is available at https://
hannahhapich.shinyapps.io/match/. MaTCH will analyze the
column headings in the uploaded data table to determine the
format (particle or concentration) and which data cleaning
operations can be performed (semantic matching, count to mass
conversion, and size rescaling). Particle and concentration test
data are available for download to illustrate MaTCH’s features.
This app was developed with the shiny,36 tidyr,37 skimr,38

chRoma,29 tibble,39 dplyr,40 data.table,41 data.tree,42 plotly,43

bs4 Dash,44 classInt,45 aws.s3,46 digest,47 DT,48 shinyTree,49

shinyhelper,50 and shinyWidgets51 packages in R (4.3.0) and
RStudio (23.09.0).
2.4.1. Semantic Merging Interface. If material and

morphology are provided, a match through our relational table
system is first performed (Section 2.1.1), and if the term is
unknown, an embedding match is performed (Section 2.1.2).
The algorithm defaults to the top embedding match, but also
provides a dropdown list with the top five matches that allows
the user to manually override this selection. With user approval,
reported particle characteristic frequencies are saved to an
Amazon S3 Cloud Database to help inform future algorithm
development by indicatingmost commonly found particle types.
Additionally, the tool provides rapid data visualization in the
form of sunburst plots (hierarchical pie charts) for materials and
morphologies and is available for download.
2.4.2. Non-Semantic Merging Interface. The count to mass

conversion tool allows users to upload data that must include at
least length, morphology, and material. Additional variables can
be included as outlined in the data template tab on the tool;
however, they are not required and therefore do not need to be a
complete column, as in the case of the “Sample Test Data”
available on the homepage. Data may be uploaded in the form of
particle data with actual values for each or as concentration data
with particle size and proportions for morphology and material.
Using the model and error calculations detailed above (Section
2.2.1), the output consists of volume, density, mass, and
confidence intervals for each.
We also developed a tool for concentration rescaling that

allows users to upload microplastic concentrations of their
sample(s), studied size range, and desired extrapolated size

range (within the 1−5000 μmmicroplastics size limit) to obtain
rescaled concentrations. Users have the option to upload
concentration data or particle level data. If binned concentration
data with ≥5 bins or particle data are available, an alpha value
will be generated for the sample calculated in accordance with
methods detailed above (Section 2.2.2). If no study media or <5
size bins are provided, a default of α = 1.6 ± 0.5 will be used.26

These alpha values are used to derive a correction factor and
corrected concentration for accompanying sample data.

3. RESULTS AND DISCUSSION
3.1. Model Development: Semantic Data Harmoniza-

tion. Of the 57 microplastic studies reviewed, only 13 reported
their findings for categorical descriptors of microplastics. While
several studies reported microplastic colors present in their
samples, only three studies in our analysis reported proportion
values, and color was therefore omitted from our comparability
analysis. In total, this allowed for 156 comparabilitymetrics to be
derived analyzing the comparability of microplastic morphology
and material (Figure S2).
Using the comparability metric (eq 1), we found mean

comparability between unharmonized studies was 34.0% for
morphologies and 6.4% for materials. The number of 100%
comparable observations was 31 for morphologies and 0 for
materials. Alternatively, the number of 0% comparable studies
was 80 for morphologies and 136 for materials. Our findings
illustrate both a lack in reporting characteristic distributions
among microplastic studies and little harmonization between
groups that do report.
Through the validation of the MaTCH workflow, we found

that 70.62% of morphologies and 76.14% of materials were a top
match to their correct aliases (Figure S2). Additionally, 87.91%
of morphologies and 94.32% of materials had a correct match in
the top 5matches (Figure S2).We also assessed terms outside of
our database obtained from a litter accumulation study on urban
roadways in Southern California30 and a microdebris roadway
study52 to further verify accuracy. Of the total 204 descriptors
used between these studies, 119 terms were unknown to our
database, of which 93 (78%) were correctly matched to a prime
term as compared to the manually harmonized dataset. Note
that the results here reflect those obtained from running the
analysis at the time of publication. The OpenAI embedding
model used here is subject to change over time, whether it be
due to actual changes in the model or intentionally injected
randomness, so exact percentages may vary slightly over time.
Also, note that the accuracy percentages reported above assume
all terms must be matched via embeddings. Terms are first
matched via relational table, and it is our expectation that this
database�with thousands of terms�will be able to match user
input descriptors a majority of the time, resulting in 100%
accuracy for those terms; the use of the embedding model acts
more as a secondary failsafe method.
However, there are still some limitations to embedding-based

semantic matching strategies. When attempting to match full
polymer names to common abbreviations (e.g., “polyethylene”
and “PE”), our matches were much lower (38.56−47.32%). In
embedding space, unabbreviated polymer names were more
closely related to each other than to their corresponding
abbreviations. For example, “polyethylene” would be closer to
“poly(ethylene glycol)” than to its associated abbreviation “PE”.
Conversely, “PET” (polyethylene terephthalate) would be more
closely related to “PE” than to “polyethylene terephthalate”. To
account for this technical limitation, known polymer abbrevia-
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tions were excluded from our embedding database, though they
are still included in the relational tables. This means incoming
unknown terms will be matched to an unabbreviated alias first
(e.g., “poly(ethylene)” wouldmatch to “polyethylene”) and then
matches to common abbreviations are done via the relational
tables (e.g., to “PE”).
We have developed a data validation routine that allows users

in any field to assess the accuracy of embeddingmatches for their
chosen field, available via our GitHub page. If user desired
accuracy is achieved, our algorithm can be applied to any use
case by swapping out relational tables. Also, note that our model
has not undergone any fine-tuning (model training of user data)
to better characterize our use case. With proper funding and
sufficient training data, the accuracy of embedding matches will
improve through fine-tuning.
Supported by the high accuracy found in our study,

integration of embedding-based NLP and other AI technologies
to match synonymous semantic terminology appears promising.
These results illustrate the power of NLP to increase the
automation of categorical data harmonization. Automated
curation of big datasets will increase the usability of existing
data and may expedite future research studies that rely on the
synthesis of microplastics data. With low-to-no-cost models
becoming more accessible, we believe future studies should
consider these methods of data integration in the field of plastic
pollution research and beyond.

3.2. Model Testing: Drinking Water vs Riverine
Microplastic Occurrence Meta-Analysis Harmonization.
Median concentrations of all drinking water studies curated
were found to be 9.0 particles/L, which when run through
MaTCH and corrected to the full microplastic particle size range
(1−5000 μm) decreased to 6.03 ± 2.19 particles/L (Figure 2).
Some drinking water studies included size ranges beneath 1 μm
(filters with 0.2 μm pore size and no reported lower limit),
resulting in a slight decrease in concentration when fitting to the
1−5000 μm distribution. Median river concentrations were
0.004 particles/L, increasing 4 orders of magnitude to 23.13 ±
1.53 particles/L when run through MaTCH (Figure 2). In
contrast to drinking water, riverine studies focused on larger size
ranges (median studied range of 355−5000 μm), likely due to
analytical hurdles when dealing with environmental media. This
resulted in a dramatic increase in concentration when size ranges
were rescaled to the expanded 1−5000 μm range. This shift in

riverine concentrations reversed the plotted interpretation of
which media have a higher concentration. Though differences in
analyzed size ranges were simply a result of differing objectives
and analytical limitations across studies, when trying to draw a
broad conclusion about particle abundance in different environ-
mental compartments, uncertainties and errors can hide
between microplastics datasets that are misaligned with one
another.
For studies reporting onmorphology or polymer composition

of their samples, categorical terms were run through MaTCH.
Terms used to describe morphology were reduced from 15 to 6,
and polymer terms were reduced from 39 to 25. Parent
hierarchical terms were plotted in sunburst plots whether or not
parent terms were explicitly used in sample data to help visualize
all scales of classification simultaneously (Figure 3a,b). Using
hierarchical structuring maximizes characteristic data compara-
bility between studies while still retaining more detailed
information from studies that use more specific terminology
to better inform non-semantic harmonization techniques
(Figures 1 and 3).
As mentioned previously, correcting concentrations by

rescaling particle size ranges also has implications for shifts in
categorical variable proportions when comparing multiple
studies. Some of the notable changes in morphological
proportions after being run through MaTCH are an apparent
11% decrease in fibers and an 18% increase in nurdles for
drinking water studies, as illustrated below (Figure 4a). Even
greater changes were found for riverine studies, with an apparent
86% decrease in the number of fibers and a 34% increase in the
number of fragments. Lower changes in drinking water
morphological proportions with size rescaling are likely due to
the tendency for drinking water studies to focus on a similar size
range to the full distribution (1−5000 μm), meaning that their
correction factors will be smaller than those only analyzing larger
microplastics. Corrected concentrations also shifted material
proportions (Figure 4b). Notably, corrected drinking water
concentrations saw an apparent decrease in PET (polyethylene
terephthalate) by 34% and an increase in PEST (polyester) by
164%. For riverine studies, we saw an apparent 61% increase in
PS (polystyrene) and a 55% decrease in PE (polyethylene).
Examining differences in morphological makeup before and

after being run through MaTCH may help to provide insight
into some methodological limitations. Though values obtained

Figure 2.Microplastic concentrations (particle/L) before and after particle size rescaling. Data sourced frommeta-analyses of the present study (Table
S1) including data from microplastics monitoring of riverine systems (n = 586) and drinking water (n = 600).
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through MaTCH do contain a high degree of uncertainty, we
believe that the analytical output is representative of the mean
tendency. As drinking water studies tend to analyze smaller
particles, it is possible that they are underreporting fibers at a
higher proportion than environmental monitoring studies.
Multiple reviews have found fibers to be the most abundant
microplastic morphology in the environment,53−55 meaning our
findings may highlight decreasing recovery of selective
morphologies as the analyzed size range decreases, assuming a
constant PSD across morphologies. Given that most studies
define microplastic size by the longest axis, it follows that fibers
and their very high length to width ratio have a lower projected
surface area as compared to other morphologies. Therefore,
fibers are more likely to be beneath the limit of diffraction for
common spectral analysis methods such as Fourier transform
infrared spectroscopy (FTIR) than their morphological counter-

parts within the same size class when classes are defined on the
basis of the longest principal axes. We also see a much higher
proportion of fibers reported in riverine data that target larger
particle sizes than we see in drinking water studies or in size
range-adjusted concentrations of riverine samples.
Conversely, there may also exist variable recovery rates

between morphologies based on the sampling method,
regardless of the studied size range. Net-based sampling and
defining size classes by mesh size but defining particle size by the
longest axis can propose a problem for morphologies such as
fibers. Fibers are unique due to their flexibility and previously
mentioned high length to width ratio, giving them the potential
to deform and slip through nets, despite the length of the fiber
being larger than the mesh size. This same issue of variable
recovery rates applies to any sample that undergoes sieving,
meaning this would lead to the opposite effect as mentioned in

Figure 3.Change inmorphological (a) and polymeric (b) categorical variables before and after semantic alignment. Illustration of hierarchical lumping
via sunburst plot with 95% confidence intervals. (PP: polypropylene, PET: polyethylene terephthalate, PE: polyethylene, PA: polyamide, PS:
polystyrene, PVC: polyvinyl chloride, and PPS: polyphenylene sulfide).
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the prior paragraph and would, in fact lead us to believe riverine
studies that utilize net-based sampling and undergo sieving
would underreport fibers. Future work should investigate
dominant sources of preferential recovery due to methodology
based on morphology and fibers in particular.
Semantic proportions changing at different rates across size

distributions in these examples indicate an interesting
proposition: different PSDs may need to be developed for
different morphologies or materials to traverse between
semantic and quantitative data structures more accurately as
well as to better characterize methodological limitations such as
those mentioned above. Biases in modes of preferential
environmental transport, limits of existing sampling and
analytical methods, or reflections of differences in actual total
abundances of various microplastic particle types across size
distributions (possibly due to differing degradation pathways
between materials or morphologies) may lead to a wide variety
of PSDs when developed empirically rather than theoretically or
with limited datasets. Additionally, some degree of particle level
data reporting is recommended moving forward to promote
transparency and enable direct comparisons between studies by
allowing for more robust concentration rescaling. Though most
groups do not record particle level data for an entire sample,
typically, some subset of particles is taken to be characterized via

spectroscopy, and even the sharing of morphological or size
information on more robustly characterized subsets would
strengthen existing empirical relationships. This type of
reporting allows for the association of different particle
characteristics (e.g., size distributions of individual morpholo-
gies can be analyzed). We believe this is an important topic to be
investigated in future studies and that the use of MaTCH will
help with identifying and pursuing these insights.

3.3. Methodological Limitations.The application of data-
transforming operations posthoc is not without its limitations.
While the application of different alpha values that reflect
varying PSDs across environmental compartments is an
improvement over assuming constant PSDs universally, these
compartment-specific values are limited by the quality, amount,
and specificity of the data with which empirical models were fit.
More broadly, empirical models, such as those included in this
study, are limited by the volume and quality of data used to
develop them. Further work will be required to evaluate whether
we observe these trends in systems not used in the development
of the empirical models themselves and preferentially fit models
to data from individual systems. Additionally, this model
currently does not consider methodological variability, includ-
ing from sampling apparatus or sample processing steps. Such
variability should be explored to investigate if we observe

Figure 4. Changes in morphological (a) and polymeric (b) composition of microplastics by count in rivers and drinking water before and after size
rescaling. Co-polymers, nonpolymeric, and other plastics have been lumped via the taxonomy for visualization. (CA: cellulose acetate, PA: polyamide,
PAI: polyamide-imides, PAM: polyacrylamide, PAN: polyacrylonitrile, PBA: polybutylene terephthalate, PE: polyethylene , PEST: polyester, PET:
polyethylene terephthalate, PMMA: poly(methyl methacrylate), PP: polypropylene, PPE: polyphenylene ether, PPS: polyphenylene sulfide, PS:
polystyrene, PTT: polytrimethylene terephthalate, PU: polyurethane, PVA: polyvinyl acetate, PVC: polyvinyl chloride, PVDF: polyvinylidene fluoride,
and SBR: styrene−butadiene rubber).
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significantly different trends as a function of study design that
can then be used to further improve interstudy harmonization.
One final limitation worth noting is the extrapolation of particle
size ranges beyond what is studied. Though these empirically
developed distributions are useful in improving harmonization
across existing studies, it remains ideal for future studies to
investigate the largest possible particle size range to avoid
introducing unnecessary bias.
This study attempts tomaximize transparency and capture the

full range of uncertainties associated with such empirical models.
However, we recognize the large range of uncertainty derived
from data transformations such as those utilized here and
encourage future studies to build off this framework to further
reduce uncertainty. This tool is a step toward increased
utilization of existing and new empirical harmonization methods
to make improvements toward (1) creating more comparable
results from misaligned monitoring studies and (2) informing
future study designs from existing data on similar systems.

3.4. Implications and Next Steps.We believe our findings
highlight a general need for more careful consideration of
dataset characteristics when comparing between studies in the
future. Moving forward, we propose building off existing non-
semantic data harmonization frameworks with larger quantities
of empirical data to better establish these fundamental
properties of plastic characterization. This includes the relation-
ship between morphology and L:W:H, as well as polymer−
density relationships. The development of PSDs for nanoplastics
could also be incorporated into the proposed framework to
extend the reach of the potential particle size rescaling. Refining
these distributions with respect to more detailed and higher
volumes of data to describe more accurately what we observe in
the environment is an important area of research moving
forward. We hope this goal can be achieved by utilizing open-
source, user-supported databases such as the one described in
this study.
We believe these findings illustrate not just the need for data

alignment in future studies and meta-analyses but also the
interdependency of data harmonization techniques. Each step in
the proposed algorithm is necessary to harmonize the quantity
and characteristic makeup of microplastic samples. While a
universal framework for microplastics data reporting does not
currently exist, we will continue to develop and refine data
harmonization algorithms to leverage valuable existing data with
proper consideration of possible biases.
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